Science.gov

Sample records for electronic engineering applications

  1. Engineered phages for electronics.

    PubMed

    Cui, Yue

    2016-11-15

    Phages are traditionally widely studied in biology and chemistry. In recent years, engineered phages have attracted significant attentions for functionalization or construction of electronic devices, due to their specific binding, catalytic, nucleating or electronic properties. To apply the engineered phages in electronics, these are a number of interesting questions: how to engineer phages for electronics? How are the engineered phages characterized? How to assemble materials with engineered phages? How are the engineered phages micro or nanopatterned? What are the strategies to construct electronics devices with engineered phages? This review will highlight the early attempts to address these questions and explore the fundamental and practical aspects of engineered phages in electronics, including the approaches for selection or expression of specific peptides on phage coat proteins, characterization of engineered phages in electronics, assembly of electronic materials, patterning of engineered phages, and construction of electronic devices. It provides the methodologies and opens up ex-cit-ing op-por-tu-ni-ties for the development of a variety of new electronic materials and devices based on engineered phages for future applications.

  2. Engineering the electronic properties of nanowires for device applications

    NASA Astrophysics Data System (ADS)

    Thelander, Claes

    2007-03-01

    Semiconductor nanowires have recently been recognized as a possible add-on technology to silicon CMOS. Successful integration of nanowires may push the miniaturization of components further and could also bring improved, and completely new, device functions to a chip. In particular, nanowires composed of III-V materials are of interest for applications as they benefit from a small and/or direct bandgap. We will present results from electrical measurements on InAs/InP nanowires grown by chemical beam epitaxy. Changes in the precursors fed to the growth chamber can be made to control the electronic properties of the grown material. In this way it is possible to create atomically sharp heterostructure interfaces, as well as to change the carrier concentration along the wire. The latter can be achieved by controlling the carbon incorporation from the In precursor. It will be shown that heterostructure nanowires can be used in memory cells, and also as single-electron transistors for electrostatic read-out of such cells. Finally, we will discuss the design and application of InAs nanowire-based field-effect transistors, where issues related to lateral and vertical processing of nanowires will be addressed.

  3. Novel engineered compound semiconductor heterostructures for advanced electronics applications

    NASA Astrophysics Data System (ADS)

    Stillman, Gregory E.; Holonyak, Nick, Jr.; Coleman, James J.

    1992-06-01

    To provide the technology base that will enable SDIO capitalization on the performance advantages offered through novel engineered multiple-lavered compound semiconductor structures, this project has focussed on three specific areas: (1) carbon doping of AlGaAs/GaAs and InP/InGaAs materials for reliable high frequency heterojunction bipolar transistors; (2) impurity induced layer disordering and the environmental degradation of AlxGal-xAs-GaAs quantum-well heterostructures and the native oxide stabilization of AlxGal-xAs-GaAs quantum well heterostructure lasers; and (3) non-planar and strained-layer quantum well heterostructure lasers and laser arrays. The accomplishments in this three year research are reported in fifty-six publications and the abstracts included in this report.

  4. An Analog Computer for Electronic Engineering Education

    ERIC Educational Resources Information Center

    Fitch, A. L.; Iu, H. H. C.; Lu, D. D. C.

    2011-01-01

    This paper describes a compact analog computer and proposes its use in electronic engineering teaching laboratories to develop student understanding of applications in analog electronics, electronic components, engineering mathematics, control engineering, safe laboratory and workshop practices, circuit construction, testing, and maintenance. The…

  5. Extreme Band Engineering of III-Nitride Nanowire Heterostructures for Electronic and Photonic Application

    NASA Astrophysics Data System (ADS)

    Sarwar, ATM Golam

    Bottom-up nanowires are attractive for realizing semiconductor devices with extreme heterostructures because strain relaxation through the nanowire sidewalls allows the combination of highly lattice mismatched materials without creating dislocations. The resulting nanowires are used to fabricate light-emitting diodes (LEDs), lasers, solar cells, and sensors. The aim of this work is to investigate extreme heterostructures, which are impossible or very hard to realize in conventional planar films, exploiting the strain accommodation property of nanowires and engineer their band structure for novel electronic and photonic applications. To this end, in this thesis, III-Nitride semiconductor nanowires are investigated. In the first part of this work, a complete growth phase diagram of InN nanowires on silicon using plasma assisted molecular beam epitaxy is developed, and structural and optical characteristics are mapped as a function of growth parameters. Next, a novel up-side down pendeoepitaxial growth of InN forming mushroom-like microstructures is demonstrated and detail structural and optical characterizations are performed. Based on this, a method to grow strain-free large area single crystalline InN or thin film is proposed and the growth of InN on patterned GaN is investigated. The optimized growth conditions developed for InN are further used to grow InGaN nanowires graded over the whole composition range. Numerical energy band simulation is performed to better understand the effect of polarization charge on photo-carrier transport in these extremely graded nanowires. A novel photodetector device with negative differential photocurrent is demonstrated using the graded InGaN nanowires. In the second part of this thesis, polarization-induced nanowire light emitting diodes (PINLEDs) are investigated. The electrical and optical properties of the nanowire heterostructure are engineered and optimized for ultraviolet and deep ultraviolet applications. The electrical

  6. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.

    PubMed

    Sokolov, Anatoliy N; Tee, Benjamin C-K; Bettinger, Christopher J; Tok, Jeffrey B-H; Bao, Zhenan

    2012-03-20

    Skin is the body's largest organ and is responsible for the transduction of a vast amount of information. This conformable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of an electronic material, inspired by the complexity of this organ is a tremendous, unrealized engineering challenge. However, the advent of carbon-based electronics may offer a potential solution to this long-standing problem. In this Account, we describe the use of an organic field-effect transistor (OFET) architecture to transduce mechanical and chemical stimuli into electrical signals. In developing this mimic of human skin, we thought of the sensory elements of the OFET as analogous to the various layers and constituents of skin. In this fashion, each layer of the OFET can be optimized to carry out a specific recognition function. The separation of multimodal sensing among the components of the OFET may be considered a "divide and conquer" approach, where the electronic skin (e-skin) can take advantage of the optimized chemistry and materials properties of each layer. This design of a novel microstructured gate dielectric has led to unprecedented sensitivity for tactile pressure events. Typically, pressure-sensitive components within electronic configurations have suffered from a lack of sensitivity or long mechanical relaxation times often associated with elastomeric materials. Within our method, these components are directly compatible with OFETs and have achieved the highest reported sensitivity to date. Moreover, the tactile sensors operate on a time scale comparable with human skin, making them ideal candidates for integration as synthetic skin devices. The methodology is compatible with large-scale fabrication and employs simple, commercially available elastomers. The design of materials within the semiconductor layer has led to the incorporation of selectivity and sensitivity within

  7. Space Electronic Test Engineering

    NASA Technical Reports Server (NTRS)

    Chambers, Rodney D.

    2004-01-01

    The Space Power and Propulsion Test Engineering Branch at NASA Glenn Research center has the important duty of controlling electronic test engineering services. These services include test planning and early assessment of Space projects, management and/or technical support required to safely and effectively prepare the article and facility for testing, operation of test facilities, and validation/delivery of data to customer. The Space Electronic Test Engineering Branch is assigned electronic test engineering responsibility for the GRC Space Simulation, Microgravity, Cryogenic, and Combustion Test Facilities. While working with the Space Power and Propulsion Test Engineering Branch I am working on several different assignments. My primary assignment deals with an electrical hardware unit known as Sunny Boy. Sunny Boy is a DC load Bank that is designed for solar arrays in which it is used to convert DC power form the solar arrays into AC power at 60 hertz to pump back into the electricity grid. However, there are some researchers who decided that they would like to use the Sunny Boy unit in a space simulation as a DC load bank for a space shuttle or even the International Space Station hardware. In order to do so I must create a communication link between a computer and the Sunny Boy unit so that I can preset a few of the limits (such power, set & constant voltage levels) that Sunny Boy will need to operate using the applied DC load. Apart from this assignment I am also working on a hi-tech circuit that I need to have built at a researcher s request. This is a high voltage analog to digital circuit that will be used to record data from space ion propulsion rocket booster tests. The problem that makes building this circuit so difficult is that it contains high voltage we must find a way to lower the voltage signal before the data is transferred into the computer to be read. The solution to this problem was to transport the signal using infrared light which will lower

  8. Electronic Communication in Engineering Work.

    ERIC Educational Resources Information Center

    Bishop, Ann P.

    1992-01-01

    Discusses the role of electronic networks in engineering work; reviews selected literature on engineering work, knowledge, and communication; describes current uses of electronic networks; and presents results from a study of the use of networks by engineers in the aerospace industry, including their perceptions of networks. (67 references) (LRW)

  9. Engineering highly organized and aligned single walled carbon nanotube networks for electronic device applications: Interconnects, chemical sensor, and optoelectronics

    NASA Astrophysics Data System (ADS)

    Kim, Young Lae

    For 20 years, single walled carbon nanotubes (SWNTs) have been studied actively due to their unique one-dimensional nanostructure and superior electrical, thermal, and mechanical properties. For these reasons, they offer the potential to serve as building blocks for future electronic devices such as field effect transistors (FETs), electromechanical devices, and various sensors. In order to realize these applications, it is crucial to develop a simple, scalable, and reliable nanomanufacturing process that controllably places aligned SWNTs in desired locations, orientations, and dimensions. Also electronic properties (semiconducting/metallic) of SWNTs and their organized networks must be controlled for the desired performance of devices and systems. These fundamental challenges are significantly limiting the use of SWNTs for future electronic device applications. Here, we demonstrate a strategy to fabricate highly controlled micro/nanoscale SWNT network structures and present the related assembly mechanism to engineer the SWNT network topology and its electrical transport properties. A method designed to evaluate the electrical reliability of such nano- and microscale SWNT networks is also presented. Moreover, we develop and investigate a robust SWNT based multifunctional selective chemical sensor and a range of multifunctional optoelectronic switches, photo-transistors, optoelectronic logic gates and complex optoelectronic digital circuits.

  10. Stirling engine application study

    NASA Technical Reports Server (NTRS)

    Teagan, W. P.; Cunningham, D.

    1983-01-01

    A range of potential applications for Stirling engines in the power range from 0.5 to 5000 hp is surveyed. Over one hundred such engine applications are grouped into a small number of classes (10), with the application in each class having a high degree of commonality in technical performance and cost requirements. A review of conventional engines (usually spark ignition or Diesel) was then undertaken to determine the degree to which commercial engine practice now serves the needs of the application classes and to detemine the nature of the competition faced by a new engine system. In each application class the Stirling engine was compared to the conventional engines, assuming that objectives of ongoing Stirling engine development programs are met. This ranking process indicated that Stirling engines showed potential for use in all application classes except very light duty applications (lawn mowers, etc.). However, this potential is contingent on demonstrating much greater operating life and reliability than has been demonstrated to date by developmental Stirling engine systems. This implies that future program initiatives in developing Stirling engine systems should give more emphasis to life and reliability issues than has been the case in ongoing programs.

  11. Low temperature thermal engineering of nanoparticle ink for flexible electronics applications

    NASA Astrophysics Data System (ADS)

    Ko, Seung Hwan

    2016-07-01

    Flexible electronics are getting a lot of attention for future electronics due to their flexibility and light weight. Flexible electronics are usually fabricated on heat sensitive flexible substrates such as plastic, fabric or even paper. Therefore, the successful fabrication of flexible electronics needs a novel low temperature process development for metal circuit patterning on flexible substrates because the traditional photolithography process usually uses multiple stages of very high temperature steps for metal deposition and patterning and corrosive chemicals. In this paper, the recent novel development based on nanoparticle ink for effective deposition and patterning of high resolution metal patterns on heat sensitive, low cost and light weight plastic substrates at low temperature and in ambient pressure without using any expensive, toxic and time consuming lithographic processes will be reviewed. Nanoparticles exhibit many remarkable characteristics that are significantly different from the bulk counter parts. Nanoparticles shows size dependent melting temperature drop due to the thermodynamics size effect. These novel thermal characteristics of nanoparticles are very important for flexible electronics fabrication process development.

  12. Digital electronic engine control history

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.

    1984-01-01

    Full authority digital electronic engine controls (DEECs) were studied, developed, and ground tested because of projected benefits in operability, improved performance, reduced maintenance, improved reliability, and lower life cycle costs. The issues of operability and improved performance, however, are assessed in a flight test program. The DEEC on a F100 engine in an F-15 aircraft was demonstrated and evaluated. The events leading to the flight test program are chronicled and important management and technical results are identified.

  13. Templates for engineered nano-objects for use in microwave, electronic devices and biomedical sensing application

    NASA Astrophysics Data System (ADS)

    Ferain, E.; Legras, R.

    2009-03-01

    Nanoporous templates have been developed and fabricated employing technology based on heavy ion bombardment and track etching of polymer films or polymer layers deposited on substrates; an alternative and unique tool based on the adaptation of an atomic force microscopy has been also developed to elaborate nanotemplates with pores of ultra-small dimensions down to a few nanometers. Different types of nano-objects elaborated using these templates have been further characterized regarding their specific properties: spin dependent phenomena in magnetic nano-objects (GMR, TMR, spin filtering, magneto-Coulomb effect, spin transfer torque phenomena), microwave properties of ferromagnetic nanowires arrays, optical properties of confined emitting polymer and biomedical applications of magnetic (Ni) and Ni/Au composite nanowires. Potential application of magnetic nanowire arrays has been also considered in sensor for automotive contact-less positioning system.

  14. Investigation of the electronic properties and morphology of conducting polymer electrodes for engineering applications

    SciTech Connect

    Landeros, J. Jr.; Pizzo, P.; Cantow, M.; Uribe, F.

    1995-02-01

    We evaluate the performance of the conducting polymers, polyaniline (PAni) and poly-3-(4-fluorophenyl)-thiophene (PFPT), as the active material in electrochemical capacitors. Using scanning electron microscopy and cyclic voltammetry, the morphology and charge/discharge characteristics of the as-grown polymers were studied under different electrochemical conditions. When electropolymerized at high current densities in aqueous acid solution, PAni exhibits a morphology consisting of a network of interwoven fibrils. It was shown that layers of this PAni network can be electropolymerized onto a thin-planar metal substrate resulting in a decrease in cathodic and anodic peak separations, improving charge/discharge reversibility. A continuous PAni network will make possible a decreases in the total weight of the electrodes with respect to those electrodes grown onto a fibrous carbon substrate of high surface area and high porosity. The effect of different growth electrolytes on the charge/discharge process was also characterized. Hydrochloric acid electrolyte provided an optimum polymer deposition, with respect to morphology and capacitive performance. PFPT films were grown from a solution in a non-aqueous solution. High growth current densities affected the performance of PFPT polymer films in a positive manner. A growth rate of 20 mA/cm{sup 2} not only provided an increase in charge storage, but in the amount of polymer deposited when compared to equivalent amounts deposited at 1 mA/cm{sup 2}. The morphology of the deposited conducting polymer is shown to be one of the most important characteristics in the attempt to achieve an ideal electrochemical capacitor electrode. The polymer morphology directly affects the charge/discharge process because of the strong interaction between ionic conductivity in the electrolyte and the electronic conductivity of the polymer. Cyclic-dependent degradation of the PFPT films was observed.

  15. Engineering electrochemical capacitor applications

    NASA Astrophysics Data System (ADS)

    Miller, John R.

    2016-09-01

    Electrochemical capacitor (EC) applications have broadened tremendously since EC energy storage devices were introduced in 1978. Then typical applications operated below 10 V at power levels below 1 W. Today many EC applications operate at voltages approaching 1000 V at power levels above 100 kW. This paper briefly reviews EC energy storage technology, shows representative applications using EC storage, and describes engineering approaches to design EC storage systems. Comparisons are made among storage systems designed to meet the same application power requirement but using different commercial electrochemical capacitor products.

  16. Biomedical applications engineering tasks

    NASA Technical Reports Server (NTRS)

    Laenger, C. J., Sr.

    1976-01-01

    The engineering tasks performed in response to needs articulated by clinicians are described. Initial contacts were made with these clinician-technology requestors by the Southwest Research Institute NASA Biomedical Applications Team. The basic purpose of the program was to effectively transfer aerospace technology into functional hardware to solve real biomedical problems.

  17. Combustion synthesis and engineering nanoparticles for electronic, structural and superconductor applications. Final report, May 31, 1992--May 30, 1996

    SciTech Connect

    Stangle, G.C.; Schulze, W.A.; Amarakoon, V.R.W.

    1996-05-30

    Dense, nanocrystalline ceramic articles of doped ZrO{sub 2} (for use in solid electrolytes, oxygen sensors, electrode materials, thermal barrier coatings, etc.), BaTiO{sub 3} (for capacitor applications), and YBa{sub 2}Cu{sub 3}O{sub 7-x} (a high-temperature superconductor with uses, e.g., in magnetic flux trapping and high-speed capacitor applications) were prepared by the new nanofabrication process that has been developed in this research program. The process consists of two steps: synthesis of ceramic nanoparticles, and fabrication of dense ceramic articles that possess nanocrystalline features. The synthesis step is capable of producing 10-nanometer-diameter crystallites of doped ZrO{sub 2}, and of being scaled up to kilogram/hour production rates. The fabrication step produced dense, ultrafine-grained articles at significantly reduced sintering temperatures and times--representing a factor of 10-100 reduction in process energy requirements. The process has thus been shown to be technically feasible, while a preliminary engineering cost analysis of a pilot plant-scale version of the process indicates that it is both a cost- and an energy-efficient method of producing nanoparticles and nanocrystalline ceramics from those nanoparticles. One U.S. patent for this process has been allowed, and an additional five (continuation-in-part) applications have been filed. Technology transfer efforts have begun, through ongoing discussions with representatives from three manufacturing concerns.

  18. Relevance of Electron-Molecule Collision Data for Engineering Purposes

    NASA Astrophysics Data System (ADS)

    Raju, Gorur Govinda

    Innumerable applications have resulted from the application of gaseous electronics to engineering purposes, from the mundane tube lights and neon signs to its rejuvenated version of compact fluorescent bulbs, gas lasers, plasma TV among others. Research data, both experimental and theoretical, from this area continue to be used for engineering purposes. Engineers often look for qualitative similarities in the various properties of interest as a function of electron energy or some other parameters which are easy to measure and relate to practical situations. These aspects are dealt with in the paper.

  19. Engineering Lessons Learned and Systems Engineering Applications

    NASA Technical Reports Server (NTRS)

    Gill, Paul S.; Garcia, Danny; Vaughan, William W.

    2005-01-01

    Systems Engineering is fundamental to good engineering, which in turn depends on the integration and application of engineering lessons learned and technical standards. Thus, good Systems Engineering also depends on systems engineering lessons learned from within the aerospace industry being documented and applied. About ten percent of the engineering lessons learned documented in the NASA Lessons Learned Information System are directly related to Systems Engineering. A key issue associated with lessons learned datasets is the communication and incorporation of this information into engineering processes. Systems Engineering has been defined (EINIS-632) as "an interdisciplinary approach encompassing the entire technical effort to evolve and verify an integrated and life-cycle balanced set of system people, product, and process solutions that satisfy customer needs". Designing reliable space-based systems has always been a goal for NASA, and many painful lessons have been learned along the way. One of the continuing functions of a system engineer is to compile development and operations "lessons learned" documents and ensure their integration into future systems development activities. They can produce insights and information for risk identification identification and characterization. on a new project. Lessons learned files from previous projects are especially valuable in risk

  20. A Honeycomb-Structured Ti-6Al-4V Oil-Gas Separation Rotor Additively Manufactured by Selective Electron Beam Melting for Aero-engine Applications

    NASA Astrophysics Data System (ADS)

    Tang, H. P.; Wang, Q. B.; Yang, G. Y.; Gu, J.; Liu, N.; Jia, L.; Qian, M.

    2016-03-01

    Oil -gas separation is a key process in an aero-engine lubrication system. This study reports an innovative development in oil -gas separation. A honeycomb-structured rotor with hexagonal cone-shaped pore channels has been designed, additively manufactured from Ti-6Al-4V using selective electron beam melting (SEBM) and assessed for oil -gas separation for aero-engine application. The Ti-6Al-4V honeycomb structure showed a high compressive strength of 110 MPa compared to less than 20 MPa for metal foam structures. The oil -gas separation efficiency of the honeycomb-structured separation rotor achieved 99.8% at the rotation speed of 6000 rpm with much lower ventilation resistance (17.3 kPa) than that of the separator rotor constructed using a Ni-Cr alloy foam structure (23.5 kPa). The honeycomb-structured Ti-6Al-4V separator rotor produced by SEBM provides a promising solution to more efficient oil -gas separation in the aero-engine lubrication system.

  1. Coordination of engineering applications: Project summary

    SciTech Connect

    Cassidy, P.J.

    1996-08-31

    The purpose of this project was to focus on and coordinate several active engineering applications projects to optimize their integration. The end result of the project was to develop and demonstrate the capability of electronically receiving a part from the originating design agency, performing computer-aided engineering analyses, developing process plans, adding electronic input from numerous onsite systems, and producing an online operation sheet (manual) for viewing on a shop floor workstation. A successful demonstration of these applications was performed in December 1988.

  2. Electronics Engineering Research. Final report, FY 1979

    SciTech Connect

    Weissenberger, S.

    1980-01-01

    Accomplishments in Electronics Engineering Research (EER) during FY79 spanned a broad range of technologies, from high-speed microelectronics to digital image enhancement; from underground probing with electromagnetic waves to detecting neutrons with a small solid-state device; and from computer systems to aid engineers, to software tools to aid programmers. This report describes the overall EER program and its objectives, summarizes progress made in FY79, and outlines plans for FY80.

  3. Interfacial engineering of nanoparticle systems: Assesment of electron transfer in inter and intrananoparticle photosystems as well as sensing applications

    NASA Astrophysics Data System (ADS)

    Phebus, Bruce Drury

    Electron transfer within nanochemical systems plays a key role in their uses. This body of work looks to better understand the conditions required for electron transport within these nanochemical systems and under what circumstances does it play a role in their use. Assessing electron transfer from aqueous graphene nanoparticles to aqueous ions through observation by quenching photoluminescence pointed to interesting requirements for transfer. Sensitivity was observed down to 1.6x10 -6 M for the most strongly quenching ions. More interesting though was a marked dependence on chemical hardness of the ions, with specific chemical hardness required to quench each graphene quantum dot species. Graphene quantum dots sourced from carbon fiber were observed to quench best with ions near that of 8.50 eV chemical hardness, like that of nickelous ions. Nitrogen doped graphene quantum dots were observed to quench best with ions near 7.70 eV in chemical hardness, like that of mercuric ions. The shift to a lower hardness is also noted in a shift toward lower excitation energy of the nanoparticles. For some ions concentration dependence was observed, with ions increasing PL emission initially then subsequently acting as quenchers. This behavior points to multiple quenching sites on the nanoparticles with different complexation values, some leading to stabilization of the PL emission when complexed. EDTA, ethylenediaminetetraacetic acid, was used as a complexing agent to assess possible recovery of emissions. EDTA was observed to complex ions and recovers some PL emission from some ions, with recovery dependent not only on quenching efficiency of the ion but the complexation constant. The most intriguing behavior was observed for aluminum ions which were observed to further quench with additions of EDTA after a critical point emission started to recover. We ascribe this behavior to multiple complexation sites on the nanoparticles with varied concentration and distinct roles in

  4. Electronics Engineering Department Thrust Area report FY'84

    SciTech Connect

    Minichino, C.; Phelps, P.L.

    1984-01-01

    This report describes the work of the Electronics Engineering Department Thrust Areas for FY'84: diagnostics and microelectronic engineering; signal and control engineering; microwave and pulsed power engineering; computer-aided engineering; engineering modeling and simulation; and systems engineering. For each Thrust Area, an overview and a description of the goals and achievements of each project is provided.

  5. Electronics Engineering Department EE technical review

    SciTech Connect

    Not Available

    1984-04-01

    This is a technical review of work done by the Electronics Engineering Department of the Lawrence Livermore National Laboratory. Titles of papers included in this review are as follows: Motion-Control System for the Large Optics Diamond Turning Machine; A New Rotating Turbine Camera Controller that Extends Capability and Improves Reliability; The Ring Seating System and The LGF Data Acquisition System.

  6. Electronic materials testing in commercial aircraft engines

    NASA Astrophysics Data System (ADS)

    Brand, Dieter

    A device for the electronic testing of materials used in commercial aircraft engines is described. The instrument can be used for ferromagnetic, ferrimagnetic, and nonferromagnetic metallic materials, and it functions either optically or acoustically. The design of the device is described and technical data are given. The device operates under the principle of controlled self-inductivity. Its mode of operation is described.

  7. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Helms, H. E.; Heitman, P. W.; Lindgren, L. C.; Thrasher, S. R.

    1984-01-01

    The application of ceramic components to demonstrate improved cycle efficiency by raising the operating temperature of the existing Allison IGI 404 vehicular gas turbine engine is discussed. This effort was called the Ceramic Applications in Turbine Engines (CATE) program and has successfully demonstrated ceramic components. Among these components are two design configurations featuring stationary and rotating caramic components in the IGT 404 engine. A complete discussion of all phases of the program, design, materials development, fabrication of ceramic components, and testing-including rig, engine, and vehicle demonstation test are presented. During the CATE program, a ceramic technology base was established that is now being applied to automotive and other gas turbine engine programs. This technology base is outlined and also provides a description of the CATE program accomplishments.

  8. Harsh environments electronics : downhole applications.

    SciTech Connect

    Vianco, Paul Thomas

    2011-03-01

    The development and operational sustainment of renewable (geothermal) and non-renewable (fossil fuel) energy resources will be accompanied by increasingly higher costs factors: exploration and site preparation, operational maintenance and repair. Increased government oversight in the wake of the Gulf oil spill will only add to the cost burden. It is important to understand that downhole conditions are not just about elevated temperatures. It is often construed that military electronics are exposed to the upper limit in terms of extreme service environments. Probably the harshest of all service conditions for electronics and electrical equipment are those in oil, gas, and geothermal wells. From the technology perspective, advanced materials, sensors, and microelectronics devices are benefificial to the exploration and sustainment of energy resources, especially in terms of lower costs. Besides the need for the science that creates these breakthroughs - there is also a need for sustained engineering development and testing. Downhole oil, gas, and geothermal well applications can have a wide range of environments and reliability requirements: Temperature, Pressure, Vibration, Corrosion, and Service duration. All too frequently, these conditions are not well-defifined because the application is labeled as 'high temperature'. This ambiguity is problematic when the investigation turns to new approaches for electronic packaging solutions. The objective is to develop harsh environment, electronic packaging that meets customer requirements of cost, performance, and reliability. There are a number of challenges: (1) Materials sets - solder alloys, substrate materials; (2) Manufacturing process - low to middle volumes, low defect counts, new equipment technologies; and (3) Reliability testing - requirements documents, test methods and modeling, relevant standards documents. The cost to develop and sustain renewable and non-renewable energy resources will continue to escalate

  9. ELECTRICAL TECHNIQUES FOR ENGINEERING APPLICATIONS.

    USGS Publications Warehouse

    Bisdorf, Robert J.

    1985-01-01

    Surface electrical geophysical methods have been used in such engineering applications as locating and delineating shallow gravel deposits, depth to bedrock, faults, clay zones, and other geological phenomena. Other engineering applications include determining water quality, tracing ground water contaminant plumes and locating dam seepages. Various methods and electrode arrays are employed to solve particular geological problems. The sensitivity of a particular method or electrode array depends upon the physics on which the method is based, the array geometry, the electrical contrast between the target and host materials, and the depth to the target. Each of the available electrical methods has its own particular advantages and applications which the paper discusses.

  10. Applications of artificial intelligence to engineering problems

    SciTech Connect

    Adey, R.A.; Sriram, D.

    1987-01-01

    The conference covered general sessions on AI techniques suitable for engineering applications, e.g. knowledge representation, natural language, probability, design methodologies and constraints. This was followed by sessions covering application in mechanical engineering, civil engineering, electrical engineering, and general engineering. Further sessions covered robotics and tools and techniques for building knowledge based systems.

  11. Cognitive engineering in aerospace applications

    NASA Technical Reports Server (NTRS)

    Woods, David D.

    1993-01-01

    The progress that was made with respect to the objectives and goals of the research that is being carried out in the Cognitive Systems Engineering Laboratory (CSEL) under a Cooperative Agreement with NASA Ames Research Center is described. The major objective of this project is to expand the research base in Cognitive Engineering to be able to support the development and human-centered design of automated systems for aerospace applications. This research project is in support of the Aviation Safety/Automation Research plan and related NASA research goals in space applications.

  12. Engineered Proteins: Redox Properties and Their Applications

    PubMed Central

    Prabhulkar, Shradha; Tian, Hui; Wang, Xiaotang; Zhu, Jun-Jie

    2012-01-01

    Abstract Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796–1822. PMID:22435347

  13. Structured electron beams from nano-engineered cathodes

    NASA Astrophysics Data System (ADS)

    Lueangaramwong, A.; Mihalcea, D.; Andonian, G.; Piot, P.

    2017-03-01

    The ability to engineer cathodes at the nano-scale have opened new possibilities such as enhancing quantum efficiency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper, we present numerical investigations of the beam dynamics associated with this class of cathode in the weak- and strong-field regimes. We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  14. Polymers for engineering applications

    SciTech Connect

    Seymour, R.B.

    1987-01-01

    This book provides an introduction to the world of engineering plastics. It discusses the polymers, their properties strengths and limitations. There are 11 chapters, organized so that each chapter builds on the knowledge of the previous material. Coverage includes important polymer concepts, such as molecular structure, bonding, morphology and molecular weight, and polymer properties, such as thermal expansion, thermal transition, electrical properties and viscoelasticity. Details are provided on methods of processing fabrication and on specific families of polymers. The general-purpose polymers are discussed, such as natural and synthetic rubbers, rayon, acrylic and alkyd coatings, polyethylene, polystyrene and polyvinyl chloride (PVC). There's information on high-performance polymers - fibers, elastomers, and coatings. A thorough explanation of the characteristics and qualities of nylons, polyesters, polyimides, neoprene, silicones, polyurethanes and other polymers is given in the same section. Functional polymers with special properties, such as photoconductivity, electric conductivity, piezoelectricity, light sensitivity, and ion exchange; and polymers that are superior to general-purpose plastics, such as ABS, filled polypropylene, and glass-reinforced plastics, are also covered.

  15. Atmospheric Models for Engineering Applications

    NASA Technical Reports Server (NTRS)

    Johnson, Dale L.; Roberts, Barry C.; Vaughan, William W.; Justus, C. G.

    2002-01-01

    This paper will review the historical development of reference and standard atmosphere models and their applications. The evolution of the U.S. Standard Atmosphere will be addressed, along with the Range Reference Atmospheres and, in particular, the NASA Global Reference Atmospheric Model (GRAM). The extensive scope and content of the GRAM will be addressed since it represents the most extensive and complete 'Reference' atmosphere model in use today. Its origin was for engineering applications and that remains today as its principal use.

  16. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    NASA Astrophysics Data System (ADS)

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  17. Fully printable, strain-engineered electronic wrap for customizable soft electronics.

    PubMed

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-03-24

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.

  18. Fully printable, strain-engineered electronic wrap for customizable soft electronics

    PubMed Central

    Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek

    2017-01-01

    Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form. PMID:28338055

  19. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  20. Engineering the electronic band structure for multiband solar cells.

    PubMed

    López, N; Reichertz, L A; Yu, K M; Campman, K; Walukiewicz, W

    2011-01-14

    Using the unique features of the electronic band structure of GaN(x)As(1-x) alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the band anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  1. Industrial and Systems Engineering Applications in NASA

    NASA Technical Reports Server (NTRS)

    Shivers, Charles H.

    2006-01-01

    A viewgraph presentation on the many applications of Industrial and Systems Engineering used for safe NASA missions is shown. The topics include: 1) NASA Information; 2) Industrial Engineering; 3) Systems Engineering; and 4) Major NASA Programs.

  2. Organic electronic devices via interface engineering

    NASA Astrophysics Data System (ADS)

    Xu, Qianfei

    This dissertation focuses on interface engineering and its influence on organic electronic devices. A comprehensive review of interface studies in organic electronic devices is presented in Chapter 1. By interface engineering at the cathode contact, an ultra-high efficiency green polymer light emitting diode is demonstrated in Chapter 2. The interface modification turns out to be solution processable by using calcium acetylacetonate, donated by Ca(acac)2. The device structure is Induim Tin Oxide (ITO)/3,4-polyethylenedioxythiophene-polystyrene-sulfonate (PEDOT)/Green polyfluorene/Ca(acac) 2/Al. Based on this structure, we obtained device efficiencies as high as 28 cd/A at 2650 cd/m2, which is about a 3 times improvement over previous devices. The mechanism of this nano-layer has been studied by I-L-V measurements, photovoltaic measurements, XPS/UPS studies, impedance measurements as well as transient EL studies. The interfacial layer plays a crucial role for the efficiency improvement. It is believed to work as a hole blocking layer as well as an electron injection layer. Meanwhile, a systematic study on ITO electrodes is also carried out in Chapter 4. By engineering the interface at ITO electrode, the device lifetime has been improved. In Chapter 5, very bright white emission PLEDs are fabricated based on blue polyfluorene (PF) doped with 1 wt% 6, 8, 15, 17-tetraphyenyl-1.18, 4.5, 9.10, 13.14-tetrabenzoheptacene (TBH). The maximum luminance exceeds 20,000 cd/m2. The maximum luminance efficiency is 3.55 cd/A at 4228 cd/m2 while the maximum power efficiency is 1.6 lm/W at 310 cd/m2. The white color is achieved by an incomplete energy transfer from blue PF to TBH. The devices show super stable CIE coordinates as a function of current density. The interface engineering is also applied to memory devices. In Chapter 6, a novel nonvolatile memory device is fabricated by inserting a buffer layer at the anode contact. Devices with the structure of Cu

  3. Bending fatigue of electron-beam-welded foils. Application to a hydrodynamic air bearing in the Chrysler/DOE upgraded automotive gas tubine engine

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1984-01-01

    A hydrodynamic air bearing with a compliment surface is used in the gas generator of an upgraded automotive gas turbine engine. In the prototype design, the compliant surface is a thin foil spot welded at one end to the bearing cartridge. During operation, the foil failed along the line of spot welds which acted as a series of stress concentrators. Because of its higher degree of geometric uniformity, electron beam welding of the foil was selected as an alternative to spot welding. Room temperature bending fatigue tests were conducted to determine the fatigue resistance of the electron beam welded foils. Equations were determined relating cycles to crack initiation and cycles to failure to nominal total strain range. A scaling procedure is presented for estimating the reduction in cyclic life when the foil is at its normal operating temperature of 260 C (500 F).

  4. Diesel Engine Light Truck Application

    SciTech Connect

    2007-12-31

    The Diesel Engine Light Truck Application (DELTA) program consists of two major contracts with the Department of Energy (DOE). The first one under DE-FC05-97-OR22606, starting from 1997, was completed in 2001, and consequently, a final report was submitted to DOE in 2003. The second part of the contract was under DE-FC05-02OR22909, covering the program progress from 2002 to 2007. This report is the final report of the second part of the program under contract DE-FC05-02OR22909. During the course of this contract, the program work scope and objectives were significantly changed. From 2002 to 2004, the DELTA program continued working on light-duty engine development with the 4.0L V6 DELTA engine, following the accomplishments made from the first part of the program under DE-FC05-97-OR22606. The program work scope in 2005-2007 was changed to the Diesel Particulate Filter (DPF) soot layer characterization and substrate material assessment. This final report will cover two major technical tasks. (1) Continuation of the DELTA engine development to demonstrate production-viable diesel engine technologies and to demonstrate emissions compliance with significant fuel economy advantages, covering progress made from 2002 to 2004. (2) DPF soot layer characterization and substrate material assessment from 2005-2007.

  5. Low secondary electron yield engineered surface for electron cloud mitigation

    SciTech Connect

    Valizadeh, Reza; Malyshev, Oleg B. Wang, Sihui; Zolotovskaya, Svetlana A.; Allan Gillespie, W.; Abdolvand, Amin

    2014-12-08

    Secondary electron yield (SEY or δ) limits the performance of a number of devices. Particularly, in high-energy charged particle accelerators, the beam-induced electron multipacting is one of the main sources of electron cloud (e-cloud) build up on the beam path; in radio frequency wave guides, the electron multipacting limits their lifetime and causes power loss; and in detectors, the secondary electrons define the signal background and reduce the sensitivity. The best solution would be a material with a low SEY coating and for many applications δ < 1 would be sufficient. We report on an alternative surface preparation to the ones that are currently advocated. Three commonly used materials in accelerator vacuum chambers (stainless steel, copper, and aluminium) were laser processed to create a highly regular surface topography. It is shown that this treatment reduces the SEY of the copper, aluminium, and stainless steel from δ{sub max} of 1.90, 2.55, and 2.25 to 1.12, 1.45, and 1.12, respectively. The δ{sub max} further reduced to 0.76–0.78 for all three treated metals after bombardment with 500 eV electrons to a dose between 3.5 × 10{sup −3} and 2.0 × 10{sup −2} C·mm{sup −2}.

  6. Graphene: Nanostructure engineering and applications

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Wu, Shuang; Yang, Rong; Zhang, Guangyu

    2017-02-01

    Graphene has attracted extensive research interest in recent years because of its fascinating physical properties and its potential for various applications. The band structure or electronic properties of graphene are very sensitive to its geometry, size, and edge structures, especially when the size of graphene is below the quantum confinement limit. Graphene nanoribbons (GNRs) can be used as a model system to investigate such structure-sensitive parameters. In this review, we examine the fabrication of GNRs via both top-down and bottom-up approaches. The edge-related electronic and transport properties of GNRs are also discussed.

  7. Coastal Processes with Engineering Applications

    NASA Astrophysics Data System (ADS)

    Dean, Robert G.; Dalrymple, Robert A.

    2004-03-01

    The world's coastlines, dividing land from sea, are geological environments that are unique in their composition and the physical processes affecting them. At the dynamically active intersection of land and the oceans, humans have been building structures throughout history. Initially used for naval and commercial purposes, more recently recreation and tourism have increased activity in the coastal zone dramatically. Shoreline development is now causing a significant conflict with natural coastal processes. This text on coastal engineering will help the reader understand these coastal processes and develop strategies to cope effectively with shoreline erosion. The book is organized in four parts: (1) an overview of coastal engineering, using case studies to illustrate problems; (2) hydrodynamics of the coastal zone, reviewing storm surges, water waves, and low frequency motions within the nearshore and surf zone; (3) coastal responses including equilibrium beach profiles and sediment transport; (4) applications such as erosion mitigation, beach nourishment, coastal armoring, tidal inlets, and shoreline management.

  8. Education in Electrical and Electronic Engineering

    NASA Astrophysics Data System (ADS)

    Sato, Yukihiko

    Engineering education is significantly changing in recent years. This article describes contemporary topics related to the engineering education. First of all, introduction of the Japanese accreditation system for engineering education and its influence are explained. New methods for engineering education using information technology and their usefulness are summarized. Finally, the social responsibility of engineers and problem of decrease in the interest of young people in the engineering are pointed out.

  9. Carbon nanotubes: engineering biomedical applications.

    PubMed

    Gomez-Gualdrón, Diego A; Burgos, Juan C; Yu, Jiamei; Balbuena, Perla B

    2011-01-01

    Carbon nanotubes (CNTs) are cylinder-shaped allotropic forms of carbon, most widely produced under chemical vapor deposition. They possess astounding chemical, electronic, mechanical, and optical properties. Being among the most promising materials in nanotechnology, they are also likely to revolutionize medicine. Among other biomedical applications, after proper functionalization carbon nanotubes can be transformed into sophisticated biosensing and biocompatible drug-delivery systems, for specific targeting and elimination of tumor cells. This chapter provides an introduction to the chemical and electronic structure and properties of single-walled carbon nanotubes, followed by a description of the main synthesis and post-synthesis methods. These sections allow the reader to become familiar with the specific characteristics of these materials and the manner in which these properties may be dependent on the specific synthesis and post-synthesis processes. The chapter ends with a review of the current biomedical applications of carbon nanotubes, highlighting successes and challenges.

  10. Industrial Applications of LES in Mechanical Engineering

    DTIC Science & Technology

    2001-08-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013624 TITLE: Industrial Applications of LES in Mechanical Engineering DISTRIBUTION...compilation report: ADP013620 thru ADP013707 UNCLASSIFIED INDUSTRIAL APPLICATIONS OF LES IN MECHANICAL ENGINEERING CHISACHI KATO Institute of Industrial...Science University of Tokyo, Tokyo, Japan MASAYUKI KAIHO, AKIRA MANABE Mechanical Engineering Research Laboratory Hitachi LTD., Ibaraki, Japan Abstract

  11. (abstract) Electronic Packaging for Microspacecraft Applications

    NASA Technical Reports Server (NTRS)

    Wasler, David

    1993-01-01

    The intent of this presentation is to give a brief look into the future of electronic packaging for microspacecraft applications. Advancements in electronic packaging technology areas have developed to the point where a system engineer's visions, concepts, and requirements for a microspacecraft can now be a reality. These new developments are ideal candidates for microspacecraft applications. These technologies are capable of bringing about major changes in how we design future spacecraft while taking advantage of the benefits due to size, weight, power, performance, reliability , and cost. This presentation will also cover some advantages and limitations of surface mount technology (SMT), multichip modules (MCM), and wafer scale integration (WSI), and what is needed to implement these technologies into microspacecraft.

  12. Reverse quantum state engineering using electronic feedback loops

    NASA Astrophysics Data System (ADS)

    Kießlich, Gerold; Emary, Clive; Schaller, Gernot; Brandes, Tobias

    2012-12-01

    We propose an all-electronic technique to manipulate and control interacting quantum systems by unitary single-jump feedback conditioned on the outcome of a capacitively coupled electrometer and, in particular, a single-electron transistor. We provide a general scheme for stabilizing pure states in the quantum system and use an effective Hamiltonian method for the quantum master equation to elaborate on the nature of stabilizable states and the conditions under which state purification can be achieved. The state engineering within the quantum feedback scheme is shown to be linked with the solution of an inverse eigenvalue problem. Two applications of the feedback scheme are presented in detail: (i) stabilization of delocalized pure states in a single charge qubit and (ii) entanglement stabilization in two coupled charge qubits. In the latter example, we demonstrate the stabilization of a maximally entangled Bell state for certain detector positions and local feedback operations.

  13. Modular electron transfer circuits for synthetic biology: insulation of an engineered biohydrogen pathway.

    PubMed

    Agapakis, Christina M; Silver, Pamela A

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production.

  14. Digital electronic engine control F-15 overview

    NASA Technical Reports Server (NTRS)

    Kock, B.

    1984-01-01

    A flight test evaluation of the digital elctronic engine control (DEEC) system was conducted. An overview of the flight program is presented. The roles of the participating parties, the system, and the flight program objectives are described. The test program approach is discussed, and the engine performance benefits are summarized. A description of the follow-on programs is included.

  15. F-15 digital electronic engine control system description

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    A digital electronic engine control (DEEC) was developed for use on the F100-PW-100 turbofan engine. This control system has full authority control, capable of moving all the controlled variables over their full ranges. The digital computational electronics and fault detection and accomodation logic maintains safe engine operation. A hydromechanical backup control (BUC) is an integral part of the fuel metering unit and provides gas generator control at a reduced performance level in the event of an electronics failure. The DEEC's features, hardware, and major logic diagrams are described.

  16. Electron tubes for industrial applications

    NASA Astrophysics Data System (ADS)

    Gellert, Bernd

    1994-05-01

    This report reviews research and development efforts within the last years for vacuum electron tubes, in particular power grid tubes for industrial applications. Physical and chemical effects are discussed that determine the performance of todays devices. Due to the progress made in the fundamental understanding of materials and newly developed processes the reliability and reproducibility of power grid tubes could be improved considerably. Modern computer controlled manufacturing methods ensure a high reproducibility of production and continuous quality certification according to ISO 9001 guarantees future high quality standards. Some typical applications of these tubes are given as an example.

  17. Approximation of Engine Casing Temperature Constraints for Casing Mounted Electronics

    NASA Technical Reports Server (NTRS)

    Kratz, Jonathan; Culley, Dennis; Chapman, Jeffryes

    2016-01-01

    The performance of propulsion engine systems is sensitive to weight and volume considerations. This can severely constrain the configuration and complexity of the control system hardware. Distributed Engine Control technology is a response to these concerns by providing more flexibility in designing the control system, and by extension, more functionality leading to higher performing engine systems. Consequently, there can be a weight benefit to mounting modular electronic hardware on the engine core casing in a high temperature environment. This paper attempts to quantify the in-flight temperature constraints for engine casing mounted electronics. In addition, an attempt is made at studying heat soak back effects. The Commercial Modular Aero Propulsion System Simulation 40k (C-MAPSS40k) software is leveraged with real flight data as the inputs to the simulation. A two-dimensional (2-D) heat transfer model is integrated with the engine simulation to approximate the temperature along the length of the engine casing. This modification to the existing C-MAPSS40k software will provide tools and methodologies to develop a better understanding of the requirements for the embedded electronics hardware in future engine systems. Results of the simulations are presented and their implications on temperature constraints for engine casing mounted electronics is discussed.

  18. Nastran's Application in Agricultural Engineering

    NASA Technical Reports Server (NTRS)

    Vanwicklen, G. L.

    1985-01-01

    Finite element analysis has been recognized as a valuable solution method by agricultural engineers. NASTRAN has been obtained by the Agricultural Engineering Department at the University of Georgia. The NASTRAN Thermal Analyzer has been used in the teaching program for an undergraduate course in heat transfer and will be used for a new graduate course in finite element analysis. The NASTRAN Thermal Analyzer has also been applied to several research problems in the Agricultural Engineering Department.

  19. Biocatalysts: application and engineering for industrial purposes.

    PubMed

    Jemli, Sonia; Ayadi-Zouari, Dorra; Hlima, Hajer Ben; Bejar, Samir

    2016-01-01

    Enzymes are widely applied in various industrial applications and processes, including the food and beverage, animal feed, textile, detergent and medical industries. Enzymes screened from natural origins are often engineered before entering the market place because their native forms do not meet the requirements for industrial application. Protein engineering is concerned with the design and construction of novel enzymes with tailored functional properties, including stability, catalytic activity, reaction product inhibition and substrate specificity. Two broad approaches have been used for enzyme engineering, namely, rational design and directed evolution. The powerful and revolutionary techniques so far developed for protein engineering provide excellent opportunities for the design of industrial enzymes with specific properties and production of high-value products at lower production costs. The present review seeks to highlight the major fields of enzyme application and to provide an updated overview on previous protein engineering studies wherein natural enzymes were modified to meet the operational conditions required for industrial application.

  20. 23. CURRENT VELOCITYDIRECTION INDICATOR DEVELOPED BY WES ELECTRONICS ENGINEER LEILAND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CURRENT VELOCITY-DIRECTION INDICATOR DEVELOPED BY WES ELECTRONICS ENGINEER LEILAND M. DUKE. - Waterways Experiment Station, Hydraulics Laboratory, Halls Ferry Road, 2 miles south of I-20, Vicksburg, Warren County, MS

  1. Microbiome engineering: Current applications and its future.

    PubMed

    Foo, Jee Loon; Ling, Hua; Lee, Yung Seng; Chang, Matthew Wook

    2017-03-01

    Microbiomes exist in all ecosystems and are composed of diverse microbial communities. Perturbation to microbiomes brings about undesirable phenotypes in the hosts, resulting in diseases and disorders, and disturbs the balance of the associated ecosystems. Engineering of microbiomes can be used to modify structures of the microbiota and restore ecological balance. Consequently, microbiome engineering has been employed for improving human health and agricultural productivity. The importance and current applications of microbiome engineering, particularly in humans, animals, plants and soil is reviewed. Furthermore, we explore the challenges in engineering microbiome and the future of this field, thus providing perspectives and outlook of microbiome engineering.

  2. Effective On-Board Diagnostics for electronic engine controls

    SciTech Connect

    Florence, D.E.; Michel, M.F.

    1985-01-01

    Properly implemented, On-Board Diagnostic (OBD) Systems fill the gap in sophistication between computer based fuel injection engine controls and a carburetor oriented service industry. By emphasizing simplicity and credibility, inexpensive OBD systems make electronic engine controls a desirable feature to the service technician.

  3. Engineering tradeoffs in miniaturization of electronics for very large detectors

    SciTech Connect

    Larsen, R.S.

    1987-10-01

    The trend toward Application-Specific Integrated Circuits and similar systems-on-a-chip-technologies is fueling a new wave of innovation in detector electronics, just in time to address some of the problems being introduced by detectors which will approach a million channels of electronics. The cost-effectiveness of these technologies can be easily demonstrated, and the trend of the past twenty years of achieving more powerful electronics at a lower per-channel cost should receive a major impetus. The investment required in the new technologies will reshape the work force of most laboratories, by providing more and better tools, and by requiring training or retraining of significant numbers of personnel. The need for new instrumentation standards will arise at new levels in the detectors of the future. The laboratories must also invest heavily in integrating various computer aided engineering and computer aided design tools into a smoothly functioning system. They must also establish a new and different kind of working relationship with vendors and suppliers of both basic devices as well as standard packaged products. This paper discusses three concepts.

  4. Imaging strategies for tissue engineering applications.

    PubMed

    Nam, Seung Yun; Ricles, Laura M; Suggs, Laura J; Emelianov, Stanislav Y

    2015-02-01

    Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies.

  5. Imaging Strategies for Tissue Engineering Applications

    PubMed Central

    Nam, Seung Yun; Ricles, Laura M.; Suggs, Laura J.

    2015-01-01

    Tissue engineering has evolved with multifaceted research being conducted using advanced technologies, and it is progressing toward clinical applications. As tissue engineering technology significantly advances, it proceeds toward increasing sophistication, including nanoscale strategies for material construction and synergetic methods for combining with cells, growth factors, or other macromolecules. Therefore, to assess advanced tissue-engineered constructs, tissue engineers need versatile imaging methods capable of monitoring not only morphological but also functional and molecular information. However, there is no single imaging modality that is suitable for all tissue-engineered constructs. Each imaging method has its own range of applications and provides information based on the specific properties of the imaging technique. Therefore, according to the requirements of the tissue engineering studies, the most appropriate tool should be selected among a variety of imaging modalities. The goal of this review article is to describe available biomedical imaging methods to assess tissue engineering applications and to provide tissue engineers with criteria and insights for determining the best imaging strategies. Commonly used biomedical imaging modalities, including X-ray and computed tomography, positron emission tomography and single photon emission computed tomography, magnetic resonance imaging, ultrasound imaging, optical imaging, and emerging techniques and multimodal imaging, will be discussed, focusing on the latest trends of their applications in recent tissue engineering studies. PMID:25012069

  6. Electronic Structure Engineering of Cu2O Film/ZnO Nanorods Array All-Oxide p-n Heterostructure for Enhanced Photoelectrochemical Property and Self-powered Biosensing Application

    NASA Astrophysics Data System (ADS)

    Kang, Zhuo; Yan, Xiaoqin; Wang, Yunfei; Bai, Zhiming; Liu, Yichong; Zhang, Zheng; Lin, Pei; Zhang, Xiaohui; Yuan, Haoge; Zhang, Xueji; Zhang, Yue

    2015-01-01

    We have engineered the electronic structure at the interface between Cu2O and ZnO nanorods (NRs) array, through adjusting the carrier concentration of Cu2O. The electrodeposition of Cu2O at pH 11 acquired the highest carrier concentration, resulting in the largest interfacial electric field between Cu2O and ZnO, which finally led to the highest separation efficiency of photogenerated charge carriers. The optimized Cu2O/ZnO NRs array p-n heterostructures exhibited enhanced PEC performance, such as elevated photocurrent and photoconversion efficiency, as well as excellent sensing performance for the sensitive detection of glutathione (GSH) in PBS buffer even at applied bias of 0 V which made the device self-powered. Besides, the favorable selectivity, high reproducibility and extremely wide detection range, make such heterostructure a promising candidate for PEC biosensing applications, probably for the extended field of PEC water splitting or other solar photovoltaic beacons.

