Science.gov

Sample records for electronic excited states

  1. Theoretical studies of electronically excited states

    SciTech Connect

    Besley, Nicholas A.

    2014-10-06

    Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.

  2. Excited state electron affinity calculations for aluminum

    NASA Astrophysics Data System (ADS)

    Hussein, Adnan Yousif

    2017-08-01

    Excited states of negative aluminum ion are reviewed, and calculations of electron affinities of the states (3s^23p^2)^1D and (3s3p^3){^5}{S}° relative to the (3s^23p)^2P° and (3s3p^2)^4P respectively of the neutral aluminum atom are reported in the framework of nonrelativistic configuration interaction (CI) method. A priori selected CI (SCI) with truncation energy error (Bunge in J Chem Phys 125:014107, 2006) and CI by parts (Bunge and Carbó-Dorca in J Chem Phys 125:014108, 2006) are used to approximate the valence nonrelativistic energy. Systematic studies of convergence of electron affinity with respect to the CI excitation level are reported. The calculated value of the electron affinity for ^1D state is 78.675(3) meV. Detailed Calculations on the ^5S°c state reveals that is 1216.8166(3) meV below the ^4P state.

  3. On the Electronically Excited States of Uracil

    SciTech Connect

    Epifanovsky, Evgeny; Kowalski, Karol; Fan, Peng-Dong; Valiev, Marat; Matsika, Spiridoula; Krylov, Anna

    2008-10-09

    Vertical excitation energies in uracil in the gas phase and in water solution are investigated by the equation-of-motion coupled-cluster and multi-reference configuration interaction methods. Basis set effects are found to be important for converged results. The analysis of electronic wave functions reveals that the lowest singlet states are predominantly of a singly excited character and are therefore well described by single-reference equation-of-motion methods augmented by a perturbative triples correction to account for dynamical correlation. Our best estimates for the vertical excitation energies for the lowest singlet n and are 5.0±0.1 eV and 5.3±0.1 eV, respectively. The solvent effects for these states are estimated to be +0.5 eV and ±0.1 eV, respectively. We attribute the difference between the computed vertical excitations and the maximum of the experimental absorption to strong vibronic interaction between the lowest A00 and A0 states leading to intensity borrowing by the forbidden transition.

  4. Electron excitation from ground state to first excited state: Bohmian mechanics method

    NASA Astrophysics Data System (ADS)

    Yang, Song; Shuang, Zhao; Fu-Ming, Guo; Yu-Jun, Yang; Su-Yu, Li

    2016-03-01

    The excitation process of electrons from the ground state to the first excited state via the resonant laser pulse is investigated by the Bohmian mechanics method. It is found that the Bohmian particles far away from the nucleus are easier to be excited and are excited firstly, while the Bohmian particles in the ground state is subject to a strong quantum force at a certain moment, being excited to the first excited state instantaneously. A detailed analysis for one of the trajectories is made, and finally we present the space and energy distribution of 2000 Bohmian particles at several typical instants and analyze their dynamical process at these moments. Project supported by the Doctoral Research Start-up Funding of Northeast Dianli University, China (Grant No. BSJXM-201332), the National Natural Science Foundation of China (Grant Nos. 11547114, 11534004, 11474129, 11274141, 11447192, and 11304116), and the Graduate Innovation Fund of Jilin University, China (Grant No. 2015091).

  5. Computing electronic structures: A new multiconfiguration approach for excited states

    NASA Astrophysics Data System (ADS)

    Cancès, Éric; Galicher, Hervé; Lewin, Mathieu

    2006-02-01

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latters. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H2 molecule.

  6. Computing electronic structures: A new multiconfiguration approach for excited states

    SciTech Connect

    Cances, Eric . E-mail: cances@cermics.enpc.fr; Galicher, Herve . E-mail: galicher@cermics.enpc.fr; Lewin, Mathieu . E-mail: lewin@cermic.enpc.fr

    2006-02-10

    We present a new method for the computation of electronic excited states of molecular systems. This method is based upon a recent theoretical definition of multiconfiguration excited states [due to one of us, see M. Lewin, Solutions of the multiconfiguration equations in quantum chemistry, Arch. Rat. Mech. Anal. 171 (2004) 83-114]. Our algorithm, dedicated to the computation of the first excited state, always converges to a stationary state of the multiconfiguration model, which can be interpreted as an approximate excited state of the molecule. The definition of this approximate excited state is variational. An interesting feature is that it satisfies a non-linear Hylleraas-Undheim-MacDonald type principle: the energy of the approximate excited state is an upper bound to the true excited state energy of the N-body Hamiltonian. To compute the first excited state, one has to deform paths on a manifold, like this is usually done in the search for transition states between reactants and products on potential energy surfaces. We propose here a general method for the deformation of paths which could also be useful in other settings. We also compare our method to other approaches used in Quantum Chemistry and give some explanation of the unsatisfactory behaviours which are sometimes observed when using the latter. Numerical results for the special case of two-electron systems are provided: we compute the first singlet excited state potential energy surface of the H {sub 2} molecule.

  7. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  8. Internal conversion from excited electronic states of 229Th ions

    NASA Astrophysics Data System (ADS)

    Bilous, Pavlo V.; Kazakov, Georgy A.; Moore, Iain D.; Schumm, Thorsten; Pálffy, Adriana

    2017-03-01

    The process of internal conversion from excited electronic states is investigated theoretically for the case of the vacuum-ultraviolet nuclear transition of 229Th. Due to the very low transition energy, the 229Th nucleus offers the unique possibility to open the otherwise forbidden internal conversion nuclear decay channel for thorium ions via optical laser excitation of the electronic shell. We show that this feature can be exploited to investigate the isomeric state properties via observation of internal conversion from excited electronic configurations of +Th and Th+2 ions. A possible experimental realization of the proposed scenario at the nuclear laser spectroscopy facility IGISOL in Jyväskylä, Finland, is discussed.

  9. Tuning ground states and excitations in complex electronic materials

    SciTech Connect

    Bishop, A.R.

    1996-09-01

    Modern electronic materials are characterized by a great variety of broken-symmetry ground states and excitations. Their control requires understanding and tuning underlying driving forces of spin-charge-lattice coupling, critical to macroscopic properties and applications. We report representative model calculations which demonstrate some of the richness of the phenomena and the challenges for successful microscopic modeling.

  10. Nature of ground and electronic excited states of higher acenes

    PubMed Central

    Yang, Yang; Yang, Weitao

    2016-01-01

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle–particle random-phase approximation calculation. The 1Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state 3B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state 1B2u is a zwitterionic state to the short axis. The excited 1Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the 1B2u and excited 1Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved. PMID:27528690

  11. Nature of ground and electronic excited states of higher acenes.

    PubMed

    Yang, Yang; Davidson, Ernest R; Yang, Weitao

    2016-08-30

    Higher acenes have drawn much attention as promising organic semiconductors with versatile electronic properties. However, the nature of their ground state and electronic excited states is still not fully clear. Their unusual chemical reactivity and instability are the main obstacles for experimental studies, and the potentially prominent diradical character, which might require a multireference description in such large systems, hinders theoretical investigations. Here, we provide a detailed answer with the particle-particle random-phase approximation calculation. The (1)Ag ground states of acenes up to decacene are on the closed-shell side of the diradical continuum, whereas the ground state of undecacene and dodecacene tilts more to the open-shell side with a growing polyradical character. The ground state of all acenes has covalent nature with respect to both short and long axes. The lowest triplet state (3)B2u is always above the singlet ground state even though the energy gap could be vanishingly small in the polyacene limit. The bright singlet excited state (1)B2u is a zwitterionic state to the short axis. The excited (1)Ag state gradually switches from a double-excitation state to another zwitterionic state to the short axis, but always keeps its covalent nature to the long axis. An energy crossing between the (1)B2u and excited (1)Ag states happens between hexacene and heptacene. Further energetic consideration suggests that higher acenes are likely to undergo singlet fission with a low photovoltaic efficiency; however, the efficiency might be improved if a singlet fission into multiple triplets could be achieved.

  12. Electronically excited states of sodium-water clusters

    NASA Astrophysics Data System (ADS)

    Schulz, Claus Peter; Bobbert, Christiana; Shimosato, Taku; Daigoku, Kota; Miura, Nobuaki; Hashimoto, Kenro

    2003-12-01

    The lowest electronically excited state of small Na(H2O)n clusters has been investigated experimentally and theoretically. The excitation energy as determined by the depletion spectroscopy method drops from 16 950 cm-1 for the sodium atom down to 9670 cm-1 when only three water molecules are attached to the Na atom. For larger clusters the absorption band shifts back towards higher energies and reaches 10 880 cm-1 for n=12. The experimental data are compared to quantum-chemical calculations at the Møeller-Plesset second-order perturbation and multireference single and double excitation configuration interaction levels. We found that the observed size dependence of the transition energy is well reproduced by the interior structure where the sodium atom is surrounded by water molecules. The analysis of the radial charge distribution of the unpaired electron in these interior structures gives a new insight into the formation of the "solvated" electron.

  13. Dynamics and spectroscopy of CH₂OO excited electronic states.

    PubMed

    Kalinowski, Jaroslaw; Foreman, Elizabeth S; Kapnas, Kara M; Murray, Craig; Räsänen, Markku; Gerber, R Benny

    2016-04-28

    The excited states of the Criegee intermediate CH2OO are studied in molecular dynamics simulations using directly potentials from multi-reference perturbation theory (MR-PT2). The photoexcitation of the species is simulated, and trajectories are propagated in time on the excited state. Some of the photoexcitation events lead to direct fragmentation of the molecule, but other trajectories describe at least several vibrations in the excited state, that may terminate by relaxation to the ground electronic state. Limits on the role of non-adiabatic contributions to the process are estimated by two different simulations, one that forces surface-hopping at potential crossings, and another that ignores surface hopping altogether. The effect of non-adiabatic transitions is found to be small. Spectroscopic implications and consequences for the interpretation of experimental results are discussed.

  14. Controlling autoionization in strontium two-electron-excited states

    NASA Astrophysics Data System (ADS)

    Fields, Robert; Zhang, Xinyue; Dunning, F. Barry; Yoshida, Shuhei; Burgdörfer, Joachim

    2016-05-01

    One challenge in engineering long-lived two-electron-excited states, i.e., so-called planetary atoms, is autoionization. Autoionization, however, can be suppressed if the outermost electron is placed in a high- n, n ~ 300 - 600 , high- L state because such states have only a very small overlap with the inner electron, even when this is also excited to a state of relatively high n and hence of relatively long lifetime. Here the L-dependence of the autoionization rate for high- n strontium Rydberg atoms is examined during excitation of the core ion 5 s 2S1 / 2 - 5 p 2P3 / 2 transition. Measurements in which the angular momentum of the Rydberg electron is controlled using a pulsed electric field show that the autoionization rate decreases rapidly with increasing L and becomes very small for values larger than ~ 20 . The data are analyzed with the aid of calculations undertaken using complex scaling. Research supported by the NSF and Robert A. Welch Foundation.

  15. Electronic excited states and relaxation dynamics in polymer heterojunction systems

    NASA Astrophysics Data System (ADS)

    Ramon, John Glenn Santos

    , we examine the effect of the nanoscale interfacial morphology and solvation on the electronic excited states of TFB/F8BT. Here, we employ time-dependent density functional theory (TD-DFT) to investigate the relevant excited states of two stacking configurations. We show that the calculated states agree with the excited states responsible for the experimentally observed emission peaks and that these states are blue shifted relative to those of the isolated chain. Furthermore, slight lateral shifts in the stacking orientation not only shift the excited state energies; more importantly, they alter the nature of these states altogether. Lastly, we see that solvation greatly stabilizes the charge-transfer states.

  16. Electronic Ground and Excited State Spectral Diffusion of a Photocatalyst

    NASA Astrophysics Data System (ADS)

    Kiefer, Laura M.; King, John T.; Kubarych, Kevin J.

    2014-06-01

    Re(bpy)(CO)_3Cl is a well studied CO_2 reduction catalyst, known for its ability as both a photosensitizer and a catalyst with a high quantum yield and product selectivity. The catalysis reaction is initiated by a 400 nm excitation, followed by an intersystem crossing (ISC) and re-equilibration in the lowest triplet state. We utilize the quasi-equilibrium nature of this long-lived triplet metal-to-ligand charge-transfer (3MLCT) state to completely characterize the solvent dynamics using the technique of transient two-dimensional infrared (t-2DIR) spectroscopy to extract observables such as the frequency-frequency correlation function (FFCF), an equilibrium function. The electronic ground state solvent dynamics are characterized using equilibrium two-dimensional infrared spectroscopy (2D IR). Our technique allows us to independently observe the solvent dynamics of different electronic states and compare them. In this study, three carbonyl stretching modes were utilized to probe both the intramolecular and solvent environments in each electronic state. In the electronic ground state, the totally symmetric mode exhibits pure homogeneous broadening and a lack of spectral dynamics, while the two other modes have similar FFCF decay times of ˜ 1.5 ps. In the 3MLCT, however, all three modes experience similar spectral dynamics and have a FFCF decay time of ˜ 4.5 ps, three times slower than in the electronic ground state. Our technique allows us to directly observe the differences in spectral dynamics of the ground and excited electronic states and allows us to attribute the differences to specific origins such as solvent-solute coupling and molecular flexibility.

  17. Targeting excited states in all-trans polyenes with electron-pair states.

    PubMed

    Boguslawski, Katharina

    2016-12-21

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  18. Targeting excited states in all-trans polyenes with electron-pair states

    NASA Astrophysics Data System (ADS)

    Boguslawski, Katharina

    2016-12-01

    Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.

  19. Electron-impact excitation of the low-lying electronic states of formaldehyde

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    1974-01-01

    Electron-impact excitation has been observed at incident electron energies of 10.1 and 20.1 eV to the first five excited electronic states of formaldehyde lying at and below the 1B2 state at 7.10 eV. These excitations include two new transitions in the energy-loss range 5.6-6.2 eV and 6.7-7.0 eV which have been detected for the first time, either through electron-impact excitation or photon absorption. The differential cross sections of these new excitations are given at scattering angles between 15 and 135 deg. These cross-section ratios peak at large scattering angles - a characteristic of triplet - singlet excitations. The design and performance of the electron-impact spectrometer used in the above observations is outlined and discussed.

  20. Trapped electronic states in YAG crystal excited by femtosecond radiation

    NASA Astrophysics Data System (ADS)

    Zavedeev, E. V.; Kononenko, V. V.; Konov, V. I.

    2017-07-01

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index ( n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for {˜}150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schrödinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs.

  1. Electronic excited states of CO/sub 2/: An electron impact investigation

    SciTech Connect

    McDiarmid, R.; Doering, J.P.

    1984-01-15

    The electronic excited states of CO/sub 2/ were restudied by variable incident energy, variable angle electron impact spectroscopy. In this study, valence states of mixed configurations were distinguished from pure Rydberg states. Our results are incompatible with the theoretical description of CO/sub 2/, in which only two valence singlet states are located.

  2. Excited electronic state of a cluster formed from self-trapped electrons

    SciTech Connect

    Mukhomorov, V.K.

    1995-12-01

    The possibility of spontaneous clustering of self-trapped electrons in an excited electronic state is discussed. The pair interaction potential corresponds to the excited terms {sup 1}{Sigma}{sub g}(1s2s) in the single spin state and {sup 3}{Sigma}{sub u}(1s2s) in the triplet spin state. The energy interval corresponding to a pair of excited quasi-particles is calculated. Quantitative calculations are presented for electrons solvated in ammonia. 9 refs., 4 figs.

  3. Electron-impact excitation and ionization cross sections for ground state and excited helium atoms

    SciTech Connect

    Ralchenko, Yu. Janev, R.K.; Kato, T.; Fursa, D.V.; Bray, I.; Heer, F.J. de

    2008-07-15

    Comprehensive and critically assessed cross sections for the electron-impact excitation and ionization of ground state and excited helium atoms are presented. All states (atomic terms) with n{<=}4 are treated individually, while the states with n{>=}5 are considered degenerate. For the processes involving transitions to and from n{>=}5 levels, suitable cross section scaling relations are presented. For a large number of transitions, from both ground and excited states, convergent close coupling calculations were performed to achieve a high accuracy of the data. The evaluated/recommended cross section data are presented by analytic fit functions, which preserve the correct asymptotic behavior of the cross sections. The cross sections are also displayed in graphical form.

  4. Ultrafast Spectroscopy of Delocalized Excited States of the Hydrated Electron

    SciTech Connect

    Paul F. Barbara

    2005-09-28

    Research under support of this grant has been focused on the understanding of highly delocalized ''conduction-band-like'' excited states of solvated electrons in bulk water, in water trapped in the core of reverse micelles, and in alkane solvents. We have strived in this work to probe conduction-band-like states by a variety of ultrafast spectroscopy techniques. (Most of which were developed under DOE support in a previous funding cycle.) We have recorded the optical spectrum of the hydrated electron for the first time. This was accomplished by applying a photo-detrapping technique that we had developed in a previous funding cycle, but had not yet been applied to characterize the actual spectrum. In the cases of reverse micelles, we have been investigating the potential role of conduction bands in the electron attachment process and the photoinduced detrapping, and have published two papers on this topic. Finally, we have been exploring solvated electrons in isooctane from various perspectives. All of these results strongly support the conclusion that optically accessible, highly delocalized electronic states exist in these various media.

  5. Benzonitrile: Electron affinity, excited states, and anion solvation.

    PubMed

    Dixon, Andrew R; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-07

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X̃(1)A1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, ã(3)A1, is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet Ã(1)A1, is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  6. Excited electronic states and spectroscopy of unsymmetrically substituted polyenes

    NASA Astrophysics Data System (ADS)

    Itoh, Takao

    2013-09-01

    α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π*) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.

  7. Excited electronic states and spectroscopy of unsymmetrically substituted polyenes.

    PubMed

    Itoh, Takao

    2013-09-07

    α-Methyl-ω-phenylpolyenes, Me-(CH=CH)N-Ph, (MPPNs) with N = 2, 3, and 4 were synthesized. Fluorescence, absorption, and excitation spectra of MPPNs have been measured under different conditions along with those of β-methylstyrene. It is shown that there is a forbidden singlet (π, π∗) excited state located at energies below the absorbing state for MPPNs with N = 3 and 4. Excitation energies of these polyenes are determined as a function of N. Quantitative analysis of the temperature dependence of the relative intensity of the fluorescence spectrum and its solvent shift behavior extract estimates of the various physical parameters that characterize excitation energies and excited-state dynamical behavior of MPPN with N = 3. The singlet excited states of the MPPNs were compared with those of the α,ω-diphenylpolyenes and α,ω-dimethylpolyenes.

  8. Total electron scattering and electronic state excitations cross sections for O2, CO, and CH4

    NASA Technical Reports Server (NTRS)

    Kanik, I.; Trajmar, S.; Nickel, J. C.

    1993-01-01

    Available electron collision cross section data concerning total and elastic scattering, vibrational excitation, and ionization for O2, CO, and CH4 have been critically reviewed, and a set of cross sections for modeling of planetary atmospheric behavior is recommended. Utilizing these recommended cross sections, we derived total electronic state excitation cross sections and upper limits for dissociation cross sections, which in the case of CH4 should very closely equal the actual dissociation cross section.

  9. State-to-state kinetics and transport properties of electronically excited N and O atoms

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2016-11-01

    A theoretical model of transport properties in electronically excited atomic gases in the state-to-state approach is developed. Different models for the collision diameters of atoms in excited states are discussed, and it is shown that the Slater-like models can be applied for the state-resolved transport coefficient calculations. The influence of collision diameters of N and O atoms with electronic degrees of freedom on the transport properties is evaluated. Different distributions on the electronic energy are considered for the calculation of transport coefficients. For the Boltzmann-like distributions at temperatures greater than 15000 K, an important effect of electronic excitation on the thermal conductivity and viscosity coefficients is found; the coefficients decrease significantly when many electronic states are taken into account. It is shown that under hypersonic reentry conditions the impact of collision diameters on the transport properties is not really important since the populations of high levels behind the shock waves are low.

  10. Ultrafast electronic relaxation of excited state vitamin B 12 in the gas phase

    NASA Astrophysics Data System (ADS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoıˆt

    2008-06-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states.

  11. Electronically excited rubidium atom in helium clusters and films. II. Second excited state and absorption spectrum.

    PubMed

    Leino, Markku; Viel, Alexandra; Zillich, Robert E

    2011-01-14

    Following our work on the study of helium droplets and film doped with one electronically excited rubidium atom Rb(∗) ((2)P) [M. Leino, A. Viel, and R. E. Zillich, J. Chem. Phys. 129, 184308 (2008)], we focus in this paper on the second excited state. We present theoretical studies of such droplets and films using quantum Monte Carlo approaches. Diffusion and path integral Monte Carlo algorithms combined with a diatomics-in-molecule scheme to model the nonpair additive potential energy surface are used to investigate the energetics and the structure of Rb(∗)He(n) clusters. Helium films as a model for the limit of large clusters are also considered. As in our work on the first electronic excited state, our present calculations find stable Rb(∗)He(n) clusters. The structures obtained are however different with a He-Rb(∗)-He exciplex core to which more helium atoms are weakly attached, preferentially on one end of the core exciplex. The electronic absorption spectrum is also presented for increasing cluster sizes as well as for the film.

  12. Ensemble density functional theory method correctly describes bond dissociation, excited state electron transfer, and double excitations

    SciTech Connect

    Filatov, Michael; Huix-Rotllant, Miquel; Burghardt, Irene

    2015-05-14

    State-averaged (SA) variants of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, SA-REKS and state-interaction (SI)-SA-REKS, implement ensemble density functional theory for variationally obtaining excitation energies of molecular systems. In this work, the currently existing version of the SA-REKS method, which included only one excited state into the ensemble averaging, is extended by adding more excited states to the averaged energy functional. A general strategy for extension of the REKS-type methods to larger ensembles of ground and excited states is outlined and implemented in extended versions of the SA-REKS and SI-SA-REKS methods. The newly developed methods are tested in the calculation of several excited states of ground-state multi-reference systems, such as dissociating hydrogen molecule, and excited states of donor–acceptor molecular systems. For hydrogen molecule, the new method correctly reproduces the distance dependence of the lowest excited state energies and describes an avoided crossing between the doubly excited and singly excited states. For bithiophene–perylenediimide stacked complex, the SI-SA-REKS method correctly describes crossing between the locally excited state and the charge transfer excited state and yields vertical excitation energies in good agreement with the ab initio wavefunction methods.

  13. Excited State Electronic Properties of Sodium Iodide and Cesium Iodide

    SciTech Connect

    Campbell, Luke W.; Gao, Fei

    2013-05-01

    We compute from first principles the dielectric function, loss function, lifetime and scattering rate of quasiparticles due to electronic losses, and secondary particle spectrum due to plasmon decay in two scintillating alkali halides, sodium iodide and cesium iodide. Particular emphasis is placed on quasiparticles within several multiples of the band gap from the band edges. A theory for the decay spectra of plasmons and other electronic excitations in crystals is presented. Applications to Monte Carlo radiation transport codes are discussed.

  14. Excited State Dynamics of Protonated Phenylalanine and Tyrosine: Photo-Induced Reactions Following Electronic Excitation.

    PubMed

    Féraud, Géraldine; Broquier, Michel; Dedonder, Claude; Jouvet, Christophe; Grégoire, Gilles; Soorkia, Satchin

    2015-06-11

    The electronic spectroscopy and the electronic excited state properties of cold protonated phenylalanine and protonated tyrosine have been revisited on a large spectral domain and interpreted by comparison with ab initio calculations. The protonated species are stored in a cryogenically cooled Paul trap, maintained at ∼10 K, and the parent and all the photofragment ions are mass-analyzed in a time-of-flight mass spectrometer, which allows detecting the ionic species with an improved mass resolution compared to what is routinely achieved with a quadrupole mass spectrometer. These new results emphasize the competition around the band origin between two proton transfer reactions from the ammonium group toward either the aromatic chromophore or the carboxylic acid group. These reactions are initiated by the coupling of the locally excited ππ* state with higher charge transfer states, the positions and coupling of which depend on the conformation of the protonated molecules. Each of these reaction processes gives rise to specific fragmentation channels that supports the conformer selectivity observed in the photofragmentation spectra of protonated tyrosine and phenylalanine.

  15. Integral cross sections for electron impact excitation of vibrational and electronic states in phenol

    SciTech Connect

    Neves, R. F. C.; Jones, D. B.; Lopes, M. C. A.; Blanco, F.; García, G.; Ratnavelu, K.; Brunger, M. J.

    2015-05-21

    We report on measurements of integral cross sections (ICSs) for electron impact excitation of a series of composite vibrational modes and electronic-states in phenol, where the energy range of those experiments was 15–250 eV. There are currently no other results against which we can directly compare those measured data. We also report results from our independent atom model with screened additivity rule correction computations, namely, for the inelastic ICS (all discrete electronic states and neutral dissociation) and the total ionisation ICS. In addition, for the relevant dipole-allowed excited electronic states, we also report f-scaled Born-level and energy-corrected and f-scaled Born-level (BEf-scaled) ICS. Where possible, our measured and calculated ICSs are compared against one another with the general level of accord between them being satisfactory to within the measurement uncertainties.

  16. Glycine in an electronically excited state: ab initio electronic structure and dynamical calculations.

    PubMed

    Muchová, Eva; Slavícek, Petr; Sobolewski, Andrzej L; Hobza, Pavel

    2007-06-21

    The goal of this study is to explore the photochemical processes following optical excitation of the glycine molecule into its two low-lying excited states. We employed electronic structure methods at various levels to map the PES of the ground state and the two low-lying excited states of glycine. It follows from our calculations that the photochemistry of glycine can be regarded as a combination of photochemical behavior of amines and carboxylic acid. The first channel (connected to the presence of amino group) results in ultrafast decay, while the channels characteristic for the carboxylic group occur on a longer time scale. Dynamical calculations provided the branching ratio for these channels. We also addressed the question whether conformationally dependent photochemistry can be observed for glycine. While electronic structure calculations favor this possibility, the ab initio multiple spawning (AIMS) calculations showed only minor relevance of the reaction path resulting in conformationally dependent dynamics.

  17. Theory of electronic states and excitations in PPV

    NASA Astrophysics Data System (ADS)

    Brazovskii, S.; Kirova, N.; Bishop, A. R.

    1998-01-01

    We present a consistent theoretical picture for optical properties of phenyl based polymers, especially for the PPV family. The model is based upon an analytical solution for the band structure of PPV oligomers, while invoking the dominant Coulomb corrections for electron-hole interactions. The adjustable parameters are only the common shift for the bands centers of gravity and a dielectric susceptibility at small distances. Our picture gives a clear understanding for the origin of all possible transitions in linear and nonlinear optics. We describe both tightly bound localized excitons and excitons of intermediate range (i.e. of both the Frenkel and Wannier-Mott types). The quantitative description of excitons is obtained from the long range Coulomb interactions, We emphasize where the ring torsion plays a role in the overall energy minimization of the excited state. This article provides theory details for the joint article [S. Brazovskii, N. Kirova, A.R. Bishop, V. Klimov, D. McBranch, N.N. Barashkov, J.P. Ferraris, Opt. Mater. 9 (1998) 472], where a complete picture was outlined.

  18. The electronic excited states of green fluorescent protein chromophore models

    NASA Astrophysics Data System (ADS)

    Olsen, Seth Carlton

    We explore the properties of quantum chemical approximations to the excited states of model chromophores of the green fluorescent protein of A. victoria. We calculate several low-lying states by several methods of quantum chemical calculation, including state-averaged complete active space SCF (CASSCF) methods, time dependent density functional theory (TDDFT), equation-of motion coupled cluster (EOM-CCSD) and multireference perturbation theory (MRPT). Amongst the low-lying states we identify the optically bright pipi* state of the molecules and examine its properties. We demonstrate that the state is dominated by a single configuration function. We calculate zero-time approximations to the resonance Raman spectrum of GFP chromophore models, and assign published spectra based upon these.

  19. Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds.

    PubMed

    Feixas, Ferran; Vandenbussche, Jelle; Bultinck, Patrick; Matito, Eduard; Solà, Miquel

    2011-12-14

    Aromaticity is a property usually linked to the ground state of stable molecules. Although it is well-known that certain excited states are unquestionably aromatic, the aromaticity of excited states remains rather unexplored. To move one step forward in the comprehension of aromaticity in excited states, in this work we analyze the electron delocalization and aromaticity of a series of low-lying excited states of cyclobutadiene, benzene, and cyclooctatetraene with different multiplicities at the CASSCF level by means of electron delocalization measures. While our results are in agreement with Baird's rule for the aromaticity of the lowest-lying triplet excited state in annulenes having 4nπ-electrons, they do not support Soncini and Fowler's generalization of Baird's rule pointing out that the lowest-lying quintet state of benzene and septet state of cyclooctatetraene are not aromatic.

  20. Excited state electron transfer after visible light absorption by the Co(I) state of vitamin B12.

    PubMed

    Achey, Darren; Brigham, Erinn C; DiMarco, Brian N; Meyer, Gerald J

    2014-11-11

    The first example of excited state electron transfer from cob(I)alamin is reported herein. Vitamin B12 was anchored to a mesoporous TiO2 thin film and electrochemically reduced to the cob(I)alamin form. Pulsed laser excitation resulted in rapid excited state electron transfer, ket > 10(8) s(-1), followed by microsecond interfacial charge recombination to re-form cob(I)alamin. The supernucleophilic cob(I)alamin was found to be a potent photoreductant. The yield of excited state electron transfer was found to be excitation wavelength dependent. The implications of this dependence are discussed.

  1. Dynamics of the Chemistry of Electronically Excited Atoms in Defined Quantum States.

    DTIC Science & Technology

    1980-08-15

    excited atom concentration by atomic absorption spectroscopy in the vacuum ultraviolet (6). Relatively efficient electronic to vibrational energy transfer...by the use of atomic absorption spectroscopy , permitted observation of both ground and electronically excited state bromine atoms. The deactivation of

  2. Peroxyacetyl radical: Electronic excitation energies, fundamental vibrational frequencies, and symmetry breaking in the first excited state

    SciTech Connect

    Copan, Andreas V.; Wiens, Avery E.; Nowara, Ewa M.; Schaefer, Henry F.; Agarwal, Jay

    2015-02-07

    Peroxyacetyl radical [CH{sub 3}C(O)O{sub 2}] is among the most abundant peroxy radicals in the atmosphere and is involved in OH-radical recycling along with peroxyacetyl nitrate formation. Herein, the ground (X{sup ~}) and first (A{sup ~}) excited state surfaces of cis and trans peroxyacetyl radical are characterized using high-level ab initio methods. Geometries, anharmonic vibrational frequencies, and adiabatic excitation energies extrapolated to the complete basis-set limit are reported from computations with coupled-cluster theory. Excitation of the trans conformer is found to induce a symmetry-breaking conformational change due to second-order Jahn-Teller interactions with higher-lying excited states. Additional benchmark computations are provided to aid future theoretical work on peroxy radicals.

  3. Activity of upper electron-excited states in bioluminescence of coelenterates

    NASA Astrophysics Data System (ADS)

    Belogurova, N. V.; Alieva, R. R.; Kudryasheva, N. S.

    2009-04-01

    The involvement of upper electron-excited states as the primary excited states into bioluminescence of coelenterates was experimentally verified. A series of fluorescent molecules was used as foreign energy acceptors in this bioluminescent reaction. The fluorescent aromatic compounds - pyrene, 2-methoxy-naphtalene, naphthalene, and 1,4-diphenylbutadiene - were selected, with fluorescent state energies ranging from 26,700 to 32,500 cm -1. Excitation of these molecules by Forster singlet-singlet energy transfer from S of bioluminescence emitter and by light absorption were excluded. The weak sensitized fluorescence of three compounds was found in the course of bioluminescent reaction. Energy of the upper electron-excited states of the bioluminescent emitter was located around 31,000 cm -1. Localization of the primary excitation on a carbonyl group of coelenteramide molecule is discussed. Comparison of the primary excitation in bioluminescent processes of coelenterates and bacteria is provided.

  4. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    NASA Astrophysics Data System (ADS)

    Egidi, Franco; Segado, Mireia; Koch, Henrik; Cappelli, Chiara; Barone, Vincenzo

    2014-12-01

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  5. A benchmark study of electronic excitation energies, transition moments, and excited-state energy gradients on the nicotine molecule

    SciTech Connect

    Egidi, Franco Segado, Mireia; Barone, Vincenzo; Koch, Henrik; Cappelli, Chiara

    2014-12-14

    In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.

  6. Theoretical Study of Tautomerization Reactions for the Ground and First Excited Electronic States of Adenine

    NASA Technical Reports Server (NTRS)

    Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.

  7. Evaluating Electronic Couplings for Excited State Charge Transfer Based on Maximum Occupation Method ΔSCF Quasi-Adiabatic States.

    PubMed

    Liu, Junzi; Zhang, Yong; Bao, Peng; Yi, Yuanping

    2017-02-14

    Electronic couplings of charge-transfer states with the ground state and localized excited states at the donor/acceptor interface are crucial parameters for controlling the dynamics of exciton dissociation and charge recombination processes in organic solar cells. Here we propose a quasi-adiabatic state approach to evaluate electronic couplings through combining maximum occupation method (mom)-ΔSCF and state diabatization schemes. Compared with time-dependent density functional theory (TDDFT) using global hybrid functional, mom-ΔSCF is superior to estimate the excitation energies of charge-transfer states; moreover it can also provide good excited electronic state for property calculation. Our approach is hence reliable to evaluate electronic couplings for excited state electron transfer processes, which is demonstrated by calculations on a typical organic photovoltaic system, oligothiophene/perylenediimide complex.

  8. Electron impact excitation and dissociation of N2 via the b 1Pi(u) state

    NASA Technical Reports Server (NTRS)

    Ratliff, J. M.; James, G. K.; Trajmar, S.; Ajello, J. M.; Shemansky, D. E.

    1991-01-01

    Electron impact excitation of the b 1Pi(u) state in N2 plays a prominent role in the dissociation of the molecule and thus in the production of atomic nitrogen in planetary atmospheres. Electron impact excitation cross sections combined with electron-impact-induced fluorescence measurements can yield the corresponding dissociation cross sections. Serious discrepancies exist among excitation cross sections reported in the literature. To clarify the situation, these cross sections were measured at two impact energies using electron energy loss spectroscopy. The new results are in agreement with recent values deduced from optical measurements and fall midway between previous results which are too high or low by factors of 2.

  9. Coherence, Energy and Charge Transfers in De-Excitation Pathways of Electronic Excited State of Biomolecules in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Bohr, Henrik G.; Malik, F. Bary

    2013-11-01

    The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin-chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used Förster-Dexter theory, which does not allow for charge transfer, is a special case of B-A theory. The latter could, under appropriate circumstances, lead to excimers.

  10. Electron impact excitation and assignment of the low-lying electronic states of CO2

    NASA Technical Reports Server (NTRS)

    Hall, R. I.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of CO2 are reported in the 7 to 10 eV energy-loss range, at energies of 0.2, 0.35, 0.6, 0.7, and 7.0 eV above threshold, and at a scattering angle of 90 deg. Several new distinct overlapping continua with weak, diffuse bands superimposed are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of recent ab initio configuration-interaction calculations of the vertical transition energies of CO2. The experimental spectra are shown to be consistent with the excitation states of CO2.

  11. Dissociative excitation of the N(+)(5S) state by electron impact on N2 - Excitation function and quenching

    NASA Technical Reports Server (NTRS)

    Erdman, P. W.; Zipf, E. C.

    1986-01-01

    Metastable N(+)(5S) ions were produced in the laboratory by dissociative excitation of N2 with energetic electrons. The resulting radiative decay of the N(+)(5S) state was observed with sufficient resolution to completely resolve the doublet from the nearby N2 molecular radiation. The excitation function was measured from threshold to 500 eV. The cross section peaks at a high electron energy and also exhibits a high threshold energy both of which are typical of dissociative excitation-ionization processes. This finding complicates the explanation of electron impact on N2 as the mechanism for the source of the 2145 A 'auroral mystery feature' by further increasing the required peak cross section. It is suggested that the apparent N(+)(5S) quenching in auroras may be an artifact due to the softening of the electron energy spectrum in the auroral E region.

  12. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics.

    PubMed

    Neville, Simon P; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S

    2016-10-14

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L(2) method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  13. Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics

    NASA Astrophysics Data System (ADS)

    Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.

    2016-10-01

    We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.

  14. Reduced Heat Flux Through Preferential Surface Reactions Leading to Vibrationally and Electronically Excited Product States

    DTIC Science & Technology

    2016-03-04

    computational chemistry approaches, capable of modeling nonadiabatic oxygen interactions (electronically excited interactions) with surface defects...were developed. Through such computational chemistry modeling we determined precisely how and why such excited-state molecules are produced, by...to interpret the experimental data. The third objective was to develop new computational chemistry approaches capable of modeling the challenging

  15. Electron energy-loss spectroscopy of excited states of the pyridine molecules

    NASA Astrophysics Data System (ADS)

    Linert, Ireneusz; Zubek, Mariusz

    2016-04-01

    Electron energy-loss spectra of the pyridine, C5H5N, molecules in the gas phase have been measured to investigate electronic excitation in the energy range 3.5-10 eV. The applied wide range of residual electron energy and the scattering angle range from 10° to 180° enabled to differentiate between optically-allowed and -forbidden transitions. These measurements have allowed vertical excitation energies of the triplet excited states of pyridine to be determined and tentative assignments of these states to be proposed. Some of these states have not been identified in the previous works. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.

  16. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect

    Hoffman, M.Z.

    1992-07-31

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes. (DLC)

  17. Differential cross sections for electron-impact excitation of the electronic states of pyrimidine

    NASA Astrophysics Data System (ADS)

    Brunger, Michael; Jones, Darryl; Bellm, Susan

    2012-06-01

    Pyrimidine (C4N2H4) is an important molecule, as it forms the basis of larger biomolecules, such as the DNA bases thymine, cytosine and uracil. There is a pressing demand for low-energy electron scattering data from such biological analogs in order to model radiation induced damage [1]. We therefore present the first measurements for absolute differential cross section data for low-energy electron-impact excitation of the electronic states of pyrimidine. The present measurements were performed using a crossed-beam apparatus [2] for incident electron energies ranging between 15 to 50eV while covering a 10 to 90^o angular range. Here the absolute scale has been determined through a normalisation to the recently measured elastic scattering differential cross section data for pyrimidine [3]. [1] F. Ferreira da Silva, D. Almeida, G. Martins, A. R. Milosavljevic, B. P. Marinkovic, S. V. Hoffmann, N. J. Mason, Y. Nunes, G. Garcia and P. Limao-Vieira, Phys Chem Chem Phys 12, 6717 (2010). [2] M. J. Brunger and P. J. O. Teubner, Phys Rev A 41, 1413 (1990). [3] P. Palihawadana, J. Sullivan, M. Brunger, C. Winstead, V. McKoy, G. Garcia, F. Blanco and S. Buckman, Phys Rev A 84, 062702 (2011).

  18. Benchmarking electronic-state excitation cross sections for electron-N{sub 2} collisions

    SciTech Connect

    Kato, Hidetoshi; Suzuki, Daisuke; Ohkawa, Mizuha; Hoshino, Masamitsu; Tanaka, Hiroshi; Campbell, Laurence; Brunger, Michael J.

    2010-04-15

    We report differential cross sections for electron impact excitation of the a {sup 1{Pi}}{sub g}, C {sup 3{Pi}}{sub u}, E {sup 3{Sigma}}{sub g}{sup +}, a{sup ''} {sup 1{Sigma}}{sub g}{sup +}, b {sup 1{Pi}}{sub u}, c{sub 3} {sup 1{Pi}}{sub u}, o{sub 3} {sup 1{Pi}}{sub u}, b{sup '} {sup 1{Sigma}}{sub u}{sup +}, c{sub 4}{sup '} {sup 1{Sigma}}{sub u}{sup +}, G {sup 3{Pi}}{sub u}, and F {sup 3{Pi}}{sub u} electronic states in N{sub 2}. The incident electron energies are 20, 30, and 40 eV, while the scattered electron angles are 10 deg. and 20 deg. These kinematic conditions were specifically targeted in order to try and shed new light on the worrying discrepancies that exist in the literature for the a {sup 1{Pi}}{sub g}, C {sup 3{Pi}}{sub u}, E {sup 3{Sigma}}{sub g}{sup +}, and a{sup ''} {sup 1{Sigma}}{sub g}{sup +} cross sections, and in general the present measurements confirm that those from the more recent results of the University of California, Fullerton, and the Jet Propulsion Laboratory [M. A. Khakoo, P. V. Johnson, I. Ozkay, P. Yan, S. Trajmar, and I. Kanik, Phys. Rev. A 71, 062703 (2005); C. P. Malone, P. V. Johnson, I. Kanik, B. Ajdari, and M. A. Khakoo, Phys. Rev. A 79, 032704 (2009)] are reliable. In addition, we provide a rigorous cross-check for the remaining seven electronic states, where the only recent comprehensive study is from Khakoo and colleagues [Phys. Rev. A 77, 012704 (2008)]. Here, however, some of those cross sections are confirmed and others are not, suggesting that further work is still needed.

  19. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole.

    PubMed

    Wilke, Josefin; Wilke, Martin; Meerts, W Leo; Schmitt, Michael

    2016-01-28

    The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54(∘) showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.

  20. Determination of ground and excited state dipole moments via electronic Stark spectroscopy: 5-methoxyindole

    SciTech Connect

    Wilke, Josefin; Wilke, Martin; Schmitt, Michael; Meerts, W. Leo

    2016-01-28

    The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurations improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.

  1. Electron impact excitation of autoionising states of krypton

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.; Trajmar, S.

    1978-01-01

    Energy-loss spectra of krypton in the region between 21 and 29 eV have been obtained at electron impact energies of 30, 60 and 100 eV. For each energy, the angular distribution of intensities has been measured at 5, 10 and 15 deg scattering angles. Assignments of spectral features found in this region are suggested and a comparison is made with previous measurements.

  2. Excited-State Energies and Electronic Couplings of DNA Base Dimers

    SciTech Connect

    Kozak, Christopher R.; Kistler, Kurt A.; Lu, Zhen; Matsika, Spiridoula

    2010-02-04

    The singlet excited electronic states of two π-stacked thymine molecules and their splittings due to electronic coupling have been investigated with a variety of computational methods. Focus has been given on the effect of intermolecular distance on these energies and couplings. Single-reference methods, CIS, CIS(2), EOMCCSD, TDDFT, and the multireference method CASSCF, have been used, and their performance has been compared. It is found that the excited-state energies are very sensitive to the applied method but the couplings are not as sensitive. Inclusion of diffuse functions in the basis set also affects the excitation energies significantly but not the couplings. TDDFT is inadequate in describing the states and their coupling, while CIS(2) gives results very similar to EOM-CCSD. Excited states of cytosine and adenine π-stacked dimers were also obtained and compared with those of thymine dimers to gain a more general picture of excited states in π-stacked DNA base dimers. The coupling is very sensitive to the relative position and orientation of the bases, indicating great variation in the degree of delocalization of the excited states between stacked bases in natural DNA as it fluctuates.

  3. Ultrafast excited state relaxation dynamics of electron deficient porphyrins: Conformational and electronic factors

    NASA Astrophysics Data System (ADS)

    Okhrimenko, Albert N.

    Metallo-tetrapyrroles (MTP) are highly stable macrocyclic pi-systems that display interesting properties that make them potential candidates for various applications. Among these applications are optoelectronics, magnetic materials, photoconductive materials, non-linear optical materials and photo tumor therapeutic drugs. These applications are generally related to their high stability and efficient light absorption ability in the visible and near-infrared region of the optical spectrum. Metallo porphyrins are well known and widely studied representatives of metallotetrapyrroles. Electron deficient substituents in the meso positions are well known to greatly influence the interaction between the metal d-orbitals and the nitrogen orbitals of the tetrapyrrole macrocycle. In this work, a series of electron deficient porphyrins has been studied to gain some knowledge about the change in the excited state dynamics with structural and electronic modifications. Among these porphyrins is nickel and iron modified species bearing perfluoro-, perprotio-, p-nitrophenyl- and perfluorophenyl-meso substituents. Ultrafast transient absorption spectrometry has been used as the main research instrument along with other spectroscopic and electrochemical methods. A new technique has been employed to study the photophysical properties of zinc (II) tetraphenylporphine cation radical. It employs a combination of controlled potential coulometry and femtosecond absorption spectrometry. The fast transient lifetime of 17 ps of the pi-cation species originates in very efficient mixing of the a2u HOMO cation orbital that places electronic density mainly on pyrrolic nitrogens and metal d-orbitals. That explains the lack of any emission of the cationic species. This non-radiative decay process might elucidate the processes taking place in photosynthetic systems when electron is removed from porphyrinic moiety and the hole is produced. In this work zinc(II) meso-tetraphenylporphine radial cation

  4. Description of ground and excited electronic states by ensemble density functional method with extended active space

    NASA Astrophysics Data System (ADS)

    Filatov, Michael; Martínez, Todd J.; Kim, Kwang S.

    2017-08-01

    An extended variant of the spin-restricted ensemble-referenced Kohn-Sham (REKS) method, the REKS(4,4) method, designed to describe the ground electronic states of strongly multireference systems is modified to enable calculation of excited states within the time-independent variational formalism. The new method, the state-interaction state-averaged REKS(4,4), i.e., SI-SA-REKS(4,4), is capable of describing several excited states of a molecule involving double bond cleavage, polyradical character, or multiple chromophoric units. We demonstrate that the new method correctly describes the ground and the lowest singlet excited states of a molecule (ethylene) undergoing double bond cleavage. The applicability of the new method for excitonic states is illustrated with π stacked ethylene and tetracene dimers. We conclude that the new method can describe a wide range of multireference phenomena.

  5. Microwave Spectroscopic Study of NiF in the Electronic Ground and Lowest Excited States.

    PubMed

    Tanimoto, Mitsutoshi; Sakamaki, Toru; Okabayashi, Toshiaki

    2001-05-01

    The rotational spectra of NiF in the electronic ground (2)Pi state and the lowest electronically excited (2)Sigma state have been observed. The source of nickel atom was sputtering from a nickel electrode or nickel powder placed on a stainless steel electrode. The molecular constants have been determined by a least-squares analysis of the observed transition frequencies. The rapid increase in the Lambda-type splittings in the ground state reveals that the observed rotational transitions are ascribed to the spin substate (2)Pi(3/2). The rotational transitions corresponding to the other substate,(2)Pi(1/2), have not been observed. The large spin-rotation interaction constant gamma in the electronically excited (2)Sigma state is consistent with that from the electronic spectroscopy. Copyright 2001 Academic Press.

  6. Nonadiabtic electron dynamics in densely quasidegenerate states in highly excited boron cluster

    NASA Astrophysics Data System (ADS)

    Yonehara, Takehiro; Takatsuka, Kazuo

    2016-04-01

    Following the previous study on nonadiabatic reaction dynamics including boron clusters [T. Yonehara and K. Takatsuka, J. Chem. Phys. 137, 22A520 (2012)], we explore deep into highly excited electronic states of the singlet boron cluster (B12) to find the characteristic features of the densely quasi-degenerate electronic state manifold, which undergo very frequent nonadiabatic transitions and thereby intensive electronic state mixing among very many of the relevant states. So much so, isolating the individual adiabatic states and tracking the expected potential energy surfaces both lose the physical sense. This domain of molecular situation is far beyond the realm of the Born-Oppenheimer approximation. To survey such a violent electronic state-mixing, we apply a method of nonadiabatic electron wavepacket dynamics, the semiclassical Ehrenfest method. We have tracked those electron wavepackets and found the electronic state mixing looks like an ultrafast diffusion in the Hilbert space, which results in huge fluctuation. Furthermore, due to such a violent mixing, the quantum phases associated with the electronic states are swiftly randomized, and consequently the coherence among the electronic states are lost quickly. Besides, these highly excited states are mostly of highly poly-radical nature, even in the spin singlet manifold and the number of radicals amounts up to 10 electrons in the sense of unpaired electrons. Thus the electronic states are summarized to be poly-radical and decoherent with huge fluctuation in shorter time scales of vibrational motions. The present numerical study sets a theoretical foundation for unknown molecular properties and chemical reactivity of such densely quasi-degenerate chemical species.

  7. Doubly excited states of molecular nitrogen by scattered electron-ion coincidence measurements

    NASA Astrophysics Data System (ADS)

    Takahashi, Karin; Hasegawa, Toru; Sakai, Yasuhiro

    2017-03-01

    Scattered electron-ion coincidence measurements were performed on molecular nitrogen (N2) to study the relaxation dynamics of doubly excited states. Doubly excited states are typically so unstable that they result in either auto-ionization or a neutral dissociation. In auto-ionization, ionization and dissociation typically occur. Using a mixed-gas method, we determined the absolute values of the generalized oscillator strength (GOS) distributions using an incident electron energy of 200 eV and a scattering angle of 6°. The GOS distributions of N2+ and N+ were determined by combining the coincidence ion signals, which revealed some doubly excited states of N2. Since electron impact experiments can provide information on optically forbidden transitions, the contribution of optically forbidden states appears in the GOS distributions of both N2+ and N+. We observed auto-ionization and dissociative auto-ionization induced by excitation to the optically forbidden doubly excited states in the range of 30-40 eV.

  8. Nonadiabatic excited-state molecular dynamics: Treatment of electronic decoherence

    NASA Astrophysics Data System (ADS)

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Roitberg, Adrian E.; Tretiak, Sergei

    2013-06-01

    Within the fewest switches surface hopping (FSSH) formulation, a swarm of independent trajectories is propagated and the equations of motion for the quantum coefficients are evolved coherently along each independent nuclear trajectory. That is, the phase factors, or quantum amplitudes, are retained. At a region of strong coupling, a trajectory can branch into multiple wavepackets. Directly following a hop, the two wavepackets remain in a region of nonadiabatic coupling and continue exchanging population. After these wavepackets have sufficiently separated in phase space, they should begin to evolve independently from one another, the process known as decoherence. Decoherence is not accounted for in the standard surface hopping algorithm and leads to internal inconsistency. FSSH is designed to ensure that at any time, the fraction of classical trajectories evolving on each quantum state is equal to the average quantum probability for that state. However, in many systems this internal consistency requirement is violated. Treating decoherence is an inherent problem that can be addressed by implementing some form of decoherence correction to the standard FSSH algorithm. In this study, we have implemented two forms of the instantaneous decoherence procedure where coefficients are reinitialized following hops. We also test the energy-based decoherence correction (EDC) scheme proposed by Granucci et al. and a related version where the form of the decoherence time is taken from Truhlar's Coherent Switching with Decay of Mixing method. The sensitivity of the EDC results to changes in parameters is also evaluated. The application of these computationally inexpensive ad hoc methods is demonstrated in the simulation of nonradiative relaxation in two conjugated oligomer systems, specifically poly-phenylene vinylene and poly-phenylene ethynylene. We find that methods that have been used successfully for treating small systems do not necessarily translate to large polyatomic

  9. Electronic and structural properties of low-lying excited states of vitamin B12.

    PubMed

    Lodowski, Piotr; Jaworska, Maria; Kornobis, Karina; Andruniów, Tadeusz; Kozlowski, Pawel M

    2011-11-17

    Time-dependent density functional theory (TD-DFT) has been applied to explore electronically excited states of vitamin B(12) (cyanocobalamin or CNCbl). To explain why the Co-C bond in CNCbl does not undergo photodissociation under conditions of simple photon excitation, electronically excited states have been computed along the Co-C(CN) stretched coordinate. It was found that the repulsive (3)(σ(Co-C) → σ*(Co-C)) triplet state drops in energy as the Co-C(CN) bond lengthens, but it does not become dissociative. Low-lying excited states were also computed as function of two axial bond lengths. Two energy minima have been located on the S(1)/CNCbl, as well as T(1)/CNCbl, surfaces. The full geometry optimization was carried out for each minimum and electronic properties associated with each optimized structure were analyzed in details. One minimum was described as excitation having mixed ππ*/MLCT (metal-to-ligand charge transfer) character, while the second as ligand-to-metal charge transfer (LMCT) transition. Neither of them, however, can be viewed as pure MLCT or LMCT transitions since additional excitation to or from σ-bonds (SB) of N-Co-C unit have also noticeable contributions. Inclusion of solvent altered the character of one of the excitations from ππ*/MLCT/SBLCT to ππ*/LMCT/LSBCT-type, and therefore, both of them gained significant contribution from LMCT/LSBCT transition. Finally, the nature of S(1) electronic state has been comparatively analyzed in CNCbl and MeCbl cobalamins.

  10. Characterization of adsorption and electronic excited states of quercetin on titanium dioxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Zdyb, Agata; Krawczyk, Stanisław

    2016-03-01

    Adsorption of quercetin on colloidal titanium dioxide nanoparticles in ethanol and its excited-state electronic structure were investigated by means of electronic and vibrational spectroscopies. The changes in electronic charge redistribution as reflected by the dipole moment difference, ∆μ, between the ground and excited electronic states were measured with electroabsorption spectroscopy and analyzed using results of TD DFT computations. Adsorption of quercetin causes a red shift of its absorption spectrum. Raman spectra of quercetin analyzed with reference to analogous data for morin indicate binding of quercetin through the hydroxy groups of the catechol moiety. The difference dipole moment, which is 5.5 D in free quercetin, increases to 11.8 D in opposite direction in adsorbed quercetin, and is associated with charge-transfer to the Ti atom. The computed transition energy, intensity, vector Δμ and molecular orbitals involved in the electronic transition at different molecular configurations indicate a bidentate chelating mode of binding of quercetin.

  11. State-specific transport properties of partially ionized flows of electronically excited atomic gases

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2017-03-01

    State-to-state approach for theoretical study of transport properties in atomic gases with excited electronic degrees of freedom of both neutral and ionized species is developed. The dependence of atomic radius on the electronic configuration of excited atoms is taken into account in the transport algorithm. Different cutoff criteria for increasing atomic radius are discussed and the limits of applicability for these criteria are evaluated. The validity of a Slater-like model for the calculation of state-resolved transport coefficients in neutral and ionized atomic gases is shown. For ionized flows, a method of evaluation for effective cross-sections of resonant charge-transfer collisions is suggested. Accurate kinetic theory algorithms for modelling the state-specific transport properties are applied for the prediction of transport coefficients in shock heated flows. Based on the numerical observations, different distributions over electronic states behind the shock front are considered. For the Boltzmann-like distributions at temperatures greater than 14,000 K, an important effect of electronic excitation on the partial thermal conductivity and viscosity coefficients is found for both neutral and ionized atomic gases: increasing radius of excited atoms causes a strong decrease in these transport coefficients. Similarly, the presence of electronically excited states with increased atomic radii leads to reduced diffusion coefficients. Nevertheless the overall impact of increasing effective cross-sections on the transport properties just behind the shock front under hypersonic reentry conditions is found to be minor since the populations of high-lying electronic energy levels behind the shock waves are low.

  12. Triplet excited states of cyclic disulfides and related compounds: electronic structures, geometries, energies, and decay.

    PubMed

    Ginagunta, Saroja; Bucher, Götz

    2011-02-03

    We have performed a computational study on the properties of a series of heterocycles bearing two adjacent heteroatoms, focusing on the structures and electronic properties of their first excited triplet states. If the heteroatoms are both heavy chalcogens (S, Se, or Te) or isoelectronic species, then the lowest excited triplet state usually has (π*, σ*) character. The triplet energies are fairly low (30-50 kcal mol(-1)). The (π*, σ*) triplet states are characterized by a significantly lengthened bond between the two heteroatoms. Thus, in 1,2-dithiolane (1b), the S-S bond length is calculated to be 2.088 Å in the singlet ground state and 2.568 Å in the first triplet excited state. The spin density is predicted to be localized almost exclusively on the sulfur atoms. Replacing one heavy chalcogen atom by an oxygen atom or an NR group results in a significant destabilization of the (π*, σ*) triplet excited state, which then no longer is lower in energy than an open-chain biradical. The size of the heterocyclic ring also contributes to the stability of the (π*, σ*) triplet state, with five-membered rings being more favorable than six-membered rings. Benzoannulation, finally, usually lowers the energy of the (π*, σ*) triplet excited states. If one of the heteroatoms is an oxygen or nitrogen atom, however, the corresponding lowest triplet states are better described as σ,π-biradicals.

  13. Ab initio study of the ground and excited electronic states of the methyl radical

    PubMed Central

    Zanchet, A.; Bañares, L.; Senent, M. L.; García-Vela, A.

    2016-01-01

    The ground and some excited electronic states of the methyl radical have been characterized by means of highly correlated ab intio techniques. The specific excited states investigated are those involved in the dissociation of the radical, namely the 3s and 3pz Rydberg states, and the A1 and B1 valence states crossing them, respectively. The C-H dissociative coordinate and the HCH bending angle were considered in order to generate the first two-dimensional ab initio representation of the potential surfaces of the above electronic states of CH3, along with the nonadiabatic couplings between them. Spectroscopic constants and frequencies calculated for the ground and bound excited states agree well with most of the available experimental data. Implications of the shape of the excited potential surfaces and couplings for the dissociation pathways of CH3 are discussed in the light of recent experimental results for dissociation from low-lying vibrational states of CH3. Based on the ab initio data some predictions are made regarding methyl photodissociation from higher initial vibrational states. PMID:27892569

  14. Study of intermediates from transition metal excited-state electron- transfer reactions

    SciTech Connect

    Hoffman, M.Z.

    1993-03-31

    Progress on 6 projects is reported: excited state absorption spectrum of Ru(bpy)[sub 3][sup 2+], solvent cage model for electron transfer quenching, reductive quenching of [sup *]Cr(III) complexes, solution medium effects in oxidative quenching of [sup *]Ru(II) complexes, photosensitized oxidation of phenol in aqueous solution, and quenching of Ru(II) complexes by oxygen.

  15. Photon angular distribution and nuclear-state alignment in nuclear excitation by electron capture

    NASA Astrophysics Data System (ADS)

    Pálffy, Adriana; Harman, Zoltán; Surzhykov, Andrey; Jentschura, Ulrich D.

    2007-01-01

    The alignment of nuclear states resonantly formed in nuclear excitation by electron capture (NEEC) is studied by means of a density matrix technique. The vibrational excitations of the nucleus are described by a collective model and the electrons are treated in a relativistic framework. Formulas for the angular distribution of photons emitted in the nuclear relaxation are derived. We present numerical results for alignment parameters and photon angular distributions for a number of heavy elements in the case of E2 nuclear transitions. Our results are intended to help future experimental attempts to discern NEEC from radiative recombination, which is the dominant competing process.

  16. Quantum-chemical study of electronically excited states of protolytic forms of vanillic acid

    NASA Astrophysics Data System (ADS)

    Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Y.

    2015-12-01

    The paper describes an analysis of possible ways of deactivation of electronically excited states of 4-hydroxy- 3-methoxy-benzoic acid (vanillic acid) and its protolytic forms with the use of quantum-chemical methods INDO/S (intermediate neglect of differential overlap with a spectroscopic parameterization) and MEP (molecular electrostatic potential). The ratio of radiative and non-radiative deactivation channels of the electronic excitation energy is established. The rate constants of photophysical processes (internal and intercombination conversions) occurring after the absorption of light in these forms are evaluated.

  17. Conformational analysis of acetamide in the ground and lowest excited electronic states

    NASA Astrophysics Data System (ADS)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2017-05-01

    For acetamide molecule (CH3CONH2) in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states calculations of equilibrium geometry parameters, harmonic vibrational frequencies and barriers to conformational transitions (also conformer energy differences in excited states) using following ab initio methods: MP2, CCSD(T), CASSCF, CASPT2 and MRCI were performed. One-, two- and three-dimensional potential energy surface (PES) sections by different large amplitude motions (LAM) coordinates were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1, T1). As a result of electronic excitation, both CCON and CNH2 fragments become pyramidal. On 2D PES sections by torsion (CN) and inversion coordinates there are six minima forming three pairs of enantiomers. Using PES sections different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were estimated.

  18. Electron-impact excitation of the low-lying electronic states of HCN

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Tanaka, H.; Srivastava, S. K.; Wicke, B. G.

    1977-01-01

    The first study of the low-energy electron-impact excitation of low-lying electronic transitions in the HCN molecule is reported. Measurements were made at incident electron energies of 11.6 and 21.6 eV in the energy-loss range of 3-10 eV, and at scattering angles of 20-130 deg. Inelastic scattering spectra were placed on the absolute cross-section scale by determining first the ratio of inelastic-to-elastic scattering cross sections, and then separately measuring the absolute elastic scattering cross section. Several new electronic transitions are observed which are intrinsically overlapped in the molecule itself. Assignments of these electronic transitions are suggested. These assignments are based on present spectroscopic and cross-sections measurements, high-energy electron scattering spectra, optical absorption spectra, and ab initio molecular orbital calculations.

  19. Dynamics of the Chemistry of Electronically Excited Atoms in Defined Quantum States.

    DTIC Science & Technology

    1978-05-01

    laser development . In essence, this research concerns itself with the elucidation of the role of electronic energy in affecting the chemistry or photochemistry of excited halogen atoms and molecules. While much is known about the dynamics of chemical and physical processes which are carried out on the lowest potential energy hypersurface correlating with reactants and products in their electronic ground state, relatively little is known about the dynamics of such phenomena as energy transfer and chemical reactivity on higher-lying potential

  20. Benchmarks for electronically excited states: CASPT2, CC2, CCSD, and CC3

    NASA Astrophysics Data System (ADS)

    Schreiber, Marko; Silva-Junior, Mario R.; Sauer, Stephan P. A.; Thiel, Walter

    2008-04-01

    A benchmark set of 28 medium-sized organic molecules is assembled that covers the most important classes of chromophores including polyenes and other unsaturated aliphatic compounds, aromatic hydrocarbons, heterocycles, carbonyl compounds, and nucleobases. Vertical excitation energies and one-electron properties are computed for the valence excited states of these molecules using both multiconfigurational second-order perturbation theory, CASPT2, and a hierarchy of coupled cluster methods, CC2, CCSD, and CC3. The calculations are done at identical geometries (MP2/6-31G*) and with the same basis set (TZVP). In most cases, the CC3 results are very close to the CASPT2 results, whereas there are larger deviations with CC2 and CCSD, especially in singlet excited states that are not dominated by single excitations. Statistical evaluations of the calculated vertical excitation energies for 223 states are presented and discussed in order to assess the relative merits of the applied methods. CC2 reproduces the CC3 reference data for the singlets better than CCSD. On the basis of the current computational results and an extensive survey of the literature, we propose best estimates for the energies of 104 singlet and 63 triplet excited states.

