Sample records for electronic flow regulator

  1. Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system

    NASA Astrophysics Data System (ADS)

    Manikandan, J.; Jayaraman, M.; Jayachandran, M.

    2011-02-01

    This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.

  2. Regulation of electron temperature gradient turbulence by zonal flows driven by trapped electron modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S.

    2014-05-15

    Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger thanmore » or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.« less

  3. 76 FR 71928 - Defense Federal Acquisition Regulation Supplement; Updates to Wide Area WorkFlow (DFARS Case 2011...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-21

    ... Defense Federal Acquisition Regulation Supplement; Updates to Wide Area WorkFlow (DFARS Case 2011-D027... Wide Area WorkFlow (WAWF) and TRICARE Encounter Data System (TEDS). WAWF, which electronically... civil emergencies, when access to Wide Area WorkFlow by those contractors is not feasible; (4) Purchases...

  4. Pump and Flow Control Subassembly of Thermal Control Subsystem for Photovoltaic Power Module

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Santen, Mark A.

    1993-01-01

    The pump and flow control subassembly (PFCS) is an orbital replacement unit (ORU) on the Space Station Freedom photovoltaic power module (PVM). The PFCS pumps liquid ammonia at a constant rate of approximately 1170 kg/hr while providing temperature control by flow regulation between the radiator and the bypass loop. Also, housed within the ORU is an accumulator to compensate for fluid volumetric changes as well as the electronics and firmware for monitoring and control of the photovoltaic thermal control system (PVTCS). Major electronic functions include signal conditioning, data interfacing and motor control. This paper will provide a description of each major component within the PFCS along with performance test data. In addition, this paper will discuss the flow control algorithm and describe how the nickel hydrogen batteries and associated power electronics will be thermally controlled through regulation of coolant flow to the radiator.

  5. The water-water cycle is a major electron sink in Camellia species when CO2 assimilation is restricted.

    PubMed

    Cai, Yan-Fei; Yang, Qiu-Yun; Li, Shu-Fa; Wang, Ji-Hua; Huang, Wei

    2017-03-01

    The water-water cycle (WWC) is thought to dissipate excess excitation energy and balance the ATP/NADPH energy budget under some conditions. However, the importance of the WWC in photosynthetic regulation remains controversy. We observed that three Camellia cultivars exhibited high rates of photosynthetic electron flow under high light when photosynthesis was restricted. We thus tested the hypothesis that the WWC is a major electron sink in the three Camellia cultivars when CO 2 assimilation is restricted. Light response curves indicated that the WWC was strongly increased with photorespiration and was positively correlated with extra ATP supplied from other flexible mechanisms excluding linear electron flow, implying that the WWC is an important alternative electron sink to balance ATP/NADPH energy demand for sustaining photorespiration in Camellia cultivars. Interestingly, when photosynthesis was depressed by the decreases in stomatal and mesophyll conductance, the rates of photosynthetic electron flow through photosystem II declined slightly and the rates of WWC was enhanced. Furthermore, the increased electron flow of WWC was positively correlated with the ratio of Rubisco oxygenation to carboxylation, supporting the involvement of alternative electron flow in balancing the ATP/NADPH energy budget. We propose that the WWC is a crucial electron sink to regulate ATP/NADPH energy budget and dissipate excess energy excitation in Camellia species when CO 2 assimilation is restricted. Copyright © 2017. Published by Elsevier B.V.

  6. Small-Portion Water Dispenser

    NASA Technical Reports Server (NTRS)

    Joerns, J. C.

    1986-01-01

    Pressure regulated and flow timed to control amount dispensed. Dispenser provides measured amount of water for reconstituting dehydrated foods and beverages. Dispenser holds food or beverage package while being filled with either cold or room-temperature water. Other uses might include dispensing of fluids or medicine. Pressure regulator in dispenser reduces varying pressure of water supply to constant pressure. Electronic timer stops flow after predetermined length of time. Timed flow at regulated pressure ensures controlled volume of water dispensed.

  7. Alternative electron flows (water-water cycle and cyclic electron flow around PSI) in photosynthesis: molecular mechanisms and physiological functions.

    PubMed

    Miyake, Chikahiro

    2010-12-01

    An electron flow in addition to the major electron sinks in C(3) plants [both photosynthetic carbon reduction (PCR) and photorespiratory carbon oxidation (PCO) cycles] is termed an alternative electron flow (AEF) and functions in the chloroplasts of leaves. The water-water cycle (WWC; Mehler-ascorbate peroxidase pathway) and cyclic electron flow around PSI (CEF-PSI) have been studied as the main AEFs in chloroplasts and are proposed to play a physiologically important role in both the regulation of photosynthesis and the alleviation of photoinhibition. In the present review, I discuss the molecular mechanisms of both AEFs and their functions in vivo. To determine their physiological function, accurate measurement of the electron flux of AEFs in vivo are required. Methods to assay electron flux in CEF-PSI have been developed recently and their problematic points are discussed. The common physiological function of both the WWC and CEF-PSI is the supply of ATP to drive net CO(2) assimilation. The requirement for ATP depends on the activities of both PCR and PCO cycles, and changes in both WWC and CEF-PSI were compared with the data obtained in intact leaves. Furthermore, the fact that CEF-PSI cannot function independently has been demonstrated. I propose a model for the regulation of CEF-PSI by WWC, in which WWC is indispensable as an electron sink for the expression of CEF-PSI activity.

  8. Proton gradient regulation 5 supports linear electron flow to oxidize photosystem I.

    PubMed

    Takagi, Daisuke; Miyake, Chikahiro

    2018-03-31

    In higher plants, light drives the linear photosynthetic electron transport reaction from H 2 O to electron sinks, which is called as linear electron flow (LEF). LEF activity should be regulated depending on electron sinks; otherwise excess electrons accumulate in the thylakoid membranes and stimulate reactive oxygen species (ROS) production in photosystem I (PSI), which causes oxidative damage to PSI. To prevent ROS production in PSI, PSI should be oxidized during photosynthesis, and PROTON GRADIENT REGULATION 5 (PGR5) and PGR like 1 (PGRL1) are important to oxidized PSI. PGR5 and PGRL1 are recognized as a component of ferredoxin-dependent cyclic electron flow around PSI (Fd-CEF-PSI), however there is no direct evidence for the significant operation of Fd-CEF-PSI during photosynthesis in wild-type (WT) plants. Thus, electron distribution by PGR5 and PGRL1 between Fd-CEF-PSI and LEF is still elusive. Here, we show direct evidence that Fd-CEF-PSI activity is minor during steady state photosynthesis by measuring the Fd redox state in vivo in Arabidopsis thaliana. We found that Fd oxidation rate is determined by LEF activity during steady state photosynthesis in WT. On the other hand, pgr5 and pgrl1 showed lower electron transport efficiency from PSI to electron sinks through Fd during steady state photosynthesis. These results demonstrate that electrons are exclusively consumed in electron sinks through Fd, and the phenotypes of pgr5 and pgrl1 are likely caused by the disturbance of the LEF between PSI and electron sinks. We suggest that PGR5 and PGRL1 modulate the LEF according to electron sink activities around PSI. This article is protected by copyright. All rights reserved.

  9. Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte thellungiella: role of the plastid terminal oxidase as an alternative electron sink.

    PubMed

    Stepien, Piotr; Johnson, Giles N

    2009-02-01

    The effects of short-term salt stress on gas exchange and the regulation of photosynthetic electron transport were examined in Arabidopsis (Arabidopsis thaliana) and its salt-tolerant close relative Thellungiella (Thellungiella halophila). Plants cultivated on soil were challenged for 2 weeks with NaCl. Arabidopsis showed a much higher sensitivity to salt than Thellungiella; while Arabidopsis plants were unable to survive exposure to greater than 150 mM salt, Thellugiella could tolerate concentrations as high as 500 mM with only minimal effects on gas exchange. Exposure of Arabidopsis to sublethal salt concentrations resulted in stomatal closure and inhibition of CO2 fixation. This lead to an inhibition of electron transport though photosystem II (PSII), an increase in cyclic electron flow involving only PSI, and increased nonphotochemical quenching of chlorophyll fluorescence. In contrast, in Thellungiella, although gas exchange was marginally inhibited by high salt and PSI was unaffected, there was a large increase in electron flow involving PSII. This additional electron transport activity is oxygen dependent and sensitive to the alternative oxidase inhibitor n-propyl gallate. PSII electron transport in Thellungiella showed a reduced sensitivity to 2'-iodo-6-isopropyl-3-methyl-2',4,4'-trinitrodiphenylether, an inhibitor of the cytochrome b6f complex. At the same time, we observed a substantial up-regulation of a protein reacting with antibodies raised against the plastid terminal oxidase. No such up-regulation was seen in Arabidopsis. We conclude that in salt-stressed Thellungiella, plastid terminal oxidase acts as an alternative electron sink, accounting for up to 30% of total PSII electron flow.

  10. Transborder Data Flow, Informatics and National Policies: A Comparison among 22 Nations.

    ERIC Educational Resources Information Center

    Wigand, Rolf T.; And Others

    The product of advanced information technology and digital transmission capabilities, transborder data flow (TDF)--the flow of information across national borders via computer and other electronic communications systems--has considerable political, social, economic, and legal implications. Important issues in TDF include (1) the regulation of…

  11. Real Time Ferrograph Development.

    DTIC Science & Technology

    1979-11-01

    differential temperature of 65 0 C. Since opteo- electronic devices (photodiodes, photoresistors, etc.) have a maximum operating temperature around 85 0 C, it is...flow during the precipitation cycle. This regulator must keep the flow rate constant at any given temperature regardless of the differential pressure...across the sensing head. The pressure regulator achieved this by using the differential pressure across a fixed re;7trictor to move a bellows diaphragm

  12. A comparative study of single-temperature and two-temperature accretion flows around black holes

    NASA Astrophysics Data System (ADS)

    Dihingia, Indu Kalpa; Das, Santabrata; Mandal, Samir

    2018-02-01

    We study the properties of sub-Keplerian accretion disk around a stationary black hole, considering bremsstrahlung, synchrotron and Comptonization of synchrotron photons as radiative cooling mechanisms active in the disk. We obtain the solutions of two-temperature global accretion flow (TTAF) and compare it with the results obtained from single-temperature (STAF) model. We observe that flow properties, in particular, the radial profile of electron and ion temperatures differ noticeably in the adopted models for flows with identical boundary conditions fixed at the outer edge of the disk. Since the electron temperature is one of the key factors to regulate the radiative processes, we argue that physically motivated description of electron temperature needs to be considered in studying the astrophysical phenomena around black holes.

  13. 76 FR 58122 - Defense Federal Acquisition Regulation Supplement; Material Inspection and Receiving Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ...DoD is issuing a final rule amending the Defense Federal Acquisition Regulation Supplement (DFARS), Appendix F, Material Inspection and Receiving Report, to incorporate new procedures for using the electronic Wide Area WorkFlow (WAWF) Receiving Report.

  14. Reduction-Induced Suppression of Electron Flow (RISE) Is Relieved by Non-ATP-Consuming Electron Flow in Synechococcus elongatus PCC 7942.

    PubMed

    Shimakawa, Ginga; Shaku, Keiichiro; Miyake, Chikahiro

    2018-01-01

    Photosynthetic organisms oxidize P700 to suppress the production of reactive oxygen species (ROS) in photosystem I (PSI) in response to the lower efficiency of photosynthesis under high light and low CO 2 conditions. Previously, we found a positive relationship between reduction of plastoquinone (PQ) pool and oxidation of P700, which we named reduction-induced suppression of electron flow (RISE). In the RISE model, we proposed that the highly reduced state of the PQ pool suppresses Q-cycle turnover to oxidize P700 in PSI. Here, we tested whether RISE was relieved by the oxidation of the PQ pool, but not by the dissipation of the proton gradient (ΔpH) across the thylakoid membrane. Formation of ΔpH can also suppress electron flow to P700, because acidification on the luminal side of the thylakoid membrane lowers oxidation of reduced PQ in the cytochrome b 6 / f complex. We drove photosynthetic electron transport using H 2 O 2 -scavenging peroxidase reactions. Peroxidase reduces H 2 O 2 with electron donors regenerated along the photosynthetic electron transport system, thereby promoting the formation of ΔpH. Addition of H 2 O 2 to the cyanobacterium Synechococcus elongatus PCC 7942 under low CO 2 conditions induced photochemical quenching of chlorophyll fluorescence, enhanced NADPH fluorescence and reduced P700. Thus, peroxidase reactions relieved the RISE mechanism, indicating that P700 oxidation can be induced only by the reduction of PQ to suppress the production of ROS in PSI. Overall, our data suggest that RISE regulates the redox state of P700 in PSI in cooperation with ΔpH regulation.

  15. Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight.

    PubMed

    Huang, Wei; Hu, Hong; Zhang, Shi-Bao

    2015-01-01

    Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 μmol photons m(-2) s(-1). Compared with leaves exposed to a constant light of 1200 μmol photons m(-2) s(-1), both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 μmol photons m(-2) s(-1) under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 μmol photons m(-2) s(-1) under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 μmol photons m(-2) s(-1) under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow.

  16. Ca(2+)-regulated cyclic electron flow supplies ATP for nitrogen starvation-induced lipid biosynthesis in green alga.

    PubMed

    Chen, Hui; Hu, Jinlu; Qiao, Yaqin; Chen, Weixian; Rong, Junfeng; Zhang, Yunming; He, Chenliu; Wang, Qiang

    2015-10-09

    We previously showed that both the linear photosynthetic electron transportation rate and the respiration rate dropped significantly during N starvation-induced neutral lipid accumulation in an oil-producing microalga, Chlorella sorokiniana, and proposed a possible role for cyclic electron flow (CEF) in ATP supply. In this study, we further exploited this hypothesis in both Chlorella sorokiniana C3 and the model green alga Chlamydomonas. We found that both the rate of CEF around photosystem I and the activity of thylakoid membrane-located ATP synthetase increased significantly during N starvation to drive ATP production. Furthermore, we demonstrated that the Chlamydomonas mutant pgrl1, which is deficient in PGRL1-mediated CEF, accumulated less neutral lipids and had reduced rates of CEF under N starvation. Further analysis revealed that Ca(2+) signaling regulates N starvation-induced neutral lipid biosynthesis in Chlamydomonas by increasing calmodulin activity and boosting the expression of the calcium sensor protein that regulates Pgrl1-mediated CEF. Thus, Ca(2+)-regulated CEF supplies ATP for N starvation-induced lipid biosynthesis in green alga. The increased CEF may re-equilibrate the ATP/NADPH balance and recycle excess light energy in photosystems to prevent photooxidative damage, suggesting Ca(2+)-regulated CEF also played a key role in protecting and sustaining photosystems.

  17. Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight

    PubMed Central

    Huang, Wei; Hu, Hong; Zhang, Shi-Bao

    2015-01-01

    Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels alternated between 100 and 1200 μmol photons m−2 s−1. Compared with leaves exposed to a constant light of 1200 μmol photons m−2 s−1, both stomatal and mesophyll conductances were significantly restricted in leaves treated with fluctuating light condition. Meanwhile, CO2 assimilation rate and electron flow devoted to RuBP carboxylation at 1200 μmol photons m−2 s−1 under fluctuating light were limited by the low chloroplast CO2 concentration. Analysis based on the C3 photosynthesis model indicated that, at 1200 μmol photons m−2 s−1 under fluctuating light, the CO2 assimilation rate was limited by RuBP carboxylation. Electron flow devoted to RuBP oxygenation at 1200 μmol photons m−2 s−1 under fluctuating light remained at nearly the maximum level throughout the experimental period. We conclude that fluctuating light restricts CO2 assimilation by decreasing both stomatal and mesophyll conductances. Under such conditions, photorespiration plays an important role in the regulation of photosynthetic electron flow. PMID:26322062

  18. Induction of Photosynthetic Carbon Fixation in Anoxia Relies on Hydrogenase Activity and Proton-Gradient Regulation-Like1-Mediated Cyclic Electron Flow in Chlamydomonas reinhardtii.

    PubMed

    Godaux, Damien; Bailleul, Benjamin; Berne, Nicolas; Cardol, Pierre

    2015-06-01

    The model green microalga Chlamydomonas reinhardtii is frequently subject to periods of dark and anoxia in its natural environment. Here, by resorting to mutants defective in the maturation of the chloroplastic oxygen-sensitive hydrogenases or in Proton-Gradient Regulation-Like1 (PGRL1)-dependent cyclic electron flow around photosystem I (PSI-CEF), we demonstrate the sequential contribution of these alternative electron flows (AEFs) in the reactivation of photosynthetic carbon fixation during a shift from dark anoxia to light. At light onset, hydrogenase activity sustains a linear electron flow from photosystem II, which is followed by a transient PSI-CEF in the wild type. By promoting ATP synthesis without net generation of photosynthetic reductants, the two AEF are critical for restoration of the capacity for carbon dioxide fixation in the light. Our data also suggest that the decrease in hydrogen evolution with time of illumination might be due to competition for reduced ferredoxins between ferredoxin-NADP(+) oxidoreductase and hydrogenases, rather than due to the sensitivity of hydrogenase activity to oxygen. Finally, the absence of the two alternative pathways in a double mutant pgrl1 hydrogenase maturation factor G-2 is detrimental for photosynthesis and growth and cannot be compensated by any other AEF or anoxic metabolic responses. This highlights the role of hydrogenase activity and PSI-CEF in the ecological success of microalgae in low-oxygen environments. © 2015 American Society of Plant Biologists. All Rights Reserved.

  19. Solar hot water system installed at Mobile, Alabama

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The system consists of six rows of ten collectors and three rows of eleven collectors (1990 square feet) mounted on the roof. Griswald flow control valves were installed to regulate the flow to each row. Two Heliotrope electronic thermometers with a combined capability of measuring the temperatures of 22 different locations were installed for monitoring purposes.

  20. Kinetic and radiative power from optically thin accretion flows

    NASA Astrophysics Data System (ADS)

    Sądowski, Aleksander; Gaspari, Massimo

    2017-06-01

    We perform a set of general relativistic, radiative, magneto-hydrodynamical simulations (GR-RMHD) to study the transition from radiatively inefficient to efficient state of accretion on a non-rotating black hole. We study ion to electron temperature ratios ranging from TI/Te = 10 to 100, and simulate flows corresponding to accretion rates as low as 10^{-6}\\dot{M}_Edd, and as high as 10^{-2}\\dot{M}_Edd. We have found that the radiative output of accretion flows increases with accretion rate, and that the transition occurs earlier for hotter electrons (lower TI/Te ratio). At the same time, the mechanical efficiency hardly changes and accounts to ≈3 per cent of the accreted rest mass energy flux, even at the highest simulated accretion rates. This is particularly important for the mechanical active galactic nuclei (AGN) feedback regulating massive galaxies, groups and clusters. Comparison with recent observations of radiative and mechanical AGN luminosities suggests that the ion to electron temperature ratio in the inner, collisionless accretion flow should fall within 10 < TI/Te < 30, I.e. the electron temperature should be several percent of the ion temperature.

  1. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Xing, Feng; Li, Xianfeng; Ning, Guiling; Zhang, Huamin

    2016-08-01

    Vanadium flow battery holds great promise for use in large scale energy storage applications. However, the power density is relatively low, leading to significant increase in the system cost. Apart from the kinetic and electronic conductivity improvement, the mass transport enhancement is also necessary to further increase the power density and reduce the system cost. To better understand the mass transport limitations, in the research, the space-varying and time-varying characteristic of the mass transport polarization is investigated based on the analysis of the flow velocity and reactant concentration in the bulk electrolyte by modeling. The result demonstrates that the varying characteristic of mass transport polarization is more obvious at high SoC or high current densities. To soften the adverse impact of the mass transport polarization, a new rectangular plug flow battery with a plug flow and short flow path is designed and optimized based on the mass transport polarization regulation (reducing the mass transport polarization and improving its uniformity of distribution). The regulation strategy of mass transport polarization is practical for the performance improvement in VFBs, especially for high power density VFBs. The findings in the research are also applicable for other flow batteries and instructive for practical use.

  2. Controlling Gas-Flow Mass Ratios

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1990-01-01

    Proposed system automatically controls proportions of gases flowing in supply lines. Conceived for control of oxidizer-to-fuel ratio in new gaseous-propellant rocket engines. Gas-flow control system measures temperatures and pressures at various points. From data, calculates control voltages for electronic pressure regulators for oxygen and hydrogen. System includes commercially available components. Applicable to control of mass ratios in such gaseous industrial processes as chemical-vapor depostion of semiconductor materials and in automotive engines operating on compressed natural gas.

  3. pH-Dependent Regulation of the Relaxation Rate of the Radical Anion of the Secondary Quinone Electron Acceptor QB in Photosystem II As Revealed by Fourier Transform Infrared Spectroscopy.

    PubMed

    Nozawa, Yosuke; Noguchi, Takumi

    2018-05-15

    Photosystem II (PSII) is a protein complex that performs water oxidation using light energy during photosynthesis. In PSII, electrons abstracted from water are eventually transferred to the secondary quinone electron acceptor, Q B , and upon double reduction, Q B is converted to quinol by binding two protons. Thus, excess electron transfer in PSII increases the pH of the stroma. In this study, to investigate the pH-dependent regulation of the electron flow in PSII, we have estimated the relaxation rate of the Q B - radical anion in the pH region between 5 and 8 by direct monitoring of its population using light-induced Fourier transform infrared difference spectroscopy. The decay of Q B - by charge recombination with the S 2 state of the water oxidation center in PSII membranes was shown to be accelerated at higher pH, whereas that of Q A - examined in the presence of a herbicide was virtually unaffected at pH ≤7.5 and slightly slowed at pH 8. These observations were consistent with the previous studies that included rather indirect monitoring of the Q B - and Q A - decays using fluorescence detection. The accelerated relaxation of Q B - was explained by the shift of a redox equilibrium between Q A - and Q B - to the Q A - side due to the decrease in the redox potential of Q B at higher pH, which is induced by deprotonation of a single amino acid residue near Q B . It is proposed that this pH-dependent Q B - relaxation is one of the mechanisms of electron flow regulation in PSII for its photoprotection.

  4. Control of Electron Flow Direction in Photoexcited Cycloplatinated Complex Containing Conjugated Polymer-Single Walled Carbon Nanotube Hybrids.

    PubMed

    Xiong, Wenjuan; Du, Lili; Lo, Kin Cheung; Shi, Haiting; Takaya, Tomohisa; Iwata, Koichi; Chan, Wai Kin; Phillips, David Lee

    2018-06-25

    Conjugated polymers incorporated with cycloplatinated complexes (P1-Pt and P2-Pt) were used as dispersants for single walled carbon nanotubes (SWCNTs). Significant changes in the UV-vis absorption spectra were observed after the formation of the polymer/SWCNT hybrids. Molecular dynamics (MD) simulations revealed the presence of a strong interaction between the cycloplatinated complex moieties and the SWCNT surface. The photoinduced electron transfer processes in these hybrids were strongly dependent on the type of the comonomer unit. Upon photoexcitation, the excited P1-Pt donates electrons to the SWCNT, while P2-Pt accepts electrons from the photoexcited SWCNT. These observations were supported by results from Raman and femtosecond time-resolved transient absorption spectroscopy experiments. The strong electronic interaction between the Pt complexes and the SWCNT gives rise to a new hybrid system that has a controllable photo-induced electron transfer flow, which are important in regulating the charge transport processes SWCNT-based optoelectronic devices.

  5. Influence of the variation potential on photosynthetic flows of light energy and electrons in pea.

    PubMed

    Sukhova, Ekaterina; Mudrilov, Maxim; Vodeneev, Vladimir; Sukhov, Vladimir

    2018-05-01

    Local damage (mainly burning, heating, and mechanical wounding) induces propagation of electrical signals, namely, variation potentials, which are important signals during the life of plants that regulate different physiological processes, including photosynthesis. It is known that the variation potential decreases the rate of CO 2 assimilation by the Calvin-Benson cycle; however, its influence on light reactions has been poorly investigated. The aim of our work was to investigate the influence of the variation potential on the light energy flow that is absorbed, trapped and dissipated per active reaction centre in photosystem II and on the flow of electrons through the chloroplast electron transport chain. We analysed chlorophyll fluorescence in pea leaves using JIP-test and PAM-fluorometry; we also investigated delayed fluorescence. The electrical signals were registered using extracellular electrodes. We showed that the burning-induced variation potential stimulated a nonphotochemical loss of energy in photosystem II under dark conditions. It was also shown that the variation potential gradually increased the flow of light energy absorbed, trapped and dissipated by photosystem II. These changes were likely caused by an increase in the fraction of absorbed light distributed to photosystem II. In addition, the variation potential induced a transient increase in electron flow through the photosynthetic electron transport chain. Some probable mechanisms for the influence of the variation potential on the light reactions of photosynthesis (including the potential role of intracellular pH decrease) are discussed in the work.

  6. Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves.

    PubMed

    Makino, Amane; Miyake, Chikahiro; Yokota, Akiho

    2002-09-01

    Changes in chlorophyll fluorescence, P700(+)-absorbance and gas exchange during the induction phase and steady state of photosynthesis were simultaneously examined in rice (Oryza sativa L.), including the rbcS antisense plants. The quantum yield of photosystem II (PhiPSII) increased more rapidly than CO(2) assimilation in 20% O(2). This rapid increase in PhiPSII resulted from the electron flux through the water-water cycle (WWC) because of its dependency on O(2). The electron flux of WWC reached a maximum just after illumination, and rapidly generated non-photochemical quenching (NPQ). With increasing CO(2) assimilation, the electron flux of WWC and NPQ decreased. In 2% O(2), WWC scarcely operated and PhiPSI was always higher than PhiPSII. This suggested that cyclic electron flow around PSI resulted in the formation of NPQ, which remained at higher levels in 2% O(2). The electron flux of WWC in the rbcS antisense plants was lower, but these plants always showed a higher NPQ. This was also caused by the operation of the cyclic electron flow around PSI because of a higher ratio of PhiPSI/PhiPSII, irrespective of O(2) concentration. The results indicate that WWC functions as a starter of photosynthesis by generating DeltapH across thylakoid membranes for NPQ formation, supplying ATP for carbon assimilation. However, WWC does not act to maintain a high NPQ, and PhiPSII is down-regulated by DeltapH generated via the cyclic electron flow around PSI.

  7. Monitour: Tracking global routes of electronic waste.

    PubMed

    Lee, David; Offenhuber, Dietmar; Duarte, Fábio; Biderman, Assaf; Ratti, Carlo

    2018-02-01

    Many nations seek to control or prevent the inflow of waste electronic and electrical equipment, but such flows are difficult to track due to undocumented, often illegal global trade in e-waste. We apply wireless GPS location trackers to this problem, detecting potential cases of non-compliant recycling operations in the United States as well as the global trajectories of exported e-waste. By planting hidden trackers inside discarded computer monitors and printers, we tracked dozens of devices being sent overseas to various ports in Asia, flows likely unreported in official trade data. We discuss how location tracking enables new ways to monitor, regulate, and enforce rules on the international movement of hazardous electronic waste materials, and the limitations of such methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Regulation of the photosynthetic apparatus under fluctuating growth light.

    PubMed

    Tikkanen, Mikko; Grieco, Michele; Nurmi, Markus; Rantala, Marjaana; Suorsa, Marjaana; Aro, Eva-Mari

    2012-12-19

    Safe and efficient conversion of solar energy to metabolic energy by plants is based on tightly inter-regulated transfer of excitation energy, electrons and protons in the photosynthetic machinery according to the availability of light energy, as well as the needs and restrictions of metabolism itself. Plants have mechanisms to enhance the capture of energy when light is limited for growth and development. Also, when energy is in excess, the photosynthetic machinery slows down the electron transfer reactions in order to prevent the production of reactive oxygen species and the consequent damage of the photosynthetic machinery. In this opinion paper, we present a partially hypothetical scheme describing how the photosynthetic machinery controls the flow of energy and electrons in order to enable the maintenance of photosynthetic activity in nature under continual fluctuations in white light intensity. We discuss the roles of light-harvesting II protein phosphorylation, thermal dissipation of excess energy and the control of electron transfer by cytochrome b(6)f, and the role of dynamically regulated turnover of photosystem II in the maintenance of the photosynthetic machinery. We present a new hypothesis suggesting that most of the regulation in the thylakoid membrane occurs in order to prevent oxidative damage of photosystem I.

  9. Does the valve regulated release of urine from the bladder decrease encrustation and blockage of indwelling catheters by crystalline proteus mirabilis biofilms?

    PubMed

    Sabbuba, N A; Stickler, D J; Long, M J; Dong, Z; Short, T D; Feneley, R J C

    2005-01-01

    We tested whether valve regulated, intermittent flow of urine from catheterized bladders decreases catheter encrustation. Laboratory models of the catheterized bladder were infected with Proteus mirabilis. Urine was allowed to drain continuously through the catheters or regulated by valves to drain intermittently at predetermined intervals. The time that catheters required to become blocked was recorded and encrustation was visualized by scanning electron microscopy. When a manual valve was used to drain urine from the bladder at 2-hour intervals 4 times during the day, catheters required significantly longer to become blocked than those on continuous drainage (mean 62.6 vs 35.9 hours, p = 0.039). A similar 1.7-fold increase occurred when urine was drained at 4-hour intervals 3 times daily. Experiments with an automatic valve in which urine was released at 2 or 4-hour intervals through the day and night also showed a significant increase in mean time to blockage compared with continuous drainage (p = 0.001). Scanning electron microscopy confirmed that crystalline biofilm was less extensive on valve regulated catheters. Valve regulated, intermittent flow of urine through catheters increases the time that catheters require to become blocked with crystalline biofilm. The most beneficial effect was recorded when urine was released from the bladder at 4-hour intervals throughout the day and night by an automatic valve.

  10. Triode for Magnetic Flux Quanta.

    PubMed

    Vlasko-Vlasov, V K; Colauto, F; Benseman, T; Rosenmann, D; Kwok, W-K

    2016-11-15

    In an electronic triode, the electron current emanating from the cathode is regulated by the electric potential on a grid between the cathode and the anode. Here we demonstrate a triode for single quantum magnetic field carriers, where the flow of individual magnetic vortices in a superconducting film is regulated by the magnetic potential of striae of soft magnetic strips deposited on the film surface. By rotating an applied in-plane field, the magnetic strip potential can be varied due to changes in the magnetic charges at the strip edges, allowing accelerated or retarded motion of magnetic vortices inside the superconductor. Scaling down our design and reducing the gap width between the magnetic stripes will enable controlled manipulation of individual vortices and creation of single flux quantum circuitry for novel high-speed low-power superconducting electronics.

  11. Preliminary Performance Data on Westinghouse Electronic Power Regulator Operating on J34-WE-32 Turbojet Engine in Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Ketchum, James R.; Blivas, Darnold; Pack, George J.

    1950-01-01

    The behavior of the Westinghouse electronic power regulator operating on a J34-WE-32 turbojet engine was investigated in the NACA Lewis altitude wind tunnel at the request of the Bureau of Aeronautics, Department of the Navy. The object of the program was to determine the, steady-state stability and transient characteristics of the engine under control at various altitudes and ram pressure ratios, without afterburning. Recordings of the response of the following parameters to step changes in power lever position throughout the available operating range of the engine were obtained; ram pressure ratio, compressor-discharge pressure, exhaust-nozzle area, engine speed, turbine-outlet temperature, fuel-valve position, jet thrust, air flow, turbine-discharge pressure, fuel flow, throttle position, and boost-pump pressure. Representative preliminary data showing the actual time response of these variables are presented. These data are presented in the form of reproductions of oscillographic traces.

  12. REGULATOR FOR CALUTRON ION SOURCE

    DOEpatents

    Miller, B.F.