  7. Soil variability in engineering applications

    NASA Astrophysics Data System (ADS)

    Vessia, Giovanna

    2014-05-01

    Natural geomaterials, as soils and rocks, show spatial variability and heterogeneity of physical and mechanical properties. They can be measured by in field and laboratory testing. The heterogeneity concerns different values of litho-technical parameters pertaining similar lithological units placed close to each other. On the contrary, the variability is inherent to the formation and evolution processes experienced by each geological units (homogeneous geomaterials on average) and captured as a spatial structure of fluctuation of physical property values about their mean trend, e.g. the unit weight, the hydraulic permeability, the friction angle, the cohesion, among others. The preceding spatial variations shall be managed by engineering models to accomplish reliable designing of structures and infrastructures. Materon (1962) introduced the Geostatistics as the most comprehensive tool to manage spatial correlation of parameter measures used in a wide range of earth science applications. In the field of the engineering geology, Vanmarcke (1977) developed the first pioneering attempts to describe and manage the inherent variability in geomaterials although Terzaghi (1943) already highlighted that spatial fluctuations of physical and mechanical parameters used in geotechnical designing cannot be neglected. A few years later, Mandelbrot (1983) and Turcotte (1986) interpreted the internal arrangement of geomaterial according to Fractal Theory. In the same years, Vanmarcke (1983) proposed the Random Field Theory providing mathematical tools to deal with inherent variability of each geological units or stratigraphic succession that can be resembled as one material. In this approach, measurement fluctuations of physical parameters are interpreted through the spatial variability structure consisting in the correlation function and the scale of fluctuation. Fenton and Griffiths (1992) combined random field simulation with the finite element method to produce the Random

  8. Ceramics for Turbine Engine Applications.

    DTIC Science & Technology

    1980-03-01

    DEVELOPMENT OF CERAMIC NOZZLE SECTION FOR SMIALL RADIAL GAS TURBINE by J.C.Napier and J.P. Arnold 12 DEVELOPMENT OF A CERAMIC TURBINE NOZZLE RING by H.Burfeindt...this way, for instance, a Daimler engine was in 1911 awarded the prize of the "Automobiltechnische Gesell - schaft". In 1912, a Benz engine won the...blade development Turtle U~nion RB 199 v)ln BENEFITS OF CERAMICS TO GAS TURBINES by Arnold Brooks and Albert I. Bellin Aircraft Engine Group General

  9. Solid fuel applications to transportation engines

    SciTech Connect

    Rentz, Richard L.; Renner, Roy A.

    1980-06-01

    The utilization of solid fuels as alternatives to liquid fuels for future transportation engines is reviewed. Alternative liquid fuels will not be addressed nor will petroleum/solid fuel blends except for the case of diesel engines. With respect to diesel engines, coal/oil mixtures will be addressed because of the high interest in this specific application as a result of the large number of diesel engines currently in transportation use. Final assessments refer to solid fuels only for diesel engines. The technical assessments of solid fuels utilization for transportation engines is summarized: solid fuel combustion in transportation engines is in a non-developed state; highway transportation is not amenable to solid fuels utilization due to severe environmental, packaging, control, and disposal problems; diesel and open-cycle gas turbines do not appear worthy of further development, although coal/oil mixtures for slow speed diesels may offer some promise as a transition technology; closed-cycle gas turbines show some promise for solid fuels utilization for limited applications as does the Stirling engine for use of cleaner solid fuels; Rankine cycle engines show good potential for limited applications, such as for locomotives and ships; and any development program will require large resources and sophisticated equipment in order to advance the state-of-the-art.

  10. IC Engine Applications of Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton; Rivers, H. Kevin

    2000-01-01

    Many of the properties of carbon-carbon make it an ideal material for reciprocating materials of intermittent combustion (IC) engines. Recent diesel engine tests, shown herein, indicate that the thermal and mechanical properties of carbon-carbon are adequate for piston applications, However, reducing the manufacturing costs and providing long term oxidation protection are still issues that need to be addressed.

  11. Applications of Computer Graphics in Engineering

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Various applications of interactive computer graphics to the following areas of science and engineering were described: design and analysis of structures, configuration geometry, animation, flutter analysis, design and manufacturing, aircraft design and integration, wind tunnel data analysis, architecture and construction, flight simulation, hydrodynamics, curve and surface fitting, gas turbine engine design, analysis, and manufacturing, packaging of printed circuit boards, spacecraft design.

  12. Mathematics and Engineering Applications, Some Selected Examples.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    This document, a report of a seminar arranged by the Royal Belgian Society of Engineers and Industrialists, contains 35 papers illustrating the application of modern mathematics in engineering. There are eleven sections: Statistics, Operational Research, Boolean Algebra, Numerical Analysis, Eigenvalues, variations, Integral Equations and…

  13. Electronic fuel injection for gas engine/compressors

    SciTech Connect

    Wertheimer, H.P.

    1998-12-31

    Conventional gas engine/compressors use cam operated fuel injectors. Fuel delivery to the engine is controlled by throttling the pressure to the fuel gas manifold that feeds the injectors. A mechanical or electronic governor regulates the position of the throttle. Power cylinder balance is adjusted with manual valves in the fuel feed pipes to each injector. This paper describes a recently introduced electronic fuel gas injection (EFGI{trademark}) system that modulates fuel delivery by controlling the open duration of the injectors. Balancing is achieved by electronically apportioning the pulses to the individual injectors. The camshaft, pushrods, rocker arms, cam followers, and balance valves, as well as the separate governor and throttle are not needed when EFGI is applied to two stroke engines. The system`s most striking feature is its ability to rebalance an engine in minutes. Emission reductions stem from balanced power cylinders, and optimized injection timing, which enhances fuel air mixing.

  14. Ceramic applications in turbine engines

    NASA Technical Reports Server (NTRS)

    Byrd, J. A.; Janovicz, M. A.; Thrasher, S. R.

    1981-01-01

    Development testing activities on the 1900 F-configuration ceramic parts were completed, 2070 F-configuration ceramic component rig and engine testing was initiated, and the conceptual design for the 2265 F-configuration engine was identified. Fabrication of the 2070 F-configuration ceramic parts continued, along with burner rig development testing of the 2070 F-configuration metal combustor in preparation for 1132 C (2070 F) qualification test conditions. Shakedown testing of the hot engine simulator (HES) rig was also completed in preparation for testing of a spin rig-qualified ceramic-bladed rotor assembly at 1132 C (2070 F) test conditions. Concurrently, ceramics from new sources and alternate materials continued to be evaluated, and fabrication of 2070 F-configuration ceramic component from these new sources continued. Cold spin testing of the critical 2070 F-configuration blade continued in the spin test rig to qualify a set of ceramic blades at 117% engine speed for the gasifier turbine rotor. Rig testing of the ceramic-bladed gasifier turbine rotor assembly at 108% engine speed was also performed, which resulted in the failure of one blade. The new three-piece hot seal with the nickel oxide/calcium fluoride wearface composition was qualified in the regenerator rig and introduced to engine operation wiwth marginal success.

  15. Photonics applications and web engineering: WILGA Winter 2015

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2015-09-01

    XXXVth periodic Symposium WILGA (winter edition) on Design, Construction and Application of Advanced Electronic and Photonic Systems was held at the end of January 2015. It is an established, periodic meeting of young researchers, M.Sc. and Ph.D. students and their supervisors. The meeting is organized by the PERG/ELHEP Laboratories of Institute of Electronic Systems - WUT since two decades. Sessions of the 2015 January meeting were: development of the architecture of digital electronics, embedded systems, design of system functionality, analog electronics and photonics, hardware - software integration, complex system reliability and dependability working in harsh environments, applications of electronic and photonic systems in space and satellite engineering and large research experiments. Summer edition of WILGA Symposium is organized on 25-31 May 2015 [wilga.ise.pw.edu.pl].

  16. Engineers' Responsibilities for Global Electronic Waste: Exploring Engineering Student Writing Through a Care Ethics Lens.

    PubMed

    Campbell, Ryan C; Wilson, Denise

    2017-04-01

    This paper provides an empirically informed perspective on the notion of responsibility using an ethical framework that has received little attention in the engineering-related literature to date: ethics of care. In this work, we ground conceptual explorations of engineering responsibility in empirical findings from engineering student's writing on the human health and environmental impacts of "backyard" electronic waste recycling/disposal. Our findings, from a purposefully diverse sample of engineering students in an introductory electrical engineering course, indicate that most of these engineers of tomorrow associated engineers with responsibility for the electronic waste (e-waste) problem in some way. However, a number of responses suggested attempts to deflect responsibility away from engineers towards, for example, the government or the companies for whom engineers work. Still other students associated both engineers and non-engineers with responsibility, demonstrating the distributed/collective nature of responsibility that will be required to achieve a solution to the global problem of excessive e-waste. Building upon one element of a framework for care ethics adopted from the wider literature, these empirical findings are used to facilitate a preliminary, conceptual exploration of care-ethical responsibility within the context of engineering and e-waste recycling/disposal. The objective of this exploration is to provide a first step toward understanding how care-ethical responsibility applies to engineering. We also hope to seed dialogue within the engineering community about its ethical responsibilities on the issue. We conclude the paper with a discussion of its implications for engineering education and engineering ethics that suggests changes for educational policy and the practice of engineering.

  17. USSR Report, Electronics and Electrical Engineering

    DTIC Science & Technology

    2007-11-02

    Cinematography (M. V. Antipin, L. L. Polosin; TEKHNIKA KINO I TELEVIDENIYA, No 1, Jan 84) ................................. 13 Development of Soviet...TELEVISION SYSTEMS FOR CINEMATOGRAPHY Moscow TEKHNIKA KINO I TELEVIDENIYA in Russian No 1, Jan 84 pp 14-20 ANTIPIN, M. V. and POLOSIN, L. L., Leningrad...Institute of Cinematography Engineers [Abstract] Requirements are discussed which digital high-definition television systems must meet in order to post

  18. Photonics applications and web engineering: WILGA Summer 2016

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2016-09-01

    Wilga Summer 2016 Symposium on Photonics Applications and Web Engineering was held on 29 May - 06 June. The Symposium gathered over 350 participants, mainly young researchers active in optics, optoelectronics, photonics, electronics technologies and applications. There were presented around 300 presentations in a few main topical tracks including: bio-photonics, optical sensory networks, photonics-electronics-mechatronics co-design and integration, large functional system design and maintenance, Internet of Thins, and other. The paper is an introduction the 2016 WILGA Summer Symposium Proceedings, and digests some of the Symposium chosen key presentations.

  19. Photonics applications and web engineering: WILGA Summer 2015

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2015-09-01

    Wilga Summer 2015 Symposium on Photonics Applications and Web Engineering was held on 23-31 May. The Symposium gathered over 350 participants, mainly young researchers active in optics, optoelectronics, photonics, electronics technologies and applications. There were presented around 300 presentations in a few main topical tracks including: bio-photonics, optical sensory networks, photonics-electronics-mechatronics co-design and integration, large functional system design and maintenance, Internet of Thins, and other. The paper is an introduction the 2015 WILGA Summer Symposium Proceedings, and digests some of the Symposium chosen key presentations.

  20. Conjugated Polymer Design and Engineering for Organic Electronics

    NASA Astrophysics Data System (ADS)

    Woo, Claire Hoi Kar

    The molecular structure of a conjugated polymer critically impacts its physical and optoelectronic properties, thus determining its ultimate performance in organic electronic devices. In this work, new polymers and derivatives are designed, synthesized, characterized, and tested in photovoltaic devices. Through device engineering and nanoscale characterization, general structure-function relationships are established to aid the design of the next-generation of high performance polymer semiconductors for organic electronic applications. Using a prototypical conjugated polymer, the influence of backbone regioregularity is examined and found to highly impact polymer crystallinity, solid state morphology and device stability. The investigation of alternative aromatic units in the backbone also led to new understandings in polymer processability and the development of promising materials for organic photovoltaics. Besides the backbone structure, the side chain choice of the polymer can significantly affect material properties and device performance as well. In fact, the side chain substitution can influence both the optoelectronic properties and the physical properties of the polymer. A sterically bulky side chain can be used to tune the donor/acceptor separation distance, which in turn determines the charge separation efficiency. The addition of a polar side group increases the dielectric constant of a polymer and improves overall charge separation. Choosing the appropriate solubilizing group can also induce solid state packing of the polymer and considerably enhance device efficiency. Finally, the influence of post-fabrication processing techniques on the crystallinity and charge transport properties of a polymer is highlighted.

  1. Interface engineering for high performance graphene electronic devices

    NASA Astrophysics Data System (ADS)

    Jung, Dae Yool; Yang, Sang Yoon; Park, Hamin; Shin, Woo Cheol; Oh, Joong Gun; Cho, Byung Jin; Choi, Sung-Yool

    2015-06-01

    A decade after the discovery of graphene flakes, exfoliated from graphite, we have now secured large scale and high quality graphene film growth technology via a chemical vapor deposition (CVD) method. With the establishment of mass production of graphene using CVD, practical applications of graphene to electronic devices have gained an enormous amount of attention. However, several issues arise from the interfaces of graphene systems, such as damage/unintentional doping of graphene by the transfer process, the substrate effects on graphene, and poor dielectric formation on graphene due to its inert features, which result in degradation of both electrical performance and reliability in actual devices. The present paper provides a comprehensive review of the recent approaches to resolve these issues by interface engineering of graphene for high performance electronic devices. We deal with each interface that is encountered during the fabrication steps of graphene devices, from the graphene/metal growth substrate to graphene/high-k dielectrics, including the intermediate graphene/target substrate.

  2. Computer applications to geotechnical engineering

    NASA Astrophysics Data System (ADS)

    Eddy, D. K.

    1983-08-01

    This report presents four geotechnical engineering programs for use on personal computing systems. An Apple II-Plus operating with DOS 3.3 Applesoft language was used. The programs include the solution of the signpost problem, the cantilevered sheet pile problem, the slope stability problem, and the flexible pavement design program. Each chapter is independent and does not rely upon theories or data presented in other chapters. A chapter outlines the theory used and also presents a users guide, a program list, and verification of the program by hand calculation. This report assimilates the product a practicing engineer would expect to receive when procuring software services.

  3. Engineering porous materials for fuel cell applications.

    PubMed

    Brandon, N P; Brett, D J

    2006-01-15

    Porous materials play an important role in fuel cell engineering. For example, they are used to support delicate electrolyte membranes, where mechanical integrity and effective diffusivity to fuel gases is critical; they are used as gas diffusion layers, where electronic conductivity and permeability to both gas and water is critical; and they are used to construct fuel cell electrodes, where an optimum combination of ionic conductivity, electronic conductivity, porosity and catalyst distribution is critical. The paper will discuss these characteristics, and introduce the materials and processing methods used to engineer porous materials within two of the leading fuel cell variants, the solid oxide fuel cell and the polymer electrolyte membrane fuel cell.

  4. Airstart performance of a digital electronic engine control system on an F100 engine

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.

    1984-01-01

    The digital electronic engine control (DEEC) system installed on an F100 engine in an F-15 aircraft was tested. The DEEC system incorporates a closed-loop air start feature in which the fuel flow is modulated to achieve the desired rate of compressor acceleration. With this logic the DEEC equipped F100 engine can achieve air starts over a larger envelope. The DEEC air start logic, the test program conducted on the F-15, and its results are described.

  5. Augmentor transient capability of an F100 engine equipped with a digital electronic engine control

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Pai, G. D.

    1984-01-01

    An F100 augmented turbofan engine equipped with digital electronic engine control (DEEC) system was evaluated. The engine was equipped with a specially modified augmentor to provide improved steady state and transient augmentor capability. The combination of the DEEC and the modified augmentor was evaluated in sea level and altitude facility tests and then in four different flight phases in an F-15 aircraft. The augmentor configuration, logic, and test results are presented.

  6. Citation Analysis: A Case Study of Korean Scientists and Engineers in Electrical and Electronics Engineering.

    ERIC Educational Resources Information Center

    Rieh, Hae-young

    1993-01-01

    Describes a study that investigated the citation patterns of publications by scientists and engineers in electrical and electronics engineering in Korea. Citation behavior of personnel in government, universities, and industry is compared; and citation patterns from articles in Korean and non-Korean publications are contrasted. (Contains 27…

  7. Digital electronic engine control fault detection and accommodation flight evaluation

    NASA Technical Reports Server (NTRS)

    Baer-Ruedhart, J. L.

    1984-01-01

    The capabilities and performance of various fault detection and accommodation (FDA) schemes in existing and projected engine control systems were investigated. Flight tests of the digital electronic engine control (DEEC) in an F-15 aircraft show discrepancies between flight results and predictions based on simulation and altitude testing. The FDA methodology and logic in the DEEC system, and the results of the flight failures which occurred to date are described.

  8. Analog and Digital Electronics. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Cavanaugh, Vince; Greer, Marlin

    This study guide is part of an interdisciplinary curriculum entitled the Science and Engineering Technician (SET) Curriculum devised to provide basic information to train technicians in the use of electronic instruments and their application. The program of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  9. Electronic Components, Transducers, and Basic Circuits. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Mowery, Donald R.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed for the purpose of training technicians in the use of electronic instruments and their applications. The program integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and…

  10. Compound cycle engine for helicopter application

    NASA Technical Reports Server (NTRS)

    Castor, Jere; Martin, John; Bradley, Curtiss

    1987-01-01

    The compound cycle engine (CCE) is a highly turbocharged, power-compounded, ultra-high-power-density, lightweight diesel engine. The turbomachinery is similar to a moderate-pressure-ratio, free-power-turbine gas turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military helicopter applications. Cycle thermodynamic specific fuel consumption (SFC) and engine weight analyses performed to establish general engine operating parameters and configurations are presented. An extensive performance and weight analysis based on a typical 2-hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a contemporary gas turbine engine. The CCE had a 31 percent lower-fuel consumption and resulted in a 16 percent reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb/hp-hr and installed wet weight is 0.43 lb/hp. The major technology development areas required for the CCE are identified and briefly discussed.

  11. Compound cycle engine for helicopter application

    NASA Technical Reports Server (NTRS)

    Castor, Jere G.

    1986-01-01

    The Compound Cycle Engine (CCE) is a highly turbocharged, power compounded, ultra-high power density, light-weight diesel engine. The turbomachinery is similar to a moderate pressure ratio, free power turbine engine and the diesel core is high speed and a low compression ratio. This engine is considered a potential candidate for future military light helicopter applications. This executive summary presents cycle thermodynamic (SFC) and engine weight analyses performed to establish general engine operating parameters and configuration. An extensive performance and weight analysis based on a typical two hour helicopter (+30 minute reserve) mission determined final conceptual engine design. With this mission, CCE performance was compared to that of a T-800 class gas turbine engine. The CCE had a 31% lower-fuel consumption and resulted in a 16% reduction in engine plus fuel and fuel tank weight. Design SFC of the CCE is 0.33 lb-HP-HR and installed wet weight is 0.43 lbs/HP. The major technology development areas required for the CCE are identified and briefly discussed.

  12. Metal Matrix Composites for Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    McDonald, Kathleen R.; Wooten, John R.

    2000-01-01

    This document is from a presentation about the applications of Metal Matrix Composites (MMC) in rocket engines. Both NASA and the Air Force have goals which would reduce the costs and the weight of launching spacecraft. Charts show the engine weight distribution for both reuseable and expendable engine components. The presentation reviews the operating requirements for several components of the rocket engines. The next slide reviews the potential benefits of MMCs in general and in use as materials for Advanced Pressure Casting. The next slide reviews the drawbacks of MMCs. The reusable turbopump housing is selected to review for potential MMC application. The presentation reviews solutions for reusable turbopump materials, pointing out some of the issues. It also reviews the development of some of the materials.

  13. Aloe Vera for Tissue Engineering Applications

    PubMed Central

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-01-01

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers. PMID:28216559

  14. Aloe Vera for Tissue Engineering Applications.

    PubMed

    Rahman, Shekh; Carter, Princeton; Bhattarai, Narayan

    2017-02-14

    Aloe vera, also referred as Aloe barbadensis Miller, is a succulent plant widely used for biomedical, pharmaceutical and cosmetic applications. Aloe vera has been used for thousands of years. However, recent significant advances have been made in the development of aloe vera for tissue engineering applications. Aloe vera has received considerable attention in tissue engineering due to its biodegradability, biocompatibility, and low toxicity properties. Aloe vera has been reported to have many biologically active components. The bioactive components of aloe vera have effective antibacterial, anti-inflammatory, antioxidant, and immune-modulatory effects that promote both tissue regeneration and growth. The aloe vera plant, its bioactive components, extraction and processing, and tissue engineering prospects are reviewed in this article. The use of aloe vera as tissue engineering scaffolds, gels, and films is discussed, with a special focus on electrospun nanofibers.

  15. Composite material application for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Heubner, S. W.

    1982-01-01

    With increasing emphasis on improving engine thrust-to-weight ratios to provide improved payload capabilities, weight reductions achievable by the use of composites have become attractive. Of primary significance is the weight reduction offered by composites, although high temperature properties and cost reduction were also considered. The potential for application of composites to components of Earth-to-orbit hydrocarbon engines and orbit-to-orbit LOX/H2 engines was assessed. The components most likely to benefit from the application of composites were identified, as were the critical technology areas where developed would be required. Recommendations were made and a program outlined for the design, fabrication, and demonstration of specific engine components.

  16. USSR Report: Electronics and Electrical Engineering

    DTIC Science & Technology

    2007-11-02

    combined additional error in measuring the frequency, period and frequency ratio of pulsed signals. The types of modifications which must be made to the...with Scattering of Short Radio Pulses by Conducting Sphere (A.A. Kostylev; RADIOTEKHNIKA, No 8, Aug 84)... . 6 Multifunctional Elements for...Khuzyashev; IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY: RADIOFIZIKA, No 9, Sep 84) 34 Domain of Applicability of Asymptotic Description of Radio Pulse

  17. Composite Material Application to Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1982-01-01

    The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.

  18. Nanofibers and their applications in tissue engineering

    PubMed Central

    Vasita, Rajesh; Katti, Dhirendra S

    2006-01-01

    Developing scaffolds that mimic the architecture of tissue at the nanoscale is one of the major challenges in the field of tissue engineering. The development of nanofibers has greatly enhanced the scope for fabricating scaffolds that can potentially meet this challenge. Currently, there are three techniques available for the synthesis of nanofibers: electrospinning, self-assembly, and phase separation. Of these techniques, electrospinning is the most widely studied technique and has also demonstrated the most promising results in terms of tissue engineering applications. The availability of a wide range of natural and synthetic biomaterials has broadened the scope for development of nanofibrous scaffolds, especially using the electrospinning technique. The three dimensional synthetic biodegradable scaffolds designed using nanofibers serve as an excellent framework for cell adhesion, proliferation, and differentiation. Therefore, nanofibers, irrespective of their method of synthesis, have been used as scaffolds for musculoskeletal tissue engineering (including bone, cartilage, ligament, and skeletal muscle), skin tissue engineering, vascular tissue engineering, neural tissue engineering, and as carriers for the controlled delivery of drugs, proteins, and DNA. This review summarizes the currently available techniques for nanofiber synthesis and discusses the use of nanofibers in tissue engineering and drug delivery applications. PMID:17722259

  19. Optimization strategies for complex engineering applications

    SciTech Connect

    Eldred, M.S.

    1998-02-01

    LDRD research activities have focused on increasing the robustness and efficiency of optimization studies for computationally complex engineering problems. Engineering applications can be characterized by extreme computational expense, lack of gradient information, discrete parameters, non-converging simulations, and nonsmooth, multimodal, and discontinuous response variations. Guided by these challenges, the LDRD research activities have developed application-specific techniques, fundamental optimization algorithms, multilevel hybrid and sequential approximate optimization strategies, parallel processing approaches, and automatic differentiation and adjoint augmentation methods. This report surveys these activities and summarizes the key findings and recommendations.

  20. [Transcriptome platforms and applications to metabolic engineering].

    PubMed

    Shi, Shuobo; Chen, Tao; Zhao, Xueming

    2010-09-01

    Omics technologies have profoundly promoted development and applications of metabolic engineering by analysis of cell metabolism at a system level. Whole genome transcription profiles have provided researchers more rigorous evaluation of cell phenotype and an increased understanding of cellular metabolism. Furthermore, transcriptome analysis can conduce to identification of effective gene targets for strain improvement, and consequently accelerates rational design and construction of microbial cell factories for desired product. In this review, we briefly introduced the principle of three main platforms of transcriptome, and reviewed the recent applications of the transcriptome to metabolic engineering, finally provided conclusions and future prospects.

  1. Experimental realization of a Szilard engine with a single electron

    PubMed Central

    Koski, Jonne V.; Maisi, Ville F.; Pekola, Jukka P.; Averin, Dmitri V.

    2014-01-01

    The most succinct manifestation of the second law of thermodynamics is the limitation imposed by the Landauer principle on the amount of heat a Maxwell demon (MD) can convert into free energy per single bit of information obtained in a measurement. We propose and realize an electronic MD based on a single-electron box operated as a Szilard engine, where kBT ln 2 of heat is extracted from the reservoir at temperature T per one bit of created information. The information is encoded in the position of an extra electron in the box. PMID:25201966

  2. Application of Electron Diffraction to Biological Electron Microscopy

    PubMed Central

    Glaeser, Robert M.; Thomas, Gareth

    1969-01-01

    Three methods by which electron diffraction may be applied to problems in electron microscopy are discussed from a fundamental point of view, and experimental applications with biological specimens are demonstrated for each case. It is shown that wide-angle electron diffraction provides valuable information for evaluating specimen damage that can occur either during specimen preparation or while in the electron beam. Dark-field electron microscopy can be used both to enhance the image contrast and to provide highly restricted and therefore highly specific information about the object. Low-angle electron diffraction provides quantitative information about the object structure in the range from 20 A to ∼ 1000 A. Lowangle electron diffraction also demonstrates the important role of Fourier contrast with biological specimens, which are usually characterized by structural features with dimensions of 20 A or larger. ImagesFigure 1Figure 2Figure 5Figure 6Figure 7Figure 8Figure 9Figure 10Figure 11Figure 13 PMID:4896898

  3. Engineered carbon foam for temperature control applications

    NASA Astrophysics Data System (ADS)

    Almajali, Mohammad Rajab

    pressure within the foam matrix were investigated. These factors lowered the heat transfer rate considerably and the melting area was reduced by more than 23%. Two samples, coated and uncoated carbon foam, were infiltrated with PCM and subjected to a uniform heat load test in a vacuum. The coated foam showed excellent performance compared to the uncoated foam. (iii) Finally, the new engineered carbon foam was used as a heat sink and heat exchanger in a thermoelectric cooler for a cooling vest application. Using carbon foam as the core material for this application, the effective transfer of heat was significantly increased while reducing the size and weight of the heat exchanger.

  4. Engineering Stem Cells for Biomedical Applications.

    PubMed

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.

  5. Electronic Structure Engineering of Cu2O Film/ZnO Nanorods Array All-Oxide p-n Heterostructure for Enhanced Photoelectrochemical Property and Self-powered Biosensing Application

    PubMed Central

    Kang, Zhuo; Yan, Xiaoqin; Wang, Yunfei; Bai, Zhiming; Liu, Yichong; Zhang, Zheng; Lin, Pei; Zhang, Xiaohui; Yuan, Haoge; Zhang, Xueji; Zhang, Yue

    2015-01-01

    We have engineered the electronic structure at the interface between Cu2O and ZnO nanorods (NRs) array, through adjusting the carrier concentration of Cu2O. The electrodeposition of Cu2O at pH 11 acquired the highest carrier concentration, resulting in the largest interfacial electric field between Cu2O and ZnO, which finally led to the highest separation efficiency of photogenerated charge carriers. The optimized Cu2O/ZnO NRs array p-n heterostructures exhibited enhanced PEC performance, such as elevated photocurrent and photoconversion efficiency, as well as excellent sensing performance for the sensitive detection of glutathione (GSH) in PBS buffer even at applied bias of 0 V which made the device self-powered. Besides, the favorable selectivity, high reproducibility and extremely wide detection range, make such heterostructure a promising candidate for PEC biosensing applications, probably for the extended field of PEC water splitting or other solar photovoltaic beacons. PMID:25600940

  6. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  7. Biological and biomedical applications of engineered nucleases.

    PubMed

    Pan, Yunzhi; Xiao, Li; Li, Alice S S; Zhang, Xu; Sirois, Pierre; Zhang, Jia; Li, Kai

    2013-09-01

    The development of engineered nucleases is the fruit of a new technological approach developed in the last two decades which has led to significant benefits on genome engineering, particularly on gene therapy. These applications enable efficient and specific genetic modifications via the induction of a double-strand break (DSB) in a specific genomic target sequence, followed by the homology-directed repair (HDR) or non-homologous end joining (NHEJ) pathways. In addition to the application on gene modification in cells and intact organisms, a number of recent papers have reported that this gene editing technology can be applied effectively to human diseases. With the promising data obtained using engineered endonucleases in gene therapy, it appears reasonable to expect that more diseases could be treated and even be cured in this new era of individualized medicine. This paper first brief introduces the development of engineered nucleases with a special emphasis on zinc-finger nucleases (ZFNs) and transcription activator-like effector (TALE) nucleases (TALENs), and then takes CCR5-based gene therapy as an example to discuss the therapeutic applications of engineered nucleases.

  8. Application of System Identification in Engineering

    NASA Astrophysics Data System (ADS)

    Natke, H. G.

    System identification is a powerful tool in engineering. Its various methods in the frequency and in the time domain have been extensively discussed in earlier CISM courses. The aim of this course is to describe the state of the art in specific application areas, such as estimation of eigenquantities (in the aerospace industry, in civil engineering, in naval engineering etc.), noise source detection, fault detection by investigation of dynamic properties, such as machine sound characteristics, and the identification of the dynamic behaviour of flow induced systems (e.g. aerolastic problems). Geotechnical applications are also among the fields of interest. The lecture notes contain demonstrations of several methods and include a valuation by combining various kinds of experience. Such complex information includes not only theoretical aspects of identification but also advice on practical handling, for example concerning testing effort and data handling.

  9. Engineering coatings: Design and application. Second edition

    SciTech Connect

    Grainger, S.; Blunt, J.

    1999-07-01

    This is a guidebook for coating selection and the means of application for specific circumstances. Mechanisms of wear and corrosion are discussed in detail to assist in the analysis of component failures and newly designed parts. Coverage includes coating finishing, quality assurance, health and safety issues and other useful reference information for designers and surface engineers who use or select coatings.

  10. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1988-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  11. Engineering applications of heuristic multilevel optimization methods

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M.

    1989-01-01

    Some engineering applications of heuristic multilevel optimization methods are presented and the discussion focuses on the dependency matrix that indicates the relationship between problem functions and variables. Coordination of the subproblem optimizations is shown to be typically achieved through the use of exact or approximate sensitivity analysis. Areas for further development are identified.

  12. Novel application of plasma treatment for pharmaceutical and biomedical engineering.

    PubMed

    Kuzuya, Masayuki; Sasai, Yasushi; Kondo, Shin-Ichi; Yamauchi, Yukinori

    2009-06-01

    The nature of plasma-induced surface radicals formed on a variety of organic polymers has been studied by electron spin resonance (ESR), making it possible to provide a sound basis for future experimental design of polymer surface processing using plasma treatment. On the basis of the findings from such studies, several novel bio-applications in the field of drug- and biomedical- engineering have been developed. Applications for drug engineering include the preparation of reservoir-type drug delivery system (DDS) of sustained- and delayed-release, and floating drug delivery system (FDDS) possessing gastric retention capabilities, followed by preparation of "Patient-Tailored DDS". Furthermore, the preparation of composite powders applicable to matrix-type DDS was developed by making a mechanical application to the surface radical-containing polymer powders with drug powders. In applications for biomedical engineering, the novel method to introduce the durable surface hydrophilicity and lubricity on hydrophobic biomedical polymers was developed by plasma-assisted immobilization of carboxyl group-containing polymer on the polymer substrate. The surfaces thus prepared were further used for the covalent immobilization of oligo-nucleotides (DNA) onto the polymer surfaces applicable to constructing DNA diagnosis system, and also plasma-assisted preparation of functionalized chemo-embolic agent of vinyl alcohol-sodium acrylate copolymer (PVA- PAANa).

  13. Thermal barrier coatings application in diesel engines

    NASA Technical Reports Server (NTRS)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr,. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also to provide protection. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the thermal barrier coatings will be to reduce thermal fatigue as the engine peak cylinder pressure will nearly be doubled. As the coatings result in higher available energy in the exhaust gas, efficiency gains are achieved through use of this energy by turbochargers, turbocompounding or thermoelectric generators.

  14. Tailored Carbon Nanotubes for Tissue Engineering Applications

    PubMed Central

    Veetil, Jithesh V.; Ye, Kaiming

    2008-01-01

    A decade of aggressive researches on carbon nanotubes (CNTs) has paved way for extending these unique nanomaterials into a wide range of applications. In the relatively new arena of nanobiotechnology, a vast majority of applications are based on CNTs, ranging from miniaturized biosensors to organ regeneration. Nevertheless, the complexity of biological systems poses a significant challenge in developing CNT-based tissue engineering applications. This review focuses on the recent developments of CNT-based tissue engineering, where the interaction between living cells/tissues and the nanotubes have been transformed into a variety of novel techniques. This integration has already resulted in a revaluation of tissue engineering and organ regeneration techniques. Some of the new treatments that were not possible previously become reachable now. Because of the advent of surface chemistry, the CNT’s biocompatibility has been significantly improved, making it possible to serve as tissue scaffolding materials to enhance the organ regeneration. The superior mechanic strength and chemical inert also makes it ideal for blood compatible applications, especially for cardiopulmonary bypass surgery. The applications of CNTs in these cardiovascular surgeries led to a remarkable improvement in mechanical strength of implanted catheters and reduced thrombogenecity after surgery. Moreover, the functionalized CNTs have been extensively explored for in vivo targeted drug or gene delivery, which could potentially improve the efficiency of many cancer treatments. However, just like other nanomaterials, the cytotoxicity of CNTs has not been well established. Hence, more extensive cytotoxic studies are warranted while converting the hydrophobic CNTs into biocompatible nanomaterials. PMID:19496152

  15. Engineering of an alternative electron transfer path in photosystem II

    PubMed Central

    Larom, Shirley; Salama, Faris; Schuster, Gadi; Adir, Noam

    2010-01-01

    The initial steps of oxygenic photosynthetic electron transfer occur within photosystem II, an intricate pigment/protein transmembrane complex. Light-driven electron transfer occurs within a multistep pathway that is efficiently insulated from competing electron transfer pathways. The heart of the electron transfer system, composed of six linearly coupled redox active cofactors that enable electron transfer from water to the secondary quinone acceptor QB, is mainly embedded within two proteins called D1 and D2. We have identified a site in silico, poised in the vicinity of the QA intermediate quinone acceptor, which could serve as a potential binding site for redox active proteins. Here we show that modification of Lysine 238 of the D1 protein to glutamic acid (Glu) in the cyanobacterium Synechocystis sp. PCC 6803, results in a strain that grows photautotrophically. The Glu thylakoid membranes are able to perform light-dependent reduction of exogenous cytochrome c with water as the electron donor. Cytochrome c photoreduction by the Glu mutant was also shown to significantly protect the D1 protein from photodamage when isolated thylakoid membranes were illuminated. We have therefore engineered a novel electron transfer pathway from water to a soluble protein electron carrier without harming the normal function of photosystem II. PMID:20457933

  16. 40 CFR 94.221 - Application of good engineering judgment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Application of good engineering... § 94.221 Application of good engineering judgment. (a) The manufacturer shall exercise good engineering... the Administrator) a written description of the engineering judgment in question. (c)...

  17. 40 CFR 94.221 - Application of good engineering judgment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Application of good engineering... § 94.221 Application of good engineering judgment. (a) The manufacturer shall exercise good engineering... the Administrator) a written description of the engineering judgment in question. (c)...

  18. 40 CFR 94.221 - Application of good engineering judgment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Application of good engineering... § 94.221 Application of good engineering judgment. (a) The manufacturer shall exercise good engineering... the Administrator) a written description of the engineering judgment in question. (c)...

  19. 40 CFR 94.221 - Application of good engineering judgment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Application of good engineering... § 94.221 Application of good engineering judgment. (a) The manufacturer shall exercise good engineering... the Administrator) a written description of the engineering judgment in question. (c)...

  20. 40 CFR 94.221 - Application of good engineering judgment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Application of good engineering... § 94.221 Application of good engineering judgment. (a) The manufacturer shall exercise good engineering... the Administrator) a written description of the engineering judgment in question. (c)...

  1. JPRS Report, Science & Technology, USSR: Electronics & Electrical Engineering.

    DTIC Science & Technology

    2007-11-02

    87] 7 JPRS-UEE-88-003 5 MAY 1988 2 USSR: Electronics & Electrical Engineering Antennas , Propagation Inverse Refraction Problem in Earth’s...Gutman; RADIOTEKHNIKA I ELEKTRONIKA, Jan 87] 9 Directional Characteristics of Antennas in Turbulent Medium: Resolution [A. G. Vinogradov and Z. I...Feyzulin; RADIOTEKHNIKA I ELEKTRONIKA, Jan 87] 9 Error of Antenna Radiation Pattern Reconstructed From Discrete Readings of Amplitude-Phase

  2. CFD applications in chemical propulsion engines

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.

    1991-01-01

    The present research is aimed at developing analytical procedures for predicting the performance and stability characteristics of chemical propulsion engines. Specific emphasis is being placed on understanding the physical and chemical processes in the small engines that are used for applications such as spacecraft attitude control and drag make-up. The small thrust sizes of these engines lead to low nozzle Reynolds numbers with thick boundary layers which may even meet at the nozzle centerline. For this reason, the classical high Reynolds number procedures that are commonly used in the industry are inaccurate and of questionable utility for design. A complete analysis capability for the combined viscous and inviscid regions as well as for the subsonic, transonic, and supersonic portions of the flowfield is necessary to estimate performance levels and to enable tradeoff studies during design procedures.

  3. Applications in Energy, Optics and Electronics.

    ERIC Educational Resources Information Center

    Rosenberg, Robert; And Others

    1980-01-01

    Discusses the applications of thin films in energy, optics and electronics. The use of thin-film technologies for heat mirrors, anti-reflection coatings, interference filters, solar cells, and metal contacts is included. (HM)

  4. Opto-Electronic Oscillator and its Applications

    NASA Technical Reports Server (NTRS)

    Yao, X. S.; Maleki, L.

    1996-01-01

    We present the theoretical and experimental results of a new class of microwave oscillators called opto-electronic oscillators (OEO). We discuss techniques of achieving high stability single mode operation and demonstrate the applications of OEO in photonic communication systems.

  5. Multifunctional, flexible electronic systems based on engineered nanostructured materials

    NASA Astrophysics Data System (ADS)

    Ko, Hyunhyub; Kapadia, Rehan; Takei, Kuniharu; Takahashi, Toshitake; Zhang, Xiaobo; Javey, Ali

    2012-08-01

    The development of flexible electronic systems has been extensively researched in recent years, with the goal of expanding the potential scope and market of modern electronic devices in the areas of computation, communications, displays, sensing and energy. Uniquely, the use of soft polymeric substrates enables the incorporation of advanced features beyond mechanical bendability and stretchability. In this paper, we describe several functionalities which can be achieved using engineered nanostructured materials. In particular, reversible binding, self-cleaning, antireflective and shape-reconfigurable properties are introduced for the realization of multifunctional, flexible electronic devices. Examples of flexible systems capable of spatial mapping and/or responding to external stimuli are also presented as a new class of user-interactive devices.

  6. Materials for Stretchable Electronics: Electronic Eyeballs, Brain Monitors, and Other Applications

    SciTech Connect

    Rogers, John A.

    2009-02-04

    Electronic circuits that involve transistors and related components on thin plastic sheets or rubber slabs offer mechanical properties (e.g. bendability, stretchability) and other features (e.g. lightweight, rugged construction) which cannot be easily achieved with technologies that use rigid, fragile semiconductor wafer or glass substrates. Device examples include personal or structural health monitors and electronic eye imagers, in which the electronics must conform to complex curvilinear shapes or flex/stretch during use. Our recent work accomplishes these technology outcomes by use of single crystal inorganic nanomaterials in 'wavy' buckled configurations on elastomeric supports. This talk will describe key fundamental materials and mechanics aspects of these approaches, as well as engineering features of their use in individual transistors, photodiodes and integrated circuits. Cardiac and brain monitoring devices provide examples of application in biomedicine; hemispherical electronic eye cameras illustrate new capacities for bio-inspired device design.

  7. Materials for Stretchable Electronics - Electronic Eyeballs, Brain Monitors and Other Applications

    SciTech Connect

    Rogers, John A.

    2009-02-04

    Electronic circuits that involve transistors and related components on thin plastic sheets or rubber slabs offer mechanical properties (e.g. bendability, stretchability) and other features (e.g. lightweight, rugged construction) which cannot be easily achieved with technologies that use rigid, fragile semiconductor wafer or glass substrates.  Device examples include personal or structural health monitors and electronic eye imagers, in which the electronics must conform to complex curvilinear shapes or flex/stretch during use.  Our recent work accomplishes these technology outcomes by use of single crystal inorganic nanomaterials in ‘wavy’ buckled configurations on elastomeric supports.  This talk will describe key fundamental materials and mechanics aspects of these approaches, as well as engineering features of their use in individual transistors, photodiodes and integrated circuits.  Cardiac and brain monitoring devices provide examples of application in biomedicine; hemispherical electronic eye cameras illustrate new capacities for bio-inspired device design.

  8. Combinatorial approaches for inverse metabolic engineering applications

    PubMed Central

    Skretas, Georgios; Kolisis, Fragiskos N.

    2013-01-01

    Traditional metabolic engineering analyzes biosynthetic and physiological pathways, identifies bottlenecks, and makes targeted genetic modifications with the ultimate goal of increasing the production of high-value products in living cells. Such efforts have led to the development of a variety of organisms with industrially relevant properties. However, there are a number of cellular phenotypes important for research and the industry for which the rational selection of cellular targets for modification is not easy or possible. In these cases, strain engineering can be alternatively carried out using “inverse metabolic engineering”, an approach that first generates genetic diversity by subjecting a population of cells to a particular mutagenic process, and then utilizes genetic screens or selections to identify the clones exhibiting the desired phenotype. Given the availability of an appropriate screen for a particular property, the success of inverse metabolic engineering efforts usually depends on the level and quality of genetic diversity which can be generated. Here, we review classic and recently developed combinatorial approaches for creating such genetic diversity and discuss the use of these methodologies in inverse metabolic engineering applications. PMID:24688681

  9. Application of physics engines in virtual worlds

    NASA Astrophysics Data System (ADS)

    Norman, Mark; Taylor, Tim

    2002-03-01

    Dynamic virtual worlds potentially can provide a much richer and more enjoyable experience than static ones. To realize such worlds, three approaches are commonly used. The first of these, and still widely applied, involves importing traditional animations from a modeling system such as 3D Studio Max. This approach is therefore limited to predefined animation scripts or combinations/blends thereof. The second approach involves the integration of some specific-purpose simulation code, such as car dynamics, and is thus generally limited to one (class of) application(s). The third approach involves the use of general-purpose physics engines, which promise to enable a range of compelling dynamic virtual worlds and to considerably speed up development. By far the largest market today for real-time simulation is computer games, revenues exceeding those of the movie industry. Traditionally, the simulation is produced by game developers in-house for specific titles. However, off-the-shelf middleware physics engines are now available for use in games and related domains. In this paper, we report on our experiences of using middleware physics engines to create a virtual world as an interactive experience, and an advanced scenario where artificial life techniques generate controllers for physically modeled characters.

  10. Transferable and flexible thin film devices for engineering applications

    NASA Astrophysics Data System (ADS)

    Mutyala, Madhu Santosh K.; Zhou, Jingzhou; Li, Xiaochun

    2014-05-01

    Thin film devices can be of significance for manufacturing, energy conversion systems, solid state electronics, wireless applications, etc. However, these thin film sensors/devices are normally fabricated on rigid silicon substrates, thus neither flexible nor transferrable for engineering applications. This paper reports an innovative approach to transfer polyimide (PI) embedded thin film devices, which were fabricated on glass, to thin metal foils. Thin film thermocouples (TFTCs) were fabricated on a thin PI film, which was spin coated and cured on a glass substrate. Another layer of PI film was then spin coated again on TFTC/PI and cured to obtain the embedded TFTCs. Assisted by oxygen plasma surface coarsening of the PI film on the glass substrate, the PI embedded TFTC was successfully transferred from the glass substrate to a flexible copper foil. To demonstrate the functionality of the flexible embedded thin film sensors, they were transferred to the sonotrode tip of an ultrasonic metal welding machine for in situ process monitoring. The dynamic temperatures near the sonotrode tip were effectively measured under various ultrasonic vibration amplitudes. This technique of transferring polymer embedded electronic devices onto metal foils yield great potentials for numerous engineering applications.

  11. Real cases study through computer applications for futures Agricultural Engineers

    NASA Astrophysics Data System (ADS)

    Moratiel, R.; Durán, J. M.; Tarquis, A. M.

    2010-05-01

    One of the huge concerns on the higher engineer education is the lag of real cases study that the future professionals need in the work and corporation market. This concern was reflected in Bologna higher education system including recommendations in this respect. The knowhow as why this or other methodology is one of the keys to resolve this problem. In the last courses given in Department of Crop Production, at the Agronomy Engineer School of Madrid (Escuela Técnica Superior de Ingenieros Agrónomos, UPM) we have developed more than one hundred applications in Microsoft Excel®. Our aim was to show different real scenarios which the future Agronomic Engineers can be found in their professional life and with items related to crop production field. In order to achieve our target, each application in Excel presents a file text in which is explained the theoretical concepts and the objectives, as well as some resources used from Excel syntax. In this way, the student can understand and use of such application, even they can modify and customize it for a real case presented in their context and/or master project. This electronic monograph gives an answer to the need to manage data in several real scenarios showed in lectures, calculus resolution, information analysis and manage worksheets in a professional and student level.

  12. Query log analysis of an electronic health record search engine.

    PubMed

    Yang, Lei; Mei, Qiaozhu; Zheng, Kai; Hanauer, David A

    2011-01-01

    We analyzed a longitudinal collection of query logs of a full-text search engine designed to facilitate information retrieval in electronic health records (EHR). The collection, 202,905 queries and 35,928 user sessions recorded over a course of 4 years, represents the information-seeking behavior of 533 medical professionals, including frontline practitioners, coding personnel, patient safety officers, and biomedical researchers for patient data stored in EHR systems. In this paper, we present descriptive statistics of the queries, a categorization of information needs manifested through the queries, as well as temporal patterns of the users' information-seeking behavior. The results suggest that information needs in medical domain are substantially more sophisticated than those that general-purpose web search engines need to accommodate. Therefore, we envision there exists a significant challenge, along with significant opportunities, to provide intelligent query recommendations to facilitate information retrieval in EHR.

  13. Human progenitor cells for bone engineering applications.

    PubMed

    de Peppo, G M; Thomsen, P; Karlsson, C; Strehl, R; Lindahl, A; Hyllner, J

    2013-06-01

    In this report, the authors review the human skeleton and the increasing burden of bone deficiencies, the limitations encountered with the current treatments and the opportunities provided by the emerging field of cell-based bone engineering. Special emphasis is placed on different sources of human progenitor cells, as well as their pros and cons in relation to their utilization for the large-scale construction of functional bone-engineered substitutes for clinical applications. It is concluded that, human pluripotent stem cells represent a valuable source for the derivation of progenitor cells, which combine the advantages of both embryonic and adult stem cells, and indeed display high potential for the construction of functional substitutes for bone replacement therapies.

  14. Pulmonary applications and toxicity of engineered nanoparticles.

    PubMed

    Card, Jeffrey W; Zeldin, Darryl C; Bonner, James C; Nestmann, Earle R

    2008-09-01

    Because of their unique physicochemical properties, engineered nanoparticles have the potential to significantly impact respiratory research and medicine by means of improving imaging capability and drug delivery, among other applications. These same properties, however, present potential safety concerns, and there is accumulating evidence to suggest that nanoparticles may exert adverse effects on pulmonary structure and function. The respiratory system is susceptible to injury resulting from inhalation of gases, aerosols, and particles, and also from systemic delivery of drugs, chemicals, and other compounds to the lungs via direct cardiac output to the pulmonary arteries. As such, it is a prime target for the possible toxic effects of engineered nanoparticles. The purpose of this article is to provide an overview of the potential usefulness of nanoparticles and nanotechnology in respiratory research and medicine and to highlight important issues and recent data pertaining to nanoparticle-related pulmonary toxicity.

  15. Ceramic applications in the advanced Stirling automotive engine

    NASA Technical Reports Server (NTRS)

    Tomazic, W. A.; Cairelli, J. E.

    1977-01-01

    The ideal cycle, its application to a practical machine, and the specific advantages of high efficiency, low emissions, multi-fuel capability, and low noise of the stirling engine are discussed. Certain portions of the Stirling engine must operate continuously at high temperature. Ceramics offer the potential of cost reduction and efficiency improvement for advanced engine applications. Potential applications for ceramics in Stirling engines, and some of the special problems pertinent to using ceramics in the Stirling engine are described. The research and technology program in ceramics which is planned to support the development of advanced Stirling engines is outlined.

  16. Engineering growth factors for regenerative medicine applications.

    SciTech Connect

    Mitchell, Aaron C.; Briquez, Priscilla S.; Hubbell, Jeffrey A.; Cochran, Jennifer R.

    2016-01-15

    Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications.

  17. Gene therapy used for tissue engineering applications.

    PubMed

    Heyde, Mieke; Partridge, Kris A; Oreffo, Richard O C; Howdle, Steven M; Shakesheff, Kevin M; Garnett, Martin C

    2007-03-01

    This review highlights the advances at the interface between tissue engineering and gene therapy. There are a large number of reports on gene therapy in tissue engineering, and these cover a huge range of different engineered tissues, different vectors, scaffolds and methodology. The review considers separately in-vitro and in-vivo gene transfer methods. The in-vivo gene transfer method is described first, using either viral or non-viral vectors to repair various tissues with and without the use of scaffolds. The use of a scaffold can overcome some of the challenges associated with delivery by direct injection. The ex-vivo method is described in the second half of the review. Attempts have been made to use this therapy for bone, cartilage, wound, urothelial, nerve tissue regeneration and for treating diabetes using viral or non-viral vectors. Again porous polymers can be used as scaffolds for cell transplantation. There are as yet few comparisons between these many different variables to show which is the best for any particular application. With few exceptions, all of the results were positive in showing some gene expression and some consequent effect on tissue growth and remodelling. Some of the principal advantages and disadvantages of various methods are discussed.