  1. A TDDFT study on the excited-state intramolecular proton transfer (ESIPT): excited-state equilibrium induced by electron density swing.

    PubMed

    Zhang, Mingzhen; Yang, Dapeng; Ren, Baiping; Wang, Dandan

    2013-07-01

    One important issue of current interest is the excited-state equilibrium for some ESITP dyes. However, so far, the information about the driving forces for excited-state equilibrium is very limited. In this work, the time-dependent density functional theory (TDDFT) method was employed to investigate the nature of the excited-state intramolecular proton transfer (ESIPT). The geometric structures, vibrational frequencies, frontier molecular orbitals (MOs) and the potential-energy curves for 1-hydroxy-11H-benzo[b]fluoren-11-one (HHBF) in the ground and the first singlet excited state were calculated. Analysis of the results shows that the intramolecular hydrogen bond of HHBF is strengthened from E to E*. Moreover, it is found that electron density swing between the proton acceptor and donor provides the driving forces for the forward and backward ESIPT, enabling the excited-state equilibrium to be established. Furthermore, we proposed that the photoexcitation and the interchange of position for electron-donating and electron-withdrawing groups are the main reasons for the electron density swing. The potential-energy curves suggest that the forward ESIPT and backward ESIPT may happen on the similar timescale, which is faster than the fluorescence decay of both E* and K* forms.

  2. Infrared/ultraviolet quadruple resonance spectroscopy to investigate structures of electronically excited states

    SciTech Connect

    Weiler, M.; Bartl, K.; Gerhards, M.

    2012-03-21

    Molecular beam investigations in combination with IR/UV spectroscopy offer the possibility to obtain structural information on isolated molecules and clusters. One of the demanding tasks is the discrimination of different isomers, e.g., by the use of isomer specific UV excitations. If this discrimination fails due to overlaying UV spectra of different isomers, IR/IR methods offer another possibility. Here, we present a new IR/UV/IR/UV quadruple resonance technique to distinguish between different isomers especially in the electronically excited state. Due to the IR spectra, structural changes and photochemical pathways in excited states can be assigned and identified. The method is applied to the dihydrated cluster of 3-hydroxyflavone which has been investigated as photochemically relevant system and proton wire model in the S{sub 1} state. By applying the new IR/UV/IR/UV technique, we are able to show experimentally that both in the electronic ground (S{sub 0}) and the electronically excited state (S{sub 1}) two isomers have to be assigned.

  3. Influence of a polarizable surrounding on the electronically excited states of aggregated perylene materials.

    PubMed

    Bellinger, Daniel; Settels, Volker; Liu, Wenlan; Fink, Reinhold F; Engels, Bernd

    2016-06-30

    To tune the efficiency of organic semiconductor devices it is important to understand limiting factors as trapping mechanisms for excitons or charges. An understanding of such mechanisms deserves an accurate description of the involved electronical states in the given environment. In this study, we investigate how a polarizable surrounding influences the relative positions of electronically excited states of dimers of different perylene dyes. Polarization effects are particularly interesting for these systems, because gas phase computations predict that the CT states lie slightly above the corresponding Frenkel states. A polarizable environment may change this energy order because CT states are thought to be more sensitive to a polarizable surrounding than Frenkel states. A first insight we got via a TD-HF approach in combination with a polarizable continuum model (PCM). These give limited insights because TD-HF overestimates excitation energies of CT states. However, SCS-CC2 approaches, which are sufficiently accurate, cannot easily be used in combination with continuum solvent models. Hence, we developed two approaches to combine gas phase SCS-CC2 results with solvent effects based on TD-HF computations. Their accuracies were finally checked via ADC(2)//COSMO computations. The results show that for perylene dyes a polarizable surrounding alone does not influence the energetic ordering of CT and Frenkel states. Variations in the energy order of the states only result from nuclear relaxation effects after the excitation process. © 2016 Wiley Periodicals, Inc.

  4. Electron-impact ionization cross sections out of the ground and excited states of cesium

    SciTech Connect

    Lukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-15

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the 'trap loss' technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs state between 7 eV and 400 eV. CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11 eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  5. Electronic excitation of ground state atoms by collision with heavy gas particles

    NASA Technical Reports Server (NTRS)

    Hansen, C. Frederick

    1993-01-01

    Most of the important chemical reactions which occur in the very high temperature air produced around space vehicles as they enter the atmosphere were investigated both experimentally and theoretically, to some extent at least. One remaining reaction about which little is known, and which could be quite important at the extremely high temperatures that will be produced by the class of space vehicles now contemplated - such as the AOTV - is the excitation of bound electron states due to collisions between heavy gas particles. Rates of electronic excitation due to free electron collisions are known to be very rapid, but because these collisions quickly equilibrate the free and bound electron energy, the approach to full equilibrium with the heavy particle kinetic energy will depend primarily on the much slower process of bound electron excitation in heavy particle collisions and the subsequent rapid transfer to free electron energy. This may be the dominant mechanism leading to full equilibrium in the gas once the dissociation process has depleted the molecular states so the transfer between molecular vibrational energy and free electron energy is no longer available as a channel for equilibration of free electron and heavy particle kinetic energies. Two mechanisms seem probable in electronic excitation by heavy particle impact. One of these is the collision excitation and deexcitation of higher electronic states which are Rydberg like. A report, entitled 'Semi-Classical Theory of Electronic Excitation Rates', was submitted previously. This presented analytic expressions for the transition probabilities, assuming that the interaction potential is an exponential repulsion with a perturbation ripple due to the dipole-induced dipole effect in the case of neutral-neutral collisions, and to the ion-dipole interaction in the case of ion-neutral collisions. However the above may be, there is little doubt that excitation of ground state species by collision occurs at the

  6. Study of intermediates from transition metal excited-state electron-transfer reactions

    SciTech Connect

    Hoffman, M.Z.

    1991-12-31

    During this period, conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used for the characterization of the intermediates that are involved in transition metal excited-state electron-transfer reactions. The intermediates of interest were the excited states of Ru(II) and Cr(III) photosensitizers, their reduced forms, and the species formed in the reactions of redox quenchers and electron-transfer agents. Of particular concern has been the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes.

  7. The repopulation of electronic states upon vibrational excitation of niobium carbide clusters

    NASA Astrophysics Data System (ADS)

    Chernyy, V.; Logemann, R.; Bakker, J. M.; Kirilyuk, A.

    2016-07-01

    We study the infrared (IR) resonant heating of neutral niobium carbide clusters probed through ultraviolet photoionization spectroscopy. The IR excitation not only changes the photoionization spectra for the photon energies above the ionization threshold, but also modulates ion yield for energies significantly below it. An attempt to describe the experimental spectra using either Fowler's theory or thermally populated vibrational states was not successful. However, the data can be fully modeled by vibrationally and rotationally broadened discrete electronic levels obtained from Density Functional Theory (DFT) calculations. The application of this method to spectra with different IR pulse energies not only yields information about the excited electronic states in the vicinity of the HOMO level, populated by manipulation of the vibrational coordinates of a cluster, but also can serve as an extra indicator for the cluster isomeric structure and corresponding DFT-calculated electronic levels.

  8. Doubly excited states of ammonia by scattered electron-ion coincidence measurements

    NASA Astrophysics Data System (ADS)

    Yamamoto, Karin; Sakai, Yasuhiro

    2012-03-01

    To obtain information on the optically forbidden doubly excited states of ammonia (NH3), we performed scattered electron-ion coincidence measurements. First, we observed scattered electrons using electron energy-loss spectroscopy and determined the generalized oscillator strength distribution (GOSD) under 200 eV incident electron energy at a scattering angle of 8°. Ionic GOSDs were also determined by combination with the coincidence signal, which was observed by the time-of-flight mass spectrometer at each energy-loss value, for each ion. The total and partial ionic GOSDs were compared with the experimental results of both photon and fast electron impact. Moreover, the neutral GOSD determined by subtracting the total ionic GOSD from the total was compared with previous results. In addition to the optically forbidden doubly excited states, which were identified by Kato et al (2003 J. Phys. B: At. Mol. Opt. Phys. 36 3541) and Ishikawa et al (2008 J. Phys. B: At. Mol. Opt. Phys. 41 195204), we found a new optically forbidden doubly excited state at around 35 eV.

  9. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  10. Determination and Comparison of Carbonyl Stretching Frequency of a Ketone in Its Ground State and the First Electronic Excited State

    ERIC Educational Resources Information Center

    Bandyopadhyay, Subhajit; Roy, Saswata

    2014-01-01

    This paper describes an inexpensive experiment to determine the carbonyl stretching frequency of an organic keto compound in its ground state and first electronic excited state. The experiment is simple to execute, clarifies some of the fundamental concepts of spectroscopy, and is appropriate for a basic spectroscopy laboratory course. The…

  11. Tracking the charge and spin dynamics of electronic excited states in inorganic complexes

    NASA Astrophysics Data System (ADS)

    Gaffney, Kelly

    2015-03-01

    Inorganic complexes have many advantageous properties for solar energy applications, including strong visible absorption and photocatalytic activity. Whether used as a photocatalyst or a photosensitizer, the lifetime of electronic excited states and the earth abundance of the molecular components represent a key property for solar energy applications. These dual needs have undermined the usefulness of many coordination compounds. Isoelectronic iron and ruthenium based complexes represent a clear example. Ru-polypyridal based molecules have been the workhorse of solar energy related research and dye sensitized solar cells for decades, but the replacement of low abundance Ru with Fe leads to million-fold reductions in metal to ligand charge transfer (MLCT) excited state lifetimes. Understanding the origin of this million-fold reduction in lifetime and how to control excited state relaxation in 3d-metal complexes motivates the work I will discuss. We have used the spin sensitivity of hard x-ray fluorescence spectroscopy and the intense femtosecond duration pulses generated by the LCLS x-ray laser to probe the spin dynamics in a series of electronically excited [Fe(CN)6-2N(2,2'-bipyridine)N]2 N - 4 complexes, with N = 1-3. These femtosecond resolution measurements demonstrate that modification of the solvent and ligand environment can lengthen the MLCT excited state lifetime by more than two orders of magnitude. They also verify the role of triplet ligand field excited states in the spin crossover dynamics from singlet to quintet spin configurations. Work supported by the AMOS program within the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  12. Electronic spectroscopy and excited state dynamics of the Al-N 2 complex

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Gerasimov, Irina; Dagdigian, Paul J.

    1998-12-01

    The weakly bound Al⋯N 2 complex was prepared in a pulsed supersonic beam and studied with laser fluorescence excitation spectroscopy. Transitions to bound vibrational levels in electronic states correlating with the Al(5s, 4d)+N 2 asymptotes have been observed. Resonance fluorescence from the excited levels could not be detected. These excited levels decay nonradiatively, and the excitation spectrum was obtained by monitoring emission from the lower Al atomic levels. The band systems were dominated by progressions in the excited state Al-N stretch vibrational mode. Vibrational assignments were made through analysis of nitrogen isotope shifts. The rotational contours were obscured by Lorentzian line broadening from the nonradiative decay. However, for excitation to the Al(5s)⋯N 2 state the rotational structure of bands with small linewidths was consistent with a 2Σ+- 2Π electronic transition of a linear molecule, in accord with the previously calculated linear structure of the ground state [G. Chaban, M.S. Gordon, J. Chem. Phys. 107 (1997) 2160]. The excited state binding energies were estimated to be 1218±10 cm -1 for the Al(5s)⋯N 2 state [ 2Σ+ symmetry] and 2705±165 cm -1 for the Al(4d)⋯N 2 state of 2Δ symmetry. From the threshold for formation of Al(5s) from the nonradiative decay of Al(4d)⋯N 2, an upper bound to the ground state dissociation energy D0″≤354±2 cm -1 was obtained. For comparison with high-resolution scans over Al⋯N 2 bands, we have also recorded and analyzed similar scans over several bands of the AlAr H 2Σ+-X 2Π1/2 transition, which correlates with the Al 5s←3p atomic transition. Excited-state rotational constants were derived and employed to obtain Be'=0.1128±0.0020 cm -1, and hence Re'=3.05±0.03 Å. A weak predissociation, leading to formation of Al(3d), was observed for AlAr( H 2Σ+).

  13. Status in calculating electronic excited states in transition metal oxides from first principles.

    PubMed

    Bendavid, Leah Isseroff; Carter, Emily Ann

    2014-01-01

    Characterization of excitations in transition metal oxides is a crucial step in the development of these materials for photonic and optoelectronic applications. However, many transition metal oxides are considered to be strongly correlated materials, and their complex electronic structure is challenging to model with many established quantum mechanical techniques. We review state-of-the-art first-principles methods to calculate charged and neutral excited states in extended materials, and discuss their application to transition metal oxides. We briefly discuss developments in density functional theory (DFT) to calculate fundamental band gaps, and introduce time-dependent DFT, which can model neutral excitations. Charged excitations can be described within the framework of many-body perturbation theory based on Green's functions techniques, which predominantly employs the GW approximation to the self-energy to facilitate a feasible solution to the quasiparticle equations. We review the various implementations of the GW approximation and evaluate each approach in its calculation of fundamental band gaps of many transition metal oxides. We also briefly review the related Bethe-Salpeter equation (BSE), which introduces an electron-hole interaction between GW-derived quasiparticles to describe accurately neutral excitations. Embedded correlated wavefunction theory is another framework used to model localized neutral or charged excitations in extended materials. Here, the electronic structure of a small cluster is modeled within correlated wavefunction theory, while its coupling to its environment is represented by an embedding potential. We review a number of techniques to represent this background potential, including electrostatic representations and electron density-based methods, and evaluate their application to transition metal oxides.

  14. Vibronic structure and coupling of higher excited electronic states in carotenoids

    NASA Astrophysics Data System (ADS)

    Krawczyk, Stanisław; Luchowski, Rafał

    2013-03-01

    Absorption spectra of all-trans carotenoids (lycopene, violaxanthin, ζ-carotene) at low temperature exhibit peculiar features in the UV range. The transition to the 11Ag+ state ('cis-band') weakens on cooling, indicating that it is induced by thermal deformations of the conjugated chain. The higher energy band has unique vibrational structure indicating the vibronic coupling of nBu with another electronic state. The electroabsorption spectra point to the electric field-induced mixing of the nBu state with the vibrational continuum of a lower-lying excited state (Fano effect). These observations widen the basis for elucidation of the vibronic coupling effects in the lower excited states.

  15. Electron Impact Excitation of Xenon from the Ground State and the Metastable State to the 5p57p Levels

    NASA Astrophysics Data System (ADS)

    Chen, Zhan-Bin; Dong, Chen-Zhong; Xie, Lu-You; Jiang, Jun

    2014-03-01

    Electron impact excitation cross sections from the ground state and the lowest metastable state 5p56s J = 2 to the excited states of the 5p57p configuration of xenon are calculated systematically using the fully relativistic distorted wave method. Special attention is paid to the configuration interaction effects in the wave-function expansion of target states. The results are in good agreement with the recent experimental data by Jung et al. [Phys. Rev. A 80 (2009) 062708] over the measured energy range. These accurate theoretical results can be used in the modeling and diagnosis of plasmas containing xenon.

  16. Structure and conformational dynamics of molecules in the excited electronic states: theory and experiment

    NASA Astrophysics Data System (ADS)

    Godunov, I. A.; Bataev, V. A.; Maslov, D. V.; Yakovlev, N. N.

    2016-12-01

    The structure of conformational non-rigid molecules in the excited electronic states are investigated by joint theoretical and experimental methods. The theoretical part of work consist of two stages. In first stage the ab initio quantum-chemical calculations are carried out using high level methods. In second stage the vibrational problems of the various dimensions are solved by variational method for vibrations of large amplitude. In experimental part of work the vibronic spectra are investigated: gas-phase absorption and also, fluorescence excitation spectra of jet-cooled molecules. Some examples are considered.

  17. Ab initio study on electronically excited states of lithium isocyanide, LiNC

    NASA Astrophysics Data System (ADS)

    Yasumatsu, Hisato; Jeung, Gwang-Hi

    2014-01-01

    The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ∼10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.

  18. Electronic structures and population dynamics of excited states of xanthione and its derivatives

    NASA Astrophysics Data System (ADS)

    Fedunov, Roman G.; Rogozina, Marina V.; Khokhlova, Svetlana S.; Ivanov, Anatoly I.; Tikhomirov, Sergei A.; Bondarev, Stanislav L.; Raichenok, Tamara F.; Buganov, Oleg V.; Olkhovik, Vyacheslav K.; Vasilevskii, Dmitrii A.

    2017-09-01

    A new compound, 1,3-dimethoxy xanthione (DXT), has been synthesized and its absorption (stationary and transient) and luminescence spectra have been measured in n-hexane and compared with xanthione (XT) spectra. The pronounced broadening of xanthione vibronic absorption band related to the electronic transition to the second singlet excited state has been observed. Distinctions between the spectra of xanthione and its methoxy derivatives are discussed. Quantum chemical calculations of these compounds in the ground and excited electronic states have been accomplished to clarify the nature of electronic spectra changes due to modification of xanthione by methoxy groups. Appearance of a new absorption band of DXT caused by symmetry changes has been discussed. Calculations of the second excited state structure of xanthione and its methoxy derivatives confirm noticeable charge transfer (about 0.1 of the charge of an electron) from the methoxy group to thiocarbonyl group. Fitting of the transient spectra of XT and DXT has been fulfilled and the time constants of internal conversion S2 →S1 and intersystem crossing S1 →T1 have been determined. A considerable difference between the time constants of internal conversion S2 →S1 in XT and DXT is uncovered.

  19. Electronically excited states of membrane fluorescent probe 4-dimethylaminochalcone. Results of quantum chemical calculations.

    PubMed

    Romanov, Alexey N; Gularyan, Samvel K; Polyak, Boris M; Sakovich, Ruslan A; Dobretsov, Gennady E; Sarkisov, Oleg M

    2011-05-28

    Quantum-chemical calculations of ground and excited states for membrane fluorescent probe 4-dimethylaminochalcone (DMAC) in vacuum were performed. Optimized geometries and dipole moments for lowest-lying singlet and triplet states were obtained. The nature of these electronic transitions and the relaxation path in the excited states were determined; changes in geometry and charge distribution were assessed. It was shown that in vacuum the lowest existed level is of (n, π*) nature, and the closest to it is the level of (π, π*) nature; the energy gap between them is narrow. This led to an effective (1)(π, π*) →(1)(n, π*) relaxation. After photoexcitation the molecule undergoes significant transformations, including changes in bond orders, pyramidalization angle of the dimethylamino group, and planarity of the molecule. Its dipole moment rises from 5.5 Debye in the ground state to 17.1 Debye in the (1)(π, π*) state, and then falls to 2 Debye in the (1)(n, π*) state. The excited (1)(n, π*) state is a short living state; it has a high probability of intersystem crossing into the (3)(π, π*) triplet state. This relaxation path explains the low quantum yield of DMAC fluorescence in non-polar media. It is possible that (3)(π, π*) is responsible for observed DMAC phosphorescence.

  20. Hyperfast time-resolved spectroscopy of electron correlation in excited states

    NASA Astrophysics Data System (ADS)

    Nicolaides, Cleanthes A.

    2007-06-01

    As a consequence of continuing developments in the science and technology of techniques that produce and control electromagnetic pulses with frequencies that are found in a broad part of the spectrum, from the ir to the soft X-rays, it is possible to have hyperfast pump-probe time delay spectroscopic techniques capable of time resolving the dynamics of various atomic and molecular systems involving excited states. In this context, it has been demonstrated via first principles solution of the time-dependent Schr"odinger equation (TDSE), that effects which are caused by strong electron correlations in excited states, including the process of autoionization and the formation of resonances, can be time-resolved on a time scale of attoseconds [1-3]. By extending the investigations to polyelectronic atoms, we have obtained new results for various time resolved processes associated with the photo-ejection of inner (2s) electrons and of two electrons (LM) from the thirteen electron atom of Aluminum and with the electron correlation beats in bound and autoionizind states of N^+3 and Al. The theory and computations account for the interference of direct double ionization, inner hole states and Auger decay [4]. [1] C. A. Nicolaides et al, J. Phys. B 35, L271 (2002). [2] Th. Mercouris et al, Phys. Rev. A 69, 032502 (2004). [3] Th. Mercouris, et al, Phys. Rev. A 75, 013407 (2007). [4] Th. Mercouris, Y. Komninos and C. A. Nicolaides, unpublished.

  1. On large amplitude motions of simplest amides in the ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2016-12-01

    For the formamide, acetamide, N-methylformamide and N-methylacetamide molecules in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states equilibrium geometry parameters, harmonic vibrational frequencies, barriers to conformational transitions and conformer energy differences were estimated by means of MP2, CCSD(T), CASSCF, CASPT2 and MRCI ab initio methods. One-, two- and three-dimensional potential energy surface (PES) sections corresponding to different large amplitude motions (LAM) were calculated by means of MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1,T1). For these molecules, in each excited electronic state six minima were found on 2D PES sections. Using PES sections, different anharmonic vibrational problems were solved and the frequencies of large amplitude vibrations were determined.

  2. Influence of the excited states on the electron-energy distribution function in low-pressure microwave argon plasmas

    SciTech Connect

    Yanguas-Gil, A.; Cotrino, J.; Gonzalez-Elipe, A.R.

    2005-07-01

    In this work the influence of the excited states on the electron-energy distribution function has been determined for an argon microwave discharge at low pressure. A collisional-radiative model of argon has been developed taking into account the most recent experimental and theoretical values of argon-electron-impact excitation cross sections. The model has been solved along with the electron Boltzmann equation in order to study the influence of the inelastic collisions from the argon excited states on the electron-energy distribution function. Results show that under certain conditions the excited states can play an important role in determining the shape of the distribution function and the mean kinetic energy of the electrons, deplecting the high-energy tail due to inelastic processes from the excited states, especially from the 4s excited configuration. It has been found that from the populations of the excited states an excitation temperature can be defined. This excitation temperature, which can be experimentally determined by optical emission spectroscopy, is lower than the electron kinetic temperature obtained from the electron-energy distribution function.

  3. Proton coupled electron transfer from the excited state of a ruthenium(II) pyridylimidazole complex.

    PubMed

    Pannwitz, Andrea; Wenger, Oliver S

    2016-04-28

    Proton coupled electron transfer (PCET) from the excited state of [Ru(bpy)2pyimH](2+) (bpy = 2,2'-bipyridine; pyimH = 2-(2'-pyridyl)imidazole) to N-methyl-4,4'-bipyridinium (monoquat, MQ(+)) was studied. While this complex has been investigated previously, our study is the first to show that the formal bond dissociation free energy (BDFE) of the imidazole-N-H bond decreases from (91 ± 1) kcal mol(-1) in the electronic ground state to (43 ± 5) kcal mol(-1) in the lowest-energetic (3)MLCT excited state. This makes the [Ru(bpy)2pyimH](2+) complex a very strong (formal) hydrogen atom donor even when compared to metal hydride complexes, and this is interesting for light-driven (formal) hydrogen atom transfer (HAT) reactions with a variety of different substrates. Mechanistically, formal HAT between (3)MLCT excited [Ru(bpy)2pyimH](2+) and monoquat in buffered 1 : 1 (v : v) CH3CN/H2O was found to occur via a sequence of reaction steps involving electron transfer from Ru(ii) to MQ(+) coupled to release of the N-H proton to buffer base, followed by protonation of reduced MQ(+) by buffer acid. Our study is relevant in the larger contexts of photoredox catalysis and light-to-chemical energy conversion.

  4. Photoelectron Spectroscopy of Hexachloroplatinate-Nucleobase Complexes: Nucleobase Excited State Decay Observed via Delayed Electron Emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Hou, Gao-Lei; Wang, Xue B.; Dessent, Caroline

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ~1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 2- dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 2-∙thymine and PtCl6 2-∙adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 2-∙nucleobase complexes [Sen et al, J. Phys. Chem. B, 119, 11626, 2015]. The observation of delayed electron emission bands in the PtCl6 2-∙nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 2-∙nucleobase complexes, is attributed to onephoton excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a timescale long enough to allow autodetachment.

  5. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission.

    PubMed

    Sen, Ananya; Matthews, Edward M; Hou, Gao-Lei; Wang, Xue-Bin; Dessent, Caroline E H

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl6 (2-) dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl6 (2-) ⋅ thymine and PtCl6 (2-) ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN)4 (2-) ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl6 (2-) ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN)4 (2-) ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a "dynamic tag" which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to allow autodetachment.

  6. Excited electronic states of thiophene: high resolution photoabsorption Fourier transform spectroscopy and ab initio calculations.

    PubMed

    Holland, D M P; Trofimov, A B; Seddon, E A; Gromov, E V; Korona, T; de Oliveira, N; Archer, L E; Joyeux, D; Nahon, L

    2014-10-21

    The recently introduced synchrotron radiation-based Fourier transform spectroscopy has been employed to study the excited electronic states of thiophene. A highly resolved photoabsorption spectrum has been measured between ∼5 and 12.5 eV, providing a wealth of new data. High-level ab initio computations have been performed using the second-order algebraic-diagrammatic construction (ADC(2)) polarization propagator approach, and the equation-of-motion coupled-cluster (EOM-CC) method at the CCSD and CC3 levels, to guide the assignment of the spectrum. The adiabatic energy corrections have been evaluated, thereby extending the theoretical study beyond the vertical excitation picture and leading to a significantly improved understanding of the spectrum. The low-lying π→π* and π→σ* transitions result in prominent broad absorption bands. Two strong Rydberg series converging onto the X(~)(2)A2 state limit have been assigned to the 1a2→npb1(1)B2 and the 1a2→nda2(1)A1 transitions. A second, and much weaker, d-type series has been assigned to the 1a2→ndb1(1)B2 transitions. Excitation into some of the Rydberg states belonging to the two strong series gives rise to vibrational structure, most of which has been interpreted in terms of excitations of the totally symmetric ν4 and ν8 modes. One Rydberg series, assigned to the 3b1→nsa1(1)B1 transitions, has been identified converging onto the Ã(2)B1 state limit, and at higher energies Rydberg states converging onto the B(~)(2)A1 state limit could be identified. The present spectra reveal highly irregular vibrational structure in certain low energy absorption bands, and thus provide a new source of information for the rapidly developing studies of excited state non-adiabatic dynamics and photochemistry.

  7. Configuration interaction with Kohn Sham orbitals and their relation to excited electronic states

    NASA Astrophysics Data System (ADS)

    Bouř, Petr

    2001-09-01

    Kohn-Sham (KS) orbitals in CH 2, formaldehyde and acetone molecules were used as reference states for configuration interaction (CI) instead of the usual Hartree-Fock (HF) orbitals. A little difference in overall accuracy of electronic excitation energies was found between these schemes. However, analysis of the wave functions indicated that Slater determinant with the KS orbitals is more suitable for construction of the electronic states. Typically, the main expansion coefficients for the CI/KS procedure were closer to unity than those for HF. The difference was most pronounced for the lowest-energy transitions, while the two methods provided more comparable results for the higher-energy states. Similar behaviour of singlet and triplet states was observed. The results justify the common practice of using the KS determinant as a wave function, for example in sum-over-states theories.

  8. Experimental and computational studies on the electronic excited states of nitrobenzene

    NASA Astrophysics Data System (ADS)

    Krishnakumar, Sunanda; Das, Asim Kumar; Singh, Param Jeet; Shastri, Aparna; Rajasekhar, B. N.

    2016-11-01

    The gas phase electronic absorption spectrum of nitrobenzene (C6H5NO2) in the 4.5-11.2 eV region is recorded using synchrotron radiation with a view to comprehend the nature of the excited states. Electronic excited states of nitrobenzene are mainly classified as local excitations within the benzene ring or nitro group and charge transfer excitations between the benzene and nitro group, with some transitions showing percentage from both. The nature of molecular orbitals, their orderings and energies are obtained from density functional theory calculations which help in assigning partially assigned/unassigned features in earlier photoelectron spectroscopy studies. Optimized geometry of ionic nitrobenzene predicts redistribution of charge density in the benzene ring rather than the nitro group resulting in stabilization of the benzene ring π orbitals in comparison to the neutral molecule. Time dependent density functional theory computations are found to describe the experimental spectra well with respect to energies, relative intensities and nature of the observed transitions in terms of valence, Rydberg or charge transfer type. New insights into the interpretation of 1B2u←1A1g and 1B1u←1A1g shifted benzene transitions in light of the present computational calculations are presented. The first few members of the ns, np and nd type Rydberg series in nitrobenzene, converging to the first six ionization potentials, identified in the spectra as weak but sharp peaks are reported for the first time. In general, transitions to the lowest three unoccupied molecular orbitals 4b1, 3a2 and 5b1 are valence or charge transfer in nature, while excitations to higher orbitals are predominantly Rydberg in nature. This work presents a consolidated experimental study and theoretical interpretation of the electronic absorption spectrum of nitrobenzene.

  9. Fluorescence excitation and ultraviolet absorption spectra and theoretical calculations for benzocyclobutane: Vibrations and structure of its excited S1(π,π*) electronic state

    PubMed Central

    Shin, Hee Won; Ocola, Esther J.; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The fluorescence excitation spectra of jet-cooled benzocyclobutane have been recorded and together with its ultraviolet absorption spectra have been used to assign the vibrational frequencies for this molecule in its S1(π,π*) electronic excited state. Theoretical calculations at the CASSCF(6,6)/aug-cc-pVTZ level of theory were carried out to compute the structure of the molecule in its excited state. The calculated structure was compared to that of the molecule in its electronic ground state as well as to the structures of related molecules in their S0 and S1(π,π*) electronic states. In each case the decreased π bonding in the electronic excited states results in longer carbon-carbon bonds in the benzene ring. The skeletal vibrational frequencies in the electronic excited state were readily assigned and these were compared to the ground state and to the frequencies of five similar molecules. The vibrational levels in both S0 and S1(π,π*) states were remarkably harmonic in contrast to the other bicyclic molecules. The decreases in the frequencies of the out-of-plane skeletal modes reflect the increased floppiness of these bicyclic molecules in their S1(π,π*) excited state. PMID:25669377

  10. Direct Electron Impact Excitation of Rydberg-Valence States of Molecular Nitrogen

    NASA Astrophysics Data System (ADS)

    Malone, C. P.; Johnson, P. V.; Liu, X.; Ajdari, B.; Muleady, S.; Kanik, I.; Khakoo, M. A.

    2012-12-01

    Collisions between electrons and neutral N2 molecules result in emissions that provide an important diagnostic probe for understanding the ionospheric energy balance and the effects of space weather in upper atmospheres. Also, transitions to singlet ungerade states cause N2 to be a strong absorber of solar radiation in the EUV spectral range where many ro-vibrational levels of these Rydberg-valence (RV) states are predissociative. Thus, their respective excitation and emission cross sections are important parameters for understanding the [N]/[N2] ratio in the thermosphere of nitrogen dominated atmospheres. The following work provides improved constraints on absolute and relative excitation cross sections of numerous RV states of N2, enabling more physically accurate atmospheric modeling. Here, we present recent integral cross sections (ICSs) for electron impact excitation of RV states of N2 [6], which were based on the differential cross sections (DCSs) derived from electron energy-loss (EEL) spectra of [5]. This work resulted in electronic excitation cross sections over the following measured vibrational levels: b 1Πu (v‧=0-14), c3 1Πu (v‧=0-3), o3 1Πu (v‧=0-3), b‧ 1Σu+ (v‧=0-10), c‧4 1Σu+ (v‧=0-3), G 3Πu (v‧=0-3), and F 3Πu (v‧=0-3). We further adjusted the cross sections of the RV states by extending the vibronic contributions to unmeasured v‧-levels via the relative excitation probabilities (REPs) as discussed in [6]. This resulted in REP-scaled ICSs over the following vibrational levels for the singlet ungerade states: b(0-19), c3(0-4), o3(0-4), b‧(0-16), and c‧4(0-8). Comparison of the ICSs of [6] with available EEL based measurements, theoretical calculations, and emission based work generally shows good agreement within error estimations, except with the recent reevaluation provided by [1]. Further, we have extended these results, using the recent EEL data of [3], to include the unfolding of better resolved features above ~13

  11. Electron-excited molecule interactions

    SciTech Connect

    Christophorou, L.G. Tennessee Univ., Knoxville, TN . Dept. of Physics)

    1991-01-01

    In this paper the limited but significant knowledge to date on electron scattering from vibrationally/rotationally excited molecules and electron scattering from and electron impact ionization of electronically excited molecules is briefly summarized and discussed. The profound effects of the internal energy content of a molecule on its electron attachment properties are highlighted focusing in particular on electron attachment to vibrationally/rotationally and to electronically excited molecules. The limited knowledge to date on electron-excited molecule interactions clearly shows that the cross sections for certain electron-molecule collision processes can be very different from those involving ground state molecules. For example, optically enhanced electron attachment studies have shown that electron attachment to electronically excited molecules can occur with cross sections 10{sup 6} to 10{sup 7} times larger compared to ground state molecules. The study of electron-excited molecule interactions offers many experimental and theoretical challenges and opportunities and is both of fundamental and technological significance. 54 refs., 15 figs.

  12. Cross sections for state-selective electron capture and excitation in He+-H collisions

    NASA Astrophysics Data System (ADS)

    Liu, Ling; Lin, Xiaohe; Wu, Yong; Wang, Jian-Guo; Janev, Ratko K.

    2017-09-01

    Electron-capture and excitation processes in He+ +H collisions have been studied by using the full quantum-mechanical molecular orbital close-coupling (QMOCC) and the two-center atomic orbital close-coupling (TC-AOCC) methods in the energy ranges 10-2-5 keV/u and 0.1-100 keV/u, respectively. The spin-selected state-selective cross sections for these processes in the He+ +H collision system are reported for the first time. The spin-averaged total electron capture and excitation cross sections, as well as the emission cross section for Balmer α radiation, are compared with the results of available experimental and previous theoretical results in the overlapping energy ranges.

  13. Electronic Excited States in Amorphous MEH-PPV Polymers from Large-Scale First Principles Calculations.

    PubMed

    Ma, Haibo; Qin, Ting; Troisi, Alessandro

    2014-03-11

    The electronic excited states of amorphous polymeric semiconductor MEH-PPV are investigated by first principles quantum chemical calculations based on trajectories from classical molecular dynamics simulations. We inferred an average conjugation length of ∼5-7 monomers for lowest vertical excitations of amorphous MEH-PPV at room temperature and verified that the normal definition of a chromophore in a polymer based on purely geometric "conjugation breaks" is not always valid in amorphous polymers and a rigorous definition can be only on the basis of the evaluation of the polymer excited state wave function. The charge transfer character is observed to be nearly invariant for all excited states in low energy window while the exciton delocalization extent is found to increase with energy. The interchain excitonic couplings for amorphous MEH-PPV are shown to be usually smaller than 10 meV suggesting that the transport mechanism across chain can be described by incoherent hopping. All these observations about the energetic and spatial distribution of the excitons in polymer as well as their couplings provide important qualitative insights and useful quantitative information for constructing a realistic model for exciton migration dynamics in amorphous polymer materials.

  14. Ab Initio Investigations of the Excited Electronic States of CaOCa

    NASA Astrophysics Data System (ADS)

    Fawzy, Wafaa M.; Heaven, Michael

    2016-06-01

    Chemical bonding in alkaline earth hypermetalic oxides is of fundamental interest. Previous Ab initio studies of CaOCa predicted a centrosymmetric linear geometry for both the 1Σg^+ ground state and the low lying triplet 3Σu^+ state. However, there have been no reports concerning the higher energy singlet and triplet states. The present work is focused on characterization of the potential energy surface (PES) of the excited 1Σu^+ state (assuming a centrosymmetric linear geometry) and obtaining predictions for the 1Σu^+←1Σg^+ vibronic transitions. We employed the multireference configuration interaction (MRCISD) method with state-averaged, full-valence complete active space self-consistent field (SA-FV-CASSCF) wavefunctions. In these calculations, the active space consisted of ten valence electrons in twelve orbitals, where all the valence electrons were correlated. Contributions of higher excitation and relativistic effects were taken into account using the Davidson correction and the Douglas-Kroll (DK) Hamiltonian, respectively. The correlation-consistent polarized weighed core-valence quadruple zeta basis set (cc-pwCVQZ-DK) was used for all three atoms. The full level of theory is abbreviated as SA-FV-CASSCF (10,12)-MRCISD-Q/cc-pwCVQZ-DK. The calculations were carried out using the MOLPRO2012 suite of programs. For the centrosymmetric linear geometry in all states, initial investigations of one-dimensional radial cuts provided equilibrium bond distances of 2.034 {Å}, 2.034 {Å}, and 1.999 {Å} for the 1Σg^+ , 3Σu^+ , and 1Σu^+ states, respectively. The vertical excitation frequency of the 1Σu^+←1Σg^+ optical transition was calculated to occur at 14801 wn. These predictions were followed by spectroscopic searches by Heaven et al. Indeed, rotationally resolved vibronic progressions were recorded in the vicinity of the predicted electronic band origin. Calculation of the three-dimensional PES showed that the potential minimum in the 1Σu^+ corresponds

  15. Electronic State Interferences in Resonant X-Ray Emission after K-Shell Excitation in HCl

    SciTech Connect

    Kavcic, M.; Zitnik, M.; Bucar, K.; Mihelic, A.; Carniato, S.; Journel, L.; Guillemin, R.; Simon, M.

    2010-09-10

    We have measured a series of high-resolution x-ray spectra emitted upon resonant photoexcitation of HCl. The photon energy was tuned across the dissociative 1s{yields}6{sigma}* resonance and the Rydberg states converging to the Cl 1s{sup -1} threshold, and inelastic photon scattering was observed in the region of KL emission lines. Excellent agreement is found between fully ab initio calculated and measured spectra if interferences between different excitation-emission paths are taken into account. The effect of electronic state interferences is enhanced due to dynamical broadening of the 6{sigma}* resonance in HCl.

  16. Electron impact excitation and assignment of the low-lying electronic states of N2O

    NASA Technical Reports Server (NTRS)

    Hall, R. I.; Chutjian, A.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of nitrous oxide are reported in the 5- to 10-eV energy-loss range at scattering angles of 20, 30, 90, and 130 deg at a residual energy of 7.0 eV; and at residual energies of 10.0, 2.0, 1.0, 0.6, and 0.2 eV at a scattering angle of 90 deg. Several new distinct and overlapping continua are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of semiempirical INDO calculations of Chutjian and Segal (1972) of the vertical transition energies of N2O. An assignment of the symmetries of the observed excitations consistent with the experimental and theoretical data is suggested.

  17. Electron elevator: Excitations across the band gap via a dynamical gap state

    SciTech Connect

    Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; Mason, D. R.; Schleife, A.; Draeger, E. W.; Correa, A. A.

    2016-01-27

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.

  18. Electron elevator: Excitations across the band gap via a dynamical gap state

    DOE PAGES

    Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...

    2016-01-27

    We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less

  19. Integral Cross Sections for Electron Impact Excitation of Rydberg and Valence States of Molecular Nitrogen

    NASA Astrophysics Data System (ADS)

    Malone, C. P.; Johnson, P. V.; Kanik, I.; Liu, X.; Ajdari, B.; Khakoo, M. A.

    2012-06-01

    We present integral cross sections (ICSs) for electron impact excitation of N2 out of the ground state X (v=0), to the b, c3, o3, b', c'4, G, and F electronic states at incident energies ranging between 17.5 eV and 100 eV. The ICSs were derived from the differential cross sections (DCSs) of Khakoo et al. [Phys. Rev. A 77, 012704 (2008)], which were obtained by unfolding energy loss spectra in the ˜12-13.82 eV range. Recently, Heays et al. [Phys. Rev. A 85, 012705 (2012)] measured comparable higher resolution energy loss spectra, with a significantly different apparatus configuration, but in agreement with the Khakoo et al. (2008) spectra. This latter additional effort provided further confidence in the accuracy of the DCSs upon which the present ICS results are based. Of the higher-lying states studied, five are singlet states that radiate to the ground state via dipole allowed transitions. These include the b and b' valence states and the c'4 Rydberg state that give rise to the Birge-Hopfield I, II, and Carroll-Yoshino bands, respectively, all of which are observed in the atmospheres of Earth, Titan, and Triton. The c3 and o3 Rydberg states give rise to the Worley-Jenkins and Worley series of Rydberg bands, respectively. However, these emissions are not readily observed since predissociation for the c3 and o3 states approaches 100%. As such, direct electron excitation measurements, such as those presented here are superior to standard (spontaneous) emission based measurements in this case.

  20. Role of excited electronic states in the high-pressure amorphization of benzene

    PubMed Central

    Citroni, Margherita; Bini, Roberto; Foggi, Paolo; Schettino, Vincenzo

    2008-01-01

    High-pressure methods are increasingly used to produce new dense materials with unusual properties. Increasing efforts to understand the reaction mechanisms at the microscopic level, to set up and optimize synthetic approaches, are currently directed at carbon-based solids. A fundamental, but still unsolved, question concerns how the electronic excited states are involved in the high-pressure reactivity of molecular systems. Technical difficulties in such experiments include small sample dimensions and possible damage to the sample as a result of the absorption of intense laser fields. These experimental challenges make the direct characterization of the electronic properties as a function of pressure by linear and nonlinear optical spectroscopies up to several GPa a hard task. We report here the measurement of two-photon excitation spectra in a molecular crystal under pressure, up to 12 GPa in benzene, the archetypal aromatic system. Comparison between the pressure shift of the exciton line and the monomer fluorescence provides evidence for different compressibilities of the ground and first excited states. The formation of structural excimers occurs with increasing pressure involving molecules on equivalent crystal sites that are favorably arranged in a parallel configuration. These species represent the nucleation sites for the transformation of benzene into amorphous hydrogenated carbon. The present results provide a unified picture of the chemical reactivity of benzene at high pressure. PMID:18505840

  1. Ultrafast electron diffraction: Excited state structures and chemistries of aromatic carbonyls

    SciTech Connect

    Park, Sang Tae; Feenstra, Jonathan S.; Zewail, Ahmed H.

    2006-05-07

    The photophysics and photochemistry of molecules with complex electronic structures, such as aromatic carbonyls, involve dark structures of radiationless processes. With ultrafast electron diffraction (UED) of isolated molecular beams it is possible to determine these transient structures, and in this contribution we examine the nature of structural dynamics in two systems, benzaldehyde and acetophenone. Both molecules are seen to undergo a bifurcation upon excitation (S{sub 2}). Following femtosecond conversion to S{sub 1}, the bifurcation leads to the formation of molecular dissociation products, benzene and carbon monoxide for benzaldehyde, and benzoyl and methyl radicals for acetophenone, as well as intersystem crossing to the triplet state in both cases. The structure of the triplet state was determined to be 'quinoidlike' of {pi}{pi}* character with the excitation being localized in the phenyl ring. For the chemical channels, the product structures were also determined. The difference in photochemistry between the two species is discussed with respect to the change in large amplitude motion caused by the added methyl group in acetophenone. This discussion is also expanded to compare these results with the prototypical aliphatic carbonyl compounds, acetaldehyde and acetone. From these studies of structural dynamics, experimental and theoretical, we provide a landscape picture for, and the structures involved in, the radiationless pathways which determine the fate of molecules following excitation. For completeness, the UED methodology and the theoretical framework for structure determination are described in this full account of an earlier communication [J. S. Feenstra et al., J. Chem. Phys. 123, 221104 (2005)].

  2. Standoff Trace Chemical Sensing via Manipulation of Excited Electronic State Lifetimes

    SciTech Connect

    Rudakov, Fedor M

    2013-01-01

    We present a technique for standoff trace chemical sensing that is based on the dependence of excited electronic state lifetimes on the amount of internal vibrational energy. Time resolved photoionization measurements show that the lifetime of the S1 state in N,N-dimethylisopropylamine (DMIPA) decreases exponentially with the amount of energy deposited into vibrational degrees of freedom. This property is employed to acquire spectral signatures of the molecule. Two nanosecond laser pulses are used, one (266 nm) to ionize the molecule through the S1 state and another, with tunable wavelength, to alter the lifetime of the S1 state by depositing energy into vibrations. Reduction of the S1 state lifetime results in a dip in ionization efficiency that is observed by remotely probing the laser-induced plasma with microwave radiation.

  3. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method

    NASA Astrophysics Data System (ADS)

    Ruberti, M.; Yun, R.; Gokhberg, K.; Kopelke, S.; Cederbaum, L. S.; Tarantelli, F.; Averbukh, V.

    2014-05-01

    Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.

  4. Total photoionization cross-sections of excited electronic states by the algebraic diagrammatic construction-Stieltjes-Lanczos method.

    PubMed

    Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V

    2014-05-14

    Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.

  5. An experimental and theoretical investigation into the excited electronic states of phenol

    SciTech Connect

    Jones, D. B.; Chiari, L.; Silva, G. B. da; Neves, R. F. C.; Duque, H. V.; Oliveira, E. M. de; Lima, M. A. P.; Lopes, M. C. A.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; and others

    2014-08-21

    We present experimental electron-energy loss spectra (EELS) that were measured at impact energies of 20 and 30 eV and at angles of 90° and 10°, respectively, with energy resolution ∼70 meV. EELS for 250 eV incident electron energy over a range of angles between 3° and 50° have also been measured at a moderate energy resolution (∼0.9 eV). The latter spectra were used to derive differential cross sections and generalised oscillator strengths (GOS) for the dipole-allowed electronic transitions, through normalization to data for elastic electron scattering from benzene. Theoretical calculations were performed using time-dependent density functional theory and single-excitation configuration interaction methods. These calculations were used to assign the experimentally measured spectra. Calculated optical oscillator strengths were also compared to those derived from the GOS data. This provides the first investigation of all singlet and triplet excited electronic states of phenol up to the first ionization potential.

  6. Vibrational spectroscopy of the electronically excited state. 4. Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states

    SciTech Connect

    Dallinger, R.F.; Farquharson, S.; Woodruff, W.H.; Rodgers, M.A.J.

    1981-12-16

    Resonance Raman and electronic absorption spectra are reported for the S/sub 0/ and T/sub 1/ states of the carotenoids ..beta..-carotene, zeaxanthin, echinenone, canthaxanthin, dihydroxylycopene, astaxanthin, decapreno(C/sub 50/)-..beta..-carotene, ..beta..-apo-8'-carotenal, and ethyl ..beta..-apo-8'-carotenoate. The results reveal qualitatively similar ground-state spectra and similar frequency shifts in all observed resonance Raman modes between S/sub 0/ and T/sub 1/, regardless of carotenoid structure. Examinations of the relationship of the putative C--C and C==C frequencies in S/sub 0/ and T/sub 1/ reveals anomalous shifts to lower frequency in the ''single-bond'' mode upon electronic excitation. These shifts may be due to molecular distortions in the excited state which force changes in molecular motions comprising the observed modes. However, another possibility requiring no distortion is that the interaction (off-diagonal) force constants connecting the C--C and C==C modes change sign upon electronic excitation. This latter phenomenon may provide a unitary explanation for the ''anomalous'' frequency shifts in the C--C and C==C modes, both in the T/sub 1/ states of carotenoids and in the S/sub 1/ states of simpler polyenes, without postulating large, unpredicted structural changes upon excitation or general errors in existing vibrational or theoretical analyses. Resonance Raman and absorbance studies with 35-ps time resolution suggest that S/sub 1/ lifetime (of the /sup 1/B/sub u/ and/or the /sup 1/A/sub g/* states) of ..beta..-carotene in benzene is less than 1 ps.

  7. Intermolecular electron transfer from naphthalene derivatives in the higher triplet excited states.

    PubMed

    Sakamoto, Masanori; Cai, Xichen; Hara, Michihiro; Fujitsuka, Mamoru; Majima, Tetsuro

    2004-08-11

    Intermolecular electron transfer (ELT) from a series of naphthalene derivatives (NpD) in the higher triplet excited states (T(n)) to carbon tetrachloride (CCl(4)) in Ar-saturated acetonitrile was observed using the two-color two-laser flash photolysis method. The ELT efficiency depended on the driving force of ELT. Since the ELT from the T(n) state occurred competitively with the internal conversion (IC, T(n) --> T(1)) and the triplet energy transfer (ENT), the ELT became apparent only when sufficient free energy change of ELT was attained. On the other hand, ELT from the T(1) state was not observed, although ELT from the T(1) state with sufficiently long lifetime has a slightly exothermic driving force. The fast ELT from the T(n) state and lack of the reactivity of the T(1) state were explained well by the "sticky" dissociative electron-transfer model based on one-electron reductive attachment to CCl(4) leading to the C-Cl bond cleavage.

  8. Decoherence dynamics of coherent electronic excited states in the photosynthetic purple bacterium Rhodobacter sphaeroides

    NASA Astrophysics Data System (ADS)

    Liang, Xian-Ting; Zhang, Wei-Min; Zhuo, Yi-Zhong

    2010-01-01

    In this paper, we present a theoretical description to the quantum coherence and decoherence phenomena of energy transfer in photosynthesis observed in a recent experiment [Science 316, 1462 (2007)]. As a successive two-color laser pulses with selected frequencies cast on a sample of the photosynthetic purple bacterium Rb. sphaeroides two resonant excitations of electrons in chromophores can be generated. However, this effective two-level subsystem will interact with its protein environment and decoherence is inevitable. We describe this subsystem coupled with its environment as a dynamical spin-boson model. The non-Markovian decoherence dynamics is described using a quasiadiabatic propagator path integral (QUAPI) approach. With the photon-induced effective time-dependent level splitting energy and level flip coupling coefficient between the two excited states and the environment-induced non-Markovian decoherence dynamics, our theoretical result is in good agreement with the experimental data.

  9. Excited-state dynamics of oxazole: A combined electronic structure calculations and dynamic simulations study

    NASA Astrophysics Data System (ADS)

    Cao, Jun; Xie, Zhi-Zhong; Yu, Xiaodong

    2016-08-01

    In the present work, the combined electronic structure calculations and surface hopping simulations have been performed to investigate the excited-state decay of the parent oxazole in the gas phase. Our calculations show that the S2 state decay of oxazole is an ultrafast process characterized by the ring-opening and ring-closure of the five-membered oxazole ring, in which the triplet contribution is minor. The ring-opening involves the Osbnd C bond cleavage affording the nitrile ylide and airine intermediates, while the ring-closure gives rise to a bicyclic species through a 2sbnd 5 bond formation. The azirine and bicyclic intermediates in the S0 state are very likely involved in the phototranspositions of oxazoles. This is different from the previous mechanism in which these intermediates in the T1 state have been proposed for these phototranspositions.

  10. The effect of charge state on electron excitation by slow protons in simple metal

    NASA Astrophysics Data System (ADS)

    Marouf, S.; Boudouma, Y.; Chami, A. C.

    2016-01-01

    We investigate the energy and angular distributions of conduction band electrons excited by slowly moving protons. An improved method for the description of target response was developed assuming a convenient spherical symmetry of the screened potential. The velocity dependent screening parameter of the trial potential is adjusted in a self-consistent way using an extension of the Friedel sum rule. As positive projectile can be ionized or neutralized by interaction with the target, we should include the different charge states fractions of the protons to determine the doubly differential cross section (DDCS) for the secondary electron emission. A comparison of the double differential cross section using the Density Functional Theory (DFT) is presented. The energy loss of moving proton is also discussed with explicit inclusion of the different charge states and compared to the available experimental data in order to check the validity of the proposed model.

  11. New Theoretical Developments in Exploring Electronically Excited States: Including Localized Configuration Interaction Singles and Application to Large Helium Clusters

    NASA Astrophysics Data System (ADS)

    Closser, Kristina Danielle

    This thesis presents new developments in excited state electronic structure theory. Contrasted with the ground state, the electronically excited states of atoms and molecules often are unstable and have short lifetimes, exhibit a greater diversity of character and are generally less well understood. The very unusual excited states of helium clusters motivated much of this work. These clusters consist of large numbers of atoms (experimentally 103--109 atoms) and bands of nearly degenerate excited states. For an isolated atom the lowest energy excitation energies are from 1s → 2s and 1s → 2 p transitions, and in clusters describing the lowest energy band minimally requires four states per atom. In the ground state the clusters are weakly bound by van der Waals interactions, however in the excited state they can form well-defined covalent bonds. The computational cost of quantum chemical calculations rapidly becomes prohibitive as the size of the systems increase. Standard excited-state methods such as configuration interaction singles (CIS) and time-dependent density functional theory (TD-DFT) can be used with ≈100 atoms, and are optimized to treat only a few states. Thus, one of our primary aims is to develop a method which can treat these large systems with large numbers of nearly degenerate excited states. Additionally, excited states are generally formed far from their equilibrium structures. Vertical excitations from the ground state induce dynamics in the excited states. Thus, another focus of this work is to explore the results of these forces and the fate of the excited states. Very little was known about helium cluster excited states when this work began, thus we first investigated the excitations in small helium clusters consisting of 7 or 25 atoms using CIS. The character of these excited states was determined using attachment/detachment density analysis and we found that in the n = 2 manifold the excitations could generally be interpreted as

  12. Simulations of the dissociation of small helium clusters with ab initio molecular dynamics in electronically excited states.

    PubMed

    Closser, Kristina D; Gessner, Oliver; Head-Gordon, Martin

    2014-04-07

    The dynamics resulting from electronic excitations of helium clusters were explored using ab initio molecular dynamics. The simulations were performed with configuration interaction singles and adiabatic classical dynamics coupled to a state-following algorithm. 100 different configurations of He7 were excited into the 2s and 2p manifold for a total of 2800 trajectories. While the most common outcome (90%) was complete fragmentation to 6 ground state atoms and 1 excited state atom, 3% of trajectories yielded bound, He2(*), and <0.5% yielded an excited helium trimer. The nature of the dynamics, kinetic energy release, and connections to experiments are discussed.

  13. Electronic spectra and excited-state dynamics of acridine and its hydrated clusters

    NASA Astrophysics Data System (ADS)

    Harthcock, Colin; Zhang, Jie; Kong, Wei; Mitsui, Masaaki; Ohshima, Yasuhiro

    2017-04-01

    We combine results from several different experiments to investigate the photophysics of acridine (Ac) and its hydrated clusters in the gas phase. Our findings are also compared with results from condensed phase studies. Similar to measurements of Ac dissolved in hydrocarbons, the lifetime of the first electronically excited state of isolated Ac in vacuum is too short for typical resonantly enhanced multiphoton ionization (REMPI) and laser induced fluorescence (LIF) experiments, hence no signal from REMPI and LIF can be attributed to monomeric Ac. Instead, sensitized phosphorescence emission spectroscopy is more successful in revealing the electronic states of Ac. Upon clustering with water, on the other hand, the lifetimes of the excited states are substantially increased to the nanosecond scale, and with two water molecules attached to Ac, the lifetime of the hydrated cluster is essentially the same as that of Ac in aqueous solutions. Detailed REMPI and ultraviolet-ultraviolet hole-burning experiments are then performed to reveal the structural information of the hydrated clusters. Although the formation of hydrogen bonds results in energy level reversal and energy separation between the first two excited states of Ac, its effect on the internal geometry of Ac is minimal, and all clusters with 1-3 water molecules demonstrate consistent intramolecular vibrational modes. Theoretical calculations reveal just one stable structure for each cluster under supersonic molecular beam conditions. Furthermore, different from mono- and di-water clusters, tri-water clusters consist of a linear chain of three water molecules attached to Ac. Consequently, the fragmentation pattern in the REMPI spectrum of tri-water clusters seems to be dominated by water trimer elimination, since the REMPI spectrum of Ac+.W3 is largely reproduced in the Ac+ mass channel, but not in the Ac+.W1 or Ac+.W2 channel.

  14. Photoelectron spectroscopy of hexachloroplatinate-nucleobase complexes: Nucleobase excited state decay observed via delayed electron emission

    SciTech Connect

    Sen, Ananya; Matthews, Edward M.; Dessent, Caroline E. H. E-mail: xuebin.wang@pnnl.gov; Hou, Gao-Lei; Wang, Xue-Bin E-mail: xuebin.wang@pnnl.gov

    2015-11-14

    We report low-temperature photoelectron spectra of isolated gas-phase complexes of the hexachloroplatinate dianion bound to the nucleobases uracil, thymine, cytosine, and adenine. The spectra display well-resolved, distinct peaks that are consistent with complexes where the hexachloroplatinate dianion is largely intact. Adiabatic electron detachment energies for the hexachloroplatinate-nucleobase complexes are measured as 2.26-2.36 eV. The magnitudes of the repulsive Coulomb barriers (RCBs) of the complexes are all ∼1.7 eV, values that are lower than the RCB of the uncomplexed PtCl{sub 6}{sup 2−} dianion as a result of charge solvation by the nucleobases. In addition to the resolved spectral features, broad featureless bands indicative of delayed electron detachment are observed in the 193 nm photoelectron spectra of the four clusters. The 266 nm spectra of the PtCl{sub 6}{sup 2−} ⋅ thymine and PtCl{sub 6}{sup 2−} ⋅ adenine complexes also display very prominent delayed electron emission bands. These results mirror recent results on the related Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes [A. Sen et al., J. Phys. Chem. B 119, 11626 (2015)]. The observation of delayed electron emission bands in the PtCl{sub 6}{sup 2−} ⋅ nucleobase spectra obtained in this work, as for the previously studied Pt(CN){sub 4}{sup 2−} ⋅ nucleobase complexes, is attributed to one-photon excitation of nucleobase-centred excited states that can effectively couple to the electron detachment continuum, producing strong electron detachment. Moreover, the selective, strong excitation of the delayed emission bands in the 266 nm spectra is linked to fundamental differences in the individual nucleobase photophysics at this excitation energy. This strongly supports our previous suggestion that the dianion within these clusters can be viewed as a “dynamic tag” which has the propensity to emit electrons when the attached nucleobase decays over a time scale long enough to

  15. Multiple-state interfacial electron injection competes with excited state relaxation and de-excitation to determine external quantum efficiencies of organic dye-sensitized solar cells.

    PubMed

    Zhang, Min; Yang, Lin; Yan, Cancan; Ma, Wentao; Wang, Peng

    2014-10-14

    A comprehensive description of the complicated dynamics of excited state evolution and charge transfer at the photochemical interface in dye-sensitized solar cells is crucial to understand the mechanism of converting solar photons to clean electricity, providing an informative basis for the future development of advanced organic materials. By selecting two triarylamine-based organic donor-acceptor dyes characteristic of the respective benzoic acid and cyanoacrylic acid anchors, in this paper we reveal stepwise excited state relaxations and multiple-state electron injections at a realistic titania/dye/electrolyte interface based upon ultrafast spectroscopic measurements and theoretical simulations. Density functional theory (DFT) and time-dependent DFT calculations show that the optically generated "hot" excited state of the dye molecules can undergo a significant conformational relaxation via multistage torsional motions, and thereby transform into an equilibrium quinonoid structure characteristic of a more planar conjugated backbone. A set of kinetic parameters derived from the target analysis of femtosecond transient absorption spectra have been utilized to estimate the electron injection yield, which is in good accord with the maximum of external quantum efficiencies.

  16. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz

    SciTech Connect

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco Casula, Michele; Sorella, Sandro

    2015-06-07

    We study the ionization energy, electron affinity, and the π → π{sup ∗} ({sup 1}L{sub a}) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the {sup 1}L{sub a} excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral {sup 1}L{sub a} excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.

  17. Vertical and adiabatic excitations in anthracene from quantum Monte Carlo: Constrained energy minimization for structural and electronic excited-state properties in the JAGP ansatz.

    PubMed

    Dupuy, Nicolas; Bouaouli, Samira; Mauri, Francesco; Sorella, Sandro; Casula, Michele

    2015-06-07

    We study the ionization energy, electron affinity, and the π → π(∗) ((1)La) excitation energy of the anthracene molecule, by means of variational quantum Monte Carlo (QMC) methods based on a Jastrow correlated antisymmetrized geminal power (JAGP) wave function, developed on molecular orbitals (MOs). The MO-based JAGP ansatz allows one to rigorously treat electron transitions, such as the HOMO → LUMO one, which underlies the (1)La excited state. We present a QMC optimization scheme able to preserve the rank of the antisymmetrized geminal power matrix, thanks to a constrained minimization with projectors built upon symmetry selected MOs. We show that this approach leads to stable energy minimization and geometry relaxation of both ground and excited states, performed consistently within the correlated QMC framework. Geometry optimization of excited states is needed to make a reliable and direct comparison with experimental adiabatic excitation energies. This is particularly important in π-conjugated and polycyclic aromatic hydrocarbons, where there is a strong interplay between low-lying energy excitations and structural modifications, playing a functional role in many photochemical processes. Anthracene is an ideal benchmark to test these effects. Its geometry relaxation energies upon electron excitation are of up to 0.3 eV in the neutral (1)La excited state, while they are of the order of 0.1 eV in electron addition and removal processes. Significant modifications of the ground state bond length alternation are revealed in the QMC excited state geometry optimizations. Our QMC study yields benchmark results for both geometries and energies, with values below chemical accuracy if compared to experiments, once zero point energy effects are taken into account.

  18. Electronic excitation energies, three-state intersections, and photodissociation mechanisms of benzaldehyde and acetophenone

    NASA Astrophysics Data System (ADS)

    Cui, Ganglong; Lu, You; Thiel, Walter

    2012-06-01

    We report a theoretical study on the electronically excited states and the mechanisms of photodissociation of C6H5CHO and C6H5COCH3. For both molecules, we find an S1/T2/T1 three-state intersection region, which allows for an efficient S1 → T1 intersystem crossing via the T2 state that acts as a relay. Consequently, T1 reactions become the major radical photodissociation channels. According to the computed energy profiles, T1 photodissociation mainly yields phenyl and formyl radicals in the case of benzaldehyde, and benzoyl and methyl radicals in the case of acetophenone, with different C-C bonds being cleaved preferentially. The computational results agree well with the available experimental data.