    1958-09-01

    Improvements are described in electric discharge devices and circuits for a calutron and, more specifically, presents an arc discharge regulator circuit for the ion source of the calatron. In general, the source comprises a filament which bombards a cathode with electrons, a griid control electrode between the filament and the cathode, and an anode electrode. The control electrode has a DC potential which is varied in response to changes in the anode current flow by means of a saturable reactor installed in its power supply energizing line having the anode current flowing through its control winding. In this manner the bombardment current to the cathode may be decreased when the anode current increases beyond a predetermined level.

  13. Regulating plant physiology with organic electronics.

    PubMed

    Poxson, David J; Karady, Michal; Gabrielsson, Roger; Alkattan, Aziz Y; Gustavsson, Anna; Doyle, Siamsa M; Robert, Stéphanie; Ljung, Karin; Grebe, Markus; Simon, Daniel T; Berggren, Magnus

    2017-05-02

    The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.

  14. Regulating plant physiology with organic electronics

    PubMed Central

    Poxson, David J.; Karady, Michal; Alkattan, Aziz Y.; Gustavsson, Anna; Robert, Stéphanie; Grebe, Markus; Berggren, Magnus

    2017-01-01

    The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants. PMID:28420793

  15. Observable Emission Features of Black Hole GRMHD Jets on Event Horizon Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Hung-Yi; Wu, Kinwah; Younsi, Ziri

    The general-relativistic magnetohydrodynamical (GRMHD) formulation for black hole-powered jets naturally gives rise to a stagnation surface, where inflows and outflows along magnetic field lines that thread the black hole event horizon originate. We derive a conservative formulation for the transport of energetic electrons, which are initially injected at the stagnation surface and subsequently transported along flow streamlines. With this formulation the energy spectra evolution of the electrons along the flow in the presence of radiative and adiabatic cooling is determined. For flows regulated by synchrotron radiative losses and adiabatic cooling, the effective radio emission region is found to be finite,more » and geometrically it is more extended along the jet central axis. Moreover, the emission from regions adjacent to the stagnation surface is expected to be the most luminous as this is where the freshly injected energetic electrons are concentrated. An observable stagnation surface is thus a strong prediction of the GRMHD jet model with the prescribed non-thermal electron injection. Future millimeter/submillimeter (mm/sub-mm) very-long-baseline interferometric observations of supermassive black hole candidates, such as the one at the center of M87, can verify this GRMHD jet model and its associated non-thermal electron injection mechanism.« less

  16. Lack of a peroxiredoxin suppresses the lethality of cells devoid of electron donors by channelling electrons to oxidized ribonucleotide reductase.

    PubMed

    Boronat, Susanna; Domènech, Alba; Carmona, Mercè; García-Santamarina, Sarela; Bañó, M Carmen; Ayté, José; Hidalgo, Elena

    2017-06-01

    The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.

  17. Specific roles of cyclic electron flow around photosystem I in photosynthetic regulation in immature and mature leaves.

    PubMed

    Huang, Wei; Yang, Ying-Jie; Zhang, Shi-Bao

    2017-02-01

    Cyclic electron flow (CEF) around photosystem I (PSI) is essential for photosynthesis in mature leaves. However, the physiological roles of CEF in immature leaves are little known. Here, we measured the PSI and PSII activities, light response changes in PSI and PSII energy quenching for immature and mature leaves of Erythrophleum guineense grown under full sunlight. Comparing with the maximum quantum yield of PSII (F v /F m ), the immature leaves had much lower values of the maximum photo-oxidizable P700 (P m ) than the mature leaves, suggesting the unsynchronized development of PSI and PSII activities. Furthermore, the immature leaves displayed significantly lower capacities for the photosynthetic electron flow through PSII (ETRII) and CEF. However, when exposed to high light, the immature leaves displayed higher levels of non-photochemical quenching (NPQ) and P700 oxidation ration [Y(ND)] than mature leaves. Under high light, the similar NPQ values were accompanied with much lower CEF activity in the immature leaves. These results suggest that, in immature leaves, CEF primarily contributes to photoprotection for PSI and PSII via acidification of thylakoid lumen. By comparison, in mature leaves, a large fraction of CEF-dependent generation of ΔpH contributes to ATP synthesis and a relative small proportion favors photoprotection via lumen acidification. These findings highlight the specific roles of CEF in photosynthetic regulation in immature and mature leaves. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Triode for Magnetic Flux Quanta

    DOE PAGES

    Vlasko-Vlasov, V. K.; Colauto, F.; Benseman, T.; ...

    2016-11-15

    In an electronic triode, the electron current emanating from the cathode is regulated by the electric potential on a grid between the cathode and the anode. Here we demonstrate a triode for single quantum magnetic field carriers, where the flow of individual magnetic vortices in a superconducting film is regulated by the magnetic potential of striae of soft magnetic strips deposited on the film surface. By rotating an applied in-plane field, the magnetic strip potential can be varied due to changes in the magnetic charges at the strip edges, allowing accelerated or retarded motion of magnetic vortices inside the superconductor.more » Scaling down our design and reducing the gap width between the magnetic stripes will enable controlled manipulation of individual vortices and creation of single flux quantum circuitry for novel high-speed low-power superconducting electronics.« less

  19. Short-term regulation and alternative pathways of photosynthetic electron transport in Hibiscus rosa-sinensis leaves.

    PubMed

    Trubitsin, Boris V; Vershubskii, Alexey V; Priklonskii, Vladimir I; Tikhonov, Alexander N

    2015-11-01

    In this work, using the EPR and PAM-fluorometry methods, we have studied induction events of photosynthetic electron transport in Hibiscus rosa-sinensis leaves. The methods used are complementary, providing efficient tools for in situ monitoring of P700 redox transients and photochemical activity of photosystem II (PSII). The induction of P700(+) in dark-adapted leaves is characterized by the multiphase kinetics with a lag-phase, which duration elongates with the dark-adaptation time. Analyzing effects of the uncoupler monensin and artificial electron carrier methylviologen (MV) on photooxidation of P700 and slow induction of chlorophyll a fluorescence (SIF), we could ascribe different phases of transient kinetics of electron transport processes in dark-adapted leaves to the following regulatory mechanisms: (i) acceleration of electron transfer on the acceptor side of PSI, (ii) pH-dependent modulation of the intersystem electron flow, and (iii) re-distribution of electron fluxes between alternative (linear, cyclic, and pseudocyclic) pathways. Monensin significantly decreases a level of P700(+) and inhibits SIF. MV, which mediates electron flow from PSI to O2 with consequent formation of H2O2, promotes a rapid photooxidation of P700 without any lag-phase peculiar to untreated leaves. MV-mediated water-water cycle (H2O→PSII→PSI→MV→O2→H2O2→H2O) is accompanied by generation of ascorbate free radicals. This suggests that the ascorbate peroxidase system of defense against reactive oxygen species is active in chloroplasts of H. rosa-sinensis leaves. In DCMU-treated chloroplasts with inhibited PSII, the contribution of cyclic electron flow is insignificant as compared to linear electron flow. For analysis of induction events, we have simulated electron transport processes within the framework of our generalized mathematical model of oxygenic photosynthesis, which takes into account pH-dependent mechanisms of electron transport control and re-distribution of electron fluxes between alternative pathways. The model adequately describes the main peculiarities of P700(+) induction and dynamics of the intersystem electron transport. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Development of CPR security using impact analysis.

    PubMed Central

    Salazar-Kish, J.; Tate, D.; Hall, P. D.; Homa, K.

    2000-01-01

    The HIPAA regulations will require that institutions ensure the prevention of unauthorized access to electronically stored or transmitted patient records. This paper discusses a process for analyzing the impact of security mechanisms on users of computerized patient records through "behind the scenes" electronic access audits. In this way, those impacts can be assessed and refined to an acceptable standard prior to implementation. Through an iterative process of design and evaluation, we develop security algorithms that will protect electronic health information from improper access, alteration or loss, while minimally affecting the flow of work of the user population as a whole. PMID:11079984

  1. Linking the micro and macro: L-H transition dynamics and threshold physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malkov, M. A., E-mail: mmalkov@ucsd.edu; Diamond, P. H.; Miki, K.

    2015-03-15

    The links between the microscopic dynamics and macroscopic threshold physics of the L → H transition are elucidated. Emphasis is placed on understanding the physics of power threshold scalings, and especially on understanding the minimum in the power threshold as a function of density P{sub thr} (n). By extending a numerical 1D model to evolve both electron and ion temperatures, including collisional coupling, we find that the decrease in P{sub thr} (n) along the low-density branch is due to the combination of an increase in collisional electron-to-ion energy transfer and an increase in the heating fraction coupled to the ions.more » Both processes strengthen the edge diamagnetic electric field needed to lock in the mean electric field shear for the L→H transition. The increase in P{sub thr} (n) along the high-density branch is due to the increase with ion collisionality of damping of turbulence-driven shear flows. Turbulence driven shear flows are needed to trigger the transition by extracting energy from the turbulence. Thus, we identify the critical transition physics components of the separatrix ion heat flux and the zonal flow excitation. The model reveals a power threshold minimum in density scans as a crossover between the threshold decrease supported by an increase in heat fraction received by ions (directly or indirectly, from electrons) and a threshold increase, supported by the rise in shear flow damping. The electron/ion heating mix emerges as important to the transition, in that it, together with electron-ion coupling, regulates the edge diamagnetic electric field shear. The importance of possible collisionless electron-ion heat transfer processes is explained.« less

  2. Regulation of Photosynthetic Electron Transport and Photoinhibition

    PubMed Central

    Roach, Thomas; Krieger-Liszkay, Anja Krieger

    2014-01-01

    Photosynthetic organisms and isolated photosystems are of interest for technical applications. In nature, photosynthetic electron transport has to work efficiently in contrasting environments such as shade and full sunlight at noon. Photosynthetic electron transport is regulated on many levels, starting with the energy transfer processes in antenna and ending with how reducing power is ultimately partitioned. This review starts by explaining how light energy can be dissipated or distributed by the various mechanisms of non-photochemical quenching, including thermal dissipation and state transitions, and how these processes influence photoinhibition of photosystem II (PSII). Furthermore, we will highlight the importance of the various alternative electron transport pathways, including the use of oxygen as the terminal electron acceptor and cyclic flow around photosystem I (PSI), the latter which seem particularly relevant to preventing photoinhibition of photosystem I. The control of excitation pressure in combination with the partitioning of reducing power influences the light-dependent formation of reactive oxygen species in PSII and in PSI, which may be a very important consideration to any artificial photosynthetic system or technical device using photosynthetic organisms. PMID:24678670

  3. Involvement of cyclic electron flow in irradiance stress responding and its potential regulation of the mechanisms in Pyropia yezoensis

    NASA Astrophysics Data System (ADS)

    Niu, Jianfeng; Feng, Jianhua; Xie, Xiujun; Gao, Shan; Wang, Guangce

    2016-07-01

    Pyropia yezoensis, belongs to the genus of Porphyra before 2011, inhabit on intertidal zone rocks where irradiation changes dramatically, implying that the seaweed has gained certain mechanisms to survive a harsh environment. Based on the photosynthetic parameters with or without the inhibitors determined by a Dual-PAM-100 apparatus, we investigated the photosynthetic performance and the changes in electron flow that occurred during the algae were stressed with different light intensities previously. When the irradiation saturation was approaching, the CEF around PS I became crucial since the addition of inhibitors usually led to an increase in non-photochemical quenching. The inhibitor experiments showed that there were at least three different CEF pathways in Py. yezoensis and these pathways compensated each other. In addition to maintaining a proper ratio of ATP/NAD(P)H to support efficient photosynthesis, the potential roles of CEF might also include the regulation of different photoprotective mechanisms in Py. yezoensis. Under the regulation of CEF, chlororespiration is thought to transport electrons from the reduced plastoquinone (PQ) pool to oxygen in order to mitigate the reduction in the electron transfer chain. When irradiation was up to the high-grade stress conditions, the relative value of CEF began to decrease, which implied that the NADP+ pool or PQ+ pool was very small and that the electrons were transferred from reduced PS I to oxygen. The scavenging enzymes might be activated and the water-water cycle probably became an effective means of removing the active oxygen produced by the irradiation stressed Py. yezoensis. We believe that the different mechanisms could make up the photoprotective network to allow Py. yezoensis for survival in a highly variable light stress habitat, which may enlighten scientists in future studies on irradiance stress in other algae species.

  4. The cytochrome b6f complex at the crossroad of photosynthetic electron transport pathways.

    PubMed

    Tikhonov, Alexander N

    2014-08-01

    Regulation of photosynthetic electron transport at the level of the cytochrome b6f complex provides efficient performance of the chloroplast electron transport chain (ETC). In this review, after brief overview of the structural organization of the chloroplast ETC, the consideration of the problem of electron transport control is focused on the plastoquinone (PQ) turnover and its interaction with the b6f complex. The data available show that the rates of plastoquinol (PQH2) formation in PSII and its diffusion to the b6f complex do not limit the overall rate of electron transfer between photosystem II (PSII) and photosystem I (PSI). Analysis of experimental and theoretical data demonstrates that the rate-limiting step in the intersystem chain of electron transport is determined by PQH2 oxidation at the Qo-site of the b6f complex, which is accompanied by the proton release into the thylakoid lumen. The acidification of the lumen causes deceleration of PQH2 oxidation, thus impeding the intersystem electron transport. Two other mechanisms of regulation of the intersystem electron transport have been considered: (i) "state transitions" associated with the light-induced redistribution of solar energy between PSI and PSII, and (ii) redistribution of electron fluxes between alternative pathways (noncyclic electron transport and cyclic electron flow around PSI). Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. Activation of cyclic electron flow by hydrogen peroxide in vivo

    DOE PAGES

    Strand, Deserah D.; Livingston, Aaron K.; Satoh-Cruz, Mio; ...

    2015-04-13

    Cyclic electron flow (CEF) around photosystem I is thought to balance the ATP/NADPH energy budget of photosynthesis, requiring that its rate be finely regulated. The mechanisms of this regulation are not well understood. We observed that mutants that exhibited constitutively high rates of CEF also showed elevated production of H 2O 2. We thus tested the hypothesis that CEF can be activated by H 2O 2 in vivo. CEF was strongly increased by H 2O 2 both by infiltration or in situ production by chloroplast-localized glycolate oxidase, implying that H 2O 2 can activate CEF either directly by redox modulationmore » of key enzymes, or indirectly by affecting other photosynthetic processes. CEF appeared with a half time of about 20 min after exposure to H 2O 2, suggesting activation of previously expressed CEF-related machinery. H 2O 2-dependent CEF was not sensitive to antimycin A or loss of PGR5, indicating that increased CEF probably does not involve the PGR5-PGRL1 associated pathway. In contrast, the rise in CEF was not observed in a mutant deficient in the chloroplast NADPH:PQ reductase (NDH), supporting the involvement of this complex in CEF activated by H 2O 2. In conclusion, we propose that H 2O 2 is a missing link between environmental stress, metabolism, and redox regulation of CEF in higher plants.« less

  6. The rapidly metabolized 32,000-dalton polypeptide of the chloroplast is the "proteinaceous shield" regulating photosystem II electron transport and mediating diuron herbicide sensitivity.

    PubMed Central

    Mattoo, A K; Pick, U; Hoffman-Falk, H; Edelman, M

    1981-01-01

    Mild trypsin treatment of Spirodela oligorrhiza thylakoid membranes leads to partial digestion of the rapidly metabolized, surface-exposed, 32,000-dalton protein. Under these conditions, photoreduction of ferricyanide becomes insensitive to diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], an inhibitor of photosystem II electron transport. Preincubation of thylakoids with diuron leads to a conformational change in the 32,000-dalton protein, modifying its trypsin digestion and preventing expression of diuron insensitivity. Finally, light affects the susceptibility of the 32,000-dalton protein to digestion by trypsin. In other experiments, thylakoids specifically depleted in the 32,000-dalton protein were found to be deficient in electron transport at the reducing side of photosystem II but not at the oxidizing side or in photosystem I activities. Thus, the rapidly metabolized 32,000-dalton thylakoid protein in Spirodela chloroplasts fulfills the requirements of the hypothesized "proteinaceous shield" [Renger, G. (1976) Biochim. Biophys. Acta 440, 287-300] regulating electron flow through photosystem II and mediating diuron sensitivity. Images PMID:6940173

  7. Effect of external plasma flows on the interaction between turbulence and convective cells

    NASA Astrophysics Data System (ADS)

    Uzawa, Ken; Li, Jiquan

    2005-10-01

    It is widely recognized that large scale structures, such as zonal flows, streamers and also long wavelength Kelvin-Helmholtz modes are nonlinearly generated from maternal turbulence through modulational instability process and play a crucial role in regulating the transport in tokamaks. In order to control the transport, it is desirable to control such structures and/or modulational process. One of control parameters may be mean flow which intrinsically exists in tokamak plasmas. Besides the direct influence on the transport through vortex decorrelation, the mean flow may indirectly change the zonal flow generation by acting on the modulational process itself. In this work, we theoretically investigate the characteristics of zonal flow generation due to the electron temperature gradient (ETG) turbulence in the presence of long wavelength ITG driven zonal flow. This was done by extending our previous modulational analyses[1]. We have numerically analyzed the influence of mean flow on zonal flow generation. The main result is that the zonal flow generation is suppressed by the presence of the mean flow. [1]J. Li, Y. Kishimoto, Physics of Plasmas, 9, 1241 (2002)

  8. Long-life, space-maintainable nuclear stage regulators and shutoff valves

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The six most promising valve, regulator, and remote coupling concepts, representing the more radical designs from twenty concepts generated, were investigated. Of the three valves, one has no moving parts because shutoff sealing is accomplished by an electromagnetic field which ionized the flowing fluid. Another valve uses liquid metal to obtain sealing. In the third valve, high sealing forces are generated by heating and expanding trapped hydrogen. The pressure regulator is an electronically controlled, electromechanically operated, single state valve. Its complexity is in electronic circuitry, and the design results in less weight, increased reliability and performance flexibility, and multipurpose application. The two remote couplings feature the minimization of weight and mechanical complexity. One concept uses a low melting temperature metal alloy which is injected into the joint cavity; upon solidification, the alloy provides a seal and a structural joint. The second concept is based on the differential thermal expansion of the coupling mating parts. At thermal equilibrium there is a predetermined interference between the parts, and sealing is achieved by interference loading.

  9. Effects of finite poloidal gyroradius, shaping, and collisions on the zonal flow residuala)

    NASA Astrophysics Data System (ADS)

    Xiao, Yong; Catto, Peter J.; Dorland, William

    2007-05-01

    Zonal flow helps reduce and regulate the turbulent transport level in tokamaks. Rosenbluth and Hinton have shown that zonal flow damps to a nonvanishing residual level in collisionless [M. Rosenbluth and F. Hinton, Phys. Rev. Lett. 80, 724 (1998)] and collisional [F. Hinton and M. Rosenbluth, Plasma Phys. Control. Fusion 41, A653 (1999)] banana regime plasmas. Recent zonal flow advances are summarized including the evaluation of the effects on the zonal flow residual by plasma cross-section shaping, shorter wavelengths including those less than an electron gyroradius, and arbitrary ion collisionality relative to the zonal low frequency. In addition to giving a brief summary of these new developments, the analytic results are compared with GS2 numerical simulations [M. Kotschenreuther, G. Rewoldt, and W. Tang, Comput. Phys. Commun. 88, 128 (1991)] to demonstrate their value as benchmarks for turbulence codes.

  10. A T-DNA insertion mutant of AtHMA1 gene encoding a Cu transporting ATPase in Arabidopsis thaliana has a defect in the water-water cycle of photosynthesis.

    PubMed

    Higuchi, Mieko; Ozaki, Hiroshi; Matsui, Minami; Sonoike, Kintake

    2009-03-03

    The water-water cycle is the electron flow through scavenging enzymes for the reactive species of oxygen in chloroplasts, and is proposed to play a role in alternative electron sink in photosynthesis. Here we showed that the water-water cycle is impaired in the T-DNA insertion mutant of AtHMA1 gene encoding a Cu transporting ATPase in chloroplasts. Chlorophyll fluorescence under steady state was not affected in hma1, indicating that photosynthetic electron transport under normal condition was not impaired. Under electron acceptor limited conditions, however, hma1 showed distinguished phenotype in chlorophyll fluorescence characteristics. The most severe phenotype of hma1 could be observed in high (0.1%) CO(2) concentrations, indicating that hma1 has the defect other than photorespiration. The transient increase of chlorophyll fluorescence upon the cessation of the actinic light as well as the NPQ induction of chlorophyll fluorescence revealed that the two pathways of cyclic electron flow around PSI, NDH-pathway and FQR-pathway, are both intact in hma1. Based on the NPQ induction under 0% oxygen condition, we conclude that the water-water cycle is impaired in hma1, presumably due to the decreased level of Cu/Zn SOD in the mutant. Under high CO(2) condition, hma1 exhibited slightly higher NPQ induction than wild type plants, while this increase of NPQ in hma1 was suppressed when hma1 was crossed with crr2 having a defect in NDH-mediated PSI cyclic electron flow. We propose that the water-water cycle and NDH-mediated pathways might be regulated compensationally with each other especially when photorespiration is suppressed.

  11. Control voltage and power fluctuations when connecting wind farms

    NASA Astrophysics Data System (ADS)

    Berinde, Ioan; Bǎlan, Horia; Oros Pop, Teodora Susana

    2015-12-01

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid. FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.

  12. A new flow-regulating cell type in the Demosponge Tethya wilhelma - functional cellular anatomy of a leuconoid canal system.

    PubMed

    Hammel, Jörg U; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes.

  13. A New Flow-Regulating Cell Type in the Demosponge Tethya wilhelma – Functional Cellular Anatomy of a Leuconoid Canal System

    PubMed Central

    Hammel, Jörg U.; Nickel, Michael

    2014-01-01

    Demosponges possess a leucon-type canal system which is characterized by a highly complex network of canal segments and choanocyte chambers. As sponges are sessile filter feeders, their aquiferous system plays an essential role in various fundamental physiological processes. Due to the morphological and architectural complexity of the canal system and the strong interdependence between flow conditions and anatomy, our understanding of fluid dynamics throughout leuconoid systems is patchy. This paper provides comprehensive morphometric data on the general architecture of the canal system, flow measurements and detailed cellular anatomical information to help fill in the gaps. We focus on the functional cellular anatomy of the aquiferous system and discuss all relevant cell types in the context of hydrodynamic and evolutionary constraints. Our analysis is based on the canal system of the tropical demosponge Tethya wilhelma, which we studied using scanning electron microscopy. We found a hitherto undescribed cell type, the reticuloapopylocyte, which is involved in flow regulation in the choanocyte chambers. It has a highly fenestrated, grid-like morphology and covers the apopylar opening. The minute opening of the reticuloapopylocyte occurs in an opened, intermediate and closed state. These states permit a gradual regulation of the total apopylar opening area. In this paper the three states are included in a theoretical study into flow conditions which aims to draw a link between functional cellular anatomy, the hydrodynamic situation and the regular body contractions seen in T. wilhelma. This provides a basis for new hypotheses regarding the function of bypass elements and the role of hydrostatic pressure in body contractions. Our study provides insights into the local and global flow conditions in the sponge canal system and thus enhances current understanding of related physiological processes. PMID:25409176

  14. Electronic control of H+ current in a bioprotonic device with Gramicidin A and Alamethicin

    NASA Astrophysics Data System (ADS)

    Hemmatian, Zahra; Keene, Scott; Josberger, Erik; Miyake, Takeo; Arboleda, Carina; Soto-Rodríguez, Jessica; Baneyx, François; Rolandi, Marco

    2016-10-01

    In biological systems, intercellular communication is mediated by membrane proteins and ion channels that regulate traffic of ions and small molecules across cell membranes. A bioelectronic device with ion channels that control ionic flow across a supported lipid bilayer (SLB) should therefore be ideal for interfacing with biological systems. Here, we demonstrate a biotic-abiotic bioprotonic device with Pd contacts that regulates proton (H+) flow across an SLB incorporating the ion channels Gramicidin A (gA) and Alamethicin (ALM). We model the device characteristics using the Goldman-Hodgkin-Katz (GHK) solution to the Nernst-Planck equation for transport across the membrane. We derive the permeability for an SLB integrating gA and ALM and demonstrate pH control as a function of applied voltage and membrane permeability. This work opens the door to integrating more complex H+ channels at the Pd contact interface to produce responsive biotic-abiotic devices with increased functionality.

  15. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes☆

    PubMed Central

    Liu, Lu-Ning

    2016-01-01

    The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. PMID:26619924

  16. Distribution and dynamics of electron transport complexes in cyanobacterial thylakoid membranes.

    PubMed

    Liu, Lu-Ning

    2016-03-01

    The cyanobacterial thylakoid membrane represents a system that can carry out both oxygenic photosynthesis and respiration simultaneously. The organization, interactions and mobility of components of these two electron transport pathways are indispensable to the biosynthesis of thylakoid membrane modules and the optimization of bioenergetic electron flow in response to environmental changes. These are of fundamental importance to the metabolic robustness and plasticity of cyanobacteria. This review summarizes our current knowledge about the distribution and dynamics of electron transport components in cyanobacterial thylakoid membranes. Global understanding of the principles that govern the dynamic regulation of electron transport pathways in nature will provide a framework for the design and synthetic engineering of new bioenergetic machinery to improve photosynthesis and biofuel production. This article is part of a Special Issue entitled: Organization and dynamics of bioenergetic systems in bacteria, edited by Conrad Mullineaux. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.

  17. Electron heating within interaction zones of simple high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Feldman, W. C.; Asbridge, J. R.; Bame, S. J.; Gosling, J. T.; Lemons, D. S.

    1978-01-01

    In the present paper, electron heating within the high-speed portions of three simple stream-stream interaction zones is studied to further our understanding of the physics of heat flux regulation in interplanetary space. To this end, the thermal signals present in the compressions at the leading edges of the simple high-speed streams are analyzed, showing that the data are inconsistent with the Spitzer conductivity. Instead, a polynomial law is found to apply. Its implication concerning the mechanism of interplanetary heat conduction is discussed, and the results of applying this conductivity law to high-speed flows inside of 1 AU are studied. A self-consistent model of the radial evolution of electrons in the high-speed solar wind is proposed.

  18. Control of electron transport routes through redox-regulated redistribution of respiratory complexes

    PubMed Central

    Liu, Lu-Ning; Bryan, Samantha J.; Huang, Fang; Yu, Jianfeng; Nixon, Peter J.; Rich, Peter R.; Mullineaux, Conrad W.

    2012-01-01

    In cyanobacteria, respiratory electron transport takes place in close proximity to photosynthetic electron transport, because the complexes required for both processes are located within the thylakoid membranes. The balance of electron transport routes is crucial for cell physiology, yet the factors that control the predominance of particular pathways are poorly understood. Here we use a combination of tagging with green fluorescent protein and confocal fluorescence microscopy in live cells of the cyanobacterium Synechococcus elongatus PCC 7942 to investigate the distribution on submicron scales of two key respiratory electron donors, type-I NAD(P)H dehydrogenase (NDH-1) and succinate dehydrogenase (SDH). When cells are grown under low light, both complexes are concentrated in discrete patches in the thylakoid membranes, about 100–300 nm in diameter and containing tens to hundreds of complexes. Exposure to moderate light leads to redistribution of both NDH-1 and SDH such that they become evenly distributed within the thylakoid membranes. The effects of electron transport inhibitors indicate that redistribution of respiratory complexes is triggered by changes in the redox state of an electron carrier close to plastoquinone. Redistribution does not depend on de novo protein synthesis, and it is accompanied by a major increase in the probability that respiratory electrons are transferred to photosystem I rather than to a terminal oxidase. These results indicate that the distribution of complexes on the scale of 100–300 nm controls the partitioning of reducing power and that redistribution of electron transport complexes on these scales is a physiological mechanism to regulate the pathways of electron flow. PMID:22733774

  19. Investigations of the role of nonlinear couplings in structure formation and transport regulation in plasma turbulence

    NASA Astrophysics Data System (ADS)

    Holland, Christopher George

    Studies of nonlinear couplings and dynamics in plasma turbulence are presented. Particular areas of focus are analytic studies of coherent structure formation in electron temperature gradient turbulence, measurement of nonlinear energy transfer in simulations of plasma turbulence, and bispectral analysis of experimental and computational data. The motivation for these works has been to develop and expand the existing theories of plasma transport, and verify the nonlinear predictions of those theories in simulation and experiment. In Chapter II, we study electromagnetic secondary instabilities of electron temperature gradient turbulence. The growth rate for zonal flow generation via modulational instability of electromagnetic ETG turbulence is calculated, as well as that for zonal (magnetic) field generation. In Chapter III, the stability and saturation of streamers in ETG turbulence is considered, and shown to depend sensitively upon geometry and the damping rates of the Kelvin-Helmholtz mode. Requirements for a credible theory of streamer transport are presented. In addition, a self-consistent model for interactions between ETG and ITG (ion temperature gradient) turbulence is presented. In Chapter IV, the nonlinear transfer of kinetic and internal energy is measured in simulations of plasma turbulence. The regulation of turbulence by radial decorrelation due to zonal flows and generation of zonal flows via the Reynolds stress are explicitly demonstrated, and shown to be symmetric facets of a single nonlinear process. Novel nonlinear saturation mechanisms for zonal flows are discussed. In Chapter V, measurements of fluctuation bicoherence in the edge of the DIII-D tokamak are presented. It is shown that the bicoherence increases transiently before a L-H transition, and decays to its initial value after the barrier has formed. The increase in bicoherence is localized to the region where the transport barrier forms, and shows strong coupling between well-separated frequencies. These results are qualitatively reproduced in a simple numerical "thought experiment," described in Chapter VI, which suggests that zonal flows may trigger the L-H transition.

  20. PROTON GRADIENT REGULATION5 Is Essential for Proper Acclimation of Arabidopsis Photosystem I to Naturally and Artificially Fluctuating Light Conditions[W

    PubMed Central

    Suorsa, Marjaana; Järvi, Sari; Grieco, Michele; Nurmi, Markus; Pietrzykowska, Malgorzata; Rantala, Marjaana; Kangasjärvi, Saijaliisa; Paakkarinen, Virpi; Tikkanen, Mikko; Jansson, Stefan; Aro, Eva-Mari

    2012-01-01

    In nature, plants are challenged by constantly changing light conditions. To reveal the molecular mechanisms behind acclimation to sometimes drastic and frequent changes in light intensity, we grew Arabidopsis thaliana under fluctuating light conditions, in which the low light periods were repeatedly interrupted with high light peaks. Such conditions had only marginal effect on photosystem II but induced damage to photosystem I (PSI), the damage being most severe during the early developmental stages. We showed that PROTON GRADIENT REGULATION5 (PGR5)–dependent regulation of electron transfer and proton motive force is crucial for protection of PSI against photodamage, which occurred particularly during the high light phases of fluctuating light cycles. Contrary to PGR5, the NAD(P)H dehydrogenase complex, which mediates cyclic electron flow around PSI, did not contribute to acclimation of the photosynthetic apparatus, particularly PSI, to rapidly changing light intensities. Likewise, the Arabidopsis pgr5 mutant exhibited a significantly higher mortality rate compared with the wild type under outdoor field conditions. This shows not only that regulation of PSI under natural growth conditions is crucial but also the importance of PGR5 in PSI protection. PMID:22822205

  1. Temperature-gated thermal rectifier for active heat flow control.

    PubMed

    Zhu, Jia; Hippalgaonkar, Kedar; Shen, Sheng; Wang, Kevin; Abate, Yohannes; Lee, Sangwook; Wu, Junqiao; Yin, Xiaobo; Majumdar, Arun; Zhang, Xiang

    2014-08-13

    Active heat flow control is essential for broad applications of heating, cooling, and energy conversion. Like electronic devices developed for the control of electric power, it is very desirable to develop advanced all-thermal solid-state devices that actively control heat flow without consuming other forms of energy. Here we demonstrate temperature-gated thermal rectification using vanadium dioxide beams in which the environmental temperature actively modulates asymmetric heat flow. In this three terminal device, there are two switchable states, which can be regulated by global heating. In the "Rectifier" state, we observe up to 28% thermal rectification. In the "Resistor" state, the thermal rectification is significantly suppressed (<1%). To the best of our knowledge, this is the first demonstration of solid-state active-thermal devices with a large rectification in the Rectifier state. This temperature-gated rectifier can have substantial implications ranging from autonomous thermal management of heating and cooling systems to efficient thermal energy conversion and storage.