  18. Tissue engineering skeletal muscle for orthopaedic applications

    NASA Technical Reports Server (NTRS)

    Payumo, Francis C.; Kim, Hyun D.; Sherling, Michael A.; Smith, Lee P.; Powell, Courtney; Wang, Xiao; Keeping, Hugh S.; Valentini, Robert F.; Vandenburgh, Herman H.

    2002-01-01

    With current technology, tissue-engineered skeletal muscle analogues (bioartificial muscles) generate too little active force to be clinically useful in orthopaedic applications. They have been engineered genetically with numerous transgenes (growth hormone, insulinlike growth factor-1, erythropoietin, vascular endothelial growth factor), and have been shown to deliver these therapeutic proteins either locally or systemically for months in vivo. Bone morphogenetic proteins belonging to the transforming growth factor-beta superfamily are osteoinductive molecules that drive the differentiation pathway of mesenchymal cells toward the chondroblastic or osteoblastic lineage, and stimulate bone formation in vivo. To determine whether skeletal muscle cells endogenously expressing bone morphogenetic proteins might serve as a vehicle for systemic bone morphogenetic protein delivery in vivo, proliferating skeletal myoblasts (C2C12) were transduced with a replication defective retrovirus containing the gene for recombinant human bone morphogenetic protein-6 (C2BMP-6). The C2BMP-6 cells constitutively expressed recombinant human bone morphogenetic protein-6 and synthesized bioactive recombinant human bone morphogenetic protein-6, based on increased alkaline phosphatase activity in coincubated mesenchymal cells. C2BMP-6 cells did not secrete soluble, bioactive recombinant human bone morphogenetic protein-6, but retained the bioactivity in the cell layer. Therefore, genetically-engineered skeletal muscle cells might serve as a platform for long-term delivery of osteoinductive bone morphogenetic proteins locally.

  19. Applications of Electron Linear Induction Accelerators

    NASA Astrophysics Data System (ADS)

    Westenskow*, Glen; Chen, Yu-Jiuan

    Linear Induction Accelerators (LIAs) can readily produce intense electron beams. For example, the ATA accelerator produced a 500 GW beam and the LIU-30 a 4 TW beam (see Chap. 2). Since the induction accelerator concept was proposed in the late 1950s [1, 2], there have been many proposed schemes to convert the beam power to other forms. Categories of applications that have been demonstrated for electron LIAs include:

  20. Electronic and photonic power applications

    SciTech Connect

    Walko, R.J.; Ashley, C.S.; Brinker, C.J.; Reed, S.T.; Renschler, C.L. ); Shepodd, T.J. ); Ellefson, R.E.; Gill, J.T. ); Leonard, L.E. )

    1990-01-01

    Efficient conversion of radioactive decay to electrical power has been the goal of a number of past research efforts. One of these was the Elgin-Kidde nuclear battery. In this concept promethium-147 was used as a beta source which was then mixed with a phosphor to produce a radioluminescent (RL) source of light. The light source was coupled to silicon photovoltaic converters to create electricity. This photoelectric approach is being revisited using tritium based solid state compounds and advanced gas concepts to produce RL light sources being disclosed at this conference. Efficient conversion of the RL light energy to electrical energy imposes certain requirements on the semiconductor converter. These requirements will be discussed. Projections of power source electrical and physical characteristics will be presented based on reasonable design parameter assumptions. The words Power Supply'' usually evoke a vision of a rotating machine or chemical battery. However, today's technology is making increasing use of photonics, where information and even power can be moved through optical fibers. Brighter volumetric RL light sources open a whole new range of photonics-based applications, while solid state tritiated compounds provide the foundation for improved mechanical adaptability and safety. 4 refs., 6 figs., 1 tab.

  1. Engineering nanomaterial surfaces for biomedical applications.

    PubMed

    Wang, Xin; Liu, Li-Hong; Ramström, Olof; Yan, Mingdi

    2009-10-01

    Nanomaterials, possessing unique physical and chemical properties, have attracted much interest and generated wide varieties of applications. Recent investigations of functionalized nanomaterials have expanded into the biological area, providing a versatile platform in biomedical applications such as biomolecular sensing, biological imaging, drug delivery and disease therapy. Bio-functions and bio-compatibility of nanomaterials are realized by introducing synthetic ligands or natural biomolecules onto nanomaterials, and combining ligand-receptor biological interactions with intrinsic nanomaterial properties. Common strategies of engineering nanomaterial surfaces involve physisorption or chemisorption of desired ligands. We developed a photochemically initiated surface coupling chemistry, bringing versatility and simplicity to nanomaterial functionalization. The method was applied to attach underivatized carbohydrates efficiently on gold and iron oxide nanoparticles, and the resulting glyconanoparticles were successfully used as a sensitive biosensing system probing specific interactions between carbohydrates and proteins as well as bacteria.

  2. Engineering Nanomaterial Surfaces for Biomedical Applications

    PubMed Central

    Wang, Xin; Liu, Li-Hong; Ramström, Olof; Yan, Mingdi

    2014-01-01

    Nanomaterials, possessing unique physical and chemical properties, have attracted much interest and generated wide varieties of applications. Recent investigations of functionalized nanomaterials have expanded into the biological area, providing a versatile platform in biomedical applications such as biomolecular sensing, biological imaging, drug delivery and disease therapy. Bio-functions and bio-compatibility of nanomaterials are realized by introducing synthetic ligands or natural biomolecules onto nanomaterials, and combining ligand-receptor biological interactions with intrinsic nanomaterial properties. Common strategies of engineering nanomaterial surfaces involve physisorption or chemisorption of desired ligands. We developed a photochemically initiated surface coupling chemistry, bringing versatility and simplicity to nanomaterial functionalization. The method was applied to attach underivatized carbohydrates efficiently on gold and iron oxide nanoparticles, and the resulting glyconanoparticles were successfully used as a sensitive biosensing system probing specific interactions between carbohydrates and proteins as well as bacteria. PMID:19596820

  3. Applications of soft computing in petroleum engineering

    NASA Astrophysics Data System (ADS)

    Sung, Andrew H.

    1999-11-01

    This paper describes several applications of neural networks and fuzzy logic in petroleum engineering that have been, or are being, developed recently at New Mexico Tech. These real-world applications include a fuzzy controller for drilling operation; a neural network model to predict the cement bonding quality in oil well completion; using neural networks and fuzzy logic to rank the importance of input parameters; and using fuzzy reasoning to interpret log curves. We also briefly describe two ongoing, large-scale projects on the development of a fuzzy expert system for prospect risk assessment in oil exploration; and on combining neural networks and fuzzy logic to tackle the large-scale simulation problem of history matching, a long- standing difficult problem in reservoir modeling.

  4. Ion engine auxiliary propulsion applications and integration study

    NASA Technical Reports Server (NTRS)

    Zafran, S. (Editor)

    1977-01-01

    The benefits derived from application of the 8-cm mercury electron bombardment ion thruster were assessed. Two specific spacecraft missions were studied. A thruster was tested to provide additional needed information on its efflux characteristics and interactive effects. A Users Manual was then prepared describing how to integrate the thruster for auxiliary propulsion on geosynchronous satellites. By incorporating ion engines on an advanced communications mission, the weight available for added payload increases by about 82 kg (181 lb) for a 100 kg (2200 lb) satellite which otherwise uses electrothermal hydrazine. Ion engines can be integrated into a high performance propulsion module that is compatible with the multimission modular spacecraft and can be used for both geosynchronous and low earth orbit applications. The low disturbance torques introduced by the ion engines permit accurate spacecraft pointing with the payload in operation during thrusting periods. The feasibility of using the thruster's neutralizer assembly for neutralization of differentially charged spacecraft surfaces at geosynchronous altitude was demonstrated during the testing program.

  5. Application of polarization OCT in tissue engineering

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Ahearne, Mark; Bagnaninchi, Pierre O.; Hu, Bin; Hampson, Karen; El Haj, Alicia J.

    2008-02-01

    For tissue engineering of load-bearing tissues, such as bone, tendon, cartilage, and cornea, it is critical to generate a highly organized extracellular matrix. The major component of the matrix in these tissues is collagen, which usually forms a highly hierarchical structure with increasing scale from fibril to fiber bundles. These bundles are ordered into a 3D network to withstand forces such as tensile, compressive or shear. To induce the formation of organized matrix and create a mimic body environment for tissue engineering, in particular, tendon tissue engineering, we have fabricated scaffolds with features to support the formation of uniaxially orientated collagen bundles. In addition, mechanical stimuli were applied to stimulate tissue formation and matrix organization. In parallel, we seek a nondestructive tool to monitor the changes within the constructs in response to these external stimulations. Polarizationsensitive optical coherence tomography (PSOCT) is a non-destructive technique that provides functional imaging, and possesses the ability to assess in depth the organization of tissue. In this way, an engineered tissue construct can be monitored on-line, and correlated with the application of different stimuli by PSOCT. We have constructed a PSOCT using a superluminescent diode (FWHM 52nm) in this study and produced two types of tendon constructs. The matrix structural evolution under different mechanical stimulation has been evaluated by the PSOCT. The results in this study demonstrate that PSOCT was a powerful tool enabling us to monitor non-destructively and real time the progressive changes in matrix organization and assess the impact of various stimuli on tissue orientation and growth.

  6. Electron Beam Scanning in Industrial Applications

    NASA Astrophysics Data System (ADS)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  7. Surface Engineering of Graphene-Based Nanomaterials for Biomedical Applications

    PubMed Central

    2015-01-01

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications. PMID:25117569

  8. Surface engineering of graphene-based nanomaterials for biomedical applications.

    PubMed

    Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo

    2014-09-17

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

  9. Evaluation of heat engine for hybrid vehicle application

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1984-01-01

    The status of ongoing heat-engine developments, including spark-ignition, compression-ignition, internal-combustion, and external-combustion engines is presented. The potential of engine concepts under consideration for hybrid vehicle use is evaluated, using self-imposed criteria for selection. The deficiencies of the engines currently being evaluated in hybrid vehicles are discussed. Focus is on recent research with two-stroke, rotary, and free-piston engines. It is concluded that these engine concepts have the most promising potential for future application in hybrid vehicles. Recommendations are made for analysis and experimentation to evaluate stop-start and transient emission behavior of recommended engine concepts.

  10. Tevatron electron lens and it's applications

    SciTech Connect

    Zhang, X.L.; Shiltsev, V.; Valishev, A.; Kamerdzhiev, V.; Romnov, A.; /Novosibirsk, IYF

    2009-08-01

    The Tevatron Electron Lens (TEL) is designed for the purpose of the Beam-beam tuneshift compensation. Now it's one of the vital parts of the Tevatron. In this report, its daily operations and beam study results are presented. And its possible future applications are also discussed as well.

  11. Applications for Energy Recovering Free Electron Lasers

    SciTech Connect

    George Neil

    2007-08-01

    The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.

  12. The special applications of Tevatron electron lens

    SciTech Connect

    Xiaolong Zhang et al.

    2003-08-11

    Besides the Tevatron Electron Lens (TEL) runs as a R and D project for Tevatron Beam-Beam Compensation, it is used daily as a Beam Abort Gap Cleaner for collider operations. It can also be served as beam exciter for beam dynamics measurements and slow proton or antiproton bunch remover. This report describes all these applications and observations.

  13. An investigation of the performance of an electronic in-line pump system for diesel engines

    NASA Astrophysics Data System (ADS)

    Fan, Li-Yun; Zhu, Yuan-Xian; Long, Wu-Qiang; Ma, Xiu-Zhen; Xue, Ying-Ying

    2008-12-01

    WIT Electronic Fuel System Co., Ltd. has developed a new fuel injector, the Electronic In-line Pump (EIP) system, designed to meet China’s diesel engine emission and fuel economy regulations. It can be used on marine diesel engines and commercial vehicle engines through different EIP systems. A numerical model of the EIP system was built in the AMESim environment for the purpose of creating a design tool for engine application and system optimization. The model was used to predict key injection characteristics under different operating conditions, such as injection pressure, injection rate, and injection duration. To validate these predictions, experimental tests were conducted under the conditions that were modeled. The results were quite encouraging and in agreement with model predictions. Additional experiments were conducted to study the injection characteristics of the EIP system. These results show that injection pressure and injection quantity are insensitive to injection timing variations, this is due to the design of the constant velocity cam profile. Finally, injection quantity and pressure vs. pulse width at different cam speeds are presented, an important injection characteristic for EIP system calibration.

  14. Backup control airstart performance on a digital electronic engine control-equipped F100-engine

    NASA Technical Reports Server (NTRS)

    Johnson, J. B.

    1984-01-01

    The air start capability of a backup control (BUC) was tested for a digital electronic engine control (DEEC) equipped F100 engine, which was installed in an F-15 aircraft. Two air start schedules were tested. Using the group 1 start schedule, based on a 40 sec timer, an air speed of 300 knots was required to ensure successful 40 and 25% BUC mode spooldown airstarts. If core rotor speed (N2) was less than 40% a stall would occur when the start bleed closed, 40 sec after initiation of the air start. All jet fuel starter (JFS) assisted air starts were successful with the group 1 start schedule. For the group 2 schedule, the time between pressurization and start bleed closure ranged between 50 sec and 72 sec. Idle rps was lower than the desired 65% for air starts at higher altitudes and lower air speeds.

  15. Comparison of flight results with digital simulation for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Burcham, F. W., Jr.

    1983-01-01

    Substantial benefits of a full authority digital electronic engine control on an air breathing engine were demonstrated repeatedly in simulation studies, ground engine tests, and engine altitude test facilities. A digital engine electronic control system showed improvements in efficiency, performance, and operation. An additional benefit of full authority digital controls is the capability of detecting and correcting failures and providing engine health diagnostics.

  16. Engineering β-sheet peptide assemblies for biomedical applications.

    PubMed

    Yu, Zhiqiang; Cai, Zheng; Chen, Qiling; Liu, Menghua; Ye, Ling; Ren, Jiaoyan; Liao, Wenzhen; Liu, Shuwen

    2016-03-01

    Hydrogels have been widely studied in various biomedical applications, such as tissue engineering, cell culture, immunotherapy and vaccines, and drug delivery. Peptide-based nanofibers represent a promising new strategy for current drug delivery approaches and cell carriers for tissue engineering. This review focuses on the recent advances in the use of self-assembling engineered β-sheet peptide assemblies for biomedical applications. The applications of peptide nanofibers in biomedical fields, such as drug delivery, tissue engineering, immunotherapy, and vaccines, are highlighted. The current challenges and future perspectives for self-assembling peptide nanofibers in biomedical applications are discussed.

  17. 4D electron microscopy: principles and applications.

    PubMed

    Flannigan, David J; Zewail, Ahmed H

    2012-10-16

    The transmission electron microscope (TEM) is a powerful tool enabling the visualization of atoms with length scales smaller than the Bohr radius at a factor of only 20 larger than the relativistic electron wavelength of 2.5 pm at 200 keV. The ability to visualize matter at these scales in a TEM is largely due to the efforts made in correcting for the imperfections in the lens systems which introduce aberrations and ultimately limit the achievable spatial resolution. In addition to the progress made in increasing the spatial resolution, the TEM has become an all-in-one characterization tool. Indeed, most of the properties of a material can be directly mapped in the TEM, including the composition, structure, bonding, morphology, and defects. The scope of applications spans essentially all of the physical sciences and includes biology. Until recently, however, high resolution visualization of structural changes occurring on sub-millisecond time scales was not possible. In order to reach the ultrashort temporal domain within which fundamental atomic motions take place, while simultaneously retaining high spatial resolution, an entirely new approach from that of millisecond-limited TEM cameras had to be conceived. As shown below, the approach is also different from that of nanosecond-limited TEM, whose resolution cannot offer the ultrafast regimes of dynamics. For this reason "ultrafast electron microscopy" is reserved for the field which is concerned with femtosecond to picosecond resolution capability of structural dynamics. In conventional TEMs, electrons are produced by heating a source or by applying a strong extraction field. Both methods result in the stochastic emission of electrons, with no control over temporal spacing or relative arrival time at the specimen. The timing issue can be overcome by exploiting the photoelectric effect and using pulsed lasers to generate precisely timed electron packets of ultrashort duration. The spatial and temporal resolutions

  18. Neural network application to comprehensive engine diagnostics

    NASA Technical Reports Server (NTRS)

    Marko, Kenneth A.

    1994-01-01

    We have previously reported on the use of neural networks for detection and identification of faults in complex microprocessor controlled powertrain systems. The data analyzed in those studies consisted of the full spectrum of signals passing between the engine and the real-time microprocessor controller. The specific task of the classification system was to classify system operation as nominal or abnormal and to identify the fault present. The primary concern in earlier work was the identification of faults, in sensors or actuators in the powertrain system as it was exercised over its full operating range. The use of data from a variety of sources, each contributing some potentially useful information to the classification task, is commonly referred to as sensor fusion and typifies the type of problems successfully addressed using neural networks. In this work we explore the application of neural networks to a different diagnostic problem, the diagnosis of faults in newly manufactured engines and the utility of neural networks for process control.

  19. Active IR-applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wiggenhauser, H.

    2002-06-01

    Applications of IR-thermography in civil engineering are not limited to the identification of heat losses in building envelopes. As it is well known from other areas of non-destructive testing, active IR-thermographic methods such as cooling down or lock-in thermography improves the results in many investigations. In civil engineering these techniques have not been used widely. Mostly thermography is used in a quasi-static manner. The interpretation of moisture measurements with thermography on surfaces can be very difficult due to several overlapping effects: emissivity changes due to composition, heat transfer through wet sections of the specimen, cooling through air flow or reflected spurious radiation sources. These effects can be reduced by selectively measuring the reflection in two wavelength windows, one on an absorption band of water and another in a reference band and then combining the results in a moisture index image. Cooling down thermography can be used to identify subsurface structural deficiencies. For building materials like concrete these measurements are performed on a much longer time scale than in flash lamp experiments. A quantitative analysis of the full cooling down process over several minutes can reliably identify defects at different depths. Experiments at BAM have shown, that active thermography is capabale of identifying structural deficiencies or moist areas in building materials much more reliable than quasi-static thermography.

  20. Biomedical applications of radiative decay engineering

    NASA Astrophysics Data System (ADS)

    Lakowicz, Joseph R.; Gryczynski, Ignacy; Malicka, Joanna; Shen, Yibing; Gryczynski, Zygmunt

    2002-06-01

    Fluorescence spectroscopy is a widely used research tool in biochemistry and has also become the dominant method enabling the revolution in medical diagnostics, DNA sequencing and genomics. In this forward-looking article we describe a new opportunity in fluorescence, radiative decay engineering (RDE). By RDE we mean modifying the emission of fluorophores or chromophores by a nearby metallic surface, the most important effect being an increase in the radiative decay rate. We describe the usual effects expected form increase in the radiative rates with reference to the biomedical applications of immunoassay and DNA hybridization. We also present experiments which show that metallic particles can increase the quantum yield of low quantum yield fluorophores, increase fluorophore photostability and increase the distance for resonance energy transfer. And finally we show that proximity to silver particles can increase the intensity of the intrinsic fluorescence from DNA.

  1. Development of advanced electron holographic techniques and application to industrial materials and devices.

    PubMed

    Yamamoto, Kazuo; Hirayama, Tsukasa; Tanji, Takayoshi

    2013-06-01

    The development of a transmission electron microscope equipped with a field emission gun paved the way for electron holography to be put to practical use in various fields. In this paper, we review three advanced electron holography techniques: on-line real-time electron holography, three-dimensional (3D) tomographic holography and phase-shifting electron holography, which are becoming important techniques for materials science and device engineering. We also describe some applications of electron holography to the analysis of industrial materials and devices: GaAs compound semiconductors, solid oxide fuel cells and all-solid-state lithium ion batteries.

  2. Electronic structure engineering of various structural phases of phosphorene.

    PubMed

    Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Tankeshwar, K

    2016-07-21

    We report the tailoring of the electronic structures of various structural phases of phosphorene (α-P, β-P, γ-P and δ-P) based homo- and hetero-bilayers through in-plane mechanical strains, vertical pressure and transverse electric field by employing density functional theory. In-plane biaxial strains have considerably modified the electronic bandgap of both homo- and hetero-bilayers while vertical pressure induces metallization in the considered structures. The γ-P homo-bilayer structure showed the highest ultimate tensile strength (UTS ∼ 6.21 GPa) upon in-plane stretching. Upon application of a transverse electric field, the variation in the bandgap of hetero-bilayers was found to be strongly dependent on the polarity of the applied field which is attributed to the counterbalance between the external electric field and the internal field induced by different structural phases and heterogeneity in the arrangements of atoms of each surface of the hetero-bilayer system. Our results demonstrate that the electronic structures of the considered hetero- and homo-bilayers of phosphorene could be modified by biaxial strain, pressure and electric field to achieve the desired properties for future nano-electronic devices.

  3. 40 CFR 1042.840 - Application requirements for remanufactured engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.840 Application... special fuels or additives. (h) Identify the engine family's useful life. (i) Include the maintenance...

  4. 40 CFR 1042.840 - Application requirements for remanufactured engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.840 Application... special fuels or additives. (h) Identify the engine family's useful life. (i) Include the maintenance...

  5. 40 CFR 1042.840 - Application requirements for remanufactured engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.840 Application... special fuels or additives. (h) Identify the engine family's useful life. (i) Include the maintenance...

  6. 40 CFR 1042.840 - Application requirements for remanufactured engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Special Provisions for Remanufactured Marine Engines § 1042.840 Application... special fuels or additives. (h) Identify the engine family's useful life. (i) Include the maintenance...

  7. The Application of Tissue Engineering Procedures to Repair the Larynx

    ERIC Educational Resources Information Center

    Ringel, Robert L.; Kahane, Joel C.; Hillsamer, Peter J.; Lee, Annie S.; Badylak, Stephen F.

    2006-01-01

    The field of tissue engineering/regenerative medicine combines the quantitative principles of engineering with the principles of the life sciences toward the goal of reconstituting structurally and functionally normal tissues and organs. There has been relatively little application of tissue engineering efforts toward the organs of speech, voice,…

  8. Floating-point coprocessor for fault detection and isolation in electronically controlled internal combustion engines. Final technical report

    SciTech Connect

    Yu, T.L.; Ribbens, W.B.

    1991-09-01

    The report details the design of a floating-point coprocessor intended for real-time fault detection in electronically controlled internal combustion engines. The fault detection strategies are based on dynamic models of various engine subsystems and require the use of state estimators. The coprocessor can be operated at a clock rate of 24 MHz, and is capable of operating up to sixteen state estimators in real time. The design is suitable for application to internal combustion engines used for vehicle propulsion or power generation, whether diesel or spark ignited.

  9. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum

    DOE PAGES

    Lo, Jonathan; Olson, Daniel G.; Murphy, Sean Jean-Loup; ...

    2016-10-28

    Here, the NfnAB (NADH-dependent reduced ferredoxin:NADP+ oxidoreductase) and Rnf (Rhodobacter nitrogen fixation) complexes are thought to catalyze electron transfer between reduced ferredoxin and NAD(P)+. Efficient electron flux is critical for engineering fuel production pathways, but little is known about the relative importance of these enzymes in vivo. In this study we investigate the importance of the NfnAB and Rnf complexes in Clostridium thermocellum for growth on cellobiose and Avicel using gene deletion, enzyme assays, and fermentation product analysis. The NfnAB complex does not seem to play a major role in metabolism, since deletion of nfnAB genes had little effect onmore » the distribution of fermentation products. By contrast, the Rnf complex appears to play an important role in ethanol formation. Deletion of rnf genes resulted in a decrease in ethanol formation. Overexpression of rnf genes resulted in an increase in ethanol production of about 30%, but only in strains where the hydG hydrogenase maturation gene was also deleted.« less

  10. Engineering electron metabolism to increase ethanol production in Clostridium thermocellum

    SciTech Connect

    Lo, Jonathan; Olson, Daniel G.; Murphy, Sean Jean-Loup; Tian, Liang; Hon, Shuen; Lanahan, Anthony; Guss, Adam M.; Lynd, Lee R.

    2016-10-28

    Here, the NfnAB (NADH-dependent reduced ferredoxin:NADP+ oxidoreductase) and Rnf (Rhodobacter nitrogen fixation) complexes are thought to catalyze electron transfer between reduced ferredoxin and NAD(P)+. Efficient electron flux is critical for engineering fuel production pathways, but little is known about the relative importance of these enzymes in vivo. In this study we investigate the importance of the NfnAB and Rnf complexes in Clostridium thermocellum for growth on cellobiose and Avicel using gene deletion, enzyme assays, and fermentation product analysis. The NfnAB complex does not seem to play a major role in metabolism, since deletion of nfnAB genes had little effect on the distribution of fermentation products. By contrast, the Rnf complex appears to play an important role in ethanol formation. Deletion of rnf genes resulted in a decrease in ethanol formation. Overexpression of rnf genes resulted in an increase in ethanol production of about 30%, but only in strains where the hydG hydrogenase maturation gene was also deleted.

  11. Electronic Noses for Environmental Monitoring Applications

    PubMed Central

    Capelli, Laura; Sironi, Selena; Rosso, Renato Del

    2014-01-01

    Electronic nose applications in environmental monitoring are nowadays of great interest, because of the instruments' proven capability of recognizing and discriminating between a variety of different gases and odors using just a small number of sensors. Such applications in the environmental field include analysis of parameters relating to environmental quality, process control, and verification of efficiency of odor control systems. This article reviews the findings of recent scientific studies in this field, with particular focus on the abovementioned applications. In general, these studies prove that electronic noses are mostly suitable for the different applications reported, especially if the instruments are specifically developed and fine-tuned. As a general rule, literature studies also discuss the critical aspects connected with the different possible uses, as well as research regarding the development of effective solutions. However, currently the main limit to the diffusion of electronic noses as environmental monitoring tools is their complexity and the lack of specific regulation for their standardization, as their use entails a large number of degrees of freedom, regarding for instance the training and the data processing procedures. PMID:25347583

  12. CMC Technology Advancements for Gas Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.

    2013-01-01

    CMC research at NASA Glenn is focused on aircraft propulsion applications. The objective is to enable reduced engine emissions and fuel consumption for more environmentally friendly aircraft. Engine system studies show that incorporation of ceramic composites into turbine engines will enable significant reductions in emissions and fuel burn due to increased engine efficiency resulting from reduced cooling requirements for hot section components. This presentation will describe recent progress and challenges in developing fiber and matrix constituents for 2700 F CMC turbine applications. In addition, ongoing research in the development of durable environmental barrier coatings, ceramic joining integration technologies and life prediction methods for CMC engine components will be reviewed.

  13. Compact opto-electronic engine for high-speed compressive sensing

    NASA Astrophysics Data System (ADS)

    Tidman, James; Weston, Tyler; Hewitt, Donna; Herman, Matthew A.; McMackin, Lenore

    2013-09-01

    The measurement efficiency of Compressive Sensing (CS) enables the computational construction of images from far fewer measurements than what is usually considered necessary by the Nyquist- Shannon sampling theorem. There is now a vast literature around CS mathematics and applications since the development of its theoretical principles about a decade ago. Applications include quantum information to optical microscopy to seismic and hyper-spectral imaging. In the application of shortwave infrared imaging, InView has developed cameras based on the CS single-pixel camera architecture. This architecture is comprised of an objective lens to image the scene onto a Texas Instruments DLP® Micromirror Device (DMD), which by using its individually controllable mirrors, modulates the image with a selected basis set. The intensity of the modulated image is then recorded by a single detector. While the design of a CS camera is straightforward conceptually, its commercial implementation requires significant development effort in optics, electronics, hardware and software, particularly if high efficiency and high-speed operation are required. In this paper, we describe the development of a high-speed CS engine as implemented in a lab-ready workstation. In this engine, configurable measurement patterns are loaded into the DMD at speeds up to 31.5 kHz. The engine supports custom reconstruction algorithms that can be quickly implemented. Our work includes optical path design, Field programmable Gate Arrays for DMD pattern generation, and circuit boards for front end data acquisition, ADC and system control, all packaged in a compact workstation.

  14. Engineered carbon nanotubes and graphene for nano-electronics and nanomechanics

    NASA Astrophysics Data System (ADS)

    Yang, E. H.

    2010-04-01

    We are exploring nanoelectronic engineering areas based on low dimensional materials, including carbon nanotubes and graphene. Our primary research focus is investigating carbon nanotube and graphene architectures for field emission applications, energy harvesting and sensing. In a second effort, we are developing a high-throughput desktop nanolithography process. Lastly, we are studying nanomechanical actuators and associated nanoscale measurement techniques for re-configurable arrayed nanostructures with applications in antennas, remote detectors, and biomedical nanorobots. The devices we fabricate, assemble, manipulate, and characterize potentially have a wide range of applications including those that emerge as sensors, detectors, system-on-a-chip, system-in-a-package, programmable logic controls, energy storage systems, and all-electronic systems.

  15. High Temperature Wireless Communication And Electronics For Harsh Environment Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y

    2007-01-01

    In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable

  16. Flight testing the Digital Electronic Engine Control (DEEC) A unique management experience

    NASA Technical Reports Server (NTRS)

    Putnam, T. W.; Burcham, F. W., Jr.; Kock, B. M.

    1983-01-01

    The concept for the DEEC had its origin in the early 1970s. At that time it was recognized that the F100 engine performance, operability, reliability, and cost could be substantially improved by replacing the original mechanical/supervisory electronic control system with a full-authority digital control system. By 1978, the engine manufacturer had designed and initiated the procurement of flight-qualified control system hardware. As a precursor to an integrated controls program, a flight evaluation of the DEEC system on the F-15 aircraft was proposed. Questions regarding the management of the DEEC flight evaluation program are discussed along with the program elements, the technical results of the F-15 evaluation, and the impact of the flight evaluation on after-burning turbofan controls technology and its use in and application to military aircraft. The lessons learned through the conduct of the program are discussed.

  17. Synaptic electronics: materials, devices and applications.

    PubMed

    Kuzum, Duygu; Yu, Shimeng; Wong, H-S Philip

    2013-09-27

    In this paper, the recent progress of synaptic electronics is reviewed. The basics of biological synaptic plasticity and learning are described. The material properties and electrical switching characteristics of a variety of synaptic devices are discussed, with a focus on the use of synaptic devices for neuromorphic or brain-inspired computing. Performance metrics desirable for large-scale implementations of synaptic devices are illustrated. A review of recent work on targeted computing applications with synaptic devices is presented.

  18. Managerial Briefing. Industrial Engineering Applications in Shipbuilding

    DTIC Science & Technology

    1982-01-01

    Development of the Profession . . . . . . . . 7 FUNCTIONS OF INDUSTRIAL ENGINEERING . . . . . . . . . . . . . . . ...12 SYSTEMS AND TECHNOLOGY Work...Specifically, the ship production committee challenged the industry to (1) develop the role of Industrial Engineering in shipbuilding; (2) implement an improved...projects best suited for cooperative development . The American Institute of Industrial Engineers , Inc. assisted in the preparation and the conduct of

  19. Plug engine systems for future launch vehicle applications

    NASA Astrophysics Data System (ADS)

    Immich, H.; Koelle, D. E.; Parsley, R. C.

    1992-08-01

    Several feasible design options are presented for plug engine systems designed for future launch vehicle applications, including a plug nozzle engine with an annular combustion chamber, a segmented modular design, and an integration of a number of conventional engines around a common plug. The advantages and disadvantages of these options are discussed for a range of potential applications, which include single-stage-to-orbit vehicles and upper stage vehicles such as the second stage of the Saenger HTOL launch vehicle concept.

  20. [Shape-memory polymers for biomedical engineering applications].

    PubMed

    Zhu, Guangming; Liu, Zhongrang

    2005-10-01

    The latest progress in shape-memory polymer for biomedical engineering applications was summarized in this paper. The mechanism responsible for shape memory effect was analyzed in reference to the polymer structure. Also introduced and reviewed were the characteristics of some shape-memory polymers (polyurethane polycaprolactone and polylactide) and their applications in medical engineering.

  1. Microbial xylanases: engineering, production and industrial applications.

    PubMed

    Juturu, Veeresh; Wu, Jin Chuan

    2012-01-01

    and paper industries for a longer time but more and more attention has been paid to using them in producing sugars and other chemicals from lignocelluloses in recent years. Mining new genes from nature, rational engineering of known genes and directed evolution of these genes are required to get tailor-made xylanases for various industrial applications.

  2. Photonics applications and web engineering: WILGA Winter 2016

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2016-09-01

    Since twenty years, young researchers form the Institute of Electronic Systems, Warsaw University of Technology, organize two times a year, under only a marginal supervision of the senior faculty members, under the patronage of WEiTI PW, KEiT PAN, SPIE, IEEE, PKOpto SEP and PSF, the WILGA Symposium on advanced, integrated functional electronic, photonic and mechatronic systems [1-5]. All aspects are considered like: research and development, theory and design, technology - material and construction, software and hardware, commissioning and tests, as well as pilot and practical applications. The applications concern mostly, which turned after several years to be a proud specialization of the WILGA Symposium, Internet engineering, high energy physics experiments, new power industry including fusion, nuclear industry, space and satellite technologies, telecommunications, smart municipal environment, as well as biology and medicine [6-8]. XXXVIIth WILGA Symposium was held on 29-31 January 2016 and gathered a few tens of young researchers active in the mentioned research areas. There were presented a few tens of technical papers which will be published in Proc.SPIE together with the accepted articles from the Summer Edition of the WILGA Symposium scheduled for 29.05-06.06.2016. This article is a digest of chosen presentations from WILGA Symposium 2016 Winter Edition. The survey is narrowed to a few chosen and main topical tracks, like electronics and photonics design using industrial standards like ATCA/MTCA, also particular designs of functional systems using this series of industrial standards. The paper, summarizing traditionally since many years the accomplished WILGA Symposium organized by young researchers from Warsaw University of Technology, is also the following part of a cycle of papers concerning their participation in design of new generations of electronic systems used in discovery experiments in Poland and in leading research laboratories of the world.

  3. Boron Nitride Nanotubes for Engineering Applications

    NASA Technical Reports Server (NTRS)

    Hurst, Janet; Hull, David; Gorican, Daniel

    2005-01-01

    Boron nitride nanotubes (BNNT) are of significant interest to the scientific and technical communities for many of the same reasons that carbon nanotubes (CNT) have attracted wide attention. Both materials have potentially unique and important properties for structural and electronic applications. However of even more consequence than their similarities may be the complementary differences between carbon and boron nitride nanotubes While BNNT possess a very high modulus similar to CNT, they also possess superior chemical and thermal stability. Additionally, BNNT have more uniform electronic properties, with a uniform band gap of 5.5 eV while CNT vary from semi-conductive to highly conductive behavior. Boron nitride nanotubes have been synthesized both in the literature and at NASA Glenn Research Center, by a variety of methods such as chemical vapor deposition, arc discharge and reactive milling. Consistent large scale production of a reliable product has proven difficult. Progress in the reproducible synthesis of 1-2 gram sized batches of boron nitride nanotubes will be discussed as well as potential uses for this unique material.

  4. Light-Guided Surface Engineering for Biomedical Applications

    PubMed Central

    Jayagopal, Ashwath; Stone, Gregory P.; Haselton, Frederick R.

    2010-01-01

    Free radical species generated through fluorescence photobleaching have been reported to effectively couple a water-soluble species to surfaces containing electron-rich sites (1). In this report, we expand upon this strategy to control the patterned attachment of antibodies and peptides to surfaces for biosensing and tissue engineering applications. In the first application, we compare hydrophobic attachment and photobleaching methods to immobilize FITC-labeled anti-M13K07 bacteriophage antibodies to the SiO2 layer of a differential capacitive biosensor and to the polyester filament of a feedback-controlled filament array. On both surfaces, antibody attachment and function were superior to the previously employed hydrophobic attachment. Furthermore, a laser scanning confocal microscope could be used for automated, software-guided photoattachment chemistry. In a second application, the cell-adhesion peptide RGDS was site-specifically photocoupled to glass coated with fluorescein-conjugated poly(ethylene glycol). RGDS attachment and bioactivity were characterized by a fibroblast adhesion assay. Cell adhesion was limited to sites of RGDS photocoupling. These examples illustrate that fluorophore-based photopatterning can be achieved by both solution-phase fluorophores or surface-adhered fluorophores. The coupling preserves the bioactivity of the patterned species, is amenable to a variety of surfaces, and is readily accessible to laboratories with fluorescence imaging equipment. The flexibility offered by visible light patterning will likely have many useful applications in bioscreening and tissue engineering where the controlled placement of biomolecules and cells is critical, and should be considered as an alternative to chemical coupling methods. PMID:18314938

  5. Electron Microdiffraction and Channeling: Theory and Applications.

    NASA Astrophysics Data System (ADS)

    Kim, Young Ock

    1988-12-01

    This thesis treats three related topics in the theory of dynamical kilovolt electron diffraction, and provides one practical application of the theory. The first topic concerns the theory of coherent electron microdiffraction for atomic clusters and precipitates. It has frequently been suggested that strains in small atomic clusters, precipitates and particles could be measured from the High Order Laue Zone (HOLZ) lines in convergent beam electron diffraction patterns (CBED). However the uncertainty principle prevents sharp lines appearing for either very small (sub-nanometer) particles or probe sizes. The visibility of HOLZ lines within the central beam disk of coherent electron microdiffraction patterns has therefore been studied using dynamical electron diffraction theory. The electron source size is also shown to affect HOLZ line visibility. The relationship between these effects is discussed, and the possibility of obtaining three dimensional lattice images in Scanning Transmission Microscopy (STEM) without tilting is also proposed. Coherent electron microdiffraction patterns have been obtained from a new crystalline precipitate found in silicon wafers annealed at 635^circ C for 256 h. The most likely structure is that of keatite (SiO_2, tetragonal). The implications for the study of oxygen precipitation in silicon are discussed. The second theoretical topic concerns the possibilities for determining the sites of adatoms on surfaces by measurements of their X-ray or Auger electron yield as a function of diffraction conditions in the RHEED geometry. Dynamical electron diffraction calculations using a slice method with slices taken normal to the beam are used to reveal the perturbations in the wavefield along the beam path caused by the adsorbate atoms. Ratio methods, in which adsorbate and substrate emission are compared, are discussed, and the use of a reference adsorbate proposed. Finally, the effects of wave-function dimensionality and inelastic localization

  6. Engineering and Applications of fungal laccases for organic synthesis

    PubMed Central

    Kunamneni, Adinarayana; Camarero, Susana; García-Burgos, Carlos; Plou, Francisco J; Ballesteros, Antonio; Alcalde, Miguel

    2008-01-01

    Laccases are multi-copper containing oxidases (EC 1.10.3.2), widely distributed in fungi, higher plants and bacteria. Laccase catalyses the oxidation of phenols, polyphenols and anilines by one-electron abstraction, with the concomitant reduction of oxygen to water in a four-electron transfer process. In the presence of small redox mediators, laccase offers a broader repertory of oxidations including non-phenolic substrates. Hence, fungal laccases are considered as ideal green catalysts of great biotechnological impact due to their few requirements (they only require air, and they produce water as the only by-product) and their broad substrate specificity, including direct bioelectrocatalysis. Thus, laccases and/or laccase-mediator systems find potential applications in bioremediation, paper pulp bleaching, finishing of textiles, bio-fuel cells and more. Significantly, laccases can be used in organic synthesis, as they can perform exquisite transformations ranging from the oxidation of functional groups to the heteromolecular coupling for production of new antibiotics derivatives, or the catalysis of key steps in the synthesis of complex natural products. In this review, the application of fungal laccases and their engineering by rational design and directed evolution for organic synthesis purposes are discussed. PMID:19019256

  7. Dynamic systems-engineering process - The application of concurrent engineering

    NASA Technical Reports Server (NTRS)

    Wiskerchen, Michael J.; Pittman, R. Bruce

    1989-01-01

    A system engineering methodology is described which enables users, particulary NASA and DOD, to accommodate changing needs; incorporate emerging technologies; identify, quantify, and manage system risks; manage evolving functional requirements; track the changing environment; and reduce system life-cycle costs. The approach is a concurrent, dynamic one which starts by constructing a performance model defining the required system functions and the interrelationships. A detailed probabilistic risk assessment of the system elements and their interrelationships is performed, and quantitative analysis of the reliability and maintainability of an engineering system allows its different technical and process failure modes to be identified and their probabilities to be computed. Decision makers can choose technical solutions that maximize an objective function and minimize the probability of failure under resource constraints.

  8. The application of composites in diesel engines for Naval use

    SciTech Connect

    Duvall, G.D.; Guimond, D.P.

    1994-12-31

    The high speed diesel engine is the preferred primemover for a wide variety of military Naval and land applications. Its high fuel efficiency, low cost and high reliability make it an attractive choice. Diesel engines are, however, relatively heavy and require large foundations for both support and to reduce structureborne noise. There are military applications, such as high speed patrol craft, minesweepers, and amphibious vehicles, where reductions in engine weight, magnetic signature and noise would greatly enhance its effectiveness as a primemover. To facilitate these reductions, the Navy is examining the application of emerging composite materials and fabrication methods to diesel engines. The scope of the effort includes vibration modeling, materials evaluation, and full scale engine demonstrations. Material candidates include metal and ceramic matrices and polymerics, for engine structural and reciprocating components, along with various non-structural covers and housings. The cornerstone of this effort will be close working partnerships with other services and with industry, where economic benefits are significant.

  9. Efficient quantum optical state engineering and applications

    NASA Astrophysics Data System (ADS)

    McCusker, Kevin T.

    Over a century after the modern prediction of the existence of individual particles of light by Albert Einstein, a reliable source of this simple quantum state of one photon does not exist. While common light sources such as a light bulb, LED, or laser can produce a pulse of light with an average of one photon, there is (currently) no way of knowing the number of photons in that pulse without first absorbing (and thereby destroying) them. Spontaneous parametric down-conversion, a process in which one high-energy photon splits into two lower-energy photons, allows us to prepare a single-photon state by detecting one of the photons, which then heralds the existence of its twin. This process has been the workhorse of quantum optics, allowing demonstrations of a myriad of quantum processes and protocols, such as entanglement, cryptography, superdense coding, teleportation, and simple quantum computing demonstrations. All of these processes would benefit from better engineering of the underlying down-conversion process, but despite significant effort (both theoretical and experimental), optimization of this process is ongoing. The focus of this work is to optimize certain aspects of a down-conversion source, and then use this tool in novel experiments not otherwise feasible. Specifically, the goal is to optimize the heralding efficiency of the down-conversion photons, i.e., the probability that if one photon is detected, the other photon is also detected. This source is then applied to two experiments (a single-photon source, and a quantum cryptography implementation), and the detailed theory of an additional application (a source of Fock states and path-entangled states, called N00N states) is discussed, along with some other possible applications.

  10. Environmental implications and applications of engineered ...

    EPA Pesticide Factsheets

    This review focus on environmental implications and applications of engineered magnetite (Fe3O4) nanoparticles (MNPs) as a single phase or a component of a hybrid nanocomposite that take advantages of their superparamagnetism and high surface area. MNPs are synthesized via co-precipitation, thermal decomposition, hydrothermal process, emulsion, and microbial process. Aggregation/sedimentation and transport of MNPs depend on surface charge of MNPs and geochemical parameters such as pH, ionic strength, and organic matter. MNPs generally have low toxicity to humans and ecosystem. MNPs are used for making excellent anode electrode materials in lithium-ion battery, for constructing biosensors, and for catalyzing a variety of chemical reactions. MNPs are used for air cleanup and carbon sequestration. MNP nanocomposites are made as antimicrobial agent for water disinfection and flocculants for water treatment. Conjugated MNPs are widely used for adsorptive/separative removal of organics, dye, oil, arsenic, Cr(VI), heavy metals, radionuclides, and rare earth elements. MNPs can degrade organic/inorganic contaminants via chemical reduction or oxidation in water, sediment, and soil. Future studies should further explore mechanisms of MNP interactions with other nanomaterials and contaminants, economic and green approaches of MNP synthesis, and field scale demonstration of MNP utilization. Submit to Journal of Hazardous Materials.

  11. Digital Electronic Engine Control (DEEC) Flight Evaluation in an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Flight evaluation in an F-15 aircraft by digital electronic engine control (DEEC) was investigated. Topics discussed include: system description, F100 engine tests, effects of inlet distortion on static pressure probe, flight tests, digital electronic engine control fault detection and accommodation flight evaluation, flight evaluation of a hydromechanical backup control, augmentor transient capability of an F100 engine, investigation of nozzle instability, real time in flight thrust calculation, and control technology for future aircraft propulsion systems. It is shown that the DEEC system is a powerful and flexible controller for the F100 engine.

  12. Identifying and Engineering the Electronic Properties of the Resistive Switching Interface

    NASA Astrophysics Data System (ADS)

    Li, H.; Zhang, Z.; Shi, L. P.

    2016-02-01

    The resistive switching interface is promising for building random access memory devices with electroforming-free characteristics, rectification functionality and highly reproducible resistive switching performance. The electronic structures of the resistive switching interface are important not only from a fundamental point of view, but also from the fascinating perspective of interface engineering for high performance devices. However, the electronic properties of typical resistive switching interfacial structures at an atomic level are less well understood, compared to those of bulky resistive switching structures. In this work, we study the electronic structures of two typical resistive switching interfacial structures, TiO2/Ti4O7 and Ta2O5/TaO2, using the screened exchange (sX-LDA) functional. We uncover that the system Fermi energies of both interfaces are just above the conduction band edge of the corresponding stoichiometric oxides. According to the defect charge transition levels, the oxygen vacancy is stabilized at the -2 charged state in Ta2O5 and TiO2 where the switching takes place. However, it is desirable for the +2 charged oxygen vacancy to be stabilized to achieve controlled resistive switching under the electrical field. We propose to introduce interfacial dopants to shift the system Fermi energies downward so that the +2 charged oxygen vacancy can be stable. Several dipole models are presented to account for the ability of the Fermi level to shift due to the interfacial dopants. These methods are readily applicable to interface engineering for high performance devices.

  13. [Application of atomic absorption spectrometry in the engine knock detection].

    PubMed

    Chen, Li-Dan

    2013-02-01

    Because existing human experience diagnosis method and apparatus for auxiliary diagnosis method are difficult to diagnose quickly engine knock. Atomic absorption spectrometry was used to detect the automobile engine knock in in innovative way. After having determined Fe, Al, Cu, Cr and Pb content in the 35 groups of Audi A6 engine oil whose travel course is 2 000 -70 000 kilometers and whose sampling interval is 2 000 kilometers by atomic absorption spectrometry, the database of primary metal content in the same automobile engine at different mileage was established. The research shows that the main metal content fluctuates within a certain range. In practical engineering applications, after the determination of engine oil main metal content and comparison with its database value, it can not only help to diagnose the type and location of engine knock without the disintegration and reduce vehicle maintenance costs and improve the accuracy of engine knock fault diagnosis.

  14. Study of small turbofan engines applicable to single-engine light airplanes

    NASA Technical Reports Server (NTRS)

    Merrill, G. L.

    1976-01-01

    The design, efficiency and cost factors are investigated for application of turbofan propulsion engines to single engine, general aviation light airplanes. A companion study of a hypothetical engine family of a thrust range suitable to such aircraft and having a high degree of commonality of design features and parts is presented. Future turbofan powered light airplanes can have a lower fuel consumption, lower weight, reduced airframe maintenance requirements and improved engine overhaul periods as compared to current piston engined powered airplanes. Achievement of compliance with noise and chemical emission regulations is expected without impairing performance, operating cost or safety.

  15. Investigation of a nozzle instability on an F100 engine equipped with a digital electronic engine control

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Zeller, J. R.

    1984-01-01

    An instability in the nozzle of the F100 engine, equipped with a digital electronic engine control (DEEC), was observed during a flight evaluation on an F-15 aircraft. The instability occurred in the upper left hand corner (ULMC) of the flight envelope during augmentation. The instability was not predicted by stability analysis, closed-loop simulations of the the engine, or altitude testing of the engine. The instability caused stalls and augmentor blowouts. The nozzle instability and the altitude testing are described. Linear analysis and nonlinear digital simulation test results are presented. Software modifications on further flight test are discussed.

  16. Electronic Components for use in Extreme Temperature Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electrical power management and control systems designed for use in planetary exploration missions and deep space probes require electronics that are capable of efficient and reliable operation under extreme temperature conditions. Space-based infra-red satellites, all-electric ships, jet engines, electromagnetic launchers, magnetic levitation transport systems, and power facilities are also typical examples where the electronics are expected to be exposed to harsh temperatures and to operate under severe thermal swings. Most commercial-off-the-shelf (COTS) devices are not designed to function under such extreme conditions and, therefore, new parts must be developed or the conventional devices need to be modified. For example, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. At the other end, built-in radiators and coolers render the operation of electronics possible under hot conditions. These thermal measures lead to design complexity, affect development costs, and increase size and weight. Electronics capable of operation at extreme temperatures, thus, will not only tolerate the hostile operational environment, but also make the overall system efficient, more reliable, and less expensive. The Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electronics suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices, including COTS parts, for potential use under extreme temperatures. These components include semiconductor switching devices, passive devices, DC/DC converters, operational amplifiers, and oscillators. An overview of the program will be presented along with some experimental findings.

  17. Electron Beam Applications in Chemical Processing

    NASA Astrophysics Data System (ADS)

    Martin, D.; Dragusin, M.; Radoiu, M.; Moraru, R.; Oproiu, C.; Cojocaru, G.; Margarit, C.

    1997-05-01

    Our recent results in the field of polymeric materials obtained by electron beam irradiation are presented. Two types of polymeric flocculants and three hydrogels are described. The effects of radiation absorbed dose and chemical composition of the irradiated solutions upon the polymeric materials characteristics are discussed. The required absorbed dose levels to produce the polymeric flocculants are in the range of 0.4 kGy to 1 kGy, and 4 kGy to 12 kGy for hydrogels. Experimental results obtained by testing polymeric flocculants with waste water from food industry are given. Plymeric materials processing was developed on a pilot small scale level with a 0.7 kW and 5.5 MeV linac built in Romania. A new facility for application of combined electron beam and microwave irradiation in the field of polymeric materials preparation is presently under investigation. Preliminary results have demonstrated that some polymeric flocculants characteristics, such as linearity, were improved by using combined electron beam and microwave irradiation. Also, the absorbed dose levels decreases in comparison with those required when only electron beam irradiation was used.

  18. Metal Vapour Lasers: Physics, Engineering and Applications

    NASA Astrophysics Data System (ADS)

    Little, Christopher E.