  19. Perpendicular State of an Electronically Excited Stilbene: Observation by Femtosecond-Stimulated Raman Spectroscopy.

    PubMed

    Quick, Martin; Dobryakov, Alexander L; Ioffe, Ilya N; Granovsky, Alex A; Kovalenko, Sergey A; Ernsting, Nikolaus P

    2016-10-20

    In the photoisomerization path of stilbene, a perpendicular state P on the S1 potential energy surface is expected just before internal conversion through a conical intersection S1/S0. For decades the observation of P was thwarted by a short lifetime τP in combination with slow population flow over a barrier. But these limitations can be overcome by ethylenic substitution. Following optical excitation of trans-1,1'-dicyanostilbene, P is populated significantly (τP = 27 ps in n-hexane) and monitored by an exited-state absorption band at 370 nm. Here we report stimulated Raman lines of P. The strongest, at 1558 cm(-1), is attributed to stretching vibrations of the phenyl rings. Transient electronic states, resonance conditions, and corresponding Raman signals are discussed.

  20. Excitation of the lowest CO2 vibrational states by electrons in hypersonic boundary layers

    NASA Astrophysics Data System (ADS)

    Armenise, I.

    2017-07-01

    The state-to-state vibrational kinetics of a CO2/O2/CO/C/O/e- mixture in a hypersonic boundary layer under conditions compatible with the Mars re-entry is studied. The model adopted treats three CO2 modes (the two degenerated bending modes are approximated as a unique one) as not independent ones. Vibrational-translational transitions in the bending mode, inter-mode exchanges within CO2 molecule and between molecules of different chemical species as well as dissociation-recombination reactions are considered. Attention is paid to the electron-CO2 collisions that cause transitions from the ground vibrational state, CO2(0,0,0), to the first excited ones, CO2(1,0,0), CO2(0,1,0) and CO2(0,0,1). The corresponding processes rate coefficients are obtained starting from the electron energy distribution function, calculated either as an equilibrium Boltzmann distribution at the local temperature or by solving the Boltzmann equation. Results obtained either neglecting or including in the kinetic scheme the electron-CO2 collisions are compared and explained by analysing the rate coefficients of the electron-CO2 collisions.

  1. Non-radiative depletion of the excited electronic states of 9-cyanoanthracene in presence of tetrahydronaphthols

    NASA Astrophysics Data System (ADS)

    Bhattacharya, T.; Misra, T.; Maiti, M.; Saini, R. D.; Chanda, M.; Lahiri, S.; Ganguly, T.

    2003-02-01

    Both steady state and time resolved spectroscopic measurements reveal that the prime process involved in quenching mechanism of the lowest excited singlet (S 1) and triplet (T 1) states of the well known electron acceptor 9-Cyanoanthracene (9CNA) in presence of 5,6,7,8-tetrahydro-1-naphthol (TH1N) or 5,6,7,8-tetrahydro-2-naphthol (TH2N) is H-bonding interaction. It has been confirmed that the fluorescence of 9CNA is not at all affected in presence of 5,6,7,8-tetrahydro-2-methoxy naphthalene (TH2MN) both in non-polar n-heptane (NH) and highly polar acetonitrile (ACN) media. This indicates that the H-bonding interaction is crucial for the occurrence of the quenching phenomenon observed in the present investigations with TH1N (or TH2N) donors and 9CNA acceptor. In ACN solvent both contact ion-pair (CIP) and solvent-separated (or dissociated) ions are formed due to intermolecular H-bonding interactions in the excited electronic states (both singlet and triplet). In NH environment due to stronger H-bonding interactions, the large proton shift within excited charge transfer (CT) or ion-pair complex, 1or3(D +H⋯A -), causes the formation of the neutral radical, 3(D+HA)*, due to the complete detachment of the H-atom. It is hinted that both TH1N and TH2N due to their excellent H-bonding ability could be used as antioxidants.

  2. Electronic excited state paths of Stone-Wales rearrangement in pyrene: roles of conical intersections.

    PubMed

    Yamazaki, Kaoru; Niitsu, Naoyuki; Nakamura, Kosuke; Kanno, Manabu; Kono, Hirohiko

    2012-11-26

    We investigated the reaction paths of Stone-Wales rearrangement (SWR), i.e., π/2 rotation of two carbon atoms with respect to the midpoint of the bond, in graphene and carbon nanotube quantum chemically. Our particular attention is focused on the roles of electronic excitations and conical intersections (CIs) in the reaction mechanism. We used pyrene as a model system. The reaction paths were determined by constructing potential energy surfaces at the MS-CASPT2//SA-CASSCF level of theory. We found that there are no CIs involved in SWR when both of C-C bond cleavage and formation occur simultaneously (concerted mechanism). In contrast, for the reaction path with stepwise cleavage and formation of C-C bonds, C-C bond breaking and making processes proceed through two CIs. When SWR starts from the ground (S(0)) state, the concerted and stepwise paths have an equivalent reaction barrier ΔE(‡) (9.5-9.6 eV). For the reaction path starting from excited states, only the stepwise mechanism is energetically preferable. This path contains a nonadabatic transition between the S(1) and S(0) states via a CI associated with the first stage of C-C bond cleavage and has ΔE(‡) as large as in the S(0) paths. We confirmed that the main active molecular orbitals and electron configurations for the low-lying electronic states of larger nanocarbons are the same as those in pyrene. This result suggests the importance of the nonadiabatic transitions through CIs in the photochemical reactions in large nanocarbons.

  3. Differential cross sections for intermediate-energy electron scattering from α-tetrahydrofurfuryl alcohol: Excitation of electronic-states

    SciTech Connect

    Chiari, L.; Jones, D. B.; Thorn, P. A.; Pettifer, Z.; Duque, H. V.; Silva, G. B. da; Limão-Vieira, P.; Duflot, D.; Hubin-Franskin, M.-J.; Delwiche, J.; Blanco, F.; García, G.; and others

    2014-07-14

    We report on measurements of differential cross sections (DCSs) for electron impact excitation of a series of Rydberg electronic-states in α-tetrahydrofurfuryl alcohol (THFA). The energy range of these experiments was 20–50 eV, while the scattered electron was detected in the 10°–90° angular range. There are currently no other experimental data or theoretical computations against which we can directly compare the present measured results. Nonetheless, we are able to compare our THFA DCSs with earlier cross section measurements for Rydberg-state electronic excitation for tetrahydrofuran, a similar cyclic ether, from Do et al. [J. Chem. Phys. 134, 144302 (2011)]. In addition, “rotationally averaged” elastic DCSs, calculated using our independent atom model with screened additivity rule correction approach are also reported. Those latter results give integral cross sections consistent with the optical theorem, and supercede those from the only previous study of Milosavljević et al. [Eur. Phys. J. D 40, 107 (2006)].

  4. Development and Application of Single-Referenced Perturbation and Coupled-Cluster Theories for Excited Electronic States

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.

  5. Development and Application of Single-Referenced Perturbation and Coupled-Cluster Theories for Excited Electronic States

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.

  6. Recent experimental advances on excited-state intramolecular proton coupled electron transfer reaction.

    PubMed

    Hsieh, Cheng-Chih; Jiang, Chang-Ming; Chou, Pi-Tai

    2010-10-19

    Proton-coupled electron transfer reactions form the basis of many important chemical processes including much of the energy conversion that occurs within living cells. However, much of the physical chemistry that underlies these reaction mechanisms remains poorly understood. In this Account, we report on recent progress in the understanding of excited-state intramolecular proton-coupled electron transfer (PCET) reactions. The strategic design and synthesis of various types of PCET molecules, along with steady-state and femtosecond time-resolved spectroscopy, have uncovered the mechanisms of several excited-state PCET reactions in solution. These experimental advancements correlate well with current theoretical models, in which the proton has quantum motion with a high probability of tunneling. In addition, the rate of proton transfer is commonly incorporated within the rate of rearrangement of solvent molecules. As a result, the reaction activation free energy is essentially governed by the solvent reorganization because the charge redistribution is considered based on a solvent polarity-induced barrier instead of the height of the proton migration barrier. In accord with this theoretical basis, we can rationalize the observation that the proton transfer for many excited-state PCET systems occurs during the solvent relaxation time scale of 1-10 ps: the highly exergonic reaction takes place before the system reaches its equilibrium polarization. Also, we have used various derivatives of proton transfer molecules, especially those of 3-hydroxyflavone to clearly demonstrate how researchers can tune the dynamics of excited-state PCET through changes in the magnitude or direction of the dipole vector within the reaction. Subsequently, using 2-(2'-hydroxyphenyl)benzoxazole as the parent model, we then report on methods for the development of an ideal system for probing PCET reaction. Because future biomedical applications of such systems will likely occur in aqueous

  7. Electron impact cross sections for the 2,2P state excitation of lithium

    NASA Technical Reports Server (NTRS)

    Vuskovic, L.; Trajmar, S.; Register, D. F.

    1982-01-01

    Electron impact excitation of the 2p 2P state of Li was studied at 10, 20, 60, 100, 150 and 200 eV. Relative differential cross sections in the angular range 3-120 deg were measured and then normalized to the absolute scale by using the optical f value. Integral and momentum transfer cross sections were obtained by extrapolating the differential cross sections to 0 deg and to 180 deg. The question of normalizing electron-metal-atom collision cross sections in general was examined and the method of normalization to optical f values in particular was investigated in detail. It has been concluded that the extrapolation of the apparent generalized oscillator strength (obtained from the measured differential cross sections) to the zero momentum transfer limit with an expression using even powers of the momentum transfer and normalization of the limit to the optical f value yields reliable absolute cross sections.

  8. Experimental investigation of the vibrational density of states and electronic excitations in metallic nanocrystals

    NASA Astrophysics Data System (ADS)

    Bayle, M.; Benzo, P.; Combe, N.; Gatel, C.; Bonafos, C.; Benassayag, G.; Carles, R.

    2014-05-01

    An investigation of the vibrational density of states (VDOS) in silver nanocrystals is performed using Raman scattering. A specific sample architecture, setup configuration, and original elaboration process are used in order to take simultaneously advantage of spectrally and spatially localized surface plasmon resonance, optical amplification, and dark-field spectroscopy. Disentangling the contributions of atom vibrations and electron-hole excitations (i.e., the so-called "background" in surface-enhanced Raman scattering) is performed. The extracted VDOS is successfully compared with theoretical ones obtained by atomic scale simulations. The effects of size, strain, and disorder on the VDOS are analyzed; in particular, the strain effect is investigated experimentally using the geometrical phase analysis coupled with high-resolution transmission electron microscopy. This work offers an opportunity to examine thermodynamic properties, like specific heat, at the nanoscale.

  9. Excited-state lifetime of adenine near the first electronic band origin

    NASA Astrophysics Data System (ADS)

    Kang, Hyuk; Chang, Jinyoung; Lee, Sang Hak; Ahn, Tae Kyu; Kim, Nam Joon; Kim, Seong Keun

    2010-10-01

    The excited-state lifetime of supersonically cooled adenine was measured in the gas phase by femtosecond pump-probe transient ionization as a function of excitation energy between 36 100 and 37 500 cm-1. The excited-state lifetime of adenine is ˜2 ps around the 0-0 band of the L1b ππ ∗ state (36 105 cm-1). The lifetime drops to ˜1 ps when adenine is excited to the L1a ππ ∗ state with the pump energy at 36 800 cm-1 and above. The excited-state lifetimes of L1a and L1b ππ∗ states are differentiated in accordance with previous frequency-resolved and computational studies.

  10. Electron-acceptor-dependent light absorption, excited-state relaxation, and charge generation in triphenylamine dye-sensitized solar cells.

    PubMed

    Li, Renzhi; Zhang, Min; Yan, Cancan; Yao, Zhaoyang; Zhang, Jing; Wang, Peng

    2015-01-01

    By choosing a simple triphenylamine electron donor, we herein compare the influence of electron acceptors benzothiadiazole benzoic acid (BTBA) and cyanoacrylic acid (CA), on energy levels, light absorption, and dynamics of excited-state evolution and electron injection. DFT and time-dependent DFT calculations disclosed remarkable intramolecular conformational changes for the excited states of these two donor-acceptor dyes. Photoinduced dihedral angle variation occurs to the triphenylamine unit in the CA dye and backbone planarization happens to conjugated aromatic blocks in the BTBA dye. Femtosecond spectroscopic measurements suggested the crucial role of having a long excited-state lifetime in maintaining a high electron-injection yield because a reduced driving force for a low energy-gap dye can result in slower electron-injection dynamics.

  11. The spectroscopy of singlets and triplets excites electronic states, spatial and electronic structure of hydrocarbons and quantum classifications in chemmotology

    NASA Astrophysics Data System (ADS)

    Obukhov, A. E.

    2016-12-01

    In this work we demonstrate the physical foundations of the spectroscopy of the grounds states: E- and X-ray, (RR) Raman scattering the NMR 1H and 13C and IR-, EPR- absorption and the singlets and triplets electronic excited states in the multinuclear hydrocarbons in chemmotology. The parameters of UV-absorption, RR-Raman scattering of light, the fluorescence and the phosphorescence and day-lasers at the pumping laser and lamp, OLEDs and OTETs- are measurements. The spectral-energy properties are briefly studied. The quantum-chemical LCAO-MO SCF expanded-CI PPP/S and INDO/S methods in the electronic and spatial structure hidrocarbons are considered.

  12. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    NASA Astrophysics Data System (ADS)

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg

    2015-07-01

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound.

  13. The electronic structure of VO in its ground and electronically excited states: A combined matrix isolation and quantum chemical (MRCI) study

    SciTech Connect

    Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg

    2015-07-14

    The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound.

  14. A Doubles Correction to Electronic Excited States from Configuration Interaction in the Space of Single Substitutions

    NASA Technical Reports Server (NTRS)

    Head-Gordon, Martin; Rico, Rudolph J.; Lee, Timothy J.; Oumi, Manabu

    1994-01-01

    A perturbative correction to the method of configuration interaction with single substitutions (CIS) is presented. This CIS(D) correction approximately introduces the effect of double substitutions which are absent in CIS excited states. CIS(D) is a second-order perturbation expansion of the coupled-cluster excited state method, restricted to single and double substitutions, in a series in which CIS is zeroth order, and the first-order correction vanishes. CIS (D) excitation energies are size consistent and the calculational complexity scales with the fifth power of molecular size, akin to second-order Moller-Plesset theory for the ground state. Calculations on singlet excited states of ethylene, formaldehyde, acetaldehyde, butadiene and benzene show that CIS (D) is a uniform improvement over CIS. CIS(D) appears to be a promising method for examining excited states of large molecules, where more accurate methods are not feasible.

  15. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    SciTech Connect

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  16. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent

    NASA Astrophysics Data System (ADS)

    Elkins, Madeline H.; Williams, Holly L.; Neumark, Daniel M.

    2015-06-01

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  17. Dynamics of electron solvation in methanol: Excited state relaxation and generation by charge-transfer-to-solvent.

    PubMed

    Elkins, Madeline H; Williams, Holly L; Neumark, Daniel M

    2015-06-21

    The charge-transfer-to-solvent dynamics (CTTS) and excited state relaxation mechanism of the solvated electron in methanol are studied by time-resolved photoelectron spectroscopy on a liquid methanol microjet by means of two-pulse and three-pulse experiments. In the two-pulse experiment, CTTS excitation is followed by a probe photoejection pulse. The resulting time-evolving photoelectron spectrum reveals multiple time scales characteristic of relaxation and geminate recombination of the initially generated electron which are consistent with prior results from transient absorption. In the three-pulse experiment, the relaxation dynamics of the solvated electron following electronic excitation are measured. The internal conversion lifetime of the excited electron is found to be 130 ± 40 fs, in agreement with extrapolated results from clusters and the non-adiabatic relaxation mechanism.

  18. Experimental and Quantum-Chemical Study of Electronically Excited States of Protolytic Isovanillin Species

    NASA Astrophysics Data System (ADS)

    Vusovich, O. V.; Tchaikovskaya, O. N.; Sokolova, I. V.; Vasil'eva, N. Yu.

    2014-05-01

    Methods of electronic spectroscopy and quantum chemistry are used to compare protolytic vanillin and isovanillin species. Three protolytic species: anion, cation, and neutral are distinguished in the ground state of the examined molecules. Vanillin and isovanillin in the ground state in water possess identical spectral characteristics: line positions and intensities in the absorption spectra coincide. Minima of the electrostatic potential demonstrate that the deepest isomer minimum is observed on the carbonyl oxygen atom. However, investigations of the fluorescence spectra show that the radiative properties of isomers differ. An analysis of results of quantum-chemical calculations demonstrate that the long-wavelength ππ* transition in the vanillin absorption spectra is formed due to electron charge transfer from the phenol part of the molecule to oxygen atoms of the methoxy and carbonyl groups, and in the isovanillin absorption spectra, it is formed only on the oxygen atom of the methoxy group. The presence of hydroxyl and carbonyl groups in the structure of the examined molecules leads to the fact that isovanillin in the ground S0 state, the same as vanillin, possesses acidic properties, whereas in the excited S1 state, they possess basic properties. A comparison of the рKа values of aqueous solutions demonstrates that vanillin possesses stronger acidic and basic properties in comparison with isovanillin.

  19. The electronically excited states of helium clusters: an unusual example for the presence of Rydberg states in condensed matter

    NASA Astrophysics Data System (ADS)

    von Haeften, Klaus; Laarmann, Tim; Wabnitz, Hubertus; Möller, Thomas

    2005-01-01

    The nature of the electronically excited states of He clusters and their relaxation mechanisms are investigated by spectroscopy using monochromatized synchrotron radiation. Time correlated fluorescence excitation and energy resolved luminescence spectra of the clusters are recorded in separate wavelength ranges. The size of the clusters and the isotopic constitution is also varied. The spectral features are analysed and discussed particularly with regard to the high lying states and their possible Rydberg nature. While Rydberg states seem not to exist in the interior region of large clusters there is experimental evidence that sharp lines in the spectrum are either due to He Rydberg atoms or excimer molecules in high vibrational states bound at the surface of large clusters or due to very small positively charged clusters with the Rydberg electron outside. The spectra of large 3He clusters exhibit a larger contribution of Rydberg lines than 4He clusters. He clusters also emit fluorescence at energies above the ionization energy of He atoms. This is attributed to the barrier for the injection of electrons into the conduction band which was found to be 1.35 eV for 4He and 0.95 eV for 3He clusters, respectively.

  20. The influence of the molecular charge on potential energy curves for the proton transfer in electronic ground and excited states

    NASA Astrophysics Data System (ADS)

    Kowal, Marek; Roszak, Szczepan; Leszczynski, Jerzy

    2001-05-01

    The potential energy curves were studied for the proton transfer in the electronic ground and excited states for the model systems H3O2-, H4O2, and H5O2+. The complete active space self-consistent-field calculations were performed for the ground state optimized structures. The potential energy curves for the proton transfer in the excited states undergo a dramatic change due to the different electronic density distribution as an effect of electronic excitations. In all cases of the studied excited states, the electron population on the transferred proton is higher compared to that in the ground state. The total charge of the system greatly influences the potential curves. Energy separation between ground and excited states is decreased due to the negative charge of the system and is increased when the studied species are positively charged. The vertical excitations of the complex are similar to those in the monomers, but the proton relaxation leads to significant energetical (energy barriers) and structural (H+ position) changes.

  1. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying πσ∗ states

    NASA Astrophysics Data System (ADS)

    Karmakar, Shreetama; Mukhopadhyay, Deb Pratim; Chakraborty, Tapas

    2015-05-01

    Multiple fluorine atom substitution effect on photophysics of an aromatic chromophore has been investigated using phenol as the reference system. It has been noticed that the discrete vibronic structure of the S1←S0 absorption system of phenol vapor is completely washed out for pentafluorophenol (PFP), and the latter also shows very large Stokes shift in the fluorescence spectrum. For excitations beyond S1 origin, the emission yield of PFP is reduced sharply with increase in excess vibronic energy. However, in a collisional environment like liquid hydrocarbon, the underlying dynamical process that drives the non-radiative decay is hindered drastically. Electronic structure theory predicts a number of low-lying dark electronic states of πσ∗ character in the vicinity of the lowest valence ππ∗ state of this molecule. Tentatively, we have attributed the excitation energy dependent non-radiative decay of the molecule observed only in the gas phase to an interplay between the lowest ππ∗ and a nearby dissociative πσ∗ state. Measurements in different liquids reveal that some of the dark excited states light up with appreciable intensity only in protic liquids like methanol and water due to hydrogen bonding between solute and solvents. Electronic structure theory methods indeed predict that for PFP-(H2O)n clusters (n = 1-11), intensities of a number of πσ∗ states are enhanced with increase in cluster size. In contrast with emitting behavior of the molecule in the gas phase and solutions of nonpolar and polar aprotic liquids, the fluorescence is completely switched off in polar protic liquids. This behavior is a chemically significant manifestation of perfluoro effect, because a very opposite effect occurs in the case of unsubstituted phenol for which fluorescence yield undergoes a very large enhancement in protic liquids. Several dynamical mechanisms have been suggested to interpret the observed photophysical behavior.

  2. Temperature dependent spectroscopic and excited state dynamics of 3-hydroxychromones with electron donor and acceptor substituents.

    PubMed

    Szalai, Alan; Giordano, Luciana; Sánchez, Verónica M; Atvars, Teresa D Z; Faleiros, Marcelo; Jares-Erijman, Elizabeth; Aramendía, Pedro F

    2017-05-15

    We have studied the photophysical and photochemical behavior of three compounds derived from 3-hydroxychromone (3-HC), capable of undergoing excited state proton transfer (ESIPT). The compounds have two substituents, located in positions 2 and 7, one on each ring of the 3-HC heterocycle. The substituent pattern shows different electron donating and acceptor features. The compounds were studied by absorption and emission spectroscopy, steady state anisotropy, and time resolved emission spectroscopy (TRES) as a function of temperature. Results were interpreted using time dependent density functional theory calculations. Compared to reference compounds of 3-HC substituted only in the 2 position, the compounds show similar absorption and emission spectra, shifted 20-30 nm to higher wavelengths due to extended conjugation. TRES shows the existence of ESIPT in the thermodynamic equilibrium regime. This process is endothermic in all three compounds. The different behavior compared to monosubstituted 3-HC is attributed to the extended conjugation and to the electron donor acceptor character of the substituents, which has a more pronounced effect when the electron acceptor is located in position 2.

  3. Scaling behavior of electronic excitations in assemblies of molecules with degenerate ground states.

    PubMed

    Fan, H-J; Perkins, C; Ortoleva, P J

    2010-02-11

    The behavior of long space-time excitations in many-electron systems with ground state degeneracy is explored via multiscale analysis. The analysis starts with an ansatz for the wave function's dual dependence on the N-electron configuration (i.e., both by direct means and by indirect means via a set of order parameters). It is shown that a Dirac-like equation form of the wave equation emerges in the limit where the ratio epsilon (of the average nearest-neighbor distance to the characteristic length of the long-scale phenomenon of interest) is small. Examples of the long scale are the size of a quantum dot, nanotube, or wavelength of a density disturbance. The velocities in the Dirac-like equation are the transition moments of the single-particle momentum operator connecting degenerate ground states. While detailed band structure and the independent quasi-particle picture could underlie the behavior of some systems (as commonly suggested for graphene), the present scaling law results show it is not necessarily the only explanation. Rather, it can follow from the scaling properties of low-lying, long spatial scale excitations and ground state degeneracy, even in strongly interacting systems. The generality of our findings suggests graphene may be just one of many examples of Dirac-like equation behavior. A preliminary validation of our quantum scaling law for molecular arrays is presented. As our scaling law constitutes a coarse-grained wave equation, path integral or other methods derived from it hold great promise for calibration-free, long-time simulation of many-particle quantum systems.

  4. Ultrafast internal conversion of excited cytosine via the lowest pipi electronic singlet state.

    PubMed

    Merchán, Manuela; Serrano-Andrés, Luis

    2003-07-09

    Computational evidence at the CASPT2 level supports that the lowest excited state pipi* contributes to the S1/S0 crossing responsible for the ultrafast decay of singlet excited cytosine. The computed radiative lifetime, 33 ns, is consistent with the experimentally derived value, 40 ns. The nOpi* state does not play a direct role in the rapid repopulation of the ground state; it is involved in a S2/S1 crossing. Alternative mechanisms through excited states pisigma* or nNpi* are not competitive in cytosine.

  5. Excitation, ionization, and electron capture cross sections for collisions of Li{sup 3+} with ground state and excited hydrogen atoms

    SciTech Connect

    Murakami, I. Yan, J.; Sato, H.; Kimura, M.; Janev, R.K.; Kato, T.

    2008-03-15

    Using the available experimental and theoretical data, as well as the established cross section scaling relationships, a comprehensive cross section database for excitation, ionization and electron capture in collisions of Li{sup 3+} ions with ground state and excited hydrogen atoms has been generated. The critically assessed cross sections are represented by analytic fit functions that have the correct asymptotic behavior both at low and high collision energies. The derived cross sections are also presented in graphical form.

  6. The separation of vibrational coherence from ground- and excited-electronic states in P3HT film

    SciTech Connect

    Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.

    2015-06-07

    Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets (S(λ{sub 1},T{sup ~}{sub 2},λ{sub 3})) along the population time (T{sup ~}{sub 2}) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps (S(λ{sub 1},ν{sup ~}{sub 2},λ{sub 3})). We found that the vibrational coherence from pure excited electronic states appears at positive frequency (+ν{sup ~}{sub 2}) in the rephasing beating map and at negative frequency (−ν{sup ~}{sub 2}) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.

  7. Configuration interaction study on the ground and excited electronic states of the SrH molecule

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoting; Liang, Guiying; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing

    2016-02-01

    High-level ab initio calculations on the ground and the excited states of the SrH molecule have been carried out utilizing the multi-reference configuration interaction method plus Davidson correction (MRCI+Q) method, with small-core relativistic effective core potentials together with the corresponding correlation consistent polarized valence basis sets. The potential energy curves (PECs) of the 16 Λ-S states have been obtained with the aid of the avoided crossing rule between electronic states of the same symmetry. The spectroscopic constants of the bound states were calculated, most of which have been reported for the first time, with those pertaining to the X2Σ+, A2П, B2Σ+, and A‧2Δ states being in line with the available experimental and theoretical values. The calculated spin-orbit matrix element indicates a strong interaction between the X2Σ+ and A2П states in the Franck-Condon region. The spin-orbit coupling (SOC) splits the lowest strongly bound X2Σ+, A2П, A‧2Δ, B2Σ+, and D2Σ+ states into 9 Ω states. For the D2Σ+ state, the SOC shifts the potential-well minimum to higher energy and shortens the bond length. The transition properties of the bound Λ-S states were predicated, including the transition dipole moments (TDMs), the Franck-Condon factors, and the radiative lifetimes. The lifetimes were calculated to be 34.2 ns (v‧=0) and 55.0 ns (v‧=0) for A2П and B2Σ+, in good agreement with the experimental results of 33.8±1.9 ns and 48.4±2.0 ns.

  8. Nonlocal electron kinetics and excited state densities in a magnetron discharge in argon.

    PubMed

    Porokhova, I A; Golubovskii, Yu B; Csambal, C; Helbig, V; Wilke, C; Behnke, J F

    2002-04-01

    The densities of argon metastable (3)P(2), and resonance (1)P(1), (3)P(1) states were measured along a cylindrical magnetron discharge radius by absorption spectroscopy using a narrow bandwidth single mode diode laser. The theoretical treatment includes calculations of the rates of numerous excitation and decay processes based on nonlocal electron kinetics, and analysis of the transport equations for the resonance and metastable atoms. The solution technique of the Biberman-Holstein equation of radiation transport is developed in conformity with magnetron discharge geometry. The radial profile of the effective lifetime is obtained, taking into account radiation escape on the inner and outer electrodes. The distinction in formations of the radial profiles of the resonance and metastable atoms caused by specifics of radiation transport and diffusion is demonstrated. The results of experiments and calculations are compared.

  9. Zeeman spectroscopy of NiH: Landé factors of three Ω = 3/2 excited electronic states

    NASA Astrophysics Data System (ADS)

    Harker, H.; Richard, C.; Tourasse, G.; Crozet, P.; Ross, A. J.

    2013-10-01

    We report molecular Landé factors for three Ω‧ = 3/2 vibronic levels of NiH: E[17.8], D[17.6], and I[17.2], lying 17 000-18 000 cm-1 above the ground electronic state. The molecular Landé factors of these three states exhibit unusual variations with J and with parity. Also, molecular Landé factors of the D[17.6] excited electronic state are unexpectedly sensitive to Ni isotope substitution at low J. These observations provide evidence for extensive mixing among electronic states, deviation from Hund's case (a) coupling, and the existence of a local perturbing state. We also report polarization-dependent discrepancies between experimental and theoretical spectral intensities [1] for transitions involving the I[17.2] excited electronic state.

  10. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    SciTech Connect

    Bjorgaard, Josiah August; Velizhanin, Kirill A.; Tretiak, Sergei

    2016-04-15

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this paper, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Finally, molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  11. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Bjorgaard, J. A.; Velizhanin, K. A.; Tretiak, S.

    2016-04-01

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  12. Electronically Excited States in Poly(p-phenylenevinylene): Vertical Excitations and Torsional Potentials from High-Level Ab Initio Calculations

    PubMed Central

    2013-01-01

    Ab initio second-order algebraic diagrammatic construction (ADC(2)) calculations using the resolution of the identity (RI) method have been performed on poly-(p-phenylenevinylene) (PPV) oligomers with chain lengths up to eight phenyl rings. Vertical excitation energies for the four lowest π–π* excitations and geometry relaxation effects for the lowest excited state (S1) are reported. Extrapolation to infinite chain length shows good agreement with analogous data derived from experiment. Analysis of the bond length alternation (BLA) based on the optimized S1 geometry provides conclusive evidence for the localization of the defect in the center of the oligomer chain. Torsional potentials have been computed for the four excited states investigated and the transition densities divided into fragment contributions have been used to identify excitonic interactions. The present investigation provides benchmark results, which can be used (i) as reference for lower level methods and (ii) give the possibility to parametrize an effective Frenkel exciton Hamiltonian for quantum dynamical simulations of ultrafast exciton transfer dynamics in PPV type systems. PMID:23427902

  13. On the nature of excited electronic states in cyanine dyes: implications for visual pigment spectra

    NASA Astrophysics Data System (ADS)

    Dinur, Uri; Honig, Barry; Schulten, Klaus

    1980-06-01

    CNDO/S CI calculations are carried out on polyenes and on cyanine dyes. In contrast to polyenes, doubly excited configurations have a strong effect on the first optically allowed excited state in cyanines. Protonated Schiff bases of retinal are closely related to cyanine dyes, with important consequences for models of visual pigment spectra and photochemistry.

  14. A Model of Electronically-Excited States of N_2 and its Extreme-Ultraviolet Spectrum.

    NASA Astrophysics Data System (ADS)

    Heays, A. N.; Lewis, B. R.; Gibson, S. T.

    2013-06-01

    The nitrogen molecule is a long-studied and difficult problem in molecular spectroscopy, and many important details of its interaction with radiation remain unexplained. A principal problem of continuing interest concerns the resonant photoabsorption and resultant predissociation of N_2 when exposed to extreme-ultraviolet radiation. A model of the relevant excited states of N_2 has been developed in order to quantify their interactions and reproduce photoabsorption and photodissociation cross sections between 100 000 and 118 500 cm^{-1} (100 and 84 nm). This solves the radial Schrödinger equation within a coupled-channels formulation for new diabatic potential-energy curves, homogeneous and heterogeneous state mixing, and electronic transition moments for the optically allowed transitions. The accidental predissociation of {}^1Π_u states between 100 000 and 112 500 cm^{-1} has been quantitatively modelled by spin-orbit coupling these to a set of {}^3Π_u and {}^3Σ_u^+ states which includes unbound members. Following reference to a large experimental database, the model is both accurate and comprehensive and may be used to simulate synthetic cross sections for any temperature or isotopologue. These are suitable for use in high-resolution photochemical models of atmospheric and astrophysical environments.

  15. Effect of protein environment on electronically excited and ionized states of the green fluorescent protein chromophore.

    PubMed

    Bravaya, Ksenia B; Khrenova, Maria G; Grigorenko, Bella L; Nemukhin, Alexander V; Krylov, Anna I

    2011-06-30

    The effect of the protein environment on the electronic structure of the green fluorescent protein (GFP) chromophore is investigated by QM/MM (quantum mechanics/molecular mechanics) calculations. The protein has very small effect on the excitation energy of the bright absorbing and the lowest triplet states of the anionic GFP chromophore, deprotonated 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI) anion, however, it increases vertical detachment energy from 2.5 eV (gas-phase deprotonated HBDI anion) to 5.0 eV (solvated protein). We also investigated possible existence of the charge-transfer-to-solvent (CTTS) states associated with the GFP chromophore. Although precursors of such states appear in cluster calculations, a tightly packed structure of the protein prevents the formation of the CTTS states in this system. Motivated by a recently discovered new type of photoconversion, oxidative redding, we characterized the redox properties of GFP. The computed standard reduction potential of the anionic form of GFP is 0.47 V (for the GFP(•) + 1e → GFP(-) reaction), and the reduction potential at physiological conditions (pH 7, T = 25 °C) is 0.06 V.

  16. Potential Energies, Permanent and Transition Dipole Moments for Numerous Electronic Excited States of NaK

    NASA Astrophysics Data System (ADS)

    Magnier, S.; Aubert-Frécon, M.; Millié, Ph.

    2000-03-01

    Recent experimental works have been devoted to the spectroscopy of highly excited states of NaK, confirming the accuracy of our previous calculations [S. Magnier and Ph. Millié, Phys. Rev. A: Gen. Phys. 54, 204 (1996)] of spectroscopic constants and potential curves. Among them, [E. Laub, I. Mazsa, S. C. Webb, J. La Civita, I. Prodan, Z. J. Zabbour, R. K. Namiotka, and J. Huennekens, J. Mol. Spectrosc. 193, 376 (1999)] have deduced from their measurements the variation of the transition dipole moment with the interatomic distance for the transition X1Σ+ → (3)1Π. They have shown that a large discrepancy was observed with the previous ab initio calculations currently used as a guide for spectroscopic experiments. Upon request of several experimentalists, we have computed again potential curves for electronic states correlated up to Na(4p) + K(4s) as well as relevant permanent and transition dipole moments. We present extensive predictions for the electronic structure of NaK (potential energies, dipole moments) for which numerical data have been listed in a data base available as supplementary data.

  17. Potential Energies, Permanent and Transition Dipole Moments for Numerous Electronic Excited States of NaK.

    PubMed

    Magnier; Aubert-Frécon; Millié

    2000-03-01

    Recent experimental works have been devoted to the spectroscopy of highly excited states of NaK, confirming the accuracy of our previous calculations [S. Magnier and Ph. Millié, Phys. Rev. A: Gen. Phys. 54, 204 (1996)] of spectroscopic constants and potential curves. Among them, [E. Laub, I. Mazsa, S. C. Webb, J. La Civita, I. Prodan, Z. J. Zabbour, R. K. Namiotka, and J. Huennekens, J. Mol. Spectrosc. 193, 376 (1999)] have deduced from their measurements the variation of the transition dipole moment with the interatomic distance for the transition X(1)Sigma+ --> (3)(1)Pi. They have shown that a large discrepancy was observed with the previous ab initio calculations currently used as a guide for spectroscopic experiments. Upon request of several experimentalists, we have computed again potential curves for electronic states correlated up to Na(4p) + K(4s) as well as relevant permanent and transition dipole moments. We present extensive predictions for the electronic structure of NaK (potential energies, dipole moments) for which numerical data have been listed in a data base available as supplementary data. Copyright 2000 Academic Press.

  18. Hydrogen bonding in electronically excited states: a comparison between formic acid dimer and its mono-substituted thioderivatives.

    PubMed

    Cimas, Alvaro; Mó, Otilia; Yáñez, Manuel; Martín, Nazario; Corral, Inés

    2010-10-28

    A multi-state complete active space second order perturbation theory (MS-CASPT2) study on the valence singlet electronic excited states of formic acid dimer is presented. The electronic spectrum of this dihydrogen bonded system is dominated by nπ* and ππ* intramonomer and charge transfer excitations and consists of a very intense ππ* transition at 8.25 eV and three weaker nπ*(2×) and ππ*(1×) electronic excitations at 6.21 eV, 9.13 eV, and 9.93 eV, respectively. The characteristic nπ*-nπ*-ππ*-ππ*… pattern found in the formic acid dimer electronic spectrum is altered when a sulfur atom is introduced in the molecule. Furthermore, carbonyl-by-thiocarbonyl or hydroxyl-by-thiohydroxyl substitution is predicted to strongly affect the intensity of the above electronic transitions. The effect of oxygen-by-sulfur substitution on the geometry of the first excited state (S(1)) has been investigated at the CC2 and CASSCF levels of theory. Although the two methods qualitatively predict the same geometrical changes upon nπ* excitation, the geometries of the S(1) state are found to differ considerably between the two levels.

  19. Analytic energy gradient of excited electronic state within TDDFT/MMpol framework: Benchmark tests and parallel implementation

    SciTech Connect

    Zeng, Qiao; Liang, WanZhen

    2015-10-07

    The time-dependent density functional theory (TDDFT) has become the most popular method to calculate the electronic excitation energies, describe the excited-state properties, and perform the excited-state geometric optimization of medium and large-size molecules due to the implementation of analytic excited-state energy gradient and Hessian in many electronic structure software packages. To describe the molecules in condensed phase, one usually adopts the computationally efficient hybrid Quantum Mechanics/Molecular Mechanics (QM/MM) models. Here, we extend our previous work on the energy gradient of TDDFT/MM excited state to account for the mutual polarization effects between QM and MM regions, which is believed to hold a crucial position in the potential energy surface of molecular systems when the photoexcitation-induced charge rearrangement in the QM region is drastic. The implementation of a simple polarizable TDDFT/MM (TDDFT/MMpol) model in Q-Chem/CHARMM interface with both the linear response and the state-specific features has been realized. Several benchmark tests and preliminary applications are exhibited to confirm our implementation and assess the effects of different treatment of environmental polarization on the excited-state properties, and the efficiency of parallel implementation is demonstrated as well.

  20. Hetero-ring-expansion design for purine analogs: A theoretical study on the structural, electronic, and excited-state properties

    NASA Astrophysics Data System (ADS)

    Zhang, Laibin; Zhou, Liuzhu; Tian, Jianxiang; Li, Xiaoming

    2014-03-01

    A series of hetero-ring-expanded purine analogs are designed and their structural, electronic and excited-state properties are investigated by DFT calculations. The results indicate that the designed analogs can form stable base pairs with natural counterparts. Compared with natural ones, these size-expanded analogs and corresponding base pairs have smaller ionization potentials and HOMO-LUMO gaps. Furthermore, the A-analogs have ionization potentials even lower than natural G. Finally, the electronic absorption spectra are calculated and the nature of the low-lying excited states is discussed. These observations imply their promising applications as molecular wires and new DNA motifs.

  1. Excited states and quantum confinement in room temperature few nanometre scale silicon single electron transistors.

    PubMed

    Durrani, Zahid A K; Jones, Mervyn E; Wang, Chen; Liu, Dixi; Griffiths, Jonathan

    2017-03-24

    Single nanometre scale quantum dots (QDs) have significant potential for many 'beyond CMOS' nanoelectronics and quantum computation applications. The fabrication and measurement of few nanometre silicon point-contact QD single-electron transistors are reported, which both operate at room temperature (RT) and are fabricated using standard processes. By combining thin silicon-on-insulator wafers, specific device geometry, and controlled oxidation, <10 nm nanoscale point-contact channels are defined. In this limit of the point-contact approach, ultra-small, few nanometre scale QDs are formed, enabling RT measurement of the full QD characteristics, including excited states to be made. A remarkably large QD electron addition energy ∼0.8 eV, and a quantum confinement energy ∼0.3 eV, are observed, implying a QD only ∼1.6 nm in size. In measurements of 19 RT devices, the extracted QD radius lies within a narrow band, from 0.8 to 2.35 nm, emphasising the single-nanometre scale of the QDs. These results demonstrate that with careful control, 'beyond CMOS' RT QD transistors can be produced using current 'conventional' semiconductor device fabrication techniques.

  2. Excited states and quantum confinement in room temperature few nanometre scale silicon single electron transistors

    NASA Astrophysics Data System (ADS)

    Durrani, Zahid A. K.; Jones, Mervyn E.; Wang, Chen; Liu, Dixi; Griffiths, Jonathan

    2017-03-01

    Single nanometre scale quantum dots (QDs) have significant potential for many ‘beyond CMOS’ nanoelectronics and quantum computation applications. The fabrication and measurement of few nanometre silicon point-contact QD single-electron transistors are reported, which both operate at room temperature (RT) and are fabricated using standard processes. By combining thin silicon-on-insulator wafers, specific device geometry, and controlled oxidation, <10 nm nanoscale point-contact channels are defined. In this limit of the point-contact approach, ultra-small, few nanometre scale QDs are formed, enabling RT measurement of the full QD characteristics, including excited states to be made. A remarkably large QD electron addition energy ∼0.8 eV, and a quantum confinement energy ∼0.3 eV, are observed, implying a QD only ∼1.6 nm in size. In measurements of 19 RT devices, the extracted QD radius lies within a narrow band, from 0.8 to 2.35 nm, emphasising the single-nanometre scale of the QDs. These results demonstrate that with careful control, ‘beyond CMOS’ RT QD transistors can be produced using current ‘conventional’ semiconductor device fabrication techniques.

  3. Ground- and excited-state scattering potentials for the stopping of protons in an electron gas

    NASA Astrophysics Data System (ADS)

    Matias, F.; Fadanelli, R. C.; Grande, P. L.; Koval, N. E.; Díez Muiño, R.; Borisov, A. G.; Arista, N. R.; Schiwietz, G.

    2017-09-01

    The self-consistent electron-ion potential V(r) is calculated for H+ ions in an electron gas system as a function of the projectile energy to model the electronic stopping power for conduction-band electrons. The results show different self-consistent potentials at low projectile-energies, related to different degrees of excitation of the electron cloud surrounding the intruder ion. This behavior can explain the abrupt change of velocity dependent screening-length of the potential found by the use of the extended Friedel sum rule and the possible breakdown of the standard free electron gas model for the electronic stopping at low projectile energies. A dynamical interpolation of V(r) is proposed and used to calculate the stopping power for H+ interacting with the valence electrons of Al. The results are in good agreement with the TDDFT benchmark calculations as well as with experimental data.

  4. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states.

    PubMed

    Bjorgaard, J A; Velizhanin, K A; Tretiak, S

    2016-04-21

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited statemolecular dynamics. In this work, we describe methods of simulating nonequilibrium solvent effects in excited statemolecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibrium due to photoexcitation and emission.

  5. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying πσ{sup ∗} states

    SciTech Connect

    Karmakar, Shreetama; Mukhopadhyay, Deb Pratim; Chakraborty, Tapas

    2015-05-14

    Multiple fluorine atom substitution effect on photophysics of an aromatic chromophore has been investigated using phenol as the reference system. It has been noticed that the discrete vibronic structure of the S{sub 1}←S{sub 0} absorption system of phenol vapor is completely washed out for pentafluorophenol (PFP), and the latter also shows very large Stokes shift in the fluorescence spectrum. For excitations beyond S{sub 1} origin, the emission yield of PFP is reduced sharply with increase in excess vibronic energy. However, in a collisional environment like liquid hydrocarbon, the underlying dynamical process that drives the non-radiative decay is hindered drastically. Electronic structure theory predicts a number of low-lying dark electronic states of πσ{sup ∗} character in the vicinity of the lowest valence ππ{sup ∗} state of this molecule. Tentatively, we have attributed the excitation energy dependent non-radiative decay of the molecule observed only in the gas phase to an interplay between the lowest ππ{sup ∗} and a nearby dissociative πσ{sup ∗} state. Measurements in different liquids reveal that some of the dark excited states light up with appreciable intensity only in protic liquids like methanol and water due to hydrogen bonding between solute and solvents. Electronic structure theory methods indeed predict that for PFP-(H{sub 2}O){sub n} clusters (n = 1-11), intensities of a number of πσ{sup ∗} states are enhanced with increase in cluster size. In contrast with emitting behavior of the molecule in the gas phase and solutions of nonpolar and polar aprotic liquids, the fluorescence is completely switched off in polar protic liquids. This behavior is a chemically significant manifestation of perfluoro effect, because a very opposite effect occurs in the case of unsubstituted phenol for which fluorescence yield undergoes a very large enhancement in protic liquids. Several dynamical mechanisms have been suggested to interpret the

  6. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states.

    PubMed

    Gelin, Maxim F; Domcke, Wolfgang; Rao, B Jayachander

    2016-05-14

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach.

  7. Femtosecond stimulated Raman spectroscopy as a tool to detect molecular vibrations in ground and excited electronic states

    NASA Astrophysics Data System (ADS)

    Gelin, Maxim F.; Domcke, Wolfgang; Rao, B. Jayachander

    2016-05-01

    We give a detailed theoretical analysis of the simplest variant of femtosecond stimulated Raman spectroscopy, where a picosecond Raman pump pulse and a femtosecond Raman probe pulse are applied resonantly to a chromophore in thermal equilibrium in the ground electronic state. We demonstrate that this technique is capable of the detection of dephasing-free Raman-like lines revealing vibrational modes not only in the electronic ground state but also in the excited electronic state of the chromophore. The analytical results obtained with simplifying assumptions for the shape of the laser pulses are substantiated by numerical simulations with realistic laser pulses, employing the equation-of-motion phase-matching approach.

  8. Ultrafast hydrogen-bonding dynamics in the electronic excited state of photoactive yellow protein revealed by femtosecond stimulated Raman spectroscopy.

    PubMed

    Nakamura, Ryosuke; Hamada, Norio; Abe, Kenta; Yoshizawa, Masayuki

    2012-12-27

    The ultrafast structural dynamics in the electronic excited state of photoactive yellow protein (PYP) is studied by femtosecond stimulated Raman spectroscopy. Stimulated Raman spectra in the electronic excited state, S(1), can be obtained by using a Raman pump pulse in resonance with the S(1)-S(0) transition. This is confirmed by comparing the experimental results with numerical calculations based on the density matrix treatment. We also investigate the hydrogen-bonding network surrounding the wild-type (WT)-PYP chromophore in the ground and excited states by comparing its stimulated Raman spectra with those of the E46Q-PYP mutant. We focus on the relative intensity of the Raman band at 1555 cm(-1), which includes both vinyl bond C═C stretching and ring vibrations and is sensitive to the hydrogen-bonding network around the phenolic oxygen of the chromophore. The relative intensity for the WT-PYP decreases after actinic excitation within the 150 fs time resolution and reaches a similar intensity to that for E46Q-PYP. These observations indicate that the WT-PYP hydrogen-bonding network is immediately rearranged in the electronic excited state to form a structure similar to that of E46Q-PYP.

  9. Nonequilibrium solvent effects in Born-Oppenheimer molecular dynamics for ground and excited electronic states

    DOE PAGES

    Bjorgaard, Josiah August; Velizhanin, Kirill A.; Tretiak, Sergei

    2016-04-15

    The effects of solvent on molecular processes such as excited state relaxation and photochemical reaction often occurs in a nonequilibrium regime. Dynamic processes such as these can be simulated using excited state molecular dynamics. In this paper, we describe methods of simulating nonequilibrium solvent effects in excited state molecular dynamics using linear-response time-dependent density functional theory and apparent surface charge methods. These developments include a propagation method for solvent degrees of freedom and analytical energy gradients for the calculation of forces. Finally, molecular dynamics of acetaldehyde in water or acetonitrile are demonstrated where the solute-solvent system is out of equilibriummore » due to photoexcitation and emission.« less

  10. Doubly excited states of water as studied by electron energy loss spectroscopy in coincidence with detecting Lyman-α photons

    NASA Astrophysics Data System (ADS)

    Tsuchida, Toshinori; Odagiri, Takeshi; Ishikawa, Lisa; Yachi, Kazufumi; Shigemura, Keisuke; Ohno, Naruhito; Hosaka, Kouichi; Kitajima, Masashi; Kouchi, Noriyuki

    2011-09-01

    The electron energy loss spectrum of H2O in coincidence with detecting Lyman-α photons (CoEELS) has been measured at the incident electron energy of 100 eV and electron scattering angle of 8° in the inner valence range in order to investigate the formation and decay of the doubly excited states. The present CoEELS has been compared with that at the infinite incident electron energy and 0° electron scattering angle, which was derived from the density of the dipole oscillator strength of H2O for the emission of the Lyman-α photons against the incident photon energy (Nakano et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 215206). It is remarkable that there exists a large difference in shape between these CoEELSs. This difference has turned out to be attributed to the noticeable contribution of the forbidden doubly excited states at 100 eV incident electron energy and 8° scattering angle. They lie at 25.0 and 27.4 eV and have been found out in this study. The differential cross sections for the excitation to the superexcited states resulting in H(2p) formation have been obtained at 100 eV and 8° and compared with those at the infinite energy and 0°. The electron collisions at 100 eV and 8° enhance the dissociative double excitation against the dissociative single excitation as compared with the electron collision at the infinite energy and 0°.

  11. Mutual Co-Assignment of the Calculated Vibrational Frequencies in the Ground and Lowest Excited Electronic States

    NASA Astrophysics Data System (ADS)

    Panchenko, Yurii N.

    2013-06-01

    The shifts of the molecular vibrational frequencies when going from the ground electronic state to the lowest excited electronic states pose some problems for the mutual co-assignment of the calculated vibrational frequencies in the different excited states. The trans-{C_2 O_2 F_2} shift of the frequency of the symmetrical ν(C=O) stretching vibration between the S_0 and T_1 is 373 wn. The feasibility of mutual co-assignments of the vibrational frequencies in these electronic states has been demonstrated for trans-{C_2 O_2 F_2}. Matrices analogous to the Duschinsky matrix were used to juxtapose the a_g vibrational frequencies of this molecule calculated at the CASPT2/cc-pVTZ level in the ground S_0 and excited triplet T_1 and singlet S_1 electronic states. The analog of the Duschinsky matrix D was obtained for this molecule using the equation D = (L_{I})^{-1} L_{II} where L_{I} and L_{II} are the matrices of the vibrational modes (normalized atomic displacements) obtained by solving the vibrational problems for the S_0 and T_1 electronic states, respectively. Choosing the dominant elements in columns of the D matrix and permuting these columns to arrange these elements along the diagonal of the transformed matrix D^* makes it possible to establish the correct mutual co-assignments of the calculated a_g vibrational frequencies of the trans-{C_2 O_2 F_2} molecule in the S_0 and T_1 electronic states. The analogous procedure was performed for the trans-{C_2 O_2 F_2} molecule in the T_1 and S_1 excited electronic states. The recent reassignments of the νb{2} and νb{3} calculated vibrational frequencies in the trans-{C_2 O_2 F_2} molecule in the ground state were also obtained for the triplet T_1 and singlet S_1 excited electronic states. The approach set forth in this text makes it possible to juxtapose the calculated vibrational frequencies of the same molecule in the different electronic states and to refine the assignments of these frequencies. This is essential

  12. Surface-catalyzed recombination into excited electronic, vibrational, rotational, and kinetic energy states: A review

    NASA Technical Reports Server (NTRS)

    Kofsky, I. L.; Barrett, J. L.

    1985-01-01

    Laboratory experiments in which recombined CO, CO2, D2O, OH, N2, H2, and O2 molecules desorb from surfaces in excited internal and translational states are briefly reviewed. Unequilibrated distributions predominate from the principally catalytic metal substrates so far investigated. Mean kinetic energies have been observed up to approx. 3x, and in some cases less than, wall-thermal; the velocity distributions generally vary with emission angle, with non-Lambertian particle fluxes. The excitation state populations are found to depend on surface impurities, in an as yet unexplained way.

  13. Study of intermediates from transition metal excited-state electron- transfer reactions. Progress report, January 1, 1992--March 31, 1993

    SciTech Connect

    Hoffman, M.Z.

    1993-03-31

    Progress on 6 projects is reported: excited state absorption spectrum of Ru(bpy){sub 3}{sup 2+}, solvent cage model for electron transfer quenching, reductive quenching of {sup *}Cr(III) complexes, solution medium effects in oxidative quenching of {sup *}Ru(II) complexes, photosensitized oxidation of phenol in aqueous solution, and quenching of Ru(II) complexes by oxygen.

  14. Metal-enhanced chemiluminescence: Radiating plasmons generated from chemically induced electronic excited states

    NASA Astrophysics Data System (ADS)

    Chowdhury, Mustafa H.; Aslan, Kadir; Malyn, Stuart N.; Lakowicz, Joseph R.; Geddes, Chris D.

    2006-04-01

    In this letter, we report the observation of metal-enhanced chemiluminescence. Silver Island films, in close proximity to chemiluminescence species, can significantly enhance luminescence intensities; a 20-fold increase in chemiluminescence intensity was observed as compared to an identical control sample containing no silver. This suggests the use of silver nanostructures in the chemiluminescence-based immunoassays used in the biosciences today, to improve signal and therefore analyte detectability. In addition, this finding suggests that surface plasmons can be directly excited by chemically induced electronically excited luminophores, a significant finding toward our understanding of fluorophore-metal interactions and the generation of surface plasmons.

  15. Lifetimes of Vibro-Rotational Levels in Excited Electronic States of Diatomic Hydrogen Isotopologues

    SciTech Connect

    Astashkevich, S. A. Lavrov, B. P.

    2015-06-15

    The current situation in studies of lifetimes of excited rovibronic levels for the H{sub 2}, D{sub 2}, T{sub 2}, HD, HT, and DT molecules is analyzed. All measured lifetime values (792 entries for 618 different vibro-rotational levels of 33 electronic states) reported in 61 publications before April 2015 are compiled and listed in tabular format together with an annotated bibliography. Experimental data are only available for the H{sub 2}, HD, and D{sub 2} molecules. The data collected in the present work show fragmentariness of experimental data. For the vast majority of the levels, the lifetime values were reported in one paper only and up to now are without independent experimental verification. A complete bibliography of publications concerning semiempirical determination and nonempirical calculations of the lifetimes is presented. Numerical results obtained in the framework of these two approaches are listed only in cases when experimental data are available. For more than half of the levels, the differences between measured and calculated values are three times higher than experimental errors. These discrepancies show necessity of more precise experimental and nonempirical studies. For some 79 rovibronic levels, our analysis makes it possible to propose certain set of recommended lifetime values.

  16. Lifetimes of Vibro-Rotational Levels in Excited Electronic States of Diatomic Hydrogen Isotopologues

    NASA Astrophysics Data System (ADS)

    Astashkevich, S. A.; Lavrov, B. P.

    2015-06-01

    The current situation in studies of lifetimes of excited rovibronic levels for the H2, D2, T2, HD, HT, and DT molecules is analyzed. All measured lifetime values (792 entries for 618 different vibro-rotational levels of 33 electronic states) reported in 61 publications before April 2015 are compiled and listed in tabular format together with an annotated bibliography. Experimental data are only available for the H2, HD, and D2 molecules. The data collected in the present work show fragmentariness of experimental data. For the vast majority of the levels, the lifetime values were reported in one paper only and up to now are without independent experimental verification. A complete bibliography of publications concerning semiempirical determination and nonempirical calculations of the lifetimes is presented. Numerical results obtained in the framework of these two approaches are listed only in cases when experimental data are available. For more than half of the levels, the differences between measured and calculated values are three times higher than experimental errors. These discrepancies show necessity of more precise experimental and nonempirical studies. For some 79 rovibronic levels, our analysis makes it possible to propose certain set of recommended lifetime values.

  17. Theoretical Studies of Possible Synthetic Routes for the High Energy Density Material Td N4: Excited Electronic States

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Dateo, Christopher E.

    2001-01-01

    Vertical electronic excitation energies for single states have been computed for the high energy density material (HEDM) Td N4 in order to assess possible synthetic routes that originate from excited electronic states of N2 molecules. Several ab initio theoretical approaches have been used, including complete active space self-consistent field (CASSCF), state averaged CASSCF (SA-CASSCF), singles configuration interaction (CIS), CIS with second-order and third-order correlation corrections [CIS(D)) and CIS(3)], and linear response singles and doubles coupled-cluster (LRCCSD), which is the highest level of theory employed. Standard double zeta polarized (DZP) and triple zeta double polarized (TZ2P) one-particle basis sets were used. The CASSCF calculations are found to overestimate the excitation energies, while the SA-CASSCF approach rectifies this error to some extent, but not completely. The accuracy of the CIS calculations varied depending on the particular state, while the CIS(D), CIS(3), and LRCCSD results are in generally good agreement. Based on the LRCCSD calculations, the lowest six excited singlet states are 9.35(l(sup)T1), 10.01(l(sup)T2), 10.04(1(sup)A2), 10.07(1(sup)E), 10.12(2(sup)T1), and 10.42(2(sup)T2) eV above the ground state, respectively. Comparison of these excited state energies with the energies of possible excited states of N2+N2 fragments, leads us to propose that the most likely synthetic route for Td N4 involving this mechanism arises from combination of two bound quintet states of N2.

  18. Jet-cooled fluorescence excitation spectra and carbonyl wagging potential energy functions of several cyclic ketones in their S 1(n, π*) electronic excited states

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Chiang, W. Y.; Sagear, P.; Laane, J.

    1992-08-01

    The jet-cooled fluorescence excitation spectra of the n→π* transitions of cyclopentanone, 3-cyclopenten-1-one, and cyclobutanone have been analyzed to determine the vibrational energy spacings in the S 1(n, π*) electronic excited states for the out-of-plane carbonyl wagging motions. A double-minimum potential energy function was determined for each and the barriers were found to be 680, 926, and 1940 cm -1, respectively. The carbonyl wagging angles were determined to be 22°, 26°, and 41°, respectively.

  19. Electronic and structural elements that regulate the excited-state dynamics in purine nucleobase derivatives.

    PubMed

    Crespo-Hernández, Carlos E; Martínez-Fernández, Lara; Rauer, Clemens; Reichardt, Christian; Mai, Sebastian; Pollum, Marvin; Marquetand, Philipp; González, Leticia; Corral, Inés

    2015-04-08

    The excited-state dynamics of the purine free base and 9-methylpurine are investigated using experimental and theoretical methods. Femtosecond broadband transient absorption experiments reveal that excitation of these purine derivatives in aqueous solution at 266 nm results primarily in ultrafast conversion of the S2(ππ*) state to the vibrationally excited (1)nπ* state. Following vibrational and conformational relaxation, the (1)nπ* state acts as a doorway state in the efficient population of the triplet manifold with an intersystem crossing lifetime of hundreds of picoseconds. Experiments show an almost 2-fold increase in the intersystem crossing rate on going from polar aprotic to nonpolar solvents, suggesting that a solvent-dependent energy barrier must be surmounted to access the singlet-to-triplet crossing region. Ab initio static and surface-hopping dynamics simulations lend strong support to the proposed relaxation mechanism. Collectively, the experimental and computational results demonstrate that the accessibility of the nπ* states and the topology of the potential energy surfaces in the vicinity of conical intersections are key elements in controlling the excited-state dynamics of the purine derivatives. From a structural perspective, it is shown that the purine chromophore is not responsible for the ultrafast internal conversion in the adenine and guanine monomers. Instead, C6 functionalization plays an important role in regulating the rates of radiative and nonradiative relaxation. C6 functionalization inhibits access to the (1)nπ* state while simultaneously facilitating access to the (1)ππ*(La)/S0 conical intersection, such that population of the (1)nπ* state cannot compete with the relaxation pathways to the ground state involving ring puckering at the C2 position.

  20. Electronic and Structural Elements That Regulate the Excited-State Dynamics in Purine Nucleobase Derivatives

    PubMed Central

    2015-01-01

    The excited-state dynamics of the purine free base and 9-methylpurine are investigated using experimental and theoretical methods. Femtosecond broadband transient absorption experiments reveal that excitation of these purine derivatives in aqueous solution at 266 nm results primarily in ultrafast conversion of the S2(ππ*) state to the vibrationally excited 1nπ* state. Following vibrational and conformational relaxation, the 1nπ* state acts as a doorway state in the efficient population of the triplet manifold with an intersystem crossing lifetime of hundreds of picoseconds. Experiments show an almost 2-fold increase in the intersystem crossing rate on going from polar aprotic to nonpolar solvents, suggesting that a solvent-dependent energy barrier must be surmounted to access the singlet-to-triplet crossing region. Ab initio static and surface-hopping dynamics simulations lend strong support to the proposed relaxation mechanism. Collectively, the experimental and computational results demonstrate that the accessibility of the nπ* states and the topology of the potential energy surfaces in the vicinity of conical intersections are key elements in controlling the excited-state dynamics of the purine derivatives. From a structural perspective, it is shown that the purine chromophore is not responsible for the ultrafast internal conversion in the adenine and guanine monomers. Instead, C6 functionalization plays an important role in regulating the rates of radiative and nonradiative relaxation. C6 functionalization inhibits access to the 1nπ* state while simultaneously facilitating access to the 1ππ*(La)/S0 conical intersection, such that population of the 1nπ* state cannot compete with the relaxation pathways to the ground state involving ring puckering at the C2 position. PMID:25763596

  1. Contribution of the First Electronically Excited State of Molecular Nitrogen to Thermospheric Nitric Oxide

    NASA Astrophysics Data System (ADS)

    Yonker, Justin D.