  2. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  3. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  4. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  5. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  6. 21 CFR 880.2420 - Electronic monitor for gravity flow infusion systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electronic monitor for gravity flow infusion... and Personal Use Monitoring Devices § 880.2420 Electronic monitor for gravity flow infusion systems. (a) Identification. An electronic monitor for gravity flow infusion systems is a device used to...

  7. Protective role of hydrogen sulfide against noise-induced cochlear damage: a chronic intracochlear infusion model.

    PubMed

    Li, Xu; Mao, Xiao-Bo; Hei, Ren-Yi; Zhang, Zhi-Bin; Wen, Li-Ting; Zhang, Peng-Zhi; Qiu, Jian-Hua; Qiao, Li

    2011-01-01

    A reduction in cochlear blood flow plays an essential role in noise-induced hearing loss (NIHL). The timely regulation of cochlear perfusion determines the progression and prognosis of NIHL. Hydrogen sulfide (H(2)S) has attracted increasing interest as a vasodilator in cardiovascular systems. This study identified the role of H(2)S in cochlear blood flow regulation and noise protection. The gene and protein expression of the H(2)S synthetase cystathionine-γ-lyase (CSE) in the rat cochlea was examined using immunofluorescence and real-time PCR. Cochlear CSE mRNA levels varied according to the duration of noise exposure. A chronic intracochlear infusion model was built and artificial perilymph (AP), NaHS or DL-propargylglycine (PPG) were locally administered. Local sodium hydrosulfide (NaHS) significantly increased cochlear perfusion post-noise exposure. Cochlear morphological damage and hearing loss were alleviated in the NaHS group as measured by conventional auditory brainstem response (ABR), cochlear scanning electron microscope (SEM) and outer hair cell (OHC) count. The highest percentage of OHC loss occurred in the PPG group. Our results suggest that H(2)S plays an important role in the regulation of cochlear blood flow and the protection against noise. Further studies may identify a new preventive and therapeutic perspective on NIHL and other blood supply-related inner ear diseases.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaezi, P.; Holland, C.; Thakur, S. C.

    The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less

  9. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.

    PubMed

    Safavieh, Roozbeh; Juncker, David

    2013-11-07

    Microfluidic capillary systems employ surface tension effects to manipulate liquids, and are thus self-powered and self-regulated as liquid handling is structurally and chemically encoded in microscale conduits. However, capillary systems have been limited to perform simple fluidic operations. Here, we introduce complex capillary flow circuits that encode sequential flow of multiple liquids with distinct flow rates and flow reversal. We first introduce two novel microfluidic capillary elements including (i) retention burst valves and (ii) robust low aspect ratio trigger valves. These elements are combined with flow resistors, capillary retention valves, capillary pumps, and open and closed reservoirs to build a capillary circuit that, following sample addition, autonomously delivers a defined sequence of multiple chemicals according to a preprogrammed and predetermined flow rate and time. Such a circuit was used to measure the concentration of C-reactive protein. This work illustrates that as in electronics, complex capillary circuits may be built by combining simple capillary elements. We define such circuits as "capillarics", and introduce symbolic representations. We believe that more complex circuits will become possible by expanding the library of building elements and formulating abstract design rules.

  10. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    NASA Astrophysics Data System (ADS)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  11. Control voltage and power fluctuations when connecting wind farms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berinde, Ioan, E-mail: ioan-berinde@yahoo.com; Bălan, Horia, E-mail: hbalan@mail.utcluj.ro; Oros, Teodora Susana, E-mail: teodoraoros-87@yahoo.com

    2015-12-23

    Voltage, frequency, active power and reactive power are very important parameters in terms of power quality. These parameters are followed when connecting any power plant, the more the connection of wind farms. Connecting wind farms to the electricity system must not cause interference outside the limits set by regulations. Modern solutions for fast and automatic voltage control and power fluctuations using electronic control systems of reactive power flows. FACTS (Flexible Alternating Current Transmision System) systems, established on the basis of power electronic circuits ensure control of electrical status quantities to achieve the necessary transfer of power to the power grid.more » FACTS devices can quickly control parameters and sizes of state power lines, such as impedance line voltages and phase angles of the voltages of the two ends of the line. Their use can lead to improvement in power system operation by increasing the transmission capacity of power lines, power flow control lines, improved static and transient stability reserve.« less

  12. Electronic control of H+ current in a bioprotonic device with Gramicidin A and Alamethicin

    PubMed Central

    Hemmatian, Zahra; Keene, Scott; Josberger, Erik; Miyake, Takeo; Arboleda, Carina; Soto-Rodríguez, Jessica; Baneyx, François; Rolandi, Marco

    2016-01-01

    In biological systems, intercellular communication is mediated by membrane proteins and ion channels that regulate traffic of ions and small molecules across cell membranes. A bioelectronic device with ion channels that control ionic flow across a supported lipid bilayer (SLB) should therefore be ideal for interfacing with biological systems. Here, we demonstrate a biotic–abiotic bioprotonic device with Pd contacts that regulates proton (H+) flow across an SLB incorporating the ion channels Gramicidin A (gA) and Alamethicin (ALM). We model the device characteristics using the Goldman–Hodgkin–Katz (GHK) solution to the Nernst–Planck equation for transport across the membrane. We derive the permeability for an SLB integrating gA and ALM and demonstrate pH control as a function of applied voltage and membrane permeability. This work opens the door to integrating more complex H+ channels at the Pd contact interface to produce responsive biotic–abiotic devices with increased functionality. PMID:27713411

  13. Physical properties of electricity.

    PubMed

    Thomson, Angus J M

    2013-01-01

    Electricity is the flow of electrons through a conductor. The amount of current (amps) is related to the voltage (volts) pushing the electrons and the degree of resistance to flow (ohms). During their flow around a circuit, electrons can be used to create a number of useful byproducts such as heat and light. As electrons flow, they alter the charge of the matter they flow through, which may also generate electromagnetic effects. Copyright © 2013 AAGL. Published by Elsevier Inc. All rights reserved.

  14. Bidirectional Pressure-Regulator System

    NASA Technical Reports Server (NTRS)

    Burke, Kenneth; Miller, John R.

    2008-01-01

    A bidirectional pressure-regulator system has been devised for use in a regenerative fuel cell system. The bidirectional pressure-regulator acts as a back-pressure regulator as gas flows through the bidirectional pressure-regulator in one direction. Later, the flow of gas goes through the regulator in the opposite direction and the bidirectional pressure-regulator operates as a pressure- reducing pressure regulator. In the regenerative fuel cell system, there are two such bidirectional regulators, one for the hydrogen gas and another for the oxygen gas. The flow of gases goes from the regenerative fuel cell system to the gas storage tanks when energy is being stored, and reverses direction, flowing from the storage tanks to the regenerative fuel cell system when the stored energy is being withdrawn from the regenerative fuel cell system. Having a single bidirectional regulator replaces two unidirectional regulators, plumbing, and multiple valves needed to reverse the flow direction. The term "bidirectional" refers to both the bidirectional nature of the gas flows and capability of each pressure regulator to control the pressure on either its upstream or downstream side, regardless of the direction of flow.

  15. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling.

    PubMed

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. Copyright © 2015 the American Physiological Society.

  16. Electronic Connection Between the Quinone and Cytochrome c Redox Pools and Its Role in Regulation of Mitochondrial Electron Transport and Redox Signaling

    PubMed Central

    Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria. PMID:25540143

  17. Rotary-To-Axial Motion Converter For Valve

    NASA Technical Reports Server (NTRS)

    Reinicke, Robert H.; Mohtar, Rafic

    1991-01-01

    Nearly frictionless mechanism converts rotary motion into axial motion. Designed for use in electronically variable pressure-regulator valve. Changes rotary motion imparted by motor into translation that opens and closes valve poppet. Cables spaced equidistantly around edge of fixed disk support movable disk. As movable disk rotated, cables twist, lifting it. When rotated in opposite direction, cables untwist, lowering it. Spider disk helps to prevent cables from tangling. Requires no lubrication and insensitive to contamination in fluid flowing through valve.

  18. Magnetic Amplifier-Based Power-Flow Controller

    DOE PAGES

    Dimitrovski, Aleksandar; Li, Zhi; Ozpineci, Burak

    2015-02-05

    The concept of the magnetic amplifier, a common electromagnetic device in electronic applications in the past, has seldom been used in power systems. In this paper, we introduce the magnetic amplifier-based power-flow controller (MAPFC), an innovative low-cost device that adopts the idea of the magnetic amplifier for power-flow control applications. The uniqueness of MAPFC is in the use of the magnetization of the ferromagnetic core, shared by an ac and a dc winding, as the medium to control the ac winding reactance inserted in series with the transmission line to be controlled. Large power flow in the line can bemore » regulated by the small dc input to the dc winding. Moreover, a project on the R&D of an MAPFC has been funded by the U.S. Department of Energy (DOE) and conducted by the Oak Ridge National Laboratory (ORNL), the University of Tennessee-Knoxville, and Waukesha Electric Systems, Inc. since early 2012. Findings from the project are presented along with some results obtained in a laboratory environment.« less

  19. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  20. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  1. Bismuth Propellant Feed System Development at NASA-MSFC

    NASA Technical Reports Server (NTRS)

    Polzin, Kurt A.

    2007-01-01

    NASA-MSFC has been developing liquid metal propellant feed systems capable of delivering molten bismuth at a prescribed mass flow rate to the vaporizer of an electric thruster. The first such system was delivered to NASA-JPL as part of the Very High Isp Thruster with Anode Layer (VHITAL) program. In this system, the components pictured were placed in a vacuum chamber and heated while the control electronics were located outside the chamber. The system was successfully operated at JPL in conjunction with a propellant vaporizer, and data was obtained demonstrating a new liquid bismuth flow sensing technique developed at MSFC. The present effort is aimed at producing a feed-system for use in conjunction with a bismuth-fed Hall thruster developed by Busek Co. Developing this system is more ambitious, however, in that it is designed to self-contain all the control electronics inside the same vacuum chamber as an operating bismuth-fed thruster. Consequently, the entire system, including an on-board computer, DC-output power supplies, and a gas-pressurization electro-pneumatic regulator, must be designed to survive a vacuum environment and shielded to keep bismuth plasma from intruding on the electronics and causing a shortcircuit. In addition, the hot portions of the feed system must be thermally isolated from the electronics to avoid failure due to high heat loads. This is accomplished using a thermal protection system (TPS) consisting of multiple layers of aluminum foil. The only penetrations into the vacuum chamber are an electrically isolated (floating) 48 VDC line and a fiberoptic line. The 48 VDC provides power for operation of the power supplies and electronics co-located with the system in the vacuum chamber. The fiberoptic Ethernet connection is used to communicate user-input control commands to the on-board computer and transmit real-time data back to the external computer. The partially assembled second-generation system is shown. Before testing at Busek, a more detailed flow sensor calibration will be performed to accurately quantify the flow monitoring capabilities. This effort is funded under a Technology Innovation Program (TIP) award from NASA-MSFC's Technology Transfer office and performed under SAA8-061060.

  2. Emitron: microwave diode

    DOEpatents

    Craig, G.D.; Pettibone, J.S.; Drobot, A.T.

    1982-05-06

    The invention comprises a new class of device, driven by electron or other charged particle flow, for producing coherent microwaves by utilizing the interaction of electromagnetic waves with electron flow in diodes not requiring an external magnetic field. Anode and cathode surfaces are electrically charged with respect to one another by electron flow, for example caused by a Marx bank voltage source or by other charged particle flow, for example by a high energy charged particle beam. This produces an electric field which stimulates an emitted electron beam to flow in the anode-cathode region. The emitted electrons are accelerated by the electric field and coherent microwaves are produced by the three dimensional spatial and temporal interaction of the accelerated electrons with geometrically allowed microwave modes which results in the bunching of the electrons and the pumping of at least one dominant microwave mode.

  3. Cyclic electron flow is redox-controlled but independent of state transition.

    PubMed

    Takahashi, Hiroko; Clowez, Sophie; Wollman, Francis-André; Vallon, Olivier; Rappaport, Fabrice

    2013-01-01

    Photosynthesis is the biological process that feeds the biosphere with reduced carbon. The assimilation of CO2 requires the fine tuning of two co-existing functional modes: linear electron flow, which provides NADPH and ATP, and cyclic electron flow, which only sustains ATP synthesis. Although the importance of this fine tuning is appreciated, its mechanism remains equivocal. Here we show that cyclic electron flow as well as formation of supercomplexes, thought to contribute to the enhancement of cyclic electron flow, are promoted in reducing conditions with no correlation with the reorganization of the thylakoid membranes associated with the migration of antenna proteins towards Photosystems I or II, a process known as state transition. We show that cyclic electron flow is tuned by the redox power and this provides a mechanistic model applying to the entire green lineage including the vast majority of the cases in which state transition only involves a moderate fraction of the antenna.

  4. Turbulence, transport, and zonal flows in the Madison symmetric torus reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Williams, Z. R.; Pueschel, M. J.; Terry, P. W.; Hauff, T.

    2017-12-01

    The robustness and the effect of zonal flows in trapped electron mode (TEM) turbulence and Ion Temperature Gradient (ITG) turbulence in the reversed-field pinch (RFP) are investigated from numerical solutions of the gyrokinetic equations with and without magnetic external perturbations introduced to model tearing modes. For simulations without external magnetic field perturbations, zonal flows produce a much larger reduction of transport for the density-gradient-driven TEM turbulence than they do for the ITG turbulence. Zonal flows are studied in detail to understand the nature of their strong excitation in the RFP and to gain insight into the key differences between the TEM- and ITG-driven regimes. The zonal flow residuals are significantly larger in the RFP than in tokamak geometry due to the low safety factor. Collisionality is seen to play a significant role in the TEM zonal flow regulation through the different responses of the linear growth rate and the size of the Dimits shift to collisionality, while affecting the ITG only minimally. A secondary instability analysis reveals that the TEM turbulence drives zonal flows at a rate that is twice that of the ITG turbulence. In addition to interfering with zonal flows, the magnetic perturbations are found to obviate an energy scaling relation for fast particles.

  5. Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1

    PubMed Central

    Bhowmick, Tridib; Berk, Erik; Cui, Xiumin; Muzykantov, Vladimir R.; Muro, Silvia

    2011-01-01

    Delivery of drugs into the endothelium by nanocarriers targeted to endothelial determinants may improve treatment of vascular maladies. This is the case for intercellular adhesion molecule 1 (ICAM-1), a glycoprotein overexpressed on endothelial cells (ECs) in many pathologies. ICAM-1-targeted nanocarriers bind to and are internalized by ECs via a non-classical pathway, CAM-mediated endocytosis. In this work we studied the effects of endothelial adaptation to physiological flow on the endocytosis of model polymer nanocarriers targeted to ICAM-1 (anti-ICAM/NCs, ~180-nm diameter). Culturing established endothelial-like cells (EAhy926 cells) and primary human umbilical vein ECs (HUVECs) under 4 dyn/cm2 laminar shear stress for 24 h resulted in flow adaptation: cell elongation and formation of actin stress fibers aligned to the flow direction. Fluorescence microscopy showed that flow-adapted cells internalized anti-ICAM/NCs under flow, although at slower rate versus non flow-adapted cells under static incubation (~35% reduction). Uptake was inhibited by amiloride, whereas marginally affected by filipin and cadaverine, implicating that CAM-endocytosis accounts for anti-ICAM/NC uptake under flow. Internalization under flow was more modestly affected by inhibiting protein kinase C, which regulates actin remodeling during CAM-endocytosis. Actin recruitment to stress fibers that maintain the cell shape under flow may delay uptake of anti-ICAM/NCs under this condition by interfering with actin reorganization needed for CAM-endocytosis. Electron microscopy revealed somewhat slow, yet effective endocytosis of anti-ICAM/NCs by pulmonary endothelium after i.v. injection in mice, similar to that of flow-adapted cell cultures: ~40% (30 min) and 80% (3 h) internalization. Similar to cell culture data, uptake was slightly faster in capillaries with lower shear stress. Further, LPS treatment accelerated internalization of anti-ICAM/NCs in mice. Therefore, regulation of endocytosis of ICAM-1-targeted nanocarriers by flow and endothelial status may modulate drug delivery into ECs exposed to different physiological (capillaries vs. arterioles/venules) or pathological (ischemia, inflammation) levels and patterns of blood flow. PMID:21951807

  6. Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1.

    PubMed

    Bhowmick, Tridib; Berk, Erik; Cui, Xiumin; Muzykantov, Vladimir R; Muro, Silvia

    2012-02-10

    Delivery of drugs into the endothelium by nanocarriers targeted to endothelial determinants may improve treatment of vascular maladies. This is the case for intercellular adhesion molecule 1 (ICAM-1), a glycoprotein overexpressed on endothelial cells (ECs) in many pathologies. ICAM-1-targeted nanocarriers bind to and are internalized by ECs via a non-classical pathway, CAM-mediated endocytosis. In this work we studied the effects of endothelial adaptation to physiological flow on the endocytosis of model polymer nanocarriers targeted to ICAM-1 (anti-ICAM/NCs, ~180 nm diameter). Culturing established endothelial-like cells (EAhy926 cells) and primary human umbilical vein ECs (HUVECs) under 4 dyn/cm(2) laminar shear stress for 24 h resulted in flow adaptation: cell elongation and formation of actin stress fibers aligned to the flow direction. Fluorescence microscopy showed that flow-adapted cells internalized anti-ICAM/NCs under flow, although at slower rate versus non flow-adapted cells under static incubation (~35% reduction). Uptake was inhibited by amiloride, whereas marginally affected by filipin and cadaverine, implicating that CAM-endocytosis accounts for anti-ICAM/NC uptake under flow. Internalization under flow was more modestly affected by inhibiting protein kinase C, which regulates actin remodeling during CAM-endocytosis. Actin recruitment to stress fibers that maintain the cell shape under flow may delay uptake of anti-ICAM/NCs under this condition by interfering with actin reorganization needed for CAM-endocytosis. Electron microscopy revealed somewhat slow, yet effective endocytosis of anti-ICAM/NCs by pulmonary endothelium after i.v. injection in mice, similar to that of flow-adapted cell cultures: ~40% (30 min) and 80% (3 h) internalization. Similar to cell culture data, uptake was slightly faster in capillaries with lower shear stress. Further, LPS treatment accelerated internalization of anti-ICAM/NCs in mice. Therefore, regulation of endocytosis of ICAM-1-targeted nanocarriers by flow and endothelial status may modulate drug delivery into ECs exposed to different physiological (capillaries vs. arterioles/venules) or pathological (ischemia, inflammation) levels and patterns of blood flow. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Electron-Beam Diagnostic Methods for Hypersonic Flow Diagnostics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The purpose of this work was the evaluation of the use of electron-bean fluorescence for flow measurements during hypersonic flight. Both analytical and numerical models were developed in this investigation to evaluate quantitatively flow field imaging concepts based upon the electron beam fluorescence technique for use in flight research and wind tunnel applications. Specific models were developed for: (1) fluorescence excitation/emission for nitrogen, (2) rotational fluorescence spectrum for nitrogen, (3) single and multiple scattering of electrons in a variable density medium, (4) spatial and spectral distribution of fluorescence, (5) measurement of rotational temperature and density, (6) optical filter design for fluorescence imaging, and (7) temperature accuracy and signal acquisition time requirements. Application of these models to a typical hypersonic wind tunnel flow is presented. In particular, the capability of simulating the fluorescence resulting from electron impact ionization in a variable density nitrogen or air flow provides the capability to evaluate the design of imaging instruments for flow field mapping. The result of this analysis is a recommendation that quantitative measurements of hypersonic flow fields using electron-bean fluorescence is a tractable method with electron beam energies of 100 keV. With lower electron energies, electron scattering increases with significant beam divergence which makes quantitative imaging difficult. The potential application of the analytical and numerical models developed in this work is in the design of a flow field imaging instrument for use in hypersonic wind tunnels or onboard a flight research vehicle.

  8. Polybrominated diphenyl ethers (PBDEs) in China: policies and recommendations for sound management of plastics from electronic wastes.

    PubMed

    Ni, Kun; Lu, Yonglong; Wang, Tieyu; Shi, Yajuan; Kannan, Kurunthachalam; Xu, Li; Li, Qiushuang; Liu, Shijie

    2013-01-30

    Polybrominated diphenyl ethers (PBDEs), used as flame retardants (BFRs), are incorporated in plastics of most electronic equipment. Among BFR mixtures, deca-BDE is the most widely used commercial additive in the polymer industry and the use of deca-BDE is currently not subject to any restrictions in China. However, debate over environmental and health risks associated with deca-BDE still remains. Regulatory agencies in developed countries have adopted and/or established environmentally sound strategies for the management of potential threat posed by PBDEs to the environment and human health. No regulations or management policies for PBDEs currently exist in China at either central or provincial government levels. Large amounts of plastics containing PBDEs are still in use and must be disposed of after their lifetimes, creating outdoor reservoirs for the future dispersal of PBDEs into the environment. Concerted action is needed not only to regulate the production and use of PBDEs but also to find ways to effectively manage waste electrical and electronic products that contain PBDEs. This article is the first to investigate the policy issues and current problems related to the use of PBDEs in China. In addition, we estimate the mass flows of PBDEs contained in Waste Electrical and Electronic Equipment (WEEE) in China. We suggest alternatives to PBDEs and sound management of plastics used in electrical and electronic equipment (EEE) that contain PBDEs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Understanding the impact of insulating and conducting endplate boundary conditions on turbulence in CSDX through nonlocal simulations

    DOE PAGES

    Vaezi, P.; Holland, C.; Thakur, S. C.; ...

    2017-04-01

    The Controlled Shear Decorrelation Experiment (CSDX) linear plasma device provides a unique platform for investigating the underlying physics of self-regulating drift-wave turbulence/zonal flow dynamics. A minimal model of 3D drift-reduced nonlocal cold ion fluid equations which evolves density, vorticity, and electron temperature fluctuations, with proper sheath boundary conditions, is used to simulate dynamics of the turbulence in CSDX and its response to changes in parallel boundary conditions. These simulations are then carried out using the BOUndary Turbulence (BOUT++) framework and use equilibrium electron density and temperature profiles taken from experimental measurements. The results show that density gradient-driven drift-waves are themore » dominant instability in CSDX. However, the choice of insulating or conducting endplate boundary conditions affects the linear growth rates and energy balance of the system due to the absence or addition of Kelvin-Helmholtz modes generated by the sheath-driven equilibrium E × B shear and sheath-driven temperature gradient instability. Moreover, nonlinear simulation results show that the boundary conditions impact the turbulence structure and zonal flow formation, resulting in less broadband (more quasi-coherent) turbulence and weaker zonal flow in conducting boundary condition case. These results are qualitatively consistent with earlier experimental observations.« less

  10. Electronic field permeameter

    DOEpatents

    Chandler, Mark A.; Goggin, David J.; Horne, Patrick J.; Kocurek, Gary G.; Lake, Larry W.

    1989-01-01

    For making rapid, non-destructive permeability measurements in the field, a portable minipermeameter of the kind having a manually-operated gas injection tip is provided with a microcomputer system which operates a flow controller to precisely regulate gas flow rate to a test sample, and reads a pressure sensor which senses the pressure across the test sample. The microcomputer system automatically turns on the gas supply at the start of each measurement, senses when a steady-state is reached, collects and records pressure and flow rate data, and shuts off the gas supply immediately after the measurement is completed. Preferably temperature is also sensed to correct for changes in gas viscosity. The microcomputer system may also provide automatic zero-point adjustment, sensor calibration, over-range sensing, and may select controllers, sensors, and set-points for obtaining the most precise measurements. Electronic sensors may provide increased accuracy and precision. Preferably one microcomputer is used for sensing instrument control and data collection, and a second microcomputer is used which is dedicated to recording and processing the data, selecting the sensors and set-points for obtaining the most precise measurements, and instructing the user how to set-up and operate the minipermeameter. To provide mass data collection and user-friendly operation, the second microcomputer is preferably a lap-type portable microcomputer having a non-volatile or battery-backed CMOS memory.

  11. Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes

    USGS Publications Warehouse

    Freeman, Mary C.; Bowen, Z.H.; Bovee, K.D.; Irwin, E.R.

    2001-01-01

    Conserving biological resources native to large river systems increasingly depends on how flow-regulated segments of these rivers are managed. Improving management will require a better understanding of linkages between river biota and temporal variability of flow and instream habitat. However, few studies have quantified responses of native fish populations to multiyear (>2 yr) patterns of hydrologic or habitat variability in flow-regulated systems. To provide these data, we quantified young-of-year (YOY) fish abundance during four years in relation to hydrologic and habitat variability in two segments of the Tallapoosa River in the southeastern United States. One segment had an unregulated flow regime, whereas the other was flow-regulated by a peak-load generating hydropower dam. We sampled fishes annually and explored how continuously recorded flow data and physical habitat simulation models (PHABSIM) for spring (April-June) and summer (July-August) preceding each sample explained fish abundances. Patterns of YOY abundance in relation to habitat availability (median area) and habitat persistence (longest period with habitat area continuously above the long-term median area) differed between unregulated and flow-regulated sites. At the unregulated site, YOY abundances were most frequently correlated with availability of shallow-slow habitat in summer (10 species) and persistence of shallow-slow and shallow-fast habitat in spring (nine species). Additionally, abundances were negatively correlated with 1-h maximum flow in summer (five species). At the flow-regulated site, YOY abundances were more frequently correlated with persistence of shallow-water habitats (four species in spring; six species in summer) than with habitat availability or magnitude of flow extremes. The associations of YOY with habitat persistence at the flow-regulated site corresponded to the effects of flow regulation on habitat patterns. Flow regulation reduced median flows during spring and summer, which resulted in median availability of shallow-water habitats comparable to the unregulated site. However, habitat persistence was severely reduced by flow fluctuations resulting from pulsed water releases for peak-load power generation. Habitat persistence, comparable to levels in the unregulated site, only occurred during summer when low rainfall or other factors occasionally curtailed power generation. As a consequence, summer-spawning species numerically dominated the fish assemblage at the flow-regulated site; five of six spring-spawning species occurring at both study sites were significantly less abundant at the flow-regulated site. Persistence of native fishes in flow-regulated systems depends, in part, on the seasonal occurrence of stable habitat conditions that facilitate reproduction and YOY survival.

  12. Imaging electron flow from collimating contacts in graphene

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.

    2018-04-01

    The ballistic motion of electrons in graphene opens exciting opportunities for electron-optic devices based on collimated electron beams. We form a collimating contact in a hBN-encapsulated graphene hall bar by adding zigzag contacts on either side of an electron emitter that absorb stray electrons; collimation can be turned off by floating the zig-zag contacts. The electron beam is imaged using a liquid-He cooled scanning gate microscope (SGM). The tip deflects electrons as they pass from the collimating contact to a receiving contact on the opposite side of the channel, and an image of electron flow can be made by displaying the change in transmission as the tip is raster scanned across the sample. The angular half width Δθ of the electron beam is found by applying a perpendicular magnetic field B that bends electron paths into cyclotron orbits. The images reveal that the electron flow from the collimating contact drops quickly at B  =  0.05 T when the electron orbits miss the receiving contact. The flow for the non-collimating case persists longer, up to B  =  0.19 T, due to the broader range of entry angles. Ray-tracing simulations agree well with the experimental images. By fitting the fields B at which the magnitude of electron flow drops in the experimental SGM images, we find Δθ  =  9° for electron flow from the collimating contact, compared with Δθ  =  54° for the non-collimating case.

  13. A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions

    PubMed Central

    Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène

    2017-01-01

    The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate). Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR), European Committee for Standardization (CEN) and International Standards Organisation (ISO) as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition. PMID:29036888

  14. A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions.

    PubMed

    Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène

    2017-10-14

    The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate). Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR), European Committee for Standardization (CEN) and International Standards Organisation (ISO) as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition.

  15. Regulation of coronary blood flow

    PubMed Central

    Gorlin, Richard

    1971-01-01

    Coronary blood flow is dependent upon arterial pressure, diastolic time, and small vessel resistance. The system is regulated to achieve a low flow high oxygen extraction and low myocardial Po2. This setting is sensitive to change in oxygen needs. Regulation of blood flow occurs primarily through local intrinsic regulation, most likely through production of vasodilating metabolites in response to minimal degrees of ischaemia. Local regulation appears to dominate over remote regulation in most circumstances. Blood flow distribution to the myocardium is depth dependent as well as regional in variation. Both types of distribution of blood flow are profoundly disturbed in the presence of obstructive coronary atherosclerosis. This results in either concentric myocardial shells or patchy transmural zones of selective ischaemia with clear-cut but local abnormalities in metabolism and performance. Images PMID:4929442

  16. Differential gene expression profiling of Actinobacillus pleuropneumoniae during induction of primary alveolar macrophage apoptosis in piglets.

    PubMed

    Wang, Lei; Qin, Wanhai; Ruidong, Zhai; Liu, Shiting; Zhang, Hu; Sun, Changjiang; Feng, Xin; Gu, Jingmin; Du, Chongtao; Han, Wenyu; Langford, P R; Lei, Liancheng

    2015-01-01

    Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is the causative agent of porcine pleuropneumonia, a disease that causes serious problems for the swine industry. Successful infection by this bacterium requires breaking the first line of defence in the lungs, the primary alveolar macrophages (PAMs). Therefore, exploring A. pleuropneumoniae-PAM interactions will provide vital groundwork for the scientific control of this infectious disease, which has been little studied up to now. In this work, PAMs were isolated from piglets and co-incubated with A. pleuropneumoniae serovar 5b strain L20 in vitro, and their interaction, PAM cell death, and differential gene expression of A. pleuropneumoniae in response to PAM cell death were observed and analysed using confocal microscopy, electron microscopy, RT-PCR, Western blot, flow cytometry and the use of a gene expression profile chip. A. pleuropneumoniae quickly adhered to and invaded PAMs, inducing apoptosis, which was confirmed using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The highest percentage of apoptosis in cells was confirmed using flow cytometry when the cells were infected at a multiplicity of infection (MOI) of 10 and incubated for 5 h, with higher expression of activated caspase-3 as measured by Western blot. Using microarray gene chips with 2868 probes containing nearly all of the genomic sequence of A. pleuropneumoniae serotype 5b strain L20, a total of 185 bacterial genes were found to be differentially expressed (including 92 up-regulated and 93 down-regulated genes) and involved in the process of apoptosis, as compared with the expression of control bacteria cultured without PAMs in BHI medium (mean expression ratios >1.5-fold, p < 0.05). The up-regulated genes are involved in energy metabolism, gene transcription and translation, virulence related gene such as LPS, Trimeric Autotransporter Adhesin, RTX and similar genes. The down-regulated genes are involved in amino acid, cofactor, and vitamin metabolism, and also include ABC transporters. These data demonstrate that A. pleuropneumoniae induces apoptosis of PAMs and undergoes complex changes in gene transcription, including expression changes in known and potential virulence factors. Some potentially novel virulence targets have been identified, suggesting new strategies for the development of vaccines and medicines for both preventive and clinical use. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Reverse electron transport effects on NADH formation and metmyoglobin reduction.