    1999-03-01

    Metal Vapour Lasers Christopher E. Little University of St Andrews, St Andrews, Scotland Since the first successful demonstration of a metal vapour laser (MVL) in 1962, this class of laser has become widely used in a broad range of fields including precision materials processing, isotope separation and medicine. The MVLs that are used today have a range of impressive characteristics that are not readily available using other technologies. In particular, the combination of high average output powers, pulse recurrence frequencies and beam quality available from green/yellow Cu vapour lasers (CVLs) and Cu bromide lasers, coupled with the high-quality, multiwatt ultraviolet (265-289 nm) radiation that can be produced using simple nonlinear optical techniques, means that Cu lasers will continue to be important for many years. Metal Vapour Lasers covers all the most commercially important and scientifically interesting pulsed and continuous wave (CW) gas-discharge MVLs, and includes device histories, operating characteristics, engineering, kinetics, commercial exploitation and applications. Short descriptions of gas discharges and excitation techniques make this volume self-consistent. A comprehensive bibliography is also provided. The greater part of this book is devoted to CVLs and their variants, including new sealed-off, high-power 'kinetically enhanced' CVLs and Cu bromide lasers. However, many other self-terminating MVLs are also discussed, including the red AuVL, green/infrared MnVL and infrared BaVL. Pulsed, high-gain, high average power lasers in the UV/violet (373.7, 430.5 nm) spectral regions are represented by Sr¯+ and Ca¯+ discharge-afterglow recombination lasers. The most commercially successful of the MVLs - the CW, UV/blue cataphoretic He-Cd¯+ ion laser - is described. Hollow cathode lasers are represented in two guises: 'white light' (blue/green/red) He-Cd¯+ ion lasers and UV/infrared Ne/He-Cu¯+ ion lasers. This unique volume is an

  19. Protein Engineering and Its Applications in Food Industry.

    PubMed

    Kapoor, Swati; Rafiq, Aasima; Sharma, Savita

    2015-06-11

    Protein engineering is a young discipline that has been branched out from the field of genetic engineering. Protein engineering is based on the available knowledge about the proteins structure/function(s), tools/instruments, software, bioinformatics database, available cloned gene, knowledge about available protein, vectors, recombinant strains and other materials that could lead to change in the protein backbone. Protein produced properly from genetic engineering process means a protein that is able to fold correctly and to do particular function(s) efficiently even after being subjected to engineering practices. Protein is modified through its gene or chemically. However, modification of protein through gene is easier. There is no specific limitation of Protein Engineering tools; any technique that can lead to change the protein constituent of amino acid and result in the modification of protein structure/function is in the frame of Protein Engineering. Meanwhile, there are some common tools used to reach a specific target. More active industrial and pharmaceutical based proteins have been invented by the field of Protein Engineering to introduce new function as well as to change its interaction with surrounding environment. A variety of protein engineering applications have been reported in the literature. These applications range from biocatalysis for food and industry to environmental, medical and nanobiotechnology applications. Successful combinations of various protein engineering methods had led to successful results in food industries and have created a scope to maintain the quality of finished product after processing.

  20. Materials for Stretchable Electronics - Electronic Eyeballs, Brain Monitors and Other Applications

    ScienceCinema

    Rogers, John A. [University of Illinois, Urbana Champaign, Illinois, United States

    2016-07-12

    Electronic circuits that involve transistors and related components on thin plastic sheets or rubber slabs offer mechanical properties (e.g. bendability, stretchability) and other features (e.g. lightweight, rugged construction) which cannot be easily achieved with technologies that use rigid, fragile semiconductor wafer or glass substrates.  Device examples include personal or structural health monitors and electronic eye imagers, in which the electronics must conform to complex curvilinear shapes or flex/stretch during use.  Our recent work accomplishes these technology outcomes by use of single crystal inorganic nanomaterials in ‘wavy’ buckled configurations on elastomeric supports.  This talk will describe key fundamental materials and mechanics aspects of these approaches, as well as engineering features of their use in individual transistors, photodiodes and integrated circuits.  Cardiac and brain monitoring devices provide examples of application in biomedicine; hemispherical electronic eye cameras illustrate new capacities for bio-inspired device design.

  1. Application of Statistics in Engineering Technology Programs

    ERIC Educational Resources Information Center

    Zhan, Wei; Fink, Rainer; Fang, Alex

    2010-01-01

    Statistics is a critical tool for robustness analysis, measurement system error analysis, test data analysis, probabilistic risk assessment, and many other fields in the engineering world. Traditionally, however, statistics is not extensively used in undergraduate engineering technology (ET) programs, resulting in a major disconnect from industry…

  2. Flight testing the digital electronic engine control in the F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.

    1984-01-01

    The digital electronic engine control (DEEC) is a full-authority digital engine control developed for the F100-PW-100 turbofan engine which was flight tested on an F-15 aircraft. The DEEC hardware and software throughout the F-15 flight envelope was evaluated. Real-time data reduction and data display systems were implemented. New test techniques and stronger coordination between the propulsion test engineer and pilot were developed which produced efficient use of test time, reduced pilot work load, and greatly improved quality data. The engine pressure ratio (EPR) control mode is demonstrated. It is found that the nonaugmented throttle transients and engine performance are satisfactory.

  3. Applicability of Topaz Composites to Electron Dosimetry

    NASA Astrophysics Data System (ADS)

    Bomfim, K. S.; Souza, D. N.

    2010-11-01

    Thermoluminescent dosimetric topaz properties have been investigated and the results have shown that this mineral presents characteristics of a good dosimeter mainly in doses evaluation in radiotherapy with photons beams in radiotherapy. Typical applications of thermoluminescent dosimeters in radiotherapy are: in vivo dosimetry on patients (either as a routine quality assurance procedure or for dose monitoring in special cases); verification of treatment techniques; dosimetry audits; and comparisons among hospitals. The mean aim of this work was to evaluate the efficiency of topaz-Teflon pellets as thermoluminescent dosimeters in high-energy electron beams used to radiotherapy. Topaz-Teflon pellets were used as TLD.

  4. The application of manufacturing systems engineering for aero engine gears

    NASA Astrophysics Data System (ADS)

    Pewsey, Stephen M. S.

    1991-10-01

    The adoption of manufacturing systems engineering principles in order to improve cost effectiveness of manufacturing operations is considered. The introduction of cells where families of parts are made from raw material to finished product using a team approach has been initiated. The benefits to date are significant in terms of lead time reductions, inventory, and nonconformance savings as well as improvements in work force motivation and morale. The overall corporate manufacturing strategy of gears is explained. Some of the problems encountered with the transfer of gear production from one site to another with minimum disruption are described. Some of the radical changes being made in the manufacture of gears in line with the strategy of making Rolls-Royce a total quality organization are also described.

  5. The Application of Hardware in the Loop Testing for Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Thomas, George L.; Culley, Dennis E.; Brand, Alex

    2016-01-01

    The essence of a distributed control system is the modular partitioning of control function across a hardware implementation. This type of control architecture requires embedding electronics in a multitude of control element nodes for the execution of those functions, and their integration as a unified system. As the field of distributed aeropropulsion control moves toward reality, questions about building and validating these systems remain. This paper focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero engine control, and the application of HIL testing as it pertains to potential advanced engine control applications that may now be possible due to the intelligent capability embedded in the nodes.

  6. Stirling engine alternatives for the terrestrial solar application

    NASA Technical Reports Server (NTRS)

    Stearns, J.

    1985-01-01

    The first phase of the present study of Stirling engine alternatives for solar thermal-electric generation has been completed. Development risk levels are considered to be high for all engines evaluated. Free-piston type and Ringbom-type Stirling engine-alternators are not yet developed for the 25 to 50-kW electrical power range, although smaller machines have demonstrated the inherent robustness of the machines. Kinematic-type Stirling engines are presently achieving a 3500 hr lifetime or longer on critical components, and lifetime must still be further extended for the solar application. Operational and technical characteristics of all types of Stirling engines have been reviewed with engine developers. Technical work of merit in progress in each engine development organization should be recognized and supported in an appropriate manner.

  7. Highly integrated digital electronic control: Digital flight control, aircraft model identification, and adaptive engine control

    NASA Technical Reports Server (NTRS)

    Baer-Riedhart, Jennifer L.; Landy, Robert J.

    1987-01-01

    The highly integrated digital electronic control (HIDEC) program at NASA Ames Research Center, Dryden Flight Research Facility is a multiphase flight research program to quantify the benefits of promising integrated control systems. McDonnell Aircraft Company is the prime contractor, with United Technologies Pratt and Whitney Aircraft, and Lear Siegler Incorporated as major subcontractors. The NASA F-15A testbed aircraft was modified by the HIDEC program by installing a digital electronic flight control system (DEFCS) and replacing the standard F100 (Arab 3) engines with F100 engine model derivative (EMD) engines equipped with digital electronic engine controls (DEEC), and integrating the DEEC's and DEFCS. The modified aircraft provides the capability for testing many integrated control modes involving the flight controls, engine controls, and inlet controls. This paper focuses on the first two phases of the HIDEC program, which are the digital flight control system/aircraft model identification (DEFCS/AMI) phase and the adaptive engine control system (ADECS) phase.

  8. Application Experiences of NASTRAN Thermal Analysis in Engineering

    NASA Technical Reports Server (NTRS)

    Go, J. C. D.

    1975-01-01

    The application of the thermal analysis phase of NASTRAN in engineering is described. Some illustrative samples are presented to demonstrate the applicability and limitation of NASTRAN thermal analysis capability. The results of the evaluation of the relative efficiency, applicability and accuracy among NASTRAN, other finite element programs, and finite difference programs are also presented.

  9. The beginnings. [Of Nuclear Engine for Rocket Vehicles Application

    SciTech Connect

    Bohl, R.J.; Kirk, W.L.; Holman, R.R.; Westinghouse Electric Corp., Pittsburgh, PA )

    1989-06-01

    The development of the nuclear rocket engine called NERVA (Nuclear Engine for Rocket Vehicle Application) is described. The choice of fuel element, required rocket parameters, NERVA project objectives, division of responsibilities among different organizations, and NERVA design configuration are reviewed. Progress that has been made in the development of NERVA is addressed.

  10. Reliability of ceramics for heat engine applications

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The advantages and disadvantages associated with the use of monolithic ceramics in heat engines are discussed. The principle gaps in the state of understanding of ceramic material, failure origins, nondestructive tests as well as life prediction are included.

  11. Nanoscale Engineering in VO2 Nanowires via Direct Electron Writing Process.

    PubMed

    Zhang, Zhenhua; Guo, Hua; Ding, Wenqiang; Zhang, Bin; Lu, Yue; Ke, Xiaoxing; Liu, Weiwei; Chen, Furong; Sui, Manling

    2017-02-08

    Controlling phase transition in functional materials at nanoscale is not only of broad scientific interest but also important for practical applications in the fields of renewable energy, information storage, transducer, sensor, and so forth. As a model functional material, vanadium dioxide (VO2) has its metal-insulator transition (MIT) usually at a sharp temperature around 68 °C. Here, we report a focused electron beam can directly lower down the transition temperature of a nanoarea to room temperature without prepatterning the VO2. This novel process is called radiolysis-assisted MIT (R-MIT). The electron beam irradiation fabricates a unique gradual MIT zone to several times of the beam size in which the temperature-dependent phase transition is achieved in an extended temperature range. The gradual transformation zone offers to precisely control the ratio of metal/insulator phases. This direct electron writing technique can open up an opportunity to precisely engineer nanodomains of diversified electronic properties in functional material-based devices.

  12. Institute for Computer Applications in Science and Engineering (ICASE)

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis and computer science during the period April 1, 1983 through September 30, 1983 is summarized.

  13. Applications of laser printing for organic electronics

    NASA Astrophysics Data System (ADS)

    Delaporte, Ph.; Ainsebaa, A.; Alloncle, A.-P.; Benetti, M.; Boutopoulos, C.; Cannata, D.; Di Pietrantonio, F.; Dinca, V.; Dinescu, M.; Dutroncy, J.; Eason, R.; Feinaugle, M.; Fernández-Pradas, J.-M.; Grisel, A.; Kaur, K.; Lehmann, U.; Lippert, T.; Loussert, C.; Makrygianni, M.; Manfredonia, I.; Mattle, T.; Morenza, J.-L.; Nagel, M.; Nüesch, F.; Palla-Papavlu, A.; Rapp, L.; Rizvi, N.; Rodio, G.; Sanaur, S.; Serra, P.; Shaw-Stewart, J.; Sones, C. L.; Verona, E.; Zergioti, I.

    2013-03-01

    The development of organic electronic requires a non contact digital printing process. The European funded e-LIFT project investigated the possibility of using the Laser Induced Forward Transfer (LIFT) technique to address this field of applications. This process has been optimized for the deposition of functional organic and inorganic materials in liquid and solid phase, and a set of polymer dynamic release layer (DRL) has been developed to allow a safe transfer of a large range of thin films. Then, some specific applications related to the development of heterogeneous integration in organic electronics have been addressed. We demonstrated the ability of LIFT process to print thin film of organic semiconductor and to realize Organic Thin Film Transistors (OTFT) with mobilities as high as 4 10-2 cm2.V-1.s-1 and Ion/Ioff ratio of 2.8 105. Polymer Light Emitting Diodes (PLED) have been laser printed by transferring in a single step process a stack of thin films, leading to the fabrication of red, blue green PLEDs with luminance ranging from 145 cd.m-2 to 540 cd.m-2. Then, chemical sensors and biosensors have been fabricated by printing polymers and proteins on Surface Acoustic Wave (SAW) devices. The ability of LIFT to transfer several sensing elements on a same device with high resolution allows improving the selectivity of these sensors and biosensors. Gas sensors based on the deposition of semiconducting oxide (SnO2) and biosensors for the detection of herbicides relying on the printing of proteins have also been realized and their performances overcome those of commercial devices. At last, we successfully laser-printed thermoelectric materials and realized microgenerators for energy harvesting applications.

  14. Vacuum plasma spray applications on liquid fuel rocket engines

    NASA Astrophysics Data System (ADS)

    McKechnie, T. N.; Zimmerman, F. R.; Bryant, M. A.

    1992-07-01

    The vacuum plasma spray process (VPS) has been developed by NASA and Rocketdyne for a variety of applications on liquid fuel rocket engines, including the Space Shuttle Main Engine. These applications encompass thermal barrier coatings which are thermal shock resistant for turbopump blades and nozzles; bond coatings for cryogenic titanium components; wear resistant coatings and materials; high conductivity copper, NaRloy-Z, combustion chamber liners, and structural nickel base material, Inconel 718, for nozzle and combustion chamber support jackets.

  15. Pharmaceutical and biomedical applications of surface engineered carbon nanotubes.

    PubMed

    Mehra, Neelesh Kumar; Jain, Keerti; Jain, Narendra Kumar

    2015-06-01

    Surface engineered carbon nanotubes (CNTs) are attracting recent attention of scientists owing to their vivid biomedical and pharmaceutical applications. The focus of this review is to highlight the important role of surface engineered CNTs in the highly challenging but rewarding area of nanotechnology. The major strength of this review lies in highlighting the exciting applications of CNTs to boost the research efforts, which unfortunately are otherwise scattered in the literature making the reading non-coherent and non-homogeneous.

  16. Laser processing of ormosils for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Matei, A.; Zamfirescu, M.; Radu, C.; Dinescu, M.; Buruiana, E. C.; Buruiana, T.; Sima, L. E.; Petrescu, S. M.

    2011-09-01

    Hybrid methacrylates based on silane derivates (ormosils) have been considered for applications in electronics, microtechnology, corrosion resistant coatings, dentistry, and biomedical implants. The presence of both inorganic chains, responsible for chemical and thermal stability, hardness, and transparency, and organic groups, which bring new advantages such as the possibility of functionalization and easy, low temperature processing, can result in the appearance of unique properties. 2D structures of hybrid polymers were produced by Two Photon Polymerization (2PP). A Ti: Sapphire laser having 200 fs pulse duration and 2 kHz repetition rate, working at a wavelength of 775 nm, was used for the 2PP experiments. The biocompatibility of the obtained structures (scaffolds) was tested in different cell cultures, which is a first step toward exploring their potential for applications in tissue engineering. Cells morphology, adhesion, and alignment were studied on polymeric structures with different shapes, obtained in various experimental conditions. Their interaction with normal human epidermal melanocytes (NHEM) and dysplastic oral keratinocytes (DOK) was investigated, with the aim of obtaining an epidermal graft.

  17. Electron holography—basics and applications

    NASA Astrophysics Data System (ADS)

    Lichte, Hannes; Lehmann, Michael

    2008-01-01

    Despite the huge progress achieved recently by means of the corrector for aberrations, allowing now a true atomic resolution of 0.1 nm, hence making it an unrivalled tool for nanoscience, transmission electron microscopy (TEM) suffers from a severe drawback: in a conventional electron micrograph only a poor phase contrast can be achieved, i.e. phase structures are virtually invisible. Therefore, conventional TEM is nearly blind for electric and magnetic fields, which are pure phase objects. Since such fields provoked by the atomic structure, e.g. of semiconductors and ferroelectrics, largely determine the solid state properties, hence the importance for high technology applications, substantial object information is missing. Electron holography in TEM offers the solution: by superposition with a coherent reference wave, a hologram is recorded, from which the image wave can be completely reconstructed by amplitude and phase. Now the object is displayed quantitatively in two separate images: one representing the amplitude, the other the phase. From the phase image, electric and magnetic fields can be determined quantitatively in the range from micrometre down to atomic dimensions by all wave optical methods that one can think of, both in real space and in Fourier space. Electron holography is pure wave optics. Therefore, we discuss the basics of coherence and interference, the implementation into a TEM, the path of rays for recording holograms as well as the limits in lateral and signal resolution. We outline the methods of reconstructing the wave by numerical image processing and procedures for extracting the object properties of interest. Furthermore, we present a broad spectrum of applications both at mesoscopic and atomic dimensions. This paper gives an overview of the state of the art pointing at the needs for further development. It is also meant as encouragement for those who refrain from holography, thinking that it can only be performed by specialists in

  18. Biophysics applications of free-electron lasers

    NASA Astrophysics Data System (ADS)

    Austin, Robert H.

    1993-07-01

    There has been a significant financial effort poured into the technology of the Free Electron Laser (FEL) over the last 15 years or so. Much of that money was spent in the hopes that the FEL would be a key element in the Strategic Defense Initiative, but a small fraction of money was allocated for the Medical FEL program. The Medical FELs program was aimed at exploring how the unique capabilities of the FEL could be utilized in medical applications. Part of the Medical FEl effort has been in clinical applications, but some of the effort has also been put into exploring applications of the FEL for fundamental biological physics. It is the purpose of this brief text to outline some of the fundamental biophysics I have done, and some plans we have for the future. Since the FEL is (still) considered to be an avant garde device, the reader should not be surprised to find that much of the work proposed here is also rather radical and avant garde.

  19. Current and future engine applications of Gr/PI composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Schmid, T. E.

    1985-01-01

    The application of organic matrix composites to gas turbine engine components has been the subject of numerous government and company funded programs since the 1960's. The possibility of significant weight reductions, performance improvements and lower component costs have made the organic matrix composites extremely attractive to aircraft engine designers. Very little of this potential was incorporated into production engines over the years even though a significant number of components were designed, fabricated and tested. Some of the reasons behind the slow rate of incorporation include the following: (1) criticality; (2) engine operating temperature; (3) small component size; (4) small production volume; (5) high production cost; and (6) interfacing with metal parts.

  20. Welfare applications of genetically engineered animals for use in agriculture.

    PubMed

    Maga, E A; Murray, J D

    2010-04-01

    The application of genetic engineering to food animals is often viewed as a means to further increase animal productivity without regard for the welfare of the resulting animals. We offer the perspective that, on the contrary, genetic engineering can, and is, being used to improve animal welfare in modern production systems. Several examples are cited from the current work in the field of animal genetic engineering that should be included in the debate over whether genetically engineered animals should be used in production agriculture. The current debate has slowed the advancement of this technology, which could play a key role in improving animal welfare and sustainability, without considering the potential benefits.

  1. Computational Model Tracking Primary Electrons, Secondary Electrons, and Ions in the Discharge Chamber of an Ion Engine

    NASA Technical Reports Server (NTRS)

    Mahalingam, Sudhakar; Menart, James A.

    2005-01-01

    Computational modeling of the plasma located in the discharge chamber of an ion engine is an important activity so that the development and design of the next generation of ion engines may be enhanced. In this work a computational tool called XOOPIC is used to model the primary electrons, secondary electrons, and ions inside the discharge chamber. The details of this computational tool are discussed in this paper. Preliminary results from XOOPIC are presented. The results presented include particle number density distributions for the primary electrons, the secondary electrons, and the ions. In addition the total number of a particular particle in the discharge chamber as a function of time, electric potential maps and magnetic field maps are presented. A primary electron number density plot from PRIMA is given in this paper so that the results of XOOPIC can be compared to it. PRIMA is a computer code that the present investigators have used in much of their previous work that provides results that compare well to experimental results. PRIMA only models the primary electrons in the discharge chamber. Modeling ions and secondary electrons, as well as the primary electrons, will greatly increase our ability to predict different characteristics of the plasma discharge used in an ion engine.

  2. The Expanding World of Tissue Engineering: The Building Blocks and New Applications of Tissue Engineered Constructs

    PubMed Central

    Zorlutuna, Pinar; Vrana, Nihal Engin; Khademhosseini, Ali

    2013-01-01

    The field of tissue engineering has been growing in the recent years as more products have made it to the market and as new uses for the engineered tissues have emerged, motivating many researchers to engage in this multidisciplinary field of research. Engineered tissues are now not only considered as end products for regenerative medicine, but also have emerged as enabling technologies for other fields of research ranging from drug discovery to biorobotics. This widespread use necessitates a variety of methodologies for production of tissue engineered constructs. In this review, these methods together with their non-clinical applications will be described. First, we will focus on novel materials used in tissue engineering scaffolds; such as recombinant proteins and synthetic, self assembling polypeptides. The recent advances in the modular tissue engineering area will be discussed. Then scaffold-free production methods, based on either cell sheets or cell aggregates will be described. Cell sources used in tissue engineering and new methods that provide improved control over cell behavior such as pathway engineering and biomimetic microenvironments for directing cell differentiation will be discussed. Finally, we will summarize the emerging uses of engineered constructs such as model tissues for drug discovery, cancer research and biorobotics applications. PMID:23268388

  3. Design of applicative 100 W Stirling engine

    SciTech Connect

    Kagawa, Noboru; Hirata, Koichi; Takeuchi, Makoto

    1995-12-31

    A small 100 W displacer type Stirling engine is being developed under a project of a JSME committee, RC127. The project consists of sixteen Japanese academic researchers of universities and governmental laboratories and eleven enterprise members related to the Stirling field. The engine has very unique features. Its expansion cylinder is heated by combustion gas or solar energy directly, and a simple cooling system rejects heat from the working fluid. A regenerator is built in the displacer piston with heating and cooling tubes in which the working fluid flows from/to outer tubes. The outer tubes for heating were located at the top of the expansion cylinder and the tubes for cooling are in the middle of the cylinder. The target performance is a 100 W output with 20% thermal efficiency at the operating conditions of 923 K expansion space temperature, 343 K compression space temperature, and 1,000 rpm. The 100 W displacer engine was designed based on a design manual established by a related JSME committee, RC110. It contains several guides to design for cycle, heat exchanger system, and mechanism of most Stirling cycle machines. The engine was designed by using the fundamental method, the second and third-order analyses accomplished with the newly arranged knowledge about each component. This paper presents the engine specifications and the theoretical analysis results. The design method is also introduced briefly.

  4. Systematic Applications of Metabolomics in Metabolic Engineering

    PubMed Central

    Dromms, Robert A.; Styczynski, Mark P.

    2012-01-01

    The goals of metabolic engineering are well-served by the biological information provided by metabolomics: information on how the cell is currently using its biochemical resources is perhaps one of the best ways to inform strategies to engineer a cell to produce a target compound. Using the analysis of extracellular or intracellular levels of the target compound (or a few closely related molecules) to drive metabolic engineering is quite common. However, there is surprisingly little systematic use of metabolomics datasets, which simultaneously measure hundreds of metabolites rather than just a few, for that same purpose. Here, we review the most common systematic approaches to integrating metabolite data with metabolic engineering, with emphasis on existing efforts to use whole-metabolome datasets. We then review some of the most common approaches for computational modeling of cell-wide metabolism, including constraint-based models, and discuss current computational approaches that explicitly use metabolomics data. We conclude with discussion of the broader potential of computational approaches that systematically use metabolomics data to drive metabolic engineering. PMID:24957776

  5. High-Performance electronics at ultra-low power consumption for space applications: From superconductor to nanoscale semiconductor technology

    NASA Technical Reports Server (NTRS)

    Duncan, Robert V.; Simmons, Jerry; Kupferman, Stuart; McWhorter, Paul; Dunlap, David; Kovanis, V.

    1995-01-01

    A detailed review of Sandia's work in ultralow power dissipation electronics for space flight applications, including superconductive electronics, new advances in quantum well structures, and ultra-high purity 3-5 materials, and recent advances in micro-electro-optical-mechanical systems (MEMS) is presented. The superconductive electronics and micromechanical devices are well suited for application in micro-robotics, micro-rocket engines, and advanced sensors.

  6. ESPACE - a geodetic Master's program for the education of Satellite Application Engineers

    NASA Astrophysics Data System (ADS)

    Hedman, K.; Kirschner, S.; Seitz, F.

    2012-04-01

    In the last decades there has been a rapid development of new geodetic and other Earth observation satellites. Applications of these satellites such as car navigation systems, weather predictions, and, digital maps (such as Google Earth or Google Maps) play a more and more important role in our daily life. For geosciences, satellite applications such as remote sensing and precise positioning/navigation have turned out to be extremely useful and are meanwhile indispensable. Today, researchers within geodesy, climatology, oceanography, meteorology as well as within Earth system science are all dependent on up-to-date satellite data. Design, development and handling of these missions require experts with knowledge not only in space engineering, but also in the specific applications. That gives rise to a new kind of engineers - satellite application engineers. The study program for these engineers combines parts of different classical disciplines such as geodesy, aerospace engineering or electronic engineering. The satellite application engineering program Earth Oriented Space Science and Technology (ESPACE) was founded in 2005 at the Technische Universität München, mainly from institutions involved in geodesy and aerospace engineering. It is an international, interdisciplinary Master's program, and is open to students with a BSc in both Science (e.g. Geodesy, Mathematics, Informatics, Geophysics) and Engineering (e.g. Aerospace, Electronical and Mechanical Engineering). The program is completely conducted in English. ESPACE benefits from and utilizes its location in Munich with its unique concentration of expertise related to space science and technology. Teaching staff from 3 universities (Technische Universität München, Ludwig-Maximilian University, University of the Federal Armed Forces), research institutions (such as the German Aerospace Center, DLR and the German Geodetic Research Institute, DGFI) and space industry (such as EADS or Kayser-Threde) are

  7. Medical Engineering and Microneurosurgery: Application and Future.

    PubMed

    Morita, Akio; Sora, Shigeo; Nakatomi, Hirofumi; Harada, Kanako; Sugita, Naohiko; Saito, Nobuhito; Mitsuishi, Mamoru

    2016-10-15

    Robotics and medical engineering can convert traditional surgery into digital and scientific procedures. Here, we describe our work to develop microsurgical robotic systems and apply engineering technology to assess microsurgical skills. With the collaboration of neurosurgeons and an engineering team, we have developed two types of microsurgical robotic systems. The first, the deep surgical systems, enable delicate surgical procedures such as vessel suturing in a deep and narrow space. The second type allows for super-fine surgical procedures such as anastomosing artificial vessels of 0.3 mm in diameter. Both systems are constructed with master and slave manipulator robots connected to local area networks. Robotic systems allowed for secure and accurate procedures in a deep surgical field. In cadaveric models, these systems showed a good potential of being useful in actual human surgeries, but mechanical refinements in thickness and durability are necessary for them to be established as clinical systems. The super-fine robotic system made the very intricate surgery possible and will be applied in clinical trials. Another trial included the digitization of surgical technique and scientific analysis of surgical skills. Robotic and human hand motions were analyzed in numerical fashion as we tried to define surgical skillfulness in a digital format. Engineered skill assessment is also feasible and should be useful for microsurgical training. Robotics and medical engineering should bring science into the surgical field and training of surgeons. Active collaboration between medical and engineering teams and academic and industry groups is mandatory to establish such medical systems to improve patient care.

  8. Medical Engineering and Microneurosurgery: Application and Future

    PubMed Central

    MORITA, Akio; SORA, Shigeo; NAKATOMI, Hirofumi; HARADA, Kanako; SUGITA, Naohiko; SAITO, Nobuhito; MITSUISHI, Mamoru

    2016-01-01

    Robotics and medical engineering can convert traditional surgery into digital and scientific procedures. Here, we describe our work to develop microsurgical robotic systems and apply engineering technology to assess microsurgical skills. With the collaboration of neurosurgeons and an engineering team, we have developed two types of microsurgical robotic systems. The first, the deep surgical systems, enable delicate surgical procedures such as vessel suturing in a deep and narrow space. The second type allows for super-fine surgical procedures such as anastomosing artificial vessels of 0.3 mm in diameter. Both systems are constructed with master and slave manipulator robots connected to local area networks. Robotic systems allowed for secure and accurate procedures in a deep surgical field. In cadaveric models, these systems showed a good potential of being useful in actual human surgeries, but mechanical refinements in thickness and durability are necessary for them to be established as clinical systems. The super-fine robotic system made the very intricate surgery possible and will be applied in clinical trials. Another trial included the digitization of surgical technique and scientific analysis of surgical skills. Robotic and human hand motions were analyzed in numerical fashion as we tried to define surgical skillfulness in a digital format. Engineered skill assessment is also feasible and should be useful for microsurgical training. Robotics and medical engineering should bring science into the surgical field and training of surgeons. Active collaboration between medical and engineering teams and academic and industry groups is mandatory to establish such medical systems to improve patient care. PMID:27464471

  9. Power electronic applications for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Pickrell, Roy L.; Lazbin, Igor

    1990-01-01

    NASA plans to orbit a permanently manned space station in the late 1990s, which requires development and assembly of a photovoltaic (PV) power source system to supply up to 75 kW of electrical power average during the orbital period. The electrical power requirements are to be met by a combination of PV source, storage, and control elements for the sun and eclipse periods. The authors discuss the application of power electronics and controls to manage the generation, storage, and distribution of power to meet the station loads, as well as the computer models used for analysis and simulation of the PV power system. The requirements for power source integrated controls to adjust storage charge power during the insolation period current limiting, breaker interrupt current values, and the electrical fault protection approach are defined. Based on these requirements, operating concepts have been defined which then become drivers for specific system and element design.

  10. Applications of cryogenics in electron microscopy

    NASA Technical Reports Server (NTRS)

    Fernandez-Moran, H.

    1973-01-01

    Description of research and development efforts which resulted in a high-voltage cryoelectron microscope system capable of consistent operation at 1.8 to 4.2 K. Attention is given to the design and operation of superconducting objective lenses providing enhanced resolution during longer exposure times at lower beam intensities (thus reducing radiation damage of specimens). A specific system described combines a closed-cycle superfluid helium refrigerator integrated with a modified 200 kV electron microscope. Consistent resolutions of 8 to 16 A are attained with significantly reduced radiation damage, contamination, and thermal noise in prolonged vibration-free examination of specimens at temperatures from 1.8 to 4.2 K. Applications in specific disciplines are discussed, including membrane ultrastructure, cryobiology, microelectronics, and general superconductivity research.

  11. Miniature sensor suitable for electronic nose applications

    NASA Astrophysics Data System (ADS)

    Pinnaduwage, Lal A.; Gehl, Anthony C.; Allman, Steve L.; Johansson, Alicia; Boisen, Anja

    2007-05-01

    A major research effort has been devoted over the years for the development of chemical sensors for the detection of chemical and explosive vapors. However, the deployment of such chemical sensors will require the use of multiple sensors (probably tens of sensors) in a sensor package to achieve selective detection. In order to keep the overall detector unit small, miniature sensors with sufficient sensitivity of detection will be needed. We report sensitive detection of dimethyl methylphosphonate (DMMP), a stimulant for the nerve agents, using a miniature sensor unit based on piezoresistive microcantilevers. The sensor can detect parts-per-trillion concentrations of DMMP within 10s exposure times. The small size of the sensor makes it ideally suited for electronic nose applications.

  12. Biomedical application of an electronic nose.

    PubMed

    Mantini, A; Di Natale, C; Macagnano, A; Paolesse, R; Finazzi-Agrò, A; D'Amico, A

    2000-01-01

    The analysis of volatiles secreted outside the human body to get information on the health status of the individuals has been proposed several times in the past. This kind of analysis is complex both from the point of view of sample collection and data interpretation when, for instance, gas chromatography is utilized. In the recent years the advent of chemical sensors and chemical sensors systems (the so-called electronic noses) opened the way to the possibility of fast and simple analysis of odors in many fields, and, recently, among them, in medicine. In this paper some examples of these applications are illustrated. The results, although preliminary, encourage in pursuing these researches that can give rise to a better comprehension of the role of smell and odor in humans and, possibly in the near future, in novel diagnostic tools.

  13. Key Applications of Plant Metabolic Engineering

    PubMed Central

    Lau, Warren; Fischbach, Michael A.; Osbourn, Anne; Sattely, Elizabeth S.

    2014-01-01

    Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field. PMID:24915445

  14. [Chondrocyte mecanobiology. Application in cartilage tissue engineering].

    PubMed

    Stoltz, Jean François; Netter, Patrick; Huselstein, Céline; de Isla, Natalia; Wei Yang, Jing; Muller, Sylvaine

    2005-11-01

    Cartilage is a hydrated connective tissue that withstands and distributes mechanical forces within joints. Chondrocytes utilize mechanical signals to maintain cartilaginous tissue homeostasis. They regulate their metabolic activity through complex biological and biophysical interactions with the extracellular matrix (ECM). Some mechanotransduction mechanisms are known, while many others no doubt remain to be discovered. Various aspects of chondrocyte mechanobiology have been applied to tissue engineering, with the creation of replacement tissue in vitro from bioresorbable or non-bioresorbable scaffolds and harvested cells. The tissues are maintained in a near-physiologic mechanical and biochemical environment. This paper is an overview of both chondrocyte mechanobiology and cartilage tissue engineering

  15. Photopatternable silicone compositions for electronic packaging applications

    NASA Astrophysics Data System (ADS)

    Harkness, Brian R.; Gardner, Geoff B.; Alger, James S.; Cummings, Michelle R.; Princing, Jennifer; Lee, Yeong; Meynen, Herman; Gonzales, Mario; Vandevelde, Bart; Vanden Bulcke, Mathieu; Winters, Christophe; Beyne, Eric

    2004-05-01

    A growing need for low stress high temperature thick film materials has prompted the development of new spin-coatable photopatternable silicones (Dow Corning WL-5000 series) to assist manufactures in building the next generation of electronic devices. These new negative-tone materials can be easily coated onto electronic substrates and patterned using standard i-line and broadband lithographic processes. Films ranging from 6 to 50 μm have been demonstrated with patterned features resolved to an aspect ratio of less than 1.3. The etched regions provide a sloped sidewall and curved surfaces to facilitate metallization processes. The films are cured at low temperatures (150 to 250°C) to provide low modulus values in the range of 150 to 500 MPa, are inherently hydrophobic, and are based on cure chemistry that is acid free and delivers thermally stable cross-links. As a result, the films show very little shrinkage during thermal cure (~2%), do not require extended high temperature processing, and provide a very low residual stress (<8 MPa). They also show excellent thermal stability and mechanical integrity when exposed to high temperatures. A simple wet process has been developed to facilitate film rework and allow for sacrificial layer applications.

  16. Flight evaluation of modifications to a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Zeller, J. R.

    1983-01-01

    The third phase of a flight evaluation of a digital electronic engine control system in an F-15 has recently been completed. It was found that digital electronic engine control software logic changes and augmentor hardware improvements resulted in significant improvements in engine operation. For intermediate to maximum power throttle transients, an increase in altitude capability of up to 8000 ft was found, and for idle to maximum transients, an increase of up to 4000 ft was found. A nozzle instability noted in earlier flight testing was investigated on a test engine at NASA Lewis Research Center, a digital electronic engine control software logic change was developed and evaluated, and no instability occurred in the Phase 3 flight evaluation. The backup control airstart modification was evaluated, and gave an improvement of airstart capability by reducing the minimum airspeed for successful airstarts by 50 to 75 knots.

  17. Advances in polymeric systems for tissue engineering and biomedical applications.

    PubMed

    Ravichandran, Rajeswari; Sundarrajan, Subramanian; Venugopal, Jayarama Reddy; Mukherjee, Shayanti; Ramakrishna, Seeram

    2012-03-01

    The characteristics of tissue engineered scaffolds are major concerns in the quest to fabricate ideal scaffolds for tissue engineering applications. The polymer scaffolds employed for tissue engineering applications should possess multifunctional properties such as biocompatibility, biodegradability and favorable mechanical properties as it comes in direct contact with the body fluids in vivo. Additionally, the polymer system should also possess biomimetic architecture and should support stem cell adhesion, proliferation and differentiation. As the progress in polymer technology continues, polymeric biomaterials have taken characteristics more closely related to that desired for tissue engineering and clinical needs. Stimuli responsive polymers also termed as smart biomaterials respond to stimuli such as pH, temperature, enzyme, antigen, glucose and electrical stimuli that are inherently present in living systems. This review highlights the exciting advancements in these polymeric systems that relate to biological and tissue engineering applications. Additionally, several aspects of technology namely scaffold fabrication methods and surface modifications to confer biological functionality to the polymers have also been discussed. The ultimate objective is to emphasize on these underutilized adaptive behaviors of the polymers so that novel applications and new generations of smart polymeric materials can be realized for biomedical and tissue engineering applications.

  18. Value Engineering: An Application to Computer Software

    DTIC Science & Technology

    1995-06-01

    of Value Engineering to a software development process. Purchasing agents for the State of New Mexico were tasked to reduce the amount of wailing costs...of VE in sortware acquisitionfdevelopment (ie. educacion , award programs, designate Govt. savings for use in 77 generating additional savings

  19. Electronic nose for space program applications

    NASA Technical Reports Server (NTRS)

    Young, Rebecca C.; Buttner, William J.; Linnell, Bruce R.; Ramesham, Rajeshuni

    2003-01-01

    The ability to monitor air contaminants in the shuttle and the International Space Station is important to ensure the health and safety of astronauts, and equipment integrity. Three specific space applications have been identified that would benefit from a chemical monitor: (a) organic contaminants in space cabin air; (b) hypergolic propellant contaminants in the shuttle airlock; (c) pre-combustion signature vapors from electrical fires. NASA at Kennedy Space Center (KSC) is assessing several commercial and developing electronic noses (E-noses) for these applications. A short series of tests identified those E-noses that exhibited sufficient sensitivity to the vapors of interest. Only two E-noses exhibited sufficient sensitivity for hypergolic fuels at the required levels, while several commercial E-noses showed sufficient sensitivity of common organic vapors. These E-noses were subjected to further tests to assess their ability to identify vapors. Development and testing of E-nose models using vendor supplied software packages correctly identified vapors with an accuracy of 70-90%. In-house software improvements increased the identification rates between 90 and 100%. Further software enhancements are under development. Details on the experimental setup, test protocols, and results on E-nose performance are presented in this paper along with special emphasis on specific software enhancements. c2003 Elsevier Science B.V. All rights reserved.

  20. Electronic nose for space program applications.

    PubMed

    Young, Rebecca C; Buttner, William J; Linnell, Bruce R; Ramesham, Rajeshuni

    2003-08-01

    The ability to monitor air contaminants in the shuttle and the International Space Station is important to ensure the health and safety of astronauts, and equipment integrity. Three specific space applications have been identified that would benefit from a chemical monitor: (a) organic contaminants in space cabin air; (b) hypergolic propellant contaminants in the shuttle airlock; (c) pre-combustion signature vapors from electrical fires. NASA at Kennedy Space Center (KSC) is assessing several commercial and developing electronic noses (E-noses) for these applications. A short series of tests identified those E-noses that exhibited sufficient sensitivity to the vapors of interest. Only two E-noses exhibited sufficient sensitivity for hypergolic fuels at the required levels, while several commercial E-noses showed sufficient sensitivity of common organic vapors. These E-noses were subjected to further tests to assess their ability to identify vapors. Development and testing of E-nose models using vendor supplied software packages correctly identified vapors with an accuracy of 70-90%. In-house software improvements increased the identification rates between 90 and 100%. Further software enhancements are under development. Details on the experimental setup, test protocols, and results on E-nose performance are presented in this paper along with special emphasis on specific software enhancements.

  1. Electronic Out-fall Inspection Application - 12007

    SciTech Connect

    Weymouth, A Kent III; Pham, Minh; Messick, Chuck

    2012-07-01

    In early 2009 an exciting opportunity was presented to the Geographic Information Systems (GIS) team at the Savannah River Site (SRS). The SRS maintenance group was directed to maintain all Out-falls on Site, increasing their workload from 75 to 183 out-falls with no additional resources. The existing out-fall inspection system consisted of inspections performed manually and documented via paper trail. The inspections were closed out upon completion of activities and placed in file cabinets with no central location for tracking/trending maintenance activities. A platform for meeting new improvements required for documentation by the Department of Health and Environmental Control (DHEC) out-fall permits was needed to replace this current system that had been in place since the 1980's. This was accomplished by building a geographically aware electronic application that improved reliability of site out-fall maintenance and ensured consistent standards were maintained for environmental excellence and worker efficiency. Inspections are now performed via tablet and uploaded to a central point. Work orders are completed and closed either in the field using tablets (mobile application) or in their offices (via web portal) using PCs. And finally completed work orders are now stored in a central database allowing trending of maintenance activities. (authors)

  2. Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites

    DTIC Science & Technology

    2016-06-08

    AFRL-AFOSR-VA-TR-2016-0231 Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites Darren Lipomi...04-2013 to 31-03-2016 4. TITLE AND SUBTITLE Molecular Engineering for Mechanically Resilient and Stretchable Electronic Polymers and Composites 5a...conjugated polymers and composites by analysis of the structural determinants of the mechanical properties. We developed coarse-grained molecular

  3. Electronic Information and Applications in Musicology and Music Theory.

    ERIC Educational Resources Information Center

    Duggan, Mary Kay

    1992-01-01

    Describes electronic publishing and information resources in the field of music. Topics addressed include bibliographic citations of books, journal articles, scores, and sound recordings; bibliographic utilities; computer network resources; electronic music applications; tutorial and laboratory projects; interactive multimedia publications; and…

  4. NASA Applications and Lessons Learned in Reliability Engineering

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Fuller, Raymond P.

    2011-01-01

    Since the Shuttle Challenger accident in 1986, communities across NASA have been developing and extensively using quantitative reliability and risk assessment methods in their decision making process. This paper discusses several reliability engineering applications that NASA has used over the year to support the design, development, and operation of critical space flight hardware. Specifically, the paper discusses several reliability engineering applications used by NASA in areas such as risk management, inspection policies, components upgrades, reliability growth, integrated failure analysis, and physics based probabilistic engineering analysis. In each of these areas, the paper provides a brief discussion of a case study to demonstrate the value added and the criticality of reliability engineering in supporting NASA project and program decisions to fly safely. Examples of these case studies discussed are reliability based life limit extension of Shuttle Space Main Engine (SSME) hardware, Reliability based inspection policies for Auxiliary Power Unit (APU) turbine disc, probabilistic structural engineering analysis for reliability prediction of the SSME alternate turbo-pump development, impact of ET foam reliability on the Space Shuttle System risk, and reliability based Space Shuttle upgrade for safety. Special attention is given in this paper to the physics based probabilistic engineering analysis applications and their critical role in evaluating the reliability of NASA development hardware including their potential use in a research and technology development environment.

  5. Rocket engine heat transfer and material technology for commercial applications

    NASA Technical Reports Server (NTRS)

    Hiltabiddle, J.; Campbell, J.

    1974-01-01

    Liquid fueled rocket engine combustion, heat transfer, and material technology have been utilized in the design and development of compact combustion and heat exchange equipment intended for application in the commercial field. An initial application of the concepts to the design of a compact steam generator to be utilized by electrical utilities for the production of peaking power is described.

  6. Engineering Artificial Machines from Designable DNA Materials for Biomedical Applications

    PubMed Central

    Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng

    2015-01-01

    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications. PMID:25547514

  7. Engineering artificial machines from designable DNA materials for biomedical applications.

    PubMed

    Qi, Hao; Huang, Guoyou; Han, Yulong; Zhang, Xiaohui; Li, Yuhui; Pingguan-Murphy, Belinda; Lu, Tian Jian; Xu, Feng; Wang, Lin

    2015-06-01

    Deoxyribonucleic acid (DNA) emerges as building bricks for the fabrication of nanostructure with complete artificial architecture and geometry. The amazing ability of DNA in building two- and three-dimensional structures raises the possibility of developing smart nanomachines with versatile controllability for various applications. Here, we overviewed the recent progresses in engineering DNA machines for specific bioengineering and biomedical applications.

  8. Connecting NASA science and engineering with earth science applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Research Council (NRC) recently highlighted the dual role of NASA to support both science and applications in planning Earth observations. This Editorial reports the efforts of the NASA Soil Moisture Active Passive (SMAP) mission to integrate applications with science and engineering i...

  9. Engineering photo-plasmonic devices for spectroscopy and sensing applications

    NASA Astrophysics Data System (ADS)

    Pasquale, Alyssa J.

    The control of light on the nano-scale has driven the development of novel optical devices such as biosensors, antennas and guiding elements. These applications benefit from the distinctive resonant properties of noble metal thin films and nanoparticles. Many optimization parameters exist in order to engineer nanoparticle properties for spectroscopy and sensing applications: for example, the choice of metal, the particle morphology, and the array geometry. By utilizing various designs from simple monomer gratings to more complex engineered arrays, we model and characterize plasmonic arrays for sensing applications. In this thesis, I have focused on the novel paradigm of photonic-plasmonic coupling to design, fabricate, and characterize optimized nanosensors. In particular, nanoplasmonic necklaces, which consist of circular loops of closely spaced gold nanoparticles, are designed using 3D finite-difference time-domain (FDTD) simulations, fabricated with electron-beam lithography, and characterized using dark-field scattering and surface-enhanced Raman spectroscopy (SERS) of p-mercaptoaniline (pMA) monolayers. I show that such necklaces are able to support hybridized dipolar scattering resonances and polarization-controlled electromagnetic hot-spots. In addition, necklaces exhibit strong intensity enhancement when the necklace diameter leads to coupling between the broadband plasmonic resonance and the circular resonator structure of the necklace. Hence, these necklaces lead to stronger field intensity enhancement than nanoparticle monomers and dimers, which are also carefully studied. Furthermore, by embedding a dimer into one or more concentric necklace resonators, I am able to efficiently couple radiation into the dimer hot-spot by utilizing first- and second-order far-field coupling. This nanolensing leads to an order of 6-18 times improvement in Raman enhancement over isolated dimers, which is a promising platform for compact on-chip sensors. Additionally, I

  10. Flight evaluation of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Myers, L. P.; Mackall, K. G.; Burcham, F. W., Jr.; Walter, W. A.

    1982-01-01

    Benefits provided by a full-authority digital engine control are related to improvements in engine efficiency, performance, and operations. An additional benefit is the capability of detecting and accommodating failures in real time and providing engine-health diagnostics. The digital electronic engine control (DEEC), is a full-authority digital engine control developed for the F100-PW-100 turbofan engine. The DEEC has been flight tested on an F-15 aircraft. The flight tests had the objective to evaluate the DEEC hardware and software over the F-15 flight envelope. A description is presented of the results of the flight tests, which consisted of nonaugmented and augmented throttle transients, airstarts, and backup control operations. The aircraft, engine, DEEC system, and data acquisition and reduction system are discussed.

  11. Fabrication of polylactide nanocomposite scaffolds for bone tissue engineering applications

    SciTech Connect

    Mkhabela, Vuyiswa J.; Ray, Suprakas Sinha

    2015-05-22

    Highly porous three-dimensional polylactide (PLA) scaffolds were obtained from PLA incorporated with different amounts of chitosan-modified montmorillonite (CS-MMT), through solvent casting and particulate leaching method. The processed scaffolds were tested in vitro for their possible application in bone tissue engineering. Scaffolds were characterized by Focused Ion Beam Scanning Electron Microscopy (FIB SEM), Fourier Transform Infra-Red (FTIR), and X-Ray Diffraction (XRD) to study their structure and intermolecular interactions. Bioresorbability tests in simulated body fluid (pH 7.4) were conducted to assess the response of the scaffolds in a simulated physiological condition. The FIB SEM images of the scaffolds showed a porous architecture with gradual change in morphology with increasing CS-MMT concentration. FTIR analysis revealed the presence of both PLA and CS-MMT particles on the surface of the scaffolds. XRD showed that the crystalline unit cell type was the same for all the scaffolds, and crystallinity decreased with an increase in CS-MMT concentration. The scaffolds were found to be bioresorbable, with rapid bioresorbability on the scaffolds with a high CS-MMT concentration.

  12. Plug engine systems for future launch vehicle applications

    NASA Astrophysics Data System (ADS)

    Immich, H.; Parsley, R. C.

    1993-06-01

    Based on improved viability resulting from modern analysis techniques, plug nozzle rocket engines are once again being investigated with respect to advanced launch vehicle concepts. The advantage of these engines is the external expansion, which self-adapts to external pressure variation, as well as the short compact design for high expansion ratios. This paper describes feasible design options ranging from a plug nozzle engine with an annular combustion chamber to a segmented modular design, to the integration of a number of conventional engines around a common plug. The advantages and disadvantages of these options are discussed for a range of potential applications including single-stage-to-orbit (SSTO) vehicles, as well as upper stage vehicles such as the second stage of the SAeNGER HTOL launch vehicle concept. Also included is a discussion of how maturing computational fluid dynamic (CFD) modeling techniques could significantly reduce installed performance uncertainties, reducing plug engine development risk.

  13. Piezoelectric polymers as biomaterials for tissue engineering applications.

    PubMed

    Ribeiro, Clarisse; Sencadas, Vítor; Correia, Daniela M; Lanceros-Méndez, Senentxu

    2015-12-01

    Tissue engineering often rely on scaffolds for supporting cell differentiation and growth. Novel paradigms for tissue engineering include the need of active or smart scaffolds in order to properly regenerate specific tissues. In particular, as electrical and electromechanical clues are among the most relevant ones in determining tissue functionality in tissues such as muscle and bone, among others, electroactive materials and, in particular, piezoelectric ones, show strong potential for novel tissue engineering strategies, in particular taking also into account the existence of these phenomena within some specific tissues, indicating their requirement also during tissue regeneration. This referee reports on piezoelectric materials used for tissue engineering applications. The most used materials for tissue engineering strategies are reported together with the main achievements, challenges and future needs for research and actual therapies. This review provides thus a compilation of the most relevant results and strategies and a start point for novel research pathways in the most relevant and challenging open questions.

  14. Synthesis of highly interconnected 3D scaffold from Arothron stellatus skin collagen for tissue engineering application.

    PubMed

    Ramanathan, Giriprasath; Singaravelu, Sivakumar; Raja, M D; Sivagnanam, Uma Tiruchirapalli

    2015-11-01

    The substrate which is avidly used for tissue engineering applications should have good mechanical and biocompatible properties, and all these parameters are often considered as essential for dermal reformation. Highly interconnected three dimensional (3D) wound dressing material with enhanced structural integrity was synthesized from Arothron stellatus fish skin (AsFS) collagen for tissue engineering applications. The synthesized 3D collagen sponge (COL-SPG) was further characterized by different physicochemical methods. The scanning electron microscopy analysis of the material demonstrated that well interconnected pores with homogeneous microstructure on the surface aids higher swelling index and that the material also possessed good mechanical properties with a Young's modulus of 0.89±0.2 MPa. Biocompatibility of the 3D COL-SPG showed 92% growth for both NIH 3T3 fibroblasts and keratinocytes. Overall, the study revealed that synthesized 3D COL-SPG from fish skin will act as a promising wound dressing in skin tissue engineering.