    The chemical reaction of the first excited electronic state of molecular nitrogen, N2(A3 S+u ) or N2(A), with ground state atomic oxygen, O(3 P), is an important contributor to thermospheric nitric oxide (NO). The importance is assessed by including this reaction in a one-dimensional photochemical model. The method is to scale the photoelectron impact ionization rate of N2 by a Gaussian centered near 100 km. Large uncertainties remain in the temperature dependence and branching ratios of many reactions important to NO production and loss. Similarly large uncertainties are present in the solar soft x-ray irradiance, known to be the fundamental driver of the low-latitude NO. To illustrate, it is shown that the equatorial, midday NO density measured by the Student Nitric Oxide Explorer (SNOE) satellite near the Solar Cycle 23 maximum can be recovered by the model to within the 20% measurement uncertainties using two rather different but equally reasonable chemical schemes, each with their own solar soft-xray irradiance parameterizations. Including the N2(A) changes the NO production rate by an average of 11%, but the NO density changes by a much larger 44%. This is explained by tracing the direct, indirect, and catalytic contributions of N2(A) to NO, finding them to contribute 40%, 33%, and 27 % respectively. The contribution of N2(A) relative to the total NO production and loss is assessed by tracing both back to their origins in the primary photoabsorption and photoelectron impact processes. The photoelectron impact ionization of N2 (PEI N2) is shown to be the main driver of the midday NO production while the photoelectron impact dissociation of N2 (PED N2) is the main NO destroyer. The net photoelectron impact excitation rate of N2 (PEE N2), which is responsible for the N2(A) production, is larger than either PEI N2 or PED N2 and thus potentially very important. Although the conservative assumptions regarding the level-specific NO yield from the N2(A)+O reaction

  2. A QM/MM Approach Using the AMOEBA Polarizable Embedding: From Ground State Energies to Electronic Excitations.

    PubMed

    Loco, Daniele; Polack, Étienne; Caprasecca, Stefano; Lagardère, Louis; Lipparini, Filippo; Piquemal, Jean-Philip; Mennucci, Benedetta

    2016-08-09

    A fully polarizable implementation of the hybrid quantum mechanics/molecular mechanics approach is presented, where the classical environment is described through the AMOEBA polarizable force field. A variational formalism, offering a self-consistent relaxation of both the MM induced dipoles and the QM electronic density, is used for ground state energies and extended to electronic excitations in the framework of time-dependent density functional theory combined with a state specific response of the classical part. An application to the calculation of the solvatochromism of the pyridinium N-phenolate betaine dye used to define the solvent ET(30) scale is presented. The results show that the QM/AMOEBA model not only properly describes specific and bulk effects in the ground state but it also correctly responds to the large change in the solute electronic charge distribution upon excitation.

  3. Excitation of the CΣ+1+cΠ3 and EΠ1 electronic states of carbon monoxide by electron impact

    NASA Astrophysics Data System (ADS)

    Kawahara, H.; Kato, H.; Hoshino, M.; Tanaka, H.; Brunger, M. J.

    2008-01-01

    We report differential cross-section measurements for electron-impact excitation of the CΣ+1+cΠ3 and EΠ1 electronic states in carbon monoxide. The energy range of this work is 30 200eV . Where a comparison is possible, reasonable agreement is found with the earlier 20 50eV results from Middleton [J. Phys. B 26, 1743 (1993)]. A generalized oscillator strength analysis of the present differential cross-section data enables us to determine estimates of the corresponding integral cross sections, which are compared to results from the BEf -scaling approach [Y.-K. Kim, J. Chem. Phys. 126, 064305 (2007)] calculated as a part of this study. Very good agreement between them is in general found. Finally our 100-eV and 200-eV generalized oscillator strength data are also employed to determine values of the respective CΣ+1 and EΠ1 optical oscillator strengths, with excellent agreement being found between them and the previous dipole (e,e) results from Chan [Chem. Phys. 170, 123 (1993)].

  4. Reactive and internal contributions to the thermal conductivity of local thermodynamic equilibrium nitrogen plasma: The effect of electronically excited states

    SciTech Connect

    Bruno, D.; Colonna, G.; Laricchiuta, A.; Capitelli, M.

    2012-12-15

    Internal and reactive contributions to the thermal conductivity of a local thermodynamic equilibrium nitrogen plasma have been calculated using the Chapman-Enskog method. Low-lying (LL) electronically excited states (i.e., states with the same principal quantum number of the ground state) and high-lying (HL) ones (i.e., states with principal quantum number n> 2) have been considered. Several models have been developed, the most accurate being a model that treats the LL states as separate species while disregarding the presence of HL states, on account of their enormous transport cross sections.

  5. Role of higher excited electronic states on high harmonic generation in H2(+)--a time-independent Hermitian Floquet approach.

    PubMed

    Sarkar, Chitrakshya; Bhattacharyya, S S; Saha, Samir

    2011-01-14

    We have theoretically studied the role of high-lying molecular electronic states on the high harmonic generation (HHG) in H(2)(+) within the framework of a time-independent Hermitian nonperturbative three-dimensional Floquet technique for continuous wave monochromatic lasers of intensities of 2.59 × 10(13), 4.0 × 10(13), and 5.6 × 10(13) W∕cm(2), and wavelengths of 1064, 532, and 355 nm. To evaluate the HHG spectra, the resonance Floquet quasienergy and the Fourier components of the Floquet state corresponding to the initial vibrational-rotational level v = 0, J = 0 have been computed by solving the time-independent close-coupled Schrödinger equation following the Floquet method. The calculations include seven molecular electronic states in the basis set expansion of the Floquet state. The electronic states considered, apart from the two lowest 1sσ(g) and 2pσ(u) states, are 2pπ(u), 2sσ(g), 3pσ(u), 3dσ(g), and 4fσ(u). All the concerned higher excited molecular electronic states asymptotically degenerate into the atomic state H(2 l) with l = 0, 1. The computations reveal signature of significant oscillations in the HHG spectra due to the interference effect of the higher molecular electronic states for all the considered laser intensities and wavelengths. We have attempted to explain, without invoking any ionization, the dynamics of HHG in H(2)(+) within the framework of electronic transitions due to the electric dipole moments and the nuclear motions on the field coupled ground, the first and the higher excited electronic states of this one-electron molecular ion.

  6. Electron-impact ionization cross sections out of the ground and 6P2 excited states of cesium

    NASA Astrophysics Data System (ADS)

    Łukomski, M.; Sutton, S.; Kedzierski, W.; Reddish, T. J.; Bartschat, K.; Bartlett, P. L.; Bray, I.; Stelbovics, A. T.; McConkey, J. W.

    2006-09-01

    An atom trapping technique for determining absolute, total ionization cross sections (TICS) out of an excited atom is presented. The unique feature of our method is in utilizing Doppler cooling of neutral atoms to determine ionization cross sections. This fluorescence-monitoring experiment, which is a variant of the “trap loss” technique, has enabled us to obtain the experimental electron impact ionization cross sections out of the Cs 6P3/22 state between 7eV and 400eV . CCC, RMPS, and Born theoretical results are also presented for both the ground and excited states of cesium and rubidium. In the low energy region (<11eV) where best agreement between these excited state measurements and theory might be expected, a discrepancy of approximately a factor of five is observed. Above this energy there are significant contributions to the TICS from both autoionization and multiple ionization.

  7. An experimental and theoretical investigation into the electronically excited states of para-benzoquinone

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Limão-Vieira, P.; Mendes, M.; Jones, N. C.; Hoffmann, S. V.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Ingólfsson, O.; Lima, M. A. P.; Brunger, M. J.

    2017-05-01

    We report on a combination of experimental and theoretical investigations into the structure of electronically excited para-benzoquinone (pBQ). Here synchrotron photoabsorption measurements are reported over the 4.0-10.8 eV range. The higher resolution obtained reveals previously unresolved pBQ spectral features. Time-dependent density functional theory calculations are used to interpret the spectrum and resolve discrepancies relating to the interpretation of the Rydberg progressions. Electron-impact energy loss experiments are also reported. These are combined with elastic electron scattering cross section calculations performed within the framework of the independent atom model-screening corrected additivity rule plus interference (IAM-SCAR + I) method to derive differential cross sections for electronic excitation of key spectral bands. A generalized oscillator strength analysis is also performed, with the obtained results demonstrating that a cohesive and reliable quantum chemical structure and cross section framework has been established. Within this context, we also discuss some issues associated with the development of a minimal orbital basis for the single configuration interaction strategy to be used for our high-level low-energy electron scattering calculations that will be carried out as a subsequent step in this joint experimental and theoretical investigation.

  8. Pentacyano-N,N-dimethylaniline in the excited state. Only locally excited state emission, in spite of the large electron affinity of the pentacyanobenzene subgroup.

    PubMed

    Zachariasse, Klaas A; Druzhinin, Sergey I; Galievsky, Victor A; Demeter, Attila; Allonas, Xavier; Kovalenko, Sergey A; Senyushkina, Tamara A

    2010-12-23

    Pentacyano-N,N-dimethylaniline (PCDMA) does not undergo an intramolecular charge transfer (ICT) reaction, even in the strongly polar solvent acetonitrile (MeCN), in clear contrast to 4-(dimethylamino)benzonitrile (DMABN). Within the twisted ICT (TICT) model, this is unexpected, as the electron affinity of the pentacyanobenzene moiety of PCDMA is much larger than that of the benzonitrile subgroup in DMABN. According to the TICT model, the energy of the ICT state of PCDMA would be 2.05 eV (∼16550 cm(-1)) lower than that of DMABN, on the basis of the reduction potentials E(A(-)/A) of pentacyanobenzene (-0.29 V vs saturated calomel electrode (SCE)) and benzonitrile (-2.36 V vs SCE), more than enough to compensate for the decrease in energy of the locally excited (LE) state of PCDMA (E(S(1)) = 19990 cm(-1)) relative to that of DMABN (E(S(1)) = 29990 cm(-1)). This absence of a LE → ICT reaction shows that the TICT hypothesis does not hold for PCDMA in the singlet excited state, similar to what was found for DMABN, N-phenylpyrrole, and their derivatives. In this connection, the six dicyano-substituted dimethylanilines are also discussed. The energy gap ΔE(S(1),S(2)) between the two lowest singlet excited states is, at 7170 cm(-1) for PCDMA in MeCN, considerably larger than that for DMABN (2700 cm(-1) in n-hexane, smaller in MeCN). The absence of ICT is therefore in accord with the planar ICT (PICT) model, which considers a sufficiently small ΔE(S(1),S(2)) to be an important condition determining whether an ICT reaction will take place. The fluorescence quantum yield of PCDMA is very small: Φ(LE) = 0.0006 in MeCN at 25 °C, predominantly due to LE → S(0) internal conversion (IC), as the intersystem crossing yield Φ(ISC) is practically zero (<0.01). From the LE fluorescence decay time of 27 ps for PCDMA in MeCN at 25 °C, a radiative rate constant k(f)(LE) = 2 × 10(7) s(-1) results, comparable to the k(f)(LE) of DMABN (6.5 × 10(7) s(-1)) and 2,4,6-tricyano

  9. Vacuum ultraviolet resonance Raman studies of the excited electronic states of ethylene

    NASA Astrophysics Data System (ADS)

    Sension, Roseanne J.; Hudson, Bruce S.

    1989-02-01

    A resonance Raman study of ethylene has been performed with the use of excitation wavelengths ranging from 200 to 141 nm. Excitation resonant with the V(pi pi -asterisk) state results in Raman spectra exhibiting intensity in the C = C stretching vibration, the CH2 symmetric scissors vibration, the CH2 torsional vibration and the CH2 out-of-plane wagging vibrations. These spectra confirm that the V state is strongly twisted about the C-C bond. They also indicate that the C = CH2 groups are no longer planar in the V state. The spectrum obtained in resonance with the (pi 3d) Rydberg transitions once again exhibits activity in the CH2 symmetric scissors mode.

  10. Approximating electronically excited states with equation-of-motion linear coupled-cluster theory

    NASA Astrophysics Data System (ADS)

    Byrd, Jason N.; Rishi, Varun; Perera, Ajith; Bartlett, Rodney J.

    2015-10-01

    A new perturbative approach to canonical equation-of-motion coupled-cluster theory is presented using coupled-cluster perturbation theory. A second-order Møller-Plesset partitioning of the Hamiltonian is used to obtain the well known equation-of-motion many-body perturbation theory equations and two new equation-of-motion methods based on the linear coupled-cluster doubles and linear coupled-cluster singles and doubles wavefunctions. These new methods are benchmarked against very accurate theoretical and experimental spectra from 25 small organic molecules. It is found that the proposed methods have excellent agreement with canonical equation-of-motion coupled-cluster singles and doubles state for state orderings and relative excited state energies as well as acceptable quantitative agreement for absolute excitation energies compared with the best estimate theory and experimental spectra.

  11. Approximating electronically excited states with equation-of-motion linear coupled-cluster theory

    SciTech Connect

    Byrd, Jason N. Rishi, Varun; Perera, Ajith; Bartlett, Rodney J.

    2015-10-28

    A new perturbative approach to canonical equation-of-motion coupled-cluster theory is presented using coupled-cluster perturbation theory. A second-order Møller-Plesset partitioning of the Hamiltonian is used to obtain the well known equation-of-motion many-body perturbation theory equations and two new equation-of-motion methods based on the linear coupled-cluster doubles and linear coupled-cluster singles and doubles wavefunctions. These new methods are benchmarked against very accurate theoretical and experimental spectra from 25 small organic molecules. It is found that the proposed methods have excellent agreement with canonical equation-of-motion coupled-cluster singles and doubles state for state orderings and relative excited state energies as well as acceptable quantitative agreement for absolute excitation energies compared with the best estimate theory and experimental spectra.

  12. Excited electronic state mixing in 7-azaindole. Quantitative measurements using the Stark effect.

    PubMed

    Young, Justin W; Pozun, Zachary D; Jordan, Kenneth D; Pratt, David W

    2013-12-12

    Stark effect measurements of the +280 cm(-1) vibronic band at ∼286 nm in the high resolution S1-S0 fluorescence excitation spectrum of 7-azaindole (7AI) in a molecular beam show that the permanent (electric) dipole moment (PDM) of the upper state vibrational level reached in this transition is 4.6 D, twice as large as the PDM of the zero-point level of the S1 state. This large difference is attributed to state mixing with a more polar state. EOM-CSSD calculations suggest that this more polar state is σπ* in nature and that it crosses the ππ* state in energy along the coordinate connecting the two potential energy minima. Such state mixing apparently provides more facile access to conical intersections with the ground state, and subsequent hydrogen atom detachment reactions, since independent studies by Sakota and Sekiya have shown that the N-H stretching frequency of 7AI is significantly reduced when it is excited to the +280 cm(-1) vibrational level of the S1 state.

  13. Laser-induced fluorescence spectroscopy of TaN in free-jet: Observation of high-lying excited electronic states

    NASA Astrophysics Data System (ADS)

    Nakhate, S. G.; Mukund, Sheo; Bhattacharyya, Soumen

    2017-02-01

    Rotationally resolved excitation spectra of TaN molecules, produced in a free-jet, have been studied using laser-induced fluorescence spectroscopy. Thirteen excited electronic states in the energy region, 23,500-30,000 cm-1 have been observed. The molecular constants, Ω-quantum numbers and radiative lifetimes have been determined for these states. Because of the case (c) behavior and absence of the regular energy spacing, the assignments of the excited electronic states of TaN become difficult. The number of observed excited electronic states is significantly larger than currently predicted, indicated a need for additional ab initio calculations.

  14. Calculation of Ground State Rotational Populations for Kinetic Gas Homonuclear Diatomic Molecules including Electron-Impact Excitation and Wall Collisions

    SciTech Connect

    David R. Farley

    2010-08-19

    A model has been developed to calculate the ground-state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with non-equilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.

  15. Entanglement entropy of electronic excitations

    NASA Astrophysics Data System (ADS)

    Plasser, Felix

    2016-05-01

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  16. Excited electronic states from a variational approach based on symmetry-projected Hartree–Fock configurations

    SciTech Connect

    Jiménez-Hoyos, Carlos A.; Rodríguez-Guzmán, R.; Scuseria, Gustavo E.

    2013-12-14

    Recent work from our research group has demonstrated that symmetry-projected Hartree–Fock (HF) methods provide a compact representation of molecular ground state wavefunctions based on a superposition of non-orthogonal Slater determinants. The symmetry-projected ansatz can account for static correlations in a computationally efficient way. Here we present a variational extension of this methodology applicable to excited states of the same symmetry as the ground state. Benchmark calculations on the C{sub 2} dimer with a modest basis set, which allows comparison with full configuration interaction results, indicate that this extension provides a high quality description of the low-lying spectrum for the entire dissociation profile. We apply the same methodology to obtain the full low-lying vertical excitation spectrum of formaldehyde, in good agreement with available theoretical and experimental data, as well as to a challenging model C{sub 2v} insertion pathway for BeH{sub 2}. The variational excited state methodology developed in this work has two remarkable traits: it is fully black-box and will be applicable to fairly large systems thanks to its mean-field computational cost.

  17. Quartic force fields for excited electronic states: rovibronic reference data for the 1 (2)A' and 1 (2)A″ states of the isoformyl radical, HOC.

    PubMed

    Morgan, W James; Fortenberry, Ryan C

    2015-01-25

    Quartic force fields (QFFs) have been shown to be an effective, accurate, and relatively compact means of computing rovibrational spectroscopic data for numerous molecules with numerous applications. However, excited states have been nearly excluded from the this approach since most accurate QFFs are based on the "gold standard" coupled cluster singles, doubles, and perturbative triples [CCSD(T)] method which is not readily extended to excited states. In this work, rovibronic spectroscopic data is provided for the isoformyl radical, a molecule of significance in combustion and astrochemistry, both through the traditional means of variational access to excited states with CCSD(T) and in the novel extension of QFFs routinely to treat electronically excited states through the standard coupled cluster excited state approach, equation of motion (EOM) CCSD. It is shown here that the new EOM-based QFF provides structural parameters and rotational constants that are quite close to those from a related CCSD(T)-based QFF for the 1 (2)A(″) excited state of HOC. The anharmonic vibrational frequency percent differences between the two QFFs are less than 0.4% for the O-H stretch, less than 1.9% for the C-O stretch, and around 3.0% for the bend. Even so, the pure excited state EOM-QFF anharmonic frequencies are still very good abinitio representations that may be applied to systems where electronically excited states are not variationally accessible. Additionally, rovibrational spectroscopic data is provided for the 1 (2)A(') ground state of HOC and for both the ground and excited state of DOC.

  18. Excited State Lifetime Measurements in Rare Earth Nuclei with Fast Electronics

    NASA Astrophysics Data System (ADS)

    Werner, V.; Cooper, N.; Bonett-Matiz, M.; Williams, E.; Régis, J.-M.; Rudigier, M.; Ahn, T.; Anagnostatou, V.; Berant, Z.; Bunce, M.; Elvers, M.; Heinz, A.; Ilie, G.; Jolie, J.; Radeck, D.; Savran, D.; Smith, M.

    2011-09-01

    We investigated the collectivity of the lowest excited 2+ states of even-even rare earth nuclei. The B(E2) excitation strengths of these nuclei should directly correlate to the size of the valence space, and maximize at mid-shell. The previously identified saturation of B(E2) strength in well-deformed rotors at mid-shell is put to a high precision test in this series of measurements. Lifetimes of the 2+1 states in 168Hf and 174W have been measured using the newly developed LaBr3 scintillation detectors. The excellent energy resolution in conjunction with superb time properties of the new material allows for reliable handling of background, which is a source of systematic error in such experiments. Preliminary lifetime values are obtained and discussed in the context of previous and ongoing work.

  19. A geometrical crossover in excited states of two-electron quantum dots in a magnetic field

    NASA Astrophysics Data System (ADS)

    Nazmitdinov, R. G.; Simonović, N. S.; Plastino, A. R.; Chizhov, A. V.

    2012-11-01

    We use the entanglement measure to study the evolution of quantum correlations in two-electron axially-symmetric parabolic quantum dots under a perpendicular magnetic field. We found that the entanglement indicates on the shape transition in the density distribution of two electrons in the lowest state with zero angular momentum projection at the specific value of the applied magnetic field.

  20. Excitation of the 3p states in electron-sodium scattering at intermediate energies

    SciTech Connect

    Kamali, M. Z. M.; Wong, B. R.; Chin, J. H.; Ratnavelu, K.

    2014-03-05

    A coupled-channel-optical method (CCOM), to investigate the excitation of the 3p states for e{sup −}-Na scattering at intermediate energies, is reported. Nine atomic states( Na(3s), Na(3p), Na(4s), Na(3d), Na(4p), Na(5s), Na(4d), Na(5p), Na(5d) ) together with three optical potentials are used in this work. The inelastic differential cross sections (DCS) as well as the reduced Stokes parameters are compared with latest theoretical data and experimental measurements.

  1. Infrared spectra and molecular structure of excited electronic metastable states of the nitroprusside anion, [Fe(CN) 5NO] 2-

    NASA Astrophysics Data System (ADS)

    Güida, J. A.; Aymonino, P. J.; Piro, O. E.; Castellano, E. E.

    1993-04-01

    Na 2[Fe(CN) 5NO].2H 2O (SNP) and Ba[Fe(CN) 5NO].3H 2O (BNP) irradiated at low temperature with light in the green—blue region exhibit two new sets of infrared (IR) bands. These can be assigned to two, long-lived, electronically excited metastable states of the [Fe(CN) 5NO] 2- (NP) ion. Upon heating, these states depopulate following decay processes with different onset temperatures. We considerably extend here previous polarized IR data on irradiated SNP (100) plates to include the other basal planes. All IR-active CN, NO and FeN stretching modes and FENO bending modes of NP in both metastable states exhibit frequency down shifts This points to a softening of the corresponding bonds upon excitation. Relative frequency shift values observed for modes associated with the FeNO group are about one order of magnitude larger than the corresponding values for CN stretching modes. This supports the conclusion that the metastable states are reached through an electronic transition involving mainly the metal( nd)-NO bonding. We employ dichroic measurements in SNP to estimate the orientation in the lattice of the transition dipole moment vector corresponding to the NO mode of NP in both metastable states. Results show that the FeNO group is not appreciably bent upon excitation of NP to either of these states.

  2. Quenching of excited electronic states of quantum dots by a metallic nanowire

    NASA Astrophysics Data System (ADS)

    Chmereva, T. M.; Kucherenko, M. G.; Dmitriev, A. D.

    2015-02-01

    Nonradiative transfer of energy from an excited quantum dot to a conducting nanowire accompanied by emission of one-dimensional surface plasmons is investigated. We consider the cases of intraband and interband relaxation of charge carriers in the quantum dot. Calculations of the nonradiative energy transfer rate are performed for various values of system parameters. We show that the rate of energy transfer by the considered mechanisms can be as large as ˜1011 s-1, which is comparable to the rates due to other possible mechanisms of relaxation and exceeds significantly the typical rate of radiative electron-hole recombination.

  3. Resonant charge exchange involving electronically excited states of nitrogen atoms and ions

    SciTech Connect

    Kosarim, A. V.; Smirnov, B. M.; Laricchiuta, A.

    2006-12-15

    Within the framework of the asymptotic theory the matrices for the exchange interaction potentials of the nitrogen ion, with electron shell p{sup 2}, and nitrogen atom, with electron shell p{sup 3}, are constructed. The hierarchy of interactions in the nitrogen molecular ion at large internuclear distances is constructed for different electronic states. On the basis of these interaction potentials, the cross sections of resonant charge exchange in slow collisions are evaluated for different values of electron momentum projections and then averaged over these momentum projections. The mobilities of nitrogen ions in atomic nitrogen are also derived.

  4. Two-photon spectroscopy of the biphenyl chromophore. The electronic excited states of biphenyl and fluorene below 50000 cm -1

    NASA Astrophysics Data System (ADS)

    Dick, Bernhard; Hohlneicher, Georg

    1985-03-01

    The two-proton excitation spectra of biphenyl and fluorene in dilute solution have been measured up to 50000 cm -1. Both spectra exhibit a medium intense band system in the range 32000-42000 cm -1, and a strong band above 45000 cm -1. The lowest frequency feature is assigned to a B 3 symmetry transition in biphenyl and the corresponding B 2 transition in fluorene. The polarization of the higher bands leads to the assignment of two A states at 38000 and 47000 cm -1. The origin of the electronically excited states of the biphenyl chromophore is discussed by simple composite molecule considerations as well as CNDO Cl calculations. The latter give a semiquantitative picture of transition energies and transition probabilities for one-and two-photon allowed excitations. A compilation of one-photon spectra and calculations from the literature is included in the analysis to provide a consistent picture of the electronically excited states of the biphenyl chromophore up to 50000 cm -1.

  5. Novel push-pull dendrons with high excited state dipole moments. Synthesis and theoretical analysis of unusual "branched electron distribution"

    NASA Astrophysics Data System (ADS)

    Guadarrama, Patricia; Terán, Gerardo; Ramos, Estrella; Gutiérrez, Jorge; Hernández, Madelyn

    2015-04-01

    The synthesis of novel highly delocalized push-pull dendrons is described. A modified protocol to conventional Csbnd C coupling reaction was used with moderate yields. The excited state dipole moments of synthesized dendrons were estimated by the solvatochromic model using the ETN polarity scale. In case of dendron of second generation with donor-acceptor groups, values around 23 D are obtained, denoting an efficient charge separation crucial in photovoltaic processes. From the theoretical analysis, there is a clear evidence of highly efficient electron delocalization in case of push-pull dendrons. The chosen theoretical model (M05-2X/cc-pVDZ) to describe the electronic behavior of the molecules under study was very precise in the estimation of dipole moments in excited state, with differences of 0.5-2.2 D, compared with the values obtained by the solvatochromic model.

  6. Configuration interaction singles natural orbitals: An orbital basis for an efficient and size intensive multireference description of electronic excited states

    SciTech Connect

    Shu, Yinan; Levine, Benjamin G.; Hohenstein, Edward G.

    2015-01-14

    Multireference quantum chemical methods, such as the complete active space self-consistent field (CASSCF) method, have long been the state of the art for computing regions of potential energy surfaces (PESs) where complex, multiconfigurational wavefunctions are required, such as near conical intersections. Herein, we present a computationally efficient alternative to the widely used CASSCF method based on a complete active space configuration interaction (CASCI) expansion built from the state-averaged natural orbitals of configuration interaction singles calculations (CISNOs). This CISNO-CASCI approach is shown to predict vertical excitation energies of molecules with closed-shell ground states similar to those predicted by state averaged (SA)-CASSCF in many cases and to provide an excellent reference for a perturbative treatment of dynamic electron correlation. Absolute energies computed at the CISNO-CASCI level are found to be variationally superior, on average, to other CASCI methods. Unlike SA-CASSCF, CISNO-CASCI provides vertical excitation energies which are both size intensive and size consistent, thus suggesting that CISNO-CASCI would be preferable to SA-CASSCF for the study of systems with multiple excitable centers. The fact that SA-CASSCF and some other CASCI methods do not provide a size intensive/consistent description of excited states is attributed to changes in the orbitals that occur upon introduction of non-interacting subsystems. Finally, CISNO-CASCI is found to provide a suitable description of the PES surrounding a biradicaloid conical intersection in ethylene.

  7. Conformational analysis of N-methylformamide in ground S0 and excited S1 and T1 electronic states

    NASA Astrophysics Data System (ADS)

    Tukachev, N. V.; Bataev, V. A.; Godunov, I. A.

    2016-07-01

    For conformers of the N-methylformamide (HCONHCH3) molecule, calculations of equilibrium geometry parameters, harmonic vibration frequencies, energy differences and potential barriers to conformational transitions were performed in the ground (S0) and lowest excited singlet (S1) and triplet (T1) electronic states. In the S0 state, the molecule exists in trans and cis stable conformations (having Cs symmetry). Our calculations show that the electronic excitations T1←S0 and S1←S0 cause changes in the structure of conformers: both HCON and HNCC fragments become pyramidal and rotate around the CN bond. As a result, in each excited electronic state under consideration, there are 12 minima forming six pairs of equivalent conformers separated by relatively small potential barriers. One- and two-dimensional potential energy surface sections corresponding to different intramolecular large-amplitude motions were calculated using the MP2/aug-cc-pVTZ (S0) and CASPT2/cc-pVTZ (S1 and T1) methods. Anharmonic vibrational problems for large-amplitude motions were solved, and the corresponding frequencies were estimated.

  8. Electron-Nuclear Coupling through Autoionizing States after Strong-Field Excitation of H2 Molecules

    NASA Astrophysics Data System (ADS)

    Mi, Yonghao; Camus, Nicolas; Fechner, Lutz; Laux, Martin; Moshammer, Robert; Pfeifer, Thomas

    2017-05-01

    Channel-selective electron emission from strong-field photoionization of H2 molecules is experimentally investigated by using ultrashort laser pulses and a reaction microscope. The electron momenta and energy spectra in coincidence with bound and dissociative ionization channels are compared. Surprisingly, we observed an enhancement of the photoelectron yield in the low-energy region for the bound ionization channel. By further investigation of asymmetrical electron emission using two-color laser pulses, this enhancement is understood as the population of the autoionizing states of H2 molecules in which vibrational energy is transferred to electronic energy. This general mechanism provides access to the vibrational-state distribution of molecular ions produced in a strong-field interaction.

  9. Electron-Nuclear Coupling through Autoionizing States after Strong-Field Excitation of H_{2} Molecules.

    PubMed

    Mi, Yonghao; Camus, Nicolas; Fechner, Lutz; Laux, Martin; Moshammer, Robert; Pfeifer, Thomas

    2017-05-05

    Channel-selective electron emission from strong-field photoionization of H_{2} molecules is experimentally investigated by using ultrashort laser pulses and a reaction microscope. The electron momenta and energy spectra in coincidence with bound and dissociative ionization channels are compared. Surprisingly, we observed an enhancement of the photoelectron yield in the low-energy region for the bound ionization channel. By further investigation of asymmetrical electron emission using two-color laser pulses, this enhancement is understood as the population of the autoionizing states of H_{2} molecules in which vibrational energy is transferred to electronic energy. This general mechanism provides access to the vibrational-state distribution of molecular ions produced in a strong-field interaction.

  10. Fluorescence excitation involving multiple electron transition states of N{sub 2} and CO{sub 2}

    SciTech Connect

    Wu, C.Y.R.; Chen, F.Z.; Hung, T.; Judge, D.L.

    1997-04-01

    The electronic states and electronic structures of N{sub 2} and CO{sub 2} in the 8-50 eV energy region have been studied extensively both experimentally and theoretically. In the energy region higher than 25 eV there exists many electronic states including multiple electron transition (MET) states which are responsible for producing most of the dissociative photoionization products. The electronic states at energies higher than 50 eV have been mainly determined by Auger spectroscopy, double charge transfer, photofragment spectroscopy and ion-ion coincidence spectroscopy. The absorption and ionization spectra of these molecules at energies higher than 50 eV mainly show a monotonic decrease in cross section values and exhibit structureless features. The decay channels of MET and Rydberg (or superexcited) states include autoionization, ionization, dissociative ionization, predissociation, and dissociation while those of single ion and multiple ion states may involve predissociation. and dissociation processes. The study of fluorescence specifically probes electronically excited species resulting from the above-mentioned decay channels and provides information for understanding the competition among these channels.

  11. Three-body recombination and dynamics of electrons and excited states in the low-pressure argon afterglow

    NASA Astrophysics Data System (ADS)

    Tsankov, Tsanko Vaskov; Johnsen, Rainer; Czarnetzki, Uwe

    2016-09-01

    The afterglow phase occurs naturally during the power-off period in pulsed low-pressure plasmas and in atmospheric pressure ns discharges. During that period the electron energy rapidly declines and the charged particles are lost due to diffusion and recombination. In low-pressure discharges the dominant process is three-body recombination (TBR) of Ar+ ions with electrons. It leads to complex dynamics of the excited states, dominated by collisional-radiative cascades that eventually repopulate the metastable states. In this contribution the afterglow dynamics of an argon discharge is analyzed in detail to elucidate the roles played by the various processes. An analytical model for the fast drop of the electron energy by evaporative cooling and electron-ion collisions is combined with a time-dependent collisional radiative model for the atomic excited states that numerically solves the electron energy and density balance equations. By including further gas heating and cooling, the model leads to excellent agreement with experiments utilizing different diagnostic techniques, and hence gives insight into the interplay of the various processes in the afterglow. Work Supported by the DFG (Grant No. TS 307/1-1).

  12. Excited state properties of a short π-electron conjugated peridinin analogue

    PubMed Central

    Magdaong, Nikki M.; Niedzwiedzki, Dariusz M.; Greco, Jordan A.; Liu, Hongbin; Yano, Koki; Kajikawa, Takayuki; Sakaguchi, Kazuhiko; Katsumura, Shigeo; Birge, Robert R.; Frank, Harry A.

    2014-01-01

    C29-peridinin is a synthetic analogue of the important, naturally-occurring carotenoid, peridinin, found in several marine algal species. C29-peridinin has five conjugated carbon-carbon double bonds compared to eight possessed by peridinin and also lacks the methyl group functionalities typically present along the polyene chain of carotenoids. These structural modifications lead to unique excited state properties and important insights regarding the factors controlling the photophysics of peridinin and other carbonyl-containing carotenoids, which are critical components of the light-harvesting systems of many photosynthetic organisms. PMID:24678069

  13. Excited state properties of a short π-electron conjugated peridinin analogue

    NASA Astrophysics Data System (ADS)

    Magdaong, Nikki M.; Niedzwiedzki, Dariusz M.; Greco, Jordan A.; Liu, Hongbin; Yano, Koki; Kajikawa, Takayuki; Sakaguchi, Kazuhiko; Katsumura, Shigeo; Birge, Robert R.; Frank, Harry A.

    2014-02-01

    C29-peridinin is a synthetic analogue of the important, naturally-occurring carotenoid, peridinin, found in several marine algal species. C29-peridinin has five conjugated carbon-carbon double bonds compared to eight possessed by peridinin and also lacks the methyl group functionalities typically present along the polyene chain of carotenoids. These structural modifications lead to unique excited state properties and important insights regarding the factors controlling the photophysics of peridinin and other carbonyl-containing carotenoids, which are critical components of the light-harvesting systems of many photosynthetic organisms.

  14. Properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70: A theoretical investigation.

    PubMed

    Zhang, Jian; Li, Tingyu

    2017-09-05

    Solar cells sensitized by polypyridyl Ru(II) complexes exhibit relatively high efficiency, however those photo-sensitizers did not absorb the photons in the far-red and near-infrared region. At present, squaraine dyes have received considerable attention as their attractively intrinsic red light absorption and unusual high molar extinction coefficient. Here we applied density functional theory and time dependent density functional theory to investigate the properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70. The influences of different functionals, basis sets and solvent effects are evaluated. To understand the photophysical properties, the investigations are basing on a classification method which splits the squaraine dyes and their complexes with fullerene C70 into two units to characterize the intramolecular density distribution. We present the signatures of their electronically excited states which are characterized as local excitation or charge-transfer excitation. The relationship between open-circuit voltage and the number of intramolecular hydrogen bonds in squaraine dyes are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70: A theoretical investigation

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Li, Tingyu

    2017-09-01

    Solar cells sensitized by polypyridyl Ru(II) complexes exhibit relatively high efficiency, however those photo-sensitizers did not absorb the photons in the far-red and near-infrared region. At present, squaraine dyes have received considerable attention as their attractively intrinsic red light absorption and unusual high molar extinction coefficient. Here we applied density functional theory and time dependent density functional theory to investigate the properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70. The influences of different functionals, basis sets and solvent effects are evaluated. To understand the photophysical properties, the investigations are basing on a classification method which splits the squaraine dyes and their complexes with fullerene C70 into two units to characterize the intramolecular density distribution. We present the signatures of their electronically excited states which are characterized as local excitation or charge-transfer excitation. The relationship between open-circuit voltage and the number of intramolecular hydrogen bonds in squaraine dyes are discussed.

  16. Two-Photon Study on the Electronic Interactions between the First Excited Singlet States in Carotenoid-Tetrapyrrole Dyads

    SciTech Connect

    Liao, Pen-Nan; Pillai, Smitha; Gust, Devens; Moore, Thomas A.; Moore, Ana L.; Walla, Peter J.

    2011-03-22

    Electronic interactions between the first excited states (S1) of carotenoids (Car) of different conjugation lengths (8-11 double bonds) and phthalocyanines (Pc) in different Car-Pc dyad molecules were investigated by two-photon spectroscopy and compared with Car S1-chlorophyll (Chl) interactions in photosynthetic light harvesting complexes (LHCs). The observation of Chl/Pc fluorescence after selective two-photon excitation of the Car S1 state allowed sensitive monitoring of the flow of energy between Car S1 and Pc or Chl. It is found that two-photon excitation excites to about 80% to 100% exclusively the carotenoid state Car S1 and that only a small fraction of direct tetrapyrrole two-photon excitation occurs. Amide-linked Car-Pc dyads in tetrahydrofuran demonstrate a molecular gear shift mechanism in that effective Car S1 → Pc energy transfer is observed in a dyad with 9 double bonds in the carotenoid, whereas in similar dyads with 11 double bonds in the carotenoid, the Pc fluorescence is strongly quenched by Pc → Car S1 energy transfer. In phenylamino-linked Car-Pc dyads in toluene extremely large electronic interactions between the Car S1 state and Pc were observed, particularly in the case of a dyad in which the carotenoid contained 10 double bonds. This observation together with previous findings in the same system provides strong evidence for excitonic Car S1-Pc Qy interactions. Very similar results were observed with photosynthetic LHC II complexes in the past, supporting an important role of such interactions in photosynthetic down-regulation.

  17. Dynamics of electronic excitations relaxation in hydrophilic colloidal CdS quantum dots in gelatin with involvement of localized states

    NASA Astrophysics Data System (ADS)

    Smirnov, M. S.; Buganov, O. V.; Shabunya-Klyachkovskaya, E. V.; Tikhomirov, S. A.; Ovchinnikov, O. V.; Vitukhnovsky, A. G.; Perepelitsa, A. S.; Matsukovich, A. S.; Katsaba, A. V.

    2016-10-01

    Dynamics of the 1Se-1S3/2 exciton in colloidal CdS quantum dots with diameter of 3.1 ÷ 4.5 nm in gelatin with involvement of localized states was studied by means of femtosecond photoinduced absorption spectroscopy (pump-probe), thermally stimulated luminescence (TSL) observed under permanently excited luminescence. It was found that the bleaching band occurs in the energy region of exciton ground state under excitation by femtosecond laser pulses. The complex dynamics of bleaching recovery is caused by the capture of electron on localized states, found using TSL. The stochastic model describing the dynamics of bleaching recovery is discussed. It is shown that the low efficiency of exciton luminescence is caused by the rapid capture of holes by luminescence centers.

  18. Excitation of water molecules by electron impact with formation of OH-radicals in the A2Σ+ state

    NASA Astrophysics Data System (ADS)

    Khodorkovskii, M. A.; Murashov, S. V.; Artamonova, T. O.; Rakcheeva, L. P.; Beliaeva, A. A.; Shakhmin, A. L.; Michael, D.; Timofeev, N. A.; Mel'nikov, A. S.; Shevkunov, I. A.; Zissis, G.

    2009-11-01

    The excitation cross-sections of the OH-radical band A2Σ+ → X2 (v' = 0 → v'' = 0, v' = 1 → v'' = 1) were measured. OH-radicals were formed during dissociation of water molecules by electron impact in the conditions of crossing of supersonic molecular and electron beams in the energy range 10-120 eV. Measurements were conducted at temperatures of 50, 80 and 200 K. It was shown that the excitation function had a sharp maximum in the region of low energies (at 16 eV) and an extended plateau up to 120 eV. It is proved that there are two channels of molecule dissociation with formation OH (A2Σ+) through excitation of either the triplet b3A1 or the singlet B1A1 states of H2O molecules. The form of the excitation function essentially depends on the temperature of water vapours in the beam. With the decrease of the water molecule temperature the height of the plateau in the region 30-120 eV decreases in comparison with that of the peak at 16 eV. The absolute value of the excitation cross-section of the OH band at the temperature 50 K has been measured. It is equal to (1.6 ± 0.5) × 10-18 cm2 in the maximum at 16 eV. The ratio of cross-sections of bands 1-1 and 0-0 weakly depends on the energy of the exciting electron in the range 12-120 eV and is equal to 0.28 ± 0.05. The appearance threshold is equal to (9.1 ± 0.5) eV.

  19. Excited state relaxation dynamics and electronic properties of a quinoid carotenoid

    NASA Astrophysics Data System (ADS)

    Ostroumov, Evgeny E.; Müller, Marc G.; Hundsdörfer, Claas; Stahl, Wilhelm; Marian, Christel M.; Holzwarth, Alfred R.

    2010-07-01

    A combined study of the quinoid carotenoid DHIRQ by femtosecond transient absorption spectroscopy and quantum chemical calculations revealed its very complex electronic structure and ultrafast relaxation dynamics. The two quinoid end rings are found to cause a strong bathochromic shift of the absorption spectrum and to decrease the main relaxation time of the S 1 state to 400 fs. Transient absorption data of DHIRQ show a substantial difference of its spectroscopic features to other carbonyl carotenoids. Various alternative kinetic models including an intramolecular charge transfer (ICT) state are discussed in order to assign the electronic structure and the relaxation dynamics.

  20. Shape transitions in excited states of two-electron quantum dots in a magnetic field

    NASA Astrophysics Data System (ADS)

    Nazmitdinov, R. G.; Simonović, N. S.; Plastino, A. R.; Chizhov, A. V.

    2012-10-01

    We use entanglement to study shape transitions in two-electron axially symmetric parabolic quantum dots in a perpendicular magnetic field. At a specific magnetic field value the dot attains a spherical symmetry. The transition from the axial to the spherical symmetry manifests itself as a drastic change of the entanglement of the lowest state with zero angular momentum projection. While the electrons in such a state are always localized in the plane (x - y) before the transition point, after this point they become localized in the vertical direction.

  1. Study of intermediates from transition metal excited-state electron-transfer reactions. Final report, August 4, 1986--August 31, 1997

    SciTech Connect

    Hoffman, M.Z.

    1997-12-31

    The techniques of continuous photolysis and pulsed laser flash photolysis, continuous and pulse radiolysis, fast-scan cyclic voltammetry, and time-resolved fluorimetry have been used to examine intramolecular electron transfer within the solvent quenching cage, photodynamics of quenching of the excited states of transition-metal photosensitizers, the properties of excites states and one-electron reduced forms, ground- and excited-state interactions with solutes, and photoinduced oxidations of organic solutes in aqueous solution. The following specific areas were examined: (1) the parameters that govern the yields of redox products from excited-state electron-transfer quenching reactions; (2) the mediation of the properties of excited states and one-electron reduced forms by the ligands and the solution medium; (3) the effect of the interactions between the ground state of the complex and the solution components on the behavior of the excited state; (4) the yields of singlet oxygen from excited-state energy-transfer quenching by O{sub 2}; and (5) the oxidations of solutes by singlet oxygen, excited-state electron-transfer quenching, and free radicals. This report contains the abstracts of 50 publications describing the studies.

  2. Zero-field-splitting and π-electron spin densities in the lowest excited triplet state of oligothiophenes

    NASA Astrophysics Data System (ADS)

    Bennati, M.; Németh, K.; Surján, P. R.; Mehring, M.

    1996-09-01

    The electronic properties of thiophene oligomers (nT, n=2-8) have been investigated in the lowest excited triplet state. Theoretical calculations of the zero field splitting parameters and of the π-electron spin density have been performed and compared with previous experimental EPR results. The calculations are based on a simple π-electron (one-electron-per-site) model including electron-electron interaction at the extended Hubbard level. Optimized bond lengths result from making them self-consistent to the corresponding bond orders via Coulson's relationship. The calculated D values decrease from D=0.0959 cm-1 for n=2 to D=0.0597 cm-1 for n=8, in agreement with EPR data. The measured as well as the calculated E values are rather small. Furthermore, we found that ZFS parameters are affected by the torsion angles between the thiophene rings. The chain length dependence of D can be rationalized comparing π-electron spin density calculations and computed bond length distortions. These clearly indicate that the triplet excitation reaches a finite extension over about four thiophene rings.

  3. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study

    SciTech Connect

    Arulmozhiraja, Sundaram Coote, Michelle L.; Hasegawa, Jun-ya

    2015-11-28

    Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning’s cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n–π{sup ∗} state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π{sup ∗} and n-π{sup ∗} states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition when compared to that of the zero-point level of the S{sub 1} state. The present study, however, shows that all the four lowest lying excited states, {sup 1}L{sub b} π-π{sup ∗}, {sup 1}L{sub a} π-π{sup ∗}, n-π{sup ∗}, and π-σ{sup ∗}, cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm{sup −1} band in the S{sub 1}←S{sub 0} transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S{sub 1} excited vibrational level. This multistate mixing, and especially the involvement of π-σ{sup ∗} state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study.

  4. Electronic spectra of azaindole and its excited state mixing: A symmetry-adapted cluster configuration interaction study

    NASA Astrophysics Data System (ADS)

    Arulmozhiraja, Sundaram; Coote, Michelle L.; Hasegawa, Jun-ya

    2015-11-01

    Electronic structures of azaindole were studied using symmetry-adapted cluster configuration interaction theory utilizing Dunning's cc-pVTZ basis set augmented with appropriate Rydberg spd functions on carbon and nitrogen atoms. The results obtained in the present study show good agreement with the available experimental values. Importantly, and contrary to previous theoretical studies, the excitation energy calculated for the important n-π∗ state agrees well with the experimental value. A recent study by Pratt and co-workers concluded that significant mixing of π-π∗ and n-π∗ states leads to major change in the magnitude and direction of the dipole moment of the upper state vibrational level in the 0,0 + 280 cm-1 band in the S1←S0 transition when compared to that of the zero-point level of the S1 state. The present study, however, shows that all the four lowest lying excited states, 1Lb π-π∗, 1La π-π∗, n-π∗, and π-σ∗, cross each other in one way or another, and hence, significant state mixing between them is likely. The upper state vibrational level in the 0,0 + 280 cm-1 band in the S1←S0 transition benefits from this four-state mixing and this can explain the change in magnitude and direction of the dipole moment of the S1 excited vibrational level. This multistate mixing, and especially the involvement of π-σ∗ state in mixing, could also provide a route for hydrogen atom detachment reactions. The electronic spectra of benzimidazole, a closely related system, were also investigated in the present study.

  5. Dipole moment of aniline in the excited S 1 state from thermochromic effect on electronic spectra

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2005-11-01

    Using the thermochromic shift method of absorption and fluorescence spectra of aniline in ethyl acetate for temperature ranging from 213 to 393 K, the change of the dipole moment Δ μ = μe - μg = 0.84 D between the ground and first excited singlet state was determined based on the Bilot and Kawski theory. This is in agreement with the result obtained by Lombardi from optical Stark effect in the rotational fine structure. For the known dipole moment in the ground state μg = 1.53 D and for α/ a3 = 0.483 ( α is the polarizability and a is the Onsager interaction radius of the solute) the average value of μe = 2.37 D and a = 2.7 Å were determined. The values obtained for aniline are compared with the experimental values determined by other authors.

  6. Electronic structure and excited state properties of iron carbene photosensitizers - A combined X-ray absorption and quantum chemical investigation

    NASA Astrophysics Data System (ADS)

    Ericson, Fredric; Honarfar, Alireza; Prakash, Om; Tatsuno, Hideyuki; Fredin, Lisa A.; Handrup, Karsten; Chabera, Pavel; Gordivska, Olga; Kjær, Kasper S.; Liu, Yizhu; Schnadt, Joachim; Wärnmark, Kenneth; Sundström, Villy; Persson, Petter; Uhlig, Jens

    2017-09-01

    The electronic structure and excited state properties of a series of iron carbene photosensitizers are elucidated through a combination of X-ray absorption measurements and density functional theory calculations. The X-ray absorption spectra are discussed with regard to the unusual bonding environment in these carbene complexes, highlighting the difference between ferrous and ferric carbene complexes. The valence electronic structure of the core excited FeIII - 3d5 complex is predicted by calculating the properties of a CoIII - 3d6 carbene complex using the Z+1 approximation. Insight is gained into the potential of sigma-donating ligands as strategy to tune properties for light harvesting applications.

  7. Sensitization of ultra-long-range excited-state electron transfer by energy transfer in a polymerized film

    PubMed Central

    Ito, Akitaka; Stewart, David J.; Fang, Zhen; Brennaman, M. Kyle; Meyer, Thomas J.

    2012-01-01

    Distance-dependent energy transfer occurs from the Metal-to-Ligand Charge Transfer (MLCT) excited state to an anthracene-acrylate derivative (Acr-An) incorporated into the polymer network of a semirigid poly(ethyleneglycol)dimethacrylate monolith. Following excitation, to Acr-An triplet energy transfer occurs followed by long-range, Acr-3An—Acr-An → Acr-An—Acr-3An, energy migration. With methyl viologen dication (MV2+) added as a trap, Acr-3An + MV2+ → Acr-An+ + MV+ electron transfer results in sensitized electron transfer quenching over a distance of approximately 90 Å. PMID:22949698

  8. Transition operators entering neutrinoless double electron capture to excited nuclear states

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.

    2011-10-01

    We construct the effective transition operators relevant for neutrinoless double electron capture leading to final nuclear states different than 0+. From the structure of these operators we see that if such a process is observed experimentally, it will be very helpful in singling out the very important light neutrino mass contribution from the other lepton violating mechanisms.

  9. Electronic spectra and excited-state dynamics of 4-fluoro-N,N-dimethylaniline

    NASA Astrophysics Data System (ADS)

    Fujiwara, Takashige; Reichardt, Christian; Aaron Vogt, R.; Crespo-Hernández, Carlos E.; Zgierski, Marek Z.; Lim, Edward C.

    2013-10-01

    Concerted ultrafast time-resolved spectroscopic experiments and ab initio computational (TDDFT) studies of the electronic transitions of 4-fluoro-N,N-dimethylaniline (FDMA) have been performed to investigate the mechanism of photo-induced intramolecular charge transfer (ICT). The compound FDMA shows dual fluorescence from a ππ∗ state and a closely-lying twisted intramolecular charge transfer (TICT) state in both n-hexane and acetonitrile. The very similar lifetimes observed for the two emission bands indicate that the ππ∗ and the TICT states are effectively in thermal equilibrium at room temperature.

  10. Probing electronic states of TaC and observation of a stable excited state of TaC- by anion-photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Aravind, G.; Nrisimhamurty, M.; Mane, Rupali G.; Gupta, A. K.; Krishnakumar, E.

    2015-10-01

    We report the experimental value of electron affinity for TaC to be 1.928(0.056) eV by performing photodetachment of its anion at 355 nm. An excited-electronic state of the anion, stable against autodetachment, is observed lying 0.828 eV above the ground-electronic state. Five low-lying electronic states of TaC are observed and identified by comparison with restricted second-order configuration interaction (SOCI) calculations. Vibrational frequencies for the electronic states are obtained from the analysis of the measured data. We also present the results of density functional theory (DFT) calculations performed on the adiabatic electron affinity, yielding a value of 1.9236 eV and vertical detachment energy value of 1.924 eV.

  11. Analysis of strongly coupled electronic states in diatomic molecules: Low-lying excited states of RbCs

    SciTech Connect

    Bergeman, T.; Fellows, C.E.; Gutterres, R.F.; Amiot, C.

    2003-05-01

    Analysis and assignment of spectra involving the lowest excited states of the heavier alkali-metal atom dimers are complicated by the strong spin-orbit coupling elements. Here we report an analysis of the Fourier-transform spectroscopy data from laser-induced fluorescence of the coupled A {sup 1}{sigma}{sup +} and b {sup 3}{pi} states of RbCs, using the discrete variable representation. Fitted parameters are given and special effects due to strong coupling are discussed.

  12. Excitation of Electronic States of Ar, H{sub 2}, and N{sub 2} by Positron Impact

    SciTech Connect

    Sullivan, J. P.; Marler, J. P.; Gilbert, S. J.; Buckman, S. J.; Surko, C. M.

    2001-08-13

    We have measured the first state-resolved, absolute cross sections for positron excitation of electronic states of an atom or molecule using a high resolution ({Delta}E{approx}25 meV FWHM) beam of positrons from a Penning-Malmberg trap. We present cross sections for the excitation of the low-lying levels of Ar, H{sub 2}, and N{sub 2} for incident positron energies between threshold and 30eV. For Ar and H{sub 2}, comparison can be made with theoretical calculations, and, in the case of H{sub 2}, the results resolve a significant discrepancy between the only two available calculations.

  13. Excitations of {sup 1}P levels of zinc by electron impact on the ground state

    SciTech Connect

    Fursa, Dmitry V.; Bray, Igor; Panajotovic, R.; Sevic, D.; Pejcev, V.; Marinkovic, B.P.; Filipovic, D.M.

    2005-07-15

    We present results of a joint theoretical and experimental investigation of electron scattering from the 4s{sup 2} {sup 1}S ground state of zinc. The 4s4p {sup 1}P{sup o} and 4s5p {sup 1}P{sup o} differential cross sections were measured at scattering angles between 10 degree sign and 150 degree sign and electron-energies of 15, 20, 25, 40, and 60 eV. Corresponding convergent close-coupling calculations have been performed and are compared with experiment.

  14. Measuring electron-impact cross sections of water: elastic scattering and electronic excitation of the ã3B1 and Ã1B1 states

    NASA Astrophysics Data System (ADS)

    Matsui, Midori; Hoshino, Masamitsu; Kato, Hidetoshi; Ferreira da Silva, Fillipe; Limão-Vieira, Paulo; Tanaka, Hiroshi

    2016-04-01

    Here, we report elastic differential cross sections (DCSs) for electron scattering from water in the incident energy range of 2-100 eV. Furthermore, we present a complete study on the electronic excitation of the ã3B1 and Ã1B1 states at electron impact energies of 15, 20, and 30 eV and in the scattering angle range of 10° - 130°. Integral cross sections (ICSs) are determined from the DCSs. Measuring elastic DCSs in various experimental conditions confirmed the reproducibility of the data. The present results agree with the data previously obtained from a conventional collimating tube gas source. Ambiguities associated with the unfolding procedure of the electron energy loss (EEL) spectra for the electronic excitations have been reduced by comparison against the EEL spectrum at high electron impact energy and for small scattering angle. The reliability of the extracted DCSs is improved significantly for optically forbidden contributions from the overlap of the ã3B1 and Ã1B1 electronic states. The BEf-scaling model is also confirmed to produce the integral cross section for the optical allowed transition of the Ã1B1 state in the intermediate electron energy region above 15 eV.

  15. Density functional investigation of the electronic structure and charge transfer excited states of a multichromophoric antenna

    NASA Astrophysics Data System (ADS)

    Basurto, Luis; Zope, Rajendra R.; Baruah, Tunna

    2016-05-01

    We report an electronic structure study of a multichromophoric molecular complex containing two of each borondipyrromethane dye, Zn-tetraphenyl-porphyrin, bisphenyl anthracene and a fullerene. The snowflake shaped molecule behaves like an antenna capturing photon at different frequencies and transferring the photon energy to the porphyrin where electron transfer occurs from the porphyrin to the fullerene. The study is performed within density functional formalism using large polarized Guassian basis sets (12,478 basis functions in total). The energies of the HOMO and LUMO states in the complex, as adjudged by the ionization potential and the electron affinity values, show significant differences with respect to their values in participating subunits in isolation. These differences are also larger than the variations of the ionization potential and electron affinity values observed in non-bonded C60-ZnTPP complexes in co-facial arrangement or end-on orientations. An understanding of the origin of these differences is obtained by a systematic study of the effect of structural strain, the presence of ligands, the effect of orbital delocalization on the ionization energy and the electron affinity. Finally, a few lowest charge transfer energies involving electronic transitions from the porphyrin component to the fullerene subunit of the complex are predicted.

  16. Resource Paper: Molecular Excited State Relaxation Processes.

    ERIC Educational Resources Information Center

    Rhodes, William

    1979-01-01

    Develops the concept of oscillatory v dissipative limits as it applies to electronic excited state processes in molecular systems. Main emphasis is placed on the radiative and nonradiative dynamics of the excited state of a molecule prepared by interaction with light or some other excitation source. (BT)

  17. Transition moments between excited electronic states from the Hermitian formulation of the coupled cluster quadratic response function

    NASA Astrophysics Data System (ADS)

    Tucholska, Aleksandra M.; Lesiuk, Michał; Moszynski, Robert

    2017-01-01

    We introduce a new method for the computation of the transition moments between the excited electronic states based on the expectation value formalism of the coupled cluster theory [B. Jeziorski and R. Moszynski, Int. J. Quantum Chem. 48, 161 (1993)]. The working expressions of the new method solely employ the coupled cluster operator T and an auxiliary operator S that is expressed as a finite commutator expansion in terms of T and T†. In the approximation adopted in the present paper, the cluster expansion is limited to single, double, and linear triple excitations. The computed dipole transition probabilities for the singlet-singlet and triplet-triplet transitions in alkali earth atoms agree well with the available theoretical and experimental data. In contrast to the existing coupled cluster response theory, the matrix elements obtained by using our approach satisfy the Hermitian symmetry even if the excitations in the cluster operator are truncated, but the operator S is exact. The Hermitian symmetry is slightly broken if the commutator series for the operator S are truncated. As a part of the numerical evidence for the new method, we report calculations of the transition moments between the excited triplet states which have not yet been reported in the literature within the coupled cluster theory. Slater-type basis sets constructed according to the correlation-consistency principle are used in our calculations.

  18. Transition moments between excited electronic states from the Hermitian formulation of the coupled cluster quadratic response function.

    PubMed

    Tucholska, Aleksandra M; Lesiuk, Michał; Moszynski, Robert

    2017-01-21

    We introduce a new method for the computation of the transition moments between the excited electronic states based on the expectation value formalism of the coupled cluster theory [B. Jeziorski and R. Moszynski, Int. J. Quantum Chem. 48, 161 (1993)]. The working expressions of the new method solely employ the coupled cluster operator T and an auxiliary operator S that is expressed as a finite commutator expansion in terms of T and T(†). In the approximation adopted in the present paper, the cluster expansion is limited to single, double, and linear triple excitations. The computed dipole transition probabilities for the singlet-singlet and triplet-triplet transitions in alkali earth atoms agree well with the available theoretical and experimental data. In contrast to the existing coupled cluster response theory, the matrix elements obtained by using our approach satisfy the Hermitian symmetry even if the excitations in the cluster operator are truncated, but the operator S is exact. The Hermitian symmetry is slightly broken if the commutator series for the operator S are truncated. As a part of the numerical evidence for the new method, we report calculations of the transition moments between the excited triplet states which have not yet been reported in the literature within the coupled cluster theory. Slater-type basis sets constructed according to the correlation-consistency principle are used in our calculations.

  19. Excited singlet (S1) state interactions of calixarenes with chloroalkanes: A combination of concerted and stepwise dissociative electron transfer mechanism

    NASA Astrophysics Data System (ADS)

    Mohanty, J.; Pal, H.; Nayak, S. K.; Chattopadhyay, S.; Sapre, A. V.

    2002-12-01

    Both steady-state and time-resolved studies in acetonitrile (ACN) solutions show that the excited singlet (S1) states of calixarenes (CX) undergo quenching by chloroalkanes (CA). It has been revealed by characterizing the Cl ions in the photolyzed CX-CA systems in ACN solutions that the quenching occurs due to dissociative electron transfer (DET) mechanism, whereby a C-Cl bond of the CAs undergoes dissociation on acceptance of an electron from excited CX. The bimolecular quenching constants (kq) in the present systems were correlated with the free energy changes for the concerted DET reactions based on a suitable DET theory. Such a correlation results in the recovery of an intramolecular reorganization energy, which is substantially lower to account for the C-Cl bond dissociation energy of the CAs. Comparing present results with those of an another donor-acceptor system (e.g., biphenyldiol-CA systems) where a concerted DET mechanism is applicable, it is inferred that in CX-CA systems both concerted and stepwise DET mechanisms operate simultaneously. It is proposed that the interaction of excited CXs with encaged CAs follows the stepwise mechanism whereas that with the out of cage CAs follows the concerted mechanism.

  20. Impurity levels, impurity bands, excited impurity bands, and band tails: The electronic density of states in quantum wells and heterostructures

    NASA Astrophysics Data System (ADS)

    Serre, J.; Ghazali, A.; Gold, A.

    1989-04-01

    We have investigated in quantum wells (QW's) and heterostructures (HS's) the modification of the electronic structure near the band edge, which is induced by selective doping. The density of states has been calculated as a function of the relevant parameters, namely, carrier and impurity concentrations (and depletion concentrations for HS's), QW width, and impurity position. Using a multiple-scattering method which includes a finite-range screened potential and impurity concentration to all orders, we have succeeded in obtaining ground-state and excited-state impurity bands (IB's). We observed these bands merging gradually with the lowest conduction subband as the impurity concentration is increased, leading to the formation of a band tail into the energy gap. Other main results obtained for different values of the parameters are the binding energy for a single impurity, the widths and energy shifts of ground- and excited-state IB's, and the contribution of the electron-impurity interaction to the gap shrinkage in the band-tail regime. Our results are compared with experiments and other theories.

  1. Uniform Treatment of Solute-Solvent Dispersion in the Ground and Excited Electronic States of the Solute Based on a Solvation Model with State-Specific Polarizability.

    PubMed

    Marenich, Aleksandr V; Cramer, Christopher J; Truhlar, Donald G

    2013-08-13

    We present a new kind of treatment of the solute-solvent dispersion contribution to the free energy of solvation using a solvation model with state-specific polarizability (SMSSP). To evaluate the solute-solvent dispersion contribution, the SMSSP model utilizes only two descriptors, namely, the spherically averaged dipole polarizability of the solute molecule (either in its ground or excited electronic state) and the refractive index of the solvent. The model was parametrized over 643 ground-state solvation free energy data for 231 solutes in 14 nonpolar, non-hydrogen-bonding solvents. We show that the SMSSP model is applicable to solutes in both the ground and the excited electronic state. For example, in comparison to available experimental data, the model yields qualitatively accurate predictions of the solvatochromic shifts for a number of systems where solute-solvent dispersion is the dominant contributor to the shift.

  2. Theoretical study of Raman chirped adiabatic passage by X-ray absorption spectroscopy: Highly excited electronic states and rotational effects

    SciTech Connect

    Engin, Selma; Sisourat, Nicolas Selles, Patricia; Taïeb, Richard; Carniato, Stéphane

    2014-06-21

    Raman Chirped Adiabatic Passage (RCAP) is an efficient method to climb the vibrational ladder of molecules. It was shown on the example of fixed-in-space HCl molecule that selective vibrational excitation can thus be achieved by RCAP and that population transfer can be followed by X-ray Photoelectron spectroscopy [S. Engin, N. Sisourat, P. Selles, R. Taïeb, and S. Carniato, Chem. Phys. Lett. 535, 192–195 (2012)]. Here, in a more detailed analysis of the process, we investigate the effects of highly excited electronic states and of molecular rotation on the efficiency of RCAP. Furthermore, we propose an alternative spectroscopic way to monitor the transfer by means of X-ray absorption spectra.