    PubMed

    Belskie, K M; Van Buiten, C B; Ramanathan, R; Mancini, R A

    2015-07-01

    The objective was to determine if NADH generated via reverse electron flow in beef mitochondria can be used for electron transport-mediated reduction and metmyoglobin reductase pathways. Beef mitochondria were isolated from bovine hearts (n=5) and reacted with combinations of succinate, NAD, and mitochondrial inhibitors to measure oxygen consumption and NADH formation. Mitochondria and metmyoglobin were reacted with succinate, NAD, and mitochondrial inhibitors to measure electron transport-mediated metmyoglobin reduction and metmyoglobin reductase activity. Addition of succinate and NAD increased oxygen consumption, NADH formation, electron transport-mediated metmyoglobin reduction, and reductase activity (p<0.05). Addition of antimycin A prevented electron flow beyond complex III, therefore, decreasing oxygen consumption and electron transport-mediated metmyoglobin reduction. Addition of rotenone prevented reverse electron flow, increased oxygen consumption, increased electron transport-mediated metmyoglobin reduction, and decreased NADH formation. Succinate and NAD can generate NADH in bovine tissue postmortem via reverse electron flow and this NADH can be used by both electron transport-mediated and metmyoglobin reductase pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Co-regulation of dark and light reactions in three biochemical subtypes of C(4) species.

    PubMed

    Kiirats, Olavi; Kramer, David M; Edwards, Gerald E

    2010-08-01

    Regulation of light harvesting in response to changes in light intensity, CO(2) and O(2) concentration was studied in C(4) species representing three different metabolic subtypes: Sorghum bicolor (NADP-malic enzyme), Amaranthus edulis (NAD-malic enzyme), and Panicum texanum (PEP-carboxykinase). Several photosynthetic parameters were measured on the intact leaf level including CO(2) assimilation rates, O(2) evolution, photosystem II activities, thylakoid proton circuit and dissipation of excitation energy. Gross rates of O(2) evolution (J(O)₂'), measured by analysis of chlorophyll fluorescence), net rates of O(2) evolution and CO(2) assimilation responded in parallel to changes in light and CO(2) levels. The C(4) subtypes had similar energy requirements for photosynthesis since there were no significant differences in maximal quantum efficiencies for gross rates of O(2) evolution (average value = 0.072 O(2)/quanta absorbed, approximately 14 quanta per O(2) evolved). At saturating actinic light intensities, when photosynthesis was suppressed by decreasing CO(2), ATP synthase proton conductivity (g (H) (+)) responded strongly to changes in electron flow, decreasing linearly with J(O)₂', which was previously observed in C(3) plants. It is proposed that g (H) (+) is controlled at the substrate level by inorganic phosphate availability. The results suggest development of nonphotochemical quenching in C(4) plants is controlled by a decrease in g (H) (+), which causes an increase in proton motive force by restricting proton efflux from the lumen, rather than by cyclic or pseudocyclic electron flow.

  19. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin.

    PubMed

    Gupton, Stephanie L; Anderson, Karen L; Kole, Thomas P; Fischer, Robert S; Ponti, Aaron; Hitchcock-DeGregori, Sarah E; Danuser, Gaudenz; Fowler, Velia M; Wirtz, Denis; Hanein, Dorit; Waterman-Storer, Clare M

    2005-02-14

    The actin cytoskeleton is locally regulated for functional specializations for cell motility. Using quantitative fluorescent speckle microscopy (qFSM) of migrating epithelial cells, we previously defined two distinct F-actin networks based on their F-actin-binding proteins and distinct patterns of F-actin turnover and movement. The lamellipodium consists of a treadmilling F-actin array with rapid polymerization-dependent retrograde flow and contains high concentrations of Arp2/3 and ADF/cofilin, whereas the lamella exhibits spatially random punctae of F-actin assembly and disassembly with slow myosin-mediated retrograde flow and contains myosin II and tropomyosin (TM). In this paper, we microinjected skeletal muscle alphaTM into epithelial cells, and using qFSM, electron microscopy, and immunolocalization show that this inhibits functional lamellipodium formation. Cells with inhibited lamellipodia exhibit persistent leading edge protrusion and rapid cell migration. Inhibition of endogenous long TM isoforms alters protrusion persistence. Thus, cells can migrate with inhibited lamellipodia, and we suggest that TM is a major regulator of F-actin functional specialization in migrating cells.

  20. Apoptosis Governs the Elimination of Schistosoma japonicum from the Non-Permissive Host Microtus fortis

    PubMed Central

    Peng, Jinbiao; Gobert, Geoffrey N.; Hong, Yang; Jiang, Weibin; Han, Hongxiao; McManus, Donald P.; Wang, Xinzhi; Liu, Jinming; Fu, Zhiqiang; Shi, Yaojun; Lin, Jiaojiao

    2011-01-01

    The reed vole, Microtus fortis, is the only known mammalian host in which schistosomes of Schistosoma japonicum are unable to mature and cause significant pathogenesis. However, little is known about how Schistosoma japonicum maturation (and, therefore, the development of schistosomiasis) is prevented in M. fortis. In the present study, the ultrastructure of 10 days post infection schistosomula from BALB/c mice and M. fortis were first compared using scanning electron microscopy and transmission electron microscopy. Electron microscopic investigations showed growth retardation and ultrastructural differences in the tegument and sub-tegumental tissues as well as in the parenchymal cells of schistosomula from M. fortis compared with those in BALB/c mice. Then, microarray analysis revealed significant differential expression between the schistosomula from the two rodents, with 3,293 down-regulated (by ≥2-fold) and 71 up-regulated (≥2 fold) genes in schistosomula from the former. The up-regulated genes included a proliferation-related gene encoding granulin (Grn) and tropomyosin. Genes that were down-regulated in schistosomula from M. fortis included apoptosis-inhibited genes encoding a baculoviral IAP repeat-containing protein (SjIAP) and cytokine-induced apoptosis inhibitor (SjCIAP), genes encoding molecules involved in insulin metabolism, long-chain fatty acid metabolism, signal transduction, the transforming growth factor (TGF) pathway, the Wnt pathway and in development. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) and PI/Annexin V-FITC assays, caspase 3/7 activity analysis, and flow cytometry revealed that the percentages of early apoptotic and late apoptotic and/or necrotic cells, as well as the level of caspase activity, in schistosomula from M. fortis were all significantly higher than in those from BALB/c mice. PMID:21731652

  1. Regulation of snow-fed rivers affects flow regimes more than climate change.

    PubMed

    Arheimer, B; Donnelly, C; Lindström, G

    2017-07-05

    River flow is mainly controlled by climate, physiography and regulations, but their relative importance over large landmasses is poorly understood. Here we show from computational modelling that hydropower regulation is a key driver of flow regime change in snow-dominated regions and is more important than future climate changes. This implies that climate adaptation needs to include regulation schemes. The natural river regime in snowy regions has low flow when snow is stored and a pronounced peak flow when snow is melting. Global warming and hydropower regulation change this temporal pattern similarly, causing less difference in river flow between seasons. We conclude that in snow-fed rivers globally, the future climate change impact on flow regime is minor compared to regulation downstream of large reservoirs, and of similar magnitude over large landmasses. Our study not only highlights the impact of hydropower production but also that river regulation could be turned into a measure for climate adaptation to maintain biodiversity on floodplains under climate change.Global warming and hydropower regulations are major threats to future fresh-water availability and biodiversity. Here, the authors show that their impact on flow regime over a large landmass result in similar changes, but hydropower is more critical locally and may have potential for climate adaptation in floodplains.

  2. The synthesis method for design of electron flow sources

    NASA Astrophysics Data System (ADS)

    Alexahin, Yu I.; Molodozhenzev, A. Yu

    1997-01-01

    The synthesis method to design a relativistic magnetically - focused beam source is described in this paper. It allows to find a shape of electrodes necessary to produce laminar space charge flows. Electron guns with shielded cathodes designed with this method were analyzed using the EGUN code. The obtained results have shown the coincidence of the synthesis and analysis calculations [1]. This method of electron gun calculation may be applied for immersed electron flows - of interest for the EBIS electron gun design.

  3. Preliminary Assessment of the Flow of Used Electronics, In ...

    EPA Pesticide Factsheets

    Electronic waste (e-waste) is the largest growing municipal waste stream in the United States. The improper disposal of e-waste has environmental, economic, and social impacts, thus there is a need for sustainable stewardship of electronics. EPA/ORD has been working to improve our understanding of the quantity and flow of electronic devices from initial purchase to final disposition. Understanding the pathways of used electronics from the consumer to their final disposition would provide insight to decision makers about their impacts and support efforts to encourage improvements in policy, technology, and beneficial use. This report is the first stage of study of EPA/ORD's efforts to understand the flows of used electronics and e-waste by reviewing the regulatory programs for the selected states and identifying the key lessons learned and best practices that have emerged since their inception. Additionally, a proof-of-concept e-waste flow model has been developed to provide estimates of the quantity of e-waste generated annually at the national level, as well as for selected states. This report documents a preliminary assessment of available data and development of the model that can be used as a starting point to estimate domestic flows of used electronics from generation, to collection and reuse, to final disposition. The electronics waste flow model can estimate the amount of electronic products entering the EOL management phase based on unit sales dat

  4. How effective is aeration with vortex flow regulators? Pilot scale experiments

    NASA Astrophysics Data System (ADS)

    Wójtowicz, Patryk; Szlachta, Małgorzata

    2017-11-01

    Vortex flow regulators (VFR) are used in urban drainage systems as a replacement for traditional flow throttling devices. Vortex regulators are not only very efficient energy dissipators but also atomizers which are beneficial for sewer aeration. A deficit of dissolved oxygen can be a problem in both natural waters and sewerage. Hydrodynamic flow regulators can boost oxygen concentration preventing putrefaction and improving treatment of stormwater and wastewater. We were first to investigate the aeration efficiency of semi-commercial scale cylindrical vortex flow regulators to determine the potential of their application in environmental engineering and to propose modification to enhance the aeration capacity of basic designs. Different device geometries and arrangements of active outlets for both single and double discharge vortex regulators were tested in a recirculating system. In this study, we present a concise review of the current state of our extensive research on the aeration efficiency of vortex flow regulators and their application in sewerage systems.

  5. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways.

    PubMed

    Atkinson, Joshua T; Campbell, Ian; Bennett, George N; Silberg, Jonathan J

    2016-12-27

    The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.

  6. Comprehensive assessment of dam impacts on flow regimes with consideration of interannual variations

    NASA Astrophysics Data System (ADS)

    Zhang, Yongyong; Shao, Quanxi; Zhao, Tongtiegang

    2017-09-01

    Assessing the impact of human intervention on flow regimes is important in policy making and resource management. Previous impact assessments of dam regulation on flow regimes have focused on long-term average patterns, but interannual variations, which are important characteristics to be considered, have been ignored. In this study, the entire signatures of hydrograph variations of Miyun Reservoir in northern China were described by forty flow regime metrics that incorporate magnitude, variability and frequency, duration, timing, and rate of change for flow events based on a long-term synchronous observation series of inflow and outflow. Principal component analysis and cluster analysis were used to reduce the multidimensionality of the metrics and time and to determine impact patterns and their interannual shifts. Statistically significant driving factors of impact pattern variations were identified. We found that dam regulation resulted in four main impact classes on the flow regimes and that the regulated capacity was interannually attenuated from 1973 to 2010. The impact patterns alternated between the highly regulated class with extremely decreasing flow magnitude, slight variability, and extreme intermittency and the slightly regulated class with extremely increasing flow magnitude, slight variability, and extreme intermittency from 1973 to 1987 and then stabilized in the latter class from 1988 to 2001. After 2001, the pattern gradually changed from the moderately regulated class with moderately decreasing flow magnitude, extreme variability, and extreme intermittency to the slightly regulated class with slightly decreasing flow magnitude, slight variability, and no intermittency. Decreasing precipitation and increasing drought were the primary drivers for the interannual variations of the impact patterns, and inflow variability was the most significant factor affecting the patterns, followed by flow event frequency and duration, magnitude, and timing. This study shows that the use of interannual characteristics can help to gain more insight into the impact of dam regulation on flow regimes and will provide important information to scientifically guide the multi-purpose regulation of dams.

  7. Behavioral regulations and dispositional flow in exercise among American college students relative to stages of change and gender.

    PubMed

    Ersöz, Gözde; Eklund, Robert C

    2017-01-01

    The purpose of this study was to examine behavioral regulations and dispositional flow in exercise among university students in terms of gender and stage of change. Data were collected from American college students (N = 257; M age ± SD = 23.02 ± 4.05) in Spring 2013. Behavioral regulations and dispositional flow in exercise were assessed, along with stage of change. Exercisers in the maintenance stage of change displayed significantly more self-determined motivation to exercise and a greater tendency to experience flow than those in preparation and action stages. Significant correlations were observed among behavioral regulations and flow state. Nonsignificant differences were observed for gender on behavioral regulations and dispositional flow in exercise. The results suggest that promotion of self-determined motivation and dispositional flow in exercisers may improve the quality of their experiences, as well as to foster their exercise behavior.

  8. Photosynthesis and Photosynthetic Electron Flow in the Alpine Evergreen Species Quercus guyavifolia in Winter

    PubMed Central

    Huang, Wei; Hu, Hong; Zhang, Shi-Bao

    2016-01-01

    Alpine evergreen broadleaf tree species must regularly cope with low night temperatures in winter. However, the effects of low night temperatures on photosynthesis in alpine evergreen broadleaf tree species are unclear. We measured the diurnal photosynthetic parameters before and after cold snap for leaves of Quercus guyavifolia growing in its native habitat at 3290 m. On 11 and 12 December 2013 (before cold snap), stomatal and mesophyll conductances (gs and gm), CO2 assimilation rate (An), and total electron flow through PSII (JPSII) at daytime were maintained at high levels. The major action of alternative electron flow was to provide extra ATP for primary metabolisms. On 20 December 2013 (after cold snap), the diurnal values of gs, gm, An, and JPSII at daytime largely decreased, mainly due to the large decrease in night air temperature. Meanwhile, the ratio of photorespiration and alternative electron flow to JPSII largely increased on 20 December. Furthermore, the high levels of alternative electron flow were accompanied with low rates of extra ATP production. A quantitative limitation analysis reveals that the gm limitation increased on 20 December with decreased night air temperature. Therefore, the night air temperature was an important determinant of stomatal/mesophyll conductance and photosynthesis. When photosynthesis is inhibited following freezing night temperatures, photorespiration and alternative electron flow are important electron sinks, which support the role of photorespiration and alternative electron flow in photoportection for alpine plants under low temperatures. PMID:27812359

  9. Developing New Modelling Tools for Environmental Flow Assessment in Regulated Salmon Rivers

    NASA Astrophysics Data System (ADS)

    Geris, Josie; Soulsby, Chris; Tetzlaff, Doerthe

    2013-04-01

    There is a strong political drive in Scotland to meet all electricity demands from renewable sources by 2020. In Scotland, hydropower generation has a long history and is a key component of this strategy. However, many rivers sustain freshwater communities that have both high conservation status and support economically important Atlantic salmon fisheries. Both new and existing hydropower schemes must be managed in accordance with the European Union's Water Framework Directive (WFD), which requires that all surface water bodies achieve good ecological status or maintain good ecological potential. Unfortunately, long-term river flow monitoring is sparse in the Scottish Highlands and there are limited data for defining environmental flows. The River Tay is the most heavily regulated catchment in the UK. To support hydropower generation, it has an extensive network of inter- and intra- catchment transfers, in addition to a large number of regulating reservoirs for which abstraction legislation often only requires minimum compensation flows. The Tay is also considered as one of Scotland's most important rivers for Atlantic salmon (Salmo salar), and there is considerable uncertainty as to how best change reservoir operations to improve the ecological potential of the river system. It is now usually considered that environmental flows require more than a minimum compensation flow, and instead should cover a range of hydrological flow aspects that represent ecologically relevant streamflow attributes, including magnitude, timing, duration, frequency and rate of change. For salmon, these hydrological indices are of particular interest, with requirements varying at different stages of their life cycle. To meet the WFD requirements, rationally alter current abstraction licences and provide an evidence base for regulating new hydropower schemes, advanced definitions for abstraction limits and ecologically appropriate flow releases are desirable. However, a good understanding of the natural flow variability and the hydrological impacts of the regulation is unavailable, partly because pre-regulation data of existing hydropower schemes are lacking. Here we develop a novel modelling approach for characterising natural flow regimes and defining hydrological flow indices. This allows us to quantitatively assess the impacts of hydropower to better inform environmental flow requirements for the Atlantic salmon river ecosystem. Results are presented for the River Lyon (390 km2), a regulated headwater catchment of the River Tay. The HBV hydrological rainfall-runoff model is used to simulate flows, based on calibrated parameters from regulated flow data, with the current hydropower scheme active. For this, the HBV model is adapted to be able to incorporate water transfers and regulated flows. The natural hydrological indices are derived from the simulated pre-regulation data, and compared with those of the regulated data to investigate the impact of the regulation on these at different critical times for Atlantic salmon. The sensitivity of the system to change is also investigated to explore the extent to which flow variables can be modified without major degradation to the river's ecosystem, while still maintaining viable hydropower generation. The modelling approach presented will provide the basis for assessing impacts on hydrological flow indices and informing environmental flows in regions with similar heavily regulated mountain river ecosystems.

  10. Method of Simulating Flow-Through Area of a Pressure Regulator

    NASA Technical Reports Server (NTRS)

    Hass, Neal E. (Inventor); Schallhorn, Paul A. (Inventor)

    2011-01-01

    The flow-through area of a pressure regulator positioned in a branch of a simulated fluid flow network is generated. A target pressure is defined downstream of the pressure regulator. A projected flow-through area is generated as a non-linear function of (i) target pressure, (ii) flow-through area of the pressure regulator for a current time step and a previous time step, and (iii) pressure at the downstream location for the current time step and previous time step. A simulated flow-through area for the next time step is generated as a sum of (i) flow-through area for the current time step, and (ii) a difference between the projected flow-through area and the flow-through area for the current time step multiplied by a user-defined rate control parameter. These steps are repeated for a sequence of time steps until the pressure at the downstream location is approximately equal to the target pressure.

  11. Neural control of renal tubular sodium reabsorption of the dog.

    PubMed

    DiBona, G F

    1978-04-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies demonstrate adrenergic nerve terminals in direct contact with basement membranes of mammalian renal tubular epithelial cells. Low level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. The antinatriuresis is prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney upon renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. Reflex diminutions in renal nerve activity (left atrial distention, stellate ganglion stimulation) produce a decrease in renal tubular sodium reabsorption independent of glomerular filtration rate or renal blood flow. The anatomically described adrenergic innervation of the renal tubules participates in the direct regulation of renal tubular sodium reabsorption.

  12. Adrenocortical Gap Junctions and Their Functions

    PubMed Central

    Bell, Cheryl L.; Murray, Sandra A.

    2016-01-01

    Adrenal cortical steroidogenesis and proliferation are thought to be modulated by gap junction-mediated direct cell–cell communication of regulatory molecules between cells. Such communication is regulated by the number of gap junction channels between contacting cells, the rate at which information flows between these channels, and the rate of channel turnover. Knowledge of the factors regulating gap junction-mediated communication and the turnover process are critical to an understanding of adrenal cortical cell functions, including development, hormonal response to adrenocorticotropin, and neoplastic dedifferentiation. Here, we review what is known about gap junctions in the adrenal gland, with particular attention to their role in adrenocortical cell steroidogenesis and proliferation. Information and insight gained from electrophysiological, molecular biological, and imaging (immunocytochemical, freeze fracture, transmission electron microscopic, and live cell) techniques will be provided. PMID:27445985

  13. Elucidation of flow-mediated tumour cell-induced platelet aggregation using an ultrasound standing wave trap.

    PubMed

    Bazou, D; Santos-Martinez, M J; Medina, C; Radomski, M W

    2011-04-01

    Tumour cells activate and aggregate platelets [tumour cell-induced platelet aggregation (TCIPA)] and this process plays an important role in the successful metastasis of cancer cells. To date, most studies on TCIPA have been conducted under no-flow conditions. In this study, we have investigated TCIPA in real time under flow conditions, using an ultrasound standing wave trap that allows formation and levitation of cancer cell clusters in suspension, thus mimicking the conditions generated by flowing blood. Using 59M adenocarcinoma and HT1080 fibrosarcoma cells and human platelets, cancer cell cluster-platelet aggregates were imaged in real time using epi-fluorescence microscopy (F-actin) and investigated in detail using confocal microscopy (matrix metalloproteinase-2-GPIIb/IIIa co-localization) and scanning electron and helium-ion microscopy (<1 nm resolution). The release of gelatinases from aggregates was studied using zymography. We found that platelet activation and aggregation takes place on the surface of cancer cells (TCIPA), leading to time-dependent disruption of cancer cell clusters. Pharmacological modulation of TCIPA revealed that EDTA, prostacyclin, o-phenanthroline and apyrase significantly down-regulated TCIPA and, in turn, delayed cell cluster disruption, However, EGTA and aspirin were ineffective. Pharmacological inhibition of TCIPA correlated with the down-regulation of platelet activation as shown by flow-cytometry assay of platelet P-selectin. Our results show for the first time, that during TCIPA, platelet activation disrupts cancer cell clusters and this can contribute to metastasis. Thus, selective targeting of platelet aggregate-cancer cell clusters may be an important strategy to control metastasis. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  14. Elucidation of flow-mediated tumour cell-induced platelet aggregation using an ultrasound standing wave trap

    PubMed Central

    Bazou, D; Santos-Martinez, MJ; Medina, C; Radomski, MW

    2011-01-01

    BACKGROUND AND PURPOSE Tumour cells activate and aggregate platelets [tumour cell-induced platelet aggregation (TCIPA)] and this process plays an important role in the successful metastasis of cancer cells. To date, most studies on TCIPA have been conducted under no-flow conditions. In this study, we have investigated TCIPA in real time under flow conditions, using an ultrasound standing wave trap that allows formation and levitation of cancer cell clusters in suspension, thus mimicking the conditions generated by flowing blood. EXPERIMENTAL APPROACH Using 59M adenocarcinoma and HT1080 fibrosarcoma cells and human platelets, cancer cell cluster–platelet aggregates were imaged in real time using epi-fluorescence microscopy (F-actin) and investigated in detail using confocal microscopy (matrix metalloproteinase-2-GPIIb/IIIa co-localization) and scanning electron and helium-ion microscopy (<1 nm resolution). The release of gelatinases from aggregates was studied using zymography. KEY RESULTS We found that platelet activation and aggregation takes place on the surface of cancer cells (TCIPA), leading to time-dependent disruption of cancer cell clusters. Pharmacological modulation of TCIPA revealed that EDTA, prostacyclin, o-phenanthroline and apyrase significantly down-regulated TCIPA and, in turn, delayed cell cluster disruption, However, EGTA and aspirin were ineffective. Pharmacological inhibition of TCIPA correlated with the down-regulation of platelet activation as shown by flow-cytometry assay of platelet P-selectin. CONCLUSION AND IMPLICATIONS Our results show for the first time, that during TCIPA, platelet activation disrupts cancer cell clusters and this can contribute to metastasis. Thus, selective targeting of platelet aggregate–cancer cell clusters may be an important strategy to control metastasis. PMID:21182493

  15. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  16. Theory of the electron sheath and presheath

    DOE PAGES

    Scheiner, Brett; Baalrud, Scott D.; Yee, Benjamin T.; ...

    2015-12-30

    Here, electron sheaths are commonly found near Langmuir probes collecting the electron saturation current. The common assumption is that the probe collects the random flux of electrons incident on the sheath, which tacitly implies that there is no electron presheath and that the flux collected is due to a velocity space truncation of the electron velocity distribution function (EVDF). This work provides a dedicated theory of electron sheaths, which suggests that they are not so simple. Motivated by EVDFs observed in particle-in-cell(PIC) simulations, a 1D model for the electron sheath and presheath is developed. In the model, under low temperaturemore » plasma conditions (T e >> T i), an electron pressure gradient accelerates electrons in the presheath to a flow velocity that exceeds the electron thermal speed at the sheath edge. This pressure gradient generates large flow velocities compared to what would be generated by ballistic motion in response to the electric field. It is found that in many situations, under common plasma conditions, the electron presheath extends much further into the plasma than an analogous ion presheath. PIC simulations reveal that the ion density in the electron presheath is determined by a flow around the electron sheath and that this flow is due to 2D aspects of the sheath geometry. Simulations also indicate the presence of ion acoustic instabilities excited by the differential flow between electrons and ions in the presheath, which result in sheath edge fluctuations. The 1D model and time averaged PIC simulations are compared and it is shown that the model provides a good description of the electron sheath and presheath.« less

  17. The effect of flow reduction on microphytobenthos development in an alpine river stretch using novel fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Ganglbauer, A.; Bondar-Kunze, E.; Hein, T.; Zeiringer, B.

    2009-04-01

    Many European river systems are affected by flow alterations leading to significant differences of the pristine discharge regime at different temporal scales. Flow regulation measures and water abstraction are changing the extent and frequency of water level changes. In concert with river bed regulation this could affect the hydromorphological situation of river systems and key ecosystem functions. Microphytobenthos is a major component in the physical, chemical and biochemical processes, which occur in river systems and the associated riparian zones. They are significant primary producers in rivers, because of their high turnover rate, rapid colonization along the aquatic-terrestrial boundary, transform nutrients and support via their biomass the food webs in the river and adjacent ecosystems. The developed structure and composition of microphytobenthos is controlled by the hydromorphological conditions and thus, indicates environmental changes. The guiding question for the presented research was to what extent changes in the variability of flow affect microphytobenthos development in a river stretch and to what extent the structure and composition of microphytobenthos changed at the micro scale. To investigate these effects under natural conditions we compared a residual flow section impacted by a hydropower plant with one unaffected section of the River Ybbs, a tributary to the Danube River. The river stretch investigated was a 33 km long stretch between the villages Göstling and Opponitz in Lower Austria. The River Ybbs is draining a catchment of 1,300 km2 and has a mean discharge of 20 m3 s-1.The main benthic algal group are diatoms, which are typical for low order rivers in the Alpine area, characterized by low temperatures throughout the year. We expected that flow velocity explain the extent of microphytobenthos development at the river stretch scale and especially low flow conditions affect the structure and composition of algal biomass at the micro scale. The measurements included field surveys and two experimental settings. During May 2008 we conducted an in-situ experiment with artificial substrata to investigate the effect of flow velocity changes. We exposed glass slides in baskets along two transects in the River Ybbs at two sampling sites and eight different positions. After a period of about four weeks with weekly recurrent measurements including flow velocity, water depth, chlorophyll a content and electron transport rate (ETR) we started our experiment. Glass slides were taken from each position and were exposed in a flow reduced impounded area in the river Ybbs near Göstling. There low flow velocity was used to test the effect on microphytobenthos development. The next ten days daily measurements of flow velocity, water depth, chlorophyll-a content and electron transport rate (ETR) with the pulse amplitude modulated fluorescence method and microscopic analysis were undertaken. Based on these daily measurements under almost stable environmental conditions we could ascertain a shift in the benthic algae community. To assess the distribution along a river stretch we measured 70 sampling points at each sampling side. To characterize the biomass and activity of the microphytobenthos we used Pulse Amplitude Modulated Fluorescence (PAM-Fluorescence). Using this technique allow to measure the biomass (Chlorophyll a) and the ETR (electron transport rate) simultaneously without destroying the structure. With this technique it is possible to The PAM technique measure directly the fluorescence of chlorophyll a in the photosystem two. The quantum yield you get is the probability that a photon can be used photochemically. The quantum yield offers the possibility to illustrate the fitness of algae. Based on these measurements short term responses can be measured and combined with the results of field surveys. These analytical results were used for a habitat modelling approach to describe the microphytobenthos development at 2 scales. First results of the research will be presented.

  18. Photoluminescence and charge-transport characteristics of nano-columnar titanium dioxide films prepared by rf-sputtering on alumina templates

    NASA Astrophysics Data System (ADS)

    Kheirandish, E.; Hosseini, T.; Yavarishad, N.; King, S.; Kouklin, N.

    2018-02-01

    The current study presents the synthesis and characterization of poly-crystalline TiO2 thin-film prepared by rf-sputtering on top of a highly regimented nanoporous Au-coated Al2O3 substrate. The film’s physical and electronic properties were characterized via SEM, EDS, x-ray diffraction and RAMAN spectroscopy as well as temperature dependent photoluminescence (PL) and I-V measurements. The films feature a 1D, columnar-like structure and exhibit a medium strength, spectrally-broad light emission in the UV-visible range. PL emission shows a weak T-dependence and is attributed to interband electronic transitions and defect-assisted radiative recombinations. The charge transport is confirmed to be polaronic in nature with both thermally-assisted hopping and quantum mechanical tunneling regulating a charge flow within the columns in the intermediate temperature regime of ˜200-320 K. These results open a door to utilizing nano-textured substrates/scaffolds to produce electronic-grade anatase TiO2 by sputtering for advanced opto-electronic device applications.

  19. Analytic model of a magnetically insulated transmission line with collisional flow electrons

    NASA Astrophysics Data System (ADS)

    Stygar, W. A.; Wagoner, T. C.; Ives, H. C.; Corcoran, P. A.; Cuneo, M. E.; Douglas, J. W.; Gilliland, T. L.; Mazarakis, M. G.; Ramirez, J. J.; Seamen, J. F.; Seidel, D. B.; Spielman, R. B.

    2006-09-01

    We have developed a relativistic-fluid model of the flow-electron plasma in a steady-state one-dimensional magnetically insulated transmission line (MITL). The model assumes that the electrons are collisional and, as a result, drift toward the anode. The model predicts that in the limit of fully developed collisional flow, the relation between the voltage Va, anode current Ia, cathode current Ik, and geometric impedance Z0 of a 1D planar MITL can be expressed as Va=IaZ0h(χ), where h(χ)≡[(χ+1)/4(χ-1)]1/2-ln⁡⌊χ+(χ2-1)1/2⌋/2χ(χ-1) and χ≡Ia/Ik. The relation is valid when Va≳1MV. In the minimally insulated limit, the anode current Ia,min⁡=1.78Va/Z0, the electron-flow current If,min⁡=1.25Va/Z0, and the flow impedance Zf,min⁡=0.588Z0. {The electron-flow current If≡Ia-Ik. Following Mendel and Rosenthal [Phys. Plasmas 2, 1332 (1995)PHPAEN1070-664X10.1063/1.871345], we define the flow impedance Zf as Va/(Ia2-Ik2)1/2.} In the well-insulated limit (i.e., when Ia≫Ia,min⁡), the electron-flow current If=9Va2/8IaZ02 and the flow impedance Zf=2Z0/3. Similar results are obtained for a 1D collisional MITL with coaxial cylindrical electrodes, when the inner conductor is at a negative potential with respect to the outer, and Z0≲40Ω. We compare the predictions of the collisional model to those of several MITL models that assume the flow electrons are collisionless. We find that at given values of Va and Z0, collisions can significantly increase both Ia,min⁡ and If,min⁡ above the values predicted by the collisionless models, and decrease Zf,min⁡. When Ia≫Ia,min⁡, we find that, at given values of Va, Z0, and Ia, collisions can significantly increase If and decrease Zf. Since the steady-state collisional model is valid only when the drift of electrons toward the anode has had sufficient time to establish fully developed collisional flow, and collisionless models assume there is no net electron drift toward the anode, we expect these two types of models to provide theoretical bounds on Ia, If, and Zf.