  15. Compendium of Abstracts on Statistical Applications in Geotechnical Engineering.

    DTIC Science & Technology

    1983-09-01

    basaltic rocks of central and South - East Slovakia 1880 Lachapelle Empirical determination of the gravity anomaly covariance function in mountainous areas...literature search is part of CIIS Work Unit No. 31755 on Probabilistic Methods in Engineering Geology . This work unit is part of the Rock Research Program in...research in the application of probabilistic and statistical methods to soil mechanics, rock mechanics, and engineering geology problems have grown markedly

  16. Electrospun Fibers for Energy, Electronic, & Environmental Applications

    NASA Astrophysics Data System (ADS)

    Bedford, Nicholas M.

    applications, fibers consisting of the commonly used organic photovoltaic electron donor/acceptor pair P3HT:PCBM were made by coaxial electrospinning. The inclusion of P3HT:PCBM fibers into an active layer of a organic photovoltaic device led to a ˜ 50% increase in power conversion efficiency over a thin film device of identical chemical composition and thickness. The inclusion of biological photosynthetic moieties into electrically relevant conjugated polymers was also explored for electrical applications. Polymeric fibers consisting largely of PEDOT:PSS were doped with thylakoid vesicles from spinach, and were found to act as photo-detectors. Native PEDOT:PSS does not exhibit such properties. For environmental applications, photocatalytic degradation membranes were also created by electrospinning cellulosic fibers which could be used as platforms to efficiently bind the photocatalyst TiO2. Employing different fiber-titania binding strategies, titania nanoparticles of various sizes and band gap configurations were successfully incorporated into mats of non-woven cellulosic nanofibers. These mats were found to successfully degrade dyes and relevant fresh water toxins such as microcystin-LR.

  17. Applicability of advanced automotive heat engines to solar thermal power

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    1981-01-01

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  18. Application of the subatmospheric engine to solar thermal power

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The development of a natural gas-fired Brayton engine is discussed. It is intended to be the prime mover for a 10-ton commercial heat pump. This engine has many attractive features that make it an ideal candidate for solar thermal-power generation applications. The unique feature of this engine is its subatmospheric mode of operation. It operates between atmospheric pressure and a partial vacuum. This means that heat is added to the cycle at atmospheric pressure; this permits the receiver to be unpressurized, greatly simplifying its design and cost.

  19. Advanced photonic, electronic, and web engineering systems: WILGA Symposium, January 2013

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2013-10-01

    The cycle of WILGA Symposia [wilga.ise.pw.edu.pl] on Photonics and Web Engineering, Advanced Electronic Systems, under the auspices of SPIE, IEEE, KEiT PAN and WEiTI PW was initiated in 1998 by a Research Team PERG/ELHEP ISE PW. The WILGA conferences take place two times a year and the participants are young scientists from this country and abroad. This paper debates chosen topical tracks and some papers presented during the 31 WILGA Multi-Conference, which took place on 8-10 February 2013 at the Faculty of WEiTI PW. The January conference was attended by around 100 persons. Here we discuss closer the subjects of biomedical photonics, electronics and informatics, as well as chosen aspects of applications of advanced photonic, electronic circuits and systems. The 32 nd WILGA Symposium took place on 27 May - 02 June 2013 in WUT WILGA resort near Warsaw. These two editions of WILGA Conferences - January and May have generated more than 250 articles, from which around 100 were chosen by the Symposium and Conference Committees to be published in this volume of Proc.SPIE. WILGA Symposium papers are traditionally submitted via the WILGA web page [wilga.ise.pw.edu.pl] to the SPIE Proceedings publishing system [spie.org]. Email for the correspondence is: photonics@ise.pw.edu.pl. All Wilga papers are published in journals Elektronika, IJET-PAN and in Proc.SPIE. Topical tracks of the symposium usually embrace, among others, new technologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET and pi-of-the sky experiments development. The symposium In its two editions a year is a summary of the development of numerable Ph.D. theses carried out in this country and this geographical region in the area of advanced electronic and photonic systems. It is also

  20. Mechanisms of protein evolution and their application to protein engineering.

    PubMed

    Glasner, Margaret E; Gerlt, John A; Babbitt, Patricia C

    2007-01-01

    Protein engineering holds great promise for the development of new biosensors, diagnostics, therapeutics, and agents for bioremediation. Despite some remarkable successes in experimental and computational protein design, engineered proteins rarely achieve the efficiency or specificity of natural enzymes. Current protein design methods utilize evolutionary concepts, including mutation, recombination, and selection, but the inability to fully recapitulate the success of natural evolution suggests that some evolutionary principles have not been fully exploited. One aspect of protein engineering that has received little attention is how to select the most promising proteins to serve as templates, or scaffolds, for engineering. Two evolutionary concepts that could provide a rational basis for template selection are the conservation of catalytic mechanisms and functional promiscuity. Knowledge of the catalytic motifs responsible for conserved aspects of catalysis in mechanistically diverse superfamilies could be used to identify promising templates for protein engineering. Second, protein evolution often proceeds through promiscuous intermediates, suggesting that templates which are naturally promiscuous for a target reaction could enhance protein engineering strategies. This review explores these ideas and alternative hypotheses concerning protein evolution and engineering. Future research will determine if application of these principles will lead to a protein engineering methodology governed by predictable rules for designing efficient, novel catalysts.

  1. Enhancing gold recovery from electronic waste via lixiviant metabolic engineering in Chromobacterium violaceum.

    PubMed

    Tay, Song Buck; Natarajan, Gayathri; Rahim, Muhammad Nadjad bin Abdul; Tan, Hwee Tong; Chung, Maxey Ching Ming; Ting, Yen Peng; Yew, Wen Shan

    2013-01-01

    Conventional leaching (extraction) methods for gold recovery from electronic waste involve the use of strong acids and pose considerable threat to the environment. The alternative use of bioleaching microbes for gold recovery is non-pollutive and relies on the secretion of a lixiviant or (bio)chemical such as cyanide for extraction of gold from electronic waste. However, widespread industrial use of bioleaching microbes has been constrained by the limited cyanogenic capabilities of lixiviant-producing microorganisms such as Chromobacterium violaceum. Here we show the construction of a metabolically-engineered strain of Chromobacterium violaceum that produces more (70%) cyanide lixiviant and recovers more than twice as much gold from electronic waste compared to wild-type bacteria. Comparative proteome analyses suggested the possibility of further enhancement in cyanogenesis through subsequent metabolic engineering. Our results demonstrated the utility of lixiviant metabolic engineering in the construction of enhanced bioleaching microbes for the bioleaching of precious metals from electronic waste.

  2. Flat-panel electronic displays: a triumph of physics, chemistry and engineering.

    PubMed

    Hilsum, Cyril

    2010-03-13

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III-V or II-VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X-Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs.

  3. Flat-panel electronic displays: a triumph of physics, chemistry and engineering

    PubMed Central

    Hilsum, Cyril

    2010-01-01

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III–V or II–VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X–Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs. PMID:20123746

  4. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order...

  5. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order...

  6. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order...

  7. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order...

  8. 46 CFR 113.35-15 - Mechanical engine order telegraph systems; application.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Mechanical engine order telegraph systems; application...) ELECTRICAL ENGINEERING COMMUNICATION AND ALARM SYSTEMS AND EQUIPMENT Engine Order Telegraph Systems § 113.35-15 Mechanical engine order telegraph systems; application. If a mechanical engine order...

  9. Direct Methanol Fuel Cell Prototype Demonstration for Consumer Electronics Applications

    SciTech Connect

    Carlstrom, Charles, M., Jr.

    2009-07-07

    demonstrated robust operation when tested at various orientations, temperatures, and humidity levels. Durability testing has progressed significantly over the course of the program. MEA, engine, and system level steady state testing has demonstrated degradation rates acceptable for initial product introduction. Test duration of over 5000 hrs has been achieved at both the MEA and breadboard system level. P3 level prototype life testing on engines (stacks with reactant conditioning) showed degradation rates comparable to carefully constructed lab fixtures. This was a major improvement over the P2 and P1 engine designs, which exhibited substantial reductions in life and performance between the lab cell and the actual engine. Over the course of the work on the P3 technology set, a platform approach was taken to the system design. By working in this direction, a number of product iterations with substantial market potential were identified. Although the main effort has been the development of a prototype charger for consumer electronic devices, multiple other product concepts were developed during the program showing the wide variety of potential applications.

  10. Supercritical fluid mixing in Diesel Engine Applications

    NASA Astrophysics Data System (ADS)

    Bravo, Luis; Ma, Peter; Kurman, Matthew; Tess, Michael; Ihme, Matthias; Kweon, Chol-Bum

    2014-11-01

    A numerical framework for simulating supercritical fluids mixing with large density ratios is presented in the context of diesel sprays. Accurate modeling of real fluid effects on the fuel air mixture formation process is critical in characterizing engine combustion. Recent work (Dahms, 2013) has suggested that liquid fuel enters the chamber in a transcritical state and rapidly evolves to supercritical regime where the interface transitions from a distinct liquid/gas interface into a continuous turbulent mixing layer. In this work, the Peng Robinson EoS is invoked as the real fluid model due to an acceptable compromise between accuracy and computational tractability. Measurements at supercritical conditions are reported from the Constant Pressure Flow (CPF) chamber facility at the Army Research Laboratory. Mie and Schlieren optical spray diagnostics are utilized to provide time resolved liquid and vapor penetration length measurement. The quantitative comparison presented is discussed. Oak Ridge Associated Universities (ORAU).

  11. Software engineering with application-specific languages

    NASA Technical Reports Server (NTRS)

    Campbell, David J.; Barker, Linda; Mitchell, Deborah; Pollack, Robert H.

    1993-01-01

    Application-Specific Languages (ASL's) are small, special-purpose languages that are targeted to solve a specific class of problems. Using ASL's on software development projects can provide considerable cost savings, reduce risk, and enhance quality and reliability. ASL's provide a platform for reuse within a project or across many projects and enable less-experienced programmers to tap into the expertise of application-area experts. ASL's have been used on several software development projects for the Space Shuttle Program. On these projects, the use of ASL's resulted in considerable cost savings over conventional development techniques. Two of these projects are described.

  12. Test and evaluation of the HIDEC engine uptrim algorithm. [Highly Integrated Digital Electronic Control for aircraft

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1986-01-01

    The highly integrated digital electronic control (HIDEC) program will demonstrate and evaluate the improvements in performance and mission effectiveness that result from integrated engine-airframe control systems. Performance improvements will result from an adaptive engine stall margin mode, a highly integrated mode that uses the airplane flight conditions and the resulting inlet distortion to continuously compute engine stall margin. When there is excessive stall margin, the engine is uptrimmed for more thrust by increasing engine pressure ratio (EPR). The EPR uptrim logic has been evaluated and implemente into computer simulations. Thrust improvements over 10 percent are predicted for subsonic flight conditions. The EPR uptrim was successfully demonstrated during engine ground tests. Test results verify model predictions at the conditions tested.

  13. Hexavalent Chrome Free Coatings for Electronics Applications: Joint Test Report

    NASA Technical Reports Server (NTRS)

    Rothgeb, Matt; Kessel, Kurt

    2013-01-01

    The overall objective of the Hexavalent Chrome Free Coatings for Electronics Applications project is to evaluate and test pretreatments not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders.

  14. Quantitative Robust Control Engineering: Theory and Applications

    DTIC Science & Technology

    2006-09-01

    1992). Discrete quantitative feedback technique, Capítulo 16 en el libro : Digital Control Systems: theory, hardware, software, 2ª edicion. McGraw...Rasmussen S.J., Garcia-Sanz, M. (2001, 2005), Software de diseño del libro Quantitative Feedback Theory: Fundamentals and Applications. Edición 2ª. CRCPress

  15. Methods and applications in single molecule electronics

    NASA Astrophysics Data System (ADS)

    Hihath, Joshua

    In recent years it has become possible to measure charge transport in a single molecule contacted to two metal electrodes. However, a thorough understanding of how a molecule behaves while contacted to two electrodes and how it interacts with its environment is still lacking. This thesis demonstrates various experimental methods for understanding and controlling charge transport in a single molecule junction and the application of these methods to various molecular systems to help elucidate the conduction mechanisms invoked. First, the conductance of DNA is examined in a controlled environment while varying the length, sequence, base-pair matching, bias, temperature, and electrochemical gate of the molecule. These studies show that the conductance of DNA is extremely sensitive to changes in length, sequence, and base-matching, but not as sensitive to temperature and electrochemical gate. Despite the variety of experimental methods applied, the subtleties of the conduction mechanism remain uncertain, and as such necessitate the development of additional tools for understanding the behavior of a single molecule junction. Next, the Conductance Screening Tool for Molecules (CSTM) is described. This is a new tool capable of creating 1000's of single molecules junctions in a matter of minutes. This tool has been used to study the conductance of alkanedithiols, molecules in an array, and single amino acid residues. This system allows for greater speed and flexibility in determining the conductance of a single molecule junction, and provides a capability for performing large-scale systematic studies of molecular systems to determine the conduction mechanism. Finally, an additional experimental method capable of extracting information about the interaction between a molecule and its environment is developed. Here, electron-phonon interactions in a single molecule contacted to two electrodes are studied. This method allows one to obtain a specific, chemical signature of a

  16. Workshop on scientific and industrial applications of free electron lasers

    SciTech Connect

    Difilippo, F.C. ); Perez, R.B. Tennessee Univ., Knoxville, TN )

    1990-05-01

    A Workshop on Scientific and Industrial Applications of Free Electron Lasers was organized to address potential uses of a Free Electron Laser in the infrared wavelength region. A total of 13 speakers from national laboratories, universities, and the industry gave seminars to an average audience of 30 persons during June 12 and 13, 1989. The areas covered were: Free Electron Laser Technology, Chemistry and Surface Science, Atomic and Molecular Physics, Condensed Matter, and Biomedical Applications, Optical Damage, and Optoelectronics.

  17. Bioreactors in tissue engineering - principles, applications and commercial constraints.

    PubMed

    Hansmann, Jan; Groeber, Florian; Kahlig, Alexander; Kleinhans, Claudia; Walles, Heike

    2013-03-01

    Bioreactor technology is vital for tissue engineering. Usually, bioreactors are used to provide a tissue-specific physiological in vitro environment during tissue maturation. In addition to this most obvious application, bioreactors have the potential to improve the efficiency of the overall tissue-engineering concept. To date, a variety of bioreactor systems for tissue-specific applications have been developed. Of these, some systems are already commercially available. With bioreactor technology, various functional tissues of different types were generated and cultured in vitro. Nevertheless, these efforts and achievements alone have not yet led to many clinically successful tissue-engineered implants. We review possible applications for bioreactor systems within a tissue-engineering process and present basic principles and requirements for bioreactor development. Moreover, the use of bioreactor systems for the expansion of clinically relevant cell types is addressed. In contrast to cell expansion, for the generation of functional three-dimensional tissue equivalents, additional physical cues must be provided. Therefore, bioreactors for musculoskeletal tissue engineering are discussed. Finally, bioreactor technology is reviewed in the context of commercial constraints.

  18. Thermal and Environmental Barrier Coatings for Advanced Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Miller, Robert A.

    2005-01-01

    Ceramic thermal and environmental barrier coatings (T/EBCs) will play a crucial role in advanced gas turbine engine systems because of their ability to significantly increase engine operating temperatures and reduce cooling requirements, thus help achieve engine low emission and high efficiency goals. Advanced T/EBCs are being developed for the low emission SiC/SiC ceramic matrix composite (CMC) combustor applications by extending the CMC liner and vane temperature capability to 1650 C (3000 F) in oxidizing and water vapor containing combustion environments. Low conductivity thermal barrier coatings (TBCs) are also being developed for metallic turbine airfoil and combustor applications, providing the component temperature capability up to 1650 C (3000 F). In this paper, ceramic coating development considerations and requirements for both the ceramic and metallic components will be described for engine high temperature and high-heat-flux applications. The underlying coating failure mechanisms and life prediction approaches will be discussed based on the simulated engine tests and fracture mechanics modeling results.

  19. Application of the cell sheet technique in tissue engineering

    PubMed Central

    CHEN, GUANGNAN; QI, YIYING; NIU, LIE; DI, TUOYU; ZHONG, JINWEI; FANG, TINGTING; YAN, WEIQI

    2015-01-01

    The development and application of the tissue engineering technique has shown a significant potential in regenerative medicine. However, the limitations of conventional tissue engineering methods (cell suspensions, scaffolds and/or growth factors) restrict its application in certain fields. The novel cell sheet technique can overcome such disadvantages. Cultured cells can be harvested as intact sheets without the use of proteolytic enzymes, such as trypsin or dispase, which can result in cell damage and loss of differentiated phenotypes. The cell sheet is a complete layer, which contains extracellular matrix, ion channel, growth factor receptors, nexin and other important cell surface proteins. Mesenchymal stem cells (MSCs), which have the potential for multiple differentiation, are promising candidate seed cells for tissue engineering. The MSC sheet technique may have potential in the fields of regenerative medicine and tissue engineering in general. Additionally, induced pluripotent stem cell and embryonic stem cell-derived cell sheets have been proposed for tissue regeneration. Currently, the application of cell sheet for tissue reconstruction includes: Direct recipient sites implantation, superposition of cell sheets to construct three-dimensional structure for implantation, or cell sheet combined with scaffolds. The present review discusses the progress in cell sheet techniques, particularly stem cell sheet techniques, in tissue engineering. PMID:26623011

  20. Assembly, Engineering and Applications of Virus-Based Protein Nanoparticles.

    PubMed

    Mateu, Mauricio G

    Viruses and their protein capsids can be regarded as biologically evolved nanomachines able to perform multiple, complex biological functions through coordinated mechano-chemical actions during the infectious cycle. The advent of nanoscience and nanotechnology has opened up, in the last 10 years or so, a vast number of novel possibilities to exploit engineered viral capsids as protein-based nanoparticles for multiple biomedical, biotechnological or nanotechnological applications. This chapter attempts to provide a broad, updated overview on the self-assembly and engineering of virus capsids, and on applications of virus-based nanoparticles. Different sections provide outlines on: (i) the structure, functions and properties of virus capsids; (ii) general approaches for obtaining assembled virus particles; (iii) basic principles and events related to virus capsid self-assembly; (iv) genetic and chemical strategies for engineering virus particles; (v) some applications of engineered virus particles being developed; and (vi) some examples on the engineering of virus particles to modify their physical properties, in order to improve their suitability for different uses.

  1. Evaluation of undeveloped rocket engine cycle applications to advanced transportation

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Undeveloped pump-fed, liquid propellant rocket engine cycles were assessed and evaluated for application to Next Manned Transportation System (NMTS) vehicles, which would include the evolving Space Transportation System (STS Evolution), the Personnel Launch System (PLS), and the Advanced Manned Launch System (AMLS). Undeveloped engine cycles selected for further analysis had potential for increased reliability, more maintainability, reduced cost, and improved (or possibly level) performance when compared to the existing SSME and proposed STME engines. The split expander (SX) cycle, the full flow staged combustion (FFSC) cycle, and a hybrid version of the FFSC, which has a LOX expander drive for the LOX pump, were selected for definition and analysis. Technology requirements and issues were identified and analyses of vehicle systems weight deltas using the SX and FFSC cycles in AMLS vehicles were performed. A strawman schedule and cost estimate for FFSC subsystem technology developments and integrated engine system demonstration was also provided.

  2. Recent applications of synthetic biology tools for yeast metabolic engineering.

    PubMed

    Jensen, Michael K; Keasling, Jay D

    2015-02-01

    The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead.

  3. LCCP Desktop Application v1.0 Engineering Reference

    SciTech Connect

    Beshr, Mohamed; Aute, Vikrant

    2014-04-01

    This Life Cycle Climate Performance (LCCP) Desktop Application Engineering Reference is divided into three parts. The first part of the guide, consisting of the LCCP objective, literature review, and mathematical background, is presented in Sections 2-4. The second part of the guide (given in Sections 5-10) provides a description of the input data required by the LCCP desktop application, including each of the input pages (Application Information, Load Information, and Simulation Information) and details for interfacing the LCCP Desktop Application with the VapCyc and EnergyPlus simulation programs. The third part of the guide (given in Section 11) describes the various interfaces of the LCCP code.

  4. Electronics packaging considerations for space applications

    NASA Technical Reports Server (NTRS)

    Zulueta, P. J.

    2004-01-01

    The functionality of spacecraft electronics must be maintained in the harsh environments found in space. The radiation environments can consist of either low-energy x-rays at the surface of the spacecraft or high-energy electrons, high-energy protons and high-energy photons withn the spacecraft.

  5. Engineering flat electronic bands in quasiperiodic and fractal loop geometries

    NASA Astrophysics Data System (ADS)

    Nandy, Atanu; Chakrabarti, Arunava

    2015-11-01

    Exact construction of one electron eigenstates with flat, non-dispersive bands, and localized over clusters of various sizes is reported for a class of quasi-one-dimensional looped networks. Quasiperiodic Fibonacci and Berker fractal geometries are embedded in the arms of the loop threaded by a uniform magnetic flux. We work out an analytical scheme to unravel the localized single particle states pinned at various atomic sites or over clusters of them. The magnetic field is varied to control, in a subtle way, the extent of localization and the location of the flat band states in energy space. In addition to this we show that an appropriate tuning of the field can lead to a re-entrant behavior of the effective mass of the electron in a band, with a periodic flip in its sign.

  6. Information Engineering and the Information Engineering Facility versus Rapid Application Development and Focus

    DTIC Science & Technology

    1992-12-01

    business requirements that are resilient and responsive to continuous change and improvement. Business re-engineering focuses on the strategic vision and... Supply department of the Naval Postgraduate School (NPS). Future possibilities for applications include integrating the curricular offices, travel and...operations ( supply , public works, and financial and personnel resources) are directed by military personnel with predominantly civilian staffs. The

  7. System Engineering of Photonic Systems for Space Application

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  8. Biomaterial based cardiac tissue engineering and its applications

    PubMed Central

    Huyer, Locke Davenport; Montgomery, Miles; Zhao, Yimu; Xiao, Yun; Conant, Genevieve; Korolj, Anastasia; Radisic, Milica

    2015-01-01

    Cardiovascular disease is a leading cause of death worldwide, necessitating the development of effective treatment strategies. A myocardial infarction involves the blockage of a coronary artery leading to depletion of nutrient and oxygen supply to cardiomyocytes and massive cell death in a region of the myocardium. Cardiac tissue engineering is the growth of functional cardiac tissue in vitro on biomaterial scaffolds for regenerative medicine application. This strategy relies on the optimization of the complex relationship between cell networks and biomaterial properties. In this review, we discuss important biomaterial properties for cardiac tissue engineering applications, such as elasticity, degradation, and induced host response, and their relationship to engineered cardiac cell environments. With these properties in mind, we also emphasize in vitro use of cardiac tissues for high-throughput drug screening and disease modelling. PMID:25989939

  9. Commercial applications of electron beam advanced oxidation technology

    NASA Astrophysics Data System (ADS)

    Curry, Randy D.; Bosma, John T.

    1995-03-01

    Emerging commercial applications of electron-beam advanced oxidation technology offer a significant advancement in the treatment of waste steams. Both electron beam and X-ray (Brehmsstrahlung) advanced oxidation processes have been shown to be effective in the destruction of volatile and semivolatile organic compounds. Emerging commercial applications, however, far exceed in scope current applications of oxidation technologies for the destruction of simple semivolatile and volatile organic compounds in water. Emerging applications include direct treatment of contaminated soil, removal of metal ions from water and sterilization of water, sludges, and food. Application of electron beam advanced oxidation technologies are reviewed, along with electron- beam-generated X-ray (Brehmsstrahlung) advanced oxidation processes. Advantages of each technology are discussed along with advanced accelerator technologies which are applicable for commercial processing of waste streams. An overview of the U.S. companies and laboratories participating in this research area are included in this discussion.

  10. Coaxial electrospun fibers: applications in drug delivery and tissue engineering.

    PubMed

    Lu, Yang; Huang, Jiangnan; Yu, Guoqiang; Cardenas, Romel; Wei, Suying; Wujcik, Evan K; Guo, Zhanhu

    2016-09-01

    Coelectrospinning and emulsion electrospinning are two main methods for preparing core-sheath electrospun nanofibers in a cost-effective and efficient manner. Here, physical phenomena and the effects of solution and processing parameters on the coaxial fibers are introduced. Coaxial fibers with specific drugs encapsulated in the core can exhibit a sustained and controlled release. Their exhibited high surface area and three-dimensional nanofibrous network allows the electrospun fibers to resemble native extracellular matrices. These features of the nanofibers show that they have great potential in drug delivery and tissue engineering applications. Proteins, growth factors, antibiotics, and many other agents have been successfully encapsulated into coaxial fibers for drug delivery. A main advantage of the core-sheath design is that after the process of electrospinning and release, these drugs remain bioactive due to the protection of the sheath. Applications of coaxial fibers as scaffolds for tissue engineering include bone, cartilage, cardiac tissue, skin, blood vessels and nervous tissue, among others. A synopsis of novel coaxial electrospun fibers, discussing their applications in drug delivery and tissue engineering, is covered pertaining to proteins, growth factors, antibiotics, and other drugs and applications in the fields of bone, cartilage, cardiac, skin, blood vessel, and nervous tissue engineering, respectively. WIREs Nanomed Nanobiotechnol 2016, 8:654-677. doi: 10.1002/wnan.1391 For further resources related to this article, please visit the WIREs website.

  11. Application of Plagiarism Screening Software in the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Cooper, Matthew E.; Bullard, Lisa G.

    2014-01-01

    Plagiarism is an area of increasing concern for written ChE assignments, such as laboratory and design reports, due to ease of access to text and other materials via the internet. This study examines the application of plagiarism screening software to four courses in a university chemical engineering curriculum. The effectiveness of plagiarism…

  12. Guidance Document for PMF Applications with the Multilinear Engine

    EPA Science Inventory

    This document serves as a guide for users of the Multilinear Engine version 2 (ME-2) for source apportionment applications utilizing positive matrix factorization (PMF). It aims to educate experienced source apportionment analysts on available ME rotational tools and provides gui...

  13. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    NASA Astrophysics Data System (ADS)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  14. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    PubMed Central

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  15. Adiabatic diesel engine component development: Reference engine for on-highway applications

    NASA Technical Reports Server (NTRS)

    Hakim, Nabil S.

    1986-01-01

    The main objectives were to select an advanced low heat rejection diesel reference engine (ADRE) and to carry out systems analysis and design. The ADRE concept selection consisted of: (1) rated point performance optimization; (2) study of various exhaust energy recovery scenarios; (3) components, systems and engine configuration studies; and (4) life cycle cost estimates of the ADRE economic worth. The resulting ADRE design proposed a reciprocator with many advanced features for the 1995 technology demonstration time frame. These included ceramic air gap insulated hot section structural components, high temperature tribology treatments, nonmechanical (camless) valve actuation systems, and elimination of the cylinder head gasket. ADRE system analysis and design resulted in more definition of the engine systems. These systems include: (1) electro-hydraulic valve actuation, (2) electronic common rail injection system; (3) engine electronic control; (4) power transfer for accessory drives and exhaust energy recovery systems; and (5) truck installation. Tribology and performance assessments were also carried out. Finite element and probability of survival analyses were undertaken for the ceramic low heat rejection component.

  16. Integrating electron microscopy into nanoscience and materials engineering programs

    NASA Astrophysics Data System (ADS)

    Cormia, Robert D.; Oye, Michael M.; Nguyen, Anh; Skiver, David; Shi, Meng; Torres, Yessica

    2014-10-01

    Preparing an effective workforce in high technology is the goal of both academic and industry training, and has been the engine that drives innovation and product development in the United States for over a century. During the last 50 years, technician training has comprised a combination of two-year academic programs, internships and apprentice training, and extensive On-the-Job Training (OJT). Recently, and especially in Silicon Valley, technicians have four-year college degrees, as well as relevant hands-on training. Characterization in general, and microscopy in particular, is an essential tool in process development, manufacturing and QA/QC, and failure analysis. Training for a broad range of skills and practice is challenging, especially for community colleges. Workforce studies (SRI/Boeing) suggest that even four year colleges often do not provide the relevant training and experience in laboratory skills, especially design of experiments and analysis of data. Companies in high-tech further report difficulty in finding skilled labor, especially with industry specific experience. Foothill College, in partnership with UCSC, SJSU, and NASA-Ames, has developed a microscopy training program embedded in a research laboratory, itself a partnership between university and government, providing hands-on experience in advanced instrumentation, experimental design and problem solving, with real-world context from small business innovators, in an environment called `the collaboratory'. The program builds on AFM-SEM training at Foothill, and provides affordable training in FE-SEM and TEM through a cost recovery model. In addition to instrument and engineering training, the collaboratory also supports academic and personal growth through a multiplayer social network of students, faculty, researchers, and innovators.

  17. Research on Intense Electron Beams and Applications.

    DTIC Science & Technology

    1984-07-01

    controlled fusion research devices10 - 12 and other machines . 13 In recent times there has been renewed interest in high power, high efficiency microwave...7, 22 (1960). 16. 0. Buneman, J. Electron. Control 3, 1,507 (1957). 17. G. DOhler, submitted to IEEE Trans. Electron Devices. 18. Y.Y. Lau and D...with respect to h when ways positive. h - 1/vs Thus. according to Eqs (1) and (5). the £ 140. Buneman. J. Electron. Control 3. 507 (1957). layer is most

  18. Shape Engineered Nanoparticle Fabrication for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Nasrullah, Azeem

    Semiconductor fabrication research has developed technologies that allow for the deposition and patterning of thin films, and can be applied to many different industries, including the field of medicine. One such application is the fabrication of nanoparticles. There is a wide variety of nanoparticle-based medical diagnostics and therapies, including drug delivery and cancer imaging. Most of the nanoparticles being studied are chemically synthesized and spherical in shape, and studies have shown that other shapes can be more useful in certain applications, especially those that involve in vivo analysis and treatment. Fabrication of particles using a tool set developed from the semiconductor industry can allow for a detailed study of size and shape dependence on nanoparticle uptake in the bloodstream. Particle fabrication is achieved using thin film deposition, ion beam proximity lithography, wet etching, and lift-off, all similar to techniques commonly found in the semiconductor industry. The particles are formed using patterns developed with proximity lithography, and this represents the largest effort in this work. An ion beam, generated by a saddle-field ion source, is used to irradiate a polymeric resist with a thin membrane stencil mask placed in close proximity to the resist coated substrate in order to define the pattern. A saddle-field ion source was constructed and characterized for proximity lithography, with a beam diameter of 4.8 mm for a +/-5% tolerance in current density, a source size range of 0.3--0.9 mm, an average brightness value of 15 nAcm2˙sr , and average exposure times of ≈30 s. Stencil masks were fabricated from silicon nitride membranes in order to generate the pattern for the nanoparticles, and the particles were fabricated using a bi-layer resist and a sacrificial copper layer for release into solution.

  19. Space applications of superconductivity - Digital electronics

    NASA Technical Reports Server (NTRS)

    Harris, R. E.

    1980-01-01

    Superconducting electronics offers a variety of remarkable properties including high speed and low dissipation. The paper discusses fundamental considerations which appear to suggest that superconducting (cryogenic) technology will offer significant advantages for future digital devices. It shows how the active element in superconducting electronics, the Josephson junction, works and discusses the technology for fabricating the devices. The characteristics of published circuits are briefly reviewed, and the capabilities of future superconducting computers and instruments are projected.

  20. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications.

  1. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering.

    PubMed

    Han, Chun-mao; Zhang, Li-ping; Sun, Jin-zhang; Shi, Hai-fei; Zhou, Jie; Gao, Chang-you

    2010-07-01

    To create a scaffold that is suitable for the construction of tissue-engineered skin, a novel asymmetric porous scaffold with different pore sizes on either side was prepared by combining a collagen-chitosan porous membrane with fibrin glue. Tissue-engineered skin was fabricated using this asymmetric scaffold, fibroblasts, and a human keratinocyte line (HaCaT). Epidermal cells could be seen growing easily and achieved confluence on the fibrin glue on the upper surface of the scaffold. Scanning electron microscopy showed typical shuttle-like fibroblasts adhering to the wall of the scaffold and fluorescence microscopy showed them growing in the dermal layer of the scaffold. The constructed composite skin substitute had a histological structure similar to that of normal skin tissue after three weeks of culture. The results of our study suggest that the asymmetric scaffold is a promising biologically functional material for skin tissue engineering, with prospects for clinical applications.

  2. Application of collagen-chitosan/fibrin glue asymmetric scaffolds in skin tissue engineering*

    PubMed Central

    Han, Chun-mao; Zhang, Li-ping; Sun, Jin-zhang; Shi, Hai-fei; Zhou, Jie; Gao, Chang-you

    2010-01-01

    To create a scaffold that is suitable for the construction of tissue-engineered skin, a novel asymmetric porous scaffold with different pore sizes on either side was prepared by combining a collagen-chitosan porous membrane with fibrin glue. Tissue-engineered skin was fabricated using this asymmetric scaffold, fibroblasts, and a human keratinocyte line (HaCaT). Epidermal cells could be seen growing easily and achieved confluence on the fibrin glue on the upper surface of the scaffold. Scanning electron microscopy showed typical shuttle-like fibroblasts adhering to the wall of the scaffold and fluorescence microscopy showed them growing in the dermal layer of the scaffold. The constructed composite skin substitute had a histological structure similar to that of normal skin tissue after three weeks of culture. The results of our study suggest that the asymmetric scaffold is a promising biologically functional material for skin tissue engineering, with prospects for clinical applications. PMID:20593518

  3. Altitude Wind Tunnel Investigation of XJ34-WE-32 Engine Performance Without Electronic Control

    NASA Technical Reports Server (NTRS)

    Bloomer, Harry E; Walker, William J; Pantages, George L

    1953-01-01

    An investigation was conducted in the NACA Lewis altitude wind tunnel to evaluate the performance characteristics of an XJ34-WE-32 turbojet engine which was equipped with an afterburner, a variable-area exhaust nozzle, and an integrated electronic control. The data were obtained with the afterburner and electronic control inoperative. Performance data were obtained at altitudes from 5000 to 55,000 feet and flight Mach numbers from 0.28 to 1.06 for a complete range of operable engine speeds at each of four fixed positions of the variable-area exhaust nozzle.

  4. Flight test of a full authority Digital Electronic Engine Control system in an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Barrett, W. J.; Rembold, J. P.; Burcham, F. W.; Myers, L.

    1981-01-01

    The Digital Electronic Engine Control (DEEC) system considered is a relatively low cost digital full authority control system containing selectively redundant components and fault detection logic with capability for accommodating faults to various levels of operational capability. The DEEC digital control system is built around a 16-bit, 1.2 microsecond cycle time, CMOS microprocessor, microcomputer system with approximately 14 K of available memory. Attention is given to the control mode, component bench testing, closed loop bench testing, a failure mode and effects analysis, sea-level engine testing, simulated altitude engine testing, flight testing, the data system, cockpit, and real time display.

  5. Applications of synchrotron radiation to Chemical Engineering Science: Workshop report

    SciTech Connect

    Not Available

    1991-07-01

    This report contains extended abstracts that summarize presentations made at the Workshop on Applications of Synchrotron Radiation to Chemical Engineering Science held at Argonne National Laboratory (ANL), Argonne, IL, on April 22--23, 1991. The talks emphasized the application of techniques involving absorption fluorescence, diffraction, and reflection of synchrotron x-rays, with a focus on problems in applied chemistry and chemical engineering, as well as on the use of x-rays in topographic, tomographic, and lithographic procedures. The attendees at the workshop included experts in the field of synchrotron science, scientists and engineers from ANL, other national laboratories, industry, and universities; and graduate and undergraduate students who were enrolled in ANL educational programs at the time of the workshop. Talks in the Plenary and Overview Session described the status of and special capabilities to be offered by the Advanced Photon Source (APS), as well as strategies and opportunities for utilization of synchrotron radiation to solve science and engineering problems. Invited talks given in subsequent sessions covered the use of intense infrared, ultraviolet, and x-ray photon beams (as provided by synchrotrons) in traditional and nontraditional areas of chemical engineering research related to electrochemical and corrosion science, catalyst development and characterization, lithography and imaging techniques, and microanalysis.

  6. Foil Bearing Starting Considerations and Requirements for Rotorcraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2009-01-01

    Foil gas bearings under development for rotorcraft-sized, hot core engine applications have been susceptible to damage from the slow acceleration and rates typically encountered during the pre-ignition stage in conventional engines. Recent laboratory failures have been assumed to be directly linked to operating foil bearings below their lift-off speed while following conventional startup procedures for the engines. In each instance, the continuous sliding contact between the foils and shaft was believed to thermally overload the bearing and cause the engines to fail. These failures highlight the need to characterize required acceleration rates and minimum operating speeds for these applications. In this report, startup experiments were conducted with a large, rotorcraft engine sized foil bearing under moderate load and acceleration rates to identify the proper start procedures needed to avoid bearing failure. The results showed that a bearing under a 39.4 kPa static load can withstand a modest acceleration rate of 500 rpm/s and excessive loitering below the bearing lift-off speed provided an adequate solid lubricant is present.

  7. Toward clinical application of tissue-engineered cartilage.

    PubMed

    Fulco, Ilario; Largo, René Denis; Miot, Sylvie; Wixmerten, Anke; Martin, Ivan; Schaefer, Dirk J; Haug, Martin Dieter

    2013-04-01

    Since the late 1960s, surgeons and scientists envisioned use of tissue engineering to provide an alternative treatment for tissue and organ damage by combining biological and synthetic components in such a way that a long-lasting repair was established. In addition to the treatment, the patient would also benefit from reduced donor site morbidity and operation time as compared with the standard procedures. Tremendous efforts in basic research have been done since the late 1960s to better understand chondrocyte biology and cartilage maturation and to fulfill the growing need for tissue-engineered cartilage in reconstructive, trauma, and orthopedic surgery. Starting from the first successful generation of engineered cartilaginous tissue, scientists strived to improve the properties of the cartilaginous constructs by characterizing different cell sources, modifying the environmental factors influencing cell expansion and differentiation and applying physical stimuli to modulate the mechanical properties of the construct. All these efforts have finally led to a clinical phase I trial to show the safety and feasibility of using tissue-engineered cartilage in reconstructive facial surgery. However, to bring tissue engineering into routine clinical applications and commercialize tissue-engineered grafts, further research is necessary to achieve a cost-effective, standardized, safe, and regulatory compliant process.

  8. Recent Advances in Application of Biosensors in Tissue Engineering

    PubMed Central

    Paul, Arghya; Lee, Yong-kyu; Jaffa, Ayad A.

    2014-01-01

    Biosensors research is a fast growing field in which tens of thousands of papers have been published over the years, and the industry is now worth billions of dollars. The biosensor products have found their applications in numerous industries including food and beverages, agricultural, environmental, medical diagnostics, and pharmaceutical industries and many more. Even though numerous biosensors have been developed for detection of proteins, peptides, enzymes, and numerous other biomolecules for diverse applications, their applications in tissue engineering have remained limited. In recent years, there has been a growing interest in application of novel biosensors in cell culture and tissue engineering, for example, real-time detection of small molecules such as glucose, lactose, and H2O2 as well as serum proteins of large molecular size, such as albumin and alpha-fetoprotein, and inflammatory cytokines, such as IFN-g and TNF-α. In this review, we provide an overview of the recent advancements in biosensors for tissue engineering applications. PMID:25165697

  9. Sandia technology: Engineering and science applications

    NASA Astrophysics Data System (ADS)

    Maydew, M. C.; Parrot, H.; Dale, B. C.; Floyd, H. L.; Leonard, J. A.; Parrot, L.

    1990-12-01

    This report discusses: protecting environment, safety, and health; Sandia's quality initiative; Sandia vigorously pursues technology transfer; scientific and technical education support programs; nuclear weapons development; recognizing battlefield targets with trained artificial neural networks; battlefield robotics: warfare at a distance; a spinning shell sizes up the enemy; thwarting would-be nuclear terrorists; unattended video surveillance system for nuclear facilities; making the skies safer for travelers; onboard instrumentation system to evaluate performance of stockpile bombs; keeping track with lasers; extended-life lithium batteries; a remote digital video link acquires images securely; guiding high-performance missiles with laser gyroscopes; nonvolatile memory chips for space applications; initiating weapon explosives with lasers; next-generation optoelectronics and microelectronics technology developments; chemometrics: new methods for improving chemical analysis; research team focuses ion beam to record-breaking intensities; standardizing the volt to quantum accuracy; new techniques improve robotic software development productivity; a practical laser plasma source for generating soft x-rays; exploring metal grain boundaries; massively parallel computing; modeling the amount of desiccant needed for moisture control; attacking pollution with sunshine; designing fuel-conversion catalysts with computers; extending a nuclear power plant's useful life; plasma-facing components for the International Thermonuclear Experimental Reactor.

  10. Metabolic engineering and applications of polyhydroxyalkanoates (PHAs)

    SciTech Connect

    Williams, S.F.; Gerngross, U.T.; Peoples, O.P.

    1995-11-01

    Polyhydroxyalkanoates (PHAs) have been recognized for many years as naturally occurring biodegradable plastics. The PHA plastics range from those that resemble polypropylene to other that are more elastomeric. A fundamental understanding of the genetic and biochemical pathways involved in PHA synthesis has now made it possible to produce PHAs commercially at an attractive cost and scale, using Metabolix`s transgenic technology. This technology, which was pioneered at The Massachusetts Institute of Technology, allows PHAs to be produced in the short-term by highly efficient fermentation systems, and ultimately, in plant crops. Production of PHAs in plant crops offers the promise of costs competitive with petroleum derived polymers. Millions of acres of transgenic plant crops could provide millions of tonnes of PHAs, increasing the use of renewable resources, and decreasing the U.S. reliance on imported oil. Furthermore, through the production of new PHA products, this technology provides new outlets to expand the U.S. industrial agricultural base. An overview of the scientific and industrial importance of PHAs, including the molecular genetics, biosynthesis, applications, and markets for these materials will be presented.

  11. Diamond-based heat spreaders for power electronic packaging applications

    NASA Astrophysics Data System (ADS)

    Guillemet, Thomas

    As any semiconductor-based devices, power electronic packages are driven by the constant increase of operating speed (higher frequency), integration level (higher power), and decrease in feature size (higher packing density). Although research and innovation efforts have kept these trends continuous for now more than fifty years, the electronic packaging technology is currently facing a challenge that must be addressed in order to move toward any further improvements in terms of performances or miniaturization: thermal management. Thermal issues in high-power packages strongly affect their reliability and lifetime and have now become one of the major limiting factors of power modules development. Thus, there is a strong need for materials that can sustain higher heat flux levels while safely integrating into the electronic package architecture. In such context, diamond is an attractive candidate because of its outstanding thermal conductivity, low thermal expansion, and high electrical resistivity. Its low heat capacity relative to metals such as aluminum or copper makes it however preferable for heat spreading applications (as a heat-spreader) rather than for dissipating the heat flux itself (as a heat sink). In this study, a dual diamond-based heat-spreading solution is proposed. Polycrystalline diamond films were grown through laser-assisted combustion synthesis on electronic substrates (in the U.S) while, in parallel, diamond-reinforced copper-matrix composite films were fabricated through tape casting and hot pressing (in France). These two types of diamond-based heat-spreading films were characterized and their microstructure and chemical composition were related to their thermal performances. Particular emphasize was put on the influence of interfaces on the thermal properties of the materials, either inside a single material (grain boundaries) or between dissimilar materials (film/substrate interface, matrix/reinforcement interface). Finally, the packaging

  12. Resonant enhancement in nanostructured thermoelectric performance via electronic thermal conductivity engineering

    NASA Astrophysics Data System (ADS)

    Patil, Urvesh; Muralidharan, Bhaskaran

    2017-01-01

    The use of an asymmetric broadening in the transport distribution, a characteristic of resonant structures, is proposed as a route to engineer a decrease in electronic thermal conductivity thereby enhancing the electronic figure of merit in nanostructured thermoelectrics. Using toy models, we first demonstrate that a decrease in thermal conductivity resulting from such an asymmetric broadening may indeed lead to an electronic figure of merit well in excess of 1000 in an idealized situation and in excess of 10 in a realistic situation. We then substantiate with realistic resonant structures designed using graphene nano-ribbons by employing a tight binding framework with edge correction that match density functional theory calculations under the local density approximation. The calculated figure of merit exceeding 10 in such realistic structures further reinforces the concept and sets a promising direction to use nano-ribbon structures to engineer a favorable decrease in the electronic thermal conductivity.

  13. Engineering of Brome mosaic virus for biomedical applications

    PubMed Central

    Yildiz, Ibrahim; Tsvetkova, Irina; Wen, Amy M.; Shukla, Sourabh; Masarapu, M. Hema; Dragnea, Bogdan; Steinmetz, Nicole F.

    2016-01-01

    Viral nanoparticles (VNPs) are becoming versatile tools in platform technology development. Their well-defined structures as well as their programmability through chemical and genetic modification allow VNPs to be engineered for potential imaging and therapeutic applications. In this article, we report the application of a variety of bioconjugation chemistries to the plant VNP Brome mosaic virus (BMV). Functional BMV nanoparticles displaying multiple copies of fluorescent dyes, PEG molecules, chemotherapeutic drug moieties, targeting proteins and cell penetrating peptides were formulated. This opens the door for the application of BMV in nanomedicine. PMID:28018580

  14. Fabric opto-electronics enabling healthcare applications; a case study.

    PubMed

    van Pieterson, L; van Abeelen, F A; van Os, K; Hornix, E; Zhou, G; Oversluizen, G

    2011-01-01

    Textiles are a ubiquitous part of human life. By combining them with electronics to create electronic textile systems, new application fields emerge. In this paper, technology and applications of light-emitting textile systems are presented, with emphasis on the healthcare domain: A fabric substrate is described for electronic textile with robust interwoven connections between the conductive yarns in it. This fabric enables the creation of different forms of comfortable light therapy systems. Specific challenges to enable this use in medical applications are discussed.

  15. Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications.

    PubMed

    Leemhuis, Hans; Kelly, Ronan M; Dijkhuizen, Lubbert

    2010-01-01

    Cyclodextrin glucanotransferases (CGTases) are industrially important enzymes that produce cyclic alpha-(1,4)-linked oligosaccharides (cyclodextrins) from starch. Cyclodextrin glucanotransferases are also applied as catalysts in the synthesis of glycosylated molecules and can act as antistaling agents in the baking industry. To improve the performance of CGTases in these various applications, protein engineers are screening for CGTase variants with higher product yields, improved CD size specificity, etc. In this review, we focus on the strategies employed in obtaining CGTases with new or enhanced enzymatic capabilities by searching for new enzymes and improving existing enzymatic activities via protein engineering.

  16. Biodegradable and biocompatible polymers for tissue engineering application: a review.

    PubMed

    Asghari, Fatemeh; Samiei, Mohammad; Adibkia, Khosro; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-03-01

    Since so many years ago, tissue damages that are caused owing to various reasons attract scientists' attention to find a practical way to treat. In this regard, many studies were conducted. Nano scientists also suggested some ways and the newest one is called tissue engineering. They use biodegradable polymers in order to replace damaged structures in tissues to make it practical. Biodegradable polymers are dominant scaffolding materials in tissue engineering field. In this review, we explained about biodegradable polymers and their application as scaffolds.

  17. Engineering the electronic structure of graphene superlattices via Fermi velocity modulation

    NASA Astrophysics Data System (ADS)

    Lima, Jonas R. F.

    2017-01-01

    Graphene superlattices have attracted much research interest in the last years, since it is possible to manipulate the electronic properties of graphene in these structures. It has been verified that extra Dirac points appear in the electronic structure of the system. The electronic structure in the vicinity of these points has been studied for a gapless and gapped graphene superlattice and for a graphene superlattice with a spatially modulated energy gap. In each case a different behavior was obtained. In this work we show that via Fermi velocity engineering it is possible to tune the electronic properties of a graphene superlattice to match all the previous cases studied. We also obtained new features of the system never observed before, reveling that the electronic structure of graphene is very sensitive to the modulation of the Fermi velocity. The results obtained here are relevant for the development of novel graphene-based electronic devices.

  18. Defect engineering of the electronic transport through cuprous oxide interlayers

    PubMed Central

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlögl, Udo

    2016-01-01

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work. PMID:27256905

  19. Defect engineering of the electronic transport through cuprous oxide interlayers

    NASA Astrophysics Data System (ADS)

    Fadlallah, Mohamed M.; Eckern, Ulrich; Schwingenschlögl, Udo

    2016-06-01

    The electronic transport through Au–(Cu2O)n–Au junctions is investigated using first-principles calculations and the nonequilibrium Green’s function method. The effect of varying the thickness (i.e., n) is studied as well as that of point defects and anion substitution. For all Cu2O thicknesses the conductance is more enhanced by bulk-like (in contrast to near-interface) defects, with the exception of O vacancies and Cl substitutional defects. A similar transmission behavior results from Cu deficiency and N substitution, as well as from Cl substitution and N interstitials for thick Cu2O junctions. In agreement with recent experimental observations, it is found that N and Cl doping enhances the conductance. A Frenkel defect, i.e., a superposition of an O interstitial and O substitutional defect, leads to a remarkably high conductance. From the analysis of the defect formation energies, Cu vacancies are found to be particularly stable, in agreement with earlier experimental and theoretical work.

  20. Genetic engineering of the chloroplast: novel tools and new applications.

    PubMed

    Bock, Ralph

    2014-04-01

    The plastid genome represents an attractive target of genetic engineering in crop plants. Plastid transgenes often give high expression levels, can be stacked in operons and are largely excluded from pollen transmission. Recent research has greatly expanded our toolbox for plastid genome engineering and many new proof-of-principle applications have highlighted the enormous potential of the transplastomic technology in both crop improvement and the development of plants as bioreactors for the sustainable and cost-effective production of biopharmaceuticals, enzymes and raw materials for the chemical industry. This review describes recent technological advances with plastid transformation in seed plants. It focuses on novel tools for plastid genome engineering and transgene expression and summarizes progress with harnessing the potential of plastid transformation in biotechnology.

  1. Solar-Powered Electric Propulsion Systems: Engineering and Applications

    NASA Technical Reports Server (NTRS)

    Stearns, J. W.; Kerrisk, D. J.

    1966-01-01

    Lightweight, multikilowatt solar power arrays in conjunction with electric propulsion offer potential improvements to space exploration, extending the usefulness of existing launch vehicles to higher-energy missions. Characteristics of solar-powered electric propulsion missions are outlined, and preliminary performance estimates are shown. Spacecraft system engineering is discussed with respect to parametric trade-offs in power and propulsion system design. Relationships between mission performance and propulsion system performance are illustrated. The present state of the art of electric propulsion systems is reviewed and related to the mission requirements identified earlier. The propulsion system design and test requirements for a mission spacecraft are identified and discussed. Although only ion engine systems are currently available, certain plasma propulsion systems offer some advantages in over-all system design. These are identified, and goals are set for plasma-thrustor systems to make them competitive with ion-engine systems for mission applications.

  2. Metabolic engineering of Yarrowia lipolytica for industrial applications.

    PubMed

    Zhu, Quinn; Jackson, Ethel N

    2015-12-01

    Yarrowia lipolytica is a safe and robust yeast that has a history of industrial applications. Its physiological, metabolic and genomic characteristics have made it a superior host for metabolic engineering. The results of optimizing internal pathways and introducing new pathways have demonstrated that Y. lipolytica can be a platform cell factory for cost-effective production of chemicals and fuels derived from fatty acids, lipids and acetyl-CoA. Two products have been commercialized from metabolically engineered Y. lipolytica strains producing high amounts of omega-3 eicosapentaenoic acid, and more products are on the way to be produced at industrial scale. Here we review recent progress in metabolic engineering of Y. lipolytica for production of biodiesel fuel, functional fatty acids and carotenoids.