  3. Free electrons and ionic liquids: study of excited states by means of electron-energy loss spectroscopy and the density functional theory multireference configuration interaction method.

    PubMed

    Regeta, Khrystyna; Bannwarth, Christoph; Grimme, Stefan; Allan, Michael

    2015-06-28

    The technique of low energy (0-30 eV) electron impact spectroscopy, originally developed for gas phase molecules, is applied to room temperature ionic liquids (IL). Electron energy loss (EEL) spectra recorded near threshold, by collecting 0-2 eV electrons, are largely continuous, assigned to excitation of a quasi-continuum of high overtones and combination vibrations of low-frequency modes. EEL spectra recorded by collecting 10 eV electrons show predominantly discrete vibrational and electronic bands. The vibrational energy-loss spectra correspond well to IR spectra except for a broadening (∼0.04 eV) caused by the liquid surroundings, and enhanced overtone activity indicating a contribution from resonant excitation mechanism. The spectra of four representative ILs were recorded in the energy range of electronic excitations and compared to density functional theory multireference configuration interaction (DFT/MRCI) calculations, with good agreement. The spectra up to about 8 eV are dominated by π-π* transitions of the aromatic cations. The lowest bands were identified as triplet states. The spectral region 2-8 eV was empty in the case of a cation without π orbitals. The EEL spectrum of a saturated solution of methylene green in an IL band showed the methylene green EEL band at 2 eV, indicating that ILs may be used as a host to study nonvolatile compounds by this technique in the future.

  4. Determination of Atomic and Molecular Excited-State Lifetimes Using an Opto-electronic Cross-Correlation Method.

    DTIC Science & Technology

    1981-10-07

    E RUSSO, 0 M HIEFTJE NOOII-76-C-083S UNCLASSIFIED TR-41 NL SLLlllllll UNCLASSIFIED 6ECUINY CLASSIFICATI OF THIS PA4G ri a flue In REPORT...Moleculdr Excited- iLpnrt Q State Lifetimes Using an Opto- electronic Cross-. Interim/echnicalAepevto / correlation Method Mp 7. *uvwpf-e. . .. -0...known flame gas composition, temperaturt and t1I1 auenchna cross-sections of tho two dcInint auenchtna snecies in the. DO , 1473 l11oo OF I oov II 0

  5. Cross Sections for Electron-impact Excitation of Electronic States in Atoms and Molecules -Application Examples of the BEf-scaling model in Optically-allowed Transitions

    NASA Astrophysics Data System (ADS)

    Kato, Hidetoshi

    2012-10-01

    The differential cross section (DCS) and integral cross section (ICS) measurements of electron-impact electronic excitation for noble gases were reported by many groups. Unfortunately, despite all these endeavours, if we were to characterize the level of agreement between these studies, then we could only conclude that it remains ``patchy'' at best. Hence, we report measurements of DCS and ICS for electron-impact excitation of the lowest electronic states in noble gases (Ne, Ar, Kr and Xe), and compare with results from a scaled Born cross section (BEf-scaling). We have previously found for the He atom and a number of molecules, including H2, O2, CO, H2O, CO2, N2O and C6H6 that the BEf-scaling approach, for calculating ICSs for dipole-allowed electronic-state transitions, can lead to a very accurate description of the various scattering processes from threshold to 2000 eV [1]. Exceptions to this general statement have only been found in those cases where resonance effects due to the temporary capture of the incident electron by the target and contamination from an accidentally degenerate or near-degenerate triplet state have arisen. Our results for noble gases will be presented in detail at the conference.[4pt] [1] H. Kato et al., NIFS Research Report, NIFS-DATA-108, 1 (2009).

  6. Excited state electron distribution and role of the terminal amine in acidic and basic tryptophan dipeptide fluorescence

    NASA Astrophysics Data System (ADS)

    Eisenberg, Azaria S.; Nathan, Moshe; Juszczak, Laura J.

    2016-08-01

    The results of quantum yield (QY) study of tryptophanyl glutamate (Trp-Glu), tryptophanyl lysine (Trp-Lys) and lysinyl tryptophan (Lys-Trp) dipeptides over the pH range, 1.5-13, show that the charge state of the N-terminal amine, and not the nominal molecular charge determines the QY. When the terminal amine is protonated, QY is low (10-2) for all three dipeptides. As the terminal amine cation is found proximal to the indole ring in Trp-Glu and Trp-Lys conformers but not in those for Lys-Trp, its effect may lie only in the partitioning of energy between nonradiative processes, not on QY reduction. QY is also low when both the N-terminal amine and indole amine are deprotonated. These two low QY states can be distinguished by fluorescence lifetime measurement. Molecular dynamics simulation shows that the Chi 1 conformers persist for tens of nanoseconds such that 100-101 ns lifetimes may be associated with individual Chi 1 conformers. The ground state electron density or isosurface of high QY (0.30) 3-methyindole has a uniform electron density over the indole ring as do the higher QY Trp dipeptide conformers. This validates the association of ground state isosurfaces with QY. Excited state orbitals from calculated high intensity, low energy absorption transitions are typically centered over the indole ring for higher QY dipeptide species and off the ring in lower QY species. Thus excited state orbitals substantiate the earlier finding that the ground state isosurface charge density pattern on the indole ring can be predictive of QY.

  7. Potential energy curves and lifetimes of low-lying excited electronic states of CSe studied by configuration interaction method.

    PubMed

    Li, Rui; Sun, Erping; Jin, Mingxing; Xu, Haifeng; Yan, Bing

    2014-04-10

    In this work, we performed a high level ab initio study on the low-lying electronic states of CSe, utilizing MRCI+Q (the internally contracted multireference configuration interaction, and Davidson's correction) method with scalar relativistic and spin-orbit coupling effects taken into account. The potential energy curves of 18 Λ-S states associated with the lowest dissociation limit of CSe molecule, as well as those of 50 Ω states generated from the Λ-S states were computed. The spectroscopic parameters of bound states were evaluated, which agree well with existing theoretical and experimental results. With the aid of calculated spin-orbit matrix elements and the Λ-S compositional variation of the Ω states, the spin-orbit perturbations of low-lying states to the A(1)Π and a(3)Π states are analyzed. Finally, the transition dipole moments of A(1)Π, A'(1)Σ(+), a(3)Π0+, and a(3)Π1 to the ground X(1)Σ(+) state as well as the lifetimes of the four excited states were evaluated.

  8. The relaxation dynamics of the excited electronic states of retinal in bacteriorhodopsin by two-pump-probe femtosecond studies

    PubMed Central

    Logunov, S. L.; Volkov, V. V.; Braun, M.; El-Sayed, M. A.

    2001-01-01

    We present the results of two-pump and probe femtosecond experiments designed to follow the relaxation dynamics of the lowest excited state (S1) populated by different modes. In the first mode, a direct (S0 → S1) radiative excitation of the ground state is used. In the second mode, an indirect excitation is used where the S1 state is populated by the use of two femtosecond laser pulses with different colors and delay times between them. The first pulse excites the S0 → S1 transition whereas the second pulse excites the S1 → Sn transition. The nonradiative relaxation from the Sn state populates the lowest excited state. Our results suggest that the S1 state relaxes faster when populated nonradiatively from the Sn state than when pumped directly by the S0 → S1 excitation. Additionally, the Sn → S1 nonradiative relaxation time is found to change by varying the delay time between the two pump pulses. The observed dependence of the lowest excited state population as well as its dependence on the delay between the two pump pulses are found to fit a kinetic model in which the Sn state populates a different surface (called S′1) than the one being directly excited (S1). The possible involvement of the Ag type states, the J intermediate, and the conical intersection leading to the S0 or to the isomerization product (K intermediate) are discussed in the framework of the proposed model. PMID:11447258

  9. Dyson orbitals for ionization from the ground and electronically excited states within equation-of-motion coupled-cluster formalism: theory, implementation, and examples.

    PubMed

    Oana, C Melania; Krylov, Anna I

    2007-12-21

    Implementation of Dyson orbitals for coupled-cluster and equation-of-motion coupled-cluster wave functions with single and double substitutions is described and demonstrated by examples. Both ionizations from the ground and electronically excited states are considered. Dyson orbitals are necessary for calculating electronic factors of angular distributions of photoelectrons, Compton profiles, electron momentum spectra, etc, and can be interpreted as states of the leaving electron. Formally, Dyson orbitals represent the overlap between an initial N-electron wave function and the N-1 electron wave function of the corresponding ionized system. For the ground state ionization, Dyson orbitals are often similar to the corresponding Hartree-Fock molecular orbitals (MOs); however, for ionization from electronically excited states Dyson orbitals include contributions from several MOs and their shapes are more complex. The theory is applied to calculating the Dyson orbitals for ionization of formaldehyde from the ground and electronically excited states. Partial-wave analysis is employed to compute the probabilities to find the ejected electron in different angular momentum states using the freestanding and Coulomb wave representations of the ionized electron. Rydberg states are shown to yield higher angular momentum electrons, as compared to valence states of the same symmetry. Likewise, faster photoelectrons are most likely to have higher angular momentum.

  10. Electronic excited states responsible for dimer formation upon UV absorption directly by thymine strands: joint experimental and theoretical study.

    PubMed

    Banyasz, Akos; Douki, Thierry; Improta, Roberto; Gustavsson, Thomas; Onidas, Delphine; Vayá, Ignacio; Perron, Marion; Markovitsi, Dimitra

    2012-09-12

    The study addresses interconnected issues related to two major types of cycloadditions between adjacent thymines in DNA leading to cyclobutane dimers (T<>Ts) and (6-4) adducts. Experimental results are obtained for the single strand (dT)(20) by steady-state and time-resolved optical spectroscopy, as well as by HPLC coupled to mass spectrometry. Calculations are carried out for the dinucleoside monophosphate in water using the TD-M052X method and including the polarizable continuum model; the reliability of TD-M052X is checked against CASPT2 calculations regarding the behavior of two stacked thymines in the gas phase. It is shown that irradiation at the main absorption band leads to cyclobutane dimers (T<>Ts) and (6-4) adducts via different electronic excited states. T<>Ts are formed via (1)ππ* excitons; [2 + 2] dimerization proceeds along a barrierless path, in line with the constant quantum yield (0.05) with the irradiation wavelength, the contribution of the (3)ππ* state to this reaction being less than 10%. The formation of oxetane, the reaction intermediate leading to (6-4) adducts, occurs via charge transfer excited states involving two stacked thymines, whose fingerprint is detected in the fluorescence spectra; it involves an energy barrier explaining the important decrease in the quantum yield of (6-4) adducts with the irradiation wavelength.

  11. Excited-state electronic asymmetry of the special pair in photosynthetic reaction center mutants: absorption and Stark spectroscopy.

    PubMed

    Moore, L J; Zhou, H; Boxer, S G

    1999-09-14

    The electronic absorption line shape and Stark spectrum of the lowest energy Q(y)() transition of the special pair in bacterial reaction centers contain a wealth of information on mixing with charge transfer states and electronic asymmetry. Both vary greatly in mutants that perturb the chemical composition of the special pair, such as the heterodimer mutants, and in mutants that alter interactions between the special pair and the surrounding reaction center protein, such as those that add or remove hydrogen bonds. The conventional and higher-order Stark spectra of a series of mutants are presented with the aim of developing a systematic description of the electronic structure of the excited state of the special pair that initiates photosynthetic charge separation. The mutants L168HF, M197FH, L131LH and L131LH/M160LH/M197FH are known to have different hydrogen-bonding patterns to the special pair; however, they exhibit Stark effects that are very similar to wild type. By contrast, the addition of a hydrogen bond to the M-side keto carbonyl group of the special pair in M160LH greatly affects both the absorption and Stark spectra. The heterodimer special pairs, L173HL and M202HL, exhibit much larger Stark effects than wild type, with the greatest effect in the M-side mutant. Double mutants that combine the M-side heterodimer and a hydrogen-bond addition to the L-side of the special pair decrease the magnitude of the Stark effect. These results suggest that the electronic asymmetry of the dimer can be perturbed either by the formation of a heterodimer or by adding or deleting a hydrogen bond to a keto carbonyl group. From the pattern observed, it is concluded that the charge transfer state P(L)(+)P(M)(-) has a larger influence on the excited state of the dimer in wild type than the P(L)(-)P(M)(+)charge transfer state. Furthermore, asymmetry can be varied continuously, from extreme cases in which the heterodimer and hydrogen-bond effects work together, to cases in which

  12. Doubly excited {sup 3}P{sup e} resonance states of two-electron positive ions in Debye plasmas

    SciTech Connect

    Hu, Xiao-Qing; Wang, Yang; Kar, Sabyasachi E-mail: karsabyasachi@yahoo.com; Jiang, Zishi; Jiang, Pinghui

    2015-11-15

    We investigate the doubly excited {sup 3}P{sup e} resonance states of two-electron positive ions Li{sup +}, Be{sup 2+}, B{sup 3+}, and C{sup 4+} by employing correlated exponential wave functions. In the framework of the stabilization method, we calculate two series (3pnp and 3dnd) of {sup 3}P{sup e} resonances below the N = 3 threshold. The {sup 3}P{sup e} resonance parameters (resonance energies and widths) are reported for the first time as a function of the screening parameter. For free-atomic cases, comparisons are made with the reported results and few resonance states are reported for the first time.

  13. A combined IR/IR and IR/UV spectroscopy study on the proton transfer coordinate of isolated 3-hydroxychromone in the electronic ground and excited state.

    PubMed

    Stamm, A; Weiler, M; Brächer, A; Schwing, K; Gerhards, M

    2014-10-21

    In this paper the excited state proton transfer (ESPT) of isolated 3-hydroxychromone (3-HC), the prototype of the flavonols, is investigated for the first time by combined IR/UV spectroscopy in molecular beam experiments. The IR/UV investigations are performed both for the electronically excited and electronic ground state indicating a spectral overlap of transitions of the 3-HC monomer and clusters with water in the electronic ground state, whereas in the excited state only the IR frequencies of the proton-transferred monomer structure are observed. Due to the loss of isomer and species selectivity with respect to the UV excitations IR/IR techniques are applied in order to figure out the assignment of the vibrational transitions in the S0 state. In this context the quadruple resonance IR/UV/IR/UV technique (originally developed to distinguish different isomers in the electronically excited state) could be applied to identify the OH stretching vibration of the monomer in the electronic ground state. In agreement with calculations the OH stretching frequency differs significantly from the corresponding values of substituted hydroxychromones.

  14. Infrared, Raman, and ultraviolet absorption spectra and theoretical calculations and structure of 2,6-difluoropyridine in its ground and excited electronic states.

    PubMed

    Sheu, Hong-Li; Kim, Sunghwan; Laane, Jaan

    2013-12-19

    The infrared and Raman spectra of 2,6-difluoropyridine (26DFPy) along with ab initio and DFT computations have been used to assign the vibrations of the molecule in its S0 electronic ground state and to calculate its structure. The ultraviolet absorption spectrum showed the electronic transition to the S1(π,π*) state to be at 37,820.2 cm(-1). With the aid of ab initio computations the vibrational frequencies for this excited state were also determined. TD-B3LYP and CASSCF computations for the excited states were carried out to calculate the structures for the S1(π,π*) and S2(n,π*) excited states. The CASSCF results predict that the S1(π,π*) state is planar and that the S2(n,π*) state has a barrier to planarity of 256 cm(-1). The TD-B3LYP computations predict a barrier of 124 cm(-1) for the S1(π,π*) state, but the experimental results support the planar structure. Hypothetical models for the ring-puckering potential energy function were calculated for both electronic excited states to show the predicted quantum states. The changes in the vibrational frequencies in the two excited states reflect the weaker π bonding within the pyridine ring.

  15. Infrared, Raman, and Ultraviolet Absorption Spectra and Theoretical Calculations and Structure of 2,6-Difluoropyridine in its Ground and Excited Electronic States

    PubMed Central

    Sheu, Hong-Li; Kim, Sunghwan; Laane, Jaan

    2014-01-01

    The infrared and Raman spectra of 2,6-difluoropyridine (26DFPy) along with ab initio and DFT computations have been used to assign the vibrations of the molecule in its S0 electronic ground state and to calculate its structure. The ultraviolet absorption spectrum showed the electronic transition to the S1(π,π*) state to be at 37,820.2 cm−1. With the aid of ab initio computations the vibrational frequencies for this excited state were also determined. TD-B3LYP and CASSCF computations for the excited states were carried out to calculate the structures for the S1(π,π*) and S2(n,π*) excited states. The CASSCF results predict that the S1(π,π*) state is planar and the S2(n,π*) state has a barrier to planarity of 256 cm−1. The TD-B3LYP computations predict a barrier of 124 cm−1 for the S1(π,π*) states, but the experimental results support the planar structure. Hypothetical models for the ring-puckering potential energy function were calculated for both electronic excited states to show the predicted quantum states. The changes in the vibrational frequencies in the two excited states reflect the weaker π bonding within the pyridine ring. PMID:24070189

  16. Cationic dye-sensitized degradation of sodium hyaluronate through photoinduced electron transfer in the upper excited state.

    PubMed

    Kojima, M; Takahashi, K; Nakamura, K

    2001-09-01

    The formation of ground-state complexes of methylene blue (MB) and thionine (TN) with sodium hyaluronate (NaHA) was clearly observed by means of absorption spectra in aqueous solution. Irradiation of the complexes using 313 nm light caused significant degradation of NaHA under oxygen and argon. However, the use of visible light over 400 nm, which gives the lowest excited singlet state of the cationic dyes, caused no degradation. MB and TN were more efficient sensitizers for the degradation of NaHA than rose bengal (RB), although RB is a more efficient singlet oxygen (1O2) sensitizer than the cationic dyes. Under similar conditions the polysaccharides with carboxyl groups, such as alginic acid and polygalacturonic acid, also photodecomposed. However, the polysaccharides without carboxyl groups, such as pullulan and methyl cellulose, did not. The irradiation of the polysaccharides in the presence of powdered titanium dioxide as a photocatalyst to generate the hydroxyl radical (.OH) in aerated aqueous solution caused the fragmentation of all the polymers. It was confirmed that methyl viologen, an electron-accepting sensitizer, formed a charge-transfer complex with NaHA, the irradiation of which caused the efficient degradation of NaHA. In the presence of beta- and gamma-cyclodextrins the MB- and TN-sensitized photodegradation of NaHA was markedly suppressed. This was probably due to the formation of the inclusion complexes comprising the cationic dyes and the cyclodextrins. On the basis of the results obtained we propose that the cationic dye-sensitized degradation of NaHA involves a photoinduced electron-transfer process between the upper excited dyes and the ground-state NaHA and that .OH and 1O2 do not participate in the degradation.

  17. Electron impact excitation of the ã 3B1u electronic state in C2H4: An experimentally benchmarked system?

    NASA Astrophysics Data System (ADS)

    Do, T. P. T.; Nixon, K. L.; Fuss, M.; García, G.; Blanco, F.; Brunger, M. J.

    2012-05-01

    We report on differential and integral cross section measurements for the electron impact excitation of the lowest-lying triplet electronic state (ã 3B1u) in ethylene (C2H4). The energy range of the present experiments was 9 eV-50 eV, with the angular range of the differential cross section measurements being 15°-90°. As the ground electronic state of C2H4 is a 1Ag state, this singlet → triplet excitation process is expected to be dominated by exchange scattering. The present angular distributions are found to support that assertion. Comparison, where possible, with previous experimental results from the University of Fribourg group shows very good agreement, to within the uncertainties on the measured cross sections. Agreement with the available theories, however, is generally marginal with the theories typically overestimating the magnitude of the differential cross sections. Notwithstanding that, the shapes of the theoretical angular distributions were in fact found to be in good accord with the corresponding experimental results.

  18. Rotational and vibrational dynamics in the excited electronic state of deprotonated and protonated fluorescein studied by time-resolved photofragmentation in an ion trap.

    PubMed

    Imanbaew, Dimitri; Gelin, Maxim F; Riehn, Christoph

    2016-07-01

    Excited state dynamics of deprotonated and protonated fluorescein were investigated by polarization dependent femtosecond time-resolved pump-probe photofragmentation in a 3D ion trap. Transients of deprotonated fluorescein exhibit vibrational wavepacket dynamics with weak polarization dependence. Transients of protonated fluorescein show only effects of molecular alignment and rotational dephasing. The time resolved rotational anisotropy of protonated fluorescein is simulated by the calculated orientational correlation function. The observed differences between deprotonated and protonated fluorescein are ascribed to their different higher lying electronically excited states and corresponding structures. This is partially supported by time-dependent density functional theory calculations of the excited state structures.

  19. Rotational and vibrational dynamics in the excited electronic state of deprotonated and protonated fluorescein studied by time-resolved photofragmentation in an ion trap

    PubMed Central

    Imanbaew, Dimitri; Gelin, Maxim F.; Riehn, Christoph

    2016-01-01

    Excited state dynamics of deprotonated and protonated fluorescein were investigated by polarization dependent femtosecond time-resolved pump-probe photofragmentation in a 3D ion trap. Transients of deprotonated fluorescein exhibit vibrational wavepacket dynamics with weak polarization dependence. Transients of protonated fluorescein show only effects of molecular alignment and rotational dephasing. The time resolved rotational anisotropy of protonated fluorescein is simulated by the calculated orientational correlation function. The observed differences between deprotonated and protonated fluorescein are ascribed to their different higher lying electronically excited states and corresponding structures. This is partially supported by time-dependent density functional theory calculations of the excited state structures. PMID:27376104

  20. Study of intermediates from transition metal excited-state electron-transfer reactions. [Annual] progress report, August 1, 1989--July 31, 1992

    SciTech Connect

    Hoffman, M.Z.

    1992-07-31

    Conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used to study the intermediates involved in transition metal excited-state electron-transfer reactions. These intermediates were excited state of Ru(II) and Cr(III) photosensitizers, their reduced forms, and species formed in reactions of redox quenchers and electron-transfer agents. Of particular concern was the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes. (DLC)

  1. Magnetoassociation of a Feshbach molecule and spin-orbit interaction between the ground and electronically excited states

    NASA Astrophysics Data System (ADS)

    Takasu, Yosuke; Fukushima, Yoshiaki; Nakamura, Yusuke; Takahashi, Yoshiro

    2017-08-01

    By preparing a cold-atom ensemble of mixtures of the ground S10 and metastable P32 states of ytterbium atoms 171Yb, we successfully associate a Feshbach molecule Yb1712 with one 171Yb atom in its electronically excited state and another one in the ground state, by sweeping a magnetic field across a Feshbach resonance. The atom-molecule conversion efficiency reaches about 50%, confirmed by a separate image of atoms and molecules with a Stern-Gerlach effect and an atom loss measurement. In addition, we successfully implement a spin-orbit coupling with a one-photon process between the P32 (pseudo-spin-up) and ground S10 (pseudo-spin-down) states of a Yb atom. As a benchmark, we observe a spin-momentum locking behavior at a large Rabi frequency. The achieved successful production of Feshbach molecules, along with the implementation of spin-orbital coupling between the S10 and P32 states, provides an important step towards the study of a topological superfluid.

  2. Recent searches for double-electron capture of nuclei to excited states

    SciTech Connect

    Povinec, P. P.; Frekers, D.; Šimkovic, F.

    2015-10-28

    Double electron capture has been of interest of many theoretical and experimental works as a possible extension of double beta-decay investigations. The neutrinoless double-electron capture, similarly as the neutrinoless double beta-decay may help to clarify if neutrinos are Majorana or Dirac particles. Results obtained in several double electron capture experiments are reviewed and new experiments to be carried out in deep underground laboratories using enriched sources and multidimensional HPGe-HPGe gamma-ray spectrometry with a few years of counting time are proposed, which should be able to improve half-lives limits by at least an order of magnitude.

  3. A multiconfigurational time-dependent Hartree-Fock method for excited electronic states. I. General formalism and application to open-shell states.

    PubMed

    Miranda, R P; Fisher, A J; Stella, L; Horsfield, A P

    2011-06-28

    The solution of the time-dependent Schrödinger equation for systems of interacting electrons is generally a prohibitive task, for which approximate methods are necessary. Popular approaches, such as the time-dependent Hartree-Fock (TDHF) approximation and time-dependent density functional theory (TDDFT), are essentially single-configurational schemes. TDHF is by construction incapable of fully accounting for the excited character of the electronic states involved in many physical processes of interest; TDDFT, although exact in principle, is limited by the currently available exchange-correlation functionals. On the other hand, multiconfigurational methods, such as the multiconfigurational time-dependent Hartree-Fock (MCTDHF) approach, provide an accurate description of the excited states and can be systematically improved. However, the computational cost becomes prohibitive as the number of degrees of freedom increases, and thus, at present, the MCTDHF method is only practical for few-electron systems. In this work, we propose an alternative approach which effectively establishes a compromise between efficiency and accuracy, by retaining the smallest possible number of configurations that catches the essential features of the electronic wavefunction. Based on a time-dependent variational principle, we derive the MCTDHF working equation for a multiconfigurational expansion with fixed coefficients and specialise to the case of general open-shell states, which are relevant for many physical processes of interest.

  4. Unimolecular decomposition of tetrazine-N-oxide based high nitrogen content energetic materials from excited electronic states

    NASA Astrophysics Data System (ADS)

    Bhattacharya, A.; Guo, Y. Q.; Bernstein, E. R.

    2009-11-01

    Unimolecular excited electronic state decomposition of novel high nitrogen content energetic molecules, such as 3,3'-azobis(6-amino-1,2,4,5-tetrazine)-mixed N-oxides (DAATO3.5), 3-amino-6-chloro-1,2,4,5-tetrazine-2,4-dioxide (ACTO), and 3,6-diamino-1,2,4,5-tetrazine-1,4-dioxde (DATO), is investigated. Although these molecules are based on N-oxides of a tetrazine aromatic heterocyclic ring, their decomposition behavior distinctly differs from that of bare tetrazine, in which N2 and HCN are produced as decomposition products through a concerted dissociation mechanism. NO is observed to be an initial decomposition product from all tetrazine-N-oxide based molecules from their low lying excited electronic states. The NO product from DAATO3.5 and ACTO is rotationally cold (20 K) and vibrationally hot (1200 K), while the NO product from DATO is rotationally hot (50 K) and vibrationally cold [only the (0-0) vibronic transition of NO is observed]. DAATO3.5 and ACTO primarily differ from DATO with regard to molecular structure, by the relative position of oxygen atom attachment to the tetrazine ring. Therefore, the relative position of oxygen in tetrazine-N-oxides is proposed to play an important role in their energetic behavior. N2O is ruled out as an intermediate precursor of the NO product observed from all three molecules. Theoretical calculations at CASMP2/CASSCF level of theory predict a ring contraction mechanism for generation of the initial NO product from these molecules. The ring contraction occurs through an (S1/S0)CI conical intersection.

  5. Detection of rovibrationally excited molecular hydrogen in the electronic ground state via synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Béchu, S.; Aleiferis, S.; Bentounes, J.; Gavilan, L.; Shakhatov, V. A.; Bès, A.; Svarnas, P.; Mazouffre, S.; de Oliviera, N.; Engeln, R.; Lemaire, J. L.

    2017-08-01

    We describe an original setup named SCHEME (Source of exCited HydrogEn MolEcules) designed to study the recombinative desorption mechanisms of H atoms on a surface by means of high-brilliance monochromatic synchrotron radiation (SR). H atoms are produced on electrically heated filaments under vacuum (in the absence of any discharge) and subsequently recombine on a surface to produce excited hydrogen molecules, namely, H2 ( v″, J″ ). Once these levels are produced, they are probed in the vacuum chamber with 5-40 eV (248-31 nm) SR-photons. A preliminary test with Krypton has demonstrated the feasibility of SCHEME to obtain simultaneously VUV-synchrotron radiation induced fluorescence and VUV-absorption signals with room-temperature gas. In order to evaluate the hydrogen molecule dissociation induced by the heated filaments, the absolute density of H atoms has been measured by VUV-absorption. At 1800 K and 100 mTorr, we estimated a dissociation degree of 10-4 , which corresponds to an absolute density of 1.8 ×1017 m-3. VUV-absorption spectroscopy is shown to be a valuable tool to detect H2 ( v″, J″ ) molecules up to v″ = 3. Possible improvements of the experimental setup, to detect higher v″ levels, are suggested in the end of this paper.

  6. The electronic excited states of a model organic endoperoxide: A comparison of TD-DFT and ab initio methods

    NASA Astrophysics Data System (ADS)

    Corral, Inés; González, Leticia

    2007-10-01

    The vertical excited spectrum of a model endoperoxide (cyclohexadieneendoperoxide) has been calculated using time dependent density functional theory (TD-DFT), resolution of the identity second order approximate coupled-cluster theory (RI-CC2), multiconfigurational complete active space self consistent field (CASSCF) and second order multi-state perturbation theory (MS-CASPT2). All theoretical methods predict the charge transfer πOO∗→πCC∗, and the πOO∗→σOO∗ excitation to be the lowest absorbing excited states. CASSCF optimized geometries for these states provide some hints about the photodissociation mechanisms as well as the emission spectrum of the molecule.

  7. Dynamics of excited molecular states

    NASA Astrophysics Data System (ADS)

    Meyer, Hans-Dieter

    2005-01-01

    The photo-excitation or photo-ionization of a polyatomic molecule is typically accompanied by a strong excitation of the vibrational modes. In particular when a conical intersection of the electronic potential energy surfaces involved lies within or close to the Frank-Condon zone, the nuclear motion becomes very complicated, often chaotic, and the spectra become irregular and dense. An accurate simulation of the dynamics of such excited molecules requires firstly that the multi-dimensional and multi-state potential energy surface - or a reliable model thereof - can be determined. Secondly, the multi-dimensional quantum dynamics have to be solved. This is a very difficult task, because of the high dimensionality of the problem (6 to 30 degrees of freedom, say). The multi-configuration time-dependent Hartree (MCTDH) method has proven to be very useful for the study of such problems. In fact, an accurate treatment of the quantal dynamics of molecules like the allene cation (C3 H+4, 15D), the butatriene cation (C4 H+4, 18D), or the pyrazine molecule (C4N2H4, 24D) in their full dimensionality, is - up to date - only possible with MCTDH. (The acronym n D denotes the dimensionality.) The construction of the vibronic model Hamiltonian and the MCTDH method will be briefly discussed. After this, the excited state dynamics of the butatriene and pyrazine molecules will be discussed.

  8. Many-electron aspects of molecular promotion in ion-atom collisions - Production of core-excited states of Li in Li/+/-He collisions

    NASA Technical Reports Server (NTRS)

    Elston, S. B.; Vane, C. R.; Schumann, S.

    1979-01-01

    Production of core-excited autoionizing states of neutral Li having configurations of the form 1snln(prime)l(prime) has been observed over the impact-energy range from 10-50 keV. Although the results for production of all such states is remarkably consistent with a quasi-molecular-excitation model proposed by Stolterfoht and Leithaeuser (1976), production of individual lines in the observed spectra exhibits collision-velocity dependencies indicative of considerably more complex processes, including processes which appear to be inherently two-electron in nature. Excitation functions are presented for (1s2s/2/)/2/S, 1s(2s2p/3/P)/2/P, 1s(2s2p/1/P)/2/P, and (1s2p/2/)/2/D core-excited state of Li and for total core excitation.

  9. Many-electron aspects of molecular promotion in ion-atom collisions - Production of core-excited states of Li in Li/+/-He collisions

    NASA Technical Reports Server (NTRS)

    Elston, S. B.; Vane, C. R.; Schumann, S.

    1979-01-01

    Production of core-excited autoionizing states of neutral Li having configurations of the form 1snln(prime)l(prime) has been observed over the impact-energy range from 10-50 keV. Although the results for production of all such states is remarkably consistent with a quasi-molecular-excitation model proposed by Stolterfoht and Leithaeuser (1976), production of individual lines in the observed spectra exhibits collision-velocity dependencies indicative of considerably more complex processes, including processes which appear to be inherently two-electron in nature. Excitation functions are presented for (1s2s/2/)/2/S, 1s(2s2p/3/P)/2/P, 1s(2s2p/1/P)/2/P, and (1s2p/2/)/2/D core-excited state of Li and for total core excitation.

  10. Localization of electrons and excitations

    NASA Astrophysics Data System (ADS)

    Larsson, Sven

    2006-07-01

    Electrons, electron holes, or excitations in finite or infinite 'multimer systems' may be localized or delocalized. In the theory of Hush, localization depends on the ratio Δ/ λ ( Δ/2 = coupling; λ = reorganization energy). The latter theory has been extended to the infinite system [S. Larsson, A. Klimkāns, Mol. Cryst. Liq. Cryst. 355 (2000) 217]. The metal/insulator transition often takes place abruptly as a function of Δ/ λ. It is argued that localization in a system with un-filled bands cannot be determined on the basis of Mott-Hubbard U alone, but depends on the number of accessible valence states, reorganization energy λ and coupling Δ (=2t). In fact U = 0 does not necessarily imply delocalization. The analysis here shows that there are many different situations for an insulator to metal transition. Charge transfer in doped NiO is characterized by Ni 2+ - Ni 3+ exchange while charge transfer in pure NiO is characterized by a disproportionation 2Ni 2+ → Ni + + Ni 3+. In spite of the great differences between these two cases, U has been applied without discrimination to both. The relevant localization parameters appear to be Δ and λ in the first case, with only two oxidation states, and U, Δ and λ in the second case with three oxidation states. The analysis is extended to insulator-metal transitions, giant magnetic resistance (GMR) and high Tc superconductivity (SC). λ and Δ can be determined quite accurately in quantum mechanical calculations involving only one and two monomers, respectively.

  11. Fission-fragment excitation of metal electrons

    SciTech Connect

    Martynenko, Yu.V.; Yavlinskii, Yu.N.

    1987-08-01

    The authors mathematically formulate the formation and relaxation of excited-electron regions along the paths of fission fragments under conditions of first wall sputtering and ionization and fission fragment transport into the wall. Their model incorporates all collisional and absorptional aspects of energy transfer between fragments and electrons and includes thermal diffusion and heat transfer between electrons and the metal lattice. Interactions with quasi particles in the solid-state regime are also given consideration.

  12. Lifetimes and energetics of the first electronically excited states of NaH2O from time-resolved photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Gartmann, Thomas E.; Yoder, Bruce L.; Chasovskikh, Egor; Signorell, Ruth

    2017-09-01

    The energetics and lifetimes of the first electronically excited states (;3p-states;) of NaH2O and NaD2O have been measured by pump-probe (740/780 and 400 nm) photoelectron imaging. The photoelectron spectra of NaH2O show two bands at an electron kinetic energy of 0.14 and 0.38 eV, respectively. We assign the former to excitation via the two energetically close lying ;pπ-states; with flat potential curves in the intermolecular degrees of freedom, and the latter to the excitation via the ;pσ-state; characterized by significantly steeper potential curves. The relaxation of all ;p-states; follows a double exponential decay with a lifetime around 110 ps for the dominant fast component.

  13. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Two-photon-excited luminescence of biologically active solid-state structures

    NASA Astrophysics Data System (ADS)

    Gorelik, V. S.; Kozulin, E. A.

    1994-05-01

    A study was made of the characteristics of two-photon-excited luminescence of a number of pharmaceutical and biologically active solid-state materials: aspirin, sulfadimethoxine, Streptocid (sulfanilamide), pig insulin, and lysozyme. This luminescence was excited by pulse-periodic laser radiation. The characteristics of the luminescence spectra were compared with the familiar spectra of two-photon-excited luminescence of L-tryptophan. The results were used to determine the characteristics of molecular excitons in the investigated organic crystals and to estimate the concentration of tryptophan in solid-state proteins.

  14. Charge exchange ionization in collision cells as a method to detect the presence of long-lived excited electronic states of polyatomic ions.

    PubMed

    Kwon, C H; Kim, M S; Choe, J C

    2001-10-01

    Charge exchange ionization in collision cells installed in a double focusing mass spectrometer with reversed geometry has been used to detect the presence of a long-lived excited electronic state of benzene ion. In particular, the first collision cell located between the ion source and the magnetic sector was modified to serve as an ion source for the reagent ion generated by charge exchange with the primary ion. Strong reagent ion signals were observed when the ionization energies of the reagents (1,3-C4H6, CS2, CH3Cl) were lower than the recombination energy (approximately 11.5 eV) of the excited state benzene ion, while the signals were negligible for reagents (CH3F,CH4) with higher ionization energy. The fact that a strong signal is observable only for electronically exoergic charge exchange is useful for detecting the presence of a long-lived electronically excited state.

  15. Electronically Excited States and Their Role in Affecting Thermodynamic and Transport Properties of Thermal Plasmas

    DTIC Science & Technology

    2009-09-01

    electrons between the two ionic cores. The exchange interaction has an analytical expression [64], depending on the quantum numbers characterizing...Capitelli, D. Bruno, G. Colonna, C. Catalfamo and A. Laricchiuta Dept Chemistry University of Bari, via Orabona 4, 70125 Bari Italy CNR IMIP Bari...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Dept Chemistry University of Bari, via

  16. Electron impact excitation of Hg/+/

    NASA Technical Reports Server (NTRS)

    Crandall, D. H.; Phaneuf, R. A.; Dunn, G. H.

    1974-01-01

    A crossed charged beam technique was employed in the investigation reported. The ion beam was crossed at right angles by a magnetically confined electron beam. Cross sections were determined as a function of electron impact energy. Considerable structure in the excitation cross section appears immediately above the threshold. It is pointed out that a primary application of cross sections is related to the calculation of plasma rate coefficients.

  17. Density functional theory calculations on rhodamine B and pinacyanol chloride. Optimized ground state, dipole moment, vertical ionization potential, adiabatic electron affinity and lowest excited triplet state.

    PubMed

    Delgado, Juan C; Selsby, Ronald G

    2013-01-01

    The ground state configuration of the gas phase cationic dyes pinacyanol chloride and rhodamine B are optimized with HF/6-311 + G(2d,2p) method and basis set. B3PW91/6-311 + G(2df,2p) functional and basis set is used to calculate the Mulliken atom charge distribution, total molecular energy, the dipole moment, the vertical ionization potential, the adiabatic electron affinity and the lowest excited triplet state, the last three as an energy difference between separately calculated open shell and ground states. The triplet and extra electron states are optimized to find the relaxation energy. In the ground state optimization of both dyes the chloride anion migrates to a position near the center of the chromophore. For rhodamine B the benzoidal group turns perpendicular to the chromophore plane. For both dyes, the LUMO is mostly of π character associated with the aromatic part of the molecule containing the chromophore. The highest occupied MOs consist of three almost degenerate eigenvectors involving the chloride anion coordinated with σ electrons in the molecular framework. The fourth highest MO is of π character. For both molecules in the gas phase ionization process the chloride anion loses the significant fraction of electric charge. In electron capture, the excess charge goes mainly on the dye cation.

  18. Effect of charge polarization on inelastic scattering - Differential and integral cross sections for excitation of the 2/super 1/S state of helium by electron impact.

    NASA Technical Reports Server (NTRS)

    Rice, J. K.; Truhlar, D. G.; Cartwright, D. C.; Trajmar, S.

    1972-01-01

    Experimental differential scattering cross sections for excitation of helium by electron impact from its ground state to its 2(super 1)S state are presented at four incident electron energies in the range from 26 to 55.5 eV for scattering angles between 10 and 70 deg and at 81.6 eV for scattering angles between 10 and 80 deg. These cross sections are normalized and compared with results predicted by the Born approximation, the polarized Born approximation, and several other first-order approximations in which direct excitation is calculated in the Born approximation and exchange scattering in various Ochkur-like approximations.

  19. Detection of electronic excited states in conjugated polymers by picosecond transient strain spectroscopy

    SciTech Connect

    Kanner, G.S.; Frolov, S.; Vardeny, Z.V. Physics Department, University of Utah, Salt Lake City, Utah 84112 )

    1995-02-27

    We describe a new type of spectroscopy based on picosecond transient strain in absorption photomodulation that can be used to detect and identify both allowed and forbidden optical transitions in solid thin films. We have applied the new spectroscopy to a variety of conducting polymer films such as polythiophene, [ital trans] and [ital cis] polyacetylene, and poly(diethynyl-silane), in which we measured energy levels of various excitonic states with odd and even symmetry that are, respectively, allowed and forbidden in the optical absorption.

  20. Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using Density Functional Theory

    DTIC Science & Technology

    2016-06-03

    provide interpretation of absorption spectra with respect to molecular structure for excitation by electromagnetic waves at frequencies within the...IR and UV-visible ranges. The absorption spectrum corresponding to excitation states of As-H2O complexes consisting of relatively small numbers of...As emphasized previously [17], the absorption spectrum of H2O clusters should be of significance for interpretation of absorption spectra

  1. Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon

    SciTech Connect

    Peterson, Eric Scott

    1992-08-01

    A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary collisions and relaxation that proceeds via Martin`s resonant energy transfer hopping mechanism.

  2. Electronic excited states as a probe of surface adsorbate structure and dynamics in liquid xenon

    SciTech Connect

    Peterson, E.S.

    1992-08-01

    A combination of second harmonic generation (SHG) and a simple dipole-dipole interaction model is presented as a new technique for determining adsorbate geometries on surfaces. The polarization dependence of SHG is used to define possible geometries of the adsorbate about the surface normal. Absorption band shifts using geometry constraints imposed by SHG data are derived for a dimer constructed from two arbitrarily placed monomers on the surface using the dipole-dipole interaction potential. These formulae can be used to determine the orientation of the two monomers relative to each other. A simplified version of this formalism is used to interpret absorption band shifts for rhodamine B adsorbed on fused silica. A brief history of the exciton is given with particular detail to Xe. Data are presented for transient absorption at RT in liquid xenon on the picosecond time scale. These are observations of both tunneling through the barrier that separates the free and trapped exciton states and the subsequent trapping of the exciton. In high densities both of these processes are found to occur within 2 to 6 picoseconds in agreement with theories of Kmiecik and Schreiber and of Martin. A threshold density is observed that separates relaxation via single binary collisions and relaxation that proceeds via Martin's resonant energy transfer hopping mechanism.

  3. Hydride stretch infrared spectra in the excited electronic states of indole and its derivatives: Direct evidence for the 1πσ* state

    NASA Astrophysics Data System (ADS)

    Dian, Brian C.; Longarte, Asier; Zwier, Timothy S.

    2003-02-01

    The hydride stretch infrared spectra of indole, indole-H2O, 3-methyl indole, 3-methyl indole-H2O, the main conformer of tryptamine (TRA), two conformers of N-acetyl tryptophan amide (NATA), and three conformers of N-acetyl tryptophan methyl amide (NATMA), have been recorded in the electronically excited singlet states using excited-state fluorescence-dip infrared spectroscopy. NATA and NATMA are methyl-capped dipeptides of tryptophan that have conformational flexibility and exhibit sensitivity in their electronic spectra to the conformation of the dipeptide backbone. In the indole monomer, the indole NH stretch fundamental at the S1 origin is shifted from its ground-state value (3525 cm-1) to 3478 cm-1. The corresponding band in the indole-H2O complex appears at 3387 cm-1, shifted by a similar amount from its ground-state position (3436 cm-1). Higher vibronic levels within 1500 cm-1 of the S1 origin, which have been identified previously [B. J. Fender et al., Chem. Phys. Lett. 239, 31 (1995)] as being 1Lb or 1La in character, all show similar excited state indole NH stretch absorptions. The corresponding spectra in 3-methyl indole, 3-methyl indole-H2O, TRA, and in the C5 conformers of NATA and NATMA all are missing the indole NH stretch absorption. In its place, a broad background absorption appears, spread over the entire 2800-3800 cm-1 region. In these molecules, other CH stretch or amide NH stretch absorptions remain sharp, appearing in their expected frequency ranges. Finally, the C7 conformations of NATA and NATMA, which possess an intramolecular hydrogen bond in the dipeptide backbone, have all infrared transitions washed out, replaced by a stronger broad background absorption. The entire data set can be explained by the presence of an excited 1πσ* state which is dissociative along the indole NH stretch coordinate, as recently predicted by Sobolewski and Domcke [Chem. Phys. Lett. 315, 293 (1999)]. In the weak coupling case (indole, indole-H2O), the gap

  4. Dynamics of the 3MLCT in Ru(II) terpyridyl complexes probed by ultrafast spectroscopy: evidence of excited-state equilibration and interligand electron transfer.

    PubMed

    Hewitt, Joshua T; Vallett, Paul J; Damrauer, Niels H

    2012-11-29

    Ground- and excited-state properties of [Ru(tpy)(2)](2+), [Ru(tpy)(ttpy)](2+), and [Ru(ttpy)(2)](2+) (where tpy = 2,2':6',2″-terpyridine and ttpy = 4'-(4-methylphenyl)-2,2':6',2″-terpyridine) in room temperature acetonitrile have been investigated using linear absorption, electrochemical, and ultrafast transient pump-probe techniques. Spectroelectrochemistry was used to assign features observed in the transient spectra while single wavelength kinetics collected at a variety of probe wavelengths were used to monitor temporal evolution of the MLCT excited state. From these data, the excited-state lifetime of each complex was recovered and the rate limiting decay step was identified. In the bis-heteroleptic complex [Ru(tpy)(ttpy)](2+), photoexcitation to the (1)MLCT manifold generates both tpy-localized and ttpy-localized excited states. Accordingly, interligand electron transfer (ILET) from tpy-localized to the ttpy-localized (3)MLCT excited states is observable and the time scale has been measured to be 3 ps. For the homoleptic complex [Ru(tpy)(2)](2+), evidence for equilibration of the (3)MLCT excited-state population with the (3)MC has been observed and the time scale is reported at 2 ps.

  5. Ground and excited electronic state analysis of PrF²⁺ and PmF²⁺.

    PubMed

    Schoendorff, George; Chi, Benjamin; Ajieren, Hans; Wilson, Angela K

    2015-03-05

    The ground state and excited state manifolds are computed for PrF(2+) and PmF(2+) at the CASSCF (n,8) level of theory where the active space spans the Ln 4f orbitals as well as the F 2pz orbital. Dynamical correlation is included using second-order multireference quasidegenerate perturbation theory (MCQDPT2). The spin-orbit multiplets for each of the excited states are resolved, and spin-orbit coupling constants are computed using the Breit-Pauli spin-orbit operator. Equilibrium geometries for each of the ground and excited states are computed, and the nature of the Ln-F bond is examined. Potential energy curves for the lowest four triplet states and lowest two quintet states are computed for PrF(2+), which split into 14 levels upon application of the spin-orbit Hamiltonian. Likewise, the lowest six quintet states are computed for PmF(2+) as well as the lowest triplet state and the lowest two septet states. These nine states split into 43 terms upon application of the spin-orbit Hamiltonian.

  6. Electron Excitation of Vibrational States of D2 and H2 and Detection of Excited States by Laser-Induced Fluorescence.

    DTIC Science & Technology

    1984-04-01

    Fr other sets of excitation cross sections for H2 , see: M. G. Hi-ips and A. E. S. Green, J. Apdl. Phys. 46, 4718 (1975); P. Micheal and R. Winkler...Phys. 58, 4599 (1973); K. P. Lynch, T. C. Schwab, and J. V. Micheal , Int. J. Chem. Kinetics 8, 651 (1976). 51 i% %.€. - . . . ..-.-. ..-.-. " . .V...G. Ferguson and A. W. Read, Trans. Faraday Soc. 61 1559 (1965). 52 % *.~ *-.~:. -7_ 7o . .. ... ... .. .. .4 49. J. E. Land, J. Appl. Phys. 49, 5716

  7. Stepwise Two-Photon-Induced Fast Photoswitching via Electron Transfer in Higher Excited States of Photochromic Imidazole Dimer.

    PubMed

    Kobayashi, Yoichi; Katayama, Tetsuro; Yamane, Takuya; Setoura, Kenji; Ito, Syoji; Miyasaka, Hiroshi; Abe, Jiro

    2016-05-11

    Stepwise two-photon excitations have been attracting much interest because of their much lower power thresholds compared with simultaneous two-photon processes and because some stepwise two-photon processes can be initiated by a weak incoherent excitation light source. Here we apply stepwise two-photon optical processes to the photochromic bridged imidazole dimer, whose solution instantly changes color upon UV irradiation and quickly reverts to the initial color thermally at room temperature. We synthesized a zinc tetraphenylporphyrin (ZnTPP)-substituted bridged imidazole dimer, and wide ranges of time-resolved spectroscopic studies revealed that a ZnTPP-linked bridged imidazole dimer shows efficient visible stepwise two-photon-induced photochromic reactions upon excitation at the porphyrin moiety. The fast photoswitching property combined with stepwise two-photon processes is important not only for the potential for novel photochromic materials that are sensitive to the incident light intensity but also for fundamental photochemistry using higher excited states.

  8. Ultrafast decay of electronically excited singlet cytosine via a pi,pi* to n(O),pi* state switch.

    PubMed

    Ismail, Nina; Blancafort, Lluís; Olivucci, Massimo; Kohler, Bern; Robb, Michael A

    2002-06-19

    Singlet fluorescence lifetimes of adenosine, cytidine, guanosine, and thymidine, determined by femtosecond pump-probe spectroscopy (Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2000, 122, 9348. Pecourt, J.-M. L.; Peon, J.; Kohler, B. J. Am. Chem. Soc. 2001, 123, 10370), show that the excited states produced by 263 nm light in these nucleosides decay in the subpicosecond range (290-720 fs). Ultrafast radiationless decay to the ground state greatly reduces the probability of photochemical damage. In this work we present a theoretical study of isolated cytosine, the chromophore of cytidine. The experimental lifetime of 720 fs indicates that there must be an ultrafast decay channel for this species. We have documented the possible decay channels and approximate energetics, using a valence-bond derived analysis to rationalize the structural details of the paths. The mechanism favored by our calculations and the experimental data involves (1) a two-mode decay coordinate composed of initial bond length inversion followed by internal vibrational energy redistribution (IVR) to populate a carbon pyramidalization mode, (2) a state switch between the pi,pi* and nO,pi* (excitation from oxygen lone pair) excited states, and (3) decay to the ground state through a conical intersention. A second decay path through the nN,pi* state (excitation from the nitrogen lone pair), with a higher barrier, involves out-of-plane bending of the amino substituent.

  9. Alignment of the (3d104 s 5 s ) 3S1 State of Zn Excited by Polarized Electron Impact

    NASA Astrophysics Data System (ADS)

    Clayburn, N. B.; Gay, T. J.

    2017-09-01

    We measure the integrated Stokes parameters of light from Zn (4 s 4 p )4 3P0,1-(4 s 5 s )5 3S1 transitions excited by a transversely polarized electron impact at energies between 7.0 and 8.5 eV. Our results for the electron-polarization-normalized linear polarization Stokes parameter P2 , between incident electron energies 7.0 and 7.4 eV, are consistent with zero, as required by basic angular-momentum coupling considerations and by recent theoretical calculations. They are in qualitative disagreement with previous experimental results for the P2 parameter.

  10. Electronic excitations in long polyenes revisited.

    PubMed

    Schmidt, Maximilian; Tavan, Paul

    2012-03-28

    We apply the valence shell model OM2 [W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495, (2000)] combined with multireference configuration interaction (MRCI) to compute the vertical excitation energies and transition dipole moments of the low-energy singlet excitations in the polyenes with 4 ≤ N ≤ 22π-electrons. We find that the OM2/MRCI descriptions closely resemble those of Pariser-Parr-Pople (PPP) π-electron models [P. Tavan and K. Schulten, Phys. Rev. B 36, 4337, (1987)], if equivalent MRCI procedures and regularly alternating model geometries are used. OM2/MRCI optimized geometries are shown to entail improved descriptions particularly for smaller polyenes (N ≤ 12), for which sizeable deviations from the regular model geometries are found. With configuration interaction active spaces covering also the σ- in addition to the π-electrons, OM2/MRCI excitation energies turn out to become smaller by at most 0.35 eV for the ionic and 0.15 eV for the covalent excitations. The particle-hole (ph) symmetry, which in Pariser-Parr-Pople models arises from the zero-differential overlap approximation, is demonstrated to be only weakly broken in OM2 such that the oscillator strengths of the covalent 1B(u)(-) states, which artificially vanish in ph-symmetric models, are predicted to be very small. According to OM2/MRCI and experimental data the 1B(u)(-) state is the third excited singlet state for N < 12 and becomes the second for N ≥ 14. By comparisons with results of other theoretical approaches and experimental evidence we argue that deficiencies of the particular MRCI method employed by us, which show up in a poor size consistency of the covalent excitations for N > 12, are caused by its restriction to at most doubly excited references.

  11. Electronic excitations in long polyenes revisited

    NASA Astrophysics Data System (ADS)

    Schmidt, Maximilian; Tavan, Paul

    2012-03-01

    We apply the valence shell model OM2 [W. Weber and W. Thiel, Theor. Chem. Acc. 103, 495, (2000), 10.1007/s002149900083] combined with multireference configuration interaction (MRCI) to compute the vertical excitation energies and transition dipole moments of the low-energy singlet excitations in the polyenes with 4 ⩽ N ⩽ 22π-electrons. We find that the OM2/MRCI descriptions closely resemble those of Pariser-Parr-Pople (PPP) π-electron models [P. Tavan and K. Schulten, Phys. Rev. B 36, 4337, (1987)], if equivalent MRCI procedures and regularly alternating model geometries are used. OM2/MRCI optimized geometries are shown to entail improved descriptions particularly for smaller polyenes (N ⩽ 12), for which sizeable deviations from the regular model geometries are found. With configuration interaction active spaces covering also the σ- in addition to the π-electrons, OM2/MRCI excitation energies turn out to become smaller by at most 0.35 eV for the ionic and 0.15 eV for the covalent excitations. The particle-hole (ph) symmetry, which in Pariser-Parr-Pople models arises from the zero-differential overlap approximation, is demonstrated to be only weakly broken in OM2 such that the oscillator strengths of the covalent 1B_u^- states, which artificially vanish in ph-symmetric models, are predicted to be very small. According to OM2/MRCI and experimental data the 1B_u^- state is the third excited singlet state for N < 12 and becomes the second for N ⩾ 14. By comparisons with results of other theoretical approaches and experimental evidence we argue that deficiencies of the particular MRCI method employed by us, which show up in a poor size consistency of the covalent excitations for N > 12, are caused by its restriction to at most doubly excited references.

  12. The Early Life of a Peptide Cation-Radical. Ground and Excited-State Trajectories of Electron-Based Peptide Dissociations During the First 330 Femtoseconds

    NASA Astrophysics Data System (ADS)

    Moss, Christopher L.; Liang, Wenkel; Li, Xiaosong; Tureček, František

    2012-03-01

    We report a new approach to investigating the mechanisms of fast peptide cation-radical dissociations based on an analysis of time-resolved reaction progress by Ehrenfest dynamics, as applied to an Ala-Arg cation-radical model system. Calculations of stationary points on the ground electronic state that were carried out with effective CCSD(T)/6-311++G(3df,2p) could not explain the experimental branching ratios for loss of a hydrogen atom, ammonia, and N-Cα bond dissociation in (AR + 2H)+●. The Ehrenfest dynamics results indicate that the ground and low-lying excited electronic states of (AR + 2H)+● follow different reaction courses in the first 330 femtoseconds after electron attachment. The ground ( X) state undergoes competing loss of N-terminal ammonia and isomerization to an aminoketyl radical intermediate that depend on the vibrational energy of the charge-reduced ion. The A and B excited states involve electron capture in the Arg guanidine and carboxyl groups and are non-reactive on the short time scale. The C state is dissociative and progresses to a fast loss of an H atom from the Arg guanidine group. Analogous results were obtained by using the B3LYP and CAM-B3LYP density functionals for the excited state dynamics and including the universal M06-2X functional for ground electronic state calculations. The results of this Ehrenfest dynamics study indicate that reaction pathway branching into the various dissociation channels occurs in the early stages of electron attachment and is primarily determined by the electronic states being accessed. This represents a new paradigm for the discussion of peptide dissociations in electron based methods of mass spectrometry.

  13. Molecular Level Understanding of Interfaces and Excited State Electronic Structure in Organic Solar Cells Using Soft X-ray Techniques

    NASA Astrophysics Data System (ADS)

    Gliboff, Matthew

    between structure and performance in active layer polymers for organic electronics is not yet well understood. To gain insight into the effect of the excited state electronic structure on device performance, we examine two similar donor-acceptor polymers: PCPDTBT and PCDTBT, which produce devices with internal quantum efficiency (IQE) of 70% and 100% respectively. We use time-dependent density functional theory (TD-DFT) in combination with near edge x-ray absorption fine structure (NEXAFS) and resonant Auger spectroscopy to predict the electronic structure of the lowest unoccupied molecular orbital (LUMO). The resonant Auger results are found to be independent of film morphology and likely dominated by monomer structure. We show that the degree of LUMO localization onto the benzothiadiazole acceptor group in each polymer is similar, indicating that that the differences in IQE between these two polymers are driven by larger-scale morphology and not explained by the electronic structure of the excited state.

  14. Nonadiabatic molecular dynamics simulations of correlated electrons in solution. 1. Full configuration interaction (CI) excited-state relaxation dynamics of hydrated dielectrons.

    PubMed

    Larsen, Ross E; Schwartz, Benjamin J

    2006-05-18

    The hydrated dielectron is composed of two excess electrons dissolved in liquid water that occupy a single cavity; in both its singlet and triplet spin states there is a significant exchange interaction so the two electrons cannot be considered to be independent. In this paper and the following paper,we present the results of mixed quantum/classical molecular dynamics simulations of the nonadiabatic relaxation dynamics of photoexcited hydrated dielectrons, where we use full configuration interaction (CI) to solve for the two-electron wave function at every simulation time step. To the best of our knowledge, this represents the first systematic treatment of excited-state solvation dynamics where the multiple-electron problem is solved exactly. The simulations show that the effects of exchange and correlation contribute significantly to the relaxation dynamics. For example, spin-singlet dielectrons relax to the ground state on a time scale similar to that of single electrons excited at the same energy, but spin-triplet dielectrons relax much faster. The difference in relaxation dynamics is caused by exchange and correlation: The Pauli exclusion principle imposes very different electronic structure when the electrons' spins are singlet paired than when they are triplet paired, altering the available nonadiabatic relaxation pathways. In addition, we monitor how electronic correlation changes dynamically during nonadiabatic relaxation and show that solvent dynamics cause electron correlation to evolve quite differently for singlet and triplet dielectrons. Despite such differences, our calculations show that both spin states are stable to excited-state dissociation, but that the excited-state stability has different origins for the two spin states. For singlet dielectrons, the stability depends on whether the solvent structure can rearrange to create a second cavity before the ground state is reached. For triplet dielectrons, in contrast, electronic correlation ensures

  15. Ethyne-bridged (porphinato)zinc(II)-(porphinato)iron(III) complexes: phenomenological dependence of excited-state dynamics upon (porphinato)iron electronic structure.

    PubMed

    Duncan, Timothy V; Wu, Sophia P; Therien, Michael J

    2006-08-16

    We report the synthesis, spectroscopy, potentiometric properties, and excited-state dynamical studies of 5-[(10,20-di-((4-ethyl ester)methylene-oxy)phenyl)porphinato]zinc(II)-[5'-[(10',20'- di-((4-ethyl ester)methylene-oxy)phenyl)porphinato]iron(III)-chloride]ethyne (PZn-PFe-Cl), along with a series of related supermolecules ([PZn-PFe-(L)1,2]+ species) that possess a range of metal axial ligation environments (L = pyridine, 4-cyanopyridine, 2,4,6-trimethylpyridine (collidine), and 2,6-dimethylpyridine (2,6-lutidine)). Relevant monomeric [(porphinato)iron-(ligand)1,2]+ ([PFe(L)1,2]+) benchmarks have also been synthesized and fully characterized. Ultrafast pump-probe transient absorption spectroscopic experiments that interrogate the initially prepared electronically excited states of [PFe(L)1,2]+ species bearing nonhindered axial ligands demonstrated subpicosecond-to-picosecond relaxation dynamics to the ground electronic state. Comparative pump-probe transient absorption experiments that interrogate the initially prepared excited states of PZn-PFe-Cl, [PZn-PFe-(py)2]+, [PZn-PFe-(4-CN-py)2]+, [PZn-PFe-(collidine)]+, and [PZn-PFe-(2,6-lutidine)]+ demonstrate that the spectra of all these species are dominated by a broad, intense NIR S1 --> Sn transient absorption manifold. While PZn-PFe-Cl, [PZn-PFe-(py)2]+, and [PZn-PFe-(4-CN-py)2]+ evince subpicosecond and picosecond time-scale relaxation of their respective initially prepared electronically excited states to the ground state, the excited-state dynamics observed for [PZn-PFe-(2,6-lutidine)]+ and [PZn-PFe-(collidine)]+ show fast relaxation to a [PZn+-PFe(II)] charge-separated state having a lifetime of nearly 1 ns. Potentiometric data indicate that while DeltaGCS for [PZn-PFe-(L)1,2]+ species is strongly influenced by the PFe+ ligation state [ligand (DeltaGCS): 4-cyanopyridine (-0.79 eV) < pyridine (-1.04 eV) < collidine (-1.35 eV) < chloride (-1.40 eV); solvent = CH2Cl2], the pump-probe transient absorption

  16. Vibrational and electronic excitations in gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Bayle, Maxime; Combe, Nicolas; Sangeetha, Neralagatta M.; Viau, Guillaume; Carles, Robert

    2014-07-01

    An experimental analysis of all elementary excitations - phonons and electron-holes - in gold nanocrystals has been performed using plasmon resonance Raman scattering. Assemblies of monodisperse, single-crystalline gold nanoparticles, specific substrates and specific experimental configurations have been used. Three types of excitations are successively analyzed: collective quasi-acoustical vibrations of the particles (Lamb's modes), electron-hole excitations (creating the so-called ``background'' in surface-enhanced Raman scattering) and ensembles of atomic vibrations (``bulk'' phonons). The experimental vibrational density of states extracted from the latter contribution is successfully compared with theoretical estimations performed using atomic simulations. The dominant role of surface atoms over the core ones on lattice dynamics is clearly demonstrated. Consequences on the thermodynamic properties of nanocrystals such as the decrease of the characteristic Debye temperature are also considered.