  20. Reduced expression of mitochondrial electron transport chain proteins from hibernating hearts relative to ischemic preconditioned hearts in the second window of protection.

    PubMed

    Cabrera, Jesús A; Butterick, Tammy A; Long, Eric K; Ziemba, Elizabeth A; Anderson, Lorraine B; Duffy, Cayla M; Sluiter, Willem; Duncker, Dirk J; Zhang, Jianyi; Chen, Yingjie; Ward, Herbert B; Kelly, Rosemary F; McFalls, Edward O

    2013-07-01

    Although protection against necrosis has been observed in both hibernating (HIB) and ischemic preconditioned hearts in the second window of protection (SWOP), a comparison of the mitochondrial proteome between the two entities has not been previously performed. Anesthetized swine underwent instrumentation with a fixed constrictor around the LAD artery and were followed for 12 weeks (HIB; N=7). A second group of anesthetized swine underwent ischemic preconditioning by inflating a balloon within the LAD artery 10 times for 2 min, each separated by 2 min reperfusion and were sacrificed 24h later (SWOP; N=7). Myocardial blood flow and high-energy nucleotides were obtained in the LAD region and normalized to remote regions. Post-sacrifice, protein content as measured with iTRAQ was compared in isolated mitochondria from the LAD area of a Sham heart. Basal regional blood flow in the LAD region when normalized to the remote region was 0.86±0.04 in HIB and 1.02±0.02 in SWOP tissue (P<0.05). Despite reduced regional blood flows in HIB hearts, ATP content in the LAD region, when normalized to the remote region was similar in HIB versus SWOP (1.06±0.06 and 1.02±0.05 respectively; NS) as was the transmural phosphocreatine (PCr) to ATP ratio (2.1±0.2 and 2.2±0.2 respectively; NS). Using iTRAQ, 64 common proteins were identified in HIB and SWOP hearts. Compared with SWOP, the relative abundance of mitochondrial proteins involved with electron transport chain (ETC) were reduced in HIB including NADH dehydrogenase, Cytochrome c reductase and oxidase, ATP synthase, and nicotinamide nucleotide transhydrogenase. Within chronically HIB heart tissue with reduced blood flow, the relative abundance of mitochondrial ETC proteins is decreased when compared with SWOP tissue. These data support the concept that HIB heart tissue subjected to chronically reduced blood flow is associated with a down-regulation in the expression of key mitochondrial proteins involved in electron transport. Published by Elsevier Ltd.

  1. Pilot study of a new device to titrate oxygen flow in hypoxic patients on long-term oxygen therapy.

    PubMed

    Cirio, Serena; Nava, Stefano

    2011-04-01

    The O(2) Flow Regulator (Dima, Bologna, Italy) is a new automated oxygen regulator that titrates the oxygen flow based on a pulse-oximetry signal to maintain a target S(pO(2)). We tested the device's safety and efficacy. We enrolled 18 subjects with chronic lung disease, exercise-induced desaturation, and on long-term oxygen therapy, in a randomized crossover study with 2 constant-work-load 15-min cycling exercise tests, starting with the patient's previously prescribed usual oxygen flow. In one test the oxygen flow was titrated manually by the respiratory therapist, and in the other test the oxygen flow was titrated by the O(2) Flow Regulator, to maintain an S(pO(2)) of 94%. We measured S(pO(2)) throughout each test, the time spent by the respiratory therapist to set the device or to manually regulate the oxygen flow, and the total number of respiratory-therapist titration interventions during the trial. There were no differences in symptoms or heart rate between the exercise tests. Compared to the respiratory-therapist-controlled tests, during the O(2) Flow Regulator tests S(pO(2)) was significantly higher (95 ± 2% vs 93 ± 3%, P = .04), significantly less time was spent below the target S(pO(2)) (171 ± 187 s vs 340 ± 220 s, P < .001), and the O(2) Flow Regulator tests required significantly less respiratory therapist time (5.6 ± 3.7 min vs 2.0 ± 0.1 min, P = .005). The O(2) Flow Regulator may be a safe and effective alternative to manual oxygen titration during exercise in hypoxic patients. It provided stable S(pO(2)) and avoided desaturations in our subjects.

  2. Computer simulation of electron flow in linear-beam microwave tubes

    NASA Astrophysics Data System (ADS)

    Kumar, Lalit

    1990-12-01

    The computer simulation of electron flow in linear-beam microwave tubes, such as a travelling-wave tube (TWT) and klystron, is used for designing and optimising the electron gun and collector and for analysing the large-signal beam-wave interaction phenomenon. Major aspects of simulation of electron flow in static and rf fields present in such tubes are discussed. Some advancements made in this respect and results obtained from computer programs developed by the research group at CEERI for a gridded electron gun, depressed collector, and large-signal analysis of TWT and klystron are presented.

  3. Design of Highly Selective Platinum Nanoparticle Catalysts for the Aerobic Oxidation of KA-Oil using Continuous-Flow Chemistry.

    PubMed

    Gill, Arran M; Hinde, Christopher S; Leary, Rowan K; Potter, Matthew E; Jouve, Andrea; Wells, Peter P; Midgley, Paul A; Thomas, John M; Raja, Robert

    2016-03-08

    Highly active and selective aerobic oxidation of KA-oil to cyclohexanone (precursor for adipic acid and ɛ-caprolactam) has been achieved in high yields using continuous-flow chemistry by utilizing uncapped noble-metal (Au, Pt & Pd) nanoparticle catalysts. These are prepared using a one-step in situ methodology, within three-dimensional porous molecular architectures, to afford robust heterogeneous catalysts. Detailed spectroscopic characterization of the nature of the active sites at the molecular level, coupled with aberration-corrected scanning transmission electron microscopy, reveals that the synthetic methodology and associated activation procedures play a vital role in regulating the morphology, shape and size of the metal nanoparticles. These active centers have a profound influence on the activation of molecular oxygen for selective catalytic oxidations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Regulation of nitrite resistance of the cytochrome cbb3 oxidase by cytochrome c ScyA in Shewanella oneidensis

    PubMed Central

    Yin, Jianhua; Jin, Miao; Zhang, Haiyan; Ju, Lili; Zhang, Lili; Gao, Haichun

    2015-01-01

    Cytochrome c proteins, as enzymes to exchange electrons with substrates or as pure electron carriers to shuttle electrons, play vital roles in bacterial respiration and photosynthesis. In Shewanella oneidensis, a research model for the respiratory diversity, at least 42 c-type cytochromes are predicted to be encoded in the genome and are regarded to be the foundation of its highly branched electron transport pathways. However, only a small number of c-type cytochromes have been extensively studied. In this study, we identify soluble cytochrome c ScyA as an important factor influencing the nitrite resistance of a strain devoid of the bd oxidase by utilizing a newly developed transposon mutagenesis vector, which enables overexpression of the gene(s) downstream of the insertion site. We show that when in overabundance ScyA facilitates growth against nitrite inhibition by enhancing nitrite resistance of the cbb3 oxidase. Based on the data presented in this study, we suggest two possible mechanisms underlying the observed effect of ScyA: (1) ScyA increases electron flow to the cbb3 oxidase; (2) ScyA promotes nitrite resistance of the cbb3 oxidase, possibly by direct interaction. PMID:25417822

  5. Open-channel integrating-type flow meter

    USGS Publications Warehouse

    Koopman, K.C.

    1971-01-01

    A relatively inexpensive meter for measuring cumulative flow in open channels with a rated control,. called a "totalizer", was developed. It translates the nonlinear function of gage height to flow by use of a cam and a float. A variable resistance element in an electronic circuit is controlled by the float so that the electron flow in the circuit corresponds to the flow of water. The flow of electricity causes electroplating of an electrode with silver. The amount of silver deposited is proportionate to the flow of water. The total flow of water is determined by removing the silver from the electrode at a fixed rate with ·an electronic device and recording the time for removal with a counter. The circuit is designed so that the ,resultant reading on the counter is in acre-feet of water.

  6. Flow compensating pressure regulator

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1978-01-01

    An apparatus for regulating pressure of treatment fluid during ophthalmic procedures is described. Flow sensing and pressure regulating diaphragms are used to modulate a flow control valve. The pressure regulating diaphragm is connected to the flow control valve to urge the valve to an open position due to pressure being applied to the diaphragm by bias means such as a spring. The flow sensing diaphragm is mechanically connected to the flow control valve and urges it to an opened position because of the differential pressure on the diaphragm generated by a flow of incoming treatment fluid through an orifice in the diaphragm. A bypass connection with a variable restriction is connected in parallel relationship to the orifice to provide for adjusting the sensitivity of the flow sensing diaphragm. A multiple lever linkage system is utilized between the center of the second diaphragm and the flow control valve to multiply the force applied to the valve by the other diaphragm and reverse the direction of the force.

  7. Effects of Jackson Lake dam and Tributaries on the Hydrology and Geomorphology of the Snake River, Grand Teton National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, N. C.; Schmidt, J. C.

    2006-05-01

    Geomorphic and hydrologic analyses of the Snake River in Grand Teton National Park (GTNP) indicate that flow contributions of tributaries mitigate impacts of regulation. Since a flow regime change in 1958, regulation resulted in a 43 and 35% decrease in estimated unregulated flows immediately downstream of Jackson Lake Dam (JLD) and at Moose (43 km and 5 tributaries downstream of JLD), respectively. Geomorphic evidence indicates that some channel characteristics are more sensitive than others to this decreasing influence of flow regulation. First, entrainment of tracer rocks suggests that the ability of the Snake River to mobilize its bed increases downstream. A greater proportion of the bed became active, and the mobilized clasts moved further, in the two study reaches furthest downstream. Second, repeat mapping from aerial photographs suggest that some changes in channel form are the result of flow regulation and some are the result of climatically driven changes in runoff determined by tributaries. Initial decreases in flows due to regulation may have caused the observed channel narrowing between 1945 and 1969, and greater precipitation causing greater natural flows may have resulted in the subsequent channel widening between 1969 and 1990. Third, flow models were used to obtain the magnitudes of flows necessary to inundate two floodplain surfaces in 4 reaches from JLD to Moose. Recurrence intervals and inundation periods were similar for a narrow, inset floodplain in all 4 reaches, suggesting that this surface developed due to regulation. Recurrence intervals for a much broader and higher floodplain decreased downstream from 9 to 3.2 years and inundation periods increased downstream from 1.1 to 3 days immediately below JLD and at Moose, respectively. This suggests the upper floodplain was formed prior to regulation of the Snake River. Thus, the effects of flow regulation on bed mobility and connectivity between the channel and the upper floodplain decrease downstream as tributaries supply additional streamflow. However, the development of the inset floodplain associated with regulated flows has occurred throughout the study area. These studies indicate that tributaries may reduce most but not necessarily all of the impacts of flow regulation on the geomorphology of the Snake River in GTNP.

  8. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  9. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  10. 48 CFR 18.123 - Electronic funds transfer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Electronic funds transfer. 18.123 Section 18.123 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  11. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  12. 48 CFR 18.124 - Electronic funds transfer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Electronic funds transfer. 18.124 Section 18.124 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION... Electronic funds transfer. Electronic funds transfer payments may be waived for acquisitions to support...

  13. Linking water quality and quantity in environmental flow assessment in deteriorated ecosystems: a food web view.

    PubMed

    Chen, He; Ma, Lekuan; Guo, Wei; Yang, Ying; Guo, Tong; Feng, Cheng

    2013-01-01

    Most rivers worldwide are highly regulated by anthropogenic activities through flow regulation and water pollution. Environmental flow regulation is used to reduce the effects of anthropogenic activities on aquatic ecosystems. Formulating flow alteration-ecological response relationships is a key factor in environmental flow assessment. Traditional environmental flow models are characterized by natural relationships between flow regimes and ecosystem factors. However, food webs are often altered from natural states, which disturb environmental flow assessment in such ecosystems. In ecosystems deteriorated by heavy anthropogenic activities, the effects of environmental flow regulation on species are difficult to assess with current modeling approaches. Environmental flow management compels the development of tools that link flow regimes and food webs in an ecosystem. Food web approaches are more suitable for the task because they are more adaptive for disordered multiple species in a food web deteriorated by anthropogenic activities. This paper presents a global method of environmental flow assessment in deteriorated aquatic ecosystems. Linkages between flow regimes and food web dynamics are modeled by incorporating multiple species into an ecosystem to explore ecosystem-based environmental flow management. The approach allows scientists and water resources managers to analyze environmental flows in deteriorated ecosystems in an ecosystem-based way.

  14. Electrochemistry in Organisms: Electron Flow and Power Output

    ERIC Educational Resources Information Center

    Chirpich, Thomas P.

    1975-01-01

    Presents a series of calculations, appropriate for the freshman level, to determine the flow of electrons to oxygen along the electron transport chain. States that living organisms resemble fuel cells and develops calculations for determining power output. (GS)

  15. Single-Molecule Interfacial Electron Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, H. Peter

    This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static andmore » dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO 2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO 2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO 2 nanoparticle surfaces by using ultrafast single-molecule spectroscopy and electrochemical AFM metal tip scanning microscopy, focusing on understanding the interfacial electron transfer dynamics at specific nanoscale electron transfer sites with high-spatially and temporally resolved topographic-and-spectroscopic characterization at individual molecule basis, characterizing single-molecule rate processes, reaction driving force, and molecule-substrate electronic coupling. One of the most significant characteristics of our new approach is that we are able to interrogate the complex interfacial electron transfer dynamics by actively pin-point energetic manipulation of the surface interaction and electronic couplings, beyond the conventional excitation and observation.« less

  16. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    NASA Astrophysics Data System (ADS)

    Deng, Yongfeng; Jiang, Jian; Han, Xianwei; Tan, Chang; Wei, Jianguo

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  17. Cellular and physiological mechanisms underlying blood flow regulation in the retina choroid in health disease

    PubMed Central

    Kur, Joanna; Newman, Eric A.; Chan-Ling, Tailoi

    2012-01-01

    We review the cellular and physiological mechanisms responsible for the regulation of blood flow in the retina and choroid in health and disease. Due to the intrinsic light sensitivity of the retina and the direct visual accessibility of fundus blood vessels, the eye offers unique opportunities for the non-invasive investigation of mechanisms of blood flow regulation. The ability of the retinal vasculature to regulate its blood flow is contrasted with the far more restricted ability of the choroidal circulation to regulate its blood flow by virtue of the absence of glial cells, the markedly reduced pericyte ensheathment of the choroidal vasculature, and the lack of intermediate filaments in choroidal pericytes. We review the cellular and molecular components of the neurovascular unit in the retina and choroid, techniques for monitoring retinal and choroidal blood flow, responses of the retinal and choroidal circulation to light stimulation, the role of capillaries, astrocytes and pericytes in regulating blood flow, putative signaling mechanisms mediating neurovascular coupling in the retina, and changes that occur in the retinal and choroidal circulation during diabetic retinopathy, age-related macular degeneration, glaucoma, and Alzheimer's disease. We close by discussing issues that remain to be explored. PMID:22580107

  18. Observations of reduced electron Gyroscale fluctuations in national spherical torus experiment H-mode plasmas with large ExB flow shear.

    PubMed

    Smith, D R; Kaye, S M; Lee, W; Mazzucato, E; Park, H K; Bell, R E; Domier, C W; Leblanc, B P; Levinton, F M; Luhmann, N C; Menard, J E; Yuh, H

    2009-06-05

    Electron gyroscale fluctuation measurements in National Spherical Torus Experiment H-mode plasmas with large toroidal rotation reveal fluctuations consistent with electron temperature gradient (ETG) turbulence. Large toroidal rotation in National Spherical Torus Experiment plasmas with neutral beam injection generates ExB flow shear rates comparable to ETG linear growth rates. Enhanced fluctuations occur when the electron temperature gradient is marginally stable with respect to the ETG linear critical gradient. Fluctuation amplitudes decrease when the ExB flow shear rate exceeds ETG linear growth rates. The observations indicate that ExB flow shear can be an effective suppression mechanism for ETG turbulence.

  19. Effective energy storage from a triboelectric nanogenerator.

    PubMed

    Zi, Yunlong; Wang, Jie; Wang, Sihong; Li, Shengming; Wen, Zhen; Guo, Hengyu; Wang, Zhong Lin

    2016-03-11

    To sustainably power electronics by harvesting mechanical energy using nanogenerators, energy storage is essential to supply a regulated and stable electric output, which is traditionally realized by a direct connection between the two components through a rectifier. However, this may lead to low energy-storage efficiency. Here, we rationally design a charging cycle to maximize energy-storage efficiency by modulating the charge flow in the system, which is demonstrated on a triboelectric nanogenerator by adding a motion-triggered switch. Both theoretical and experimental comparisons show that the designed charging cycle can enhance the charging rate, improve the maximum energy-storage efficiency by up to 50% and promote the saturation voltage by at least a factor of two. This represents a progress to effectively store the energy harvested by nanogenerators with the aim to utilize ambient mechanical energy to drive portable/wearable/implantable electronics.

  20. Effective energy storage from a triboelectric nanogenerator

    NASA Astrophysics Data System (ADS)

    Zi, Yunlong; Wang, Jie; Wang, Sihong; Li, Shengming; Wen, Zhen; Guo, Hengyu; Wang, Zhong Lin

    2016-03-01

    To sustainably power electronics by harvesting mechanical energy using nanogenerators, energy storage is essential to supply a regulated and stable electric output, which is traditionally realized by a direct connection between the two components through a rectifier. However, this may lead to low energy-storage efficiency. Here, we rationally design a charging cycle to maximize energy-storage efficiency by modulating the charge flow in the system, which is demonstrated on a triboelectric nanogenerator by adding a motion-triggered switch. Both theoretical and experimental comparisons show that the designed charging cycle can enhance the charging rate, improve the maximum energy-storage efficiency by up to 50% and promote the saturation voltage by at least a factor of two. This represents a progress to effectively store the energy harvested by nanogenerators with the aim to utilize ambient mechanical energy to drive portable/wearable/implantable electronics.

  1. Regulation of the pulmonary circulation

    PubMed Central

    Lee, G. de J.

    1971-01-01

    Factors regulating pressure and flow in the lungs are reviewed with particular emphasis on their role in regulating blood flow velocity and distribution within the lung capillaries. The behaviour of the pulmonary arterial, system, alveolar capillaries, and pulmonary venous system are considered individually. The effect of heart disease on lung capillary blood flow is examined. PMID:4929437

  2. Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.

    PubMed

    Park, Jeong Young; Kim, Sun Mi; Lee, Hyosun; Nedrygailov, Ievgen I

    2015-08-18

    Energy dissipation at surfaces and interfaces is mediated by excitation of elementary processes, including phonons and electronic excitation, once external energy is deposited to the surface during exothermic chemical processes. Nonadiabatic electronic excitation in exothermic catalytic reactions results in the flow of energetic electrons with an energy of 1-3 eV when chemical energy is converted to electron flow on a short (femtosecond) time scale before atomic vibration adiabatically dissipates the energy (in picoseconds). These energetic electrons that are not in thermal equilibrium with the metal atoms are called "hot electrons". The detection of hot electron flow under atomic or molecular processes and understanding its role in chemical reactions have been major topics in surface chemistry. Recent studies have demonstrated electronic excitation produced during atomic or molecular processes on surfaces, and the influence of hot electrons on atomic and molecular processes. We outline research efforts aimed at identification of the intrinsic relation between the flow of hot electrons and catalytic reactions. We show various strategies for detection and use of hot electrons generated by the energy dissipation processes in surface chemical reactions and photon absorption. A Schottky barrier localized at the metal-oxide interface of either catalytic nanodiodes or hybrid nanocatalysts allows hot electrons to irreversibly transport through the interface. We show that the chemicurrent, composed of hot electrons excited by the surface reaction of CO oxidation or hydrogen oxidation, correlates well with the turnover rate measured separately by gas chromatography. Furthermore, we show that hot electron flows generated on a gold thin film by photon absorption (or internal photoemission) can be amplified by localized surface plasmon resonance. The influence of hot charge carriers on the chemistry at the metal-oxide interface are discussed for the cases of Au, Ag, and Pt nanoparticles on oxide supports and Pt-CdSe-Pt nanodumbbells. We show that the accumulation or depletion of hot electrons on metal nanoparticles, in turn, can also influence catalytic reactions. Mechanisms suggested for hot-electron-induced chemical reactions on a photoexcited plasmonic metal are discussed. We propose that the manipulation of the flow of hot electrons by changing the electrical characteristics of metal-oxide and metal-semiconductor interfaces can give rise to the intriguing capability of tuning the catalytic activity of hybrid nanocatalysts.

  3. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    NASA Astrophysics Data System (ADS)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2016-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.

  4. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    NASA Astrophysics Data System (ADS)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2017-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is crucial for water management- and land cover-related decisions.

  5. 78 FR 31879 - General Services Administration Acquisition Regulation (GSAR); Electronic Contracting Initiative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ...); Electronic Contracting Initiative (ECI) AGENCY: Office of Acquisition Policy, General Services Administration..., Electronic Contracting Initiative, by any of the following methods: Regulations.gov : http://www.regulations... the rewrite of GSAR Part 538, Electronic Contracting Initiative (Modifications). On December 17, 2012...

  6. Constraints upon the Response of Fish and Crayfish to Environmental Flow Releases in a Regulated Headwater Stream Network

    PubMed Central

    Chester, Edwin T.; Matthews, Ty G.; Howson, Travis J.; Johnston, Kerrylyn; Mackie, Jonathon K.; Strachan, Scott R.; Robson, Belinda J.

    2014-01-01

    In dry climate zones, headwater streams are often regulated for water extraction causing intermittency in perennial streams and prolonged drying in intermittent streams. Regulation thereby reduces aquatic habitat downstream of weirs that also form barriers to migration by stream fauna. Environmental flow releases may restore streamflow in rivers, but are rarely applied to headwaters. We sampled fish and crayfish in four regulated headwater streams before and after the release of summer-autumn environmental flows, and in four nearby unregulated streams, to determine whether their abundances increased in response to flow releases. Historical data of fish and crayfish occurrence spanning a 30 year period was compared with contemporary data (electrofishing surveys, Victoria Range, Australia; summer 2008 to summer 2010) to assess the longer–term effects of regulation and drought. Although fish were recorded in regulated streams before 1996, they were not recorded in the present study upstream or downstream of weirs despite recent flow releases. Crayfish (Geocharax sp. nov. 1) remained in the regulated streams throughout the study, but did not become more abundant in response to flow releases. In contrast, native fish (Gadopsis marmoratus, Galaxias oliros, Galaxias maculatus) and crayfish remained present in unregulated streams, despite prolonged drought conditions during 2006–2010, and the assemblages of each of these streams remained essentially unchanged over the 30 year period. Flow release volumes may have been too small or have operated for an insufficient time to allow fish to recolonise regulated streams. Barriers to dispersal may also be preventing recolonisation. Indefinite continuation of annual flow releases, that prevent the unnatural cessation of flow caused by weirs, may eventually facilitate upstream movement of fish and crayfish in regulated channels; but other human–made dispersal barriers downstream need to be identified and ameliorated, to allow native fish to fulfil their life cycles in these headwater streams. PMID:24647407

  7. Low volume flow meter

    DOEpatents

    Meixler, Lewis D.

    1993-01-01

    The low flow monitor provides a means for determining if a fluid flow meets a minimum threshold level of flow. The low flow monitor operates with a minimum of intrusion by the flow detection device into the flow. The electrical portion of the monitor is externally located with respect to the fluid stream which allows for repairs to the monitor without disrupting the flow. The electronics provide for the adjustment of the threshold level to meet the required conditions. The apparatus can be modified to provide an upper limit to the flow monitor by providing for a parallel electronic circuit which provides for a bracketing of the desired flow rate.

  8. Regulation of photochemical energy transfer accompanied by structural changes in thylakoid membranes of heat-stressed wheat.

    PubMed

    Marutani, Yoko; Yamauchi, Yasuo; Miyoshi, Akihito; Inoue, Kanako; Ikeda, Ken-ichi; Mizutani, Masaharu; Sugimoto, Yukihiro

    2014-12-11

    Photosystems of higher plants alleviate heat-induced damage in the presence of light under moderate stressed conditions; however, in the absence of light (i.e., in the dark), the same plants are damaged more easily. (Yamauchi and Kimura, 2011) We demonstrate that regulating photochemical energy transfer in heat-treated wheat at 40 °C with light contributed to heat tolerance of the photosystem. Chlorophyll fluorescence analysis using heat-stressed wheat seedlings in light showed increased non-photochemical quenching (NPQ) of chlorophyll fluorescence, which was due to thermal dissipation that was increased by state 1 to state 2 transition. Transmission electron microscopy revealed structural changes in thylakoid membranes, including unstacking of grana regions under heat stress in light. It was accompanied by the phosphorylation of thylakoid proteins such as D1 and D2 proteins and the light harvesting complex II proteins Lhcb1 and Lhcb2. These results suggest that heat stress at 40 °C in light induces state 1 to state 2 transition for the preferential excitation of photosystem I (PSI) by phosphorylating thylakoid proteins more strongly. Structural changes of thylakoid membrane also assist the remodeling of photosystems and regulation of energy distribution by transition toward state 2 probably contributes to plastoquione oxidation; thus, light-driven electrons flowing through PSI play a protective role against PSII damage under heat stress.

  9. Imaging Electron Motion in a Few Layer MoS2 Device

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Wang, K.; Watanabe, K.; Taniguchi, T.; Kim, P.; Westervelt, R. M.

    2017-06-01

    Ultrathin sheets of MoS2 are a newly discovered 2D semiconductor that holds great promise for nanoelectronics. Understanding the pattern of current flow will be crucial for developing devices. In this talk, we present images of current flow in MoS2 obtained with a Scanned Probe Microscope (SPM) cooled to 4 K. We previously used this technique to image electron trajectories in GaAs/AlGaAs heterostructures and graphene. The charged SPM tip is held just above the sample surface, creating an image charge inside the device that scatters electrons. By measuring the change in resistance ΔR while the tip is raster scanned above the sample, an image of electron flow is obtained. We present images of electron flow in an MoS2 device patterned into a hall bar geometry. A three-layer MoS2 sheet is encased by two hBN layers, top and bottom, and patterned into a hall-bar with multilayer graphene contacts. An SPM image shows the current flow pattern from the wide contact at the end of the device for a Hall density n = 1.3×1012 cm-2. The SPM tip tends to block flow, increasing the resistance R. The pattern of flow was also imaged for a narrow side contact on the sample. At density n = 5.4×1011 cm-2; the pattern seen in the SPM image is similar to the wide contact. The ability to image electron flow promises to be very useful for the development of ultrathin devices from new 2D materials.

  10. 77 FR 40459 - Electronic Fund Transfers (Regulation E); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-10

    ... Electronic Fund Transfers (Regulation E); Correction AGENCY: Bureau of Consumer Financial Protection. ACTION... published the Final Rule (77 FR 6194), which implements the Electronic Fund Transfer Act, and the official... Sec. 1005.3(a) in the interim final rule, Electronic Fund Transfers (Regulation E), published on...

  11. Generation of zonal flows by electrostatic drift waves in electron-positron-ion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaladze, T. D.; I. Vekua Institute of Applied Mathematics, Tbilisi State University, 2 University Str., 0186 Tbilisi; Shad, M.

    2010-02-15

    Generation of large-scale zonal flows by comparatively small-scale electrostatic drift waves in electron-positron-ion plasmas is considered. The generation mechanism is based on the parametric excitation of convective cells by finite amplitude drift waves having arbitrary wavelengths (as compared with the ion Larmor radius of plasma ions at the plasma electron temperature). Temperature inhomogeneity of electrons and positrons is taken into account assuming ions to be cold. To describe the generation of zonal flow generalized Hasegawa-Mima equation containing both vector and two scalar (of different nature) nonlinearities is used. A set of coupled equations describing the nonlinear interaction of drift wavesmore » and zonal flows is deduced. Explicit expressions for the maximum growth rate as well as for the optimal spatial dimensions of the zonal flows are obtained. Enriched possibilities of zonal flow generation with different growth rates are revealed. The present theory can be used for interpretations of drift wave observations in laboratory and astrophysical plasmas.« less

  12. Vibrational and Electronic Energy Transfer and Dissociation of Diatomic Molecules by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also, the average electron temperature is expected to be between 10,000 and 20,000 K. Thus only data for low energy electrons are relevant to the model.

  13. Low-flow characteristics of Indiana streams

    USGS Publications Warehouse

    Fowler, K.K.; Wilson, J.T.

    1996-01-01

    Knowledge of low-flow characteristics of streams is essential for management of water resources. Low-flow characteristics are presented for 229 continuous-record, streamflow-gaging stations and 285 partial-record stations in Indiana. Low- flow-frequency characteristics were computed for 210 continuous-record stations that had at least 10 years of record, and flow-duration curves were computed for all continuous-record stations. Low-flow-frequency and flow-duration analyses are based on available streamflow records through September 1993. Selected low-flow-frequency curves were computed for annual low flows and seasonal low flows. The four seasons are represented by the 3-month groups of March-May, June-August, September-November, and December- February. The 7-day, 10-year and the 7-day, 2 year low flows were estimated for 285 partial-record stations, which are ungaged sites where streamflow measurements were made at base flow. The same low-flow characteristics were estimated for 19 continuous-record stations where less than 10 years of record were available. Precipitation and geology directly influence the streams in Indiana. Streams in the northern, glaciated part of the State tend to have higher sustained base flows than those in the nonglaciated southern part. Flow at several of the continuous-record gaging stations is affected by some form of regulation or diversion. Low-flow characteristics for continuous-record stations at which flow is affected by regulation are determined using the period of record affected by regulation; natural flows prior to regulation are not used.

  14. Cross-border impacts of the restriction of hazardous substances: a perspective based on Japanese solders.

    PubMed

    Fuse, Masaaki; Tsunemi, Kiyotaka

    2013-08-20

    Despite the relevance of the global economy, Regulatory Impact Assessments of the restriction of hazardous substances (RoHS) in the European Union (EU) are based only on domestic impacts. This paper explores the cross-border environmental impacts of the RoHS by focusing on the shifts to lead-free solders in Japan, which exports many electronics to the EU. The regulatory impacts are quantified by integrating a material flow analysis for metals constituting a solder with a scenario analysis with and without the RoHS. The results indicate that the EU regulation, the RoHS, has triggered shifts in Japan to lead-free solders, not only for electronics subject to this regulation, but for other products as well. We also find that the RoHS leads to a slow reduction in environmental emissions of the target, lead, but results in a rapid increase in the use of tin and silver in lead-free solders. This indicates the importance of assessing potential alternative substances, the use of which may increase as a result of adhering to the RoHS. The latter constitutes a negative impact because of recent concerns regarding resource criticality.

  15. Influence of pH and ionic strength on electrostatic properties of ferredoxin, FNR, and hydrogenase and the rate constants of their interaction

    NASA Astrophysics Data System (ADS)

    Diakonova, A. N.; Khrushchev, S. S.; Kovalenko, I. B.; Riznichenko, G. Yu; Rubin, A. B.