  3. Application of MRI and biomedical engineering in speech production study.

    PubMed

    Ventura, S R; Freitas, D R; Tavares, João Manuel R S

    2009-12-01

    Speech production has always been a subject of interest both at the morphological and acoustic levels. This knowledge is useful for a better understanding of all the involved mechanisms and for the construction of articulatory models. Magnetic resonance imaging (MRI) is a powerful technique that allows the study of the whole vocal tract, with good soft tissue contrast and resolution, and permits the calculation of area functions towards a better understanding of this mechanism. Thus, our aim is to demonstrate the value and application of MRI in speech production study and its relationship with engineering, namely with biomedical engineering. After vocal tract contours extraction, data were processed for 3D reconstruction culminating in model construction of some of the sounds of European Portuguese. MRI provides useful morphological data about the position and shape of the different speech articulators, and the biomedical engineering computational tools for its analysis.

  4. Applications and advances of metabolite biosensors for metabolic engineering.

    PubMed

    Liu, Di; Evans, Trent; Zhang, Fuzhong

    2015-09-01

    Quantification and regulation of pathway metabolites is crucial for optimization of microbial production bioprocesses. Genetically encoded biosensors provide the means to couple metabolite sensing to several outputs invaluable for metabolic engineering. These include semi-quantification of metabolite concentrations to screen or select strains with desirable metabolite characteristics, and construction of dynamic metabolite-regulated pathways to enhance production. Taking inspiration from naturally occurring systems, biosensor functions are based on highly diverse mechanisms including metabolite responsive transcription factors, two component systems, cellular stress responses, regulatory RNAs, and protein activities. We review recent developments in biosensors in each of these mechanistic classes, with considerations towards how these sensors are engineered, how new sensing mechanisms have led to improved function, and the advantages and disadvantages of each of these sensing mechanisms in relevant applications. We particularly highlight recent examples directly using biosensors to improve microbial production, and the great potential for biosensors to further inform metabolic engineering practices.

  5. [Plastid genome engineering: novel optimization strategies and applications].

    PubMed

    Zhou, Fei; Lu, Shizhan; Gao, Liang; Zhang, Juanjuan; Lin, Yongjun

    2015-08-01

    The plastid genome engineering system allows site-specific modifications via two homologous recombination events. It is much safer, more precise and efficient compared with the nuclear transformation system. This technology can be applied to the basic research to expand plastid genome function analysis, and it also provides an excellent platform for not only high-level production of recombinant proteins but also plant breeding. In this review, we summarize the state of the art and progresses in this field. We focus on novel breeding strategies in transformation system improvement and new tools to enhance plastid transgene expression levels. In addition, we highlight selected applications in resistance engineering and quality improvement via metabolic engineering. We believe that by overcoming current technological limitations in the plastid transformation system can another green revolution for crop breeding beckon.

  6. Sensor fusion with application to electronic warfare

    NASA Astrophysics Data System (ADS)

    Zanzalari, Robert M.; Van Alstine, Edward

    1999-03-01

    The Night Vision and Electronics Sensors Directorate, Survivability/Camouflage, Concealment and Deception Division mission is to provide affordable aircraft and ground electronic sensor/systems and signature management technologies which enhance survivability and lethality of US and International Forces. Since 1992, efforts have been undertaken in the area of Situational Awareness and Dominant Battlespace Knowledge. These include the Radar Deception and Jamming Advanced Technology Demonstration (ATD), Survivability and Targeting System Integration, Integrated Situation Awareness and Targeting ATD, Combat Identification, Ground Vehicle Situational Awareness, and Combined Electronic Intelligence Target Correlation. This paper will address the Situational Awareness process as it relates to the integration of Electronic Warfare (EW) with targeting and intelligence and information warfare systems. Discussion will be presented on the Sensor Fusion, Situation Assessment and Response Management Strategies. Sensor Fusion includes the association, correlation, and combination of data and information from single and multiple sources to achieve refined position and identity estimates, and complete and timely assessments of situations and threats as well as their significance. Situation Assessment includes the process of interpreting and expressing the environmnet based on situation abstract products and information from technical and doctrinal data bases. Finally, Response Management provides the centralized, adaptable control of all renewable and expendable countermeasure assets resulting in optimization of the response to the threat environment.

  7. Selected engineering properties and applications of EPS geofoam

    NASA Astrophysics Data System (ADS)

    Elragi, Ahmed Fouad

    Expanded polystyrene (EPS) geofoam is a lightweight material that has been used in engineering applications since at least the 1950s. Its density is about a hundredth of that of soil. It has good thermal insulation properties with stiffness and compression strength comparable to medium clay. It is utilized in reducing settlement below embankments, sound and vibration damping, reducing lateral pressure on substructures, reducing stresses on rigid buried conduits and related applications. This study starts with an overview on EPS geofoam. EPS manufacturing processes are described followed by a review of engineering properties found in previous research work done so far. Standards and design manuals applicable to EPS are presented. Selected EPS geofoam-engineering applications are discussed with examples. State-of-the-art of experimental work is done on different sizes of EPS specimens under different loading rates for better understanding of the behavior of the material. The effects of creep, sample size, strain rate and cyclic loading on the stress strain response are studied. Equations for the initial modulus and the strength of the material under compression for different strain rates are presented. The initial modulus and Poisson's ratio are discussed in detail. Sample size effect on creep behavior is examined. Three EPS projects are shown in this study. The creep behavior of the largest EPS geofoam embankment fill is shown. Results from laboratory tests, mathematical modeling and field records are compared to each other. Field records of a geofoam-stabilized slope are compared to finite difference analysis results. Lateral stress reduction on an EPS backfill retaining structure is analyzed. The study ends with a discussion on two promising properties of EPS geofoam. These are the damping ability and the compressibility of this material. Finite element analysis, finite difference analysis and lab results are included in this discussion. The discussion with the

  8. Generation and application of bessel beams in electron microscopy.

    PubMed

    Grillo, Vincenzo; Harris, Jérémie; Gazzadi, Gian Carlo; Balboni, Roberto; Mafakheri, Erfan; Dennis, Mark R; Frabboni, Stefano; Boyd, Robert W; Karimi, Ebrahim

    2016-07-01

    We report a systematic treatment of the holographic generation of electron Bessel beams, with a view to applications in electron microscopy. We describe in detail the theory underlying hologram patterning, as well as the actual electron-optical configuration used experimentally. We show that by optimizing our nanofabrication recipe, electron Bessel beams can be generated with relative efficiencies reaching 37±3%. We also demonstrate by tuning various hologram parameters that electron Bessel beams can be produced with many visible rings, making them ideal for interferometric applications, or in more highly localized forms with fewer rings, more suitable for imaging. We describe the settings required to tune beam localization in this way, and explore beam and hologram configurations that allow the convergences and topological charges of electron Bessel beams to be controlled. We also characterize the phase structure of the Bessel beams generated with our technique, using a simulation procedure that accounts for imperfections in the hologram manufacturing process.

  9. 21 CFR 1311.120 - Electronic prescription application requirements.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-approved encryption algorithm. FIPS 140-2 is incorporated by reference in § 1311.08. (iv) For software... application must protect the stored audit records from unauthorized deletion. The electronic...

  10. Stationary Engineers Apprenticeship. Related Training Modules. 5.1-5.17 Electricity/Electronics.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This packet of 17 learning modules on electricity/electronics is one of 20 such packets developed for apprenticeship training for stationary engineers. Introductory materials are a complete listing of all available modules and a supplementary reference list. Each module contains some or all of these components: goal, performance indicators,…

  11. Vertical and Horizontal Integration of Laboratory Curricula and Course Projects across the Electronic Engineering Technology Program

    ERIC Educational Resources Information Center

    Zhan, Wei; Goulart, Ana; Morgan, Joseph A.; Porter, Jay R.

    2011-01-01

    This paper discusses the details of the curricular development effort with a focus on the vertical and horizontal integration of laboratory curricula and course projects within the Electronic Engineering Technology (EET) program at Texas A&M University. Both software and hardware aspects are addressed. A common set of software tools are…

  12. 20 CFR 321.1 - Filing applications electronically.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Section 321.1 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD UNEMPLOYMENT INSURANCE ACT ELECTRONIC FILING OF APPLICATIONS AND CLAIMS FOR BENEFITS UNDER THE RAILROAD UNEMPLOYMENT... under the Railroad Unemployment Insurance Act may be filed electronically through the Board's...

  13. 20 CFR 321.1 - Filing applications electronically.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Section 321.1 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD UNEMPLOYMENT INSURANCE ACT ELECTRONIC FILING OF APPLICATIONS AND CLAIMS FOR BENEFITS UNDER THE RAILROAD UNEMPLOYMENT... under the Railroad Unemployment Insurance Act may be filed electronically through the Board's...

  14. 20 CFR 321.1 - Filing applications electronically.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Section 321.1 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD UNEMPLOYMENT INSURANCE ACT ELECTRONIC FILING OF APPLICATIONS AND CLAIMS FOR BENEFITS UNDER THE RAILROAD UNEMPLOYMENT... under the Railroad Unemployment Insurance Act may be filed electronically through the Board's...

  15. 20 CFR 321.1 - Filing applications electronically.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 321.1 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD UNEMPLOYMENT INSURANCE ACT ELECTRONIC FILING OF APPLICATIONS AND CLAIMS FOR BENEFITS UNDER THE RAILROAD UNEMPLOYMENT... under the Railroad Unemployment Insurance Act may be filed electronically through the Board's...

  16. 20 CFR 321.1 - Filing applications electronically.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Section 321.1 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD UNEMPLOYMENT INSURANCE ACT ELECTRONIC FILING OF APPLICATIONS AND CLAIMS FOR BENEFITS UNDER THE RAILROAD UNEMPLOYMENT... under the Railroad Unemployment Insurance Act may be filed electronically through the Board's...

  17. Potential applications of electron emission membranes in medicine

    NASA Astrophysics Data System (ADS)

    Bilevych, Yevgen; Brunner, Stefan E.; Chan, Hong Wah; Charbon, Edoardo; van der Graaf, Harry; Hagen, Cornelis W.; Nützel, Gert; Pinto, Serge D.; Prodanović, Violeta; Rotman, Daan; Santagata, Fabio; Sarro, Lina; Schaart, Dennis R.; Sinsheimer, John; Smedley, John; Tao, Shuxia; Theulings, Anne M. M. G.

    2016-02-01

    With a miniaturised stack of transmission dynodes, a noise free amplifier is being developed for the detection of single free electrons, with excellent time- and 2D spatial resolution and efficiency. With this generic technology, a new family of detectors for individual elementary particles may become possible. Potential applications of such electron emission membranes in medicine are discussed.

  18. Radiation design criteria handbook. [design criteria for electronic parts applications

    NASA Technical Reports Server (NTRS)

    Stanley, A. G.; Martin, K. E.; Douglas, S.

    1976-01-01

    Radiation design criteria for electronic parts applications in space environments are provided. The data were compiled from the Mariner/Jupiter Saturn 1977 electronic parts radiation test program. Radiation sensitive device types were exposed to radiation environments compatible with the MJS'77 requirements under suitable bias conditions. A total of 189 integrated circuits, transistors, and other semiconductor device types were tested.

  19. High Current Density Scandate Cathodes for Future Vacuum Electronics Applications

    DTIC Science & Technology

    2008-05-30

    braze alloy . The structure was fired in a furnace at 16500 C for 15 minutes. The resultant structure was sectioned to determine if the scandium flowed...Density Cathodes for Future Vacuum Electronics Applications FA9550-07-C-0063 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION...Current Density Scandate Cathodes for Future Vacuum Electronics Applications USAF/AFRL Contract Number FA9550-07-C-0063 Final Report Calabazas Creek

  20. Optical Thermal Characterization Enables High-Performance Electronics Applications

    SciTech Connect

    2016-02-01

    NREL developed a modeling and experimental strategy to characterize thermal performance of materials. The technique provides critical data on thermal properties with relevance for electronics packaging applications. Thermal contact resistance and bulk thermal conductivity were characterized for new high-performance materials such as thermoplastics, boron-nitride nanosheets, copper nanowires, and atomically bonded layers. The technique is an important tool for developing designs and materials that enable power electronics packaging with small footprint, high power density, and low cost for numerous applications.

  1. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    NASA Technical Reports Server (NTRS)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  2. The development and application of engineered proteins for bioremediation

    SciTech Connect

    Trewhella, J.

    1995-09-26

    Clean up of the toxic legacy of the Cold War is projected to be the most expensive domestic project the nation has yet undertaken. Remediation of the Department of Energy and Department of Defense toxic waste sites alone are projected to cost {approximately}$1 trillion over a 20-30 year period. New, cost effective technologies are needed to attack this enormous problem. Los Alamos has put together a cross-divisional team of scientist to develop science based bioremediation technology to work toward this goal. In the team we have expertise in: (1) molecular, ecosystem and transport modeling; (2) genetic and protein engineering; (3) microbiology and microbial ecology; (4) structural biology; and (5) bioinorganic chemistry. This document summarizes talks at a workshop of different aspects of bioremediation technology including the following: Introducing novel function into a Heme enzyme: engineering by excavation; cytochrome P-450: ideal systems for bioremediation?; selection and development of bacterial strains for in situ remediation of cholorinated solvents; genetic analysis and preparation of toluene ortho-monooxygenase for field application in remediation of trichloroethylene; microbial ecology and diversity important to bioremediation; engineering haloalkane dehalogenase for bioremediation; enzymes for oxidative biodegradation; indigenous bacteria as hosts for engineered proteins; performance of indigenous bacterial, hosting engineered proteins in microbial communities.

  3. DELTA-DIESEL ENGINE LIGHT TRUCK APPLICATION Contract DE-FC05-97OR22606 Final Report

    SciTech Connect

    Hakim, Nabil Balnaves, Mike

    2003-05-27

    DELTA Diesel Engine Light Truck Application End of Contract Report DE-FC05-97-OR22606 EXECUTIVE SUMMARY This report is the final technical report of the Diesel Engine Light Truck Application (DELTA) program under contract DE-FC05-97-OR22606. During the course of this contract, Detroit Diesel Corporation analyzed, designed, tooled, developed and applied the ''Proof of Concept'' (Generation 0) 4.0L V-6 DELTA engine and designed the successor ''Production Technology Demonstration'' (Generation 1) 4.0L V-6 DELTA engine. The objectives of DELTA Program contract DE-FC05-97-OR22606 were to: Demonstrate production-viable diesel engine technologies, specifically intended for the North American LDT and SUV markets; Demonstrate emissions compliance with significant fuel economy advantages. With a clean sheet design, DDC produced the DELTA engine concept promising the following attributes: 30-50% improved fuel economy; Low cost; Good durability and reliability; Acceptable noise, vibration and harshness (NVH); State-of-the-art features; Even firing, 4 valves per cylinder; High pressure common rail fuel system; Electronically controlled; Turbocharged, intercooled, cooled EGR; Extremely low emissions via CLEAN Combustion{copyright} technology. To demonstrate the engine technology in the SUV market, DDC repowered a 1999 Dodge Durango with the DELTA Generation 0 engine. Fuel economy improvements were approximately 50% better than the gasoline engine replaced in the vehicle.

  4. Electronics for Deep Space Cryogenic Applications

    NASA Technical Reports Server (NTRS)

    Patterson, R. L.; Hammond, A.; Dickman, J. E.; Gerber, S. S.; Elbuluk, M. E.; Overton, E.

    2002-01-01

    Deep space probes and planetary exploration missions require electrical power management and control systems that are capable of efficient and reliable operation in very cold temperature environments. Typically, in deep space probes, heating elements are used to keep the spacecraft electronics near room temperature. The utilization of power electronics designed for and operated at low temperature will contribute to increasing efficiency and improving reliability of space power systems. At NASA Glenn Research Center, commercial-off-the-shelf devices as well as developed components are being investigated for potential use at low temperatures. These devices include semiconductor switching devices, magnetics, and capacitors. Integrated circuits such as digital-to-analog and analog-to-digital converters, DC/DC converters, operational amplifiers, and oscillators are also being evaluated. In this paper, results will be presented for selected analog-to-digital converters, oscillators, DC/DC converters, and pulse width modulation (PWM) controllers.

  5. Enabling Aequorin for Biotechnology Applications Through Genetic Engineering.

    PubMed

    Grinstead, Kristen; Joel, Smita; Zingg, Jean-Marc; Dikici, Emre; Daunert, Sylvia

    2015-10-17

    In recent years, luminescent proteins have been studied for their potential application in a variety of detection systems. Bioluminescent proteins, which do not require an external excitation source, are especially well-suited as reporters in analytical detection. The photoprotein aequorin is a bioluminescent protein that can be engineered for use as a molecular reporter under a wide range of conditions while maintaining its sensitivity. Herein, the characteristics of aequorin as well as the engineering and production of aequorin variants and their impact on signal detection in biological systems are presented. The structural features and activity of aequorin, its benefits as a label for sensing and applications in highly sensitive detection, as well as in gaining insight into biological processes are discussed. Among those, focus has been placed on the highly sensitive calcium detection in vivo, in vitro DNA and small molecule sensing, and development of in vivo imaging technologies. Graphical Abstract.

  6. Some design considerations for ceramic components in heat engine applications

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John P.

    1986-01-01

    The design methodology for brittle material structures which is being developed and used at the Lewis Research Center for sizing ceramic components in heat engine applications is reviewed. Theoretical aspects of designing with structural ceramics are discussed, and a general purpose reliability program for predicting fast fracture response due to volume distributed flaws is described. Statistical treatment of brittle behavior, based on the Weibull model, is reviewed and its advantages, as well as drawbacks, are listed. A mechanistic statistical fracture theory, proposed by Batdorf to overcome the Weibull model limitations and based on Griffith fracture mechanics, is summarized. Failure probability predictions are made for rotating annular Si3N4 disks using various fracture models, and the results are compared to actual failure data. The application of these design methods to Government funded ceramics engine demonstration programs is surveyed. The uncertainty in observed component performance emphasizes the need for proof testing and improved nondestructive evaluation to guarantee adequate structural integrity.

  7. Fabrication and application of nanofibrous scaffolds in tissue engineering.

    PubMed

    Li, Wan-Ju; Tuan, Rocky S

    2009-03-01

    Nanofibers fabricated by electrospinning are morphological mimics of fibrous components of the native extracellular matrix, making nanofibrous scaffolds ideal for three-dimensional cell culture and tissue engineering applications. Although electrospinning is not a conventional technique in cell biology, the experimental setup may be constructed in a relatively straightforward manner, and the procedure can be carried out by individuals with limited engineering experience. Here, we detail a protocol for electrospinning of nanofibers and provide relevant specific details concerning the optimization of fiber formation (Basic Protocol 1). The protocol also includes conditions required for preparing biodegradable polymer solutions for the fabrication of nonwoven and aligned nanofibrous scaffolds suitable for various cell/tissue applications. In addition, information on effective cell loading into nanofibrous scaffolds and cellular constructs grown in a bioreactor is provided (Basic Protocol 2). Instructions for building the electrospinning apparatus are also included (see the Support Protocol).

  8. [Flexible print circuit technology application in biomedical engineering].

    PubMed

    Jiang, Lihua; Cao, Yi; Zheng, Xiaolin

    2013-06-01

    Flexible print circuit (FPC) technology has been widely applied in variety of electric circuits with high precision due to its advantages, such as low-cost, high specific fabrication ability, and good flexibility, etc. Recently, this technology has also been used in biomedical engineering, especially in the development of microfluidic chip and microelectrode array. The high specific fabrication can help making microelectrode and other micro-structure equipment. And good flexibility allows the micro devices based on FPC technique to be easily packaged with other parts. In addition, it also reduces the damage of microelectrodes to the tissue. In this paper, the application of FPC technology in biomedical engineering is introduced. Moreover, the important parameters of FPC technique and the development trend of prosperous applications is also discussed.

  9. Flight evaluation results for a digital electronic engine control in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Burcham, F. W., Jr.; Myers, L. P.; Walsh, K. R.

    1983-01-01

    A digital electronic engine control (DEEC) system on an F100 engine in an F-15 airplane was evaluated in flight. Thirty flights were flown in a four-phase program from June 1981 to February 1983. Significant improvements in the operability and performance of the F100 engine were developed as a result of the flight evaluation: the augmentor envelope was increased by 15,000 ft, the airstart envelope was improved by 75 knots, and the need to periodically trim the engine was eliminated. The hydromechanical backup control performance was evaluated and was found to be satisfactory. Two system failures were encountered in the test program; both were detected and accommodated successfully. No transfers to the backup control system were required, and no automatic transfers occurred. As a result of the successful DEEC flight evaluation, the DEEC system has entered the full-scale development phase.

  10. Lean NOx Trap Catalysis for Lean Natural Gas Engine Applications

    SciTech Connect

    Parks, II, James E; Storey, John Morse; Theiss, Timothy J; Ponnusamy, Senthil; Ferguson, Harley Douglas; Williams, Aaron M; Tassitano, James B

    2007-09-01

    Distributed energy is an approach for meeting energy needs that has several advantages. Distributed energy improves energy security during natural disasters or terrorist actions, improves transmission grid reliability by reducing grid load, and enhances power quality through voltage support and reactive power. In addition, distributed energy can be efficient since transmission losses are minimized. One prime mover for distributed energy is the natural gas reciprocating engine generator set. Natural gas reciprocating engines are flexible and scalable solutions for many distributed energy needs. The engines can be run continuously or occasionally as peak demand requires, and their operation and maintenance is straightforward. Furthermore, system efficiencies can be maximized when natural gas reciprocating engines are combined with thermal energy recovery for cooling, heating, and power applications. Expansion of natural gas reciprocating engines for distributed energy is dependent on several factors, but two prominent factors are efficiency and emissions. Efficiencies must be high enough to enable low operating costs, and emissions must be low enough to permit significant operation hours, especially in non-attainment areas where emissions are stringently regulated. To address these issues the U.S. Department of Energy and the California Energy Commission launched research and development programs called Advanced Reciprocating Engine Systems (ARES) and Advanced Reciprocating Internal Combustion Engines (ARICE), respectively. Fuel efficiency and low emissions are two primary goals of these programs. The work presented here was funded by the ARES program and, thus, addresses the ARES 2010 goals of 50% thermal efficiency (fuel efficiency) and <0.1 g/bhp-hr emissions of oxides of nitrogen (NOx). A summary of the goals for the ARES program is given in Table 1-1. ARICE 2007 goals are 45% thermal efficiency and <0.015 g/bhp-hr NOx. Several approaches for improving the

  11. Multivarable nyquist array method with application to turbofan engine control

    NASA Technical Reports Server (NTRS)

    Leininger, G. G.

    1980-01-01

    Extensions to the multivariable Nyquist array (MNA) method are used to design a feedback control system for the quiet clean shorthaul experimental engine. The results of this design are compared with those obtained from the deployment of an alternate control system design on a full scale nonlinear, real time digital simulation. The results clearly demonstrate the utility of the MNA synthesis procedures for highly nonlinear sophisticated design applications.

  12. Nuclear magnetic resonance in environmental engineering: principles and applications.

    PubMed

    Lens, P N; Hemminga, M A

    1998-01-01

    This paper gives an introduction to nuclear magnetic resonance spectroscopy (NMR) and magnetic resonance imaging (MRI) in relation to applications in the field of environmental science and engineering. The underlying principles of high resolution solution and solid state NMR, relaxation time measurements and imaging are presented. Then, the use of NMR is illustrated and reviewed in studies of biodegradation and biotransformation of soluble and solid organic matter, removal of nutrients and xenobiotics, fate of heavy metal ions, and transport processes in bioreactor systems.

  13. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.

    1985-01-01

    Advanced stress analysis methods applicable to turbine engine structures are investigated. Constructions of special elements which containing traction-free circular boundaries are investigated. New versions of mixed variational principle and version of hybrid stress elements are formulated. A method is established for suppression of kinematic deformation modes. semiLoof plate and shell elements are constructed by assumed stress hybrid method. An elastic-plastic analysis is conducted by viscoplasticity theory using the mechanical subelement model.

  14. Phytases: crystal structures, protein engineering and potential biotechnological applications.

    PubMed

    Yao, M-Z; Zhang, Y-H; Lu, W-L; Hu, M-Q; Wang, W; Liang, A-H

    2012-01-01

    Phytases are a group of enzymes capable of releasing phosphates from phytates, one of the major forms of phosphorus (P) in animal feeds of plant origin. These enzymes have been widely used in animal feed to improve phosphorus nutrition and to reduce phosphorus pollution in animal waste. This review covers the basic nomenclature and crystal structures of phytases and emphasizes both the protein engineering strategies used for the development of new, effective phytases with improved properties and the potential biotechnological applications of phytases.

  15. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.

  16. Sterilization techniques for biodegradable scaffolds in tissue engineering applications

    PubMed Central

    Dai, Zheng; Ronholm, Jennifer; Tian, Yiping; Sethi, Benu; Cao, Xudong

    2016-01-01

    Biodegradable scaffolds have been extensively studied due to their wide applications in biomaterials and tissue engineering. However, infections associated with in vivo use of these scaffolds by different microbiological contaminants remain to be a significant challenge. This review focuses on different sterilization techniques including heat, chemical, irradiation, and other novel sterilization techniques for various biodegradable scaffolds. Comparisons of these techniques, including their sterilization mechanisms, post-sterilization effects, and sterilization efficiencies, are discussed. PMID:27247758

  17. Electronic journals: Their use by teachers/researchers of engineering and social sciences

    NASA Astrophysics Data System (ADS)

    Martins, Fernanda; Machado, Diana; Fernandes, Alberto; Ribeiro, Fernanda

    2015-02-01

    Libraries must attend the needs of their different users. Academics are usually a particular kind of users with specific needs. Universities are environments where scientific communication is essential and where electronic format of journals is becoming more and more frequently used. This way it becomes increasingly important to understand how academics from different scientific areas use the available electronic resources. The aim of this study is to better understand the existing differences among the users of electronic journals in Engineering and Social Sciences. The research undertaken was mainly focused on the study of the use of electronic journals by teachers/researchers from the Faculties of Engineering and of Arts from the University of Porto, Portugal. In this study an international survey was used in order to characterize the levels of use and access of electronic journals by these communities. The ways of seeking and using scientific information, namely in terms frequency of access, the number of articles consulted, the use of databases and the preference of publishing in electronic journals were analyzed. A set of comparisons were established and results indicate an extensive use of the electronic format, regardless the faculty. However, some differences emerge when it comes to details. Such is the case of the usage rate of reference management software which is considerably more used by Engineering academics than Social Science ones. Generally, electronic journals meeting the information needs of its users and are increasingly used as a preferred means of research. Though, some particular differences in the use of them have emerged, when comparing academics from these two faculties.

  18. Genetic engineering of cytokinins and their application to agriculture.

    PubMed

    Ma, Qing-Hu

    2008-01-01

    Cytokinins are master regulators of plant growth and development. They are involved in the regulation of many important physiological and metabolic processes. Recent progress in cytokinin research at the molecular level, including identification of related genes and cytokinin receptors, plus elucidation of signal transduction, has greatly increased our understanding of cytokinin actions. Although still in its infant stage, molecular breeding of crops with altered cytokinin metabolism, when combined with the transgenic approach, has shown very promising potential for application to agriculture. In this review we briefly introduce recent progress in cytokinin molecular biology, discuss applications of cytokinin genetic engineering to agriculture, and present implications and future research directions.

  19. Pulsed electron accelerator for radiation technologies in the enviromental applications

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    1997-05-01

    The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.

  20. Computational Study of Primary Electrons in the Cusp Region of an Ion Engine's Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Stueber, Thomas J. (Technical Monitor); Deshpande, Shirin S.; Mahalingam, Sudhakar; Menart, James A.

    2004-01-01

    In this work a computer code called PRIMA is used to study the motion of primary electrons in the magnetic cusp region of the discharge chamber of an ion engine. Even though the amount of wall area covered by the cusps is very small, the cusp regions are important because prior computational analyses have indicated that most primary electrons leave the discharge chamber through the cusps. The analysis presented here focuses on the cusp region only. The affects of the shape and size of the cusp region on primary electron travel are studied as well as the angle and location at which the electron enters the cusp region. These affects are quantified using the confinement length and the number density distributions of the primary electrons. In addition to these results comparisons of the results from PRIMA are made to experimental results for a cylindrical discharge chamber with two magnetic rings. These comparisons indicate the validity of the computer code called PRIMA.

  1. Applications of neural networks in chemical engineering: Hybrid systems

    SciTech Connect

    Ferrada, J.J.; Osborne-Lee, I.W. ); Grizzaffi, P.A. )

    1990-01-01

    Expert systems are known to be useful in capturing expertise and applying knowledge to chemical engineering problems such as diagnosis, process control, process simulation, and process advisory. However, expert system applications are traditionally limited to knowledge domains that are heuristic and involve only simple mathematics. Neural networks, on the other hand, represent an emerging technology capable of rapid recognition of patterned behavior without regard to mathematical complexity. Although useful in problem identification, neural networks are not very efficient in providing in-depth solutions and typically do not promote full understanding of the problem or the reasoning behind its solutions. Hence, applications of neural networks have certain limitations. This paper explores the potential for expanding the scope of chemical engineering areas where neural networks might be utilized by incorporating expert systems and neural networks into the same application, a process called hybridization. In addition, hybrid applications are compared with those using more traditional approaches, the results of the different applications are analyzed, and the feasibility of converting the preliminary prototypes described herein into useful final products is evaluated. 12 refs., 8 figs.

  2. Technology Prospecting on Enzymes: Application, Marketing and Engineering

    PubMed Central

    Li, Shuang; Yang, Xiaofeng; Yang, Shuai; Zhu, Muzi; Wang, Xiaoning

    2012-01-01

    Enzymes are protein molecules functioning as specialized catalysts for chemical reactions. They have contributed greatly to the traditional and modern chemical industry by improving existing processes. In this article, we first give a survey of representative industrial applications of enzymes, focusing on the technical applications, feed industry, food processing and cosmetic products. The recent important developments and applications of enzymes in industry are reviewed. Then large efforts are dedicated to the worldwide enzyme market from the demand and production perspectives. Special attention is laid on the Chinese enzyme market. Although enzyme applications are being developed in full swing, breakthroughs are needed to overcome their weaknesses in maintaining activities during the catalytic processes. Strategies of metagomic analysis, cell surface display technology and cell-free system might give valuable solutions in novel enzyme exploiting and enzyme engineering. PMID:24688658

  3. Applications of Thin Films in Electronics,

    DTIC Science & Technology

    The authors review the application of thin films produced by vacuum vaporization, cathode sputtering, diffusion, and epitaxial growing in the fields...of passive and active electric components and microminiaturization. Some of the most important characteristics of thin films are summarized. (Author)

  4. Application of Thin Films in Electronics,

    DTIC Science & Technology

    The article reviews the application of thin films (produced by vacuum evaporation, cathode sputtering, diffusion and epitaxial growing) in the field...of passive and active electric components and in microminiaturization. Some of the characteristics of thin films are summarized. (Author)

  5. Nanocomposites for Electronic Applications. Volume 1

    DTIC Science & Technology

    1993-06-14

    Stannate Thin Films Prepared by Sol-Gel Process Large Strain Microactuator Applications," Materials Research Society Meeting, Boston, Massachusetts...also made from transition-metal oxide solid solutions. Glass- bonded Bi2 _2.Pb 2xRu2O07 _.. having the pyrochlore 112174-36-6] structure is typi- cal

  6. Electron deposition in water vapor, with atmospheric applications.

    NASA Technical Reports Server (NTRS)

    Olivero, J. J.; Stagat, R. W.; Green, A. E. S.

    1972-01-01

    Examination of the consequences of electron impact on water vapor in terms of the microscopic details of excitation, dissociation, ionization, and combinations of these processes. Basic electron-impact cross-section data are assembled in many forms and are incorporated into semianalytic functions suitable for analysis with digital computers. Energy deposition in water vapor is discussed, and the energy loss function is presented, along with the 'electron volts per ion pair' and the efficiencies of energy loss in various processes. Several applications of electron and water-vapor interactions in the atmospheric sciences are considered, in particular, H2O comets, aurora and airglow, and lightning.

  7. A Survey of Power Electronics Applications in Aerospace Technologies

    NASA Technical Reports Server (NTRS)

    Kankam, M. David; Elbuluk, Malik E.

    2001-01-01

    The insertion of power electronics in aerospace technologies is becoming widespread. The application of semiconductor devices and electronic converters, as summarized in this paper, includes the International Space Station, satellite power system, and motor drives in 'more electric' technology applied to aircraft, starter/generators and reusable launch vehicles. Flywheels, servo systems embodying electromechanical actuation, and spacecraft on-board electric propulsion are discussed. Continued inroad by power electronics depends on resolving incompatibility of using variable frequency for 400 Hz-operated aircraft equipment. Dual-use electronic modules should reduce system development cost.

  8. High-Power Electron Accelerators for Space (and other) Applications

    SciTech Connect

    Nguyen, Dinh Cong; Lewellen, John W.

    2016-05-23

    This is a presentation on high-power electron accelerators for space and other applications. The main points covered are: electron beams for space applications, new designs of RF accelerators, high-power high-electron mobility transistors (HEMT) testing, and Li-ion battery design. In summary, the authors have considered a concept of 1-MeV electron accelerator that can operate up to several seconds. This concept can be extended to higher energy to produce higher beam power. Going to higher beam energy requires adding more cavities and solid-state HEMT RF power devices. The commercial HEMT have been tested for frequency response and RF output power (up to 420 W). Finally, the authors are testing these HEMT into a resonant load and planning for an electron beam test in FY17.

  9. Silicon Carbide Sensors and Electronics for Harsh Environment Applications

    NASA Technical Reports Server (NTRS)

    Evans, Laura J.

    2007-01-01

    Silicon carbide (SiC) semiconductor has been studied for electronic and sensing applications in extreme environment (high temperature, extreme vibration, harsh chemical media, and high radiation) that is beyond the capability of conventional semiconductors such as silicon. This is due to its near inert chemistry, superior thermomechanical and electronic properties that include high breakdown voltage and wide bandgap. An overview of SiC sensors and electronics work ongoing at NASA Glenn Research Center (NASA GRC) will be presented. The main focus will be two technologies currently being investigated: 1) harsh environment SiC pressure transducers and 2) high temperature SiC electronics. Work highlighted will include the design, fabrication, and application of SiC sensors and electronics, with recent advancements in state-of-the-art discussed as well. These combined technologies are studied for the goal of developing advanced capabilities for measurement and control of aeropropulsion systems, as well as enhancing tools for exploration systems.

  10. Aligned carbon nanotubes: from controlled synthesis to electronic applications

    NASA Astrophysics Data System (ADS)

    Liu, Bilu; Wang, Chuan; Liu, Jia; Che, Yuchi; Zhou, Chongwu

    2013-09-01

    Single-wall carbon nanotubes (SWNTs) possess superior geometrical, electronic, chemical, thermal, and mechanical properties and are very attractive for applications in electronic devices and circuits. To make this a reality, the nanotube orientation, density, diameter, electronic property, and even chirality should be well controlled. This Feature article focuses on recent achievements researchers have made on the controlled growth of horizontally aligned SWNTs and SWNT arrays on substrates and their electronic applications. Principles and strategies to control the morphology, structure, and properties of SWNTs are reviewed in detail. Furthermore, electrical properties of field-effect transistors fabricated on both individual SWNTs and aligned SWNT arrays are discussed. State-of-the-art electronic devices and circuits based on aligned SWNTs and SWNT arrays are also highlighted.

  11. Cryogenic Applications of Commercial Electronic Components

    NASA Technical Reports Server (NTRS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Moseley, S. Harvey; Wollack, Edward J.

    2012-01-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG and in the GISMO camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  12. Cryogenic applications of commercial electronic components

    NASA Astrophysics Data System (ADS)

    Buchanan, Ernest D.; Benford, Dominic J.; Forgione, Joshua B.; Harvey Moseley, S.; Wollack, Edward J.

    2012-10-01

    We have developed a range of techniques useful for constructing analog and digital circuits for operation in a liquid Helium environment (4.2 K), using commercially available low power components. The challenges encountered in designing cryogenic electronics include finding components that can function usefully in the cold and possess low enough power dissipation so as not to heat the systems they are designed to measure. From design, test, and integration perspectives it is useful for components to operate similarly at room and cryogenic temperatures; however this is not a necessity. Some of the circuits presented here have been used successfully in the MUSTANG [1] and in the GISMO [2] camera to build a complete digital to analog multiplexer (which will be referred to as the Cryogenic Address Driver board). Many of the circuit elements described are of a more general nature rather than specific to the Cryogenic Address Driver board, and were studied as a part of a more comprehensive approach to addressing a larger set of cryogenic electronic needs.

  13. Advances in Electronic-Nose Technologies Developed for Biomedical Applications

    PubMed Central

    Wilson, Alphus D.; Baietto, Manuela

    2011-01-01

    The research and development of new electronic-nose applications in the biomedical field has accelerated at a phenomenal rate over the past 25 years. Many innovative e-nose technologies have provided solutions and applications to a wide variety of complex biomedical and healthcare problems. The purposes of this review are to present a comprehensive analysis of past and recent biomedical research findings and developments of electronic-nose sensor technologies, and to identify current and future potential e-nose applications that will continue to advance the effectiveness and efficiency of biomedical treatments and healthcare services for many years. An abundance of electronic-nose applications has been developed for a variety of healthcare sectors including diagnostics, immunology, pathology, patient recovery, pharmacology, physical therapy, physiology, preventative medicine, remote healthcare, and wound and graft healing. Specific biomedical e-nose applications range from uses in biochemical testing, blood-compatibility evaluations, disease diagnoses, and drug delivery to monitoring of metabolic levels, organ dysfunctions, and patient conditions through telemedicine. This paper summarizes the major electronic-nose technologies developed for healthcare and biomedical applications since the late 1980s when electronic aroma detection technologies were first recognized to be potentially useful in providing effective solutions to problems in the healthcare industry. PMID:22346620

  14. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    PubMed

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  15. Improved TWTs for electronic countermeasure application

    NASA Technical Reports Server (NTRS)

    Laycock, D. E.

    1975-01-01

    Some efforts in the development of a multistage depressed collector (MSDC) are reviewed. The MSDC is to operate in an electronic countermeasure system (ECM) with minimum overall efficiency in the range 35 to 50%. The effects of interception, harmonic output, and skin effect losses on the design of high-efficiency tubes with a MSDC are briefly discussed. Future experimental work will attempt to put a multistage depressed collector on a 400-watt CW 4.8 to 9.6-GHz helix TWT. By using a unique valve assembly, different collector configurations can be tested while maintaining the circuit under vacuum. The work will determine the sensitivity of overall tube efficiency to the number of collector, length of the collector, aperture size, and plate angle.

  16. Ultralow-power electronics for biomedical applications.

    PubMed

    Chandrakasan, Anantha P; Verma, Naveen; Daly, Denis C

    2008-01-01

    The electronics of a general biomedical device consist of energy delivery, analog-to-digital conversion, signal processing, and communication subsystems. Each of these blocks must be designed for minimum energy consumption. Specific design techniques, such as aggressive voltage scaling, dynamic power-performance management, and energy-efficient signaling, must be employed to adhere to the stringent energy constraint. The constraint itself is set by the energy source, so energy harvesting holds tremendous promise toward enabling sophisticated systems without straining user lifestyle. Further, once harvested, efficient delivery of the low-energy levels, as well as robust operation in the aggressive low-power modes, requires careful understanding and treatment of the specific design limitations that dominate this realm. We outline the performance and power constraints of biomedical devices, and present circuit techniques to achieve complete systems operating down to power levels of microwatts. In all cases, approaches that leverage advanced technology trends are emphasized.

  17. Trends in high power laser applications in civil engineering

    NASA Astrophysics Data System (ADS)

    Wignarajah, Sivakumaran; Sugimoto, Kenji; Nagai, Kaori

    2005-03-01

    This paper reviews the research and development efforts made on the use of lasers for material processing in the civil engineering industry. Initial investigations regarding the possibility of using lasers in civil engineering were made in the 1960s and '70s, the target being rock excavation. At that time however, the laser powers available were too small for any practical application utilization. In the 1980's, the technology of laser surface cleaning of historically important structures was developed in Europe. In the early 1990s, techniques of laser surface modification, including glazing and coloring of concrete, roughening of granite stones, carbonization of wood were pursued, mainly in Japan. In the latter part of the decade, techniques of laser decontamination of concrete surfaces in nuclear facilities were developed in many countries, and field tests were caried out in Japan. The rapid advances in development of diode lasers and YAG lasers with high power outputs and efficiencies since the late 1990's have led to a revival of worldwide interest in the use of lasers for material processing in civil engineering. The authors believe that, in the next 10 years or so, the advent of compact high power lasers is likely to lead to increased use of lasers of material processing in the field of civil engineering.

  18. Applications of active adaptive noise control to jet engines

    NASA Technical Reports Server (NTRS)

    Shoureshi, Rahmat; Brackney, Larry

    1993-01-01

    During phase 2 research on the application of active noise control to jet engines, the development of multiple-input/multiple-output (MIMO) active adaptive noise control algorithms and acoustic/controls models for turbofan engines were considered. Specific goals for this research phase included: (1) implementation of a MIMO adaptive minimum variance active noise controller; and (2) turbofan engine model development. A minimum variance control law for adaptive active noise control has been developed, simulated, and implemented for single-input/single-output (SISO) systems. Since acoustic systems tend to be distributed, multiple sensors, and actuators are more appropriate. As such, the SISO minimum variance controller was extended to the MIMO case. Simulation and experimental results are presented. A state-space model of a simplified gas turbine engine is developed using the bond graph technique. The model retains important system behavior, yet is of low enough order to be useful for controller design. Expansion of the model to include multiple stages and spools is also discussed.

  19. Nanostructured materials for applications in drug delivery and tissue engineering*

    PubMed Central

    GOLDBERG, MICHAEL; LANGER, ROBERT; JIA, XINQIAO

    2010-01-01

    point of view, both the drug-delivery vehicles and tissue-engineering scaffolds need to be biocompatible and biodegradable. The biological functions of encapsulated drugs and cells can be dramatically enhanced by designing biomaterials with controlled organizations at the nanometer scale. This review summarizes the most recent development in utilizing nanostructured materials for applications in drug delivery and tissue engineering. PMID:17471764

  20. Applications of Ecological Engineering Remedies for Uranium Processing Sites, USA

    SciTech Connect

    Waugh, William

    2016-05-23

    The U.S. Department of Energy (USDOE) is responsible for remediation of environmental contamination and long-term stewardship of sites associated with the legacy of nuclear weapons production during the Cold War in the United States. Protection of human health and the environment will be required for hundreds or even thousands of years at many legacy sites. USDOE continually evaluates and applies advances in science and technology to improve the effectiveness and sustainability of surface and groundwater remedies (USDOE 2011). This paper is a synopsis of ecological engineering applications that USDOE is evaluating to assess the effectiveness of remedies at former uranium processing sites in the southwestern United States. Ecological engineering remedies are predicated on the concept that natural ecological processes at legacy sites, once understood, can be beneficially enhanced or manipulated. Advances in tools for characterizing key processes and for monitoring remedy performance are demonstrating potential. We present test cases for four ecological engineering remedies that may be candidates for international applications.

  1. Extruded collagen-polyethylene glycol fibers for tissue engineering applications.

    PubMed

    Zeugolis, D I; Paul, R G; Attenburrow, G

    2008-05-01

    The repair of anterior cruciate ligament, skin, tendon and cartilage remains a challenging clinical problem. Extruded collagen fibers comprise a promising scaffold for tissue engineering applications; however the engineering of these fibers has still to be improved to bring this material to clinical practice. Herein we investigate the influence of collagen concentration, the amount of PEG Mw 8K and the extrusion tube internal diameter on the properties of these fibers. Ultrastructural evaluation revealed packed intra-fibrillar structure. The thermal properties were found to be independent of the collagen concentration, the amount of PEG or the extrusion tube internal diameter (p > 0.05). An inversely proportional relationship between dry fiber diameter and stress at break was found. The 20% PEG was identified as the optimal amount required for the production of reproducible fibers. Increasing the collagen concentration resulted in fibers with higher diameter (p < 0.001), force (p < 0.001) and strain at break (p < 0.02) values, whilst the stress at break (p < 0.001) and the modulus (p < 0.007) values were decreased. Increasing the extrusion tube internal diameter influence significantly (p < 0.001) all the investigated mechanical properties. Overall, extruded collagen fibers were produced with properties similar to those of native or synthetic fibers to suit a wide range of tissue engineering applications.

  2. [Application and potential of genome engineering by artificial enzymes].

    PubMed

    Nomura, Wataru

    2015-01-01

    Artificial zinc finger proteins (ZFPs) consist of Cys2-His2-type modules composed of approximately 30 amino acids that adopt a ββα structure and coordinate a zinc ion. ZFPs recognizing specific DNA target sequences can substitute for the binding domains of various DNA-modifying enzymes to create designer nucleases, recombinases, and methylases with programmable sequence specificity. Enzymatic genome editing and modification can be applied to many fields of basic research and medicine. The recent development of new platforms using transcription activator-like effector (TALE) proteins or the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) system has expanded the range of possibilities for genome-editing technologies. These technologies empower investigators with the ability to efficiently knockout or regulate the functions of genes of interest. In this review, we discuss historical advancements in artificial ZFP applications and important issues that may influence the future of genome editing and engineering technologies. The development of artificial ZFPs has greatly increased the feasibility of manipulating endogenous gene functions through transcriptional control and gene modification. Advances in the ZFP, TALE, and CRISPR/Cas platforms have paved the way for the next generation of genome engineering approaches. Perspectives for the future of genome engineering are also discussed, including applications of targeting specific genomic alleles and studies in synthetic biology.

  3. Nanocomposites for electronic applications, volume 2

    NASA Astrophysics Data System (ADS)

    Cross, L. E.

    1993-06-01

    Work on this program and studies associated with the ONR program on 'Piezoelectric and Electrostrictive materials for Transducer Applications' has lead to a significantly improved understanding of the fundamental mechanisms in Relaxor Ferroelectrics. For the perovskite Lead Magnesium Niobate which is the prototype for many other relaxor perovskites, the self limiting nonstoichiometric ordering of Mg/Nb ions is shown to be the symmetry breaking key to the onset of micropolar regions at the Burns temperature well above the dielectric maximum. The simple paraelectric behavior at high temperature is shown to be modified by cooperation on cooling, leading to a Vogel/Fulcher type condensation into a glass like state at low temperature

  4. Nanocomposites for electronic applications, volume 1

    NASA Astrophysics Data System (ADS)

    Cross, L. E.

    1993-06-01

    Work on this program and studies associated with the ONR program on 'Piezoelectric and Electrostrictive Materials for Transducer Applications' has lead to a significantly improved understanding of the fundamental mechanisms in Relaxor Ferroelectrics. For the perovskite Lead Magnesium Niobate which is the prototype for many other relaxor perovskites, the self limiting nonstoichiometric ordering of Mg/Nb ions is shown to be the symmetry breaking key to the onset of micropolar regions at the Burns temperature well above the dielectric maximum. The simple paraelectric behavior at high temperature is shown to be modified by cooperation on cooling, leading to a Vogel/Fulcher type condensation into a glass like state at low temperature

  5. Nanocomposites for electronic applications, volume 3

    NASA Astrophysics Data System (ADS)

    Cross, L. E.

    1993-06-01

    Work on this program and studies associated with the ONR program on 'Piezoelectric and Electrostrictive materials for Transducer Applications' has lead to a significantly improved understanding of the fundamental mechanisms in Relaxor Ferroelectrics. For the perovskite Lead Magnesium Niobate which is the prototype for many other relaxor perovskites, the self limiting nonstoichiometric ordering of Mg/Nb ions is shown to be the symmetry breaking key to the onset of micropolar regions at the Burns temperature well above the dielectric maximum. The simple paraelectric behavior at high temperature is shown to be modified by cooperation on cooling, leading to a Vogel/Fulcher type condensation into a glass like state at low temperature

  6. Real-time in-flight thrust calculation on a digital electronic engine control-equipped F100 engine in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Ray, R. J.; Myers, L. P.

    1984-01-01

    Computer algorithms which calculate in-flight engine and aircraft performance real-time are discussed. The first step was completed with the implementation of a real-time thrust calculation program on a digital electronic engine control (DEEC) equiped F100 engine in an F-15 aircraft. The in-flight thrust modifications that allow calculations to be performed in real-time, to compare results to predictions, are presented.

  7. Electron Spectroscopy: Applications for Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Hercules, David M.

    2004-12-01

    The development of X-ray photoelectron spectroscopy (ESCA, XPS) is reviewed from an historical perspective that is relevant to its use for analytical chemistry. The emphasis is on early development of the technique, primarily during the period, 1964 1977. During these years there were significant developments in instrumentation, accompanied by significant advances in understanding the fundamentals of the technique. First, a historical perspective is presented to establish the backdrop against which XPS was developed. The early work in the field dealt mainly with measuring and understanding chemical shifts for elements and particularly for organic compounds. This was an exciting time because XPS appeared to provide chemical information unavailable otherwise. A detailed summary of some of the early work on chemical shifts is presented. It was also established that XPS could be used for quantitative analysis of elements, compounds, and different oxidation states of the same element. As the development of XPS occurred, emphasis changed from measuring chemical shifts to developing XPS as a surface analytical tool, a role that it fills today. Early applications to the analysis of catalysts and polymers, use to study adsorption and surface reactions, application of XPS to electrochemistry and corrosion, and studies of atmospheric particulates are all reviewed.

  8. Electronic terahertz imaging for security applications

    NASA Astrophysics Data System (ADS)

    Trontelj, J.; Sešek, A.

    2016-02-01

    A sophisticated THz system with 3D imaging and narrow band spectroscopy capability is presented in the paper. The key system components are the THz source, THz detector/mixer array, scanning optics, and the signal processing unit. The system is all electronic and is portable. A battery operation option allows several hours of autonomy. The most important parameters of the THz source are output power, illumination beam size and directivity, frequency modulation range, and maximal modulation frequency. The low phase noise is also a very important parameter. Optimization of these parameters is discussed in the paper. The THz source is all solid state, composed of a phase-locked oscillator, an amplifier, and frequency multipliers. The most important element of the THz system is its sensor, which performs both signal detection and at the same time mixing of the LO signal and received signal from the target. The sensor is antenna coupled nanobolometer fabricated in a linear array of eight pixels. The sensors are suspended in the vacuum to achieve an excellent signal-to-noise ratio. The quadratic characteristic of the nano-bolometer extends over six decades allowing a large dynamic range and very high LO signal levels. The scanning mirror integrated into the system allows imaging of 1024 to 8162 pixels in the x and y dimensions that are expanded to the third dimension with a resolution of few micrometers.

  9. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    PubMed

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  10. Knowledge Engineering Aspects of Affective Bi-Modal Educational Applications

    NASA Astrophysics Data System (ADS)

    Alepis, Efthymios; Virvou, Maria; Kabassi, Katerina

    This paper analyses the knowledge and software engineering aspects of educational applications that provide affective bi-modal human-computer interaction. For this purpose, a system that provides affective interaction based on evidence from two different modes has been developed. More specifically, the system's inferences about students' emotions are based on user input evidence from the keyboard and the microphone. Evidence from these two modes is combined by a user modelling component that incorporates user stereotypes as well as a multi criteria decision making theory. The mechanism that integrates the inferences from the two modes has been based on the results of two empirical studies that were conducted in the context of knowledge engineering of the system. The evaluation of the developed system showed significant improvements in the recognition of the emotional states of users.