  17. Optically excited states in positronium

    NASA Technical Reports Server (NTRS)

    Howell, R. H.; Ziock, Klaus P.; Magnotta, F.; Dermer, Charles D.; Failor, R. A.; Jones, K. M.

    1990-01-01

    Optical excitation are reported of the 1 3S-2 3P transition in positronium, and a second excitation from n=2 to higher n states. The experiment used light from two pulsed dye lasers. Changes in the positronium annihilation rate during and after the laser pulse were used to deduce the excited state populations. The n=2 level was found to be saturable and excitable to a substantial fraction of n=2 positronium to higher levels. Preliminary spectroscopic measurements were performed on n=14 and n=15 positronium.

  18. Quantitative treatment of the effect of solvent on the electronic absorption and fluorescence spectra of substituted coumarins: Evaluation of the first excited singlet-state dipole moments.

    PubMed

    Aaron, J J; Buna, M; Parkanyi, C; Antonious, M S; Tine, A; Cisse, L

    1995-12-01

    The electronic absorption and fluorescence spectra of coumarin and 11 substituted coumarins were measured in several solvents (dioxane, ethyl ether, ethyl acetate, ethanol, dimethylformamide, acetonitrile, and dimethyl sulfoxide). Ground-state dipole moments were determined in dioxane at 298 K. The results were used to obtain the first excited singlet-state dipole moments of the coumarins under study by the solvatochromic shift method (Bakhshiev, Kawski-Chamma-Viallet, McRae, and Suppan correlations). Also, the ground- and the first excited singlet-state dipole moments were calculated using a combination of the PPP method (π-contribution) and the vector sum of the σ-bond and group moments (σ-contribution). In general, the first excited singlet-state dipole moments of the coumarins are noticeably higher than the corresponding ground-state values, indicating a substantial redistribution of theπ-electron densities resulting in a more polar excited state. There is a reasonably good agreement between the calculated and the experimental dipole moments.

  19. Solvent Effects on the Electronic Absorption and Fluorescence Spectra of HNP: Estimation of Ground and Excited State Dipole Moments.

    PubMed

    Desai, Vani R; Hunagund, Shirajahammad M; Basanagouda, Mahantesha; Kadadevarmath, Jagadish S; Sidarai, Ashok H

    2016-07-01

    We report the effect of solvents on absorption and fluorescence spectra of biologically active 3(2H)-pyridazinone namely 5-(2-hydroxy-naphthalen-1-yl)-2-phenyl-2H-pyridazin-3-one (HNP) in different solvents at room temperature. The ground and the excited state dipole moments of HNP molecule was estimated from Lippert's, Bakshiev's and Kawski-Chamma-Viallet's equations using the solvatochromic shift method. The ground state dipole moment (μ g ) was also estimated by Guggenheim and Higasi method using the dielectric constant and refractive index of solute at different concentrations, the μ g value obtained from these two methods are comparable to the μ g value obtained by the solvatochromic shift method. The excited state dipole moment (μ e ) is greater than the ground state dipole moment (μ g ), which indicates that the excited state is more polar than the ground state. Further, we have evaluated the change in dipole moment (Δμ) from the solvatochromic shift method and on the basis of molecular-microscopic solvent polarity parameter[Formula: see text], later on the values were compared.

  20. Electronic and Nuclear Factors in Charge and Excitation Transfer

    SciTech Connect

    Piotr Piotrowiak

    2004-09-28

    We report the and/or state of several subprojects of our DOE sponsored research on Electronic and Nuclear Factors in Electron and Excitation Transfer: (1) Construction of an ultrafast Ti:sapphire amplifier. (2) Mediation of electronic interactions in host-guest molecules. (3) Theoretical models of electrolytes in weakly polar media. (4) Symmetry effects in intramolecular excitation transfer.

  1. Constrained Variational Response to Fock-Space Multi-Reference Coupled-Cluster Theory: Formulation for Excited-State Electronic Structure Calculations and Some Pilot Applications

    NASA Astrophysics Data System (ADS)

    Manohar, Prashant Uday; Pal, Sourav

    2007-11-01

    Fock-space (FS) multi-reference (MR) coupled-cluster (CC) method has emerged as compact tool to account for electronic structure of open-shell systems and molecules in low-lying excited states. Development of linear response (LR) has been one of the challenging problems in FSMRCC due to multiple-root nature of effective Hamiltonian. The recently developed constrained variational approach (CVA) has opened up a promising tool for efficient evaluation of analytic response properties. In this article, we present formulation of the method for excited state calculations. We discuss the decoupling of equations as a result of spin-adaptation and present some preliminary results for analytical dipole moments and polarizabilities of some molecules in low-lying triplet excited states.

  2. Electron impact excitation of the electronic states of N2. III - Transitions in the 12.5-14.2-eV energy-loss region at incident energies of 40 and 60 eV

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Trajmar, S.; Cartwright, D. C.

    1977-01-01

    Analysis of electron energy-loss data at incident electron energies of 40 and 60 eV has led to the determination of normalized absolute differential cross sections for electron-impact excitation of five optically-allowed singlet states, two known triplet states, and two unknown triplet-like states of N2, lying in the energy-loss range 12.5-14.2 eV. The range of scattering angles was 5 to 138 deg. The optically allowed transitions and the known triplet excitations are identified. Cross sections for excitation to two unidentified triplet-like states at 13.155 and 13.395 eV were also obtained. The relationship of the generalized oscillator strength for the dipole-allowed states obtained from the described data to known optical oscillator strengths is discussed.

  3. Application of the Schwinger multichannel formulation to electron-impact excitation of the b 3Sigma(+) state of CO

    NASA Technical Reports Server (NTRS)

    Weatherford, Charles A.; Huo, Winifred M.

    1990-01-01

    The Chi 1Sigma - b 3Sigma(+) transition of CO is described using the Schwinger multichannel method in the two-state approximation, in an energy range from threshold to 20 eV. The resonance structure is analyzed by performing a partial-wave decomposition and the resonance positions are established based on the typical discontinuous behavior in the K-matrix elements as well as the pi radian change in the partial-wave eigenphases. The resonance behavior is related to the concept of core-excited resonances and the 'grandparent' model of resonances. The results are related to the formation of the negative ion by carrying out bound-state calculations on the (5 sigma)(3 s sigma)-squared core-excited Rydberg state of CO(-), and the position is found to agree well with the low-energy resonance positions.

  4. Hydrogen bonding and reactivity of water to azines in their S1 (n,π*) electronic excited states in the gas phase and in solution.

    PubMed

    Reimers, Jeffrey R; Cai, Zheng-Li

    2012-07-07

    A unified picture is presented of water interacting with pyridine, pyridazine, pyrimidine, and pyrazine on the S(1) manifold in both gas-phase dimers and in aqueous solution. As (n,π*) excitation to the S(1) state removes electrons from the ground-state hydrogen bond, this analysis provides fundamental understanding of excited-state hydrogen bonding. Traditional interpretations view the excitation as simply breaking hydrogen bonds to form dissociated molecular products, but reactive processes such as photohydrolysis and excited-state proton coupled electron transfer (PCET) are also possible. Here we review studies performed using equations-of-motion coupled-cluster theory (EOM-CCSD), multireference perturbation theory (CASPT2), time-dependent density-functional theory (TD-DFT), and excited-state Monte Carlo liquid simulations, adding new results from symmetry-adapted-cluster configuration interaction (SAC-CI) and TD-DFT calculations. Invariably, gas-phase molecular dimers are identified as stable local minima on the S(1) surface with energies less than those for dissociated molecular products. Lower-energy biradical PCET minima are also identified that could lead to ground-state recombination and hence molecular dissociation, dissociation into radicals or ions, or hydration reactions leading to ring cleavage. For pyridine.water, the calculated barriers to PCET are low, suggesting that this mechanism is responsible for fluorescence quenching of pyridine.water at low energies rather than accepted higher-energy Dewar-benzene based "channel three" process. Owing to (n,π*) excitation localization, much higher reaction barriers are predicted for the diazines, facilitating fluorescence in aqueous solution and predicting that the as yet unobserved fluorescence from pyridazine.water and pyrimidine.water should be observable. Liquid simulations based on the assumption that the solvent equilibrates on the fluorescence timescale quantitatively reproduce the observed spectral

  5. Study of intermediates from transition metal excited-state electron-transfer reactions. Progress report, August 1, 1989--December 31, 1991

    SciTech Connect

    Hoffman, M.Z.

    1991-12-31

    During this period, conventional and fast-kinetics techniques of photochemistry, photophysics, radiation chemistry, and electrochemistry were used for the characterization of the intermediates that are involved in transition metal excited-state electron-transfer reactions. The intermediates of interest were the excited states of Ru(II) and Cr(III) photosensitizers, their reduced forms, and the species formed in the reactions of redox quenchers and electron-transfer agents. Of particular concern has been the back electron-transfer reaction between the geminate pair formed in the redox quenching of the photosensitizers, and the dependence of its rate on solution medium and temperature in competition with transformation and cage escape processes.

  6. Dissociative excitation of the B/sup 2/. sigma. /sup +//sub 1/2/ states of mercury monohalides by electron impact

    SciTech Connect

    Malinin, A.N.; Shuaibov, A.K.; Shevera, V.S.

    1983-07-01

    An investigation was made of the process of excitation of HgCl/sub 2/, HgBr/sub 2/, and HgI/sub 2/ molecules by electron impact producing B/sup 2/..sigma../sup +//sub 1/2/ states of HgCl*, HgBr*, and HgI*. The maximum values of the cross sections for dissociative excitation were found at low electron energies; the values of these cross sections were sigma = (6 +- 3) x 10/sup -18/, (7.5 +- 3) x 10/sup -17/, and (1.2 +- 0.6) x 10/sup -17/ cm/sup 2/ for HgCl*, HgBr*, and HgI*, respectively. The role of such dissociative excitation in lasing was analyzed.

  7. Photophysical properties and thermochromic shifts of electronic spectra of Nile Red in selected solvents. Excited states dipole moments

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2009-05-01

    Photophysical parameters, the rate constants for radiative ( kF) and nonradiative ( kIC) for Nile Red (NR) in aprotic polar solvents incapable of hydrogen bonding with NR have been determined. No regular polarity dependence on kIC were observed in contrast to other authors. The effect of temperature on absorption and fluorescence spectra of NR in two selected solvents: ethyl acetate and 1,2-dichloroethane was studied and the electric dipole moment in the excited state S 1 was determined using the Bilot and Kawski theory [L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621, L. Bilot, A. Kawski, Z. Naturforsch. 18a (1963) 10, 256]. For the previously obtained dipole moment in the ground state μg = 8.2 D [A. Kawski, P. Bojarski, B. Kukliński, Chem. Phys. Lett. 463 (2008) 410] the change from thermochromic measurements upon excitation of NR is equal to Δ μ = μe - μg = 1.75 ± 0.5 D and is in good agreement with the value Δ μ = 1.8 ± 1 D from solvatochromic method. A comparison of the obtained Δ μ value with those of other authors is given and discussed. It has been concluded that the difference between the excited μe and ground μg state dipole moments for NR is too small to create a TICT state.

  8. Vibrationally-resolved spectroscopic studies of electronically excited states of 1,8-naphthalic anhydride and 1,8-naphthalimide: a delicate interplay between one ππ* and two nπ* states.

    PubMed

    Maltseva, Elena; Amirjalayer, Saeed; Buma, Wybren Jan

    2017-02-22

    The spectroscopic and dynamic properties of the lower electronically excited states of 1,8-naphthalic anhydride and 1,8-naphthalimide have been studied in supersonically cooled molecular beams using nanosecond Resonance Enhanced MultiPhoton Ionization (REMPI) spectroscopic techniques in combination with quantum chemical calculations. The excitation spectra of these compounds show near - and even below - the apparent 0-0 transition to a strongly allowed electronic state, previously assigned as the S1(2(1)A1(ππ*)) state, a plethora of vibronic transitions that cannot simply be rationalized in terms of the Franck-Condon vibronic activity of that particular state. Instead, it is shown that the (1)B1(nπ*) state, which was previously reported to be S3 for vertical excitation, is adiabatically the lowest excited singlet state. Interactions between this 'dark' state and the 'bright' 2(1)A1(ππ*) state lead to intensity borrowing of transitions to 'dark' state levels that thus show up in the excitation spectra. A complicating factor is that, apart from the coupling of these two singlet states, a relatively strong spin-orbit coupling between the 2(1)A1(ππ*) and (3)B1(nπ*) states is also present. We show that the latter state has a slightly higher adiabatic excitation energy than the former state in 1,8-naphthalic anhydride but lies energetically below the 2(1)A1(ππ*) state in 1,8-naphthalimide. Concurrently, we find that the decay dynamics of the excited states of 1,8-naphthalimide are entirely dominated by intersystem crossing, while in 1,8-naphthalic anhydride both internal conversion to the ground state and intersystem crossing occur, albeit the former loses importance once the excitation energy exceeds that of the (3)B1(nπ*) state.

  9. High temperature electronic excitation and ionization rates in gases

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick

    1991-01-01

    The relaxation times for electronic excitation due to electron bombardment of atoms was found to be quite short, so that electron kinetic temperature (T sub e) and the electron excitation temperature (T asterisk) should equilibrate quickly whenever electrons are present. However, once equilibrium has been achieved, further energy to the excited electronic states and to the kinetic energy of free electrons must be fed in by collisions with heavy particles that cause vibrational and electronic state transitions. The rate coefficients for excitation of electronic states produced by heavy particle collision have not been well known. However, a relatively simple semi-classical theory has been developed here which is analytic up to the final integration over a Boltzmann distribution of collision energies; this integral can then be evaluated numerically by quadrature. Once the rate coefficients have been determined, the relaxation of electronic excitation energy can be evaluated and compared with the relaxation rates of vibrational excitation. Then the relative importance of these two factors, electronic excitation and vibrational excitation by heavy particle collision, on the transfer of energy to free electron motion, can be assessed.

  10. Modulation of the excited state intramolecular electron transfer reaction and dual fluorescence of crystal violet lactone in room temperature ionic liquids.

    PubMed

    Santhosh, Kotni; Samanta, Anunay

    2010-07-22

    The influence of polarity, viscosity, and hydrogen bond donating ability of the medium on the fluorescence behavior of crystal violet lactone (CVL), which undergoes excited state electron transfer reaction and exhibits dual fluorescence from two different electronic states, termed as CT(A) and CT(B), has been studied in six different room temperature ionic liquids (ILs) using steady state and time-resolved emission techniques. It is shown that the excited state CT(A) --> CT(B) transformation and dual fluorescence of CVL can be controlled by appropriate choice of the ILs. While dual fluorescence of CVL is clearly observed in pyrrolidinium IL, the molecule exhibits a single fluorescence band in ammonium IL. While the second emission from the CT(B) state can barely be seen in 1,3-dialkylimidazolium ILs, dual fluorescence is quite prominent in 1-butyl-2,3-dimethylimidazolium IL, [bmMim][Tf(2)N]. These contrasting results have been explained taking into account the hydrogen bonding interactions of the 1,3-dialkylimidazolium ions (mediated through the C(2)-hydrogen) with CVL and the viscosity of the ILs. The excited state CT(A) --> CT(B) reaction kinetics has been studied in IL by monitoring the time-evolution of the CT(B) emission in [bmMim][Tf(2)N]. The solvation dynamics in this IL has been studied by following the dynamic fluorescence Stokes shift of C153, which is used as a probe molecule. A comparison of the excited state reaction time and solvation time suggests that the rate of the CT(A) --> CT(B) reaction in moderately viscous ILs is primarily dictated by the rate of solvation. Very little or negligible excitation wavelength dependence of the emission behavior of CVL can be observed in these ILs.

  11. Electronic excitations in fast ion-solid collisions

    SciTech Connect

    Burgdoerfer, J. . Dept. of Physics and Astronomy Oak Ridge National Lab., TN )

    1990-01-01

    We review recent developments in the study of electronic excitation of projectiles in fast ion-solid collisions. Our focus will be primarily on theory but experimental advances will also be discussed. Topics include the evidence for velocity-dependent thresholds for the existence of bound states, wake-field effects on excited states, the electronic excitation of channeled projectiles, transport phenomena, and the interaction of highly charged ions with surfaces. 44 refs., 14 figs.

  12. Electronic Structure and Excited-State Dynamics of an Arduengo-Type Carbene and its Imidazolone Oxidation Product.

    PubMed

    Schmitt, Hans-Christian; Flock, Marco; Welz, Eileen; Engels, Bernd; Schneider, Heidi; Radius, Udo; Fischer, Ingo

    2017-03-02

    We describe an investigation of the excited-state dynamics of isolated 1,3-di-tert-butyl-imidazoline-2-ylidene (tBu2 Im, C11 H20 N2 , m/z=180), an Arduengo-type carbene, by time- and frequency-resolved photoionization using a picosecond laser system. The energies of several singlet and triplet excited states were calculated by time-dependent density functional theory (TD-DFT). The S1 state of the carbene deactivates on a 100 ps time scale possibly by intersystem crossing. In the experiments we observed an additional signal at m/z=196, that was assigned to the oxidation product 1,3-di-tert-butyl-imidazolone, tBu2 ImO. It shows a well-resolved resonance-enhanced multiphoton ionization (REMPI) spectrum with an origin located at 36951 cm(-1) . Several low-lying vibrational bands could be assigned, with a lifetime that depends strongly on the excitation energy. At the origin the lifetime is longer than 3 ns, but drops to 49 ps at higher excess energies. To confirm formation of the imidazolone we also performed experiments on benzimidazolone (BzImO) for comparison. Apart from a redshift for BzImO the spectra of the two compounds are very similar. The TD-DFT values display a very good agreement with the experimental data.

  13. Excitation of the \\tilde{a}\\,^3B_1 and \\tilde{A}\\,^1B_1 states of H2O by low-energy electron impact

    NASA Astrophysics Data System (ADS)

    Hargreaves, L.; Ralphs, K.; Serna, G.; Khakoo, M. A.; Winstead, C.; McKoy, V.

    2012-10-01

    We report measured and calculated differential cross-sections for inelastic scattering of low-energy electrons by water leading to excitation of the dissociative (1b1 → 4a1) 1, 3B1 states. The measurements were taken using conventional energy-loss spectroscopy at incident energies of 9, 10, 12, 15, and 20 eV for scattering angles from 10° to 130°. The calculations were carried out using the Schwinger multichannel method, with a Born-dipole correction applied in the singlet excitation channel. Integral excitation cross sections for the \\tilde{a}\\,^3B_1 and \\tilde{A}\\,^1B_1 states are also derived from the differential cross section results.

  14. Probing charge transfer in benzodifuran-C60 dumbbell-type electron donor-acceptor conjugates: ground- and excited-state assays.

    PubMed

    Li, Hui; Schubert, Christina; Dral, Pavlo O; Costa, Rubén D; La Rosa, Andrea; Thüring, Jürg; Liu, Shi-Xia; Yi, Chenyi; Filippone, Salvatore; Martín, Nazario; Decurtins, Silvio; Clark, Timothy; Guldi, Dirk M

    2013-09-16

    Rigid electron donor-acceptor conjugates (1-3) that combine π-extended benzodifurans as electron donors and C60 molecules as electron acceptors with different linkers have been synthesized and investigated with respect to intramolecular charge-transfer events. Electrochemistry, fluorescence, and transient absorption measurements revealed tunable and structure-dependent charge-transfer processes in the ground and excited states. Our experimental findings are underpinned by density-functional theory calculations. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Role of the electronic excited-state hydrogen bonding in the nitro-explosives detection by [Zn2(oba)2(bpy)

    NASA Astrophysics Data System (ADS)

    Wang, Peipei; Song, Xuedan; Zhao, Zhengyan; Liu, Lei; Mu, Wensheng; Hao, Ce

    2016-09-01

    This paper investigates the luminescent properties of luminescent metal-organic framework (LMOF) [Zn2(oba)2(bpy)], and its selectivity for the detection of nitro-explosives via fluorescence quenching, using the density functional and time-dependent density functional theories. The luminescent mechanism of the LMOF follows the electron transfer from ligand to ZnO quantum dot. The hydrogen bondings formed between LMOF and electron-withdrawing nitro-explosives as well as electron-donating aromatic compounds have different influences on the luminescent mechanism of the LMOF. The hydrogen bonding in the excited state was investigated to display the relationship between hydrogen bonding and fluorescence.

  16. Electron paramagnetic resonance of the excited triplet state of metal-free and metal-substituted cytochrome c.

    PubMed Central

    Angiolillo, P J; Vanderkooi, J M

    1995-01-01

    The photoactivated metastable triplate states of the porphyrin (free-base, i.e., metal-free) zinc and tin derivatives of horse cytochrome c were investigated using electron paramagnetic resonance. Zero-field splitting parameters, line shape, and Jahn-Teller distortion in the temperature range 3.8-150 K are discussed in terms of porphyrin-protein interactions. The zero-field splitting parameters D for the free-base, Zn and Sn derivatives are 465 x 10(-4), 342 x 10(-4) and 353 x 10(-4) cm-1, respectively, and are temperature invariant over the temperature ranges studied. AN E value at 4 K of 73 x 10(-4) cm-1 was obtained for Zn cytochrome c, larger than any previously found for Zn porphyrins derivatives of hemeproteins, showing that the heme site of cytochrome c imposes an asymmetric field. Though the E value for Zn cytochrome c is large, the geometry of the site appears quite constrained, as indicated by a spectral line shape showing a single species. Intersystem crossing occurred predominantly to the T2 > zero-field spin sublevel. EPR line shape changes with respect to temperature of Zn cyt c are interpreted in terms of vibronic coupling, and a maximum Jahn-Teller crystal-field splitting of approximately 180 cm-1 is obtained. Sn cytochrome c in comparison with the Zn protein exhibits a photoactivated triplet line shape that is less well resolved in the X-Y region. The magnitude of E value is approximately 60 x 10(-4) cm-1 at 4 K; its value rapidly tends toward zero with increasing temperature, from which a value for the Jahn-Teller crystal-field splitting of > or = 40 cm-1 is estimated. In contrast to those for the metal cytochromes, the magnitude of E value for the free-base derivative was essentially zero at all temperatures studied. This finding is discussed as a consequence of an excited-state tautomerization process that occurs even at 4 K. PMID:7647253

  17. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging

    DOE PAGES

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; ...

    2017-07-04

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. In this paper, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH3NH3PbI3–xClx) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysismore » revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. Finally, these results show that PL probes effectively the species near or at the film surface.« less

  18. Nuclear excitation by electronic transition of 235U

    DOE PAGES

    Chodash, P. A.; Norman, E. B.; Burke, J. T.; ...

    2016-03-11

    Here, nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that can occur in isotopes containing a low-lying nuclear excited state. Over the past 40 yr, several experiments have attempted to measure NEET of 235U and those experiments have yielded conflicting results.

  19. The mechanism of electronic excitation in the bacterial bioluminescent reaction

    NASA Astrophysics Data System (ADS)

    Nemtseva, E. V.; Kudryasheva, N. S.

    2007-01-01

    The current state of the problem of formation of the electron-excited product in the chemiluminescent reaction that underlies the bacterial luminescence is analysed. Various schemes of chemical transformations capable of producing a bacterial bioluminescence emitter are presented. The problem of excitation of secondary emitters is considered; two possible mechanisms of their excitation are analysed.

  20. Time-dependent density functional theory study on the electronic excited-state hydrogen bonding of the chromophore coumarin 153 in a room-temperature ionic liquid.

    PubMed

    Wang, Dandan; Hao, Ce; Wang, Se; Dong, Hong; Qiu, Jieshan

    2012-03-01

    In the present work, in order to investigate the electronic excited-state intermolecular hydrogen bonding between the chromophore coumarin 153 (C153) and the room-temperature ionic liquid N,N-dimethylethanolammonium formate (DAF), both the geometric structures and the infrared spectra of the hydrogen-bonded complex C153-DAF(+) in the excited state were studied by a time-dependent density functional theory (TDDFT) method. We theoretically demonstrated that the intermolecular hydrogen bond C(1) = O(1)···H(1)-O(3) in the hydrogen-bonded C153-DAF(+) complex is significantly strengthened in the S(1) state by monitoring the spectral shifts of the C=O group and O-H group involved in the hydrogen bond C(1) = O(1)···H(1)-O(3). Moreover, the length of the hydrogen bond C(1) = O(1)···H(1)-O(3) between the oxygen atom and hydrogen atom decreased from 1.693 Å to 1.633 Å upon photoexcitation. This was also confirmed by the increase in the hydrogen-bond binding energy from 69.92 kJ mol(-1) in the ground state to 90.17 kJ mol(-1) in the excited state. Thus, the excited-state hydrogen-bond strengthening of the coumarin chromophore in an ionic liquid has been demonstrated theoretically for the first time.

  1. Electron spin polarization transfer to the charge-separated state from locally excited triplet configuration: theory and its application to characterization of geometry and electronic coupling in the electron donor-acceptor system.

    PubMed

    Kobori, Yasuhiro; Fuki, Masaaki; Murai, Hisao

    2010-11-18

    We present a theoretical model of analysis of the time-resolved electron paramagnetic resonance (TREPR) spectrum of the charge-separated (CS) state generated by the photoinduced electron transfer (ET) reaction via the locally excited triplet state in an electron donor-acceptor (D-A) system with a fixed molecular orientation. We show, by the stochastic-Liouville equation, that chemically induced dynamic electron polarization (CIDEP) of the triplet mechanism is explained by lack of transfer of quantum coherence terms in the primary triplet spin state, resulting in net emissive or absorptive electron spin polarization (ESP) which is dependent on anisotropy of the singlet-triplet intersystem crossing in the precursor excited state. This disappearance of the coherence is clearly shown to occur when the photoinduced ET rate is smaller than the angular frequency of the Zeeman splitting: the transferred coherence terms are averaged to be zero due to effective quantum oscillations during the time that the chemical reaction proceeds. The above theory has been applied to elucidate the molecular geometries and spin-spin exchange interactions (2J) of the CS states for both folded and extended conformers by computer simulations of TREPR spectra of the zinc porphyrin-fullerene dyad (ZnP-C(60)) bridged by diphenyldisilane. On the extended conformation, the electronic coupling is estimated from the 2J value. It has been revealed that the coupling term is smaller than the reported electronic interactions of the porphyrin-C(60) systems bridged by diphenylamide spacers. The difference in the electronic couplings has been explained by the difference in the LUMO levels of the bridge moieties that mediate the superexchange coupling for the long-range ET reaction.

  2. Electron-impact excitation of the singlet states of N2. I - The Birge-Hopfield system /b 1 pi u - X 1 Sigma g +/. [in auroral zones

    NASA Technical Reports Server (NTRS)

    Zipf, E. C.; Gorman, M. R.

    1980-01-01

    Results of a study of the electron-impact excitation of the b 1 pi u state of N2, one of the singlet states thought to be excited by precipitating electrons in the auroral zones, and of its predissociation and radiative relaxation through the emission of the Birge-Hopfield band system (b 1 pi u - X 1 Sigma g +) are presented. A collimated electron beam was passed through N2 gas producing a variety of atomic states through dissociative excitation, and the radiation resulting from relaxation of these states was observed by VUV and visible-IR monochromators. Absolute emission cross sections for 11 Birge-Hopfield bands are obtained for energies from threshold to 500 eV, and used to calculate the absolute transition probabilities for BH(1, v-prime) bands and the variation of the electric dipole moment with internuclear distance. With the exception of the v-prime equals 1, 5 and 6 vibrational levels, all b 1 pi u levels are found to predissociate with a specific predissociation branching ratio greater than 0.99, representing a major source of nitrogen atoms.

  3. Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations.

    PubMed

    Usman, Muhammad; Tan, Yui-Hong Matthias; Ryu, Hoon; Ahmed, Shaikh S; Krenner, Hubert J; Boykin, Timothy B; Klimeck, Gerhard

    2011-08-05

    Atomistic electronic structure calculations are performed to study the coherent inter-dot couplings of the electronic states in a single InGaAs quantum dot molecule. The experimentally observed excitonic spectrum by Krenner et al (2005) Phys. Rev. Lett. 94 057402 is quantitatively reproduced, and the correct energy states are identified based on a previously validated atomistic tight binding model. The extended devices are represented explicitly in space with 15-million-atom structures. An excited state spectroscopy technique is applied where the externally applied electric field is swept to probe the ladder of the electronic energy levels (electron or hole) of one quantum dot through anti-crossings with the energy levels of the other quantum dot in a two-quantum-dot molecule. This technique can be used to estimate the spatial electron-hole spacing inside the quantum dot molecule as well as to reverse engineer quantum dot geometry parameters such as the quantum dot separation. Crystal-deformation-induced piezoelectric effects have been discussed in the literature as minor perturbations lifting degeneracies of the electron excited (P and D) states, thus affecting polarization alignment of wavefunction lobes for III-V heterostructures such as single InAs/GaAs quantum dots. In contrast, this work demonstrates the crucial importance of piezoelectricity to resolve the symmetries and energies of the excited states through matching the experimentally measured spectrum in an InGaAs quantum dot molecule under the influence of an electric field. Both linear and quadratic piezoelectric effects are studied for the first time for a quantum dot molecule and demonstrated to be indeed important. The net piezoelectric contribution is found to be critical in determining the correct energy spectrum, which is in contrast to recent studies reporting vanishing net piezoelectric contributions.

  4. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source.

    PubMed

    Chen, Lin X; Shelby, Megan L; Lestrange, Patrick J; Jackson, Nicholas E; Haldrup, Kristoffer; Mara, Michael W; Stickrath, Andrew B; Zhu, Diling; Lemke, Henrik; Chollet, Matthieu; Hoffman, Brian M; Li, Xiaosong

    2016-12-16

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(ii) tetramesitylporphyrin (NiTMP) were measured for optically excited states at a timescale from 100 fs to 50 ps, providing insight into its sub-ps electronic and structural relaxation processes. Importantly, a transient reduced state Ni(i) (π, 3dx(2)-y(2)) electronic state is captured through the interpretation of a short-lived excited state absorption on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of the electronic configuration on specific metal orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could influence d-orbital energies up to a few eV and any attempt to steer the reaction pathway should account for this to ensure that external energies can be used optimally in driving desirable processes. NiTMP structural evolution and the influence of the porphyrin macrocycle conformation on relaxation kinetics can be likewise inferred from this study.

  5. Imaging ultrafast excited state pathways in transition metal complexes by X-ray transient absorption and scattering using X-ray free electron laser source

    SciTech Connect

    Chen, Lin X.; Shelby, Megan L.; Lestrange, Patrick J.; Jackson, Nicholas E.; Haldrup, Kristoffer; Mara, Michael W.; Stickrath, Andrew B.; Zhu, Diling; Lemke, Henrik; Chollet, Matthieu; Hoffman, Brian M.; Li, Xiaosong

    2016-01-01

    This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(II) tetramesitylporphyrin (NiTMP) were successfully measured for optically excited state at a timescale from 100 fs to 50 ps, providing insight into its sub-ps electronic and structural relaxation processes. Importantly, a transient reduced state Ni(I) (π, 3dx2-y2) electronic state is captured through the interpretation of a short-lived excited state absorption on the low-energy shoulder of the edge, which is aided by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of electronic configuration on specific metal orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could influence d-orbital energies up to a few eV and any attempt to steer the reaction pathway should account for this to ensure that external energies can be used optimally in driving desirable processes. NiTMP structural evolution and the influence of the porphyrin macrocycle conformation on relaxation kinetics can be likewise inferred from this study.

  6. One electron oxidation potential as a predictor of rate constants of N-containing compounds with carbonate radical and triplet excited state organic matter.

    PubMed

    Arnold, William A

    2014-04-01

    Photo-generated transient species, such as the carbonate radical and triplet excited state natural organic matter, mediate the oxidation of pollutants in various sunlit or artificially irradiated systems. In this work, one-electron oxidation potentials for 70 nitrogen-containing compounds were computed, and literature data were used to develop quantitative structure-activity relationships (QSARs) for prediction of the second order reaction rate constants with these two oxidants. For carbonate radical, separate QSARs were necessary for compounds with and without resonance stabilization of the resulting radical, and predicted rate constants were, on average, within a factor of three of experimental values. With the limited data set available, results suggest that one-electron oxidation potential is also a viable descriptor variable for predictions of rate constants with triplet excited states.

  7. Quantitative treatment of the solvent effects on the electronic absorption and fluorescence spectra of acridines and phenazines. The ground and first excited singlet-state dipole moments

    NASA Astrophysics Data System (ADS)

    Aaron, Jean Jacques; Maafi, Mounir; Párkányi, Cyril; Boniface, Christian

    1995-04-01

    Electronic absorption and fluorescence excitation and emission spectra of four acridines (acridine, Acridine Yellow, 9-aminoacridine and proflavine) and three phenazines (phenazine, neutral Red and safranine) are determined at room temperature (298 K) in several solvents of various polarities (dioxane, chloroform, ethyl ether, ethyl acetate, 1-butanol, 2-propanol, ethanol, methanol, dimethylformamide, acetonitrile and dimethyl sulfoxide). The effect of the solvent upon the spectral characteristics of the above compounds, is studied. In combination with the ground-state dipole moments of these compounds, the spectral data are used to evaluate their first excited singlet-state dipole moments by means of the solvatochromic shift method (Bakhshiev's and Kawski-Chamma-Viallet's correlations). The theoretical ground and excited singlet-state dipole moments for acridines and phenazines are also calculated as a vector sum of the π-component (obtained by the PPP method) and the σ-component (obtained from σ-bond moments). For most acridines and phenazines under study, the experimental excited singlet-state dipole moments are found to be higher than their ground state counterpart. The application of the Kamlet-Abboud-Taft solvatochromic parameters to the solvent effect on spectral properties of acridine and phenazine derivatives is discussed.

  8. High-level ab initio studies of the electronic excited states of the hydroxyl radical and water-hydroxyl complex

    NASA Astrophysics Data System (ADS)

    Schofield, Daniel P.; Kjaergaard, Henrik G.

    2004-04-01

    The lowest-energy electronic transitions in the hydroxyl radical and the hydrogen bound complex H2OṡHO have been studied using ab initio methods. We have used the complete active-space self-consistent field and multireference configuration interaction (MRCI) methods to calculate vertical excitation energies and oscillator strengths. At the MRCI level the lowest-lying 2Σ+←2Π electronic transition is redshifted by about 2500 cm-1 upon formation of the H2OṡHO complex. We propose that this transition could be used to identify the complex in the gas phase, which in turn could be used to examine the role of H2OṡHO in atmospheric reactions.

  9. Atomic electron excitation probabilities during orbital electron capture by the nucleus

    NASA Technical Reports Server (NTRS)

    Crasemann, B.; Chen, M. H.; Briand, J. P.; Chevallier, P.; Chetioui, A.; Tavernier, M.

    1979-01-01

    Approximate probabilities of electron excitation (shakeup/shakeoff) from various atomic states during nuclear ns electron capture have been calculated in the sudden approximation, using Hartree-Fock wave functions. Total excitation probabilities are much lower than during inner-shell ionization by photons or electrons, and ns states are more likely to be excited than np states. This latter result is borne out by K-alpha X-ray satellite spectra.

  10. Temperature dependence of the hydrated electron's excited-state relaxation. II. Elucidating the relaxation mechanism through ultrafast transient absorption and stimulated emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Farr, Erik P.; Zho, Chen-Chen; Challa, Jagannadha R.; Schwartz, Benjamin J.

    2017-08-01

    The structure of the hydrated electron, particularly whether it exists primarily within a cavity or encompasses interior water molecules, has been the subject of much recent debate. In Paper I [C.-C. Zho et al., J. Chem. Phys. 147, 074503 (2017)], we found that mixed quantum/classical simulations with cavity and non-cavity pseudopotentials gave different predictions for the temperature dependence of the rate of the photoexcited hydrated electron's relaxation back to the ground state. In this paper, we measure the ultrafast transient absorption spectroscopy of the photoexcited hydrated electron as a function of temperature to confront the predictions of our simulations. The ultrafast spectroscopy clearly shows faster relaxation dynamics at higher temperatures. In particular, the transient absorption data show a clear excess bleach beyond that of the equilibrium hydrated electron's ground-state absorption that can only be explained by stimulated emission. This stimulated emission component, which is consistent with the experimentally known fluorescence spectrum of the hydrated electron, decreases in both amplitude and lifetime as the temperature is increased. We use a kinetic model to globally fit the temperature-dependent transient absorption data at multiple temperatures ranging from 0 to 45 °C. We find the room-temperature lifetime of the excited-state hydrated electron to be 137 ±40 fs, in close agreement with recent time-resolved photoelectron spectroscopy (TRPES) experiments and in strong support of the "non-adiabatic" picture of the hydrated electron's excited-state relaxation. Moreover, we find that the excited-state lifetime is strongly temperature dependent, changing by slightly more than a factor of two over the 45 °C temperature range explored. This temperature dependence of the lifetime, along with a faster rate of ground-state cooling with increasing bulk temperature, should be directly observable by future TRPES experiments. Our data also suggest

  11. Ab initio studies of excited electronic state S 2 of pyrazine and Franck-Condon simulation of its absorption spectrum

    NASA Astrophysics Data System (ADS)

    He, Rongxing; Zhu, Chaoyuan; Chin, Chih-Hao; Lin, Sheng Hsien

    2009-07-01

    The equilibrium geometry and 24 vibrational-normal-mode frequencies of the excited state S2(1B2u) of pyrazine are calculated and characterized using the complete active space self-consistent field method in the adiabatic representation. The displaced harmonic oscillator approximation is used to simulate the absorption spectrum of the S2(1B2u) state along with the Franck-Condon approximation. It is found that the totally symmetric mode ν1 plays the most important role and this exactly agrees with the experimental observations. The simulated absorption spectrum agrees well with those experimentally observed. This indicates that the present S2(1B2u) state calculated in the adiabatic representation effectively includes contribution from the diabatic vibronic coupling through the conical intersection.

  12. Targeting individual excited states in DMRG.

    NASA Astrophysics Data System (ADS)

    Dorando, Jonathan; Hachmann, Johannes; Kin-Lic Chan, Garnet

    2007-03-01

    The low-lying excited states of π-conjugated molecules are important for the development of novel devices such as lasers, light-emitting diodes, photovoltaic cells, and field-effect transistors [1,2]. The ab-intio Density Matrix Renormalization Group (DMRG) provides a powerful way to explore the electronic structure of quasi-one-dimensional systems such as conjugated organic oligomers. However, DMRG is limited to targeting only low-lying excited states through state-averaged DMRG (SDMRG). There are several drawbacks; state-averaging degrades the accuracy of the excited states and is limited to at most a few of the low-lying states [3]. In this study, we present a new method for targeting higher individual excited states. Due to progress in the field of numerical analysis presented by Van Der Horst and others [4], we are able to target individual excited states of the Hamiltonian. This is accomplished by modifying the Jacobi-Davidson algorithm via a ``Harmonic Ritz'' procedure. We will present studies of oligoacenes and polyenes that compare the accuracy of SDMRG and Harmonic Davidson DMRG. [1] Burroughes, et al. , Nature 347, 539 (1990). [2] Shirota, J. Mater. Chem. 10, 1, (2000). [3] Ramasesha, Pati, Krishnamurthy, Shuai, Bredas, Phys. Rev. B. 54, 7598, (1997). [4] Bai, Demmel, Dongarra, Ruhe, Van Der Horst, Templates for the Solution of Algebraic Eigenvalue Problems, SIAM, 2000.

  13. Effect of the chirality of residues and γ-turns on the electronic excitation spectra, excited-state reaction paths and conical intersections of capped phenylalanine-alanine dipeptides.

    PubMed

    Shemesh, Dorit; Domcke, Wolfgang

    2011-07-11

    The capped dipeptides Ac-L-Phe-Xxx-NH(2) , Xxx=L-Ala, D-Ala, Aib, where Aib (aminoisobutyric acid) is a non-chiral amino acid, have been investigated by means of UV/IR double-resonance spectroscopy in supersonic jets and density functional theory calculations by Gloaguen et al. [Phys. Chem. Chem. Phys. 2007, 9, 4491]. The UV and IR spectra of five different species were observed and their structures assigned by comparison with calculated vibrational frequencies in the NH-stretching region. The peptides with two chiral residues can form homochiral or heterochiral species. In addition, γ-turns exist as two helical forms (γ(D), γ(L)) of opposite handedness. Herein, we explore the excited-state potential-energy surfaces of these dipeptides with ab initio calculations. Vertical and adiabatic excitation energies, excited-state reaction paths and conical intersections are characterized with the ADC(2) propagator method. It is shown that electron/proton transfer along the hydrogen bond of the γ-turn gives rise to efficient radiationless deactivation of the (1)ππ* state of the chromophore via several conical intersections. While the homo/hetero chirality of the residues appears to have a negligible effect on the photophysical dynamics, we found evidence that the γ(L) conformers may have shorter excited-state lifetimes (and thus higher photostability) than the γ(D) conformers.

  14. Electronic Raman scattering with excitation between localized states observed in the zinc M{sub 2,3} soft x-ray spectra of ZnS

    SciTech Connect

    Zhou, L.; Callcott, T.A.; Jia, J.J.

    1997-04-01

    Zn M{sub 2,3} soft x-ray fluorescence (SXF) spectra of ZnS and ZnS{sub .5}Se{sub .5} excited near threshold show strong inelastic scattering effects that can be explained using a simple model and an inelastic scattering theory based on second order perturbation theory. This scattering is often called electronic resonance Raman scattering. Tulkki and Aberg have developed this theory in detail for atomic systems, but their treatment can be applied to solid systems by utilizing electronic states characteristic of solids rather than of atomic systems.

  15. Using a Spreadsheet to Solve the Schro¨dinger Equations for the Energies of the Ground Electronic State and the Two Lowest Excited States of H[subscript2

    ERIC Educational Resources Information Center

    Ge, Yingbin; Rittenhouse, Robert C.; Buchanan, Jacob C.; Livingston, Benjamin

    2014-01-01

    We have designed an exercise suitable for a lab or project in an undergraduate physical chemistry course that creates a Microsoft Excel spreadsheet to calculate the energy of the S[subscript 0] ground electronic state and the S[subscript 1] and T[subscript 1] excited states of H[subscript 2]. The spreadsheet calculations circumvent the…

  16. Using a Spreadsheet to Solve the Schro¨dinger Equations for the Energies of the Ground Electronic State and the Two Lowest Excited States of H[subscript2

    ERIC Educational Resources Information Center

    Ge, Yingbin; Rittenhouse, Robert C.; Buchanan, Jacob C.; Livingston, Benjamin

    2014-01-01

    We have designed an exercise suitable for a lab or project in an undergraduate physical chemistry course that creates a Microsoft Excel spreadsheet to calculate the energy of the S[subscript 0] ground electronic state and the S[subscript 1] and T[subscript 1] excited states of H[subscript 2]. The spreadsheet calculations circumvent the…

  17. S1←S0 vibronic spectra and structure of cyclopropanecarboxaldehyde molecule in the S1 lowest excited singlet electronic state

    NASA Astrophysics Data System (ADS)

    Godunov, I. A.; Yakovlev, N. N.; Terentiev, R. V.; Maslov, D. V.; Bataev, V. A.; Abramenkov, A. V.

    2016-11-01

    The S1←S0 vibronic spectra of gas-phase absorption at room temperature and fluorescence excitation of jet-cooled cyclopropanecarboxaldehyde (CPCA, c-C3H5CHO)were obtained and analyzed. In addition, the quantum chemical calculation (CASPT2/cc-pVTZ)was carried out for CPCA in the ground (S0) and lowest excited singlet (S1) electronic states. As a result, it was proved that the S1←S0 electronic excitation of the CPCA conformers (syn and anti) causes (after geometrical relaxation) significant structural changes, namely, the carbonyl fragments become non-planar and the cyclopropyl groups rotate around the central C-C bond. As a consequence, the potential energy surface of CPCA in the S1 state has six minima, 1ab, 2ab, and 3ab, corresponding to three pairs of mirror symmetry conformers: a and b. It was shown that vibronic bands of experimental spectra can be assigned to the 2(S1)←syn(S0) electronic transition with the origin at 30,481 cm-1. A number of fundamental vibrational frequencies for the 2 conformer of CPCA were assigned. In addition, several inversional energy levels for the 2 conformer were found and the 2a↔2b potential function of inversion was determined. The experimental barrier to inversion and the equilibrium angle between the CH bond and the CCO plane were calculated as 570 cm-1 and 28°, respectively.

  18. Electronic excited state transport and trapping in disordered systems: Picosecond fluorescence mixing, transient grating, and probe pulse experiments

    SciTech Connect

    Miller, R.J.D.; Pierre, M.; Fayer, M.D.

    1983-04-15

    A detailed experimental examination of the dynamics of energy transport and trapping in two component systems, using rhodamine 6G (R6G) as the donor and malachite green (MG) as the trap in both glycerol and ethanol solvents, is presented. The experiments were performed using fluorescence mixing and ground state recovery techniques providing temporal resolution of approx.50 ps. Samples ranging from high trap-low donor concentrations (the Foerster limit) to the opposite regime of high donor and low trap concentrations, were studied. These results were compared with no adjustable parameters to the recent theoretical work of Loring, Andersen, and Fayer (LAF). The excellent agreement between theory and experiment over the entire donor-trap concentration range confirms the theoretical results of LAF and yields a comprehensive description of excited-state dynamics in solution. A variety of dynamic properties are calculated using the LAF theory and the measured parameters associated with R6G-MG system.

  19. Electron-induced excitation of 93Mo

    NASA Astrophysics Data System (ADS)

    Chiara, C. J.; Carroll, J. J.; Marsh, J. C.; Matters, D. A.; Lane, G. J.; Hartley, D. J.; Polasik, M.; Rzadkiewicz, J.; Carpenter, M. P.; Greene, J. P.; Janssens, R. V. F.; Seweryniak, D.; Zhu, S.

    2016-09-01

    The inverse of the internal-conversion process, whereby a free electron is captured into an atomic orbital and subsequently excites the nucleus to a higher-lying state via a virtual energy exchange, was predicted to exist 40 years ago but has yet to be demonstrated experimentally. To search for this mode of nuclear excitation by electron capture, we performed an experiment at the ATLAS facility at Argonne National Laboratory. The t1/2 = 6.85-h, 21/2+ state of 93Mo was populated in the 7Li(90Zr, p 3 n) reaction. The excitation mechanism was predicted to induce depopulation of this isomer as the fast-moving 93mMo recoils slowed in the target material, emitting a characteristic sequence of γ rays in the process. Results of the search for these signature γ rays using Digital Gammasphere will be presented. This material is based upon work supported by the US DOE, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357. This research used resources of ANL's ATLAS facility, which is a DOE Office of Science User Facility.

  20. Theoretical study on the excited-state intramolecular proton transfer in the aromatic schiff base salicylidene methylamine: an electronic structure and quantum dynamical approach.

    PubMed

    Ortiz-Sanchez, Juan Manuel; Gelabert, Ricard; Moreno, Miquel; Lluch, José M

    2006-04-13

    The proton-transfer dynamics in the aromatic Schiff base salicylidene methylamine has been theoretically analyzed in the ground and first singlet (pi,pi) excited electronic states by density functional theory calculations and quantum wave-packet dynamics. The potential energies obtained through electronic calculations that use the time-dependent density functional theory formalism, which predict a barrierless excited-state intramolecular proton transfer, are fitted to a reduced three-dimensional potential energy surface. The time evolution in this surface is solved by means of the multiconfiguration time-dependent Hartree algorithm applied to solve the time-dependent Schrödinger equation. It is shown that the excited-state proton transfer occurs within 11 fs for hydrogen and 25 fs for deuterium, so that a large kinetic isotope effect is predicted. These results are compared to those of the only previous theoretical work published on this system [Zgierski, M. Z.; Grabowska, A. J. Chem. Phys. 2000, 113, 7845], reporting a configuration interaction singles barrier of 1.6 kcal mol(-1) and time reactions of 30 and 115 fs for the hydrogen and deuterium transfers, respectively, evaluated with the semiclassical instanton approach.

  1. Nuclear excitation by electronic processes: NEEC and NEET effects

    NASA Astrophysics Data System (ADS)

    Morel, P.; Daugas, J. M.; Gosselin, G.; Méot, V.; Gogny, D.

    2004-12-01

    The nuclear excitation by electron capture (NEEC) and nuclear excitation by electronic transition (NEET), and related de-excitation, are two important electromagnetic processes to modify the nuclear state populations. In this paper, we present, on one hand, an experiment, accepted at GANIL (France) in September 2004, to measure the NEEC effect with a fully stripped 57Fe ion beam and, on the other hand, a complete calculation leading to the NEET rate of the first excited state of the 235U in a local thermodynamic equilibrium (LTE) plasma.

  2. Nuclear Excitation by Electronic Processes: NEEC and NEET Effects

    NASA Astrophysics Data System (ADS)

    Morel, P.; Daugas, J. M.; Gosselin, G.; Méot, V.; Gogny, D.

    2005-05-01

    The nuclear excitation by electron capture (NEEC) and nuclear excitation by electronic transition (NEET), and related de-excitation, are two important electromagnetic processes to modify the nuclear state populations. In this paper, we present, on one hand, an experiment accepted at GANIL (France) in September 2004 to measure the NEEC effect with a fully stripped 57Fe ion beam and, on the other hand, a complete calculation leading to the NEET rate of the first excited state of the 235U in a local thermodynamic equilibrium (LTE) plasma.

  3. Vibrational overtone spectra of N-H stretches and intramolecular dynamics on the ground and electronically excited states of methylamine

    SciTech Connect

    Marom, Ran; Zecharia, Uzi; Rosenwaks, Salman; Bar, Ilana

    2008-04-21

    The vibrational pattern and energy flow in the N-H stretch manifolds and the dissociation dynamics of methylamine (CH{sub 3}NH{sub 2}) were investigated via vibrationally mediated photodissociation. Action spectra and Doppler profiles, reflecting the yield of the ensuing H photofragments, versus near infrared/visible vibrational excitation and UV excitation, respectively, were measured. The jet-cooled action spectra and the simultaneously measured room temperature photoacoustic spectra of the first to third N-H stretching overtones exhibit broad features, somewhat narrower in the former, consisting of barely recognized multiple bands. Two phases of fitting of the spectroscopic data were performed. In the first phase, the raw data were analyzed to obtain band positions, types, intensities, and transition linewidths. In the second, the information derived from the first phase was then used as data in a fit to joint local mode/normal mode (LM/NM) and NM Hamiltonian parameters. The derived parameters predicted well band positions and allowed band assignment. The LM/NM Hamiltonian and the extracted Lorentzian linewidths enabled the determination of the initial pathways for energy redistribution and the overall temporal behavior of the N-H stretch and doorway states, as a result of Fermi couplings and interactions with bath states. The results indicate a nonstatistical energy flow in the V=2 manifold region, pointing to the dependence of the coupling on specific low order resonances rather than on the total density of bath states. The Doppler profiles suggest lower average translational energies for the released H photofragments, in particular, for V=3 and 4 as compared to V=1 and 2, implying a change in the mechanism for bond cleavage.

  4. Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals.

    PubMed

    Körzdörfer, Thomas; Brédas, Jean-Luc

    2014-11-18

    CONSPECTUS: Density functional theory (DFT) and its time-dependent extension (TD-DFT) are powerful tools enabling the theoretical prediction of the ground- and excited-state properties of organic electronic materials with reasonable accuracy at affordable computational costs. Due to their excellent accuracy-to-numerical-costs ratio, semilocal and global hybrid functionals such as B3LYP have become the workhorse for geometry optimizations and the prediction of vibrational spectra in modern theoretical organic chemistry. Despite the overwhelming success of these out-of-the-box functionals for such applications, the computational treatment of electronic and structural properties that are of particular interest in organic electronic materials sometimes reveals severe and qualitative failures of such functionals. Important examples include the overestimation of conjugation, torsional barriers, and electronic coupling as well as the underestimation of bond-length alternations or excited-state energies in low-band-gap polymers. In this Account, we highlight how these failures can be traced back to the delocalization error inherent to semilocal and global hybrid functionals, which leads to the spurious delocalization of electron densities and an overestimation of conjugation. The delocalization error for systems and functionals of interest can be quantified by allowing for fractional occupation of the highest occupied molecular orbital. It can be minimized by using long-range corrected hybrid functionals and a nonempirical tuning procedure for the range-separation parameter. We then review the benefits and drawbacks of using tuned long-range corrected hybrid functionals for the description of the ground and excited states of π-conjugated systems. In particular, we show that this approach provides for robust and efficient means of characterizing the electronic couplings in organic mixed-valence systems, for the calculation of accurate torsional barriers at the polymer

  5. Excited-State Electronic Structure with Configuration Interaction Singles and Tamm-Dancoff Time-Dependent Density Functional Theory on Graphical Processing Units.

    PubMed

    Isborn, Christine M; Luehr, Nathan; Ufimtsev, Ivan S; Martínez, Todd J

    2011-06-14

    Excited-state calculations are implemented in a development version of the GPU-based TeraChem software package using the configuration interaction singles (CIS) and adiabatic linear response Tamm-Dancoff time-dependent density functional theory (TDA-TDDFT) methods. The speedup of the CIS and TDDFT methods using GPU-based electron repulsion integrals and density functional quadrature integration allows full ab initio excited-state calculations on molecules of unprecedented size. CIS/6-31G and TD-BLYP/6-31G benchmark timings are presented for a range of systems, including four generations of oligothiophene dendrimers, photoactive yellow protein (PYP), and the PYP chromophore solvated with 900 quantum mechanical water molecules. The effects of double and single precision integration are discussed, and mixed precision GPU integration is shown to give extremely good numerical accuracy for both CIS and TDDFT excitation energies (excitation energies within 0.0005 eV of extended double precision CPU results).

  6. Reactions of ions in excited electronic states - Excited N2/+/ ion reacting with N2 to yield N3/+/ and N

    NASA Technical Reports Server (NTRS)

    Bowers, M. T.; Kemper, P. R.; Laudenslager, J. B.

    1974-01-01

    Study of the mechanism of formation of the N3(+) ion from the bimolecular reaction of excited N2(+) ions in gaseous N2. Using ion cyclotron resonance spectroscopy, an attempt is made to inquire more deeply than hitherto into the origin of the N3(+) ions and to determine the rate constant for their formation and the limits on the lifetime of the reactant excited N2(+) ions.

  7. Extensive theoretical study on electronically excited states of calcium monochloride: Molecular laser cooling and production of ultracold chlorine atoms

    NASA Astrophysics Data System (ADS)

    Fu, Mingkai; Ma, Haitao; Cao, Jianwei; Bian, Wensheng

    2016-05-01

    Nine doublet Λ-S states of calcium monochloride (CaCl) are calculated using the internally contracted multireference configuration interaction method with the Davidson correction. Both the core subvalence and spin-orbit coupling effects are taken into account. Laser cooling of CaCl and production of ultracold chlorine atoms are investigated and assessed. Our computed spectroscopic constants and radiative lifetimes match the available experimental data very well. The determined Franck-Condon factors and vibrational branching ratios of the A 2 Π 1 / 2 ( ν ' ) ← X 2 Σ1 / 2 + ( ν ) transition are highly diagonally distributed and the evaluated radiative lifetime for the A2Π1/2(ν' = 0) state is 28.2 ns, which is short enough for rapid laser cooling. Subsequently, detection of cold molecules via resonance enhanced multiphoton ionization to determine the final quantum state populations is discussed and the ionization energy calculated. A multi-pulse excitation scheme is proposed for producing ultracold chlorine atoms from zero-energy photodissociation of the cooled CaCl. Our results demonstrate the possibility of producing ultracold CaCl molecules and Cl atoms.

  8. Photoinduced intercomponent excited-state decays in a molecular dyad made of a dinuclear rhenium(I) chromophore and a fullerene electron acceptor unit.

    PubMed

    Nastasi, Francesco; Puntoriero, Fausto; Natali, Mirco; Mba, Miriam; Maggini, Michele; Mussini, Patrizia; Panigati, Monica; Campagna, Sebastiano

    2015-05-01

    A novel molecular dyad, 1, made of a dinuclear {[Re2(μ-X)2(CO)6(μ-pyridazine)]} component covalently-linked to a fullerene unit by a carbocyclic molecular bridge has been prepared and its redox, spectroscopic, and photophysical properties - including pump-probe transient absorption spectroscopy in the visible and near-infrared region - have been investigated, along with those of its model species. Photoinduced, intercomponent electron transfer occurs in 1 from the thermally-equilibrated, triplet metal/ligand-to-ligand charge-transfer ((3)MLLCT) state of the dinuclear rhenium(I) subunit to the fullerene acceptor, with a time constant of about 100 ps. The so-formed triplet charge-separated state recombines in a few nanoseconds by a spin-selective process yielding, rather than the ground state, the locally-excited, triplet fullerene state, which finally decays to the ground state by intersystem crossing in about 290 ns.

  9. Intramolecular hydrogen bonding and excited state proton transfer in hydroxyanthraquinones as studied by electronic spectra, resonance Raman scattering, and transform analysis

    NASA Astrophysics Data System (ADS)

    Marzocchi, Mario P.; Mantini, Anna R.; Casu, Maurizio; Smulevich, Giulietta

    1998-01-01

    The scheme of energy levels previously proposed to describe dual excitation and emission associated to excited state intramolecular proton transfer (ESIPT) of some hydroxyanthraquinones (HAQ's) has been made more quantitative in the present paper. The zero-point energy and the frequency of the νOH mode for the HAQ's have been calculated on the basis of the Lippincott-Schroeder double-minimum potential for the O-H⋯O hydrogen bond. The second derivative absorption (D2) spectra show that the vibrational structures of the electronic excited state of HAQ's giving rise to ESIPT are characterized by the progression of the νOH stretching mode. The νOH mode in the ground state is observed as a very strong band in the vibrational structure of the short wavelength emission for HAQ's showing ESIPT. The combined resonance Raman band assignment of four hydroxyanthraquinones and transform analysis show that the visible transition involves the hydrogen bonded cycle and induces proton transfer in the excited state in most cases. On the basis of the isotopic effects, some vibrations of the hydrogen bonded cycle, namely the νC=O, δC=O, νCOH, and δOH modes, have been identified. The transform method, including the combined analysis of the absorption and D2 spectra in terms of sum-over-states, was checked by directly deriving the displacement parameters (Franck-Condon factors) of 1,4-DHAQ from the high resolution free-jet spectrum. The values of the displacement parameters of the νOH mode are quite large for the HAQ's showing ESIPT, while are negligible for 1,4-DHAQ. High values of the displacement parameters for the other vibrations of the hydrogen bonded cycle were found for all HAQ's.

  10. Excited state electronic structures and photochemistry of heterocyclic annulated perylene (HAP) materials tuned by heteroatoms: S, Se, N, O, C, Si, and B.

    PubMed

    Zhao, Guang-Jiu; Han, Ke-Li

    2009-04-23

    Time-dependent density functional theory (TDDFT) method was performed to investigate the excited state electronic structures and photochemistry of a variety of heterocyclic annulated perylene (HAP) materials. The calculated electronic structures and photochemical properties of the newly synthesized S-, Se-, and N-heterocyclic annulated perylenes were in good agreement with the experimental results. Moreover, the O-, C-, Si-, and B-heterocyclic annulated perylenes were also theoretically designed and investigated by using the same computational methods in this work. As a result, we found that the electronic structures and photochemical properties of S-, Se-, N-, O-, and C-heterocyclic annulated perylenes are similar to each other. The energy levels of the LUMO orbital for the S-, Se-, N-, O-, and C-heterocyclic annulated perylenes become higher than those of unsubstituted perylene. At the same time, the energy gaps between LUMO and HOMO for these heterocyclic annulated perylenes are also increased in comparison with those of unsubstituted perylene. Hence, both absorption and fluorescence spectra of S-, Se-, N-, O-, and C-heterocyclic annulated perylenes are correspondingly blue-shifted relative to those of unsubstituted perylene. In addition, two bonds formed by heteroatoms with perylene are lengthened in the electronic excited state of S-, Se-, N-, O-, and C-heterocyclic annulated perylenes. On the contrary, these bonds formed by heteroatoms with perylene are shortened in the electronic excited state of Si- and B-heterocyclic annulated perylenes. Furthermore, energy levels of the LUMO orbital for Si- and B-heterocyclic annulated perylenes become significantly lowered in comparison with that of unsubstituted perylene. At the same time, energy gaps between LUMO and HOMO for Si- and B-heterocyclic annulated perylenes become decreased relative to those of unsubstituted perylene. Thus, both absorption and fluorescence spectra of Si- and B-heterocyclic annulated

  11. Excited state dipole moments of N, N-dimethylaniline from thermochromic effect on electronic absorption and fluorescence spectra

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2006-01-01

    The effect of temperature on absorption and fluorescence spectra of N, N-dimethylaniline (DMA) in ethyl acetate has been studied for temperature ranging from 293 to 388 K. The permittivity ɛ and refractive index n of the solvent decrease with temperature increase and the absorption and fluorescence bands are blue shifted (so-called "thermochromic shift"). Based on this phenomenon, the dipole moment μe in the excited singlet state and the Onsager interaction radius a for DMA were determined using the Bilot and Kawski theory [L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621; 18a (1963) 10, 256]. For the known dipole moment in the ground state μg = 1.61 D and for α/ a3 = 0.54 ( α is the polarizability of the solute) the average value of μe = 3.55 D and a = 3.1 Å were determined. The obtained values for DMA are compared with the experimental values determined by other authors.

  12. Excited S 1 state dipole moments of nitrobenzene and p-nitroaniline from thermochromic effect on electronic absorption spectra

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Kukliński, B.; Bojarski, P.

    2006-11-01

    The effect of temperature on the absorption spectra of nitrobenzene (NB) and p-nitroaniline (NA) in 1,2-dichloroethane was studied for temperature ranging from 295 K to 378 K and from 296 K to 408 K, respectively. With temperature increase the absorption bands of both compounds are blue shifted, which is caused by the decrease of permittivity ɛ and refractive index n. From the band shifts and by using the Bilot and Kawski theory [ L. Bilot, A. Kawski, Z. Naturforsch. 17a (1962) 621] the dipole moments in the excited singlet state μe = 6.59 D of NB and μe = 13.35 D of NA were determined. The influence of polarizability α, the Onsager cavity radius a and dipole moment in the ground state μg on the determined values of μe are discussed. A comparison of the obtained μe values with those of other authors is given. In the case of p-NA a strong intramolecular charge transfer (ICT) was confirmed.