    2016-10-01

    Ferredoxin (Fd) protein transfers electrons from photosystem I (PSI) to ferredoxin:NADP+-reductase (FNR) in the photosynthetic electron transport chain, as well as other metabolic pathways. In some photosynthetic organisms including cyanobacteria and green unicellular algae under anaerobic conditions Fd transfers electrons not only to FNR but also to hydrogenase—an enzyme which catalyzes reduction of atomic hydrogen to H2. One of the questions posed by this competitive relationship between proteins is which characteristics of thylakoid stroma media allow switching of the electron flow between the linear path PSI-Fd-FNR-NADP+ and the path PSI-Fd-hydrogenase-H2. The study was conducted using direct multiparticle simulation approach. In this method protein molecules are considered as individual objects that experience Brownian motion and electrostatic interaction with the surrounding media and each other. Using the model we studied the effects of pH and ionic strength (I) upon complex formation between ferredoxin and FNR and ferredoxin and hydrogenase. We showed that the rate constant of Fd-FNR complex formation is constant in a wide range of physiologically significant pH values. Therefore it can be argued that regulation of FNR activity doesn’t involve pH changes in stroma. On the other hand, in the model rate constant of Fd-hydrogenase interaction dramatically depends upon pH: in the range 7-9 it increases threefold. It may seem that because hydrogenase reduces protons it should be more active when pH is acidic. Apparently, regulation of hydrogenase’s affinity to both her reaction partners (H+ and Fd) is carried out by changes in its electrostatic properties. In the dark, the protein is inactive and in the light it is activated and starts to interact with both Fd and H+. Therefore, we can conclude that in chloroplasts the rate of hydrogen production is regulated by pH through the changes in the affinity between hydrogenase and ferredoxin.

  16. Insights into the post-transcriptional regulation of the mitochondrial electron transport chain.

    PubMed

    Sirey, Tamara M; Ponting, Chris P

    2016-10-15

    The regulation of the mitochondrial electron transport chain is central to the control of cellular homeostasis. There are significant gaps in our understanding of how the expression of the mitochondrial and nuclear genome-encoded components of the electron transport chain are co-ordinated, and how the assembly of the protein complexes that constitute the electron transport chain are regulated. Furthermore, the role post-transcriptional gene regulation may play in modulating these processes needs to be clarified. This review summarizes the current knowledge regarding the post-transcriptional gene regulation of the electron transport chain and highlights how noncoding RNAs may contribute significantly both to complex electron transport chain regulatory networks and to mitochondrial dysfunction. © 2016 The Author(s).

  17. An electronic flow control system for a variable-rate tree sprayer

    USDA-ARS?s Scientific Manuscript database

    Precise modulation of nozzle flow rates is a critical measure to achieve variable-rate spray applications. An electronic flow rate control system accommodating with microprocessors and pulse width modulation (PWM) controlled solenoid valves was designed to manipulate the output of spray nozzles inde...

  18. Streamflow statistics for unregulated and regulated conditions for selected locations on the Yellowstone, Tongue, and Powder Rivers, Montana, 1928-2002

    USGS Publications Warehouse

    Chase, Katherine J.

    2013-01-01

    Major floods in 1996 and 1997 on the Yellowstone River in Montana intensified public debate over the effects of human activities on the Yellowstone River. In 1999, the Yellowstone River Conservation District Council was formed to address conservation issues on the river. The Yellowstone River Conservation District Council partnered with the U.S. Army Corps of Engineers to conduct a cumulative-effects study on the main stem of the Yellowstone River. The cumulative-effects study is intended to provide a basis for future management decisions in the watershed. Streamflow statistics, such as flow-frequency and flow-duration data calculated for unregulated and regulated streamflow conditions, are a necessary component of the cumulative effects study. The U.S. Geological Survey, in cooperation with the Yellowstone River Conservation District Council and the U.S. Army Corps of Engineers, calculated streamflow statistics for unregulated and regulated conditions for the Yellowstone, Tongue, and Powder Rivers for the 1928–2002 study period. Unregulated streamflow represents flow conditions that might have occurred during the 1928–2002 study period if there had been no water-resources development in the Yellowstone River Basin. Regulated streamflow represents estimates of flow conditions during the 1928–2002 study period if the level of water-resources development existing in 2002 was in place during the entire study period. Peak-flow frequency estimates for regulated and unregulated streamflow were developed using methods described in Bulletin 17B. High-flow frequency and low-flow frequency data were developed for regulated and unregulated streamflows from the annual series of highest and lowest (respectively) mean flows for specified n-day consecutive periods within the calendar year. Flow-duration data, and monthly and annual streamflow characteristics, also were calculated for the unregulated and regulated streamflows.

  19. Ion flow experiments in a multipole discharge chamber

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Robinson, R. S.; Frisa, L. E.

    1982-01-01

    It has been customary to assume that ions flow nearly equally in all directions from the ion production region within an electron-bombardment discharge chamber. Ion flow measurements in a multipole discharge chamber have shown that this assumption is not true. In general, the electron current through a magnetic field can alter the electron density, and hence the ion density, in such a way that ions tend to be directed away from the region bounded by the magnetic field. When this mechanism is understood, it becomes evident that many past discharge chamber designs have operated with a preferentially directed flow of ions.

  20. Microscale Digital Vacuum Electronic Gates

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Mojarradi, Mohammed M. (Inventor)

    2014-01-01

    Systems and methods in accordance with embodiments of the invention implement microscale digital vacuum electronic gates. In one embodiment, a microscale digital vacuum electronic gate includes: a microscale field emitter that can emit electrons and that is a microscale cathode; and a microscale anode; where the microscale field emitter and the microscale anode are disposed within at least a partial vacuum; where the microscale field emitter and the microscale anode are separated by a gap; and where the potential difference between the microscale field emitter and the microscale anode is controllable such that the flow of electrons between the microscale field emitter and the microscale anode is thereby controllable; where when the microscale anode receives a flow of electrons, a first logic state is defined; and where when the microscale anode does not receive a flow of electrons, a second logic state is defined.

  1. Anaerobic respiration of Escherichia coli in the mouse intestine.

    PubMed

    Jones, Shari A; Gibson, Terri; Maltby, Rosalie C; Chowdhury, Fatema Z; Stewart, Valley; Cohen, Paul S; Conway, Tyrrell

    2011-10-01

    The intestine is inhabited by a large microbial community consisting primarily of anaerobes and, to a lesser extent, facultative anaerobes, such as Escherichia coli, which we have shown requires aerobic respiration to compete successfully in the mouse intestine (S. A. Jones et al., Infect. Immun. 75:4891-4899, 2007). If facultative anaerobes efficiently lower oxygen availability in the intestine, then their sustained growth must also depend on anaerobic metabolism. In support of this idea, mutants lacking nitrate reductase or fumarate reductase have extreme colonization defects. Here, we further explore the role of anaerobic respiration in colonization using the streptomycin-treated mouse model. We found that respiratory electron flow is primarily via the naphthoquinones, which pass electrons to cytochrome bd oxidase and the anaerobic terminal reductases. We found that E. coli uses nitrate and fumarate in the intestine, but not nitrite, dimethyl sulfoxide, or trimethylamine N-oxide. Competitive colonizations revealed that cytochrome bd oxidase is more advantageous than nitrate reductase or fumarate reductase. Strains lacking nitrate reductase outcompeted fumarate reductase mutants once the nitrate concentration in cecal mucus reached submillimolar levels, indicating that fumarate is the more important anaerobic electron acceptor in the intestine because nitrate is limiting. Since nitrate is highest in the absence of E. coli, we conclude that E. coli is the only bacterium in the streptomycin-treated mouse large intestine that respires nitrate. Lastly, we demonstrated that a mutant lacking the NarXL regulator (activator of the NarG system), but not a mutant lacking the NarP-NarQ regulator, has a colonization defect, consistent with the advantage provided by NarG. The emerging picture is one in which gene regulation is tuned to balance expression of the terminal reductases that E. coli uses to maximize its competitiveness and achieve the highest possible population in the intestine.

  2. Dynamic flow modeling of riverine amphibian habitat with application to regulated flow management

    Treesearch

    S. Yarnell; A. Lind; J. Mount

    2012-01-01

    In regulated rivers, relicensing of hydropower projects can provide an opportunity to change flow regimes and reduce negative effects on sensitive aquatic biota. The volume of flow, timing and ramping rate of spring spills, and magnitude of aseasonal pulsed flows have potentially negative effects on the early life stages of amphibians, such as the Foothill yellow-...

  3. Role of zonal flows in trapped electron mode turbulence through nonlinear gyrokinetic particle and continuum simulationa)

    NASA Astrophysics Data System (ADS)

    Ernst, D. R.; Lang, J.; Nevins, W. M.; Hoffman, M.; Chen, Y.; Dorland, W.; Parker, S.

    2009-05-01

    Trapped electron mode (TEM) turbulence exhibits a rich variety of collisional and zonal flow physics. This work explores the parametric variation of zonal flows and underlying mechanisms through a series of linear and nonlinear gyrokinetic simulations, using both particle-in-cell and continuum methods. A new stability diagram for electron modes is presented, identifying a critical boundary at ηe=1, separating long and short wavelength TEMs. A novel parity test is used to separate TEMs from electron temperature gradient driven modes. A nonlinear scan of ηe reveals fine scale structure for ηe≳1, consistent with linear expectation. For ηe<1, zonal flows are the dominant saturation mechanism, and TEM transport is insensitive to ηe. For ηe>1, zonal flows are weak, and TEM transport falls inversely with a power law in ηe. The role of zonal flows appears to be connected to linear stability properties. Particle and continuum methods are compared in detail over a range of ηe=d ln Te/d ln ne values from zero to five. Linear growth rate spectra, transport fluxes, fluctuation wavelength spectra, zonal flow shearing spectra, and correlation lengths and times are in close agreement. In addition to identifying the critical parameter ηe for TEM zonal flows, this paper takes a challenging step in code verification, directly comparing very different methods of simulating simultaneous kinetic electron and ion dynamics in TEM turbulence.

  4. Transport coefficients and heat fluxes in non-equilibrium high-temperature flows with electronic excitation

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Kustova, E. V.

    2017-02-01

    The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great importance for accurate predictions of the fluid dynamic variables and heat fluxes.

  5. Relativistic thermal electron scale instabilities in sheared flow plasma

    NASA Astrophysics Data System (ADS)

    Miller, Evan D.; Rogers, Barrett N.

    2016-04-01

    > The linear dispersion relation obeyed by finite-temperature, non-magnetized, relativistic two-fluid plasmas is presented, in the special case of a discontinuous bulk velocity profile and parallel wave vectors. It is found that such flows become universally unstable at the collisionless electron skin-depth scale. Further analyses are performed in the limits of either free-streaming ions or ultra-hot plasmas. In these limits, the system is highly unstable in the parameter regimes associated with either the electron scale Kelvin-Helmholtz instability (ESKHI) or the relativistic electron scale sheared flow instability (RESI) recently highlighted by Gruzinov. Coupling between these modes provides further instability throughout the remaining parameter space, provided both shear flow and temperature are finite. An explicit parameter space bound on the highly unstable region is found.

  6. Assessing changes in extreme river flow regulation from non-stationarity in hydrological scaling laws

    NASA Astrophysics Data System (ADS)

    Rodríguez, Estiven; Salazar, Juan Fernando; Villegas, Juan Camilo; Mercado-Bettín, Daniel

    2018-07-01

    Extreme flows are key components of river flow regimes that affect manifold hydrological, geomorphological and ecological processes with societal relevance. One fundamental characteristic of extreme flows in river basins is that they exhibit scaling properties which can be identified through scaling (power) laws. Understanding the physical mechanisms behind such scaling laws is a continuing challenge in hydrology, with potential implications for the prediction of river flow regimes in a changing environment and ungauged basins. After highlighting that the scaling properties are sensitive to environmental change, we develop a physical interpretation of how temporal changes in scaling exponents relate to the capacity of river basins to regulate extreme river flows. Regulation is defined here as the basins' capacity to either dampen high flows or to enhance low flows. Further, we use this framework to infer temporal changes in the regulation capacity of five large basins in tropical South America. Our results indicate that, during the last few decades, the Amazon river basin has been reducing its capacity to enhance low flows, likely as a consequence of pronounced environmental change in its south and south-eastern sub-basins. The proposed framework is widely applicable to different basins, and provides foundations for using scaling laws as empirical tools for inferring temporal changes of hydrological regulation, particularly relevant for identifying and managing hydrological consequences of environmental change.

  7. Developing user-friendly habitat suitability tools from regional stream fish survey data

    USGS Publications Warehouse

    Zorn, T.G.; Seelbach, P.; Wiley, M.J.

    2011-01-01

    We developed user-friendly fish habitat suitability tools (plots) for fishery managers in Michigan; these tools are based on driving habitat variables and fish population estimates for several hundred stream sites throughout the state. We generated contour plots to show patterns in fish biomass for over 60 common species (and for 120 species grouped at the family level) in relation to axes of catchment area and low-flow yield (90% exceedance flow divided by catchment area) and also in relation to axes of mean and weekly range of July temperatures. The plots showed distinct patterns in fish habitat suitability at each level of biological organization studied and were useful for quantitatively comparing river sites. We demonstrate how these plots can be used to support stream management, and we provide examples pertaining to resource assessment, trout stocking, angling regulations, chemical reclamation of marginal trout streams, indicator species, instream flow protection, and habitat restoration. These straightforward and effective tools are electronically available so that managers can easily access and incorporate them into decision protocols and presentations.

  8. Thermal and Evolved Gas Analysis of Hydromagnesite and Nesquehonite: Implications for Remote Thermal Analysis on Mars

    NASA Technical Reports Server (NTRS)

    Lauer, H. V., Jr.; Ming, D. W.; Golden, D. C.; Lin, I.-C.; Boynton, W. V.

    2000-01-01

    Volatile-bearing minerals (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, and sulfates) may be important phases on the surface of Mars. In order to characterize these potential phases the Thermal Evolved-Gas Analyzer (TEGA), which was onboard the Mars Polar Lander, was to have performed differential scanning calorimetry (DSC) and evolved-gas analysis of soil samples collected from the surface. The sample chamber in TEGA operates at about 100 mbar (approximately 76 torr) with a N2, carrier gas flow of 0.4 seem. Essentially, no information exists on the effects of reduced pressure on the thermal properties of volatile-bearing minerals. In support of TEGA, we have constructed a laboratory analog for TEGA from commercial instrumentation. We connected together a commercial differential scanning calorimeter, a quadruple mass spectrometer, a vacuum pump, digital pressure gauge, electronic mass flow meter, gas "K" bottles, gas dryers, and high and low pressure regulators using a collection of shut off and needle valves. Our arrangement allows us to vary and control the pressure and carrier gas flow rate inside the calorimeter oven chamber.

  9. Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A; Orth, Dr. Donald J; Dolloff, Dr. Charles A

    2013-01-01

    In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationshipsmore » could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.« less

  10. 17 CFR 232.101 - Mandated electronic submissions and exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 2 2011-04-01 2011-04-01 false Mandated electronic... COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Electronic Filing Requirements § 232.101 Mandated electronic submissions and exceptions. (a) Mandated electronic submissions. (1) The...

  11. 17 CFR 232.101 - Mandated electronic submissions and exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 2 2012-04-01 2012-04-01 false Mandated electronic... COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Electronic Filing Requirements § 232.101 Mandated electronic submissions and exceptions. (a) Mandated electronic submissions. (1) The...

  12. Spatial distribution of impacts to channel bed mobility due to flow regulation, Kootenai River, USA

    Treesearch

    Michael Burke; Klaus Jorde; John M. Buffington; Jeffrey H. Braatne; Rohan Benjakar

    2006-01-01

    The regulated hydrograph of the Kootenai River between Libby Dam and Kootenay Lake has altered the natural flow regime, resulting in a significant decrease in maximum flows (60% net reduction in median 1-day annual maximum, and 77%-84% net reductions in median monthly flows for the historic peak flow months of May and June, respectively). Other key hydrologic...

  13. Sinks for photosynthetic electron flow in green petioles and pedicels of Zantedeschia aethiopica: evidence for innately high photorespiration and cyclic electron flow rates.

    PubMed

    Yiotis, Charilaos; Manetas, Yiannis

    2010-07-01

    A combination of gas exchange and various chlorophyll fluorescence measurements under varying O(2) and CO(2) partial pressures were used to characterize photosynthesis in green, stomata-bearing petioles of Zantedeschia aethiopica (calla lily) while corresponding leaves served as controls. Compared to leaves, petioles displayed considerably lower CO(2) assimilation rates, limited by both stomatal and mesophyll components. Further analysis of mesophyll limitations indicated lower carboxylating efficiencies and insufficient RuBP regeneration but almost similar rates of linear electron transport. Accordingly, higher oxygenation/carboxylation ratios were assumed for petioles and confirmed by experiments under non-photorespiratory conditions. Higher photorespiration rates in petioles were accompanied by higher cyclic electron flow around PSI, the latter being possibly linked to limitations in electron transport from intermediate electron carriers to end acceptors and low contents of PSI. Based on chlorophyll fluorescence methods, similar conclusions can be drawn for green pedicels, although gas exchange in these organs could not be applied due to their bulky size. Since our test plants were not subjected to stress we argue that higher photorespiration and cyclic electron flow rates are innate attributes of photosynthesis in stalks of calla lily. Active nitrogen metabolism may be inferred, while increased cyclic electron flow may provide the additional ATP required for the enhanced photorespiratory activity in petiole and pedicel chloroplasts and/or the decarboxylation of malate ascending from roots.

  14. The Effects of Cold Stress on Photosynthesis in Hibiscus Plants

    PubMed Central

    Paredes, Miriam; Quiles, María José

    2015-01-01

    The present work studies the effects of cold on photosynthesis, as well as the involvement in the chilling stress of chlororespiratory enzymes and ferredoxin-mediated cyclic electron flow, in illuminated plants of Hibiscus rosa-sinensis. Plants were sensitive to cold stress, as indicated by a reduction in the photochemistry efficiency of PSII and in the capacity for electron transport. However, the susceptibility of leaves to cold may be modified by root temperature. When the stem, but not roots, was chilled, the quantum yield of PSII and the relative electron transport rates were much lower than when the whole plant, root and stem, was chilled at 10°C. Additionally, when the whole plant was cooled, both the activity of electron donation by NADPH and ferredoxin to plastoquinone and the amount of PGR5 polypeptide, an essential component of the cyclic electron flow around PSI, increased, suggesting that in these conditions cyclic electron flow helps protect photosystems. However, when the stem, but not the root, was cooled cyclic electron flow did not increase and PSII was damaged as a result of insufficient dissipation of the excess light energy. In contrast, the chlororespiratory enzymes (NDH complex and PTOX) remained similar to control when the whole plant was cooled, but increased when only the stem was cooled, suggesting the involvement of chlororespiration in the response to chilling stress when other pathways, such as cyclic electron flow around PSI, are insufficient to protect PSII. PMID:26360248

  15. Structure of a CLC chloride ion channel by cryo-electron microscopy

    PubMed Central

    Park, Eunyong; Campbell, Ernest B.; MacKinnon, Roderick

    2017-01-01

    CLC proteins transport chloride (Cl−) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl− ions passively, whereas others are secondary active transporters that exchange two Cl− ions for one H+. The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture based on sequence homology. To solve this puzzle we determined the structure of a mammalian CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl− transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl− passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl−/H+ transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl− down its electrochemical gradient. PMID:28002411

  16. An Examination of Motivational Regulations, Dispositional Flow and Social Physique Anxiety among College Students for Exercise: A Self-Determination Theory Approach

    ERIC Educational Resources Information Center

    Ersöz, Gözde

    2016-01-01

    Based on self-determination theory (SDT), the main goal of this study is to analyze dispositional flow and social physique anxiety (SPA) that could be predicted by gender, BMI and motivational regulations and to examine motivational regulations, dispositional flow and SPA of college students in terms of stage of change for exercise. Participants…

  17. The Type II NADPH Dehydrogenase Facilitates Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation1[OPEN

    PubMed Central

    Grossman, Arthur R.

    2016-01-01

    When photosynthetic organisms are deprived of nitrogen (N), the capacity to grow and assimilate carbon becomes limited, causing a decrease in the productive use of absorbed light energy and likely a rise in the cellular reduction state. Although there is a scarcity of N in many terrestrial and aquatic environments, a mechanistic understanding of how photosynthesis adjusts to low-N conditions and the enzymes/activities integral to these adjustments have not been described. In this work, we use biochemical and biophysical analyses of photoautotrophically grown wild-type and mutant strains of Chlamydomonas reinhardtii to determine the integration of electron transport pathways critical for maintaining active photosynthetic complexes even after exposure of cells to N deprivation for 3 d. Key to acclimation is the type II NADPH dehydrogenase, NDA2, which drives cyclic electron flow (CEF), chlororespiration, and the generation of an H+ gradient across the thylakoid membranes. N deprivation elicited a doubling of the rate of NDA2-dependent CEF, with little contribution from PGR5/PGRL1-dependent CEF. The H+ gradient generated by CEF is essential to sustain nonphotochemical quenching, while an increase in the level of reduced plastoquinone would promote a state transition; both are necessary to down-regulate photosystem II activity. Moreover, stimulation of NDA2-dependent chlororespiration affords additional relief from the elevated reduction state associated with N deprivation through plastid terminal oxidase-dependent water synthesis. Overall, rerouting electrons through the NDA2 catalytic hub in response to photoautotrophic N deprivation sustains cell viability while promoting the dissipation of excess excitation energy through quenching and chlororespiratory processes. PMID:26858365

  18. Multiple paths of electron flow to current in microbial electrolysis cells fed with low and high concentrations of propionate.

    PubMed

    Hari, Ananda Rao; Katuri, Krishna P; Gorron, Eduardo; Logan, Bruce E; Saikaly, Pascal E

    2016-07-01

    Microbial electrolysis cells (MECs) provide a viable approach for bioenergy generation from fermentable substrates such as propionate. However, the paths of electron flow during propionate oxidation in the anode of MECs are unknown. Here, the paths of electron flow involved in propionate oxidation in the anode of two-chambered MECs were examined at low (4.5 mM) and high (36 mM) propionate concentrations. Electron mass balances and microbial community analysis revealed that multiple paths of electron flow (via acetate/H2 or acetate/formate) to current could occur simultaneously during propionate oxidation regardless of the concentration tested. Current (57-96 %) was the largest electron sink and methane (0-2.3 %) production was relatively unimportant at both concentrations based on electron balances. At a low propionate concentration, reactors supplemented with 2-bromoethanesulfonate had slightly higher coulombic efficiencies than reactors lacking this methanogenesis inhibitor. However, an opposite trend was observed at high propionate concentration, where reactors supplemented with 2-bromoethanesulfonate had a lower coulombic efficiency and there was a greater percentage of electron loss (23.5 %) to undefined sinks compared to reactors without 2-bromoethanesulfonate (11.2 %). Propionate removal efficiencies were 98 % (low propionate concentration) and 78 % (high propionate concentration). Analysis of 16S rRNA gene pyrosequencing revealed the dominance of sequences most similar to Geobacter sulfurreducens PCA and G. sulfurreducens subsp. ethanolicus. Collectively, these results provide new insights on the paths of electron flow during propionate oxidation in the anode of MECs fed with low and high propionate concentrations.

  19. Correlation between cerebral hemodynamic and perfusion pressure changes in non-human primates

    NASA Astrophysics Data System (ADS)

    Ruesch, A.; Smith, M. A.; Wollstein, G.; Sigal, I. A.; Nelson, S.; Kainerstorfer, J. M.

    2017-02-01

    The mechanism that maintains a stable blood flow in the brain despite changes in cerebral perfusion pressure (CPP), and therefore guaranties a constant supply of oxygen and nutrients to the neurons, is known as cerebral auto-regulation (CA). In a certain range of CPP, blood flow is mediated by a vasomotor adjustment in vascular resistance through dilation of blood vessels. CA is known to be impaired in diseases like traumatic brain injury, Parkinson's disease, stroke, hydrocephalus and others. If CA is impaired, blood flow and pressure changes are coupled and thee oxygen supply might be unstable. Lassen's blood flow auto-regulation curve describes this mechanism, where a plateau of stable blood flow in a specific range of CPP corresponds to intact auto-regulation. Knowing the limits of this plateau and maintaining CPP within these limits can improve patient outcome. Since CPP is influenced by both intracranial pressure and arterial blood pressure, long term changes in either can lead to auto-regulation impairment. Non-invasive methods for monitoring blood flow auto-regulation are therefore needed. We propose too use Near infrared spectroscopy (NIRS) too fill this need. NIRS is an optical technique, which measures microvascular changes in cerebral hemoglobin concentration. We performed experiments on non-human primates during exsanguination to demonstrate that thee limits of blood flow auto-regulation can be accessed with NIRS.

  20. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CFV sample probes and/or a heat exchanger or electronic flow compensation. Figure... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  1. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CVS sample probes and/or a heat exchanger or electronic flow... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  2. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CVS sample probes and/or a heat exchanger or electronic flow... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  3. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CFV sample probes and/or a heat exchanger or electronic flow compensation. Figure... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  4. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CVS sample probes and/or a heat exchanger or electronic flow... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  5. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi—Constant Volume Sampler (CFV-CVS) system with CFV sample probes and/or a heat exchanger or electronic flow compensation. Figure... sampling point. (ii) For the CFV-CVS, either a heat exchanger or electronic flow compensation is required...

  6. Responses of the photosynthetic electron transport system to excess light energy caused by water deficit in wild watermelon.

    PubMed

    Sanda, Satoko; Yoshida, Kazuo; Kuwano, Masayoshi; Kawamura, Tadayuki; Munekage, Yuri Nakajima; Akashi, Kinya; Yokota, Akiho

    2011-07-01

    In plants, drought stress coupled with high levels of illumination causes not only dehydration of tissues, but also oxidative damage resulting from excess absorbed light energy. In this study, we analyzed the regulation of electron transport under drought/high-light stress conditions in wild watermelon, a xerophyte that shows strong resistance to this type of stress. Under drought/high-light conditions that completely suppressed CO(2) fixation, the linear electron flow was diminished between photosystem (PS) II and PS I, there was no photoinhibitory damage to PS II and PS I and no decrease in the abundance of the two PSs. Proteome analyses revealed changes in the abundance of protein spots representing the Rieske-type iron-sulfur protein (ISP) and I and K subunits of NAD(P)H dehydrogenase in response to drought stress. Two-dimensional electrophoresis and immunoblot analyses revealed new ISP protein spots with more acidic isoelectric points in plants under drought stress. Our findings suggest that the modified ISPs depress the linear electron transport activity under stress conditions to protect PS I from photoinhibition. The qualitative changes in photosynthetic proteins may switch the photosynthetic electron transport from normal photosynthesis mode to stress-tolerance mode. Copyright © Physiologia Plantarum 2011.

  7. Promotion of Iron Oxide Reduction and Extracellular Electron Transfer in Shewanella oneidensis by DMSO

    PubMed Central

    Cheng, Yuan-Yuan; Li, Bing-Bing; Li, Dao-Bo; Chen, Jie-Jie; Li, Wen-Wei; Tong, Zhong-Hua; Wu, Chao; Yu, Han-Qing

    2013-01-01

    The dissimilatory metal reducing bacterium Shewanella oneidensis MR-1, known for its capacity of reducing iron and manganese oxides, has great environmental impacts. The iron oxides reducing process is affected by the coexistence of alternative electron acceptors in the environment, while investigation into it is limited so far. In this work, the impact of dimethyl sulphoxide (DMSO), a ubiquitous chemical in marine environment, on the reduction of hydrous ferric oxide (HFO) by S. oneidensis MR-1 was investigated. Results show that DMSO promoted HFO reduction by both wild type and ΔdmsE, but had no effect on the HFO reduction by ΔdmsB, indicating that such a promotion was dependent on the DMSO respiration. With the DMSO dosing, the levels of extracellular flavins and omcA expression were significantly increased in WT and further increased in ΔdmsE. Bioelectrochemical analysis show that DMSO also promoted the extracellular electron transfer of WT and ΔdmsE. These results demonstrate that DMSO could stimulate the HFO reduction through metabolic and genetic regulation in S. oneidensis MR-1, rather than compete for electrons with HFO. This may provide a potential respiratory pathway to enhance the microbial electron flows for environmental and engineering applications. PMID:24244312

  8. RLIP76-dependent suppression of PI3K/AKT/Bcl-2 pathway by miR-101 induces apoptosis in prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jing; Song, Qi; Cai, Yi

    MicroRNA-101 (miR-101) participates in carcinogenesis and tumor progression in various cancers. However, its biological functions in prostate cancer are still unclear. Here, we demonstrate that miR-101 represents a critical role in regulating cell apoptosis in prostate cancer cells. We first demonstrated that miR-101 treatment promoted apoptosis in DU145 and PC3 cells by using flow cytometric analysis and transmission electron microscopy (TEM). To verify the mechanisms, we identified a novel miR-101 target, Ral binding protein 1 (RLIP76). We found miR-101 transfection significantly suppresses RLIP76 expression, which can transactivate phosphorylation of PI3K-Akt signaling, and resulted in an amplification of Bcl2-induced apoptosis. Furthermore,more » we demonstrated that RLIP76 overexpression could reverse the anti-tumor effects of miR-101 in DU145 and PC3 cells by using flow cytometry assay and MTT assay. Taken together, our results revealed that the effect of miR-101 on prostate cancer cell apoptosis was due to RLIP76 regulation of the PI3K/Akt/Bcl-2 signaling pathway. - Highlights: • miR-101 inhibited prostate cancer cell proliferation and enhanced apoptosis. • miR-101 directly targeted and regulated RLIP76 expression. • miR-101 suppressed PI3K/Akt/Bcl-2 signaling pathway by targeting RLIP76.« less

  9. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients.

    PubMed

    Matimati, Ignatious; Verboom, G Anthony; Cramer, Michael D

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed 'mass-flow' treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed 'interception' treatment). 'Mass-flow' plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (gs), 1.2-fold higher intercellular [CO2] (Ci), and 3.4-fold lower water use efficiency than 'interception' plants, despite comparable values of photosynthetic rate (A). E, gs, and Ci first increased and then decreased with increasing distance from the N source to values even lower than those of 'interception' plants. 'Mass-flow' plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties.

  10. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...

  11. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...

  12. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...

  13. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... discharge tubes designed to demonstrate the effects of a flow of electrons or the production of x-radiation... electron flow is produced and sustained by ionization of contained gas atoms and ion bombardment of the... the ions of one sign produced in air when all electrons liberated by photons in a volume element of...

  14. Redox control of copper homeostasis in cyanobacteria.

    PubMed

    López-Maury, Luis; Giner-Lamia, Joaquín; Florencio, Francisco J

    2012-12-01

    Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.

  15. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  16. Innovation Incubator: LiquidCool Solutions Technical Evaluation. Laboratory Study and Demonstration Results of a Directed-Flow, Liquid Submerged Server for High-Efficiency Data Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozubal, Eric J

    LiquidCool Solutions (LCS) has developed liquid submerged server (LSS) technology that changes the way computer electronics are cooled. The technology provides an option to cool electronics by the direct contact flow of dielectric fluid (coolant) into a sealed enclosure housing all the electronics of a single server. The intimate dielectric fluid contact with electronics improves the effectiveness of heat removal from the electronics.

  17. Dielectric barrier structure with hollow electrodes and its recoil effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shuang; Chen, Qunzhi; Liu, Jiahui

    2015-06-15

    A dielectric barrier structure with hollow electrodes (HEDBS), in which gas flow oriented parallel to the electric field, was proposed. Results showed that with this structure, air can be effectively ignited, forming atmospheric low temperature plasma, and the proposed HEDBS could achieve much higher electron density (5 × 10{sup 15}/cm{sup 3}). It was also found that the flow condition, including outlet diameter and flow rate, played a key role in the evolution of electron density. Optical emission spectroscopy diagnostic results showed that the concentration of reactive species had the same variation trend as the electron density. The simulated distribution of discharge gasmore » flow indicated that the HEDBS had a strong recoil effect on discharge gas, and could efficiently promote generating electron density as well as reactive species.« less

  18. 76 FR 15975 - Cross-Media Electronic Reporting Regulation Authorized Program Revision/Modification Approvals...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9284-9] Cross-Media Electronic Reporting Regulation... (EPA). ACTION: Notice. SUMMARY: This notice announces EPA's approval, under regulations for Cross-Media..., [email protected] . SUPPLEMENTARY INFORMATION: On October 13, 2005, the final Cross-Media Electronic...