  11. Lead-free bearing alloys for engine applications

    NASA Astrophysics Data System (ADS)

    Ratke, Lorenz; Ågren, John; Ludwig, Andreas; Tonn, Babette; Gránásy, László; Mathiesen, Ragnvald; Arnberg, Lars; Anger, Gerd; Reifenhäuser, Bernd; Lauer, Michael; Garen, Rune; Gust, Edgar

    2005-10-01

    Recent developments to reduce the fuel consumption, emission and air pollution, size and weight of engines for automotive, truck, ship propulsion and electrical power generation lead to temperature and load conditions within the engines that cannot be borne by conventional bearings. Presently, only costly multilayer bearings with electroplated or sputtered surface coatings can cope with the load/speed combinations required. Ecological considerations in recent years led to a ban by the European Commission on the use of lead in cars a problem for the standard bronze-lead bearing material. This MAP project is therefore developing an aluminium-based lead-free bearing material with sufficient hardness, wear and friction properties and good corrosion resistance. Only alloys made of components immiscible in the molten state can meet the demanding requirements. Space experimentation plays a crucial role in optimising the cast microstructure for such applications.

  12. Mobile Timekeeping Application Built on Reverse-Engineered JPL Infrastructure

    NASA Technical Reports Server (NTRS)

    Witoff, Robert J.

    2013-01-01

    Every year, non-exempt employees cumulatively waste over one man-year tracking their time and using the timekeeping Web page to save those times. This app eliminates this waste. The innovation is a native iPhone app. Libraries were built around a reverse- engineered JPL API. It represents a punch-in/punch-out paradigm for timekeeping. It is accessible natively via iPhones, and features ease of access. Any non-exempt employee can natively punch in and out, as well as save and view their JPL timecard. This app is built on custom libraries created by reverse-engineering the standard timekeeping application. Communication is through custom libraries that re-route traffic through BrowserRAS (remote access service). This has value at any center where employees track their time.

  13. Application of the Black-Scholes equation in pharmaceutical engineering

    NASA Astrophysics Data System (ADS)

    Higuita, Esteban

    2016-05-01

    The Black-Scholes equation is applied in pharmaceutical engineering. The Black-Scholes equation is a classic equation in computational finance. In this work certain case of a modified Black-Scholes equation is analytically solved in the context of a problem of absorption of a drug by a tissue. The analytical solution is obtained using computer algebra specifically Maple. The solution is written as one series of associated Laguerre polynomials. In the procedure the Kummer M functions are used. The analytical solution is numerically tested and using experimental data is possible to estimate the pharmacological parameters of the tissue. We claim that our analytical solution will have important applications in pharmaceutical engineering.

  14. Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications.

    PubMed

    Shao, Ming-Fei; Zhang, Tong; Fang, Herbert Han-Ping

    2010-11-01

    Sulfur-driven autotrophic denitrification refers to the chemolithotrophic process coupling denitrification with the oxidation of reduced inorganic sulfur compounds. Ever since 1904, when Thiobacillus denitrificans was isolated, autotrophic denitrifiers and their uncultured close relatives have been continuously identified from highly diverse ecosystems including hydrothermal vents, deep sea redox transition zones, sediments, soils, inland soda lakes, etc. Currently, 14 valid described species within α-, β-, γ-, and ε-Proteobacteria have been identified as capable of autotrophic denitrification. Autotrophic denitrification is also widely applied in environmental engineering for the removal of sulfide and nitrate from different water environments. This review summarizes recent researches on autotrophic denitrification, highlighting its diversity, metabolic traits, and engineering applications.

  15. Application of a Plasma Powder Welding to engine valves

    SciTech Connect

    Takeuchi, Y.; Nagata, M.

    1985-01-01

    In hardfacing of automobile engine valves made of heat resisting steel such as 21-4N, conventional oxy-acetylene gase welding has been currently conducted manually by well trained operators because of using cast Stellite rods as the filler. In accordance with the strong demands of automatic welding, the authors newly developed an automatically controlled Plasma Powder Welding (PPW) system. This system is characterized by the application of a high thermal density plasma arc as heat source and by using power filler which melts more easily than bar cast rods. Moreover, this PPW system has been applied to the automotive engine valve production line and resulted in the great contribution to manpower saving.

  16. Joining and Integration of Silicon Carbide for Turbine Engine Applications

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.; Singh, Mrityunjay; Coddington, Bryan; Asthana, Rajiv

    2010-01-01

    The critical need for ceramic joining and integration technologies is becoming better appreciated as the maturity level increases for turbine engine components fabricated from ceramic and ceramic matrix composite materials. Ceramic components offer higher operating temperatures and reduced cooling requirements. This translates into higher efficiencies and lower emissions. For fabricating complex shapes, diffusion bonding of silicon carbide (SiC) to SiC is being developed. For the integration of ceramic parts to the surrounding metallic engine system, brazing of SiC to metals is being developed. Overcoming the chemical, thermal, and mechanical incompatibilities between dissimilar materials is very challenging. This presentation will discuss the types of ceramic components being developed by researchers and industry and the benefits of using ceramic components. Also, the development of strong, crack-free, stable bonds will be discussed. The challenges and progress in developing joining and integration approaches for a specific application, i.e. a SiC injector, will be presented.

  17. Engineering flowfield method with angle-of-attack applications

    NASA Technical Reports Server (NTRS)

    Zoby, E. V.; Simmonds, A. L.

    1984-01-01

    An approximate inviscid flowfield method has been extended to include heat-transfer predictions using a technique to account for variable-entropy edge conditions. The engineering code computes the flowfield over hyperboloids, ellipsoids, paraboloids, and sphere cones at 0 deg angle of attack (AOA). For angle-of-attack applications, an approximation to sphere-cone streamline-spreading effects on the heat transfer along the windward and leeward rays and an empirical circumferential heating technique have been incorporated also in the method. The present engineering calculations yield good comparisons with existing pressure and heating data over sphere cones even at high incidence values with the restriction that the sonic-line location remain on the spherical cap.

  18. An engineered plant peroxisome and its application in biotechnology.

    PubMed

    Kessel-Vigelius, Sarah K; Wiese, Jan; Schroers, Martin G; Wrobel, Thomas J; Hahn, Florian; Linka, Nicole

    2013-09-01

    Plant metabolic engineering is a promising tool for biotechnological applications. Major goals include enhancing plant fitness for an increased product yield and improving or introducing novel pathways to synthesize industrially relevant products. Plant peroxisomes are favorable targets for metabolic engineering, because they are involved in diverse functions, including primary and secondary metabolism, development, abiotic stress response, and pathogen defense. This review discusses targets for manipulating endogenous peroxisomal pathways, such as fatty acid β-oxidation, or introducing novel pathways, such as the synthesis of biodegradable polymers. Furthermore, strategies to bypass peroxisomal pathways for improved energy efficiency and detoxification of environmental pollutants are discussed. In sum, we highlight the biotechnological potential of plant peroxisomes and indicate future perspectives to exploit peroxisomes as biofactories.

  19. Magnetic collimation of fast electrons in specially engineered targets irradiated by ultraintense laser pulses

    SciTech Connect

    Cai Hongbo; Zhu Shaoping; Wu Sizhong; Chen Mo; Zhou Cangtao; He, X. T.; Yu Wei; Nagatomo, Hideo

    2011-02-15

    The efficient magnetic collimation of fast electron flow transporting in overdense plasmas is investigated with two-dimensional collisional particle-in-cell numerical simulations. It is found that the specially engineered targets exhibiting either high-resistivity-core-low-resistivity-cladding structure or low-density-core-high-density-cladding structure can collimate fast electrons. Two main mechanisms to generate collimating magnetic fields are found. In high-resistivity-core-low-resistivity-cladding structure targets, the magnetic field at the interfaces is generated by the gradients of the resistivity and fast electron current, while in low-density-core-high-density-cladding structure targets, the magnetic field is generated by the rapid changing of the flow velocity of the background electrons in transverse direction (perpendicular to the flow velocity) caused by the density jump. The dependences of the maximal magnetic field on the incident laser intensity and plasma density, which are studied by numerical simulations, are supported by our analytical calculations.

  20. The common engine concept for ALS application - A cost reduction approach

    NASA Technical Reports Server (NTRS)

    Bair, E. K.; Schindler, C. M.

    1989-01-01

    Future launch systems require the application of propulsion systems which have been designed and developed to meet mission model needs while providing high degrees of reliability and cost effectiveness. Vehicle configurations which utilize different propellant combinations for booster and core stages can benefit from a common engine approach where a single engine design can be configured to operate on either set of propellants and thus serve as either a booster or core engine. Engine design concepts and mission application for a vehicle employing a common engine are discussed. Engine program cost estimates were made and cost savings, over the design and development of two unique engines, estimated.

  1. Novel Engineered Compound Semiconductor Heterostructures for Advanced Electronics Applications

    DTIC Science & Technology

    1992-06-22

    AlxGal.xAs-GaAs quantum well heterostructures. L.J. Guido, B.T. Cunningham, D.W. Nam, K.C. Hsieh, W.E. Plano , J.S. Major, Jr., E.J. Vesely, A.R. Sugg, N...in heavily carbon-doped Al, Ga.,__As-GaAs quantum well heterostructures L. J. Guido, B. T. Cunningham, 0. W. Nam,a K. C. Hsieh, W. E. Plano , J. S...American institute of Physics 741 193 ANOMALOUS LUMINESCENCE PROPERTIES OF GaAs GROWN BY MOLECULAR BEAM EPITAXY I. SZAFRANEK, MA. PLANO , MJ. MCCOLLUM

  2. Novel Engineered Compound Semiconductor Heterostructures for Advanced Electronics Applications

    DTIC Science & Technology

    1992-06-22

    growth can also affect the electrical properties of carbon- doped InGaAs, and must be studied further.4,5 In addition, researchers need to attain higher...1991. 9. J.M. Dallesasse et al. Appl. Phys. Lett., vol. 58, p. 974, March 1991. 10. N. EI- Zein et al. J. Appl. Phys., vol. 70 p. 2031, August 1991...and Be-doped InGaP. J.M. Dallesasse, I. Szafranek, J.N. Baillargeon, N. El- Zein , N. Holonyak, Jr., G.E. Stillman, and K.Y. Cheng. J. Appl. Phys., 68

  3. 48 CFR 836.606-73 - Application of 6 percent architect-engineer fee limitation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... architect-engineer fee limitation. 836.606-73 Section 836.606-73 Federal Acquisition Regulations System DEPARTMENT OF VETERANS AFFAIRS SPECIAL CATEGORIES OF CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Architect-Engineer Services 836.606-73 Application of 6 percent architect-engineer fee...

  4. Engineering the electronic structure of surface dangling bond nanowires of different size and dimensionality.

    PubMed

    Naydenov, Borislav; Boland, John J

    2013-07-12

    We demonstrate how the local density of electronic states evolves as the size and dimensionality of surface dangling bond nanowires are modified. These wires were fabricated using the probe of a scanning tunneling microscope on a hydrogen passivated n-type Si(100)-(2 × 1) surface. We demonstrate that by varying the number and arrangement of dangling bonds on the surface it is possible to arbitrarily engineer the electronic characteristic of a surface nanowire from that of a semiconductor with a controllable band gap to that of a metal.

  5. A new engine-driven canal preparation system with electronic canal measuring capability.

    PubMed

    Kobayashi, C; Yoshioka, T; Suda, H

    1997-12-01

    A new cordless engine-driven root canal preparation system has been developed that electronically monitors the location of the file tip and the torque applied to the file during all instrumentation procedures. The Root ZX is mounted inside the handpiece to measure the canal length. The engine is driven with a rechargeable battery, and it works more than 40 minutes without a recharge. Nickel-titanium files are used for this preparation system. The file is rotated at 240 to 280 rpms. When the file tip reaches the apical constriction, the revolution of the file can be automatically reversed (Auto-apical-reverse mechanism). If there is too much torque, the rotation is automatically reversed (Auto-torque-reverse mechanism). These automatic functions promise a safer engine preparation of the canal with nickel-titanium files.

  6. Airstart performance of a digital electronic engine control system in an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Licata, S. J.; Burcham, F. W., Jr.

    1983-01-01

    The airstart performance of the F100 engine equipped with a digital electronic engine control (DEEC) system was evaluated in an F-15 airplane. The DEEC system incorporates closed-loop airstart logic for improved capability. Spooldown and jet fuel starter-assisted airstarts were made over a range of airspeeds and altitudes. All jet fuel starter-assisted airstarts were successful, with airstart time varying from 35 to 60 sec. All spooldown airstarts at airspeeds of 200 knots and higher were successful; airstart times ranged from 45 sec at 250 knots to 135 sec at 200 knots. The effects of altitude on airstart success and time were small. The flight results agreed closely with previous altitude facility test results. The DEEC system provided successful airstarts at airspeeds at least 50 knots lower than the standard F100 engine control system.

  7. Enabling Science and Engineering Applications on the Grid

    SciTech Connect

    Seidel, Ed

    2004-08-25

    The Grid has the potential to fundamentally change the way science and engineering are done. Aggregate power of computing resources connected by networks - of the Grid - exceeds that of any single supercomputer by many orders of magnitude. At the same time, our ability to carry out computations of the scale and level of detail required, for example, to study the Universe, or simulate a rocket engine, are severely constrained by available computing power. Hence, such applications should be one of the main driving forces behind the development of Grid computing. I will discuss some large scale applications, including simulations of colliding black holes, and show how they are driving the development of Grid computing technology. Applications are already being developed that are not only aware of their needs, but also of the resources available to them on the Grid. They will be able to adapt themselves automatically to respond to their changing needs, to spawn off tasks on other resources, and to adapt to the changing characteristics of the Grid including machine and network loads and availability. I will discuss a number of innovative scenarios for computing on the Grid enabled by such technologies, and demonstrate how close these are to being a reality.

  8. Generation And Applications Of Electron-Beam Plasma Flows

    NASA Astrophysics Data System (ADS)

    Vasiliev, M. N.; Tun Win, Aung

    2015-03-01

    Plasma flows generated by continuous or interrupted injection of an electron beam into subsonic or supersonic gaseous streams are considered. Liquid and powder spraying by the electron-beam plasma (EBP) flows is studied as a technique of the aerosol plasma generation. A number of experimental setups generating both free plasma jets and plasma flows in channels are described. Examples of the EBP flows applications for industrial and aerospace technologies are given. The applications are shown to be based on unique properties of the EBP and its stability within very wide ranges of the plasma generation conditions. Some applications of the Hybrid Plasma (HP) generated by combined action of the electron beam (EB) and intermittent gas discharge on flows of gaseous mixtures and aerosols are presented as well.

  9. Chitosan for gene delivery and orthopedic tissue engineering applications.

    PubMed

    Raftery, Rosanne; O'Brien, Fergal J; Cryan, Sally-Ann

    2013-05-15

    Gene therapy involves the introduction of foreign genetic material into cells in order exert a therapeutic effect. The application of gene therapy to the field of orthopaedic tissue engineering is extremely promising as the controlled release of therapeutic proteins such as bone morphogenetic proteins have been shown to stimulate bone repair. However, there are a number of drawbacks associated with viral and synthetic non-viral gene delivery approaches. One natural polymer which has generated interest as a gene delivery vector is chitosan. Chitosan is biodegradable, biocompatible and non-toxic. Much of the appeal of chitosan is due to the presence of primary amine groups in its repeating units which become protonated in acidic conditions. This property makes it a promising candidate for non-viral gene delivery. Chitosan-based vectors have been shown to transfect a number of cell types including human embryonic kidney cells (HEK293) and human cervical cancer cells (HeLa). Aside from its use in gene delivery, chitosan possesses a range of properties that show promise in tissue engineering applications; it is biodegradable, biocompatible, has anti-bacterial activity, and, its cationic nature allows for electrostatic interaction with glycosaminoglycans and other proteoglycans. It can be used to make nano- and microparticles, sponges, gels, membranes and porous scaffolds. Chitosan has also been shown to enhance mineral deposition during osteogenic differentiation of MSCs in vitro. The purpose of this review is to critically discuss the use of chitosan as a gene delivery vector with emphasis on its application in orthopedic tissue engineering.

  10. Hydraulic modeling development and application in water resources engineering

    USGS Publications Warehouse

    Simoes, Francisco J.; Yang, Chih Ted; Wang, Lawrence K.

    2015-01-01

    The use of modeling has become widespread in water resources engineering and science to study rivers, lakes, estuaries, and coastal regions. For example, computer models are commonly used to forecast anthropogenic effects on the environment, and to help provide advanced mitigation measures against catastrophic events such as natural and dam-break floods. Linking hydraulic models to vegetation and habitat models has expanded their use in multidisciplinary applications to the riparian corridor. Implementation of these models in software packages on personal desktop computers has made them accessible to the general engineering community, and their use has been popularized by the need of minimal training due to intuitive graphical user interface front ends. Models are, however, complex and nontrivial, to the extent that even common terminology is sometimes ambiguous and often applied incorrectly. In fact, many efforts are currently under way in order to standardize terminology and offer guidelines for good practice, but none has yet reached unanimous acceptance. This chapter provides a view of the elements involved in modeling surface flows for the application in environmental water resources engineering. It presents the concepts and steps necessary for rational model development and use by starting with the exploration of the ideas involved in defining a model. Tangible form of those ideas is provided by the development of a mathematical and corresponding numerical hydraulic model, which is given with a substantial amount of detail. The issues of model deployment in a practical and productive work environment are also addressed. The chapter ends by presenting a few model applications highlighting the need for good quality control in model validation.

  11. Directional Auger Electron Spectroscopy — Physical Foundations and Applications

    NASA Astrophysics Data System (ADS)

    Mróz, S.

    Experimental data about the dependence of the Auger signal from crystalline samples on the primary beam direction are presented and discussed. It is shown that, for Auger electrons and elastically and inelastically backscattered electrons, maxima of the signal in its dependence on the polar and azimuth angles of the primary beam (in polar and azimuth profiles, respectively) appear when the primary beam is parallel either to one of the close-packed rows of atoms or to one of the densely packed atomic planes in the sample. This indicates that the diffraction of the primary electron beam is responsible for the dependence mentioned above. Mechanisms proposed for simple explanation of this dependence (channeling and forward focusing of primary electrons) are presented and results of their application are discussed. It is shown that both those mechanisms play an important role in the creation of the Auger signal contrast. The possibilities and limitations of the application of polar and azimuth Auger emission profiles in the determination of the surface layer crystalline structure (directional Auger electron spectroscopy — DAES) are presented and discussed. It is shown that the thickness of the investigated surface layer can be decreased up to a few monolayers. Results obtained with DAES are similar to those provided by X-ray photoelectron diffraction (XPD) and Auger electron diffraction (AED), but the DAES experimental equipment is simple and inexpensive and measurements are fast. Finally, experimental systems for DAES are described and examples of DAES applications are presented.

  12. 40 CFR 86.1851-01 - Application of good engineering judgment to manufacturers' decisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Application of good engineering... Application of good engineering judgment to manufacturers' decisions. (a) The manufacturer shall exercise good engineering judgment in making all decisions called for under this subpart, including but not limited...

  13. 40 CFR 86.1851-01 - Application of good engineering judgment to manufacturers' decisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Application of good engineering... Application of good engineering judgment to manufacturers' decisions. (a) The manufacturer shall exercise good engineering judgment in making all decisions called for under this subpart, including but not limited...

  14. 40 CFR 86.1851-01 - Application of good engineering judgment to manufacturers' decisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Application of good engineering... Application of good engineering judgment to manufacturers' decisions. (a) The manufacturer shall exercise good engineering judgment in making all decisions called for under this subpart, including but not limited...

  15. 40 CFR 86.1851-01 - Application of good engineering judgment to manufacturers' decisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Application of good engineering... Application of good engineering judgment to manufacturers' decisions. (a) The manufacturer shall exercise good engineering judgment in making all decisions called for under this subpart, including but not limited...

  16. Applications and Advances in Electronic-Nose Technologies

    PubMed Central

    Wilson, Alphus D.; Baietto, Manuela

    2009-01-01

    Electronic-nose devices have received considerable attention in the field of sensor technology during the past twenty years, largely due to the discovery of numerous applications derived from research in diverse fields of applied sciences. Recent applications of electronic nose technologies have come through advances in sensor design, material improvements, software innovations and progress in microcircuitry design and systems integration. The invention of many new e-nose sensor types and arrays, based on different detection principles and mechanisms, is closely correlated with the expansion of new applications. Electronic noses have provided a plethora of benefits to a variety of commercial industries, including the agricultural, biomedical, cosmetics, environmental, food, manufacturing, military, pharmaceutical, regulatory, and various scientific research fields. Advances have improved product attributes, uniformity, and consistency as a result of increases in quality control capabilities afforded by electronic-nose monitoring of all phases of industrial manufacturing processes. This paper is a review of the major electronic-nose technologies, developed since this specialized field was born and became prominent in the mid 1980s, and a summarization of some of the more important and useful applications that have been of greatest benefit to man. PMID:22346690

  17. Application of fiber Bragg grating sensors in civil engineering

    NASA Astrophysics Data System (ADS)

    Tian, ShiZhu; Zhao, Xuefeng; Zhou, Zhi; Ou, Jinping

    2005-06-01

    This paper mainly studies the application of fiber Bragg grating (FBG) in strain monitoring of civil engineering structure. The principle of FBG was illuminated. Static tests of a steel truss instrumented with FBG sensors were done, in order to study whose distinct sensing character and monitor strains of the truss. Then, FBG sensors were instrumented in a cable stayed bridge named Songhua River Bridge located in the Harbin city of China to monitor strains of key structure sections. A number of meaningful results were concluded.

  18. Application of advanced coating techniques to rocket engine components

    NASA Technical Reports Server (NTRS)

    Verma, S. K.

    1988-01-01

    The materials problem in the space shuttle main engine (SSME) is reviewed. Potential coatings and the method of their application for improved life of SSME components are discussed. A number of advanced coatings for turbine blade components and disks are being developed and tested in a multispecimen thermal fatigue fluidized bed facility at IIT Research Institute. This facility is capable of producing severe strains of the degree present in blades and disk components of the SSME. The potential coating systems and current efforts at IITRI being taken for life extension of the SSME components are summarized.

  19. Robotic applications at the Idaho National Engineering Laboratory

    SciTech Connect

    Griebenow, B.E.; Marts, D.J. )

    1990-01-01

    The Idaho National Engineering Laboratory (INEL) has several programs and projected programs that involve work in hazardous environments. Robotics/remote handling technology is being considered for an active role in these programs. The most appealing aspect of using robotics is in the area of personnel safety. Any task requiring an individual to enter a hazardous or potentially hazardous environment can benefit substantially from robotics by removing the operator from the environment and having him conduct the work remotely. Several INEL programs were evaluated based on their applications for robotics and the results and some conclusions are discussed in this paper. 1 fig.

  20. Advanced stress analysis methods applicable to turbine engine structures

    NASA Technical Reports Server (NTRS)

    Pian, Theodore H. H.

    1991-01-01

    The following tasks on the study of advanced stress analysis methods applicable to turbine engine structures are described: (1) constructions of special elements which contain traction-free circular boundaries; (2) formulation of new version of mixed variational principles and new version of hybrid stress elements; (3) establishment of methods for suppression of kinematic deformation modes; (4) construction of semiLoof plate and shell elements by assumed stress hybrid method; and (5) elastic-plastic analysis by viscoplasticity theory using the mechanical subelement model.

  1. Electrodeposition applications for the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Otousa, J. E.

    1979-01-01

    Electrodeposition processes play a key role in the fabrication and in-service performance of the Space Shuttle Main Engine. Applications range from the electroforming of the main combustion chamber to the deposition of high-purity copper or gold for hydrogen embrittlement protection of susceptible materials of construction, or nickel for mechanical protection of foam insulated propellant ducts. Techniques for controlling electrolyte purity, verification of deposit integrity, and deposit profile and thickness are reported. The use of in-situ techniques (cell-plating) for localized plating and repair of damaged substrate materials are summarized.

  2. On the applicability of one- and many-electron quantum chemistry models for hydrated electron clusters.

    PubMed

    Turi, László

    2016-04-21

    We evaluate the applicability of a hierarchy of quantum models in characterizing the binding energy of excess electrons to water clusters. In particular, we calculate the vertical detachment energy of an excess electron from water cluster anions with methods that include one-electron pseudopotential calculations, density functional theory(DFT) based calculations, and ab initio quantum chemistry using MP2 and eom-EA-CCSD levels of theory. The examined clusters range from the smallest cluster size (n = 2) up to nearly nanosize clusters with n = 1000 molecules. The examined cluster configurations are extracted from mixed quantum-classical molecular dynamics trajectories of cluster anions with n = 1000 water molecules using two different one-electron pseudopotenial models. We find that while MP2 calculations with large diffuse basis set provide a reasonable description for the hydrated electron system, DFT methods should be used with precaution and only after careful benchmarking. Strictly tested one-electron psudopotentials can still be considered as reasonable alternatives to DFT methods, especially in large systems. The results of quantum chemistry calculations performed on configurations, that represent possible excess electron binding motifs in the clusters, appear to be consistent with the results using a cavitystructure preferring one-electron pseudopotential for the hydrated electron, while they are in sharp disagreement with the structural predictions of a non-cavity model.

  3. Ferroelectric Thin Films for Electronic Applications

    NASA Astrophysics Data System (ADS)

    Udayakumar, K. R.

    This study yokes together the feasibility of a family of PbO-based perovskite-structured ferroelectric thin films as functional elements in nonvolatile random access memories (NVRAMs), in high capacity dynamic RAMs, and in a new class of flexure wave piezoelectric ultrasonic micromotors. The dielectric and ferroelectric properties of lead zirconate titanate (PZT) thin films were dependent on thickness; at saturation, the films were characterized by a relative permittivity of 1300, remanent polarization of 36 muC/cm^2 and breakdown strength of over 1 MV/cm. The temperature dependence of permittivity revealed an anomalous behavior with the film annealing temperature. Based on the ferroelectric properties in the bulk, thin films in the lead zirconate -lead zinc niobate (PZ-PZN) solid solution system at 8-12% PZN, examined as alternate compositions for ferroelectric memories, feature switched charges of 4-14 mu C/cm^2, with coercive and saturation voltages less than the semiconductor operating voltage of 5 V. Rapid thermally annealed lead magnesium niobate titanate films were privy to weak signal dielectric permittivity of 2900, remanent polarization of 11 muC/cm^2, and a storage density of 210 fC/mum^2 at 5 V; the films merit consideration for potential applications in ultra large scale integrated circuits as also ferroelectric nonvolatile RAMs. The high breakdown strength and relative permittivity of the PZT films entail maximum stored energy density 10^3 times larger than a silicon electrostatic motor. The longitudinal piezoelectric strain coefficient d_{33 } was measured to be 220 pC/N at a dc bias of 75 kV/cm. The transverse piezoelectric strain coefficient d_{31} bore a nonlinear relationship with the electric field; at 200 kV/cm, d _{31} was -88 pC/N. The development of the piezoelectric ultrasonic micromotors from the PZT thin films, and the architecture of the stator structures are described. Nonoptimized prototype micromotors show rotational velocities of 100

  4. Astronomy and Space Technologies, Photonics Applications and Web Engineering, Wilga, May 2012

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2012-05-01

    This paper is the first part (out of five) of the research survey of WILGA Symposium work, May 2012 Edition, concerned with photonics and electronics applications in astronomy and space technologies. It presents a digest of chosen technical work results shown by young researchers from different technical universities from this country during the Jubilee XXXth SPIE-IEEE Wilga 2012, May Edition, symposium on Photonics and Web Engineering. Topical tracks of the symposium embraced, among others, nanomaterials and nanotechnologies for photonics, sensory and nonlinear optical fibers, object oriented design of hardware, photonic metrology, optoelectronics and photonics applications, photonics-electronics co-design, optoelectronic and electronic systems for astronomy and high energy physics experiments, JET tokamak and pi-of-the sky experiments development. The symposium is an annual summary in the development of numerable Ph.D. theses carried out in this country in the area of advanced electronic and photonic systems. It is also a great occasion for SPIE, IEEE, OSA and PSP students to meet together in a large group spanning the whole country with guests from this part of Europe. A digest of Wilga references is presented [1-275].

  5. Evaluation of Vortex Chamber Concepts for Liquid Rocket Engine Applications

    NASA Technical Reports Server (NTRS)

    Trinh, Huu Phuoc; Knuth, Williams; Michaels, Scott; Turner, James E. (Technical Monitor)

    2000-01-01

    Rocket-based combined-cycle engines (RBBC) being considered at NASA for future generation launch vehicles feature clusters of small rocket thrusters as part of the engine components. Depending on specific RBBC concepts, these thrusters may be operated at various operating conditions including power level and/or propellant mixture ratio variations. To pursue technology developments for future launch vehicles, NASA/Marshall Space Flight Center (MSFC) is examining vortex chamber concepts for the subject cycle engine application. Past studies indicated that the vortex chamber schemes potentially have a number of advantages over conventional chamber methods. Due to the nature of the vortex flow, relatively cooler propellant streams tend to flow along the chamber wall. Hence, the thruster chamber can be operated without the need of any cooling techniques. This vortex flow also creates strong turbulence, which promotes the propellant mixing process. Consequently, the subject chamber concepts not only offer the system simplicity but they also would enhance the combustion performance. The test results showed that the chamber performance was markedly high even at a low chamber length-to- diameter ratio (L/D). This incentive can be translated to a convenience in the thrust chamber packaging.

  6. Engineered nanowires, carbon nanotubes and graphene for sensors, actuators and electronics

    NASA Astrophysics Data System (ADS)

    Yang, E. H.

    2010-02-01

    We are exploring nanoelectronic engineering areas based on low dimensional materials, including carbon nanotubes and graphene. Our primary research focus is investigating carbon nanotube and graphene architectures for field emission applications, energy harvesting and sensing. In a second effort, we are developing a high-throughput desktop nanolithography process. Lastly, we are studying nanomechanical actuators and associated nanoscale measurement techniques for re-configurable arrayed nanostructures with applications in antennas, remote detectors and biomedical nanorobots. The devices we fabricate, assemble, manipulate and characterize potentially have a wide range of applications including sensors, detectors, system-on-a-chip, system-in-a-package, programmable logic controls, energy storage systems and allelectronic systems.

  7. Gene targeting for chromosome engineering applications in eukaryotic cells.

    PubMed

    Lyznik, Leszek A; Dress, Virginia

    2008-01-01

    As biotechnology advances, there is an increasing need to develop new technologies that may assist in more precise genetic engineering manipulations. Whether a placement of single genes in the proper chromosomal context, stacking a number of genes in the same chromosomal locus, rearrangement of existing chromosomal elements, or a global reconfiguration of the chromosomal structures is contemplated, the new genetic tools being developed provide technical capabilities to achieve goals that were only theoretical not long ago. We use examples of recent patent literature (issued patents and published patent applications) to illustrate trends in this fast advancing area of genetic technology. If one wants to engage in the development and utilization of such technologies, the complexity of genetic manipulations requires a careful evaluation and navigation across the legal/patent landscape of chromosomal modification/remodeling. While this review is mostly focused on the basic laboratory tools of chromosomal manipulations, their specific applications for biomedical, pharmaceutical, or agricultural purposes may deserve an additional compilation.

  8. Experimental valitation of energy harvesting device for civil engineering applications

    NASA Astrophysics Data System (ADS)

    Jung, Hyung-Jo; Kim, In-Ho; Park, Jeongsu

    2012-04-01

    In the field of structural health monitoring using wireless sensors, considerable research attention has been recently given to vibration-based energy harvesting devices for exploring their feasibility as a power source of a wireless sensor node. Most of the previous studies have focused on lab-scale tests for performance validation. For real application, however, field tests on developed energy harvesting devices should be conducted, because their performance may be considerably affected by change in the testing environment. In this study, a new electromagnetic energy harvester is proposed, which is more suitable for civil engineering application, and the preliminary field test on a real cable-stayed bridge are conducted to validate its effectiveness.

  9. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering

    PubMed Central

    Ghadi, Arezou; Mahjoub, Soleiman; Tabandeh, Fatemeh; Talebnia, Farid

    2014-01-01

    Background: Chitosan nanoparticles have become of great interest for nanomedicine, biomedical engineering and development of new therapeutic drug release systems with improved bioavailability, increased specificity and sensitivity, and reduced pharmacological toxicity. The aim of the present study was to synthesis and optimize of the chitosan nanoparticles for industrial and biomedical applications. Methods: Fe3O4 was synthesized and optimized as magnetic core nanoparticles and then chitosan covered this magnetic core. The size and morphology of the nano-magnetic chitosan was analyzed by scanning electron microscope (SEM). Topography and size distribution of the nanoparticles were shown with two-dimensional and three-dimensional images of atomic force microscopy (AFM). The nanoparticles were analyzed using transmission electron microscopy (TEM). Results: The chitosan nanoparticles prepared in the experiment exhibited white powder shape. The SEM micrographs of the nano-magnetic chitosan showed that they were approximately uniform spheres. The unmodified chitosan nanoparticles composed of clusters of nanoparticles with sizes ranging from 10 nm to 80 nm. AFM provides a three-dimensional surface profile. The TEM image showed physical aggregation of the chitosan nanoparticles. Conclusion: The results show that a novel chitosan nanoparticle was successfully synthesized and characterized. It seems that this nanoparticle like the other chitosan nano particles has potential applications for nanomedicine, biomedical engineering, industrial and pharmaceutical fields. PMID:25202443

  10. Handbook of data on selected engine components for solar thermal applications

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A data base on developed and commercially available power conversion system components for Rankine and Brayton cycle engines, which have potential application to solar thermal power-generating systems is presented. The status of the Stirling engine is discussed.

  11. Stretchable electronics for wearable and high-current applications

    NASA Astrophysics Data System (ADS)

    Hilbich, Daniel; Shannon, Lesley; Gray, Bonnie L.

    2016-04-01

    Advances in the development of novel materials and fabrication processes are resulting in an increased number of flexible and stretchable electronics applications. This evolving technology enables new devices that are not readily fabricated using traditional silicon processes, and has the potential to transform many industries, including personalized healthcare, consumer electronics, and communication. Fabrication of stretchable devices is typically achieved through the use of stretchable polymer-based conductors, or more rigid conductors, such as metals, with patterned geometries that can accommodate stretching. Although the application space for stretchable electronics is extensive, the practicality of these devices can be severely limited by power consumption and cost. Moreover, strict process flows can impede innovation that would otherwise enable new applications. In an effort to overcome these impediments, we present two modified approaches and applications based on a newly developed process for stretchable and flexible electronics fabrication. This includes the development of a metallization pattern stamping process allowing for 1) stretchable interconnects to be directly integrated with stretchable/wearable fabrics, and 2) a process variation enabling aligned multi-layer devices with integrated ferromagnetic nanocomposite polymer components enabling a fully-flexible electromagnetic microactuator for large-magnitude magnetic field generation. The wearable interconnects are measured, showing high conductivity, and can accommodate over 20% strain before experiencing conductive failure. The electromagnetic actuators have been fabricated and initial measurements show well-aligned, highly conductive, isolated metal layers. These two applications demonstrate the versatility of the newly developed process and suggest potential for its furthered use in stretchable electronics and MEMS applications.

  12. Preparation of laponite bioceramics for potential bone tissue engineering applications.

    PubMed

    Wang, Chuanshun; Wang, Shige; Li, Kai; Ju, Yaping; Li, Jipeng; Zhang, Yongxing; Li, Jinhua; Liu, Xuanyong; Shi, Xiangyang; Zhao, Qinghua

    2014-01-01

    We report a facile approach to preparing laponite (LAP) bioceramics via sintering LAP powder compacts for bone tissue engineering applications. The sintering behavior and mechanical properties of LAP compacts under different temperatures, heating rates, and soaking times were investigated. We show that LAP bioceramic with a smooth and porous surface can be formed at 800°C with a heating rate of 5°C/h for 6 h under air. The formed LAP bioceramic was systematically characterized via different methods. Our results reveal that the LAP bioceramic possesses an excellent surface hydrophilicity and serum absorption capacity, and good cytocompatibility and hemocompatibility as demonstrated by resazurin reduction assay of rat mesenchymal stem cells (rMSCs) and hemolytic assay of pig red blood cells, respectively. The potential bone tissue engineering applicability of LAP bioceramic was explored by studying the surface mineralization behavior via soaking in simulated body fluid (SBF), as well as the surface cellular response of rMSCs. Our results suggest that LAP bioceramic is able to induce hydroxyapatite deposition on its surface when soaked in SBF and rMSCs can proliferate well on the LAP bioceramic surface. Most strikingly, alkaline phosphatase activity together with alizarin red staining results reveal that the produced LAP bioceramic is able to induce osteoblast differentiation of rMSCs in growth medium without any inducing factors. Finally, in vivo animal implantation, acute systemic toxicity test and hematoxylin and eosin (H&E)-staining data demonstrate that the prepared LAP bioceramic displays an excellent biosafety and is able to heal the bone defect. Findings from this study suggest that the developed LAP bioceramic holds a great promise for treating bone defects in bone tissue engineering.

  13. Assuring consumer safety without animals: Applications for tissue engineering.

    PubMed

    Westmoreland, Carl; Holmes, Anthony M

    2009-04-01

    Humans are exposed to a variety of chemicals in their everyday lives through interactions with the environment and through the use of consumer products. It is a basic requirement that these products are tested to assure they are safe under normal and reasonably foreseeable conditions of use. Within the European Union, the majority of tests used for generating toxicological data rely on animals. However recent changes in legislation (e.g., 7(th) amendment of the Cosmetics Directive and REACH) are driving researchers to develop and adopt non-animal alternative methods with which to assure human safety. Great strides have been made to this effect, but what other opportunities/technologies exist that could expedite this? Tissue engineering has increasing scope to contribute to replacing animals with scientifically robust alternatives in basic research and safety testing, but is this application of the technology being fully exploited? This review highlights how the consumer products industry is applying tissue engineering to ensure chemicals are safe for human use without using animals, and identifies areas for future development and application of the technology.

  14. Customized PEG-derived copolymers for tissue-engineering applications.

    PubMed

    Tessmar, Joerg K; Göpferich, Achim M

    2007-01-05

    PEG-containing copolymers play a prominent role as biomaterials for different applications ranging from drug delivery to tissue engineering. These custom-designed materials offer enormous possibilities to change the overall characteristics of biomaterials by improving their biocompatibility and solubility, as well as their ability to crystallize in polymer blends and to resist protein adsorption. This article demonstrates various principles of PEG-based material design that are applied to fine tune the properties of biomaterials for different tissue engineering applications. More specifically, strategies are described to develop PEG copolymers with various block compositions and specific bulk properties, including low melting points and improved surface hydrophilicity. Highly hydrated polymer gel networks for promoting cellular growth or suppressing protein adsorption and cell adhesion are introduced. By incorporating selectively cleavable cross-links, these hydrophilic polymers can also serve as smart hydrogel scaffolds, mimicking the natural extracellular matrix for cell cultivation and tissue growth. Ultimately, these developments lead to the creation of biomimetic materials to immobilize bioactive compounds, allowing precise control of cellular adhesion and tissue growth. [image: see text

  15. Strategies in biomimetic surface engineering of nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Gong, Yong-Kuan; Winnik, Françoise M.

    2012-01-01

    Engineered nanoparticles (NPs) play an increasingly important role in biomedical sciences and in nanomedicine. Yet, in spite of significant advances, it remains difficult to construct drug-loaded NPs with precisely defined therapeutic effects, in terms of release time and spatial targeting. The body is a highly complex system that imposes multiple physiological and cellular barriers to foreign objects. Upon injection in the blood stream or following oral administation, NPs have to bypass numerous barriers prior to reaching their intended target. A particularly successful design strategy consists in masking the NP to the biological environment by covering it with an outer surface mimicking the composition and functionality of the cell's external membrane. This review describes this biomimetic approach. First, we outline key features of the composition and function of the cell membrane. Then, we present recent developments in the fabrication of molecules that mimic biomolecules present on the cell membrane, such as proteins, peptides, and carbohydrates. We present effective strategies to link such bioactive molecules to the NPs surface and we highlight the power of this approach by presenting some exciting examples of biomimetically engineered NPs useful for multimodal diagnostics and for target-specific drug/gene delivery applications. Finally, critical directions for future research and applications of biomimetic NPs are suggested to the readers.

  16. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation

    SciTech Connect

    Ouyang, Bin; Lan, Guoqiang; Song, Jun; Guo, Yinsheng; Mi, Zetian

    2015-11-09

    First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX{sub 2} (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated.

  17. Electron microscopic study of soot particulate matter emissions from aircraft turbine engines.

    PubMed

    Liati, Anthi; Brem, Benjamin T; Durdina, Lukas; Vögtli, Melanie; Dasilva, Yadira Arroyo Rojas; Eggenschwiler, Panayotis Dimopoulos; Wang, Jing

    2014-09-16

    The microscopic characteristics of soot particulate matter (PM) in gas turbine exhaust are critical for an accurate assessment of the potential impacts of the aviation industry on the environment and human health. The morphology and internal structure of soot particles emitted from a CFM 56-7B26/3 turbofan engine were analyzed in an electron microscopic study, down to the nanoscale, for ∼ 100%, ∼ 65%, and ∼ 7% static engine thrust as a proxy for takeoff, cruising, and taxiing, respectively. Sampling was performed directly on transmission electron microscopy (TEM) grids with a state-of-the-art sampling system designed for nonvolatile particulate matter. The electron microscopy results reveal that ∼ 100% thrust produces the highest amount of soot, the highest soot particle volume, and the largest and most crystalline primary soot particles with the lowest oxidative reactivity. The opposite is the case for soot produced during taxiing, where primary soot particles are smallest and most reactive and the soot amount and volume are lowest. The microscopic characteristics of cruising condition soot resemble the ones of the ∼ 100% thrust conditions, but they are more moderate. Real time online measurements of number and mass concentration show also a clear correlation with engine thrust level, comparable with the TEM study. The results of the present work, in particular the small size of primary soot particles present in the exhaust (modes of 24, 20, and 13 nm in diameter for ∼ 100%, ∼ 65% and ∼ 7% engine thrust, respectively) could be a concern for human health and the environment and merit further study. This work further emphasizes the significance of the detailed morphological characteristics of soot for assessing environmental impacts.

  18. Science and applications of low-emittance electron beams

    SciTech Connect

    van Bibber, K

    2000-08-20

    The capability of making very low-emittance electron beams of temporally short, high charge bunches has opened up exciting new possibilities in basic and applied science. Two notable applications are high energy electron-positron linear colliders for particle physics, and fourth-generation light sources consisting of linac-driven Free-Electron Lasers (FEL), both of which represent significant programmatic potential for the Laboratory in the future. The technologies contributing to low-emittance electron beams and their applications, namely precision fabrication, ultra-short pulse lasers, and RF photocathode injectors, are all areas of Lab expertise, and the work carried out under this LDRD project further expanded our core-competency in advanced concept accelerators. Furthermore, high energy accelerators have become a cornerstone of the SBSS program, as illustrated by the recent development of proton radiography as a prime technology candidate for the Advanced Hydrotest Facility (AHF), which enhanced the significance of this project all the more. This was a one-year project to both advance the technology of, and participate in the science enabled by very low-emittance electron beams. The work centered around the two themes above, namely electron-positron linear colliders, and the new fourth-generation light sources. This work built upon previous LDRD investments, and was intended to emphasize accelerator physics experiments.

  19. Fabrication techniques and applications of flexible graphene-based electronic devices

    NASA Astrophysics Data System (ADS)

    Luqi, Tao; Danyang, Wang; Song, Jiang; Ying, Liu; Qianyi, Xie; He, Tian; Ningqin, Deng; Xuefeng, Wang; Yi, Yang; Tian-Ling, Ren

    2016-04-01

    In recent years, flexible electronic devices have become a hot topic of scientific research. These flexible devices are the basis of flexible circuits, flexible batteries, flexible displays and electronic skins. Graphene-based materials are very promising for flexible electronic devices, due to their high mobility, high elasticity, a tunable band gap, quantum electronic transport and high mechanical strength. In this article, we review the recent progress of the fabrication process and the applications of graphene-based electronic devices, including thermal acoustic devices, thermal rectifiers, graphene-based nanogenerators, pressure sensors and graphene-based light-emitting diodes. In summary, although there are still a lot of challenges needing to be solved, graphene-based materials are very promising for various flexible device applications in the future. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) Program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and China's Postdoctoral Science Foundation (CPSF).

  20. Thick Films: Electronic Applications. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning the design, development, fabrication, and evaluation of thick film electronic devices. Thick film solar cells, thick films for radiation conduction, deposition processes, conductive inks are among the topics discussed. Applications in military and civilian avionics are examined.

  1. Semiconductor Devices and Applications. Electronics Module 5. Instructor's Guide.

    ERIC Educational Resources Information Center

    Chappell, John; And Others

    This module is the fifth of 10 modules in the competency-based electronics series. Introductory materials include a listing of competencies addressed in the module, a parts/equipment list, and a cross-reference table of instructional materials. Sixteen instructional units cover: semiconductor materials; diodes; diode applications and…

  2. 21 CFR 1311.120 - Electronic prescription application requirements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 9 2012-04-01 2012-04-01 false Electronic prescription application requirements. 1311.120 Section 1311.120 Food and Drugs DRUG ENFORCEMENT ADMINISTRATION, DEPARTMENT OF JUSTICE... within five minutes of the official National Institute of Standards and Technology time source. (9)...

  3. Graphene Tribotronics for Electronic Skin and Touch Screen Applications.

    PubMed

    Khan, Usman; Kim, Tae-Ho; Ryu, Hanjun; Seung, Wanchul; Kim, Sang-Woo

    2017-01-01

    Graphene tribotronics is introduced for touch-sensing applications such as electronic skins and touch screens. The devices are based on a coplanar coupling of triboelectrification and current transport in graphene transistors. The touch sensors are ultrasensitive, fast, and stable. Furthermore, they are transparent and flexible, and can spatially map touch stimuli such as movement of a ball, multi-touch, etc.

  4. Application and challenges of big data in quality monitoring of highway engineering

    NASA Astrophysics Data System (ADS)

    Xiao, Xianglin; Zhou, Chunrong

    2017-03-01

    Generation of big data brings opportunities and challenges to quality monitoring technologies of highway engineering. Big data of highway engineering quality monitoring is featured by typical "4V" characteristics. In order to deeply analyze application of big data in quality monitoring of highway engineering, the paper discusses generation, processing processes, key technologies as well as other aspects of big data of highway engineering quality monitoring. The paper analyzes storage structure, computing courses and data visualized processing processes of the big data of highway engineering quality monitoring and points out the problems and challenges encountered by application of big data in quality monitoring of highway engineering.

  5. Poly(3-hexylthiophene) nanostructured materials for organic electronics applications.

    PubMed

    Bhatt, M P; Magurudeniya, H D; Rainbolt, E A; Huang, P; Dissanayake, D S; Biewer, M C; Stefan, M C

    2014-02-01

    Semiconducting polymers have been developed during the last few decades and are currently used in various organic electronics applications. Regioregular poly(3-hexylthiophene) (P3HT) is the most employed semiconducting polymer for organic electronics applications. The development of living Grignard metathesis polymerization (GRIM) allowed the synthesis of P3HT with well-defined molecular weights and functional end groups. A large number of block copolymers containing P3HT have been reported, and their opto-electronic properties have been investigated. The performance of P3HT homopolymer and block copolymers in field-effect transistors and bulk heterojunction solar cells are discussed in this review. The morphology of the P3HT materials is also discussed.

  6. High efficiency digital cooler electronics for aerospace applications

    NASA Astrophysics Data System (ADS)

    Kirkconnell, C. S.; Luong, T. T.; Shaw, L. S.; Murphy, J. B.; Moody, E. A.; Lisiecki, A. L.; Ellis, M. J.

    2014-06-01

    Closed-cycle cryogenic refrigerators, or cryocoolers, are an enabling technology for a wide range of aerospace applications, mostly related to infrared (IR) sensors. While the industry focus has tended to be on the mechanical cryocooler thermo mechanical unit (TMU) alone, implementation on a platform necessarily consists of the combination of the TMU and a mating set of command and control electronics. For some applications the cryocooler electronics (CCE) are technologically simple and low cost relative to the TMU, but this is not always the case. The relative cost and complexity of the CCE for a space-borne application can easily exceed that of the TMU, primarily due to the technical constraints and cost impacts introduced by the typical space radiation hardness and reliability requirements. High end tactical IR sensor applications also challenge the state of the art in cryocooler electronics, such as those for which temperature setpoint and frequency must be adjustable, or those where an informative telemetry set must be supported, etc. Generally speaking for both space and tactical applications, it is often the CCE that limits the rated lifetime and reliability of the cryocooler system. A family of high end digital cryocooler electronics has been developed to address these needs. These electronics are readily scalable from 10W to 500W output capacity; experimental performance data for nominally 25W and 100W variants are presented. The combination of a FPGA-based controller and dual H-bridge motor drive architectures yields high efficiency (>92% typical) and precision temperature control (+/- 30 mK typical) for a wide range of Stirling-class mechanical cryocooler types and vendors. This paper focuses on recent testing with the AIM INFRAROT-MODULE GmbH (AIM) SX030 and AIM SF100 cryocoolers.

  7. Chemical Vapor-Deposited (CVD) Diamond Films for Electronic Applications

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Diamond films have a variety of useful applications as electron emitters in devices such as magnetrons, electron multipliers, displays, and sensors. Secondary electron emission is the effect in which electrons are emitted from the near surface of a material because of energetic incident electrons. The total secondary yield coefficient, which is the ratio of the number of secondary electrons to the number of incident electrons, generally ranges from 2 to 4 for most materials used in such applications. It was discovered recently at the NASA Lewis Research Center that chemical vapor-deposited (CVD) diamond films have very high secondary electron yields, particularly when they are coated with thin layers of CsI. For CsI-coated diamond films, the total secondary yield coefficient can exceed 60. In addition, diamond films exhibit field emission at fields orders of magnitude lower than for existing state-of-the-art emitters. Present state-of-the-art microfabricated field emitters generally require applied fields above 5x10^7 V/cm. Research on field emission from CVD diamond and high-pressure, high-temperature diamond has shown that field emission can be obtained at fields as low as 2x10^4 V/cm. It has also been shown that thin layers of metals, such as gold, and of alkali halides, such as CsI, can significantly increase field emission and stability. Emitters with nanometer-scale lithography will be able to obtain high-current densities with voltages on the order of only 10 to 15 V.

  8. Plasma Assisted Combustion: Fundamental Studies and Engine Applications

    NASA Astrophysics Data System (ADS)

    Lefkowitz, Joseph K.