  13. Site-specific electronic couplings in dyads with MLCT excited states. Intramolecular energy transfer in isomeric Ru(II)-Ru(II) cyclometalated complexes.

    PubMed

    Polson, Matthew; Chiorboli, Claudio; Fracasso, Sandro; Scandola, Franco

    2007-04-01

    The rod-like binuclear complexes [(ttpy)Ru(tpy-ph(2)-phbpy)Ru(ttpy)](4+) and [(ttpy)Ru(tpy-ph(2)-tpy)Ru(phtbpy)](4+) (for abbreviations, see text) have been synthesized and characterized. In both complexes, the polypyridine Ru(II) centers have (N--N--N)Ru(N--N--N) and (N--N--N)Ru(C--N--N) coordination environment. The two isomeric species differ in whether the cyclometalating carbon resides on the bridging or on the terminal ligand. The two complexes have virtually identical energy levels, but MLCT excited states of different (bridging or terminal) ligand localization. They are thus ideally suited to investigate possible effects of excited-state localization on intramolecular energy transfer kinetics. In fact, ultrafast spectroscopic measurements yield different energy transfer time constants for the two isomers, with the bridge-cyclometalated complex (2.7 ps) being faster than the terminal-cyclometalated one (8.0 ps). This difference can be explained in terms of different electronic factors for Dexter energy transfer. The study highlights the peculiar intricacies of intramolecular energy transfer in inorganic dyads involving MLCT excited states.

  14. Singlet-triplet splittings and electron affinities of selected cyanocarbenes, XCCN (X = H, F, Cl, C 2H, CN): carbenes with a stable excited negative ion state

    NASA Astrophysics Data System (ADS)

    Kalcher, Josef

    2005-02-01

    The title compounds have been investigated using the ROHF-ACPF and CAS(2,2)-ACPF method in conjunction with the aug-cc-pVTZ basis sets. All cyanocarbenes have triplet ground states except FCCN and ClCCN, which conform to the halocarbenes in having singlet ground states. The ground state electron affinities are found to be rather high, i.e., 1.972, 2.061, 2.474, 3.359, 2.301 eV for HCCN, FCCN, ClCCN, C(CN) 2 and (HC 2)CCN, respectively. The existence of bound excited negative ion states has been discovered for the first time within the carbenes.

  15. Enhancement of electron-positron pair creation due to transient excitation of field-induced bound states

    NASA Astrophysics Data System (ADS)

    Jiang, M.; Lv, Q. Z.; Sheng, Z. M.; Grobe, R.; Su, Q.

    2013-04-01

    We study the creation of electron-positron pairs induced by two spatially separated electric fields that vary periodically in time. The results are based on large-scale computer simulations of the time-dependent Dirac equation in reduced spatial dimensions. When the separation of the fields is very large, the pair creation is caused by multiphoton transitions and mainly determined by the frequency of the fields. However, for small spatial separations a coherence effect can be observed that can enhance or reduce the particle yield compared to the case of two infinitely separated fields. If the travel time for a created electron or positron between both field locations becomes comparable to the period of the oscillating fields, we observe peaks in the energy spectrum which can be explained in terms of field-induced transient bound states.

  16. Excited-State Deactivation of Adenine by Electron-Driven Proton-Transfer Reactions in Adenine-Water Clusters: A Computational Study.

    PubMed

    Wu, Xiuxiu; Karsili, Tolga N V; Domcke, Wolfgang

    2016-05-04

    The reactivity of photoexcited 9H-adenine with hydrogen-bonded water molecules in the 9H-adenine-(H2 O)5 cluster is investigated by using ab initio electronic structure methods, focusing on the photoreactivity of the three basic sites of 9H-adenine. The energy profiles of excited-state reaction paths for electron/proton transfer from water to adenine are computed. For two of the three sites, a barrierless or nearly barrierless reaction path towards a low-lying S1 -S0 conical intersection is found. This reaction mechanism, which is specific for adenine in an aqueous environment, can explain the substantially shortened excited-state lifetime of 9H-adenine in water. Depending on the branching ratio of the nonadiabatic dynamics at the S1 -S0 conical intersection, the electron/proton transfer process can enhance the photostability of 9H-adenine in water or can lead to the generation of adenine-H(⋅) and OH(⋅) free radicals. Although the branching ratio is yet unknown, these findings indicate that adenine might have served as a catalyst for energy harvesting by water splitting in the early stages of the evolution of life. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Application of the Schwinger multichannel formulation to electron-impact excitation of the B 1Sigma(+)u state of H2

    NASA Technical Reports Server (NTRS)

    Gibson, Thomas L.; Lima, Marco A. P.; Mckoy, Vincent; Huo, Winifred M.

    1987-01-01

    The paper reports cross sections for electron-impact excitation of the X 1Sigma(+)g - BISigma(+)u transition in H2 for collision energies of 15, 20, and 30 eV. For this dipole-allowed transition with its associated long-range potential, the contributions of the more strongly scattered low-angular-momentum partial waves to the cross section were obtained from a two-state Schwinger multichannel calculation, and a modified Born-closure scheme was used to include the contributions from the remaining weakly scattered partial waves. Agreement between the calculated differential cross sections and available experimental data is encouraging.

  18. Electron Excitation of Tin and Tin ion

    NASA Astrophysics Data System (ADS)

    Sharma, Lalita; Srivastava, Rajesh

    2014-05-01

    There is a great requirement of accurate atomic data of tin and its ions to understand the properties of laser produced tin plasma, one of the sources of extreme ultraviolet (EUV) radiation. The constant efforts are being made under various international programs viz., International SEMATECH's EUV Source Program, Intel Lithography Roadmap etc., to improve the efficiency of the EUV sources which can meet the requirements of high volume manufacturing of commercial chips. For optimizing the efficiency of EUV device the plasma modeling should be accurate which in turn, would rely on the accuracy of atomic data used. In this connection we have undertaken the study of electron impact excitation of Sn and Sn+. Since the atomic number of Sn is 50, it is sufficiently heavy atom to manifest relativistic spin - orbit and exchange effects. Therefore, we have used a fully relativistic distorted wave (RDW) theory to calculate results for cross sections corresponding to various transitions as well as polarization of photons due to decay of excited states of Sn and Sn+ In our RDW theory wavefunctions for both, the target electrons and projectile electrons are obtained by solving Dirac equations. Thus the relativistic effects are incorporated in consistent manner to ensure the reliability of the cross section and polarization results which will be presented in detail at the conference. Department of Atomic Energy, Govt. of India (DAE-BRNS).

  19. Theoretical Studies of Chemical Reactions following Electronic Excitation

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2003-01-01

    The use of multi-configurational wave functions is demonstrated for several processes: tautomerization reactions in the ground and excited states of the DNA base adenine, dissociation of glycine molecule after electronic excitation, and decomposition/deformation of novel rare gas molecules HRgF. These processes involve bond brealung/formation and require multi-configurational approaches that include dynamic correlation.

  20. Observation of a new phosphorus-containing reactive intermediate: Electronic spectroscopy and excited-state dynamics of the HPBr free radical

    NASA Astrophysics Data System (ADS)

    Tackett, Brandon S.; Clouthier, Dennis J.

    2005-10-01

    The ÃA'2-X˜A″2 electronic spectra of jet-cooled HPBr and DPBr have been obtained for the first time using the pulsed electric discharge technique with a precursor mixture of PBr3 and H2/D2. Laser-induced fluorescence and single vibronic level emission spectra gave the bending and P-Br stretching frequencies in the ground and excited states of both isotopomers. Rotational analyses of the HPBr and DPBr 000 bands showed small spin splittings characteristic of a doublet-doublet transition of an asymmetric-top molecule. From the ground- and excited-state rotational constants, effective (r0) structures were derived with r″(PH)=1.4307(86)Å, r″(PBr)=2.2021(9)Å, and θ″=95.2(8)°, and r'(PH)=1.434(31)Å, r'(PBr)=2.1669(26)Å, and θ'=115.5(16)°. In a few favorable cases, further hyperfine splitting of the spin-rotation energy levels has been observed, due to the excited-state Fermi contact interaction of the unpaired electron with the spin magnetic moment of the P31 nucleus, with aF'=0.064(9)cm-1 for HPBr. Fluorescence depletion spectroscopy and lifetime measurements indicate that higher vibrational levels of the ÃA'2 state are predissociated by a X˜A″2 dissociative continuum. CCSD(T )/aug-cc-pVTZ calculations predict that the most likely dissociation process is HPBr (X˜A″2)→PH(Σ-3)+Br(Pu2).

  1. Cascade effects in the excitation of np{sup 5}(n+1)p states of krypton and xenon atoms by polarized electrons

    SciTech Connect

    Yu, D.H.; Williams, J.F.; Chen, X.J.; Hayes, P.A.; Bartschat, K.; Zeman, V.

    2003-03-01

    The integrated Stokes parameters of the decay photons from the excited np{sup 5}(n+1)p[5/2]{sub 3}, np{sup 5}(n+1)p{sup '}[3/2]{sub 2}, and np{sup 5}(n+1)p{sup '}[3/2]{sub 1} (n=5 and 6) states of Kr and Xe, respectively, are measured from near threshold to 100 eV using incident polarized electrons. The effects of the cascade photons on the Stokes parameters have been investigated using a pulsed beam of polarized electrons. The cascade effects for the final excited states are more significant for the linear polarization P{sub 1} parameter than for the circular polarization P{sub 3} parameter and they do not always have depolarization effects. The integrated state multipoles, determined from the integrated Stokes parameters corrected for cascade effects, are closer to, but not in agreement with, the values from semirelativistic R matrix and relativistic distorted-wave approximation methods.

  2. Investigating the Excited Electronic States of BaOH via Laser Spectroscopy and AB Initio Calculation: Further Evidence of Perturbation from the ~A'2Δ State

    NASA Astrophysics Data System (ADS)

    Tandy, J. D.; Wang, J.-G.; Bernath, P. F.; Liévin, J.

    2010-06-01

    Two bands for the ~A'2Δ-~X2Σ+ transitions of BaOH and BaOD have been rotationally analyzed using high-resolution V-type optical-optical double resonance spectroscopy. BaOH and BaOD molecules were synthesized in a Broida-type oven, using a single mode Ti:Sapphire laser and a single mode dye laser for molecular excitation. The observed spectra mimic a typical 2Π-2Σ+ transition, believed to emanate from single or triple quanta of the bending vibration in the ~A'2Δ state. Measured rotational lines have been assigned and rotational and fine structure parameters determined through a combined least-squares fit with the millimeter-wave pure rotational data of the ~X2Σ+ state. Previous analyses of the ~A2Π-~X2Σ+ transitions of BaOH and BaOD yielded significantly different spin-orbit coupling constants, which were attributed to possible global and local perturbations arising from vibrationally excited bands of the ~A'2Δ state. Although the newly observed ~A'2Δ state bands could not be conclusively designated a specific spin state, the derived λ-doubling constants also show significant 2Π character, further indicating a strong interaction between the ~A2Π and ~A'2Δ states of BaOH. To validate these conclusions, ab initio calculations have been carried out to further understand the nature of the BaOH excited states. The wavefunctions of the ~D'2Σ+, ~D2Σ+, ~C2Π, ~B2Σ+, ~A2Π, ~A'2Δ and ~X2Σ+ states have been optimised with a state averaged multiconfigurational calculation using the MolPro software. Calculated vertical term energies show relatively good agreement with existing optical data.

  3. Ab initio studies on excited state intramolecular electron transfer in 4-amino-N-methylphthalimide and 3-amino-N-methylphthalimide

    NASA Astrophysics Data System (ADS)

    Sen, Kakali; Basu, Samita; Bhattacharyya, Dhananjay

    The molecules 4-amino-N-methylphthalimide (4AMP) and 3-amino-N-methylphthalimide (3AMP) are bichromophoric compounds composed of both electron donors and acceptor groups. They undergo intramolecular electron transfer (ET), and these types of compounds are frequently used to probe microenvironments in proteins, micelles, membranes, polymer, surfaces, etc. Ab initio calculations using restricted Hartree-Fock (RHF), Møller-Plesset second-order perturbation theory (MP2) and the multi-configurational self-consistent field (MCSCF) methods with the 6-31G** basis set have been performed to characterize the intermediates of the ET process. Analysis of geometrical and electronic parameters, e.g., changes in bond lengths, angles, dihedrals, and charge density, generally used to predict the ET pathway, is not always sufficient to understand the through-bond intramolecular charge-transfer (ICT) process. Hence we have attempted to support the predicted ET pathway in a very unique way by analyzing normal modes of vibrations for molecules in both the ground and excited states. Our results predict a planar ICT model that exhibits a conformational change of the amino nitrogen from nearly sp3 in the ground state to approximately sp2 type in the ICT state. A through-bond ET occurs from the amino group of both molecules to the proximal carbonyl group in 4AMP and to the distant carbonyl group in 3AMP. Besides ET, the proximal carbonyl group in 3AMP also takes part in hydrogen bonding with the same amino group especially in excited state, which may also contribute toward ET. Such a hydrogen bond, which demands a planar amino group, is not observed in ground-state 3AMP. These results indicate that nonplanar amino group geometry in the vicinity of a conjugated system is favored, rather than the conventional planar geometry, even in the presence of a suitable hydrogen bond acceptor.

  4. Vibronic coupling in the excited-states of carotenoids

    SciTech Connect

    Miki, Takeshi; Buckup, Tiago; Krause, Marie S.; Southall, June; Cogdell, Richard J.; Motzkus, Marcus

    2016-01-01

    The ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2to the optically dark state S1.

  5. Effects of electronic and nuclear interactions on the excited-state properties and structural dynamics of copper(I) diimine complexes.

    PubMed

    Mara, Michael W; Jackson, Nicholas E; Huang, Jier; Stickrath, Andrew B; Zhang, Xiaoyi; Gothard, Nosheen A; Ratner, Mark A; Chen, Lin X

    2013-02-14

    The effects of structural constraints on the metal-to-ligand charge transfer (MLCT) excited state structural dynamics of cuprous bis-2,9-diphenyl-phenanthroline ([Cu(I)(dpp)(2)](+)) in both coordinating acetonitrile and noncoordinating toluene were studied using X-ray transient absorption (XTA) spectroscopy and density functional theory (DFT) calculations. The phenyl groups attached to the phenanthroline ligands not only effectively shield the Cu(I) center from solvent molecules, but also force a flattened tetrahedral coordination geometry of the Cu(I) center. Consequently, the MLCT state lifetime in [Cu(I)(dpp)(2)](+) is solvent-independent, unlike the previously studied 2,9-methyl substituted bis-phenanthroline Cu(I) complex. The MLCT state of [Cu(I)(dpp)(2)](+) still undergoes a "pseudo Jahn-Teller distortion," with the angle between the two phenanthroline ligand planes decreased further by 7°. The XTA results indicate that, in the MLCT excited state of [Cu(I)(dpp)(2)](+), the phenyls at the 2, 9 positions of the phenanthroline rotate, breaking the π-π interaction with the phenanthroline ligands without ever rotating in-plane with the phenanthroline ligands. Hence, the transferred electron density from the Cu(I) center is localized on the phenanthroline moiety with no charge density present on the phenyl rings. The insight about the effect of the structural constraints on the MLCT state properties will guide the design of Cu(I) diimine complexes with suitable excited-state properties to function as earth-abundant dye sensitizers for solar electricity generation.

  6. Ionization of excited xenon atoms by electrons

    NASA Astrophysics Data System (ADS)

    Erwin, Daniel A.; Kunc, Joseph A.

    2004-08-01

    Measured cross sections for electron-impact ionization of excited Xe atoms are not presently available. Therefore, we combine in this work the formalisms of the binary encounter approximation and Sommerfeld’s quantization of atomic orbits and derive from first-principles cross sections for ionization of excited atoms by electrons of low and moderate energies (up to a few hundred eV ). The approach of this work can be used to calculate the cross sections for electron-impact ionization of excited atoms and atomic ions other than xenon.

  7. Importance of polarization in quantum mechanics/molecular mechanics descriptions of electronic excited states: NaI(H2O)n photodissociation dynamics as a case study.

    PubMed

    Koch, Denise M; Peslherbe, Gilles H

    2008-01-17

    Sodium iodide has long been a paradigm for ionic and covalent curve crossing and ultrafast nonadiabatic dynamics, and our interest lies in the influence of solvation on this process. The NaI(H2O)n photodissociation dynamics are simulated with the molecular dynamics with quantum transitions method. A quantum mechanics/molecular mechanics (QM/MM) description is adopted for the NaI(H2O)n electronic states, in which a semiempirical valence bond approach is used to describe the NaI electronic structure, and a polarizable optimized potential for cluster simulations model is used to describe solute-solvent and solvent-solvent interactions. In contrast to previous work with a nonpolarizable MM model [Koch et al., J. Phys. Chem. A, 2006, 110, 1438], this approach predicts that the NaI ionic ground- to covalent first-excited-state Franck-Condon energy gaps reach a plateau by cluster size 16, in relatively good agreement with experiment and electronic structure calculations; this allows us to safely extend our previous simulations to larger cluster sizes, i.e., n > 4. The simulations suggest that the disappearance of the two-photon ionization probe signals observed in femtosecond pump-probe experiments of NaI(H2O)n, n >/= 4, is due to the shift of the NaI curve-crossing region toward larger NaI internuclear separations because of solvent stabilization of the NaI ionic state. Further, the latter causes the adiabatic ground and excited states to acquire pure ionic and covalent character, respectively, by cluster 8, resulting in NaI ionic ground-state recombination or dissociation. To make a connection with electron transfer in solution, free energy curves have been generated as a function of a solvent coordinate similar to that of solution theory. Inspection of the free energy curves together with the results of excited-state simulations reveal that the electron-transfer process in clusters is not governed by the collective motion of the solvent molecules, as in solution, but

  8. Jet-cooled fluorescence excitation spectrum, carbonyl wagging, and ring-puckering potential energy functions of 3-cyclopenten-1-one in its S1(n,π*) electronic excited state

    NASA Astrophysics Data System (ADS)

    Sagear, Paul; Laane, Jaan

    1995-05-01

    The jet-cooled fluorescence excitation spectrum of 3-cyclopenten-1-one has been recorded in the 308-330 nm region, and the electronic origin for the S1(n,π*) state of A2 symmetry was observed at 30 229 cm-1. The observed spectrum consists of more than 80 bands involving primarily ν3 (carbonyl stretch), ν29 (carbonyl out-of-plane wagging), and ν30 (ring puckering). Bands were also assigned to combinations with seven other vibrational modes. The energies for the v=0 to 11 quantum states of ν29 were measured and used to determine a one-dimensional potential energy function. This function has energy minima at wagging angles of ±24° and a barrier to inversion of 939 cm-1. Four bands associated with ν30 were observed and were used to determine an asymmetric single-minimum one-dimensional ring-puckering potential energy function for the S1(n,π*) state. The ring-puckering energy levels in the ν29 vibrational excited states are little changed from the v=0 state indicating that there is little interaction between the carbonyl wagging and the ring-puckering motions.

  9. Electron impact ionization-excitation of Helium

    NASA Astrophysics Data System (ADS)

    Ancarani, Lorenzo Ugo; Gomez, A. I.; Gasaneo, G.; Mitnik, D. M.; Ambrosio, M. J.

    2016-09-01

    We calculate triple differential cross sections (TDCS) for the process of ionization-excitation of Helium by fast electron impact in which the residual ion is left in the n =2 excited state. We chose the strongly asymmetric kinematics used in the experiment performed by Dupré et al.. In a perturbative scheme, for high projectile energies the four-body problem reduces to a three-body one and, within that framework, we solve the time- independent Schrödinger equation with a Sturmian approach. The method, based on Generalized Sturmian Functions (GSF), is employed to obtain the initial ground state of Helium, the single-continuum state and the scattering wave function; for each of them, the GSF basis is constructed with the corresponding adequate asymptotic conditions. Besides, the method presents the following advantage: the scattering amplitudes can be extracted directly in the asymptotic region of the scattering solution, and thus the TDCS can be obtained without requiring a matrix element evaluation.

  10. Electronic states of thiophene/phenylene co-oligomers: Extreme-ultra violet excited photoelectron spectroscopy observations and density functional theory calculations

    SciTech Connect

    Kawaguchi, Yoshizo; Sasaki, Fumio; Mochizuki, Hiroyuki; Ishitsuka, Tomoaki; Tomie, Toshihisa; Ootsuka, Teruhisa; Watanabe, Shuji; Shimoi, Yukihiro; Yamao, Takeshi; Hotta, Shu

    2013-02-28

    We have investigated electronic states in the valence electron bands for the thin films of three thiophene/phenylene co-oligomer (TPCO) compounds, 2,5-bis(4-biphenylyl)thiophene (BP1T), 1,4-bis(5-phenylthiophen-2-yl)benzene (AC5), and 1,4-bis{l_brace}5-[4-(trifluoromethyl)phenyl]thiophen-2-yl{r_brace}benzene (AC5-CF{sub 3}), by using extreme-UV excited photoelectron spectroscopy (EUPS). By comparing both EUPS spectra and secondary electron spectra between AC5 and AC5-CF{sub 3}, we confirm that CF{sub 3} substitution to AC5 deepens valence states by 2 eV, and increases the ionization energy by 3 eV. From the cut-off positions of secondary electron spectra, the work functions of AC5, AC5-CF{sub 3}, and BP1T are evaluated to be 3.8 eV, 4.8 eV, and 4.0 eV, respectively. We calculate molecular orbital (MO) energy levels by the density functional theory and compare results of calculations with those of experiments. Densities of states obtained by broadening MO levels well explain the overall features of experimental EUPS spectra of three TPCOs.

  11. The role of dissociation channels of excited electronic states in quantum optimal control of ozone isomerization: A three-state dynamical model

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yuzuru; Ho, Tak-San; Rabitz, Herschel

    2016-05-01

    The prospect of performing the open → cyclic ozone isomerization has attracted much research attention. Here we explore this consideration theoretically by performing quantum optimal control calculations to demonstrate the important role that excited-state dissociation channels could play in the isomerization transformation. In the calculations we use a three-state, one-dimensional dynamical model constructed from the lowest five 1A‧ potential energy curves obtained with high-level ab initio calculations. Besides the laser field-dipole couplings between all three states, this model also includes the diabatic coupling between the two excited states at an avoided crossing leading to competing dissociation channels that can further hinder the isomerization process. The present three-state optimal control simulations examine two possible control pathways previously considered in a two-state model, and reveal that only one of the pathways is viable, achieving a robust ∼95% yield to the cyclic target in the three-state model. This work represents a step towards an ultimate model for the open → cyclic ozone transformation capable of giving adequate guidance about the necessary experimental control field resources as well as an estimate of the ro-vibronic spectral character of cyclic ozone as a basis for an appropriate probe of its formation.

  12. Excitation spectra of circular, few-electron quantum dots

    PubMed

    Kouwenhoven; Oosterkamp; Danoesastro; Eto; Austing; Honda; Tarucha

    1997-12-05

    Studies of the ground and excited states in semiconductor quantum dots containing 1 to 12 electrons showed that the quantum numbers of the states in the excitation spectra can be identified and compared with exact calculations. A magnetic field induces transitions between the ground and excited states. These transitions were analyzed in terms of crossings between single-particle states, singlet-triplet transitions, spin polarization, and Hund's rule. These impurity-free quantum dots allow "atomic physics" experiments to be performed in magnetic field regimes not accessible for atoms.

  13. Excited states in 129I

    NASA Astrophysics Data System (ADS)

    Deleanu, D.; Balabanski, D. L.; Venkova, Ts.; Bucurescu, D.; Mărginean, N.; Ganioǧlu, E.; Căta-Danil, Gh.; Atanasova, L.; Căta-Danil, I.; Detistov, P.; Filipescu, D.; Ghiţă, D.; Glodariu, T.; Ivaşcu, M.; Mărginean, R.; Mihai, C.; Negret, A.; Pascu, S.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N. V.

    2013-01-01

    Excited states in 129I were populated with the 124Sn(7Li,2n) reaction at 23 MeV. In-beam measurements of γ-ray coincidences were performed with an array of eight HPGe detectors and five LaBr3(Ce) scintillation detectors. Based on the γγ coincidence data, a positive parity band structure built on the 7/2+ ground state was established and the πg7/2 configuration at oblate deformation was assigned to it. The results are compared to interacting Boson-Fermion model (IBFM) and total Routhian surface (TRS) calculations.

  14. Theory of nuclear excitation by electron capture for heavy ions

    NASA Astrophysics Data System (ADS)

    Pálffy, Adriana; Scheid, Werner; Harman, Zoltán

    2006-01-01

    We investigate the resonant process of nuclear excitation by electron capture (NEEC), in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. In order to derive the cross section a Feshbach projection operator formalism is introduced. Nuclear states and transitions are described by a nuclear collective model and making use of experimental data. Transition rates and total cross sections for NEEC followed by the radiative decay of the excited nucleus are calculated for various heavy-ion collision systems.

  15. The molecular structure and a Renner-Teller analysis of the ground and first excited electronic states of the jet-cooled CS2+ molecular ion

    NASA Astrophysics Data System (ADS)

    He, Sheng-Gui; Clouthier, Dennis J.

    2006-02-01

    The ÃΠu2-X˜Πg2 electronic band system of the jet-cooled CS2+ ion has been studied by laser-induced fluorescence and wavelength-resolved emission techniques. The ions were produced in a pulsed electric discharge jet using a precursor mixture of carbon disulfide vapor in high-pressure argon. Rotational analysis of the high-resolution spectrum of the Π3/22 component of the 000 band gave linear-molecule molecular structures of r0″=1.5554(10)Å and r0'=1.6172(12)Å. Renner-Teller analyses of the vibronic structure in the spectra showed that the ground-state spin-orbit splitting (A =-447.0cm-1) is much larger than that of the excited state (A=-177.5cm-1), but that the Renner-Teller parameters are of similar magnitude and that a strong ν1-2ν2 Fermi resonance occurs in both states. Previous analyses of the vibronic structure in the ground and excited states of the ion from pulsed field-ionization-photoelectron data are shown to be substantially correct.

  16. DFT study of anthocyanidin and anthocyanin pigments for Dye-Sensitized Solar Cells: Electron injecting from the excited states and adsorption onto TiO2 (anatase) surface

    NASA Astrophysics Data System (ADS)

    Marcano, Emildo

    2017-06-01

    We explored, the absorption spectra, excited states and electronic injection parameters of anthocyanidin and anthocyanin pigments using the level of theory (TD)CAM-B3LYP/6-31+G(d,p). For the most isolated dyes, the distribution pattern of HOMO and LUMO spreads over the whole molecules, which lead an efficient electronic delocalization. The calculated light harvesting efficiencies (LHEs) are all near unity. Methoxy group in peonidin molecule lead the largest oscillator strength and LHE. The presence of water lead a higher spontaneous electronic inject process, with ΔGinject average of -1.14 eV. The ΔGinject order is peonidin < delphinidin < cyanin < cyanidin. Similarly, the adsorption energies (Eads) onto anatase surface model were obtained from level of theory GGA(PBE)/DNP. Eads of anthocyanin-(TiO2)30 complex was calculated to be from 17 to 24 eV, indicating both, the strong interactions between the dyes and the anatase (TiO2) surface and stronger electronic coupling strengths of the anthocyanin-(TiO2)30 complex, which corresponded to higher observed η. The HOMO and LUMO shape showed the electrons delocalized predominantly on the anthocyanin structure while the LUMO + 1 shape is localized into the (TiO2)30 surface. Therefore, we expected a electronic injection from HOMO to LUMO + 1 in the anthocyanin-(TiO2)30 adsorption complex, after the light absorption.

  17. Experimental observations of nonlinearly enhanced 2omega-UH electromagnetic radiation excited by steady-state colliding electron beams

    NASA Technical Reports Server (NTRS)

    Intrator, T.; Hershkowitz, N.; Chan, C.

    1984-01-01

    Counterstreaming large-diameter electron beams in a steady-state laboratory experiment are observed to generate transverse radiation at twice the upper-hybrid frequency (2omega-UH) with a quadrupole radiation pattern. The electromagnetic wave power density is nonlinearly enhanced over the power density obtained from a single beam-plasma system. Electromagnetic power density scales exponentially with beam energy and increases with ion mass. Weak turbulence theory can predict similar (but weaker) beam energy scaling but not the high power density, or the predominance of the 2omega-UH radiation peak over the omega-UH peak. Significant noise near the upper-hybrid and ion plasma frequencies is also measured, with normalized electrostatic wave energy density W(ES)/n(e)T(e) approximately 0.01.

  18. IR/UV spectroscopy on jet cooled 3-hydroxyflavone (H2O)n (n=1,2) clusters along proton transfer coordinates in the electronic ground and excited states

    NASA Astrophysics Data System (ADS)

    Bartl, K.; Funk, A.; Gerhards, M.

    2008-12-01

    The structure and reactivity of isolated 3-hydroxyflavone (3-HF) aggregates with one and two water molecules has been investigated by applying combined infrared/ultraviolet (IR/UV) spectroscopy in a supersonic jet both for the electronic ground and excited states. In combination with density functional theory (DFT) calculations, the IR spectra of the S0 states recorded from the upper fingerprint region to the OH stretching vibrations are assigned to the most stable isomers of the clusters. For the first electronically excited (ππ∗) state of the 3-HF(H2O)2 cluster structural information are obtained from the IR spectra in combination with time-dependent-DFT (TD-DFT) calculations. No proton transfer structure is observed in the case of a low excess energy within the electronically excited state. By raising the excitation energy, additional bands appear that can be assigned to a tautomeric form indicating the induction of a proton transfer reaction.

  19. Jet-cooled fluorescence excitation spectra and carbonyl wagging and ring-puckering potential energy functions of cyclobutanone and its 2,2,4,4-d4 isotopomer in the S1(n,π*) electronic excited state

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chiang, Whe-Yi; Laane, Jaan

    1994-03-01

    The jet-cooled fluorescence excitation spectra of cyclobutanone and its 2,2,4,4-d4 isotopomer have been recorded in the 305-335 nm region. The electronic band origin of the d0 molecule for the S1(n,π*) state of A2 symmetry occurs at 30 292 cm-1 (30 265 cm-1 for the d4 molecule). The observed spectra consisting of more than 50 bands for each isotopomer involve ν7, ν8, and ν9 (the three A1 ring vibrations) as well as ν20(C=O in-plane wag), ν26 (C=O out-of-plane wag), and ν27 (ring puckering). Five bands associated with the excited vibrational states of ν26 in the S1(n,π*) electronic state were observed for each isotopic species, and these were used to determine the one-dimensional potential energy functions for the C=O out-of-plane wagging. The C=O wagging angle was determined to be 39° and the barrier to inversion is 2149 cm-1 (2188 cm-1 for the deuteride). For the ring-puckering in the S1 state the lowest three vibrational energy spacings were found to be 106, 166, and 185 cm-1 as compared to values of 35, 57, and 65 cm-1 in the S0 ground state. Several ring-puckering potential energy functions with varying degrees of asymmetry are capable of reproducing the observed results. In all cases, however, the v=0 puckering state lies above any barrier to planarity. A two-dimensional potential function which fits the observed data was also determined in terms of the wagging and puckering coordinates.

  20. Experimental apparatus for measurements of electron impact excitation

    NASA Technical Reports Server (NTRS)

    Lafyatis, G. P.; Kohl, J. L.; Gardner, L. D.

    1987-01-01

    An ion beam apparatus for the absolute measurement of collision cross sections in singly and multiply charged ions is described. An inclined electron and ion beams arrangement is used. Emitted photons from the decay of collision produced excited states are collected by a mirror and imaged onto a photomultiplier. Absolute measurements of the electron impact excitation of the 2s-2p transition in C(3+) were used to demonstrate the reliability of the apparatus.

  1. Excited State Dynamics of DNA and RNA bases

    NASA Astrophysics Data System (ADS)

    Hudock, Hanneli; Levine, Benjamin; Martinez, Todd

    2007-03-01

    Recent ultrafast spectroscopic experiments have reported excited state lifetimes for DNA and RNA bases and assigned these lifetimes to various electronic states. We have used theoretical and simulation methods to describe the excited state dynamics of these bases in an effort to provide a mechanistic explanation for the observed lifetimes. Our simulations are based on ab initio molecular dynamics, where the electronic and nuclear Schrodinger equations are solved simultaneously. The results are further verified by comparison to high-level ab initio electronic structure methods, including dynamic electron correlation effects through multireference perturbation theory, at important points along the dynamical pathways. Our results provide an explanation of the photochemical mechanism leading to nonradiative decay of the electronic excited states and some suggestions as to the origin of the different lifetimes. Comparisons between pyrimidines illustrate how chemical differences impact excited state dynamics and may play a role in explaining the propensity for dimer formation in thymine.

  2. Electron impact vibrational excitation of methyl chloride

    NASA Astrophysics Data System (ADS)

    Sakaamini, Ahmad; Hargreaves, Leigh; Khakoo, Murtadha

    2016-05-01

    Low energy differential cross sections and excitation functions for vibrational excitation of CH3 Cl are presented for five vibrational features in the electron energy loss spectrum of this molecule. Electron energies range from 1 eV to 15 eV and scattering angles from 10o to 125o. Results will be compared to existing data for CH3 Cl in the literature. Funded by a NSF-AMOP-RUI Grant.

  3. Can Excited State Electronic Coherence Be Tuned via Molecular Structural Modification? A First-Principles Quantum Electronic Dynamics Study of Pyrazolate-Bridged Pt(II) Dimers.

    PubMed

    Lingerfelt, David B; Lestrange, Patrick J; Radler, Joseph J; Brown-Xu, Samantha E; Kim, Pyosang; Castellano, Felix N; Chen, Lin X; Li, Xiaosong

    2017-03-09

    Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal's anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are in balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.

  4. Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: Comparison of the generalized Mulliken-Hush and block diagonalization methods

    NASA Astrophysics Data System (ADS)

    Cave, Robert J.; Newton, Marshall D.

    1997-06-01

    Two independent methods are presented for the nonperturbative calculation of the electronic coupling matrix element (Hab) for electron transfer reactions using ab initio electronic structure theory. The first is based on the generalized Mulliken-Hush (GMH) model, a multistate generalization of the Mulliken Hush formalism for the electronic coupling. The second is based on the block diagonalization (BD) approach of Cederbaum, Domcke, and co-workers. Detailed quantitative comparisons of the two methods are carried out based on results for (a) several states of the system Zn2OH2+ and (b) the low-lying states of the benzene-Cl atom complex and its contact ion pair. Generally good agreement between the two methods is obtained over a range of geometries. Either method can be applied at an arbitrary nuclear geometry and, as a result, may be used to test the validity of the Condon approximation. Examples of nonmonotonic behavior of the electronic coupling as a function of nuclear coordinates are observed for Zn2OH2+. Both methods also yield a natural definition of the effective distance (rDA) between donor (D) and acceptor (A) sites, in contrast to earlier approaches which required independent estimates of rDA, generally based on molecular structure data.

  5. Intermediate Excited States in Rhodopsin Photochemistry

    NASA Astrophysics Data System (ADS)

    Rothberg, L. J.; Yan, M.; Jedju, T. M.; Callender, R. H.; Chao, H.; Alfano, R. R.

    1996-03-01

    Recent work by Wang et.al. footnote Q. Wang et.al., Science 266, 422 (1994) reports rapid coherent photoisomerization in rhodopsin. The bathorhodopsin photoproduct appears in 200 fs and exhibits torsional oscillations which remain synchronized with the initial photoexcitation. We report transient absorption experiments which suggest that the fraction of excited rhodopsin molecules which does not isomerize in this fashion (approximately 1/3) remains in an electronically excited state, probably the twisted state described by Birge and Hubbard,footnote R. R. Birge and L. M. Hubbard, J. Am. Chem. Soc. 102, 2195 (1980) for ~ 3 ps and then reforms rhodopsin. This picture explains the long bleaching recovery time for rhodopsin and the controversial spectral dynamics which are observed in the red.

  6. On the excited state dynamics of vibronic transitions. High-resolution electronic spectra of acenaphthene and its argon van der Waals complex in the gas phase.

    PubMed

    Álvarez-Valtierra, Leonardo; Plusquellic, David F; Yi, John T; Pratt, David W

    2011-09-01

    Rotationally resolved fluorescence excitation spectroscopy has been used to study the dynamics, electronic distribution, and the relative orientation of the transition moment vector in several vibronic transitions of acenaphthene (ACN) and in its Ar van der Waals (vdW) complex. The 0(0)(0) band of the S(1) ← S(0) transition of ACN exhibits a transition moment orientation parallel to its a-inertial axis. However, some of the vibronic bands exhibit a transition moment orientation parallel to the b-inertial axis, suggesting a Herzberg-Teller coupling with the S(2) state. Additionally, some other vibronic bands exhibit anomalous intensity patterns in several of their rotational transitions. A Fermi resonance involving two near degenerate vibrations has been proposed to explain this behavior. The high-resolution electronic spectrum of the ACN-Ar vdW complex has also been obtained and fully analyzed. The results indicate that the weakly attached argon atom is located on top of the plane of the bare molecule at ~3.48 Å away from its center of mass in the S(0) electronic state. © 2011 American Chemical Society

  7. Low Energy Electron Impact Excitation of Water

    NASA Astrophysics Data System (ADS)

    Ralphs, Kevin; Serna, Gabriela; Hargreaves, Leigh R.; Khakoo, Murtadha A.; Winstead, Carl; McKoy, B. Vincent

    2011-10-01

    We present normalized absolute differential and integral cross-section measurements for the low energy electron impact excitation of the lowest dissociative 3B1, 1B1,3A1 and 1A1 states of H2O. The DCS were taken at incident energies of 9 eV, 10 eV, 12 eV, 15 eV and 20 eV and scattering angles of 15° to 130° and normalized to the elastic electron scattering measurements of. The DCS were obtained after a sophisticated unfolding of the electron energy loss spectrum of water using photoabsorption data in the literature as investigated by Thorn et al.. Our measurements extend those of to near-threshold energies. We find both important agreements and differences between our DCS and those of. Comparison to our theory (multi-channel Schwinger) and that of earlier work will also be presented. Funded by an NSF grant # RUI-PHY 0968874.

  8. Electron-impact excitation of the x sup 1. Sigma. sub g sup minus , y sup 1. Pi. sub g , and o sub 3 sup 1. Pi. sub u Rydberg electronic states of the nitrogen molecule

    SciTech Connect

    Allen, J.S.; Chung, S.; Lin, C.C. )

    1990-02-01

    Electron-impact excitation of the {ital x} {sup 1}{Sigma}{sub g}{sup {minus}}, {ital y} {sup 1}{Pi}{sub g}, and {ital o}{sub 3} {sup 1}{Pi}{sub u} Rydberg electronic states of the nitrogen molecule has been studied. We have measured the maximum electron-impact optical-emission cross sections of many vibrational bands of the {ital y} {sup 1}{Pi}{sub g}{r arrow}w {sup 1}{Delta}{sub u}, {ital y} {sup 1}{Pi}{sub g}{r arrow}a{prime} {sup 1}{Sigma}{sub u}{sup {minus}}, and {ital x} {sup 1}{Sigma}{sub g}{sup {minus}}{r arrow}a{prime} {sup 1}{Sigma}{sub u}{sup {minus}} electronic transitions. The maximum values of the optical-emission cross sections of these band systems are typically less than or on the order of 10{sup {minus}20} cm{sup 2}. The dependence of the emission cross sections of selected bands on electron energy has been studied. The excitation functions of the {ital y}{r arrow}{ital a}{prime} and {ital x}{r arrow}{ital a}{prime} bands have similar shapes below about 50 eV with a peak near 32 eV, and are approximately proportional to 1/{ital E} at high energies. We have measured the emission cross section of the {ital o}{sub 3} {sup 1}{Pi}{sub u}{r arrow}a {sup 1}{Pi}{sub g}(0,0) band as a function of electron energy. The excitation function of the {ital o}{sub 3}{r arrow}a(0,0) band has a broader shape than the excitation functions of the {ital y}{r arrow}{ital w}, {ital y}{r arrow}{ital a}{prime}, and {ital x}{r arrow}{ital a}{prime} bands. We have calculated Franck-Condon factors for the {ital y}{r arrow}{ital w}, {ital y}{r arrow}{ital a}{prime}, and {ital x}{r arrow}{ital a}{prime} band systems and compare them with the experimental emission cross sections of these band systems. The apparent electron-impact-excitation cross sections of the vibrational levels of the {ital x} and {ital y} electronic states are estimated.

  9. How much double excitation character do the lowest excited states of linear polyenes have?

    NASA Astrophysics Data System (ADS)

    Starcke, Jan Hendrik; Wormit, Michael; Schirmer, Jochen; Dreuw, Andreas

    2006-10-01

    Doubly excited states play important roles in the low-energy region of the optical spectra of polyenes and their investigation has been subject of theoretical and experimental studies for more than 30 years now and still is in the focus of ongoing research. In this work, we address the question why doubly excited states play a role in the low-energy region of the optical spectrum of molecular systems at all, since from a naive point of view one would expect their excitation energy approximately twice as large as the one of the corresponding single excitation. Furthermore, we show that extended-ADC(2) is well suited for the balanced calculation of the low-lying excited 21Ag-, 11Bu- and 11Bu+ states of long all- trans polyenes, which are known to possess substantial double excitation character. A careful re-investigation of the performance of TDDFT calculations for these states reveals that the previously reported good performance for the 21Ag- state relies heavily on fortuitous cancellation of errors. Finally, the title question is answered such that for short polyenes the lowest excited 21Ag- and 11Bu- states can clearly be classified as doubly excited, whereas the 11Ag- ground state is essentially represented by the (ground-state) HF determinant. For longer polyenes, in addition to increasing double excitation contributions in the 21Ag- and 11Bu- states, the ground state itself aquires substantial double excitation character (45% in C 22H 24), so that the transition from the ground state to these excited states should not be addressed as the excitation of two electrons relative to the 11Ag- ground state.

  10. Theoretical description of electronically excited vinylidene up to 10 eV: first high level ab initio study of singlet valence and Rydberg states.

    PubMed

    Boyé-Péronne, Séverine; Gauyacq, Dolores; Liévin, Jacques

    2014-11-07

    The first quantitative description of the Rydberg and valence singlet electronic states of vinylidene lying in the 0-10 eV region is performed by using large scale ab initio calculations. A deep analysis of Rydberg-valence interactions has been achieved thanks to the comprehensive information contained in the accurate Multi-Reference Configuration Interaction wavefunctions and an original population analysis highlighting the respective role played by orbital and state mixing in such interactions. The present theoretical approach is thus adequate for dealing with larger than diatomic Rydberg systems. The nine lowest singlet valence states have been optimized. Among them, some are involved in strong Rydberg-valence interactions in the region of the Rydberg state equilibrium geometry. The Rydberg states of vinylidene present a great similarity with the acetylene isomer, concerning their quantum defects and Rydberg molecular orbital character. As in acetylene, strong s-d mixing is revealed in the n = 3 s-d supercomplex. Nevertheless, unlike in acetylene, the close-energy of the two vinylidene ionic cores (2)A1 and (2)B1 results into two overlapped Rydberg series. These Rydberg series exhibit local perturbations when an accidental degeneracy occurs between them and results in avoided crossings. In addition, some Δl = 1 (s-p and p-d) mixings arise for some Rydberg states and are rationalized in term of electrostatic interaction from the electric dipole moment of the ionic core. The strongest dipole moment of the (2)B1 cationic state also stabilizes the lowest members of the n = 3 Rydberg series converging to this excited state, as compared to the adjacent series converging toward the (2)A1 ionic ground state. The overall energies of vinylidene Rydberg states lie above their acetylene counterpart. Finally, predictions for optical transitions in singlet vinylidene are suggested for further experimental spectroscopic characterization of vinylidene.

  11. Theoretical description of electronically excited vinylidene up to 10 eV: First high level ab initio study of singlet valence and Rydberg states

    SciTech Connect

    Boyé-Péronne, Séverine; Gauyacq, Dolores; Liévin, Jacques

    2014-11-07

    The first quantitative description of the Rydberg and valence singlet electronic states of vinylidene lying in the 0–10 eV region is performed by using large scale ab initio calculations. A deep analysis of Rydberg-valence interactions has been achieved thanks to the comprehensive information contained in the accurate Multi-Reference Configuration Interaction wavefunctions and an original population analysis highlighting the respective role played by orbital and state mixing in such interactions. The present theoretical approach is thus adequate for dealing with larger than diatomic Rydberg systems. The nine lowest singlet valence states have been optimized. Among them, some are involved in strong Rydberg-valence interactions in the region of the Rydberg state equilibrium geometry. The Rydberg states of vinylidene present a great similarity with the acetylene isomer, concerning their quantum defects and Rydberg molecular orbital character. As in acetylene, strong s-d mixing is revealed in the n = 3 s-d supercomplex. Nevertheless, unlike in acetylene, the close-energy of the two vinylidene ionic cores {sup 2}A{sub 1} and {sup 2}B{sub 1} results into two overlapped Rydberg series. These Rydberg series exhibit local perturbations when an accidental degeneracy occurs between them and results in avoided crossings. In addition, some Δl = 1 (s-p and p-d) mixings arise for some Rydberg states and are rationalized in term of electrostatic interaction from the electric dipole moment of the ionic core. The strongest dipole moment of the {sup 2}B{sub 1} cationic state also stabilizes the lowest members of the n = 3 Rydberg series converging to this excited state, as compared to the adjacent series converging toward the {sup 2}A{sub 1} ionic ground state. The overall energies of vinylidene Rydberg states lie above their acetylene counterpart. Finally, predictions for optical transitions in singlet vinylidene are suggested for further experimental spectroscopic

  12. Single determinant calculations of excited state polarizabilities

    NASA Astrophysics Data System (ADS)

    Jonsson, Dan; Norman, Patrick; Ågren, Hans

    1997-12-01

    We apply response theory to simulate excited state polarizabilities emphasizing the possibility to do so by means of optimization of a ground state single determinant only. The excited state polarizabilities are given by the double residues of the cubic response functions. A set of molecules with varying ground state configurations and properties have been considered: water, ozone, formaldehyde, ethylene, butadiene, cyclobutadiene, pyridine, pyrazine and s-tetrazine. The results have been compared to excited state experiments where available and with linear response calculations of the multi-determinant optimized excited state. It is shown that calculations of excited state polarizabilities based on a ground state optimized single determinant work well for most of the cases investigated. This contention is exemplified by the fact the gas phase value from an electrochromism experiment for the polarizability of the 1 1B2 excited state of formaldehyde is better reproduced by ground state cubic response theory than by the corresponding separate state linear response function calculation, and by that the calculations call for an experimental reinvestigation of the excited state polarizabilities of s-tetrazine. A few prerequisites are given: The excited state should be isolated in energy, the ordering of the main contributing states should be reproduced, and the geometric conformation of the excited state in question should not be very different from the ground state geometry. The computational and formal advantages of the approach are discussed.

  13. The Torsion-Inversion Energy Levels in the S1( n, π*) Electronic State of Acetaldehyde from High-Resolution Jet-Cooled Fluorescence Excitation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, H.; Lim, E. C.; Muñoz-Caro, C.; Niño, A.; Judge, R. H.; Moule, D. C.

    1996-01-01

    The laser-induced fluorescence excitation spectrum (LIF) of acetaldehyde that results from the emission from theS1(n, π*) electronic state has been observed under very high resolution with a CW pulse-amplified laser under jet-cooled conditions. The origins of seven bands were determined by rotational analyses with a rigid-rotor Hamiltonian. The origins were fitted to a set of levels that were obtained from a Hamiltonian that employed flexible torsion-wagging large amplitude coordinates. The potential surface derived from the fitting procedure yielded barriers to torsion and inversion of 721.43 and 585.13 cm-1, respectively. Minima in the potential hypersurface at θ = 58.6° and α = 35.7° defined the corresponding equilibrium positions for the torsion and wagging coordinates.

  14. An exploration of electronic structure and nuclear dynamics in tropolone: II. The A~ 1B2 (π*π) excited state

    NASA Astrophysics Data System (ADS)

    Burns, Lori A.; Murdock, Daniel; Vaccaro, Patrick H.

    2009-04-01

    The first excited singlet state of tropolone (à B12) and the attendant π∗←π electronic transition have been examined computationally by applying several quantum chemical treatments built upon the aug-cc-pVDZ basis set, including time-dependent density functional theory (TDDFT/B3LYP), configuration interaction singles with perturbative corrections [CIS and CIS(D)], and equation-of-motion coupled-cluster schemes [EOM-CCSD and CR-EOMCCSD(T)]. As in the case of the X˜ A11 ground state [L. A. Burns, D. Murdock, and P. H. Vaccaro, J. Chem. Phys. 124, 204307 (2006)], geometry optimization procedures and harmonic force-field calculations predict the electronically excited potential surface to support a global minimum-energy configuration of rigorously planar (Cs) symmetry. Minimal Hartree-Fock (HF/CIS) and density-functional (DFT/TDDFT) approaches yield inconsistent results for the X˜ A11 and à B12 manifolds; however, coupled-cluster (CCSD/EOM-CCSD) methods give fully relaxed proton-transfer barrier heights of ΔEptX˜=3296.1 cm-1 and ΔEptÃ=1270.6 cm-1 that are in accordance with the experimentally observed increase in vibrationless tunneling splitting upon electronic excitation. Detailed analyses show that this reduction in ΔEpt stems from a variety of complementary factors, most notably an overall contraction of the proton-transfer reaction site (whereby the equilibrium O⋯O donor-acceptor distance decreases from 2.53 to 2.46 Å) and a concomitant shortening of the intramolecular hydrogen bond. Further refinement of à B12 energies through single-point perturbative triples corrections [CR-EOMCCSD(T)] leads to 1316.1 cm-1 as the best current estimate for ΔEptÃ. Direct comparison of the lowest-lying out-of-plane torsional mode [ν39(a2)] for X˜ A11 and à B12 tropolone reveals that its disparate nature (cf. ν39X˜=101.2 cm-1 and ν39Ã=42.0 cm-1) mediates vibrational-averaging effects which can account for inertial defects extracted by rotationally

  15. Collisional excitation of electron Landau levels in strong magnetic fields

    NASA Technical Reports Server (NTRS)

    Langer, S. H.

    1981-01-01

    The cross sections for the excitation and deexcitation of the quantized transverse energy levels of an electron in a magnetic field are calculated for electron-proton and electron-electron collisions in light of the importance of the cross sections for studies of X-ray pulsar emission. First-order matrix elements are calculated using the Dirac theory of the electron, thus taking into account relativistic effects, which are believed to be important in accreting neutron stars. Results for the collisional excitation of ground state electrons by protons are presented which demonstrate the importance of proton recoil and relativistic effects, and it is shown that electron-electron excitations may contribute 10 to 20% of the excitation rate from electron-proton scattering in a Maxwellian plasma. Finally, calculations of the cross section for electron-proton small-angle scattering are presented which lead to relaxation rates for the electron velocity distribution which are modified by the magnetic field, and to a possible increase in the value of the Coulomb logarithm.

  16. Manipulating the Electronic Excited State Energies of Pyrimidine-Based Thermally Activated Delayed Fluorescence Emitters To Realize Efficient Deep-Blue Emission.

    PubMed

    Komatsu, Ryutaro; Ohsawa, Tatsuya; Sasabe, Hisahiro; Nakao, Kohei; Hayasaka, Yuya; Kido, Junji

    2017-02-08

    The development of efficient and robust deep-blue emitters is one of the key issues in organic light-emitting devices (OLEDs) for environmentally friendly, large-area displays or general lighting. As a promising technology that realizes 100% conversion from electrons to photons, thermally activated delayed fluorescence (TADF) emitters have attracted considerable attention. However, only a handful of examples of deep-blue TADF emitters have been reported to date, and the emitters generally show large efficiency roll-off at practical luminance over several hundreds to thousands of cd m(-2), most likely because of the long delayed fluorescent lifetime (τd). To overcome this problem, we molecularly manipulated the electronic excited state energies of pyrimidine-based TADF emitters to realize deep-blue emission and reduced τd. We then systematically investigated the relationships among the chemical structure, properties, and device performances. The resultant novel pyrimidine emitters, called Ac-XMHPMs (X = 1, 2, and 3), contain different numbers of bulky methyl substituents at acceptor moieties, increasing the excited singlet (ES) and triplet state (ET) energies. Among them, Ac-3MHPM, with a high ET of 2.95 eV, exhibited a high external quantum efficiency (ηext,max) of 18% and an ηext of 10% at 100 cd m(-2) with Commission Internationale de l'Eclairage chromaticity coordinates of (0.16, 0.15). These efficiencies are among the highest values to date for deep-blue TADF OLEDs. Our molecular design strategy provides fundamental guidance to design novel deep-blue TADF emitters.

  17. Excited state proton-coupled electron transfer in 8-oxoG-C and 8-oxoG-A base pairs: a time dependent density functional theory (TD-DFT) study.

    PubMed

    Kumar, Anil; Sevilla, Michael D

    2013-08-01

    In a recent experiment, the repair efficiency of DNA thymine cyclobutane dimers (T<>T) on UV excitation of 8-oxoG base paired either to C or A was reported. An electron transfer mechanism from an excited charge transfer state of 8-oxoG-C (or 8-oxoG-A) to T<>T was proposed and 8-oxoG-A was found to be 2-3 times more efficient than 8-oxoG-C in repair of T<>T. Intra base pair proton transfer (PT) in charge transfer (CT) excited states of the base pairs was proposed to quench the excited state and prevent T<>T repair. In this work, we investigate this process with TD-DFT calculations of the excited states of 8-oxoG-C and 8-oxoG-A base pairs in the Watson-Crick and Hoogsteen base pairs using long-range corrected density functional, ωB97XD/6-31G* method. Our gas phase calculations showed that CT excited state ((1)ππ*(CT)) of 8-oxoG-C appears at lower energy than the 8-oxoG-A. For 8-oxoG-C, TD-DFT calculations show the presence of a conical intersection (CI) between the lowest (1)ππ*(PT-CT) excited state and the ground state which likely deactivates the CT excited state via a proton-coupled electron transfer (PCET) mechanism. The (1)ππ*(PT-CT) excited state of 8-oxoG-A base pair lies at higher energy and its crossing with ground state is inhibited because of a high energy gap between (1)ππ*(PT-CT) excited state and ground state. Thus the gas phase calculations suggest the 8-oxoG-A would have longer excited state lifetimes. When the effect of solvation is included using the PCM model, both 8-oxoG-A and 8-oxoG-C show large energy gaps between the ground state and both the excited CT and PT-CT states and suggest little difference would be found between the two base pairs in repair of the T<>T lesion. However, in the FC region the solvent effect is greatly diminished owing to the slow dielectric response time and smaller gaps would be expected.

  18. Excited-state electronic coupling and photoinduced multiple electron transfer in two related ligand-bridged hexanuclear mixed-valence compounds.

    PubMed

    Pfennig, Brian W; Mordas, Carolyn J; McCloskey, Alex; Lockard, Jenny V; Salmon, Patty M; Cohen, Jamie L; Watson, David F; Bocarsly, Andrew B

    2002-08-26

    The synthesis, characterization, electrochemical, photophysical, and photochemical properties of two hexanuclear mixed-valence compounds are reported. Each supramolecular species consists of two cyano-bridged [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(3)L-NC-Fe(II)(CN)(5)] triads that are linked to each other through a Pt(IV)-L-Pt(IV) bridge, where L = 4,4'-dipyridyl (bpy) or 3,3'-dimethyl-4,4'-dipyridyl (dmb). The major difference between the two compounds is the electronic nature of the bridging ligand between the two Pt atoms. Both species exhibit a broad Fe(II) --> Pt(IV) intervalent (IT) absorption band at 421 nm with an oscillator strength that is approximately four times that for [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(5)] and twice that for [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)].(4-) When L = bpy, the resonance Raman spectrum obtained by irradiating the IT band at 488 nm exhibits several dipyridyl ring modes at 1604, 1291, and 1234 cm(-1) which are not present in the spectrum when L = dmb. In addition, femtosecond pump-probe spectroscopy performed at 400 nm yields a transient bleach of the IT absorption band with a single exponential decay of 3.5 ps for L = bpy, compared with only 1.8 ps for L = dmb and 2.1 ps for [(NC)(5)Fe(II)-CN-Pt(IV)(NH(3))(4)-NC-Fe(II)(CN)(5)].(4-) Last, prolonged irradiation of the complexes at 488 nm leads to the formation of 4 equiv of ferricyanide with a quantum efficiency of 0.0014 for L = bpy and 0.0011 for L = dmb. The transient absorption, resonance Raman, and photochemical data suggest that the degree of excited electronic coupling in these compounds is tunable by changing the electronic nature of the Pt-L-Pt bridging ligand.

  19. Electronic structure, transport properties, and excited states in CoTiSb, CoZrSb, and CoHfSb half-Heusler compounds

    NASA Astrophysics Data System (ADS)

    Janotti, Anderson; Gui, Zhigang; Kawasaki, Jason; Palmstrom, Chris; Himmetoglu, Burak

    CoTiSb is a member of a large family of half-Heusler compounds with 18 valence electrons. CoTiSb is semiconductor material with a band gap a little over 1 eV, and it has been considered promising for thermoelectric applications. It can be grown on conventional III-V semiconductors, and could potentially be integrated in III-V devices. Here we present results of first-principles calculations of electronic structure, transport properties, and excited states in CoTiSb, as well as CoZrSb and CoHfSb. Electronic structures are studied using density functional theory within the local density approximation, hybrid functional and quasiparticle GW methods. Both room-temperature Seebeck coefficient and carrier mobility are calculated from first-principles. We also determine the band alignments to III-V semiconductors, and all the results are presented and discussed in the light of available experimental data. This work was supported by the DOE.

  20. Electronic excitation spectrum of ABC-stacked multilayer graphene

    NASA Astrophysics Data System (ADS)

    Henni, Y.; Nogajewski, K.; Ojeda Collado, H. P.; Usaj, G.; Balseiro, C. A.; Potemski, M.; Faugeras, C.

    The electronic properties of ABC graphene trilayers has attracted lot of attention recently due to their potential applications in engineering carbon-based devices with gate tunable electrical conductivity. Morever,ABC-stacked thin layers of graphite are predicted to host peculiar surface electronic states, with a flat dispersion over most of the Brillouin zone. The associated high density of states is likely to favour the emergence of exotic electronic phases, such as charge density waves or even superconductivity. We present a micro-magneto-Raman scattering study of a thin graphite flake produced by exfoliation of natural graphite, composed of ~15graphene layers, and including a large ABC-stacked domain. Exploring the low temperature Raman scattering spectrum of this domain up to B=29T,we identify inter Landau level electronic excitations within the surface flat bands,together with electronic excitations involving the gapped states in the bulk. This interband electronic excitation at B=0T can be observed,up to room temperature, directly in the Raman scattering spectrum as a broad(~ 180 cm-1) feature. Because the energy gap strongly depends on the number of layers,this electronic excitation can be used to identify and characterize ABC-stacked graphite thin layers.

  1. Temperature dependence of the hydrated electron's excited-state relaxation. I. Simulation predictions of resonance Raman and pump-probe transient absorption spectra of cavity and non-cavity models

    NASA Astrophysics Data System (ADS)

    Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.

    2017-08-01

    We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments

  2. Electron-impact vibrational excitation of cyclopropane

    SciTech Connect

    Čurík, R. Čársky, P.; Allan, M.

    2015-04-14

    We report a very detailed test of the ab initio discrete momentum representation (DMR) method of calculating vibrational excitation of polyatomic molecules by electron impact, by comparison of its results with an extensive set of experimental data, covering the entire range of scattering angles from 10{sup ∘} to 180{sup ∘} and electron energies from 0.4 to 20 eV. The DMR calculations were carried out by solving the two-channel Lippmann-Schwinger equation in the momentum space, and the interaction between the scattered electron and the target molecule was described by exact static-exchange potential corrected by a density functional theory (DFT) correlation-polarization interaction that models target’s response to the field of incoming electron. The theory is found to quantitatively reproduce the measured spectra for all normal modes, even at the difficult conditions of extreme angles and at low energies, and thus provides full understanding of the excitation mechanism. It is shown that the overlap of individual vibrational bands caused by limited experimental resolution and rotational excitation must be properly taken into account for correct comparison of experiment and theory. By doing so, an apparent discrepancy between published experimental data could be reconciled. A substantial cross section is found for excitation of the non-symmetric HCH twisting mode ν{sub 4} of A{sub 1}{sup ″} symmetry by the 5.5 eV A{sub 2}{sup ′} resonance, surprisingly because the currently accepted selection rules predict this process to be forbidden. The DMR theory shows that the excitation is caused by an incoming electron in an f-wave of A{sub 2}{sup ′} symmetry which causes excitation of the non-symmetric HCH twisting mode ν{sub 4} of the A{sub 1}{sup ″} symmetry and departs in p- and f-waves of A{sub 2}{sup ″} symmetry.

  3. Electron Excitation of High Dipole Moment Molecules Re-examined

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul F.; Kauffmann, Jens

    2017-05-01

    Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the “dense” gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H2 molecules, ≃105 for HCN, yields the requirements for electron excitation to be of practical importance if n({{{H}}}2)≤slant {10}5.5 {{cm}}-3 and X({{{e}}}-)≥slant {10}-5, where the numerical factors reflect the critical values {n}{{c}}({{{H}}}2) and {X}* ({{{e}}}-). This indicates that in regions where a large fraction of carbon is ionized, X({{{e}}}-) will be large enough to make electron excitation significant. The situation is in general similar for other “high-density tracers,” including HCO+, CN, and CS. But there are significant differences in the critical electron fractional abundance, {X}* ({{{e}}}-), defined by the value required for equal effect from collisions with H2 and e-. Electron excitation is, for example, unimportant for CO and C+. Electron excitation may be responsible for the surprisingly large spatial extent of emission from dense gas tracers in some molecular clouds. The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO+ ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non-static.