  19. Regulation of DNA conformations and dynamics in flows with hybrid field microfluidics.

    PubMed

    Ren, Fangfang; Zu, Yingbo; Kumar Rajagopalan, Kartik; Wang, Shengnian

    2012-01-01

    Visualizing single DNA dynamics in flow provides a wealth of physical insights in biophysics and complex flow study. However, large signal fluctuations, generated from diversified conformations, deformation history dependent dynamics and flow induced stochastic tumbling, often frustrate its wide adoption in single molecule and polymer flow study. We use a hybrid field microfluidic (HFM) approach, in which an electric field is imposed at desired locations and appropriate moments to balance the flow stress on charged molecules, to effectively regulate the initial conformations and the deformation dynamics of macromolecules in flow. With λ-DNA and a steady laminar shear flow as the model system, we herein studied the performance of HFM on regulating DNA trapping, relaxation, coil-stretch transition, and accumulation. DNA molecules were found to get captured in the focused planes when motions caused by flow, and the electric field were balanced. The trapped macromolecules relaxed in two different routes while eventually became more uniform in size and globule conformations. When removing the electric field, the sudden stretching dynamics of DNA molecules exhibited a more pronounced extension overshoot in their transient response under a true step function of flow stress while similar behaviors to what other pioneering work in steady shear flow. Such regulation strategies could be useful to control the conformations of other important macromolecules (e.g., proteins) and help better reveal their molecular dynamics.

  20. Management of waste electrical and electronic equipment in Romania: A mini-review.

    PubMed

    Ciocoiu, Carmen Nadia; Colesca, Sofia Elena; Rudăreanu, Costin; Popescu, Maria-Loredana

    2016-02-01

    Around the world there are growing concerns for waste electrical and electronic equipment. This is motivated by the harmful effects of waste electrical and electronic equipment on the environment, but also by the perspectives of materials recovery. Differences between countries regarding waste electrical and electronic equipment management are notable in the European Union. Romania is among the countries that have made significant efforts to comply with European Union regulations, but failed reaching the collection target. The article presents a mini review of the waste electrical and electronic equipment management system in Romania, based on legislation and policy documents, statistical data, research studies and reports published by national and international organisations. The article debates subjects like legislative framework, the electrical and electronic equipment Romanian market, the waste electrical and electronic equipment collection system, waste electrical and electronic equipment processing and waste electrical and electronic equipment behaviour. The recast of the European directive brings new challenges to national authorities and to other stakeholders involved in the waste electrical and electronic equipment management. Considering the fact that Romania has managed a collection rate of roughly 1 kg capita(-1) in the last years, the new higher collection targets established by the waste electrical and electronic equipment Directive offer a serious challenge for the management system. Therefore, another aim of the article is to highlight the positive and negative aspects in the Romanian waste electrical and electronic equipment field, in order to identify the flows that should be corrected and the opportunities that could help improve this system to the point of meeting the European standards imposed by the European Directive. © The Author(s) 2015.

  1. Modelling white-water rafting suitability in a hydropower regulated Alpine River.

    PubMed

    Carolli, Mauro; Zolezzi, Guido; Geneletti, Davide; Siviglia, Annunziato; Carolli, Fabiano; Cainelli, Oscar

    2017-02-01

    Cultural and recreational river ecosystem services and their relations with the flow regime are still poorly investigated. We develop a modelling-based approach to assess recreational flow requirements and the spatially distributed river suitability for white-water rafting, a typical service offered by mountain streams, with potential conflicts of interest with hydropower regulation. The approach is based on the principles of habitat suitability modelling using water depth as the main attribute, with preference curves defined through interviews with local rafting guides. The methodology allows to compute streamflow thresholds for conditions of suitability and optimality of a river reach in relation to rafting. Rafting suitability response to past, present and future flow management scenarios can be predicted on the basis of a hydrological model, which is incorporated in the methodology and is able to account for anthropic effects. Rafting suitability is expressed through a novel metric, the "Rafting hydro-suitability index" (RHSI) which quantifies the cumulative duration of suitable and optimal conditions for rafting. The approach is applied on the Noce River (NE Italy), an Alpine River regulated by hydropower production and affected by hydropeaking, which influences suitability at a sub-daily scale. A dedicated algorithm is developed within the hydrological model to resemble hydropeaking conditions with daily flow data. In the Noce River, peak flows associated with hydropeaking support rafting activities in late summer, highlighting the dual nature of hydropeaking in regulated rivers. Rafting suitability is slightly reduced under present, hydropower-regulated flow conditions compared to an idealized flow regime characterised by no water abstractions. Localized water abstractions for small, run-of-the-river hydropower plants are predicted to negatively affect rafting suitability. The proposed methodology can be extended to support decision making for flow management in hydropower regulated streams, as it has the potential to quantify the response of different ecosystem services to flow regulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Geomorphic response to flow regulation and channel and floodplain alteration in the gravel-bedded Cedar River, Washington, USA

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.

    2012-01-01

    Decadal- to annual-scale analyses of changes to the fluvial form and processes of the Cedar River in Washington State, USA, reveal the effects of flow regulation, bank stabilization, and log-jam removal on a gravel-bedded river in a temperate climate. During the twentieth century, revetments were built along ~ 60% of the lower Cedar River's length and the 2-year return period flow decreased by 47% following flow regulation beginning in 1914. The formerly wide, anastomosing channel narrowed by over 50% from an average of 47 m in 1936 to 23 m in 1989 and became progressively single threaded. Subsequent high flows and localized revetment removal contributed to an increase in mean channel width to about 34 m by 2011. Channel migration rates between 1936 and 2011 were up to 8 m/year in reaches not confined by revetments or valley walls and less than analysis uncertainty throughout most of the Cedar River's length where bank armoring restricted channel movement. In unconfined reaches where large wood and sediment can be recruited, contemporary high flows, though smaller in magnitude than preregulation high flows, form and maintain geomorphic features such as pools, gravel bars, and side channels. Reaches confined by revetments remain mostly unmodified in the regulated flow regime. While high flows are important for maintaining channel dynamics in the Cedar River, their effectiveness is currently reduced by revetments, limited sediment supply, the lack of large wood available for recruitment to the channel, and decreased magnitude since flow regulation.

  3. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    NASA Astrophysics Data System (ADS)

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-03-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework.

  4. Tuning-free controller to accurately regulate flow rates in a microfluidic network

    PubMed Central

    Heo, Young Jin; Kang, Junsu; Kim, Min Jun; Chung, Wan Kyun

    2016-01-01

    We describe a control algorithm that can improve accuracy and stability of flow regulation in a microfluidic network that uses a conventional pressure pump system. The algorithm enables simultaneous and independent control of fluid flows in multiple micro-channels of a microfluidic network, but does not require any model parameters or tuning process. We investigate robustness and optimality of the proposed control algorithm and those are verified by simulations and experiments. In addition, the control algorithm is compared with a conventional PID controller to show that the proposed control algorithm resolves critical problems induced by the PID control. The capability of the control algorithm can be used not only in high-precision flow regulation in the presence of disturbance, but in some useful functions for lab-on-a-chip devices such as regulation of volumetric flow rate, interface position control of two laminar flows, valveless flow switching, droplet generation and particle manipulation. We demonstrate those functions and also suggest further potential biological applications which can be accomplished by the proposed control framework. PMID:26987587

  5. Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor

    NASA Astrophysics Data System (ADS)

    Bingyan, CHEN; Xiangxiang, GAO; Ke, CHEN; Changyu, LIU; Qinshu, LI; Wei, SU; Yongfeng, JIANG; Xiang, HE; Changping, ZHU; Juntao, FEI

    2018-02-01

    Discharge plasmas in air can be accompanied by ultraviolet (UV) radiation and electron impact, which can produce large numbers of reactive species such as hydroxyl radical (OH·), oxygen radical (O·), ozone (O3), and nitrogen oxides (NO x ), etc. The composition and dosage of reactive species usually play an important role in the case of volatile organic compounds (VOCs) treatment with the discharge plasmas. In this paper, we propose a volume discharge setup used to purify formaldehyde in air, which is configured by a plate-to-plate dielectric barrier discharge (DBD) channel and excited by an AC high voltage source. The results show that the relative spectral-intensity from DBD cell without formaldehyde is stronger than the case with formaldehyde. The energy efficiency ratios (EERs) of both oxides yield and formaldehyde removal can be regulated by the gas flow velocity in DBD channel, and the most desirable processing effect is the gas flow velocity within the range from 2.50 to 3.33 m s-1. Moreover, the EERs of both the generated dosages of oxides (O3 and NO2) and the amount of removed formaldehyde can also be regulated by both of the applied voltage and power density loaded on the DBD cell. Additionally, the EERs of both oxides generation and formaldehyde removal present as a function of normal distribution with increasing the applied power density, and the peak of the function is appeared in the range from 273.5 to 400.0 W l-1. This work clearly demonstrates the regulation characteristic of both the formaldehyde removal and oxides yield by using volume DBD, and it is helpful in the applications of VOCs removal by using discharge plasma.

  6. Does Body Mass Index Influence Behavioral Regulations, Dispositional Flow and Social Physique Anxiety in Exercise Setting?

    PubMed Central

    Ersöz, Gözde; Altiparmak, Ersin; Aşçı, F. Hülya

    2016-01-01

    The purpose of this study was to examine differences in behavioral regulations, dispositional flow, social physique anxiety of exercisers in terms of body mass index (BMI). 782 university students participated in this study. Dispositional Flow State Scale-2, Behavioral Regulations in Exercise Questionnaire-2, Social Physique Anxiety Scale and Physical Activity Stages of Change Questionnaire were administered to participants. After controlling for gender, analysis indicated significant differences in behavioral regulations, dispositional flow and social physique anxiety of exercise participants with regards to BMI. In summary, the findings demonstrate that normal weighted participants exercise for internal reasons while underweighted participants are amotivated for exercise participation. Additionally, participants who are underweight had higher dispositional flow and lower social physique anxiety scores than other BMI classification. Key points Normal weighted participants exercise for internal reasons. Underweighted participants are amotivated for exercise participation. Underweighted participants had higher dispositional flow. Underweighted participants have lower social physique anxiety scores than normal weighted, overweight and obese participants. PMID:27274667

  7. Flow-Directed Crystallization for Printed Electronics.

    PubMed

    Qu, Ge; Kwok, Justin J; Diao, Ying

    2016-12-20

    The solution printability of organic semiconductors (OSCs) represents a distinct advantage for materials processing, enabling low-cost, high-throughput, and energy-efficient manufacturing with new form factors that are flexible, stretchable, and transparent. While the electronic performance of OSCs is not comparable to that of crystalline silicon, the solution processability of OSCs allows them to complement silicon by tackling challenging aspects for conventional photolithography, such as large-area electronics manufacturing. Despite this, controlling the highly nonequilibrium morphology evolution during OSC printing remains a challenge, hindering the achievement of high electronic device performance and the elucidation of structure-property relationships. Many elegant morphological control methodologies have been developed in recent years including molecular design and novel processing approaches, but few have utilized fluid flow to control morphology in OSC thin films. In this Account, we discuss flow-directed crystallization as an effective strategy for controlling the crystallization kinetics during printing of small molecule and polymer semiconductors. Introducing the concept of flow-directed crystallization to the field of printed electronics is inspired by recent advances in pharmaceutical manufacturing and flow processing of flexible-chain polymers. Although flow-induced crystallization is well studied in these areas, previous findings may not apply directly to the field of printed electronics where the molecular structures (i.e., rigid π-conjugated backbone decorated with flexible side chains) and the intermolecular interactions (i.e., π-π interactions, quadrupole interactions) of OSCs differ substantially from those of pharmaceuticals or flexible-chain polymers. Another critical difference is the important role of solvent evaporation in open systems, which defines the flow characteristics and determines the crystallization kinetics and pathways. In other words, flow-induced crystallization is intimately coupled with the mass transport processes driven by solvent evaporation during printing. In this Account, we will highlight these distinctions of flow-directed crystallization for printed electronics. In the context of solution printing of OSCs, the key issue that flow-directed crystallization addresses is the kinetics mismatch between crystallization and various transport processes during printing. We show that engineering fluid flows can tune the kinetics of OSC crystallization by expediting the nucleation and crystal growth processes, significantly enhancing thin film morphology and device performance. For small molecule semiconductors, nucleation can be enhanced and patterned by directing the evaporative flux via contact line engineering, and defective crystal growth can be alleviated by enhancing mass transport to yield significantly improved coherence length and reduced grain boundaries. For conjugated polymers, extensional and shear flow can expedite nucleation through flow-induced conformation change, facilitating the control of microphase separation, degree of crystallinity, domain alignment, and percolation. Although the nascent concept of flow-directed solution printing has not yet been widely adopted in the field of printed electronics, we anticipate that it can serve as a platform technology in the near future for improving device performance and for systematically tuning thin film morphology to construct structure-property relationships. From a fundamental perspective, it is imperative to develop a better understanding of the effects of fluid flow and mass transport on OSC crystallization as these processes are ubiquitous across all solution processing techniques and can critically impact charge transport properties.

  8. High-performance colorimeter with an electronic bubble gate for use in miniaturized continuous-flow analyzers.

    PubMed

    Neeley, W E; Wardlaw, S C; Yates, T; Hollingsworth, W G; Swinnen, M E

    1976-02-01

    We describe a high-performance colorimeter with an electronic bubble gate for use with miniaturized continuous-flow analyzers. The colorimeter has a flow-through cuvette with optically flat quartz windows that allows a bubbled stream to pass freely without any breakup or retention of bubbles. The fluid volume in the light path is only 1.8 mul. The electronic bubble gate selectively removes that portion of the photodector signal produced by the air bubbles passing through the flow cell and allows that portion of the signal attributable to the fluid segment to pass to the recorder. The colorimeter is easy to use, rugged, inexpensive, and requires minimal adjustments.

  9. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    2003-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  10. 17 CFR 232.100 - Persons and entities subject to mandated electronic filing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to mandated electronic filing. 232.100 Section 232.100 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Electronic Filing Requirements § 232.100 Persons and entities subject to mandated electronic filing. The following...

  11. 17 CFR 232.100 - Persons and entities subject to mandated electronic filing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to mandated electronic filing. 232.100 Section 232.100 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Electronic Filing Requirements § 232.100 Persons and entities subject to mandated electronic filing. The following...

  12. 17 CFR 232.100 - Persons and entities subject to mandated electronic filing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to mandated electronic filing. 232.100 Section 232.100 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Electronic Filing Requirements § 232.100 Persons and entities subject to mandated electronic filing. The following...

  13. 17 CFR 232.100 - Persons and entities subject to mandated electronic filing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to mandated electronic filing. 232.100 Section 232.100 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Electronic Filing Requirements § 232.100 Persons and entities subject to mandated electronic filing. The following...

  14. 17 CFR 232.100 - Persons and entities subject to mandated electronic filing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to mandated electronic filing. 232.100 Section 232.100 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Electronic Filing Requirements § 232.100 Persons and entities subject to mandated electronic filing. The following...

  15. Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons.

    PubMed

    Alekseev, P S

    2016-10-14

    At low temperatures, in very clean two-dimensional (2D) samples, the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a viscous flow of an electron fluid. We study the viscous flow of 2D electrons in a magnetic field perpendicular to the 2D layer. We calculate the viscosity coefficients as the functions of magnetic field and temperature. The off-diagonal viscosity coefficient determines the dispersion of the 2D hydrodynamic waves. The decrease of the diagonal viscosity in magnetic field leads to negative magnetoresistance which is temperature and size dependent. Our analysis demonstrates that this viscous mechanism is responsible for the giant negative magnetoresistance recently observed in the ultrahigh-mobility GaAs quantum wells. We conclude that 2D electrons in those structures in moderate magnetic fields should be treated as a viscous fluid.

  16. Negative Magnetoresistance in Viscous Flow of Two-Dimensional Electrons

    NASA Astrophysics Data System (ADS)

    Alekseev, P. S.

    2016-10-01

    At low temperatures, in very clean two-dimensional (2D) samples, the electron mean free path for collisions with static defects and phonons becomes greater than the sample width. Under this condition, the electron transport occurs by formation of a viscous flow of an electron fluid. We study the viscous flow of 2D electrons in a magnetic field perpendicular to the 2D layer. We calculate the viscosity coefficients as the functions of magnetic field and temperature. The off-diagonal viscosity coefficient determines the dispersion of the 2D hydrodynamic waves. The decrease of the diagonal viscosity in magnetic field leads to negative magnetoresistance which is temperature and size dependent. Our analysis demonstrates that this viscous mechanism is responsible for the giant negative magnetoresistance recently observed in the ultrahigh-mobility GaAs quantum wells. We conclude that 2D electrons in those structures in moderate magnetic fields should be treated as a viscous fluid.

  17. Electron transfer in biology

    NASA Astrophysics Data System (ADS)

    Williams, R. J. P.

    Electron transfer is one of the key reactions of biology not just in catalysis of oxidation/reduction reactions but in the conversion of sources of energy such as light to usable form for chemical transformations. There are then two intriguing problems. What is the nature of the matrix in which electrons flow in a biological cell after the initial charge separation due for example to the absorption of light. Here we are examining biological structures similar to man's electronic wires and the construction must be of low resistance in what are apparently insulators - organic polymers. It has been found that the electronic conduction system is largely made from metallo-proteins associated with lipid membranes. We understand much about these biological wires today. The second problem concerns the conversion of the energy captured from the light into usable chemical form. The major synthetic step in the production of biological polymers, including proteins, DNA, RNA, polysaccharides and fats, is condensation, i.e. the removal of water in the formation of amides, esters and so on. Now these condensation reactions are driven in biology by using a drying agent in water, namely the anhydride, pyrophosphate, in a special compound ATP, adenosine triphosphate. The central problem is to discover exactly how the flow of electrons can be related to the synthesis of (bound) pyrophosphate. (In a thermodynamic sense pyrophosphate is a water soluble kinetically stable drying agent comparable with solid P2O5.) In the biological systems the connection between these different classes of reaction, electron transfer and condensation, is known to be via the production of an energized gradient of protons across the biological membrane which arises from the flow of electrons across the same membrane in the electron transport wires of biology. However we do not understand thoroughly the steps which lead from electron flow in a membrane to proton gradients in that membrane, i.e. electron/proton coupling. Again we do not understand thoroughly how subsequently the proton gradient across a membrane makes ATP, pyrophosphate. Today there is good experimental evidence as to the likely answers in principle. These analyse the coupling devices in mechanical terms. In this article I describe at first the 'wires' of biology, uncoupled simple electron flow, and then go on to the ways in which electron flow could be transduced by mechanical devices, also proteins, into proton gradients and then ATP. This will be termed coupled electron flow. The objective of the article is to stimulate participation by physical chemists in the further description of biological energy capture from light or the oxidation of hydrocarbons to a form suitable for driving chemical syntheses in a controlled manner.

  18. Learn about the Cross-Media Electronic Reporting Rule

    EPA Pesticide Factsheets

    The Cross-Media Electronic Reporting Regulation (CROMERR) provides the legal framework for electronic reporting (ER) under all of the Environmental Protection Agency's (EPA) environmental regulations.

  19. Statistical summaries of streamflow in Oklahoma through 1999

    USGS Publications Warehouse

    Tortorelli, R.L.

    2002-01-01

    Statistical summaries of streamflow records through 1999 for gaging stations in Oklahoma and parts of adjacent states are presented for 188 stations with at least 10 years of streamflow record. Streamflow at 113 of the stations is regulated for specific periods. Data for these periods were analyzed separately to account for changes in streamflow due to regulation by dams or other human modification of streamflow. A brief description of the location, drainage area, and period of record is given for each gaging station. A brief regulation history also is given for stations with a regulated streamflow record. This descriptive information is followed by tables of mean annual discharges, magnitude and probability of exceedance of annual high flows, magnitude and probability of exceedance of annual instantaneous peak flows, durations of daily mean flow, magnitude and probability of non-exceedance of annual low flows, and magnitude and probability of non-exceedance of seasonal low flows.

  20. A Study of the Effects of High Power Pulsed 2450 MHz Microwaves, ELF modulated Microwaves, and ELF Fields on Human Lymphocytes and Selected Cell Lines

    DTIC Science & Technology

    1993-01-27

    Considerable effect was expended in investigating shifts in intercellular calcium of one particular cell line, Jurket, using flow cytometry methods. No...culture. The following analysis were used to characterize the immortalized cell lines: flow cytometry , electron microscopy, two-dimensional protein gel...further characterized by flow cytometry , electron microscopy, two dimensional protein electrophoresis and nuclear run-off assay. Flow cytometric analysis of

  1. Global gyrokinetic simulations of intrinsic rotation in ASDEX Upgrade Ohmic L-mode plasmas

    NASA Astrophysics Data System (ADS)

    Hornsby, W. A.; Angioni, C.; Lu, Z. X.; Fable, E.; Erofeev, I.; McDermott, R.; Medvedeva, A.; Lebschy, A.; Peeters, A. G.; The ASDEX Upgrade Team

    2018-05-01

    Non-linear, radially global, turbulence simulations of ASDEX Upgrade (AUG) plasmas are performed and the nonlinear generated intrinsic flow shows agreement with the intrinsic flow gradients measured in the core of Ohmic L-mode plasmas at nominal parameters. Simulations utilising the kinetic electron model show hollow intrinsic flow profiles as seen in a predominant number of experiments performed at similar plasma parameters. In addition, significantly larger flow gradients are seen than in a previous flux-tube analysis (Hornsby et al 2017 Nucl. Fusion 57 046008). Adiabatic electron model simulations can show a flow profile with opposing sign in the gradient with respect to a kinetic electron simulation, implying a reversal in the sign of the residual stress due to kinetic electrons. The shaping of the intrinsic flow is strongly determined by the density gradient profile. The sensitivity of the residual stress to variations in density profile curvature is calculated and seen to be significantly stronger than to neoclassical flows (Hornsby et al 2017 Nucl. Fusion 57 046008). This variation is strong enough on its own to explain the large variations in the intrinsic flow gradients seen in some AUG experiments. Analysis of the symmetry breaking properties of the turbulence shows that profile shearing is the dominant mechanism in producing a finite parallel wave-number, with turbulence gradient effects contributing a smaller portion of the parallel wave-vector.

  2. MEMS Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    vandenBerg, A.; Spiering, V. L.; Lammerink, T. S. J.; Elwenspoek, M.; Bergveld, P.

    1995-01-01

    Micro-technology enables the manufacturing of all kinds of components for miniature systems or micro-systems, such as sensors, pumps, valves, and channels. The integration of these components into a micro-electro-mechanical system (MEMS) drastically decreases the total system volume and mass. These properties, combined with the increasing need for monitoring and control of small flows in (bio)chemical experiments, makes MEMS attractive for space applications. The level of integration and applied technology depends on the product demands and the market. The ultimate integration is process integration, which results in a one-chip system. An example of process integration is a dosing system of pump, flow sensor, micromixer, and hybrid feedback electronics to regulate the flow. However, for many applications, a hybrid integration of components is sufficient and offers the advantages of design flexibility and even the exchange of components in the case of a modular set up. Currently, we are working on hybrid integration of all kinds of sensors (physical and chemical) and flow system modules towards a modular system; the micro total analysis system (micro TAS). The substrate contains electrical connections as in a printed circuit board (PCB) as well as fluid channels for a circuit channel board (CCB) which, when integrated, form a mixed circuit board (MCB).

  3. Call-Center Based Disease Management of Pediatric Asthmatics

    DTIC Science & Technology

    2005-04-01

    study locations. Purchase peak flow meters. Prepare and reproduce patient education materials, and informed consent work sheets. Contract Oracle data...identified. Electronic peak flow meters have been purchased. Patient education materials and informed consent documents have been reproduced. A web-based...Research Center * Study population identified via military and Foundation Health databases * Electronic peak flow meters purchased * Patient education materials

  4. Effects of flow regime on benthic algae and macroinvertebrates - A comparison between regulated and unregulated rivers.

    PubMed

    Schneider, Susanne C; Petrin, Zlatko

    2017-02-01

    Natural fluctuations in flow are important for maintaining the ecological integrity of riverine ecosystems. However, the flow regime of many rivers has been modified. We assessed the impact of water chemistry, habitat and streamflow characteristics on macroinvertebrates and benthic algae, comparing 20 regulated with 20 unregulated sites. Flow regime, calculated from daily averaged discharge over the five years preceding sampling, was generally more stable at regulated sites, with higher relative discharges in winter, lower relative discharges in spring and smaller differences between upper and lower percentiles. However, no consistent differences in benthic algal or macroinvertebrate structural and functional traits occurred between regulated and unregulated sites. When regulated and unregulated sites were pooled, overall flow regime, calculated as principal components of discharge characteristics over the five years preceding sampling, affected macroinvertebrate species assemblages, but not indices used for ecosystem status assessment or functional feeding groups. This indicates that, while species identity shifted with changing flow regime, the exchanged taxa had similar feeding habits. In contrast to macroinvertebrates, overall flow regime did not affect benthic algae. Our results indicate that overall flow regime affected the species pool of macroinvertebrates from which recolonization after extreme events may occur, but not of benthic algae. When individual components of flow regime were analyzed separately, high June (i.e. three months before sampling) flow maxima were associated with low benthic algal taxon richness, presumably due to scouring. Macroinvertebrate taxon richness decreased with lower relative minimum discharges, presumably due to temporary drying of parts of the riverbed. However, recolonization after such extreme events presumably is fast. Generally, macroinvertebrate and benthic algal assemblages were more closely related to water physico-chemical than to hydrological variables. Our results suggest that macroinvertebrate and benthic algal indices commonly used for ecological status assessment are applicable also in regulated rivers. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Analysis of fast chlorophyll fluorescence rise (O-K-J-I-P) curves in green fruits indicates electron flow limitations at the donor side of PSII and the acceptor sides of both photosystems.

    PubMed

    Kalachanis, Dimitrios; Manetas, Yiannis

    2010-07-01

    Limited evidence up to now indicates low linear photosynthetic electron flow and CO(2) assimilation rates in non-foliar chloroplasts. In this investigation, we used chlorophyll fluorescence techniques to locate possible limiting steps in photosystem function in exposed, non-stressed green fruits (both pericarps and seeds) of three species, while corresponding leaves served as controls. Compared with leaves, fruit photosynthesis was characterized by less photon trapping and less quantum yields of electron flow, while the non-photochemical quenching was higher and potentially linked to enhanced carotenoid/chlorophyll ratios. Analysis of fast chlorophyll fluorescence rise curves revealed possible limitations both in the donor (oxygen evolving complex) and the acceptor (Q(A)(-)--> intermediate carriers) sides of photosystem II (PSII) indicating innately low PSII photochemical activity. On the other hand, PSI was characterized by faster reduction of its final electron acceptors and their small pool sizes. We argue that the fast reductive saturation of final PSI electron acceptors may divert electrons back to intermediate carriers facilitating a cyclic flow around PSI, while the partial inactivation of linear flow precludes strong reduction of plastoquinone. As such, the photosynthetic attributes of fruit chloroplasts may act to replenish the ATP lost because of hypoxia usually encountered in sink organs with high diffusive resistance to gas exchange.

  6. 7 CFR 3565.303 - Issuance of loan guarantee.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... development in 7 CFR part 1924, subpart C, or its successor regulations; (2) Cash flow certification—the lender certifies, in writing, the project's cash flow assumptions are still valid and depict compliance... standards for site development in 7 CFR part 1924, subpart C, or its successor regulations; (2) Cash flow...

  7. 7 CFR 3565.303 - Issuance of loan guarantee.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... development in 7 CFR part 1924, subpart C, or its successor regulations; (2) Cash flow certification—the lender certifies, in writing, the project's cash flow assumptions are still valid and depict compliance... standards for site development in 7 CFR part 1924, subpart C, or its successor regulations; (2) Cash flow...

  8. 7 CFR 3565.303 - Issuance of loan guarantee.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... development in 7 CFR part 1924, subpart C, or its successor regulations; (2) Cash flow certification—the lender certifies, in writing, the project's cash flow assumptions are still valid and depict compliance... standards for site development in 7 CFR part 1924, subpart C, or its successor regulations; (2) Cash flow...

  9. Self-regulating flow control device

    DOEpatents

    Humphreys, Duane A.

    1984-01-01

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  10. Advanced Liquid Feed Experiment

    NASA Astrophysics Data System (ADS)

    Distefano, E.; Noll, C.

    1993-06-01

    The Advanced Liquid Feed Experiment (ALFE) is a Hitchhiker experiment flown on board the Shuttle of STS-39 as part of the Space Test Payload-1 (STP-1). The purpose of ALFE is to evaluate new propellant management components and operations under the low gravity flight environment of the Space Shuttle for eventual use in an advanced spacecraft feed system. These components and operations include an electronic pressure regulator, an ultrasonic flowmeter, an ultrasonic point sensor gage, and on-orbit refill of an auxiliary propellant tank. The tests are performed with two transparent tanks with dyed Freon 113, observed by a camera and controlled by ground commands and an on-board computer. Results show that the electronic pressure regulator provides smooth pressure ramp-up, sustained pressure control, and the flexibility to change pressure settings in flight. The ultrasonic flowmeter accurately measures flow and detects gas ingestion. The ultrasonic point sensors function well in space, but not as a gage during sustained low-gravity conditions, as they, like other point gages, are subject to the uncertainties of propellant geometry in a given tank. Propellant transfer operations can be performed with liquid-free ullage equalization at a 20 percent fill level, gas-free liquid transfer from 20-65 percent fill level, minimal slosh, and can be automated.

  11. Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tian; Voisin, Nathalie; Leng, Guoyong

    Water management activities or flow regulations modify water fluxes at the land surface and affect water resources in space and time. We hypothesize that flow regulations change the sensitivity of river flow to climate change with respect to unmanaged water resources. Quantifying these changes in sensitivity could help elucidate the impacts of water management at different spatiotemporal scales and inform climate adaptation decisions. In this study, we compared the emergence of significant changes in natural and regulated river flow regimes across the Western United States from simulations driven by multiple climate models and scenarios. We find that significant climate change-inducedmore » alterations in natural flow do not cascade linearly through water management activities. At the annual time scale, 50% of the Hydrologic Unit Code 4 (HUC4) sub-basins over the Western U.S. regions tend to have regulated flow regime more sensitive to the climate change than natural flow regime. Seasonality analyses show that the sensitivity varies remarkably across the seasons. We also find that the sensitivity is related to the level of water management. For 35% of the HUC4 sub-basins with the highest level of water management, the summer and winter flows tend to show a heightened sensitivity to climate change due to the complexity of joint reservoir operations. We further demonstrate that the impacts of considering water management in models are comparable to those that arises from uncertainties across climate models and emission scenarios. This prompts further climate adaptation studies research about nonlinearity effects of climate change through water management activities.« less

  12. Videotex and Teletext: Regulation of the Electronic Publisher?

    ERIC Educational Resources Information Center

    Rimmer, Tony

    Suggesting that the transition from a paper system of news distribution to an electronic one moves the press from a relatively regulation-free environment to one encumbered with broadcast and common carrier regulation, this paper reviews communication law as it applies to the electronic publisher and considers whether this form of publishing might…

  13. Impacts of Climate Change on Regulated Streamflow, Hydrologic Extremes, Hydropower Production, and Sediment Discharge in the Skagit River Basin

    USGS Publications Warehouse

    Lee, Se-Yeun; Hamlet, Alan F.; Grossman, Eric E.