    Successful and efficient ignition in short residence time environments or ultra-lean mixtures is a key technological challenge for the evolution of advanced combustion devices in terms of both performance and efficiency. To meet this challenge, interest in plasma assisted combustion (PAC) has expanded over the past 20 years. However, understanding of the underlying physical processes of ignition by plasma discharge remains elementary. In order to shed light on the key processes involved, two main thrusts of research were undertaken in this dissertation. First, demonstration of the applicability of plasma discharges in engines and engine-like environments was carried out using a microwave discharge and a nanosecond repetitively pulsed discharge in an internal combustion engine and a pulsed detonation engine, respectively. Major conclusions include the extension of lean ignition limits for both engines, significant reduction of ignition time for mixtures with large minimum ignition energy, and the discovery of the inter-pulse coupling effect of nanosecond repetitively pulsed (NRP) discharges at high frequency. In order to understand the kinetic processes that led to these improvements, the second thrust of research directly explored the chemical kinetic processes of plasma discharges with hydrocarbon fuels. For this purpose, a low pressure flow reactor with a NRP dielectric barrier discharge cell was assembled. The discharge cell was fitted with a Herriott type multipass mirror arrangement, which allowed quantitative laser absorption spectroscopy to be performed in situ during the plasma discharge. Experiments on methane and ethylene mixtures with oxygen, argon, and helium revealed the importance of low temperature oxidation pathways in PAC. In particular, oxygen addition reactions were shown to be of primary importance in the oxidation of these small hydrocarbons in the temperature range of 300-600 K. Kinetic modeling tools, including both a coupled plasma and

  9. Tissue Engineering Applications of Three-Dimensional Bioprinting.

    PubMed

    Zhang, Xiaoying; Zhang, Yangde

    2015-07-01

    Recent advances in tissue engineering have adapted the additive manufacturing technology, also known as three-dimensional printing, which is used in several industrial applications, for the fabrication of bioscaffolds and viable tissue and/or organs to overcome the limitations of other in vitro conventional methods. 3D bioprinting technology has gained enormous attention as it enabled 3D printing of a multitude of biocompatible materials, different types of cells and other supporting growth factors into complex functional living tissues in a 3D format. A major advantage of this technology is its ability for simultaneously 3D printing various cell types in defined spatial locations, which makes this technology applicable to regenerative medicine to meet the need for suitable for transplantation suitable organs and tissues. 3D bioprinting is yet to successfully overcome the many challenges related to building 3D structures that closely resemble native organs and tissues, which are complex structures with defined microarchitecture and a variety of cell types in a confined area. An integrated approach with a combination of technologies from the fields of engineering, biomaterials science, cell biology, physics, and medicine is required to address these complexities. Meeting this challenge is being made possible by directing the 3D bioprinting to manufacture biomimetic-shaped 3D structures, using organ/tissue images, obtained from magnetic resonance imaging and computerized tomography, and employing computer-aided design and manufacturing technologies. Applications of 3D bioprinting include the generation of multilayered skin, bone, vascular grafts, heart valves, etc. The current 3D bioprinting technologies need to be improved with respect to the mechanical strength and integrity in the manufactured constructs as the presently used biomaterials are not of optimal viscosity. A better understanding of the tissue/organ microenvironment, which consists of multiple types of

  10. Some applications of microanalytical electron microscopy in materials research

    SciTech Connect

    Thomas, G.

    1985-10-01

    Electron microscopy has made extraordinary progress over the past 30 years and has become an indispensible tool for research in materials science. In this paper a review is given of some applications of microdiffraction and microanalysis in our current materials science research projects at the University of California, Berkeley. The topics discussed include: (1) The problem of solute atom partitioning in steels; this includes the difficulties of measuring carbon contents and methods of utilizing diffraction, lattice imaging, energy dispersive x-ray (EDXS) and electron energy loss (EELS) spectroscopies and atom probe analysis will be illustrated. (2) Utilization of CBED and EDXS techniques in zirconia ceramics research. (3) Applications of CBED to the study of el-Fe2O3 particles used in magnetic recording systems. (4) Applications of CBED and EDXS to rare earth permanent magnets. (5) Channelling enhanced microanalysis. 50 refs., 21 figs.

  11. Electronic structure and magnetism in g-C{sub 4}N{sub 3} controlled by strain engineering

    SciTech Connect

    Liu, L. Z.; Liu, X. X.; Wu, X. L. E-mail: paul.chu@cityu.edu.hk; Chu, Paul K. E-mail: paul.chu@cityu.edu.hk

    2015-03-30

    Regulation of magnetism and half-metallicity has attracted much attention because of its potential in spintronics. The magnetic properties and electronic structure of graphitic carbon nitride (g-C{sub 4}N{sub 3}) with external strain are determined theoretically based on the density function theory and many-body perturbation theory (G{sub 0}W{sub 0}). Asymmetric deformation induced by uniaxial strain not only regulates the magnetic characteristics but also leads to a transformation from half-metallicity to metallicity. However, this transition cannot occur in the structure with symmetric deformation induced by biaxial strain. Our results suggest the use of strain engineering in metal-free spintronics applications.

  12. Smart Document System (SDS) used in managing DOE order`s with electronic Engineering Procedures

    SciTech Connect

    Graham, R.; Robbins, D.

    1993-12-01

    The Microsoft (MS) Windows product is widely available for PC`s. There exists many thousands of them at Sandia. All of the MS applications in Windows have a Help file. This help file informs the user ``how to`` use and run that application. It is an ``on-line`` manual. The ``Help Compiler`` was obtained from Microsoft. Use of this compiler enables one to insert text in a form the MS ``Help Engine`` recognizes. This means all of the features of the Help file: Hypertext (hot links), browsing, searching, indexing, bookmarks, annotation, are available for your text. This turns a document into a ``Smart Document.`` The use of this Smart Document System (SDS) for Engineering Procedures (EPs) is described.

  13. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    PubMed

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed.

  14. Laser applications in the electronics and optoelectronics industry in Japan

    NASA Astrophysics Data System (ADS)

    Washio, Kunihiko

    1999-07-01

    This paper explains current status and technological trends in laser materials processing applications in electronics and optoelectronics industry in Japan. Various laser equipment based on solid state lasers or gas lasers such as excimer lasers or CO2 lasers has been developed and applied in manufacturing electronic and optoelectronic devices to meet the strong demands for advanced device manufacturing technologies for high-performance, lightweight, low power-consumption portable digital electronic appliances, cellular mobile phones, personal computers, etc. Representative applications of solid-state lasers are, opaque and clear defects repairing of photomasks for LSIs and LCDs, trimming of thick-film chip resistors and low resistance metal resistors, laser cutting and drilling of thin films for high-pin count semiconductor CSP packages, laser patterning of thin-film amorphous silicon solar cells, and laser welding of electronic components such as hard-disk head suspensions, optical modules, miniature relays and lithium ion batteries. Compact and highly efficient diode- pumped and Q-switched solid-state lasers in second or third harmonic operation mode are now being increasingly incorporated in various laser equipment for fine material processing. Representative applications of excimer lasers are, sub-quarter micron design-rule LSI lithography and low- temperature annealing of poly-silicon TFT LCD.

  15. Civil Engineering Applications of Ground Penetrating Radar in Finland

    NASA Astrophysics Data System (ADS)

    Pellinen, Terhi; Huuskonen-Snicker, Eeva; Olkkonen, Martta-Kaisa; Eskelinen, Pekka

    2014-05-01

    Ground penetrating radar (GPR) has been used in Finland since 1980's for civil engineering applications. First applications in this field were road surveys and dam inspections. Common GPR applications in road surveys include the thickness evaluation of the pavement, subgrade soil evaluation and evaluation of the soil moisture and frost susceptibility. Since the 1990's, GPR has been used in combination with other non-destructive testing (NDT) methods in road surveys. Recently, more GPR applications have been adopted, such as evaluating bridges, tunnels, railways and concrete elements. Nowadays, compared with other countries GPR is relatively widely used in Finland for road surveys. Quite many companies, universities and research centers in Finland have their own GPR equipment and are involved in the teaching and research of the GPR method. However, further research and promotion of the GPR techniques are still needed since GPR could be used more routinely. GPR has been used to evaluate the air void content of asphalt pavements for years. Air void content is an important quality measure of pavement condition for both the new and old asphalt pavements. The first Finnish guideline was released in 1999 for the method. Air void content is obtained from the GPR data by measuring the dielectric value as continuous record. To obtain air void content data, few pavement cores must be taken for calibration. Accuracy of the method is however questioned because there are other factors that affect the dielectric value of the asphalt layer, in addition to the air void content. Therefore, a research project is currently carried out at Aalto University in Finland. The overall objective is to investigate if the existing GPR technique used in Finland is accurate enough to be used as QC/QA tool in assessing the compaction of asphalt pavements. The project is funded by the Finnish Transport Agency. Further research interests at Aalto University include developing new microwave asphalt

  16. Turbine-engine applications of thermographic-phosphor temperature measurements

    SciTech Connect

    Noel, B.W.; Turley, W.D.; Allison, S.W.

    1995-12-31

    The thermographic-phosphor (TP) method can measure temperature, heat flux, strain, and other physical quantities remotely in hostile and/or inaccessible environments such as the first-stage turbine components in turbine engines. It is especially useful in situations in which no other known method works well. This paper is a brief review of engine tests that demonstrated the utility of the TP method. For the most part, the results presented here are discussed only qualitatively. The papers in the bibliography describe these and other experiments and results in detail. The first viewgraph summarizes the many desirable features of the TP method. The second viewgraph describes TPs, and the third summarizes how the TP method works. To measure single-point temperatures in turbine-engine applications, we use the decay-time method, which depends on the fact that the luminescence following an impulse of ultraviolet excitation decays, with a characteristic decay time that. Is a monotonically decreasing function of temperature over some range of temperatures. The viewgraph is a set of calibration curves showing the behavior of some useful emission lines for ten important TPs. Consider Lu PO{sub 4}:Eu as an example. Below the {open_quotes}quenching{close_quotes} temperature near 900 Y, the decay time is nearly constant. Above it, the decay time decreases exponentially with the temperature. This strong functional dependence means that one can have a fairly large error in the lifetime measurement, as in environments with poor signal-to-noise ratios (SNRs), yet still obtain high accuracy in the temperature measurement. Our more-recent data up to 1900 K show the same behavior.

  17. The applicability of chemical alternatives assessment for engineered nanomaterials.

    PubMed

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly; Tickner, Joel; Ellenbecker, Michael; Baun, Anders

    2017-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case for alternatives assessment approaches, because they can be considered both emerging "chemicals" of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging, and critical elements in chemical hazard and exposure assessment may have to be fundamentally altered to sufficiently address nanomaterials. The aim of this paper is to assess the overall applicability of alternatives assessment methods for nanomaterials and to outline recommendations to enhance their use in this context. The present paper focuses on the adaptability of existing hazard and exposure assessment approaches to engineered nanomaterials as well as strategies to design inherently safer nanomaterials. We argue that alternatives assessment for nanomaterials is complicated by the sheer number of nanomaterials possible. As a result, the inclusion of new data tools that can efficiently and effectively evaluate nanomaterials as substitutes is needed to strengthen the alternatives assessment process. However, we conclude that with additional tools to enhance traditional hazard and exposure assessment modules of alternatives assessment, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. Integr Environ Assess Manag 2017;13:177-187. © 2016 SETAC.

  18. Electron-phonon interaction and scattering in Si and Ge: Implications for phonon engineering

    SciTech Connect

    Tandon, Nandan; Albrecht, J. D.; Ram-Mohan, L. R.

    2015-07-28

    We report ab-initio results for electron-phonon (e-ph) coupling and display the existence of a large variation in the coupling parameter as a function of electron and phonon dispersion. This variation is observed for all phonon modes in Si and Ge, and we show this for representative cases where the initial electron states are at the band gap edges. Using these e-ph matrix elements, which include all possible phonon modes and electron bands within a relevant energy range, we evaluate the imaginary part of the electron self-energy in order to obtain the associated scattering rates. The temperature dependence is seen through calculations of the scattering rates at 0 K and 300 K. The results provide a basis for understanding the impacts of phonon scattering vs. orientation and geometry in the design of devices, and in analysis of transport phenomena. This provides an additional tool for engineering the transfer of energy from carriers to the lattice.

  19. Multifunctional silk-heparin biomaterials for vascular tissue engineering applications

    PubMed Central

    Seib, F. Philipp; Herklotz, Manuela; Burke, Kelly A.; Maitz, Manfred F.; Werner, Carsten; Kaplan, David L.

    2013-01-01

    Over the past 30 years, silk has been proposed for numerous biomedical applications that go beyond its traditional use as a suture material. Silk sutures are well tolerated in humans, but the use of silk for vascular engineering applications still requires extensive biocompatibility testing. Some studies have indicated a need to modify silk to yield a hemocompatible surface. This study examined the potential of low molecular weight heparin as a material for refining silk properties by acting as a carrier for vascular endothelial growth factor (VEGF) and improving silk hemocompatibility. Heparinized silk showed a controlled VEGF release over 6 days; the released VEGF was bioactive and supported the growth of human endothelial cells. Silk samples were then assessed using a humanized hemocompatibility system that employs whole blood and endothelial cells. The overall thrombogenic response for silk was very low and similar to the clinical reference material polytetrafluoroethylene. Despite an initial inflammatory response to silk, apparent as complement and leukocyte activation, the endothelium was maintained in a resting, anticoagulant state. The low thrombogenic response and the ability to control VEGF release support the further development of silk for vascular applications. PMID:24099708

  20. Applications with Intense OTR Images II: Microbunched Electron Beams

    NASA Astrophysics Data System (ADS)

    Lumpkin, A. H.; Dejus, R. J.; Rule, D. W.

    2004-12-01

    In this second application for intense images we take advantage of the coherent enhancement of optical transition radiation (OTR) due to self-amplified spontaneous emission (SASE) free-electron laser (FEL)-induced microbunching of the beam. A much smaller number of total particles is involved, but the microbunched fraction (NB) gives a NB2 enhancement. We report measurements on the z-dependent growth of the coherent OTR (COTR) and the effects of beam size and electron beam/photon beam coalignment in the COTR interferograms.

  1. Electronically steerable millimeter wave antenna techniques for space shuttle applications

    NASA Technical Reports Server (NTRS)

    Kummer, W. H.

    1975-01-01

    A large multi-function antenna aperture and related components are described which will perform electronic steering of one or more beams for two of the three applications envisioned: (1) communications, (2) radar, and (3) radiometry. The array consists of a 6-meter folded antenna that fits into two pallets. The communications frequencies are 20 and 30 GHz, while the radar is to operate at 13.9 GHz. Weight, prime power, and volumes are given parametrically; antenna designs, electronics configurations, and mechanical design were studied.

  2. Renewable energy technology from underpinning physics to engineering application

    NASA Astrophysics Data System (ADS)

    Infield, D. G.

    2008-03-01

    The UK Energy Research Centre (UKERC) in it's submission to the DTI's 2006 Energy Review reminded us that the ''UK has abundant wind, wave and tidal resources available; its mild climate lends itself to bio-energy production, and solar radiation levels are sufficient to sustain a viable solar industry''. These technologies are at different stages of development but they all draw on basic and applied Science and Engineering. The paper will briefly review the renewable energy technologies and their potential for contributing to a sustainable energy supply. Three research topics will be highlighted that bridge the gap between the physics underpinning the energy conversion, and the engineering aspects of development and deployment; all three are highly relevant to the Government's programme on micro-generation. Two are these are taken from field of thin film photovoltaics (PV), one related to novel device development and the other to a measurement technique for assessing the manufacturing quality of PV modules and their performance. The third topic concerns the development of small building integrated wind turbines and examines the complex flow associated with such applications. The paper will conclude by listing key research challenges that are central to the search for efficient and cost-effective renewable energy generation.

  3. Engineered CVD Diamond Coatings for Machining and Tribological Applications

    NASA Astrophysics Data System (ADS)

    Dumpala, Ravikumar; Chandran, Maneesh; Ramachandra Rao, M. S.

    2015-07-01

    Diamond is an allotropes of carbon and is unique because of its extreme hardness (~100 GPa), low friction coefficient (<0.05), high thermal conductivity (~2000 Wm-1 K-1), and high chemical inertness. Diamond is being synthesized artificially in bulk form as well as in the form of surface coatings for various engineering applications. The mechanical characteristics of chemical vapor deposited (CVD) diamond coatings such as hardness, adhesion, friction coefficient, and fracture toughness can be tuned by controlling the grain size of the coatings from a few microns to a few nanometers. In this review, characteristics and performance of the CVD diamond coatings deposited on cemented tungsten carbide (WC-Co) substrates were discussed with an emphasis on WC-Co grade selection, substrate pretreatment, nanocrystallinity and microcrystallinity of the coating, mechanical and tribological characteristics, coating architecture, and interfacial adhesion integrity. Engineered coating substrate architecture is essential for CVD diamond coatings to perform well under harsh and highly abrasive machining and tribological conditions.

  4. Engineering derivatives from biological systems for advanced aerospace applications

    NASA Technical Reports Server (NTRS)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  5. Sonication induced silk fibroin cryogels for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Kadakia, P. U.; Jain, E.; Hixon, K. R.; Eberlin, C. T.; Sell, S. A.

    2016-05-01

    In this study, we report a method to form macroporous silk fibroin (SF) scaffolds through a combination of ultrasonication followed by cryogelation at subzero temperatures. The resultant sonication induced SF cryogels encompassed larger pore sizes (151 ± 56 μm) and higher mechanical stability (127.15 ± 24.71 kPa) than their hydrogel counterparts made at room temperature. Furthermore, the addition of dopants like Manuka honey and bone char in SF cryogels did not affect cryogel synthesis but decreased the pore size in a concentration dependent manner. With no crack propagation at 50% strain and promising stability under cyclic loads, mineralization and cellular infiltration potential were analyzed for bone tissue engineering purposes. Although the scaffolds showed limited mineralization, encouraging cellular infiltration results yield promise for other tissue engineering applications. The use of mild processing conditions, a simplistic procedure, and the lack of organic solvents or chemical cross-linkers renders the combination of sonication and cryogelation as an attractive fabrication technique for 3D SF macroporous scaffolds.

  6. Nanotube field electron emission: principles, development, and applications

    NASA Astrophysics Data System (ADS)

    Li, Yunhan; Sun, Yonghai; Yeow, J. T. W.

    2015-06-01

    There is a growing trend to apply field emission (FE) electron sources in vacuum electronic devices due to their fast response, high efficiency and low energy consumption compared to thermionic emission ones. Carbon nanotubes (CNTs) have been regarded as a promising class of electron field emitters since the 1990s and have promoted the development of FE technology greatly because of their high electrical and thermal conductivity, chemical stability, high aspect ratio and small size. Recent studies have shown that FE from CNTs has the potential to replace conventional thermionic emission in many areas and that it exhibits advanced features in practical applications. Consequently, FE from nanotubes and applications thereof have attracted much attention. This paper provides a comprehensive review of both recent advances in CNT field emitters and issues related to applications of CNT based FE. FE theories and principles are introduced, and the early development of field emitters is related. CNT emitter types and their FE performance are discussed. The current situation for applications based on nanotube FE is reviewed. Although challenges remain, the tremendous progress made in CNT FE over the past ten years indicates the field’s development potential.

  7. Cell surface engineering of yeast for applications in white biotechnology.

    PubMed

    Kuroda, Kouichi; Ueda, Mitsuyoshi

    2011-01-01

    Cell surface engineering is a promising strategy for the molecular breeding of whole-cell biocatalysts. By using this strategy, yeasts can be constructed by the cell surface display of functional proteins; these yeasts are referred to as arming yeasts. Because reactions using arming yeasts as whole-cell biocatalysts occur on the cell surface, materials that cannot enter the cell can be used as reaction substrates. Numerous arming yeasts have therefore been constructed for a wide range of uses such as biofuel production, synthesis of valuable chemicals, adsorption or degradation of environmental pollutants, recovery of rare metal ions, and biosensors. Here, we review the science of yeast cell surface modification as well as current applications and future opportunities.

  8. Genetically engineered mesenchymal stem cells: applications in spine therapy.

    PubMed

    Aslan, Hadi; Sheyn, Dima; Gazit, Dan

    2009-01-01

    Spine disorders and intervertebral disc degeneration are considered the main causes for the clinical condition commonly known as back pain. Spinal fusion by implanting autologous bone to produce bony bridging between the two vertebrae flanking the degenerated-intervertebral disc is currently the most efficient treatment for relieving the symptoms of back pain. However, donor-site morbidity, complications and the long healing time limit the success of this approach. Novel developments undertaken by regenerative medicine might bring more efficient and available treatments. Here we discuss the pros and cons of utilizing genetically engineered mesenchymal stem cells for inducing spinal fusion. The combination of the stem cells, gene and carrier are crucial elements for achieving optimal spinal fusion in both small and large animal models, which hopefully will lead to the development of clinical applications.

  9. CRISPR system for genome engineering: the application for autophagy study.

    PubMed

    Cui, Jianzhou; Chew, Shirley Jia Li; Shi, Yin; Gong, Zhiyuan; Shen, Han-Ming

    2017-03-14

    CRISPR/Cas9 is the latest tool introduced in the field of genome engineering and is so far the best genome-editing tool as compared to its precedents such as, meganucleases, zinc finger nucleases (ZFNs) and transcription activator-like effectors (TALENs). The simple design and assembly of the CRISPR/Cas9 system makes genome editing easy to perform as it uses small guide RNAs that correspond to their DNA targets for high efficiency editing. This has helped open the doors for multiplexible genome targeting in many species that were intractable using old genetic perturbation techniques. Currently, The CRISPR system is revolutionizing the way biological researches are conducted and paves a bright future not only in research but also in medicine and biotechnology. In this review, we evaluated the history, types and structure, the mechanism of action of CRISPR/Cas System. In particular, we focused on the application of this powerful tool in autophagy research.

  10. Materials for engine applications above 3000 deg F: An overview

    NASA Technical Reports Server (NTRS)

    Shaw, Nancy J.; Dicarlo, James A.; Jacobson, Nathan S.; Levine, Stanley R.; Nesbitt, James A.; Probst, Hubert B.; Sanders, William A.; Stearns, Carl A.

    1987-01-01

    Materials for future generations of aeropropulsion systems will be required to perform at ever-increasing temperatures and have properties superior to the current state of the art. Improved engine efficiency can reduce specific fuel consumption and thus increase range and reduce operating costs. The ultimate payoff gain is expected to come when materials are developed which can perform without cooling at gas temperatures to 2200 C (4000 F). An overview is presented of materials for applications above 1650 C (3000 F), some pertinent physical property data, and the rationale used: (1) to arrive at recommendations of material systems that qualify for further investigation, and (2) to develop a proposed plan of research. From an analysis of available thermochemical data it was included that such materials systems must be composed of oxide ceramics. The required structural integrity will be achieved by developing these materials into fiber-reinforced ceramic composites.

  11. Systems Engineering Model and Training Application for Desktop Environment

    NASA Technical Reports Server (NTRS)

    May, Jeffrey T.

    2010-01-01

    Provide a graphical user interface based simulator for desktop training, operations and procedure development and system reference. This simulator allows for engineers to train and further understand the dynamics of their system from their local desktops. It allows the users to train and evaluate their system at a pace and skill level based on the user's competency and from a perspective based on the user's need. The simulator will not require any special resources to execute and should generally be available for use. The interface is based on a concept of presenting the model of the system in ways that best suits the user's application or training needs. The three levels of views are Component View, the System View (overall system), and the Console View (monitor). These views are portals into a single model, so changing the model from one view or from a model manager Graphical User Interface will be reflected on all other views.

  12. Monte Carlo applications at Hanford Engineering Development Laboratory

    SciTech Connect

    Carter, L.L.; Morford, R.J.; Wilcox, A.D.

    1980-03-01

    Twenty applications of neutron and photon transport with Monte Carlo have been described to give an overview of the current effort at HEDL. A satisfaction factor was defined which quantitatively assigns an overall return for each calculation relative to the investment in machine time and expenditure of manpower. Low satisfaction factors are frequently encountered in the calculations. Usually this is due to limitations in execution rates of present day computers, but sometimes a low satisfaction factor is due to computer code limitations, calendar time constraints, or inadequacy of the nuclear data base. Present day computer codes have taken some of the burden off of the user. Nevertheless, it is highly desirable for the engineer using the computer code to have an understanding of particle transport including some intuition for the problems being solved, to understand the construction of sources for the random walk, to understand the interpretation of tallies made by the code, and to have a basic understanding of elementary biasing techniques.

  13. Materials for engine applications above 3000 deg F: An overview

    SciTech Connect

    Shaw, N.J.; Dicarlo, J.A.; Jacobson, N.S.; Levine, S.R.; Nesbitt, J.A.; Probst, H.B.; Sanders, W.A.; Stearns, C.A.

    1987-10-01

    Materials for future generations of aeropropulsion systems will be required to perform at ever-increasing temperatures and have properties superior to the current state of the art. Improved engine efficiency can reduce specific fuel consumption and thus increase range and reduce operating costs. The ultimate payoff gain is expected to come when materials are developed which can perform without cooling at gas temperatures to 2200 C (4000 F). An overview is presented of materials for applications above 1650 C (3000 F), some pertinent physical property data, and the rationale used: (1) to arrive at recommendations of material systems that qualify for further investigation, and (2) to develop a proposed plan of research. From an analysis of available thermochemical data it was included that such materials systems must be composed of oxide ceramics. The required structural integrity will be achieved by developing these materials into fiber-reinforced ceramic composites.

  14. Recent advances to obtain real - Time displacements for engineering applications

    USGS Publications Warehouse

    Celebi, M.

    2005-01-01

    This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.

  15. Development of biosensors and their application in metabolic engineering.

    PubMed

    Zhang, Jie; Jensen, Michael K; Keasling, Jay D

    2015-10-01

    In a sustainable bioeconomy, many commodities and high value chemicals, including pharmaceuticals, will be manufactured using microbial cell factories from renewable feedstocks. These cell factories can be efficiently generated by constructing libraries of diversified genomes followed by screening for the desired phenotypes. However, methods available for microbial genome diversification far exceed our ability to screen and select for those variants with optimal performance. Genetically encoded biosensors have shown the potential to address this gap, given their ability to respond to small molecule binding and ease of implementation with high-throughput analysis. Here we describe recent progress in biosensor development and their applications in a metabolic engineering context. We also highlight examples of how biosensors can be integrated with synthetic circuits to exert feedback regulation on the metabolism for improved performance of cell factories.

  16. Investigations for the improvement of space shuttle main engine electron beam welding equipment

    NASA Technical Reports Server (NTRS)

    Smock, R. A.; Taylor, R. A.; Wall, W. A., Jr.

    1977-01-01

    Progress made in the testing, evaluation, and correction of MSFC's 7.5 kW electron beam welder in support of space shuttle main engine component welding is summarized. The objective of this project was to locate and correct the deficiencies in the welder. Some 17 areas were deficient in the 7.5 kW ERI welding system and the associated corrective action was taken to improve its operational performance. An overall improvement of 20 times the original reliability was obtained at full rated capacity after the modifications were made.

  17. Laser-activated remote phosphor light engine for projection applications

    NASA Astrophysics Data System (ADS)

    Daniels, Martin; Mehl, Oliver; Hartwig, Ulrich

    2015-09-01

    Recent developments in blue emitting laser diodes enable attractive solutions in projection applications using phosphors for efficient light conversion with very high luminance levels. Various commercially available projectors incorporating this technology have entered the market in the past years. While luminous flux levels are still comparable to lamp-based systems, lifetime expectations of classical lamp systems are exceeded by far. OSRAM GmbH has been exploring this technology for several years and has introduced the PHASER® brand name (Phosphor + laser). State-of-the-art is a rotating phosphor wheel excited by blue laser diodes to deliver the necessary primary colors, either sequentially for single-imager projection engines, or simultaneously for 3-panel systems. The PHASER® technology enables flux and luminance scaling, which allows for smaller imagers and therefore cost-efficient projection solutions. The resulting overall efficiency and ANSI lumen specification at the projection screen of these systems is significantly determined by the target color gamut and the light transmission efficiency of the projection system. With increasing power and flux level demand, thermal issues, especially phosphor conversion related, dominate the opto-mechanical system design requirements. These flux levels are a great challenge for all components of an SSL-projection system (SSL:solid-state lighting). OSRAḾs PHASER® light engine platform is constantly expanded towards higher luminous flux levels as well as higher luminance levels for various applications. Recent experiments employ blue laser pump powers of multiple 100 Watts to excite various phosphors resulting in luminous flux levels of more than 40 klm.

  18. Implementation issue on failure detection and isolation in electronically controlled engines

    SciTech Connect

    Yu, T.L.; Ribbens, W.B.

    1990-12-01

    The study investigates the FDI (failure detection and isolation) implementation issue on electronically controlled diesel engines. The purpose of the study is to provide a systematic FDI design methodology, while the ultimate goal is to improve the overall safety and reliability of electronically controlled subsystems in commercial vehicles. The study covers all important aspects of system design problems, namely, the development of the theoretical foundation for the design of failure detection strategies, the issues of failure detection system structure, the number representation, the assessment of computation requirement, the system architecture, and the implementation procedure. A simplified FDI controller is designed using the procedure proposed to demonstrate its feasibility. The control unit of the FDI subsystem is a microprogrammed control unit, and is so highly flexible that it can be expanded easily in the future to accomodate other important features of the FDI controller.

  19. Gradient ascent pulse engineering approach to CNOT gates in donor electron spin quantum computing

    SciTech Connect

    Tsai, D.-B.; Goan, H.-S.

    2008-11-07

    In this paper, we demonstrate how gradient ascent pulse engineering (GRAPE) optimal control methods can be implemented on donor electron spin qubits in semiconductors with an architecture complementary to the original Kane's proposal. We focus on the high fidelity controlled-NOT (CNOT) gate and we explicitly find the digitized control sequences for a controlled-NOT gate by optimizing its fidelity using the effective, reduced donor electron spin Hamiltonian with external controls over the hyperfine A and exchange J interactions. We then simulate the CNOT-gate sequence with the full spin Hamiltonian and find that it has an error of 10{sup -6} that is below the error threshold of 10{sup -4} required for fault-tolerant quantum computation. Also the CNOT gate operation time of 100 ns is 3 times faster than 297 ns of the proposed global control scheme.

  20. Selective laser sintering of biocompatible polymers for applications in tissue engineering.

    PubMed

    Tan, K H; Chua, C K; Leong, K F; Cheah, C M; Gui, W S; Tan, W S; Wiria, F E

    2005-01-01

    The ability to use biological substitutes to repair or replace damaged tissues lead to the development of Tissue Engineering (TE), a field that is growing in scope and importance within biomedical engineering. Anchorage dependent cell types often rely on the use of temporary three-dimensional scaffolds to guide cell proliferation. Computer-controlled fabrication techniques such as Rapid Prototyping (RP) processes have been recognised to have an edge over conventional manual-based scaffold fabrication techniques due to their ability to create structures with complex macro- and micro-architectures. Despite the immense capabilities of RP fabrication for scaffold production, commercial available RP modelling materials are not biocompatible and are not suitable for direct use in the fabrication of scaffolds. Work is carried out with several biocompatible polymers such as Polyetheretherketone (PEEK), Poly(vinyl alcohol) (PVA), Polycaprolactone (PCL) and Poly(L-lactic acid) (PLLA) and a bioceramic namely, Hydroxyapatite (HA). The parameters of the selective laser sintering (SLS) process are optimised to cater to the processing of these materials. SLS-fabricated scaffold specimens are examined using a Scanning Electron Microscope (SEM). Results observed from the micrographs indicate the viability of them being used for building TE scaffolds and ascertain the capabilities of the SLS process for creating highly porous scaffolds for Tissue Engineering applications.

  1. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Karuppuswamy, Priyadharsini; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Laiva, Ashang Luwang; Sridhar, Sreepathy; Ramakrishna, Seeram

    2014-12-01

    Nanotechnology being one of the most promising technologies today shows an extremely huge potential in the field of tissue engineering to mimic the porous topography of natural extracellular matrix (ECM). Natural polymers are incorporated into the synthetic polymers to fabricate functionalized hybrid nanofibrous scaffolds, which improve cell and tissue compatibility. The present study identified the biopolymers - aloe vera, silk fibroin and curcumin incorporated into polycaprolactone (PCL) as suitable substrates for tissue engineering. Different combinations of PCL with natural polymers - PCL/aloe vera, PCL/silk fibroin, PCL/aloe vera/silk fibroin, PCL/aloe vera/silk fibroin/curcumin were electrospun into nanofibrous scaffolds. The fabricated two dimensional nanofibrous scaffolds showed high surface area, appropriate mechanical properties, hydrophilicity and porosity, required for the regeneration of diseased tissues. The nanofibrous scaffolds were characterized by Scanning electron microscope (SEM), porometry, Instron tensile tester, VCA optima contact angle measurement and FTIR to analyze the fiber diameter and morphology, porosity and pore size distribution, mechanical strength, wettability, chemical bonds and functional groups, respectively. The average fiber diameter of obtained fibers ranged from 250 nm to 350 nm and the tensile strength of PCL scaffolds at 4.49 MPa increased upto 8.3 MPa for PCL/silk fibroin scaffolds. Hydrophobicity of PCL decreased with the incorporation of natural polymers, especially for PCL/aloe vera scaffolds. The properties of as-spun nanofiber scaffolds showed their potential as promising scaffold materials in tissue engineering applications.

  2. 40 CFR 86.1851-01 - Application of good engineering judgment to manufacturers' decisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Application of good engineering... of good engineering judgment to manufacturers' decisions. (a) The manufacturer shall exercise good engineering judgment in making all decisions called for under this subpart, including but not limited...

  3. The Physics and Applications of High Brightness Electron Beams

    NASA Astrophysics Data System (ADS)

    Palumbo, Luigi; Rosenzweig, J.; Serafini, Luca

    2007-09-01

    Plenary sessions. RF deflector based sub-Ps beam diagnostics: application to FEL and advanced accelerators / D. Alesini. Production of fermtosecond pulses and micron beam spots for high brightness electron beam applications / S.G. Anderson ... [et al.]. Wakefields of sub-picosecond electron bunches / K.L.F. Bane. Diamond secondary emitter / I. Ben-Zvi ... [et al.]. Parametric optimization for an X-ray free electron laser with a laser wiggler / R. Bonifacio, N. Piovella and M.M. Cola. Needle cathodes for high-brightness beams / C.H. Boulware ... [et al.]. Non linear evolution of short pulses in FEL cascaded undulators and the FEL harmonic cascade / L. Giannessi and P. Musumeci. High brightness laser induced multi-meV electron/proton sources / D. Giulietti ... [et al.]. Emittance limitation of a conditioned beam in a strong focusing FEL undulator / Z. Huang, G. Stupakov and S. Reiche. Scaled models: space-charge dominated electron storage rings / R.A. Kishek ... [et al.]. High brightness beam applications: energy recovered linacs / G.A. Krafft. Maximizing brightness in photoinjectors / C. Limborg-Deprey and H. Tomizawa. Ultracold electron sources / O.J. Luiten ... [et al.]. Scaling laws of structure-based optical accelerators / A. Mizrahi, V. Karagodsky and L. Schächter. High brightness beams-applications to free-electron lasers / S. Reiche. Conception of photo-injectors for the CTF3 experiment / R. Roux. Superconducting RF photoinjectors: an overview / J. Sekutowicz. Status and perspectives of photo injector developments for high brightness beams / F. Stephan. Results from the UCLA/FNLP underdense plasma lens experiment / M.C. Thompson ... [et al.]. Medical application of multi-beam compton scattering monochromatic tunable hard X-ray source / M. Uesaka ... [et al.]. Design of a 2 kA, 30 fs RF-photoinjector for waterbag compression / S.B. Van Der Geer, O.J. Luiten and M.J. De Loos. Proposal for a high-brightness pulsed electron source / M. Zolotorev ... [et al

  4. Clinical applications of alanine/electron spin resonance dosimetry.

    PubMed

    Baffa, Oswaldo; Kinoshita, Angela

    2014-05-01

    This paper discusses the clinical applications of electron spin resonance (ESR) dosimetry focusing on the ESR/alanine system. A review of few past studies in this area is presented offering a critical overview of the challenges and opportunities for extending this system into clinical applications. Alanine/ESR dosimetry fulfills many of the required properties for several clinical applications such as water-equivalent composition, independence of the sensitivity for the energy range used in therapy and high precision. Improvements in sensitivity and the development of minidosimeters coupled with the use of a spectrometer of higher microwave frequency expanded the possibilities for clinical applications to the new modalities of radiotherapy (intensity-modulated radiation therapy and radiosurgery) and to the detection of low doses such as those present in some radiological image procedures.

  5. Surface engineered two-dimensional and quasi-one-dimensional nanomaterials for electronic and optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Du, Xiang

    As the sizes of individual components in electronic and optoelectronic devices approach nano scale, the performance of the devices is often determined by surface properties due to their large surface-to-volume ratio. Surface phenomena have become one of the cornerstones in nanoelectronic industry. For this reason, research on the surface functionalization has been tremendous amount of growth over the past decades, and promises to be an increasingly important field in the future. Surface functionalization, as an effective technique to modify the surface properties of a material through a physical or chemical approach, exhibits great potential to solve the problems and challenges, and modulate the performance of nanomaterials based functional devices. Surface functionalization drives the developments and applications of modern electronic and optoelectronic devices fabricated by nanomaterials. In this thesis, I demonstrate two surface functionalization approaches, namely, surface transfer doping and H2 annealing, to effectively solve the problems and significantly enhance the performance of 2D (single structure black phosphorus (BP) and heterostructure graphene/Si Schottky junction), and quasi-1D (molybdenum trioxide (MoO 3) nanobelt) nanomaterials based functional devices, respectively. In situ photoelectron spectroscopy (PES) measurements were also carried out to explore the interfacial charge transfer occurring at the interface between the nanostructures and doping layers, and the gap states in MoO 3 thin films, which provides the underlying mechanism to understand and support our device measurement results. In the first part of this thesis, I will discuss the first surface functionalization approach, namely, surface transfer doping, to effectively modulate the ambipolar characteristics of 2D few-layer BP flakes based FETs. The ambipolar characteristics of BP transistors were effectively modulated through in situ surface functionalization with cesium carbonate (Cs2

  6. Simulation of Laser Cooling and Trapping in Engineering Applications

    NASA Technical Reports Server (NTRS)

    Ramirez-Serrano, Jaime; Kohel, James; Thompson, Robert; Yu, Nan; Lunblad, Nathan

    2005-01-01

    An advanced computer code is undergoing development for numerically simulating laser cooling and trapping of large numbers of atoms. The code is expected to be useful in practical engineering applications and to contribute to understanding of the roles that light, atomic collisions, background pressure, and numbers of particles play in experiments using laser-cooled and -trapped atoms. The code is based on semiclassical theories of the forces exerted on atoms by magnetic and optical fields. Whereas computer codes developed previously for the same purpose account for only a few physical mechanisms, this code incorporates many more physical mechanisms (including atomic collisions, sub-Doppler cooling mechanisms, Stark and Zeeman energy shifts, gravitation, and evanescent-wave phenomena) that affect laser-matter interactions and the cooling of atoms to submillikelvin temperatures. Moreover, whereas the prior codes can simulate the interactions of at most a few atoms with a resonant light field, the number of atoms that can be included in a simulation by the present code is limited only by computer memory. Hence, the present code represents more nearly completely the complex physics involved when using laser-cooled and -trapped atoms in engineering applications. Another advantage that the code incorporates is the possibility to analyze the interaction between cold atoms of different atomic number. Some properties that cold atoms of different atomic species have, like cross sections and the particular excited states they can occupy when interacting with each other and light fields, play important roles not yet completely understood in the new experiments that are under way in laboratories worldwide to form ultracold molecules. Other research efforts use cold atoms as holders of quantum information, and more recent developments in cavity quantum electrodynamics also use ultracold atoms to explore and expand new information-technology ideas. These experiments give a hint

  7. Electronic noses and their applications in environmental monitoring

    SciTech Connect

    Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-12-31

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. In this paper, we examine the effectiveness of using artificial neural networks for real-time data analysis of a sensor array. Analyzing the sensor data in parallel may allow for rapid identification of contaminants in the field without requiring highly selective component sensors. A sensor array combined with a data analysis module is referred to as an electronic nose. In this paper, we investigate the trade off between sensor sensitivity and selectivity relating to the applications of neural network based-electronic noses in environmental monitoring. We use a prototype electronic nose which consists of nine tin-oxide Taguchi-type sensors, a temperature sensor, and a humidity sensor. We illustrate that by using neural network based analysis of a sensor data, the selectivity of a sensor array may be significantly improved, especially when some (or all) sensors are not highly selective.

  8. Collimated Photo-Electron Gun (CPEG) Development for Spaceflight Applications: Electronics Design and Preliminary Testing

    NASA Astrophysics Data System (ADS)

    Taylor, A.; Everding, D.; Krause, L. H.

    2012-12-01

    In previous decades, active space experiments have been conducted with electron beams generate artificial aurora, trace magnetic field lines, and stimulate Very Low Frequency (VLF) emissions. A new electron source called the collimated photo-electron gun (CPEG) is presently under development for spaceflight applications. High-energy Light Emitting Diodes (LEDs) are used to photo-eject electrons off a target material, and these photoelectrons are then focused into a beam using electrostatic lenses. The beam electron energy is controlled by the voltage on the lenses, and the electron flux is controlled by the brightness of the LEDs. The LEDs require a narrow range of both voltage and current setpoints, and thus must be pulse-width modulated at a high frequency to control the brightness. Because the lens and target voltages must be kept at fixed ratio to ensure a laminar beam, the target is powered by a voltage-controlled current source. An Arduino is used to provide command and data handling for the electron gun and the telemetry interface with the host spacecraft. To measure the current flowing to the target, an instrumentation amplifier boosts the voltage from a current-viewing resistor and feeds this voltage to one of the analog inputs of the Arduino. The LEDs are powered using a highly-specialized integrated circuit designed for sourcing high-power LEDs: The LM3500-21. The detailed design and preliminary results of the calibration of the electronics will be presented with this paper. The CPEG is presently under consideration for numerous flight opportunities, and a prototype is scheduled for environmental and functional testing in the fourth quarter of 2012.

  9. The application of similar image retrieval in electronic commerce.

    PubMed

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei

    2014-01-01

    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system.

  10. The Application of Similar Image Retrieval in Electronic Commerce

    PubMed Central

    Hu, YuPing; Yin, Hua; Han, Dezhi; Yu, Fei

    2014-01-01

    Traditional online shopping platform (OSP), which searches product information by keywords, faces three problems: indirect search mode, large search space, and inaccuracy in search results. For solving these problems, we discuss and research the application of similar image retrieval in electronic commerce. Aiming at improving the network customers' experience and providing merchants with the accuracy of advertising, we design a reasonable and extensive electronic commerce application system, which includes three subsystems: image search display subsystem, image search subsystem, and product information collecting subsystem. This system can provide seamless connection between information platform and OSP, on which consumers can automatically and directly search similar images according to the pictures from information platform. At the same time, it can be used to provide accuracy of internet marketing for enterprises. The experiment shows the efficiency of constructing the system. PMID:24883411

  11. Selenium nanomaterials: applications in electronics, catalysis and sensors.

    PubMed

    Chaudhary, Savita; Mehta, S K

    2014-02-01

    This review provides insights into the synthesis, functionalization, and applications of selenium nanoparticles in electronics, optics, catalysis and sensors. The variation of physicochemical properties such as particle size, surface area, and shape of the selenium nanoparticles and the effect of experimental conditions has also been discussed. An overview has also been provided on the fundamental electrical and optical properties of selenium nanomaterials as well as their utilization in different research fields. The work presents an insight on selenium nanoparticles with interesting properties and their future applications.

  12. Trends for Electron Beam Accelerator Applications in Industry

    NASA Astrophysics Data System (ADS)

    Machi, Sueo

    2011-02-01

    Electron beam (EB) accelerators are major pieces of industrial equipment used for many commercial radiation processing applications. The industrial use of EB accelerators has a history of more than 50 years and is still growing in terms of both its economic scale and new applications. Major applications involve the modification of polymeric materials to create value-added products, such as heat-resistant wires, heat-shrinkable sheets, automobile tires, foamed plastics, battery separators and hydrogel wound dressing. The surface curing of coatings and printing inks is a growing application for low energy electron accelerators, resulting in an environmentally friendly and an energy-saving process. Recently there has been the acceptance of the use of EB accelerators in lieu of the radioactive isotope cobalt-60 as a source for sterilizing disposable medical products. Environmental protection by the use of EB accelerators is a new and important field of application. A commercial plant for the cleaning flue gases from a coal-burning power plant is in operation in Poland, employing high power EB accelerators. In Korea, a commercial plant uses EB to clean waste water from a dye factory.

  13. Optimal Solution for an Engineering Applications Using Modified Artificial Immune System

    NASA Astrophysics Data System (ADS)

    Padmanabhan, S.; Chandrasekaran, M.; Ganesan, S.; patan, Mahamed Naveed Khan; Navakanth, Polina

    2017-03-01

    An Engineering optimization leads a essential role in several engineering application areas like process design, product design, re-engineering and new product development, etc. In engineering, an awfully best answer is achieved by comparison to some completely different solutions by utilization previous downside information. An optimization algorithms provide systematic associate degreed economical ways that within which of constructing and comparison new design solutions so on understand at best vogue, thus on best solution efficiency and acquire the foremost wonderful design impact. In this paper, a new evolutionary based Modified Artificial Immune System (MAIS) algorithm used to optimize an engineering application of gear drive design. The results are compared with existing design.

  14. ISLE: Intelligent Selection of Loop Electronics. A CLIPS/C++/INGRES integrated application

    NASA Technical Reports Server (NTRS)

    Fischer, Lynn; Cary, Judson; Currie, Andrew

    1990-01-01

    The Intelligent Selection of Loop Electronics (ISLE) system is an integrated knowledge-based system that is used to configure, evaluate, and rank possible network carrier equipment known as Digital Loop Carrier (DLC), which will be used to meet the demands of forecasted telephone services. Determining the best carrier systems and carrier architectures, while minimizing the cost, meeting corporate policies and addressing area service demands, has become a formidable task. Network planners and engineers use the ISLE system to assist them in this task of selecting and configuring the appropriate loop electronics equipment for future telephone services. The ISLE application is an integrated system consisting of a knowledge base, implemented in CLIPS (a planner application), C++, and an object database created from existing INGRES database information. The embedibility, performance, and portability of CLIPS provided us with a tool with which to capture, clarify, and refine corporate knowledge and distribute this knowledge within a larger functional system to network planners and engineers throughout U S WEST.

  15. Applications of the Analytical Electron Microscope to Materials Science

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.

    1992-01-01

    In the last 20 years, the analytical electron microscope (AEM) as allowed investigators to obtain chemical and structural information from less than 50 nanometer diameter regions in thin samples of materials and to explore problems where reactions occur at boundaries and interfaces or within small particles or phases in bulk samples. Examples of the application of the AEM to materials science problems are presented in this paper and demonstrate the usefulness and the future potential of this instrument.

  16. Applications of Silicon Carbide for High Temperature Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Shields, Virgil B.

    1995-01-01

    Silicon carbide (SiC) is a wide bandgap material that shows great promise in high-power and high temperature electronics applications because of its high thermal conductivity and high breakdown electrical field. The excellent physical and electronic properties of SiC allows the fabrication of devices that can operate at higher temperatures and power levels than devices produced from either silicon or GaAs. Although modern electronics depends primarily upon silicon based devices, this material is not capable of handling may special requirements. Devices which operate at high speeds, at high power levels and are to be used in extreme environments at high temperatures and high radiation levels need other materials with wider bandgaps than that of silicon. Many space and terrestrial applications also have a requirement for wide bandgap materials. SiC also has great potential for high power and frequency operation due to a high saturated drift velocity. The wide bandgap allows for unique optoelectronic applications, that include blue light emitting diodes and ultraviolet photodetectors. New areas involving gas sensing and telecommunications offer significant promise. Overall, the properties of SiC make it one of the best prospects for extending the capabilities and operational regimes of the current semiconductor device technology.

  17. Engineered soy oils for new value added applications

    NASA Astrophysics Data System (ADS)

    Tran, Phuong T.

    Soybean oil is an abundant annually renewable resource. It is composed of triglycerides with long chain saturated and unsaturated fatty acids. The presence of unsaturated fatty acids allows for chemical modification to introduce new functionalities to soybean oil. A portfolio of chemically modified soy oil with suitable functional groups has been designed and engineered to serve as the starting material in applications such as polyamides, polyesters, polyurethanes, composites, and lubricants. Anhydride, hydroxyl, and silicone functionalities were introduced to soy oil. Anhydride functionality was introduced using a single-step free radical initiated process, and the chemically modified soy oils were evaluated for potential applications as a composite and lubricant. Hydroxyl functionalities were introduced in a single-step catalytic ozonolysis process recently developed in our labs, which proceeds rapidly and efficiently at room temperature without solvent. The transformed soy oil was used to successfully prepare bio-lubricants with good thermal/oxidative stability and bio-plastics such as polyamides, polyesters, and polyurethanes. A new class of organic-inorganic hybrid materials was prepared by curing vinyltrimethoxysilane functionalized soy oil. This hybrid material could have potential as biobased sealant through a moisture initiated room temperature cure. These new classes of soy-based materials are competitive both in cost and performance to petroleum based materials, but offer the advantage of being biobased.

  18. Applications of Chondrocyte-Based Cartilage Engineering: An Overview

    PubMed Central

    Eo, Seong-Hui; Abbas, Qamar; Ahmed, Madiha

    2016-01-01

    Chondrocytes are the exclusive cells residing in cartilage and maintain the functionality of cartilage tissue. Series of biocomponents such as different growth factors, cytokines, and transcriptional factors regulate the mesenchymal stem cells (MSCs) differentiation to chondrocytes. The number of chondrocytes and dedifferentiation are the key limitations in subsequent clinical application of the chondrocytes. Different culture methods are being developed to overcome such issues. Using tissue engineering and cell based approaches, chondrocytes offer prominent therapeutic option specifically in orthopedics for cartilage repair and to treat ailments such as tracheal defects, facial reconstruction, and urinary incontinence. Matrix-assisted autologous chondrocyte transplantation/implantation is an improved version of traditional autologous chondrocyte transplantation (ACT) method. An increasing number of studies show the clinical significance of this technique for the chondral lesions treatment. Literature survey was carried out to address clinical and functional findings by using various ACT procedures. The current study was conducted to study the pharmacological significance and biomedical application of chondrocytes. Furthermore, it is inferred from the present study that long term follow-up studies are required to evaluate the potential of these methods and specific positive outcomes. PMID:27631002

  19. Remote sensing applications for transportation and traffic engineering studies: A review of the literature

    NASA Technical Reports Server (NTRS)

    Epps, J. W.

    1973-01-01

    Current references were surveyed for the application of remote sensing to traffic and transportation studies. The major problems are presented that concern traffic engineers and transportation managers, and the literature references that discuss remote sensing applications are summarized.

  20. Metal particle emissions in the exhaust stream of diesel engines: an electron microscope study.

    PubMed

    Liati, Anthi; Schreiber, Daniel; Dimopoulos Eggenschwiler, Panayotis; Arroyo Rojas Dasilva, Yadira

    2013-12-17

    Scanning electron microscopy and transmission electron microscopy were applied to investigate the morphology, mode of occurrence and chemical composition of metal particles (diesel ash) in the exhaust stream of a small truck outfitted with a typical after-treatment system (a diesel oxidation catalyst (DOC) and a downstream diesel particulate filter (DPF)). Ash consists of Ca-Zn-P-Mg-S-Na-Al-K-phases (lube-oil related), Fe, Cr, Ni, Sn, Pb, Sn (engine wear), and Pd (DOC coating). Soot agglomerates of variable sizes (<0.5-5 μm) are abundant upstream of the DPF and are ash-free or contain notably little attached ash. Post-DPF soot agglomerates are very few, typically large (>1-5 μm, exceptionally 13 μm), rarely <0.5 μm, and contain abundant ash carried mostly from inside the DPF. The ash that reaches the atmosphere also occurs as separate aggregates ca. 0.2-2 μm in size consisting of sintered primary phases, ca. 20-400 nm large. Insoluble particles of these sizes may harm the respiratory and cardiovascular systems. The DPF probably promotes breakout of large soot agglomerates (mostly ash-bearing) by favoring sintering. Noble metals detached from the DOC coating may reach the ambient air. Finally, very few agglomerates of Fe-oxide nanoparticles form newly from engine wear and escape into the atmosphere.