  4. Jet-cooled fluorescence excitation spectra, conformation, and carbonyl wagging potential energy function of cyclopentanone and its deuterated isotopomers in the S1 (n,π*) electronic excited states

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chiang, Whe-Yi; Laane, Jaan

    1993-04-01

    The jet-cooled fluorescence excitation spectra of cyclopentanone and its 2,2,5,5-d4 isotopomer have been recorded in the 305-335 nm region. In addition, the spectra of d1, d2, and d3 species were obtained from isotopic mixtures. The electronic band origin of the d0 molecule for the S1 (n,π*) state of A2 symmetry occurs at 30 276 cm-1, while that of the d4 molecule is at 30 265 cm-1. More than 100 fluorescence bands were assigned for each species. These arise from combinations of ν3 (C=O stretch), ν11 (ring-angle bending), ν18 (ring twisting), ν25 (C=O out-of-plane wag), ν26 (ring bending), and ν36 (C=O in-plane wag) and their vibrational excited states. The vibrational frequencies for ν3, ν11, and ν36 are significantly lower in the S1 state than the S0 ground state. However, the out-of-plane ring modes ν18 and ν26 are only slightly shifted. A progression observed for ν26 does indicate that in the S1 state, the bent ring conformation lies about 500 cm-1 above the ring-twisting minimum and corresponds to a saddle point in the two-dimensional ring-twisting/ring-bending potential energy surface. Band progressions for ν18 can be used to calculate the ring-twisting barriers (the barriers to planarity) for the d0 and d4 isotopomers to be 1433 and 1240 cm-1, respectively. Because of limited data, however, these values may be as much as several hundred cm-1 too high. The energies for the C=O out-of-plane wagging states up to v25=9 for each isotopomer were determined for the S1 state and these were used to calculate the C=O wagging potential energy functions for each. In the S1 state, the barrier to inversion of the C=O group is 672±10 cm-1 and the wagging angle is 22°±1°.

  5. Theoretical Comparison of the Excited Electronic States of the Uranyl and Uranate Ions Using Relativistic Computational Methods

    DTIC Science & Technology

    2003-03-01

    Pacios , 1985: 2664-2671; Lee et al, 1977: 5861-5876; Ermler et al, 1991: 829-846; Ermler et al, 1988: 139-182) is based upon the assumption...large component 32 valence electron solutions to numerical DHF calculations of the form ( Pacios et al, 1985: 2664) ljljljljlj RECP lj v XXKJrU...pseudospinor. It is critical to generate a nodeless pseudospinor in order to invert equation 70 and recover the core potential ( Pacios , 1985: 2664

  6. Molecular dynamics simulations and electronic excited state properties of a self-assembled peptide amphiphile nanofiber with metalloporphyrin arrays.

    PubMed

    Yu, Tao; Lee, One-Sun; Schatz, George C

    2014-09-18

    We have employed molecular dynamics simulations and quantum chemistry methods to study the structures and electronic absorption properties of a novel type of photonic nanowire gel constructed by the self-assembly of peptide amphiphiles (PAs) and the chromophore-(PPIX)Zn molecules. Using molecular dynamics simulations, structures of the self-assembled fiber were determined with atomistic detail, including the distribution of chromophores along the nanofiber and the relative distances and orientations of pairs of chromophores. In addition, quantum chemistry calculations were used to determine the electronic structure and absorption properties of the chromophores in the fiber, so as to assess the capabilities of the nanofiber for photonics applications. The calculations show that the PA nanofiber provides an effective scaffold for the chromophores in which the chromophores form several clusters in which nearest neighbor chromophores are separated by less than 20 Å. The calculations also indicate that the chromophores can be in both the hydrophilic shell and hydrophobic core portions of the fiber. There are only small spectral shifts to the B-band of the porphyrins arising from the inhomogeneous microelectronic environment provided by the fiber. However, there are much stronger electronic interactions between nearby pairs of chromophores, leading to a more significant red shift of the B-band that is similar to what is found in the experiments and to significant excitonic coupling that is seen in circular dichroism spectra. This electronic interaction between chromophores associated with the PA nanofiber structure is crucial to future applications of these fibers for light-harvesting applications.

  7. Excitation of atomic nitrogen by electron impact

    NASA Technical Reports Server (NTRS)

    Stone, E. J.; Zipf, E. C.

    1972-01-01

    Absolute cross sections were measured for the excitation of the N I(1134, 1164, 1168, 1200, 1243, and 1743 A) multiplets by electron impact on atomic nitrogen. The presence of vibrationally excited molecular nitrogen in the discharged gas was confirmed, and its effect on the measurements is discussed. The ratio of the oscillator strengths of the 1200 and 1134 A resonance transitions is presented, as well as the branching ratio for the N I(1311/1164 A) multiplets. Striking differences in the distribution of intensity between the spectra of atomic nitrogen and molecular nitrogen excited by energetic electrons suggest an optical method for measuring the density of atomic nitrogen in the upper atmosphere.

  8. Wave excitation by inhomogeneous suprathermal electron beams

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Dillenburg, D.; Wu, C. S.

    1982-01-01

    Wave excitation by an inhomogeneous suprathermal electron beam in a homogeneous magnetized plasma is studied. Not only is the beam density nonuniform, but the beam electrons possess a sheared bulk velocity. The general dispersion equation encompassing both electrostatic and electromagnetic effects is derived. Particular attention is given to the whistler mode. It is established that the density-gradient and velocity-shear effects are important for waves with frequencies close to the lower-hybrid resonance frequency.

  9. Core excitation of Li by electron impact

    SciTech Connect

    Tiwary, S.N.

    1985-07-01

    Cross sections for the excitation of a core electron, which leads to autoionization, in lithium (Li) atomic system by electron impact have been calculated with use of the single-configuration Hartree-Fock wave function within the asymptotic Green's-function approximation (AGFA) in the low-bombarding-energy region. Comparison is made with available results. Our investigation demonstrates that the AGFA supports the R-matrix as well as the distorted-wave Born-approximation behavior.

  10. Electron-hole excitations and optical spectra from first principles

    SciTech Connect

    Rohlfing, Michael; Louie, Steven G.

    2000-08-15

    We present a recently developed approach to calculate electron-hole excitations and the optical spectra of condensed matter from first principles. The key concept is to describe the excitations of the electronic system by the corresponding one- and two-particle Green's function. The method combines three computational techniques. First, the electronic ground state is treated within density-functional theory. Second, the single-particle spectrum of the electrons and holes is obtained within the GW approximation to the electron self-energy operator. Finally, the electron-hole interaction is calculated and a Bethe-Salpeter equation is solved, yielding the coupled electron-hole excitations. The resulting solutions allow the calculation of the entire optical spectrum. This holds both for bound excitonic states below the band gap, as well as for the resonant spectrum above the band gap. We discuss a number of technical developments needed for the application of the method to real systems. To illustrate the approach, we discuss the excitations and optical spectra of spatially isolated systems (atoms, molecules, and semiconductor clusters) and of extended, periodic crystals (semiconductors and insulators). (c) 2000 The American Physical Society.

  11. Multimode optical fibers: steady state mode exciter.

    PubMed

    Ikeda, M; Sugimura, A; Ikegami, T

    1976-09-01

    The steady state mode power distribution of the multimode graded index fiber was measured. A simple and effective steady state mode exciter was fabricated by an etching technique. Its insertion loss was 0.5 dB for an injection laser. Deviation in transmission characteristics of multimode graded index fibers can be avoided by using the steady state mode exciter.

  12. Isomer triggering via nuclear excitation by electron capture.

    PubMed

    Pálffy, Adriana; Evers, Jörg; Keitel, Christoph H

    2007-10-26

    Triggering of long-lived nuclear isomeric states via coupling to the atomic shells in the process of nuclear excitation by electron capture (NEEC) is studied. NEEC occurring in highly charged ions can excite the isomeric state to a triggering level that subsequently decays to the ground state. We present total cross sections for NEEC isomer triggering considering experimentally confirmed low-lying triggering levels and reaction rates based on realistic experimental parameters in ion storage rings. A comparison with other isomer triggering mechanisms shows that, among these, NEEC is the most efficient.

  13. Isomer Triggering via Nuclear Excitation by Electron Capture

    NASA Astrophysics Data System (ADS)

    Pálffy, Adriana; Evers, Jörg; Keitel, Christoph H.

    2007-10-01

    Triggering of long-lived nuclear isomeric states via coupling to the atomic shells in the process of nuclear excitation by electron capture (NEEC) is studied. NEEC occurring in highly charged ions can excite the isomeric state to a triggering level that subsequently decays to the ground state. We present total cross sections for NEEC isomer triggering considering experimentally confirmed low-lying triggering levels and reaction rates based on realistic experimental parameters in ion storage rings. A comparison with other isomer triggering mechanisms shows that, among these, NEEC is the most efficient.

  14. Excited State Quantum-Classical Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Krstic, Predrag

    2005-05-01

    The development of a new theoretical, algorithmic, and computational framework is reported describing the corresponding excited state many-body dynamics by applying multiphysics described by classical equations of motion for nuclei and Hartree-Fock/Multi-Configuration Hartree-Fock and multiresolution techniques for solving the quantum part of the problem (i.e. the motion of the electrons). We primarily have in mind reactive and electron-transition dynamics which involves molecular clusters, containing hundreds of atoms, perturbed by a slow ionic/atomic/molecular projectile, with possible applications in plasma-surface interactions, cluster physics, chemistry and biotechnology. The validation of the developed technique is performed at three-body systems. Application to the transition dynamics in small carbon clusters and hydrocarbons perturbed by slow carbon ions resolves some long-standing issues in the ion-surface interactions in fusion tokamaks.

  15. Electron impact excitation studies of unstable atomic species

    NASA Astrophysics Data System (ADS)

    Abdellatif, Ady Kamel

    The polarization of Balmer-alpha radiation excited in collisions of electrons with atomic hydrogen is presented for an electron energy range from threshold to 1000 eV. Measurements are in good agreement with calculations carried out using either convergent-close-coupling or R-matrix with pseudo-states approaches. Cascade is demonstrated to have a significant effect. Balmer-alpha excitation function data are also presented. A previous measurement of the polarization of Balmer-alpha following dissociative excitation of H2 by electrons is confirmed and extended. The electron impact excitation spectrum of atomic and molecular nitrogen in the VUV range (800 A--1800 A) is presented. The excitation functions of the 1135 A and the 1200 A transitions are obtained. About 5% of nitrogen molecules are dissociated using a microwave discharge source and a mixture of 95% helium and 5% nitrogen gases. Other lines proved to have too small an emission cross section for the electron impact excitation process on atomic nitrogen. Thus the 1243 A, 1494 A, 1745 A N lines and the 1085 A N+ line could not be studied using the small dissociation fractions obtained in the present work. Electron impact excitation of fluorine and sulfur atoms is presented. The spectrum of Sulfur Hexafluoride (SF6) in the VUV range from 800 A--1700 A is recorded. A 70% dissociation fraction was obtained using the microwave discharge unit with SF6 and He targets. The absolute emission cross section for the 807 A fluorine transition is found to be 2.21 +/- 1.20 x 10-19 cm 2 at 200 eV electron energy. As for sulfur, the absolute emission cross section for the 1474 A transition is 2.46 +/- 1.38 x 10-19 cm2 at 95 eV and for the 1667 A transition is 1.87 +/- 1.31 x 10-19 cm 2 at 85 eV.

  16. Electron impact excitation of molecular hydrogen

    DOE PAGES

    Zammit, Mark Christian; Savage, Jeremy S.; Fursa, Dmitry V.; ...

    2017-02-06

    Here, we report the electron impact integrated and differential cross sections for excitation to the b 3Σmore » $$+\\atop{u}$$, a 3Σ$$+\\atop{g}$$, c 3Πu, B 1Σ$$+\\atop{u}$$, E, F 1Σ$$+\\atop{g}$$, C 1Πu, e 3Σ$$+\\atop{u}$$, h 3Σ $$+\\atop{g}$$, d 3Πu, B'' 1Σ$$+\\atop{u}$$ , D 1Πu, B'' 1Σ$$+\\atop{u}$$, and D' 1Πu states of molecular hydrogen in the energy range from 10 to 300 eV. Total scattering and total ionization cross sections are also presented. The calculations have been performed by using the convergent close-coupling method within the fixed-nuclei approximation. Detailed convergence studies have been performed with respect to the size of the close-coupling expansion and a set of recommended cross sections has been produced. Significant differences with previous calculations are found. Agreement with experiment is mixed, ranging from excellent to poor depending on the transition and incident energies.« less

  17. Electron-impact excitation of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Zammit, Mark C.; Savage, Jeremy S.; Fursa, Dmitry V.; Bray, Igor

    2017-02-01

    We report the electron impact integrated and differential cross sections for excitation to the b 3Σu+ , a 3Σg+ , c 3Πu , B 1Σu+ , E ,F 1Σg+ , C 1Πu , e 3Σu+ , h 3Σg+ , d 3Πu , B'1Σu+ , D 1Πu , B''1Σu+ , and D'1Πu states of molecular hydrogen in the energy range from 10 to 300 eV. Total scattering and total ionization cross sections are also presented. The calculations have been performed by using the convergent close-coupling method within the fixed-nuclei approximation. Detailed convergence studies have been performed with respect to the size of the close-coupling expansion and a set of recommended cross sections has been produced. Significant differences with previous calculations are found. Agreement with experiment is mixed, ranging from excellent to poor depending on the transition and incident energies.

  18. Atomic Resolution Mapping of the Excited-State Electronic Structure of Cu2O with Time-Resolved X-Ray Absorption Spectroscopy

    SciTech Connect

    Hillyard, Patrick B.; Kuchibhatla, Satyanarayana V N T; Glover, T. E.; Hertlein, M. P.; Huse, N.; Nachimuthu, Ponnusamy; Saraf, Laxmikant V.; Thevuthasan, Suntharampillai; Gaffney, Kelly J.

    2009-09-29

    We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that that the conduction band and valence band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.

  19. Atomic resolution mapping of the excited-state electronic structure of Cu2O with time-resolved x-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hillyard, P. W.; Kuchibhatla, S. V. N. T.; Glover, T. E.; Hertlein, M. P.; Huse, N.; Nachimuthu, P.; Saraf, L. V.; Thevuthasan, S.; Gaffney, K. J.

    2009-09-01

    We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the OK edge and the CuL3 edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that the conduction-band and valence-band edges have very similar Cu3d and O2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the CuL3 - and OK -edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.

  20. Atomic resolution mapping of the excited-state electronic structure of Cu2O with time-resolved x-ray absorption spectroscopy

    SciTech Connect

    Hillyard, P. W.; Kuchibhatla, S. V. N. T.; Glover, T. E.; Hertlein, M. P.; Huse, Nils; Nachimuthu, P.; Saraf, L. V.; Thevuthasan, S.; Gaffney, K. J.

    2010-05-02

    We have used time-resolved soft x-ray spectroscopy to investigate the electronic structure of optically excited cuprous oxide at the O K-edge and the Cu L3-edge. The 400 nm optical excitation shifts the Cu and O absorptions to lower energy, but does not change the integrated x-ray absorption significantly for either edge. The constant integrated x-ray absorption cross-section indicates that the conduction-band and valence-band edges have very similar Cu 3d and O 2p orbital contributions. The 2.1 eV optical band gap of Cu2O significantly exceeds the one eV shift in the Cu L3- and O K-edges absorption edges induced by optical excitation, demonstrating the importance of core-hole excitonic effects and valence electron screening in the x-ray absorption process.

  1. Role of conformation and electronic structure in the chemistry of ground and excited state o-pyrazolylphenylnitrenes.

    PubMed

    Carra, Claudio; Bally, Thomas; Albini, Angelo

    2005-04-20

    The chemistry of 2-(1-pyrazolyl)- (2a) and 2-[1-(3,5-dimethylpyrazolyl]phenylnitrene (2b) has been studied in EtOH solution at room temperature, in EtOH glasses at 90 K, and in Ar matrices at 12 K. These nitrenes were chosen as suitable models for clarifying the mechanism of intramolecular reactions because attack at the pyrazole ring can occur according to different modes and the asymmetry of the substituent gives rise to different conformations. Detailed DFT and CASSCF/CASPT2 studies on the conformation and decay paths of both spin states of the nitrenes have been carried out. Ring expansion to dehydroazepines (via benzoazirines) is calculated to be competitive in both nitrenes, but in the dimethyl derivative, 2b, attack onto the N lone pair (which is made more nucleophilic by the methyl groups) is favored. The higher barriers (by 4-8 kcal/mol) in singlet 2a cause 60-70% of this nitrene to decay by intersystem crossing to the triplet. Thus, the seemingly straightforward formation of benzo-fused heterocycles through intramolecular attack of the pyrazoline N lone pair by the singlet phenylnitrene can only overcome ring expansion and intermolecular reactions under favorable circumstances. The comparatively persistent triplet nitrenes are characterized in matrices, and the yields of photocyclization products (mainly pyrazolo[1,5-a]benzimidazole (7) from 2a and 5,6-dihydropyrazolo[1,5-a]quinoxaline (8) from 2b) are shown to depend on the preferred conformation of the starting azide and nitrene.

  2. Excitations and benchmark ensemble density functional theory for two electrons

    SciTech Connect

    Pribram-Jones, Aurora; Burke, Kieron; Yang, Zeng-hui; Ullrich, Carsten A.; Trail, John R.; Needs, Richard J.

    2014-05-14

    A new method for extracting ensemble Kohn-Sham potentials from accurate excited state densities is applied to a variety of two-electron systems, exploring the behavior of exact ensemble density functional theory. The issue of separating the Hartree energy and the choice of degenerate eigenstates is explored. A new approximation, spin eigenstate Hartree-exchange, is derived. Exact conditions that are proven include the signs of the correlation energy components and the asymptotic behavior of the potential for small weights of the excited states. Many energy components are given as a function of the weights for two electrons in a one-dimensional flat box, in a box with a large barrier to create charge transfer excitations, in a three-dimensional harmonic well (Hooke's atom), and for the He atom singlet-triplet ensemble, singlet-triplet-singlet ensemble, and triplet bi-ensemble.

  3. Ultrafast Structural Dynamics of Tertiary Amines upon Electronic Excitation

    NASA Astrophysics Data System (ADS)

    Cheng, Xinxin; Minitti, Michael P.; Deb, Sanghamitra; Zhang, Yao; Budarz, James; Weber, Peter M.

    2011-06-01

    The structural response of several tertiary amines to electronic excitation has been investigated using Rydberg Fingerprint Spectroscopy. The 3p Rydberg states are reached by excitation with a 5.93 eV photon while 3s states are populated by electronic relaxation from 3p state. We observe binding energy shifts on ultrafast time scales in all peaks that reflect the structural change of the molecular ion cores. The shifts are in the range of 15 meV to 30 meV, within time scales of less than 500 fs, depending on the specific molecular systems and the nature of the electronic state. In cases where the p states are spectrally separate, the trends of the energy shifts are different for the p_z and p_x_y Rydberg states whereas the p_z and s states are similar. This suggests that the response of the Rydberg states to structural displacements depends on the symmetry. Very fast binding energy shifts, observed on sub-picosecond time scales, are attributed to the structural adjustment from a pyramidal to a planar structure upon Rydberg excitation. The quantitative values of the binding energy shifts can also be affected by laser chirp, which we model using simulations.

  4. Excited-to-excited-state scattering using weak measurements

    NASA Astrophysics Data System (ADS)

    U, Satya Sainadh; Narayanan, Andal

    2015-11-01

    Weak measurements are a subset of measurement processes in quantum mechanics wherein the system, which is being measured, interacts very weakly with the measuring apparatus. Measurement values of observables undergoing a weak interaction and their amplification are concepts that have sharpened our understanding of interaction processes in quantum mechanics. Recent experiments show that naturally occurring processes such as resonance fluorescence from excited states of an atom can exhibit weak value amplification effect. In this paper we theoretically analyze the process of elastic resonance fluorescence from a V -type three-level atomic system, using the well-known Weiskopff-Wigner (WW) theory of spontaneous emission. Within this theory we show that a weak interaction regime can be identified and for suitable choices of initial and final excited states the mean scattering time between these states show an amplification effect during interaction with the vacuum bath modes of the electromagnetic field. We thus show that a system-bath interaction can show weak value amplification. Using our theory we reproduce the published experimental results carried out in such a system. More importantly, our theory can calculate scattering time scales in elastic resonance scattering between multiple excited states of a single atom or between common excited state configurations of interacting multiatom systems.

  5. Modeling Molecular Systems at Extreme Pressure by an Extension of the Polarizable Continuum Model (PCM) Based on the Symmetry-Adapted Cluster-Configuration Interaction (SAC-CI) Method: Confined Electronic Excited States of Furan as a Test Case.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Cammi, Roberto

    2015-05-12

    Novel molecular photochemistry can be developed by combining high pressure and laser irradiation. For studying such high-pressure effects on the confined electronic ground and excited states, we extend the PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (SAC-configuration interaction) methods to the PCM-XP (extreme pressure) framework. By using the PCM-XP SAC/SAC-CI method, molecular systems in various electronic states can be confined by polarizable media in a smooth and flexible way. The PCM-XP SAC/SAC-CI method is applied to a furan (C4H4O) molecule in cyclohexane at high pressure (1-60 GPa). The relationship between the calculated free-energy and cavity volume can be approximately represented with the Murnaghan equation of state. The excitation energies of furan in cyclohexane show blueshifts with increasing pressure, and the extents of the blueshifts significantly depend on the character of the excitations. Particularly large confinement effects are found in the Rydberg states. The energy ordering of the lowest Rydberg and valence states alters under high-pressure. The pressure effects on the electronic structure may be classified into two contributions: a confinement of the molecular orbital and a suppression of the mixing between the valence and Rydberg configurations. The valence or Rydberg character in an excited state is, therefore, enhanced under high pressure.

  6. Excited States of Non-Isolated Chromophores

    NASA Astrophysics Data System (ADS)

    Matsika, S.; Kozak, C.; Kistler, K.

    2009-06-01

    The photophysical and photochemical behavior of nucleobases is very important because of their biological role as the building blocks in DNA and RNA. Great progress has been made in understanding the excited-state properties of single bases. In order to understand the photophysical properties of nucleobases in complex environments we have investigated their excited states (a) in aqueous solutions and (b) as π-stacked dimers in DNA. The solvatochromic shifts of the excited states of pyrimidine nucleobases in aqueous solution have been investigated using a combined QM/MM procedure where the quantum mechanical solute is described using high level multireference configuration interaction methods while molecular dynamics simulations are used to obtain the structure of the solvent around the solute in an average way. The excited states of π-stacked nucleobases have also been investigated using various ab initio methods. The effect of the environment on the excited states and conical intersections is investigated.

  7. [Excitation energy and frequency of transition spectral line of electron in an asymmetry quantum dot].

    PubMed

    Xiao, Jing-Lin

    2009-03-01

    In an asymmetry quantum dot, the properties of the electron, which is strongly coupled with phonon, were investigated. The variational relations of the first internal excited state energy, the excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot with the transverse and longituainal effective confinement length of quantum dot and the electron-phonon coupling strength were studied by using a linear combination operator and the unitary transformation methods. Numerical calculations for the variational relations of the first internal excited state energy, the excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot with the transverse and longituainal effective confinement length of quantum dot and the electron-phonon coupling strength were performed and the results show that the first internal excited state energy, the excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot will strongly increase with decreasing the transverse and longitudinal effective confinement length. The first internal excited state energy of the electron which is strongly coupled with phonon in an asymmetry quantum dot will decrease with increasing the electron-phonon coupling strength. The excitation energy and the frequency of transition spectral line between the first internal excited state and the ground state of the electron which is strongly coupled with phonon in an asymmetry quantum dot will increase with increasing the electron-phonon coupling strength.

  8. Excited-State Deactivation of Branched Phthalocyanine Compounds.

    PubMed

    Zhu, Huaning; Li, Yang; Chen, Jun; Zhou, Meng; Niu, Yingli; Zhang, Xinxing; Guo, Qianjin; Wang, Shuangqing; Yang, Guoqiang; Xia, Andong

    2015-12-21

    The excited-state relaxation dynamics and chromophore interactions in two phthalocyanine compounds (bis- and trisphthalocyanines) are studied by using steady-state and femtosecond transient absorption spectral measurements, where the excited-state energy-transfer mechanism is explored. By exciting phthalocyanine compounds to their second electronically excited states and probing the subsequent relaxation dynamics, a multitude of deactivation pathways are identified. The transient absorption spectra show the relaxation pathway from the exciton state to excimer state and then back to the ground state in bisphthalocyanine (bis-Pc). In trisphthalocyanine (tris-Pc), the monomeric and dimeric subunits are excited and the excitation energy transfers from the monomeric vibrationally hot S1 state to the exciton state of a pre-associated dimer, with subsequent relaxation to the ground state through the excimer state. The theoretical calculations and steady-state spectra also show a face-to-face conformation in bis-Pc, whereas in tris-Pc, two of the three phthalocyanine branches form a pre-associated face-to-face dimeric conformation with the third one acting as a monomeric unit; this is consistent with the results of the transient absorption experiments from the perspective of molecular structure. The detailed structure-property relationships in phthalocyanine compounds is useful for exploring the function of molecular aggregates in energy migration of natural photosynthesis systems.

  9. Long-lived excited states in metal clusters.

    PubMed

    Koop, Alexander; Gantefoer, Gerd; Kim, Young Dok

    2017-08-16

    Bare metal clusters have properties that make them interesting for applications in photochemistry and photovoltaics. Long-lived excited states are a prerequisite for such applications, because in them the energy of the photon can be stored. Clusters have a low density of states and long-lived excited states should therefore occur frequently. However, in fact, such states are a rarity, as indicated by time-resolved photoelectron data of mass-selected cluster anions. And there is another puzzling observation: only clusters with narrow peaks in their photoelectron spectra exhibit long-lived excited states. Both findings can be explained if internal conversion, i.e. the conversion of electronic excitation energy into vibrational excitations, is the major relaxation mechanism in clusters. It becomes more likely, if a change of the electronic configuration results in a large geometry change, which is probably the case for most clusters. Only clusters with a weak coupling between geometric and electronic structure may have long-lived excited states and narrow peaks.

  10. Local pair natural orbitals for excited states

    NASA Astrophysics Data System (ADS)

    Helmich, Benjamin; Hättig, Christof

    2011-12-01

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10-8-10-7, corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  11. Local pair natural orbitals for excited states.

    PubMed

    Helmich, Benjamin; Hättig, Christof

    2011-12-07

    We explore how in response calculations for excitation energies with wavefunction based (e.g., coupled cluster) methods the number of double excitation amplitudes can be reduced by means of truncated pair natural orbital (PNO) expansions and localized occupied orbitals. Using the CIS(D) approximation as a test model, we find that the number of double excitation amplitudes can be reduced dramatically with minor impact on the accuracy if the excited state wavefunction is expanded in state-specific PNOs generated from an approximate first-order guess wavefunction. As for ground states, the PNO truncation error can also for excitation energies be controlled by a single threshold related to generalized natural occupation numbers. The best performance is found with occupied orbitals which are localized by the Pipek-Mezey localization. For a large test set of excited states we find with this localization that already a PNO threshold of 10(-8)-10(-7), corresponding to an average of only 40-80 PNOs per pair, is sufficient to keep the PNO truncation error for vertical excitation energies below 0.01 eV. This is a significantly more rapid convergence with the number doubles amplitudes than in domain-based local response approaches. We demonstrate that the number of significant excited state PNOs scales asymptotically linearly with the system size in the worst case of completely delocalized excitations and sub-linearly whenever the chromophore does not increase with the system size. Moreover, we observe that the flexibility of state-specific PNOs to adapt to the character of an excitation allows for an almost unbiased treatment of local, delocalized and charge transfer excited states.

  12. Cyclopropyl Group: An Excited-State Aromaticity Indicator?

    PubMed

    Ayub, Rabia; Papadakis, Raffaello; Jorner, Kjell; Zietz, Burkhard; Ottosson, Henrik

    2017-07-06

    The cyclopropyl (cPr) group, which is a well-known probe for detecting radical character at atoms to which it is connected, is tested as an indicator for aromaticity in the first ππ* triplet and singlet excited states (T1 and S1 ). Baird's rule says that the π-electron counts for aromaticity and antiaromaticity in the T1 and S1 states are opposite to Hückel's rule in the ground state (S0 ). Our hypothesis is that the cPr group, as a result of Baird's rule, will remain closed when attached to an excited-state aromatic ring, enabling it to be used as an indicator to distinguish excited-state aromatic rings from excited-state antiaromatic and nonaromatic rings. Quantum chemical calculations and photoreactivity experiments support our hypothesis; calculated aromaticity indices reveal that openings of cPr substituents on [4n]annulenes ruin the excited-state aromaticity in energetically unfavorable processes. Yet, polycyclic compounds influenced by excited-state aromaticity (e.g., biphenylene), as well as 4nπ-electron heterocycles with two or more heteroatoms represent limitations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. State-Selective Excitation of Quantum Systems via Geometrical Optimization.

    PubMed

    Chang, Bo Y; Shin, Seokmin; Sola, Ignacio R

    2015-09-08

    We lay out the foundations of a general method of quantum control via geometrical optimization. We apply the method to state-selective population transfer using ultrashort transform-limited pulses between manifolds of levels that may represent, e.g., state-selective transitions in molecules. Assuming that certain states can be prepared, we develop three implementations: (i) preoptimization, which implies engineering the initial state within the ground manifold or electronic state before the pulse is applied; (ii) postoptimization, which implies engineering the final state within the excited manifold or target electronic state, after the pulse; and (iii) double-time optimization, which uses both types of time-ordered manipulations. We apply the schemes to two important dynamical problems: To prepare arbitrary vibrational superposition states on the target electronic state and to select weakly coupled vibrational states. Whereas full population inversion between the electronic states only requires control at initial time in all of the ground vibrational levels, only very specific superposition states can be prepared with high fidelity by either pre- or postoptimization mechanisms. Full state-selective population inversion requires manipulating the vibrational coherences in the ground electronic state before the optical pulse is applied and in the excited electronic state afterward, but not during all times.

  14. A Series of Supramolecular Complexes for Solar Energy Conversion via Water Reduction to Produce Hydrogen: An Excited State Kinetic Analysis of Ru(II),Rh(III),Ru(II) Photoinitiated Electron Collectors.

    PubMed

    White, Travis A; Knoll, Jessica D; Arachchige, Shamindri M; Brewer, Karen J

    2011-12-27

    Mixed-metal supramolecular complexes have been designed that photochemically absorb solar light, undergo photoinitiated electron collection and reduce water to produce hydrogen fuel using low energy visible light. This manuscript describes these systems with an analysis of the photophysics of a series of six supramolecular complexes, [{(TL)₂Ru(dpp)}₂RhX₂](PF₆)₅ with TL = bpy, phen or Ph₂phen with X = Cl or Br. The process of light conversion to a fuel requires a system to perform a number of complicated steps including the absorption of light, the generation of charge separation on a molecular level, the reduction by one and then two electrons and the interaction with the water substrate to produce hydrogen. The manuscript explores the rate of intramolecular electron transfer, rate of quenching of the supramolecules by the DMA electron donor, rate of reduction of the complex by DMA from the ³MLCT excited state, as well as overall rate of reduction of the complex via visible light excitation. Probing a series of complexes in detail exploring the variation of rates of important reactions as a function of sub-unit modification provides insight into the role of each process in the overall efficiency of water reduction to produce hydrogen. The kinetic analysis shows that the complexes display different rates of excited state reactions that vary with TL and halide. The role of the MLCT excited state is elucidated by this kinetic study which shows that the ³MLCT state and not the ³MMCT is likely that key contributor to the photoreduction of these complexes. The kinetic analysis of the excited state dynamics and reactions of the complexes are important as this class of supramolecules behaves as photoinitiated electron collectors and photocatalysts for the reduction of water to hydrogen.

  15. Statistics of excitations in the electron glass model

    NASA Astrophysics Data System (ADS)

    Palassini, Matteo

    2011-03-01

    We study the statistics of elementary excitations in the classical electron glass model of localized electrons interacting via the unscreened Coulomb interaction in the presence of disorder. We reconsider the long-standing puzzle of the exponential suppression of the single-particle density of states near the Fermi level, by measuring accurately the density of states of charged and electron-hole pair excitations via finite temperature Monte Carlo simulation and zero-temperature relaxation. We also investigate the statistics of large charge rearrangements after a perturbation of the system, which may shed some light on the slow relaxation and glassy phenomena recently observed in a variety of Anderson insulators. In collaboration with Martin Goethe.

  16. Measurements of Excitation Functions and Line Polarizations for Electron Impact Excitation of the n = 2, 3 States of Atomic Hydrogen in the Energy Range 11 - 2000 eV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Ajello, J. M.; Kanik, I.; Slevin, J.; Franklin, B.; Shemansky, D.

    1993-01-01

    The electron-atomic hydrogen scattering system is an important testing ground for theoretical models and has received a great deal of attention from experimentalists and theoreticians alike over the years. A complete description of the excitation process requires a knowledge of many different parameters, and experimental measurements of these parameters have been performed in various laboratories around the world. As far as total cross section data are concerned it has been noted that the discrepancy between the data of Long et al. and Williams for n = 2 excitations needs to be resolved in the interests of any further refinement of theory. We report new measurements of total cross sections and atomic line polarizations for both n=2 and n=3 excitations at energies from threshold to 2000 eV...

  17. Absolute cross sections for electronic excitation of pyrimidine by electron impact

    SciTech Connect

    Regeta, Khrystyna; Allan, Michael; Mašín, Zdeněk; Gorfinkiel, Jimena D.

    2016-01-14

    We measured differential cross sections for electron-impact electronic excitation of pyrimidine, both as a function of electron energy up to 18 eV, and of scattering angle up to 180°. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. The differential cross sections were summed to obtain integral cross sections. These are compared to results of R-matrix calculations, which successfully reproduce both the magnitude of the cross section and the major resonant features. Comparison of the experiment to the calculated contributions of different symmetries to the integral cross section permitted assignment of several features to specific core-excited resonances. Comparison of the resonant structure of pyrimidine with that of benzene revealed pronounced similarities and thus a dominant role of π–π{sup ∗} excited states and resonances. Electron energy loss spectra were measured as a preparation for the cross section measurements and vibrational structure was observed for some of the triplet states. A detailed analysis of the electronic excited states of pyrimidine is also presented.

  18. Absolute cross sections for electronic excitation of pyrimidine by electron impact

    NASA Astrophysics Data System (ADS)

    Regeta, Khrystyna; Allan, Michael; Mašín, Zdeněk; Gorfinkiel, Jimena D.

    2016-01-01

    We measured differential cross sections for electron-impact electronic excitation of pyrimidine, both as a function of electron energy up to 18 eV, and of scattering angle up to 180°. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. The differential cross sections were summed to obtain integral cross sections. These are compared to results of R-matrix calculations, which successfully reproduce both the magnitude of the cross section and the major resonant features. Comparison of the experiment to the calculated contributions of different symmetries to the integral cross section permitted assignment of several features to specific core-excited resonances. Comparison of the resonant structure of pyrimidine with that of benzene revealed pronounced similarities and thus a dominant role of π-π∗ excited states and resonances. Electron energy loss spectra were measured as a preparation for the cross section measurements and vibrational structure was observed for some of the triplet states. A detailed analysis of the electronic excited states of pyrimidine is also presented.

  19. Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.

    PubMed

    Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R

    2013-09-05

    Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.

  20. Hydrogen Bonds in Excited State Proton Transfer

    NASA Astrophysics Data System (ADS)

    Horke, D. A.; Watts, H. M.; Smith, A. D.; Jager, E.; Springate, E.; Alexander, O.; Cacho, C.; Chapman, R. T.; Minns, R. S.

    2016-10-01

    Hydrogen bonding interactions between biological chromophores and their surrounding protein and solvent environment significantly affect the photochemical pathways of the chromophore and its biological function. A common first step in the dynamics of these systems is excited state proton transfer between the noncovalently bound molecules, which stabilizes the system against dissociation and principally alters relaxation pathways. Despite such fundamental importance, studying excited state proton transfer across a hydrogen bond has proven difficult, leaving uncertainties about the mechanism. Through time-resolved photoelectron imaging measurements, we demonstrate how the addition of a single hydrogen bond and the opening of an excited state proton transfer channel dramatically changes the outcome of a photochemical reaction, from rapid dissociation in the isolated chromophore to efficient stabilization and ground state recovery in the hydrogen bonded case, and uncover the mechanism of excited state proton transfer at a hydrogen bond, which follows sequential hydrogen and charge transfer processes.

  1. Exploration of Excited State Deactivation Pathways of Adenine Monohydrates.

    PubMed

    Chaiwongwattana, Sermsiri; Sapunar, Marin; Ponzi, Aurora; Decleva, Piero; Došlić, Nađa

    2015-10-29

    Binding of a single water molecule has a dramatic effect on the excited state lifetime of adenine. Here we report a joint nonadiabatic dynamics and reaction paths study aimed at understanding the sub-100 fs lifetime of adenine in the monohydrates. Our nonadiabatic dynamics simulations, performed using the ADC(2) electronic structure method, show a shortening of the excited state lifetime in the monohydrates with respect to bare adenine. However, the computed lifetimes were found to be significantly longer that the observed one. By comparing the reaction pathways of several excited state deactivation processes in adenine and adenine monohydrates, we show that electron-driven proton transfer from water to nitrogen atom N3 of the adenine ring may be the process responsible for the observed ultrafast decay. The inaccessibility of the electron-driven proton transfer pathway to trajectory-based nonadiabatic dynamics simulation is discussed.

  2. Persistent order due to transiently enhanced nesting in an electronically excited charge density wave

    SciTech Connect

    Rettig, L.; Cortés, R.; Chu, J. -H.; Fisher, I. R.; Schmitt, F.; Moore, R. G.; Shen, Z. -X.; Kirchmann, P. S.; Wolf, M.; Bovensiepen, U.

    2016-01-25

    Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time-and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of the dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. In conclusion, our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order.

  3. Persistent order due to transiently enhanced nesting in an electronically excited charge density wave

    PubMed Central

    Rettig, L.; Cortés, R.; Chu, J.-H.; Fisher, I. R.; Schmitt, F.; Moore, R. G.; Shen, Z.-X.; Kirchmann, P. S.; Wolf, M.; Bovensiepen, U.

    2016-01-01

    Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time- and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of the dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. Our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order. PMID:26804717

  4. Electron transfer to continuum states

    SciTech Connect

    Macek, J.H. |

    1994-12-31

    Gene Rudd`s analysis of doubly differential cross sections for the ionization of He atoms by proton impact suggested that electrons were being carried along by the proton for a short period of time after being ejected from the target region. Normally, this would represent an electron capture event in which an excited state of atomic hydrogen is formed. Because the electron ends up ionized it was recognized that these states of the proton must be continuum states. This insight was confirmed by observations of the continuum electron capture (CEC) cusp when the electron velocity equals the proton velocity in the final state. The impact of this idea upon the theory of ionization at high energies is reviewed.

  5. Interchannel interactions following shape resonant excitation of core electrons

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Kelly, L. A.; Duffy, L. M.; Space, B.; Roy, P.; Southworth, S. H.; White, M. G.

    1989-01-01

    Interchannel coupling of a core electron shape resonance with a valence-hole ionic continuum is studied with vibrational resolution. A core-hole shape resonance is created via N 2 (1s→continuum e -) photoabsorption, and this complex decays to form the N 2+ (B 2Σ u+) state via continuum interchannel coupling. The vibrational branching ratios for the N 2+ (B 2Σ u+) state are then determined from N 2+ (B 2Σ u+→ 2Σ g+) fluorescence. The molecular motion provides excellent sensitivity to the resonant excitation, as underscored by two observations. First, the vibrational branching ratios for resonant and nonresonant excitation are qualitatively different. Secondly, the rotational motion of the ion is affected by the resonant excitation. These measurements demonstrate that continuum interchannel coupling can be probed precisely via dispersed fluorescence.

  6. Electron impact excitation of highly charged sodium-like ions

    NASA Technical Reports Server (NTRS)

    Blaha, M.; Davis, J.

    1978-01-01

    Optical transition probabilities and electron collision strengths for Ca X, Fe XVI, Zn XX, Kr XXVI and Mo XXXII are calculated for transitions between n equal to 3 and n equal to 4 levels. The calculations neglect relativistic effects on the radial functions. A semi-empirical approach provides wave functions of the excited states; a distorted wave function without exchange is employed to obtain the excitation cross sections. The density dependence of the relative intensities of certain emission lines in the sodium isoelectronic sequence is also discussed.

  7. Formation of metastable excited states during sputtering of transition metals

    SciTech Connect

    Wucher, A.; Sroubek, Z.

    1997-01-01

    We propose a simple model which treats the formation of metastable excited neutral atoms during sputtering of a transition metal as a two step process. First, the energy deposited into the electronic system of the solid by electronic energy losses of all moving particles in the collision cascade is considered to lead to a locally altered equilibrium electronic state of the solid. It is found that this step is dominated by collective interaction with the conduction band electrons rather than by electron promotion in binary atom-atom collisions. Second, sputtered excited atoms are assumed to be formed by resonant neutralization of excited ions (reflecting the altered equilibrium state) while crossing the surface. It is shown that this model explains the total as well as the velocity dependent excitation probability observed in recent experiments on sputtered neutral silver atoms, which cannot be understood in terms of existing theories describing the formation of excited states in sputtering. {copyright} {ital 1996} {ital The American Physical Society}

  8. Collective Excitations in Electron-Hole Bilayers

    SciTech Connect

    Kalman, G. J.; Hartmann, P.; Donko, Z.; Golden, K. I.

    2007-06-08

    We report a combined analytic and molecular dynamics analysis of the collective mode spectrum of a bipolar (electron-hole) bilayer in the strong coupling classical limit. A robust, isotropic energy gap is identified in the out-of-phase spectra, generated by the combined effect of correlations and of the excitation of the bound dipoles. In the in-phase spectra we identify longitudinal and transverse acoustic modes wholly maintained by correlations. Strong nonlinear generation of higher harmonics of the fundamental dipole oscillation frequency and the transfer of harmonics between different modes is observed.

  9. The lifetime of electronic excitations in metal clusters

    NASA Astrophysics Data System (ADS)

    Quijada, M.; Díez Muiño, R.; Echenique, P. M.

    2005-05-01

    Density functional theory and the self-energy formalism are used to evaluate the lifetime of electronic excitations in metal clusters of nanometre size. The electronic structure of the cluster is obtained in the jellium model and spherical symmetry is assumed. Two effects that depend on the size of the clusters are discussed: the change in the number of final states to which the excitation can decay, and the modification in the screened interaction between electrons. For clusters with density parameter rs = 4 and diameter a few nanometres, a lifetime value of {\\approx }5 fs is reached for electronic excitations of {\\approx }1 eV. This value is of the same order of magnitude of that obtained in the bulk limit at the same level of approximation. For smaller clusters, a distinct non-monotonic behaviour of the lifetime as a function of the cluster size is found and the lifetime of excitations of {\\approx }1 eV can vary between 4 and 30 fs.

  10. Electron-impact excitation of Ne4+

    NASA Astrophysics Data System (ADS)

    Griffin, D. C.; Badnell, N. R.

    2000-10-01

    We present the results of extensive close-coupling calculations of electron-impact excitation of the C-like ion, Ne4+. We first compare effective collision strengths determined from a 20-level Breit-Pauli R-matrix calculation with those obtained from a 20-level intermediate-coupling frame transformation (ICFT) R-matrix calculation. The ICFT method was also employed to perform two much larger calculations; we compare the effective collision strengths determined from these calculations with each other and with those obtained from the 20-level calculations in order to assess the effects of increasing both the size of the configuration-interaction expansion of the target and the size of the close-coupling expansion. Our final calculation, with 130 terms and 261 levels in the configuration-interaction expansion of the target and 66 terms and 138 levels in the close-coupling expansion, provides improved data for excitation between the levels of the 2s22p2, 2s2p3 and 2p4 configurations and the first close-coupling results for excitation to the levels of the 2s22p3ℓ configurations in Ne4+.

  11. Theoretical studies on the reaction pathways of electronically excited DAAF

    SciTech Connect

    Quenneville, Jason M; Moore, David S

    2009-01-01

    The use of temporally and spectrally shaped ultrafast laser pulses to initiate, as well as detect, high explosives is being explored at Los Alamos. High level ab initio calculations, presented here, are employed to help guide and interpret the experiments. The ground and first excited electronic states of 3,3{prime}-diamino-4,4{prime}-azoxyfurazan (DAAF) are investigated using complete active space self-consistent field (CASSCF) and time-dependent density functional theory (TD-DFT). The geometrical and energetic character of the excited state minima, conical intersections and reaction pathways of DAAF are described. Two radiative and two non-radiative excited state population quenching mechanisms are outlined, and possible pathways for photochemical and spectroscopic control are discussed. The use of laser light to control chemical reactions has many applications. The initiation and the detection of explosives are two such applications currently under development at Los Alamos. Though inherently experimental, the project can be aided by theory through both prediction and interpretation. When the laser light is in the UV/visible region of the electromagnetic spectrum, the absorbing molecule is excited electronically and excitation decay may occur either radiatively (fluorescence or phosphorescence) or non-radiatively (through internal conversion). In many cases decay of the excitation occurs through a mixture of processes, and maximizing the desired result requires sophisticated laser pulses whose amplitude has been optimally modulated in time and/or frequency space. Control of cis-stilbene photochemistry was recently demonstrated in our group, and we aim to extend this work to high explosive compounds. Maximizing radiative decay leads to increased fluorescence quantum yields and enhances the possibility of spectral detection of the absorbing molecule. Maximizing non-radiative decay can lead to chemistry, heating of the sample and possibly detonation initiation in

  12. Excited State Dynamics in Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Yoshiyuki

    2004-03-01

    Carbon nanotube, one of the most promising materials for nano-technology, still suffers from its imperfection in crystalline structure that will make performance of nanotube behind theoretical limit. From the first-principles simulations, I propose efficient methods to overcome the imperfection. I show that photo-induced ion dynamics can (1) identify defects in nanotubes, (2) stabilize defected nanotubes, and (3) purify contaminated nanotubes. All of these methods can be alternative to conventional heat treatments and will be important techniques for realizing nanotube-devices. Ion dynamics under electronic excitation has been simulated with use of the computer code FPSEID (First-Principles Simulation tool for Electron Ion Dynamics) [1], which combines the time-dependent density functional method [2] to classical molecular dynamics. This very challenging approach is time-consuming but can automatically treat the level alternation of differently occupied states, and can observe initiation of non-adiabatic decay of excitation. The time-dependent Kohn-Sham equation has been solved by using the Suzuki-Trotter split operator method [3], which is a numerically stable method being suitable for plane wave basis, non-local pseudopotentials, and parallel computing. This work has been done in collaboration with Prof. Angel Rubio, Prof. David Tomanek, Dr. Savas Berber and Mina Yoon. Most of present calculations have been done by using the SX5 Vector-Parallel system in the NEC Fuchu-plant, and the Earth Simulator in Yokohama Japan. [1] O. Sugino and Y. Miyamoto, Phys. Rev. B59, 2579 (1999); ibid, B66 089901(E) (2001) [2] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). [3] M. Suzuki, J. Phys. Soc. Jpn. 61, L3015 (1992).

  13. Competition between radiative recombination and nuclear excitation by electron capture

    NASA Astrophysics Data System (ADS)

    Pály, A.; Harman, Z.; Surzhykov, A.; Scheid, W.

    2007-03-01

    The process of electron recombination is investigated considering the possible resonant channel of nuclear excitation by electron capture (NEEC), in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. Transition rates and total cross sections for NEEC followed by the radiative decay of the nucleus are presented for various heavy-ion collision systems. The role played by radiative recombination (RR) in the NEEC recombination mechanism is investigated and theoretical estimates of the magnitude of the interference between the two processes are presented. We discuss the experimental possibility of discerning NEEC from the RR background, studying the angular distribution of the radiation emitted in the two processes.

  14. Electron-driven excitation and dissociation of molecules

    NASA Astrophysics Data System (ADS)

    Chourou, S.; Larson, Å.; Orel, A. E.

    2010-01-01

    In the collision of electrons with molecules and molecular ions, excitation and dissociation are dominated by resonant processes, where the electron becomes temporarily trapped, changing the forces felt by the nuclei. In this paper, we will outline our method for treating these collision processes, where one or more resonant states exist. We separate the problem into two steps. First we carry out ab initio electron scattering calculations at fixed internuclear geometries to determine the resonant energy surfaces and the corresponding surface of autoionization widths, using the Complex Kohn variational method. These resonance positions and widths are then used as input to a dynamics study to determine the cross section and product distributions for the dissociation or excitation process. We will present results on a number of systems, including HCCH, HCN/HNC and HCCCN as examples of dissociative attachment, and H2O+ for dissociative recombination.

  15. Electronic excitations in γ -Li2IrO3

    NASA Astrophysics Data System (ADS)

    Li, Ying; Winter, Stephen M.; Jeschke, Harald O.; Valentí, Roser

    2017-01-01

    We investigate the electronic properties of the three-dimensional stripyhoneycomb γ -Li2IrO3 via relativistic density functional theory calculations as well as exact diagonalization of finite clusters and explore the details of the optical conductivity. Our analysis of this quantity reveals the microscopic origin of the experimentally observed (i) optical transitions and (ii) anisotropic behavior along the various polarization directions. In particular, we find that the optical excitations are overall dominated by transitions between jeff=1 /2 and 3/2 states and the weight of transitions between jeff=1 /2 states at low frequencies can be correlated to deviations from a pure Kitaev description. We furthermore reanalyze within this approach the electronic excitations in the known two-dimensional honeycomb systems α -Li2IrO3 and Na2IrO3 and discuss the results in comparison to γ -Li2IrO3 .

  16. Potential energy surfaces for ground and excited electronic states of the CF3I molecule and their relevance to its A-band photodissociation.

    PubMed

    Alekseyev, Aleksey B; Liebermann, Heinz-Peter; Buenker, Robert J

    2013-05-14

    The multireference spin-orbit (SO) configuration interaction (CI) method in its Λ-S contracted SO-CI version is employed to calculate two-dimensional potential energy surfaces for the ground and low-lying excited states of CF3I relevant to its photodissociation in the lowest absorption band (A band). The computed equilibrium geometry for the X̃A1 ground state and vibrational frequency ν3 for the C-I stretch mode agree well with available experimental data. The (3)Q0(+) state dissociating to the excited I((2)P1/2) limit is found to have a minimum of 1570 cm(-1) significantly shifted to larger internuclear distances (RC-I = 5.3 a0) relative to the ground state. Similar to the CH3I case, this makes a single-exponent approximation commonly employed for analysis of the CF3I recoil dynamics unsuitable. The 4E((3)A1) state possessing an allowed transition from the ground state and converging to the same atomic limit as (3)Q0(+) is calculated to lie too high in the Franck-Condon region to have any significant impact on the A-band absorption. The computed vertical excitation energies for the (3)Q1, (3)Q0(+), and (1)Q states indicate that the A-band spectrum must lie approximately between 31,300 and 45,200 cm(-1), i.e., between 220 and 320 nm. This result is in very good agreement with the measured absorption spectrum.

  17. Two-Photon Excitation of Conjugated Molecules in Solution: Spectroscopy and Excited-State Dynamics

    NASA Astrophysics Data System (ADS)

    Elles, Christopher G.; Houk, Amanda L.; de Wergifosse, Marc; Krylov, Anna

    2017-06-01

    We examine the two-photon absorption (2PA) spectroscopy and ultrafast excited-state dynamics of several conjugated molecules in solution. By controlling the relative wavelength and polarization of the two photons, the 2PA measurements provide a more sensitive means of probing the electronic structure of a molecule compared with traditional linear absorption spectra. We compare experimental spectra of trans-stilbene, cis-stilbene, and phenanthrene in solution with the calculated spectra of the isolated molecules using EOM-EE-CCSD. The calculated spectra show good agreement with the low-energy region of the experimental spectra (below 6 eV) after suppressing transitions with strong Rydberg character and accounting for solvent and method-dependent shifts of the valence transitions. We also monitor the excited state dynamics following two-photon excitation to high-lying valence states of trans-stilbene up to 6.5 eV. The initially excited states rapidly relax to the lowest singlet excited state and then follow the same reaction path as observed following direct one-photon excitation to the lowest absorption band at 4.0 eV.

  18. Charmonium excited state spectrum in lattice QCD

    SciTech Connect

    Jozef Dudek; Robert Edwards; Nilmani Mathur; David Richards

    2008-02-01

    Working with a large basis of covariant derivative-based meson interpolating fields we demonstrate the feasibility of reliably extracting multiple excited states using a variational method. The study is performed on quenched anisotropic lattices with clover quarks at the charm mass. We demonstrate how a knowledge of the continuum limit of a lattice interpolating field can give additional spin-assignment information, even at a single lattice spacing, via the overlap factors of interpolating field and state. Excited state masses are systematically high with respect to quark potential model predictions and, where they exist, experimental states. We conclude that this is most likely a result of the quenched approximation.

  19. Nuclear excitation by electronic transition of 235U

    SciTech Connect

    Chodash, P. A.; Norman, E. B.; Burke, J. T.; Casperson, R. J.; Fisher, S. E.; Holliday, K. S.; Jeffries, J. R.; Wakeling, M. A.; Wilks, S. C.

    2016-03-11

    Here, nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that can occur in isotopes containing a low-lying nuclear excited state. Over the past 40 yr, several experiments have attempted to measure NEET of 235U and those experiments have yielded conflicting results.

  20. Dynamics of two-electron excitations in helium

    SciTech Connect

    Caldwell, C.D.; Menzel, A.; Frigo, S.P.

    1997-04-01

    Excitation of both electrons in helium offers a unique window for studying electron correlation at the most basic level in an atom in which these two electrons and the nucleus form a three-body system. The authors utilized the first light available at the U-8 undulator-SGM monochromator beamline to investigate the dynamic parameters, partial cross sections, differential cross sections, and photoelectron angular distribution parameters ({beta}), with a high resolving power for the photon beam and at the highly differential level afforded by the use of their electron spectrometer. In parallel, they carried out detailed calculations of the relevant properties by a theoretical approach that is based on the hyperspherical close-coupling method. Partial photoionization cross sections {sigma}{sub n}, and photoelectron angular distributions {beta}{sub n} were measured for all possible final ionic states He{sup +}(n) in the region of the double excitations N(K,T){sup A} up to the N=5 threshold. At a photon energy bandpass of 12 meV below the thresholds N=3, 4, and 5, this level of differentiation offers the most critical assessment of the dynamics of the two-electron excitations to date. The experimental data were seen to be very well described by the most advanced theoretical calculations.

  1. The DIET from semiconductor surfaces by excitation of valence electrons

    NASA Astrophysics Data System (ADS)

    Kanasaki, Jun'ichi; Okano, Akiko; Ishikawa, Ken'ichi; Nakai, Yasuo; Itoh, Noriaki

    1995-06-01

    We discuss the desorption induced by electronic transitions (DIET) of constituent atoms from several types of non-metallic solids, particularly the DIET from semiconductors by valence electron excitations. We first classify the non-metallic solids into type A, in which no self-trapping of excitons occurs, and type B, in which self-trapping occurs. We argue that in type B solids the localization of electron-hole pairs or excitons through the self-trapping on the surfaces induces the Menzel-Gomer-Redhead-type anti-bonding state resulting in DIET. For the DIET from type A non-metals, typically semiconductors, in which the self-trapping is not induced, we derive two important characteristics: (1) the emission is related to defects on the surfaces and (2) single electronic excitation cannot induce the emissions. The recent experimental observations of laser-induced emissions satisfying these characteristics for the DIET from semiconductors are surveyed. Furthermore we present experimental evidence demonstrating that the observed emissions are of the electronic origin: the emission occurs dominantly when the excitation is localized on the surface. Finally, surface phenomena, such as laser ablation and dry etching, related to the DIET from semiconductors, and the applications of the DIET from semiconductors are discussed.

  2. Electron impact excitation of the Rydberg states in O2 in the 7-10 eV energy-loss region

    NASA Technical Reports Server (NTRS)

    Trajmar, S.; Cartwright, D. C.; Hall, R. I.

    1976-01-01

    An experimental investigation was undertaken to identify as many transitions as possible in the 7-10 eV region of the electron impact energy-loss spectrum of 02 at low impact energies and high scattering angles. A number of new transitions were found which do not appear in optical spectra: bands at 8.595, 8.826, 9.045, and 9.27 eV have been assigned to the 3 s sigma g 1Pi(nu prime equals 0, 1, 2, and 3) excitations, respectively, and the identification of the corresponding 3Pi-g bands have been reconfirmed.

  3. Chemical excitation of electrons: A dark path to melanoma.

    PubMed

    Premi, Sanjay; Brash, Douglas E

    2016-08-01

    Sunlight's ultraviolet wavelengths induce cyclobutane pyrimidine dimers (CPDs), which then cause mutations that lead to melanoma or to cancers of skin keratinocytes. In pigmented melanocytes, we found that CPDs arise both instantaneously and for hours after UV exposure ends. Remarkably, the CPDs arising in the dark originate by a novel pathway that resembles bioluminescence but does not end in light: First, UV activates the enzymes nitric oxide synthase (NOS) and NADPH oxidase (NOX), which generate the radicals nitric oxide (NO) and superoxide (O2(-)); these combine to form the powerful oxidant peroxynitrite (ONOO(-)). A fragment of the skin pigment melanin is then oxidized, exciting an electron to an energy level so high that it is rarely seen in biology. This process of chemically exciting electrons, termed "chemiexcitation", is used by fireflies to generate light but it had never been seen in mammalian cells. In melanocytes, the energy transfers radiationlessly to DNA, inducing CPDs. Chemiexcitation is a new source of genome instability, and it calls attention to endogenous mechanisms of genome maintenance that prevent electronic excitation or dissipate the energy of excited states. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Coulomb excitation of states in 232Th

    NASA Astrophysics Data System (ADS)

    McGowan, F. K.; Milner, W. T.

    1993-09-01

    Twenty-five states in 232Th have been observed with 18 MeV 4He ions on a thick target. Eleven 2 + states between 774 and 1554 keV and three 3 - states are populated by direct E2 and E3, respectively. The remaining states are either weakly excited by multiple Coulomb excitation and/or populated by the decay of the directly excited states. Spin assignments are based on γ-ray angular distributions. Reduced transition probabilities have been deduced from the γ-ray yields. The B(E2) values for excitation of the 2 + states range from 0.024 to 3.5 W.u. (222 W.u. for the first 2 + state). For the 3 - states, the B(E3,0 → 3 -) values are 1.7, 11, and 24 W.u. A possible two-phonon state at 1554 keV, which is nearly harmonic, decays to four members of the one-phonon states, to the ground-state band, and to the K = 0 - octupole band. The B(E2) value for excitation of this state is 0.66 ± 0.05 W.u. and the B(E1) values for decay of this state are (2 and 6)×10 -4 W.u. The B(E2) values between two- and one-phonon vibrational states range between 16 and 53 W.u. which are an order of magnitude larger than the B(E2) values between the one- and zero-phonon states. This disagrees with our present understanding of collectivity in nuclei if this 2 + state is considered to be a collective two-phonon excitation. The 2 + states at 1477 and 1387 keV, which are also nearly harmonic, are possible candidates with two-phonon structure. The agreement between the experimental results and the microscopic calculations by Neergård and Vogel of the B(E3,0 → 3) for the 3 - members of the one-phonon octupole quadruplet is satisfactory when the Coriolis coupling between the states with K and K ± 1 is included. The B(E1) branching ratios for transitions from the 3 - and 1 - states to the ground-state band have large deviations from the Alaga-rule predictions. These deviations can be understood by the strong Coriolis coupling between the states of the octupole quadruplet in deformed nuclei.

  5. Calculation of the Cross Section of Helium Ionization by an Electron Impact with the Formation of a Helium Ion in an Excited State

    SciTech Connect

    Elizarov, A.Yu.; Tupitsyn, I.I.

    2005-11-15

    The total cross sections of He and He{sup +} ionization by an electron impact are calculated in the first Born approximation. Calculations of the matrix elements are carried out by the Fock-Dirac multiconfiguration relativistic method using an intermediate type of coupling with orthogonal functions of the initial and final states. A single-electron wave function of the continuous spectrum for an Auger electron is obtained using the Fock-Dirac single-configuration method. The results of the calculations performed with orthogonal and nonorthogonal wave functions of the initial and final states are compared. The ionization cross sections are calculated for cases in which a knock-on electron of the continuous spectrum is described by both the orthogonal and nonorthogonal wave functions with respect to the wave functions of the core electrons.

  6. Excited-state imaging of cold atoms

    NASA Astrophysics Data System (ADS)

    Sheludko, David V.; Bell, Simon C.; Vredenbregt, Edgar J. D.; Scholten, Robert E.

    2007-09-01

    We have investigated state-selective diffraction contrast imaging (DCI) of cold 85Rb atoms in the first excited (52P3/2) state. Excited-state DCI requires knowledge of the complex refractive index of the atom cloud, which was calculated numerically using a semi-classical model. The Autler-Townes splitting predicted by the model was verified experimentally, showing excellent agreement. 780 nm lasers were used to cool and excite atoms within a magneto-optical trap, and the atoms were then illuminated by a 776 nm imaging laser. Several excited-state imaging techniques, including blue cascade fluorescence, on-resonance absorption, and DCI have been demonstrated. Initial results show that improved signal-to-noise ratio (SNR) will be required to accurately determine the excited state fraction. We have demonstrated magnetic field gradient compression of the cold atom cloud, and expect that further progress on compression and additional cooling will achieve sufficient diffraction contrast for quantitative state-selective imaging.

  7. Low-energy electron scattering on deuterated nanocrystalline diamond films-a model system for understanding the interplay between density-of-states, excitation mechanisms and surface versus lattice contributions.

    PubMed

    Amiaud, L; Martin, I; Milosavljević, A R; Michaelson, Sh; Hoffman, A; Azria, R; Lafosse, A

    2011-06-28

    Electron energy loss spectrum, elastic reflectivity and selected vibrational excitation functions were measured by High Resolution Electron Energy Loss Spectroscopy (HREELS) for deuterated nanocrystalline dc GD CVD diamond films. The electron elastic reflectivity is strongly enhanced at about 13 eV, as a consequence of the second absolute band gap of diamond preserved u