    2016-01-01

    Previous studies have shown that the impacts of climate change on the hydrologic response of the Skagit River are likely to be substantial under natural (i.e. unregulated) conditions. To assess the combined effects of changing natural flow and dam operations that determine impacts to regulated flow, a new integrated daily-time-step reservoir operations model was constructed for the Skagit River Basin. The model was used to simulate current reservoir operating policies for historical flow conditions and for projected flows for the 2040s (2030–2059) and 2080s (2070–2099). The results show that climate change is likely to cause substantial seasonal changes in both natural and regulated flow, with more flow in the winter and spring, and less in summer. Hydropower generation in the basin follows these trends, increasing (+ 19%) in the winter/ spring, and decreasing (- 29%) in the summer by the 2080s. The regulated 100-year flood is projected to increase by 23% by the 2040s and 49% by the 2080s. Peak winter sediment loading in December is projected to increase by 335% by the 2080s in response to increasing winter flows, and average annual sediment loading increases from 2.3 to 5.8 teragrams (+ 149%) per year by the 2080s. Regulated extreme low flows (7Q10) are projected to decrease by about 30% by the 2080s, but remain well above natural low flows. Both current and proposed alternative flood control operations are shown to be largely ineffective in mitigating increasing flood risks in the lower Skagit due to the distribution of flow in the basin during floods.

  14. Particle flows to shape and voltage surface discontinuities in the electron sheath surrounding a high voltage solar array in LEO

    NASA Technical Reports Server (NTRS)

    Metz, Roger N.

    1991-01-01

    This paper discusses the numerical modeling of electron flows from the sheath surrounding high positively biased objects in LEO (Low Earth Orbit) to regions of voltage or shape discontinuity on the biased surfaces. The sheath equations are derived from the Two-fluid, Warm Plasma Model. An equipotential corner and a plane containing strips of alternating voltage bias are treated in two dimensions. A self-consistent field solution of the sheath equations is outlined and is pursued through one cycle. The electron density field is determined by numerical solution of Poisson's equation for the electrostatic potential in the sheath using the NASCAP-LEO relation between electrostatic potential and charge density. Electron flows are calculated numerically from the electron continuity equation. Magnetic field effects are not treated.

  15. Cerebral activation of mitogen-activated protein kinases after circulatory arrest and low flow cardiopulmonary bypass.

    PubMed

    Aharon, Alon S; Mulloy, Matthew R; Drinkwater, Davis C; Lao, Oliver B; Johnson, Mahlon D; Thunder, Megan; Yu, Chang; Chang, Paul

    2004-11-01

    Mitogen-activated protein kinases (MAPK) are important intermediates in the signal transduction pathways involved in neuronal dysfunction following cerebral ischemia-reperfusion injury. One subfamily, extracellular regulated kinase 1/2, has been heavily implicated in the pathogenesis of post-ischemic neuronal damage. However, the contribution of extracellular regulated kinase 1/2 to neuronal damage following deep hypothermic circulatory arrest and low flow cardiopulmonary bypass is unknown. We attempted to correlate the extent of neuronal damage present following deep hypothermic circulatory arrest and low flow cardiopulmonary bypass with phosphorylated extracellular regulated kinase 1/2 expression in the cerebral vascular endothelium. Piglets underwent normal flow cardiopulmonary bypass (n=4) deep hypothermic circulatory arrest (n=6) and low flow cardiopulmonary bypass (n=5). Brains were harvested following 24 h of post-cardiopulmonary bypass recovery. Cerebral cortical watershed zones, hippocampus, basal ganglia, thalamus, cerebellum, mesencephalon, pons and medulla were evaluated using hematoxylin and eosin staining. A section of ischemic cortex was evaluated by immunohistochemistry with rabbit polyclonal antibodies against phosphorylated extracellular regulated kinase 1/2. Compared to cardiopulmonary bypass controls, the deep hypothermic circulatory arrest and low flow cardiopulmonary bypass piglets exhibited diffuse ischemic changes with overlapping severity and distribution. Significant neuronal damage occurred in the frontal watershed zones and basal ganglia of the deep hypothermic circulatory arrest group (P<0.05). No detectable phosphorylated extracellular regulated kinase 1/2 immunoreactivity was found in the cardiopulmonary bypass controls; however, ERK 1/2 immunoreactivity was present in the cerebral vascular endothelium of the deep hypothermic circulatory arrest and low flow cardiopulmonary bypass groups. Our results indicate that phosphorylated extracellular regulated kinase 1/2 may play a prominent role in early cerebral ischemia-reperfusion injury and endothelial dysfunction. The pharmacologic inhibition of extracellular regulated kinase 1/2 represents a new and exciting opportunity for the modulation of cerebral tolerance to low flow cardiopulmonary bypass and deep hypothermic circulatory arrest.

  16. Cross-Media Electronic Reporting Rule

    EPA Pesticide Factsheets

    Cross-Media Electronic Reporting Regulation (CROMERR) sets performance-based, technology-neutral standards for systems that states, tribes, and local governments use to receive electronic reports from facilities they regulate under EPA-authorized programs.

  17. Spheromak plasma flow injection into a torus chamber and the HIST plasmas

    NASA Astrophysics Data System (ADS)

    Hatuzaki, Akinori

    2005-10-01

    The importance of plasma flow or two-fluid effect is recognized in understanding the relaxed states of high-beta torus plasmas, start-up and current drive by non-coaxial helicity injection, magnetic reconnection and plasma dynamo in fusion, laboratory and space plasmas. As a new approach to create a flowing two-fluid plasma equilibrium, we have tried to inject tangentially the plasma flow with spheromak-type magnetic configurations into a torus vacuum chamber with an external toroidal magnetic field (TF) coil. In the initial experiments, the RFP-like configuration with helical magnetic structures was realized in the torus vessel. The ion flow measurement with Mach probes showed that the ion flow keeps the same direction despite the reversal of the toroidal current and the axial electric field. The ion fluid comes to flow in the opposite direction to the electron fluid by the reversal of TF. This result suggests that not only electron but also ion flow contributes significantly on the reversed toroidal current. In this case, the ratio of ui to the electron flow velocity ue is estimated as ui/ue ˜ 1/2. We also will inject the spheromak flow into the HIST spherical torus plasmas to examine the possibilities to embedding the two-fluid effect in the ST plasmas.

  18. Fluctuations, Electron Transport, and Flow Shear in 2D Axial, Azimuthal (z-θ) Hybrid Hall Thruster Simulations.

    NASA Astrophysics Data System (ADS)

    Fernandez, Eduardo; Gascon, Nicolas; Knoll, Aaron; Scharfe, Michelle; Cappelli, Mark

    2007-11-01

    Motivated by the inability of radial-axial (r-z) simulations to properly treat cross-field electron transport in Hall thrusters, a novel 2D z-θ model has been implemented. In common with many r-z descriptions, the simulation is hybrid in nature and assumes quasi-neutrality. Unlike r-z models, electron transport is not enhanced with an ad-hoc mobility coefficient; instead it is given by collisional or ``classical'' terms as well as ``anomalous'' contributions associated with azimuthal electric field fluctuations. Results indicate that anomalous transport dominates classical transport for most of the channel and near field, except in a strong electron flow shear region near the channel exit. The correlation between flow shear, fluctuation behavior, and electron transport will be examined, along with experimental data from the Stanford Hall Thruster. Our findings make a strong link to the turbulent transport suppression mechanism by flow shear seen in fusion devices. The scheme for combining the r-z and z-θ descriptions into an upcoming 3D hybrid model will be presented.

  19. The effects of Missouri River mainstem reservoir system operations on 2011 flooding using a Precipitation-Runoff Modeling System model: Chapter K in 2011 Floods of the Central United States

    USGS Publications Warehouse

    Haj, Adel E.; Christiansen, Daniel E.; Viger, Roland J.

    2014-01-01

    In 2011 the Missouri River Mainstem Reservoir System (Reservoir System) experienced the largest volume of flood waters since the initiation of record-keeping in the nineteenth century. The high levels of runoff from both snowpack and rainfall stressed the Reservoir System’s capacity to control flood waters and caused massive damage and disruption along the river. The flooding and resulting damage along the Missouri River brought increased public attention to the U.S. Army Corps of Engineers (USACE) operation of the Reservoir System. To help understand the effects of Reservoir System operation on the 2011 Missouri River flood flows, the U.S. Geological Survey Precipitation-Runoff Modeling System was used to construct a model of the Missouri River Basin to simulate flows at streamgages and dam locations with the effects of Reservoir System operation (regulation) on flow removed. Statistical tests indicate that the Missouri River Precipitation-Runoff Modeling System model is a good fit for high-flow monthly and annual stream flow estimation. A comparison of simulated unregulated flows and measured regulated flows show that regulation greatly reduced spring peak flow events, consolidated two summer peak flow events to one with a markedly decreased magnitude, and maintained higher than normal base flow beyond the end of water year 2011. Further comparison of results indicate that without regulation, flows greater than those measured would have occurred and been sustained for much longer, frequently in excess of 30 days, and flooding associated with high-flow events would have been more severe.

  20. Elliptic flow of electrons from beauty-hadron decays extracted from Pb-Pb collision data at √{s_NN} = 2.76 TeV

    NASA Astrophysics Data System (ADS)

    Moreira de Godoy, D.; Herrmann, F.; Klasen, M.; Klein-Bösing, C.; Suaide, A. A. P.

    2018-05-01

    We present a calculation of the elliptic flow of electrons from beauty-hadron decays in semi-central Pb-Pb collisions at centre-of-mass energy per colliding nucleon pair, represented as √{s_NN}, of 2.76 TeV. The result is obtained by the subtraction of the charm-quark contribution in the elliptic flow of electrons from heavy-flavour hadron decays in semi-central Pb-Pb collisions at √{s_NN} = 2.76 TeV recently made publicly available by the ALICE collaboration.

  1. Higher-than-ballistic conduction of viscous electron flows

    PubMed Central

    Guo, Haoyu; Ilseven, Ekin; Falkovich, Gregory; Levitov, Leonid S.

    2017-01-01

    Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer’s ballistic limit Gball. The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at T=0 but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation G=Gball+Gvis, where the viscous contribution Gvis dominates over Gball in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics. PMID:28265079

  2. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staebler, G. M.; Candy, J.; Howard, N. T.

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.« less

  3. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE PAGES

    Staebler, Gary M.; Candy, John; Howard, Nathan T.; ...

    2016-06-29

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ionscale gyrokinetic simulations.« less

  4. Electron transport and light-harvesting switches in cyanobacteria

    PubMed Central

    Mullineaux, Conrad W.

    2014-01-01

    Cyanobacteria possess multiple mechanisms for regulating the pathways of photosynthetic and respiratory electron transport. Electron transport may be regulated indirectly by controlling the transfer of excitation energy from the light-harvesting complexes, or it may be more directly regulated by controlling the stoichiometry, localization, and interactions of photosynthetic and respiratory electron transport complexes. Regulation of the extent of linear vs. cyclic electron transport is particularly important for controlling the redox balance of the cell. This review discusses what is known of the regulatory mechanisms and the timescales on which they occur, with particular regard to the structural reorganization needed and the constraints imposed by the limited mobility of membrane-integral proteins in the crowded thylakoid membrane. Switching mechanisms requiring substantial movement of integral thylakoid membrane proteins occur on slower timescales than those that require the movement only of cytoplasmic or extrinsic membrane proteins. This difference is probably due to the restricted diffusion of membrane-integral proteins. Multiple switching mechanisms may be needed to regulate electron transport on different timescales. PMID:24478787

  5. Scaling properties reveal regulation of river flows in the Amazon through a forest reservoir

    NASA Astrophysics Data System (ADS)

    Salazar, Juan Fernando; Villegas, Juan Camilo; María Rendón, Angela; Rodríguez, Estiven; Hoyos, Isabel; Mercado-Bettín, Daniel; Poveda, Germán

    2018-03-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we introduce a novel physical interpretation of the scaling properties of river flows and show that it leads to a parsimonious characterization of the flow regime of any river basin. This allows river basins to be classified as regulated or unregulated, and to identify a critical threshold between these states. We applied this framework to the Amazon river basin and found both states among its main tributaries. Then we introduce the forest reservoir hypothesis to describe the natural capacity of river basins to regulate river flows through land-atmosphere interactions (mainly precipitation recycling) that depend strongly on the presence of forests. A critical implication is that forest loss can force the Amazonian river basins from regulated to unregulated states. Our results provide theoretical and applied foundations for predicting hydrological impacts of global change, including the detection of early-warning signals for critical transitions in river basins.

  6. Role of NO in choroidal blood flow regulation during isometric exercise in healthy humans.

    PubMed

    Luksch, Alexandra; Polska, Elzbieta; Imhof, Andrea; Schering, Joanne; Fuchsjäger-Mayrl, Gabriele; Wolzt, Michael; Schmetterer, Leopold

    2003-02-01

    Nitric oxide (NO) is an important regulator of basal choroidal blood flow. Animal experiments indicate that NO is also involved in choroidal blood flow regulation during changes in ocular perfusion pressure and inhibition of NO synthase (NOS) has been reported to shift choroidal pressure-flow curves to the right. The hypothesis for the study was that inhibition of NOS may influence choroidal blood flow during isometric exercise. To test this hypothesis, a randomized, double-masked, placebo-controlled, three-way crossover study was performed in 12 healthy male volunteers. Subjects received on different study days intravenous infusions of N(G)-monomethyl-L-arginine (L-NMMA), phenylephrine, or placebo. During these infusion periods, subjects were asked to squat for 6 minutes. Choroidal blood flow was assessed with laser Doppler flowmetry, and ocular perfusion pressure (OPP) was calculated from mean arterial pressure and intraocular pressure. L-NMMA and phenylephrine increased resting OPP by 10% and 13%, respectively, but only L-NMMA reduced resting choroidal blood flow (-17%, P < 0.001). The relative increase in OPP during isometric exercise was comparable with all drugs administered. Isometric exercise increased choroidal blood flow during administration of placebo and phenylephrine, but not during administration of L-NMMA (P < 0.001 vs. placebo). These data indicate that NO plays an important role in the regulation of choroidal blood flow during isometric exercise.

  7. Observation of the avalanche of runaway electrons in air in a strong electric field.

    PubMed

    Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A

    2012-08-24

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  8. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  9. Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry

    NASA Astrophysics Data System (ADS)

    Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.

    2018-02-01

    Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.

  10. Prediction of flow duration curves for ungauged basins

    NASA Astrophysics Data System (ADS)

    Atieh, Maya; Taylor, Graham; M. A. Sattar, Ahmed; Gharabaghi, Bahram

    2017-02-01

    This study presents novel models for prediction of flow Duration Curves (FDCs) at ungauged basins using artificial neural networks (ANN) and Gene Expression Programming (GEP) trained and tested using historical flow records from 171 unregulated and 89 regulated basins across North America. For the 89 regulated basins, FDCs were generated for both before and after flow regulation. Topographic, climatic, and land use characteristics are used to develop relationships between these basin characteristics and FDC statistical distribution parameters: mean (m) and variance (ν). The two main hypotheses that flow regulation has negligible effect on the mean (m) while it the variance (ν) were confirmed. The novel GEP model that predicts the mean (GEP-m) performed very well with high R2 (0.9) and D (0.95) values and low RAE value of 0.25. The simple regression model that predicts the variance (REG-v) was developed as a function of the mean (m) and a flow regulation index (R). The measured performance and uncertainty analysis indicated that the ANN-m was the best performing model with R2 (0.97), RAE (0.21), D (0.93) and the lowest 95% confidence prediction error interval (+0.22 to +3.49). Both GEP and ANN models were most sensitive to drainage area followed by mean annual precipitation, apportionment entropy disorder index, and shape factor.

  11. Viscous electron flow in mesoscopic two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Gusev, G. M.; Levin, A. D.; Levinson, E. V.; Bakarov, A. K.

    2018-02-01

    We report electrical and magneto transport measurements in mesoscopic size, two-dimensional (2D) electron gas in a GaAs quantum well. Remarkably, we find that the probe configuration and sample geometry strongly affects the temperature evolution of local resistance. We attribute all transport properties to the presence of hydrodynamic effects. Experimental results confirm the theoretically predicted significance of viscous flow in mesoscopic devices.

  12. 48 CFR 401.170 - Electronic access to regulatory information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Electronic access to... AGRICULTURE GENERAL AGRICULTURE ACQUISITION REGULATION SYSTEM Purpose, Authority, Issuance 401.170 Electronic... guidance in electronic form. The Internet address for the Procurement Homepage is URL http://www.usda.gov...

  13. 48 CFR 401.170 - Electronic access to regulatory information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Electronic access to... AGRICULTURE GENERAL AGRICULTURE ACQUISITION REGULATION SYSTEM Purpose, Authority, Issuance 401.170 Electronic... guidance in electronic form. The Internet address for the Procurement Homepage is URL http://www.usda.gov...

  14. 48 CFR 401.170 - Electronic access to regulatory information.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Electronic access to... AGRICULTURE GENERAL AGRICULTURE ACQUISITION REGULATION SYSTEM Purpose, Authority, Issuance 401.170 Electronic... guidance in electronic form. The Internet address for the Procurement Homepage is URL http://www.usda.gov...

  15. 48 CFR 401.170 - Electronic access to regulatory information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Electronic access to... AGRICULTURE GENERAL AGRICULTURE ACQUISITION REGULATION SYSTEM Purpose, Authority, Issuance 401.170 Electronic... guidance in electronic form. The Internet address for the Procurement Homepage is URL http://www.usda.gov...

  16. Splash flow from a metal plate hit by an electron beam pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, M., LLNL

    1997-09-01

    When a pulsed electron beam hits a metal plate with sufficient energy a volume of the metal becomes hot fluid that subsequently sprays out of the plate. A second pulse of electrons traveling toward the plate would scatter and degrade before impacting the solid plate because of its encounter with the diffuse material of the initial splash. People designing electron beam machines for use as pulsed radiation sources wish to eliminate the interaction between the electrons and the splash because they want sharp radiation pulses emitted from the solid plate. This report presents a compressible fluid model of this splashmore » flow and compares specific cases with experiments and comprehensive calculations performed by B. DeVolder and others at the Los Alamos National Laboratory, see reference (1). My aim was to develop as simple a theory as possible to calculate the speed and density of the splash flow. I have used both simplifying assumptions and mathematical approximations to develop convenient formulas. As I wished to make a clear and interesting presentation of this work to a diverse audience that includes people outside the specialty of fluid dynamics, some of my descriptions may seem wordier than necessary. The plan of the report is as follows. In the section called ``energy deposition`` I describe how an electron beam deposits energy in a solid plate, converting some of the material into a hot fluid. The initial temperature of this fluid is the key parameter in determining the nature of the subsequent flow; an explicit formula is shown. Flow occurs in two regions: along a streamtube within the metal plate and as an expanding plume outside the metal plate. Flow within the plate is described in the section called ``isentropic flow.`` This flow occurs as expansion waves move at the speed of sound through the streamtube. The analysis of this flow provides a formula for the mass flow over time from the plate into the external splash. The section called ``centered expansion`` elaborates on the nature of certain approximations I have made in treating the wave phenomena in both the streamtube and splash flows. The section called ``splash flow`` presents a formula to describe the material density as a function of space and time outside the plate. This formula depends on the time- dependent material density at the plate, which was found during the streamtube analysis. The section called ``examples`` shows the results of specific calculations and a comparison to computational and experimental results described in reference (1). The final section, ``possible future work,`` poses new questions.« less

  17. Compact Electron Gun Based on Secondary Emission Through Ionic Bombardment

    PubMed Central

    Diop, Babacar; Bonnet, Jean; Schmid, Thomas; Mohamed, Ajmal

    2011-01-01

    We present a new compact electron gun based on the secondary emission through ionic bombardment principle. The driving parameters to develop such a gun are to obtain a quite small electron gun for an in-flight instrument performing Electron Beam Fluorescence measurements (EBF) on board of a reentry vehicle in the upper atmosphere. These measurements are useful to characterize the gas flow around the vehicle in terms of gas chemical composition, temperatures and velocity of the flow which usually presents thermo-chemical non-equilibrium. Such an instrument can also be employed to characterize the upper atmosphere if placed on another carrier like a balloon. In ground facilities, it appears as a more practical tool to characterize flows in wind tunnel studies or as an alternative to complex electron guns in industrial processes requiring an electron beam. We describe in this paper the gun which has been developed as well as its different features which have been characterized in the laboratory. PMID:22163896

  18. Transverse electron-scale instability in relativistic shear flows.

    PubMed

    Alves, E P; Grismayer, T; Fonseca, R A; Silva, L O

    2015-08-01

    Electron-scale surface waves are shown to be unstable in the transverse plane of a sheared flow in an initially unmagnetized collisionless plasma, not captured by (magneto)hydrodynamics. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroomlike electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. This transverse electron-scale instability may play an important role in relativistic and supersonic sheared flow scenarios, which are stable at the (magneto)hydrodynamic level. Macroscopic (≫c/ωpe) fields are shown to be generated by this microscopic shear instability, which are relevant for particle acceleration, radiation emission, and to seed magnetohydrodynamic processes at long time scales.

  19. Breast Cancer Tissue Bioreactor for Direct Interrogation and Observation of Response to Antitumor Therapies

    DTIC Science & Technology

    2012-07-01

    regulate microfluidic flow rates within the TTB, including flow channel height variation and incorporation of valves (see Figure 2 and Supplemental...cartridge. As an alternative to individual channel TURN valve -adjusted flow regulators, we investigated use of pre-fabricated microfluidic flow resistance...Small Parts, Inc. and B) Microfluidic manifolds with built-in TURN valves . Supplemental Figure S3. Simplified 2D and 3D diffusional model

  20. Mechanisms of Amplified Arteriogenesis in Collateral Artery Segments Exposed to Flow Direction Reversal

    PubMed Central

    Heuslein, Joshua L.; Meisner, Joshua K.; Li, Xuanyue; Song, Ji; Vincentelli, Helena; Leiphart, Ryan J.; Ames, Elizabeth G.; Price, Richard J.

    2015-01-01

    Objective Collateral arteriogenesis, the growth of existing arterial vessels to a larger diameter, is a fundamental adaptive response that is often critical for the perfusion and survival of tissues downstream of chronic arterial occlusion(s). Shear stress regulates arteriogenesis; however, the arteriogenic significance of flow direction reversal, occurring in numerous collateral artery segments after femoral artery ligation (FAL), is unknown. Our objective was to determine if flow direction reversal in collateral artery segments differentially regulates endothelial cell signaling and arteriogenesis. Approach and Results Collateral segments experiencing flow reversal after FAL in C57BL/6 mice exhibit increased pericollateral macrophage recruitment, amplified arteriogenesis (30% diameter and 2.8-fold conductance increases), and remarkably permanent (12 weeks post-FAL) remodeling. Genome-wide transcriptional analyses on HUVECs exposed to flow reversal conditions mimicking those occurring in-vivo yielded 10-fold more significantly regulated transcripts, as well as enhanced activation of upstream regulators (NFκB, VEGF, FGF2, TGFβ) and arteriogenic canonical pathways (PKA, PDE, MAPK). Augmented expression of key pro-arteriogenic molecules (KLF2, ICAM-1, eNOS) was also verified by qRT-PCR, leading us to test whether ICAM-1 and/or eNOS regulate amplified arteriogenesis in flow-reversed collateral segments in-vivo. Interestingly, enhanced pericollateral macrophage recruitment and amplified arteriogenesis was attenuated in flow-reversed collateral segments after FAL in ICAM-1−/− mice; however, eNOS−/− mice showed no such differences. Conclusions Flow reversal leads to a broad amplification of pro-arteriogenic endothelial signaling and a sustained ICAM-1-dependent augmentation of arteriogenesis. Further investigation of the endothelial mechanotransduction pathways activated by flow reversal may lead to more effective and durable therapeutic options for arterial occlusive diseases. PMID:26338297

  1. Nitrogen regulation of transpiration controls mass-flow acquisition of nutrients

    PubMed Central

    Matimati, Ignatious

    2014-01-01

    Transpiration may enhance mass-flow of nutrients to roots, especially in low-nutrient soils or where the root system is not extensively developed. Previous work suggested that nitrogen (N) may regulate mass-flow of nutrients. Experiments were conducted to determine whether N regulates water fluxes, and whether this regulation has a functional role in controlling the mass-flow of nutrients to roots. Phaseolus vulgaris were grown in troughs designed to create an N availability gradient by restricting roots from intercepting a slow-release N source, which was placed at one of six distances behind a 25 μm mesh from which nutrients could move by diffusion or mass-flow (termed ‘mass-flow’ treatment). Control plants had the N source supplied directly to their root zone so that N was available through interception, mass-flow, and diffusion (termed ‘interception’ treatment). ‘Mass-flow’ plants closest to the N source exhibited 2.9-fold higher transpiration (E), 2.6-fold higher stomatal conductance (g s), 1.2-fold higher intercellular [CO2] (C i), and 3.4-fold lower water use efficiency than ‘interception’ plants, despite comparable values of photosynthetic rate (A). E, g s, and C i first increased and then decreased with increasing distance from the N source to values even lower than those of ‘interception’ plants. ‘Mass-flow’ plants accumulated phosphorus and potassium, and had maximum concentrations at 10mm from the N source. Overall, N availability regulated transpiration-driven mass-flow of nutrients from substrate zones that were inaccessible to roots. Thus when water is available, mass-flow may partially substitute for root density in providing access to nutrients without incurring the costs of root extension, although the efficacy of mass-flow also depends on soil nutrient retention and hydraulic properties. PMID:24231035

  2. Regulation of Dynamical Systems to Optimal Solutions of Semidefinite Programs: Algorithms and Applications to AC Optimal Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    2015-07-01

    This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the controlmore » of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.« less

  3. The electron drift velocity, ion acoustic speed and irregularity drifts in high-latitude E-region

    NASA Astrophysics Data System (ADS)

    Uspensky, M. V.; Pellinen, R. J.; Janhunen, P.

    2008-10-01

    The purpose of this study is to examine the STARE irregularity drift velocity dependence on the EISCAT line-of-sight (los or l-o-s) electron drift velocity magnitude, VE×Blos, and the flow angle ΘN,F (superscript N and/or F refer to the STARE Norway and Finland radar). In the noon-evening sector the flow angle dependence of Doppler velocities, VirrN,F, inside and outside the Farley-Buneman (FB) instability cone (|VE×Blos|>Cs and |VE×Blos||VE×Blos|. Both features (a and b) as well as the weak flow angle velocity dependence indicate that the l-o-s electron drift velocity cannot be the sole factor which controls the motion of the backscatter ~1-m irregularities at large flow angles. Importantly, the backscatter was collected at aspect angle ~1° and flow angle Θ>60°, where linear fluid and kinetic theories invariably predict negative growth rates. At least qualitatively, all the facts can be reasonably explained by nonlinear wave-wave coupling found and described by Kudeki and Farley (1989), Lu et al. (2008) for the equatorial electrojet and studied in numerical simulation by Otani and Oppenheim (1998, 2006).

  4. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations

    NASA Astrophysics Data System (ADS)

    Sokoloff, J. B.

    2018-03-01

    Secchi et al. [Nature (London) 537, 210 (2016), 10.1038/nature19315] observed a large enhancement of the permeability and slip length in carbon nanotubes when the tube radius is of the order of 15 nm, but not in boron nitride nanotubes. It will be pointed out that none of the parameters that appear in the usual molecular dynamics treatments of water flow in carbon nanotubes have a length scale comparable to 15 nm, which could account for the observed flow velocity enhancement. It will be demonstrated here, however, that if the friction force between the water and the tube walls in carbon nanotubes is dominated by friction due to electron excitations in the tube walls, the enhanced flow can be accounted for by a reduction in the contribution to the friction due to electron excitations in the wall, resulting from the dependence of the electron energy band gap on the tube radius.

  5. Self-regulating valve

    DOEpatents

    Humphreys, D.A.

    1982-07-20

    A variable, self-regulating valve having a hydraulic loss coefficient proportional to a positive exponential power of the flow rate. The device includes two objects in a flow channel and structure which assures that the distance between the two objects is an increasing function of the flow rate. The range of spacing between the objects is such that the hydraulic resistance of the valve is an increasing function of the distance between the two objects so that the desired hydraulic loss coefficient as a function of flow rate is obtained without variation in the flow area.

  6. Higher-than-ballistic conduction of viscous electron flows.

    PubMed

    Guo, Haoyu; Ilseven, Ekin; Falkovich, Gregory; Levitov, Leonid S

    2017-03-21

    Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer's ballistic limit [Formula: see text] The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at [Formula: see text] but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation [Formula: see text], where the viscous contribution [Formula: see text] dominates over [Formula: see text] in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics.

  7. Isolating causal pathways between flow and fish in the regulated river hierarchy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.

    Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less

  8. Isolating causal pathways between flow and fish in the regulated river hierarchy

    DOE PAGES

    McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.; ...

    2015-07-07

    Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers focus on improving flow conditions in conjunction with temperature and substrate restoration.« less

  9. Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faria, Gisele; Cardoso, Cristina R.B.; Department of Biological Sciences, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais

    Chlorhexidine (CHX), widely used as antiseptic and therapeutic agent in medicine and dentistry, has a toxic effect both in vivo and in vitro. The intrinsic mechanism underlying CHX-induced cytotoxicity in eukaryotic cells is, however, still unknown. A recent study from our laboratory has suggested that CHX may induce death in cultured L929 fibroblasts via endoplasmic reticulum (ER) stress. This hypothesis was further tested by means of light and electron microscopy, quantification of apoptosis and necrosis by flow cytometry, fluorescence visualization of the cytoskeleton and endoplasmic reticulum, and evaluation of the expression of 78-kDa glucose-regulated protein 78 (Grp78), a marker ofmore » activation of the unfolded protein response (UPR) in cultured L929 fibroblasts. Our finding showing increased Grp 78 expression in CHX-treated cells and the results of flow cytometry, cytoskeleton and endoplasmic reticulum fluorescence visualization, and scanning and transmission electron microscopy allowed us to suggest that CHX elicits accumulation of proteins in the endoplasmic reticulum, which causes ER overload, resulting in ER stress and cell death either by necrosis or apoptosis. It must be pointed out, however, that this does not necessarily mean that ER stress is the only way that CHX kills L929 fibroblasts, but rather that ER stress is an important target or indicator of cell death induced by this drug.« less

  10. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  11. Initiation with an electron beam of chemical reactions of interest for visible wavelength lasers

    NASA Technical Reports Server (NTRS)

    Whittier, J. S.; Cool, T. A.

    1976-01-01

    A description is given of the first results obtained with a new shock tube-electron beam facility designed to provide a versatile means for the systematic search for laser operation among several candidate metal atom-oxidizer systems. According to the current experimental approach, metal atoms are obtained in the vapor phase by the dissociation of metal compounds. A shock tube is employed to provide a short duration flow through an array of 29 supersonic flow-mixing nozzles. A high energy electron accelerator is used for the rapid initiation of chemical reaction in a mixed flow of encapsulated metal and oxidizer.

  12. Regulation of increased blood flow (hyperemia) to muscles during exercise: a hierarchy of competing physiological needs.

    PubMed

    Joyner, Michael J; Casey, Darren P

    2015-04-01

    This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans. Copyright © 2015 the American Physiological Society.

  13. Regulation of Increased Blood Flow (Hyperemia) to Muscles During Exercise: A Hierarchy of Competing Physiological Needs

    PubMed Central

    Joyner, Michael J.; Casey, Darren P.

    2015-01-01

    This review focuses on how blood flow to contracting skeletal muscles is regulated during exercise in humans. The idea is that blood flow to the contracting muscles links oxygen in the atmosphere with the contracting muscles where it is consumed. In this context, we take a top down approach and review the basics of oxygen consumption at rest and during exercise in humans, how these values change with training, and the systemic hemodynamic adaptations that support them. We highlight the very high muscle blood flow responses to exercise discovered in the 1980s. We also discuss the vasodilating factors in the contracting muscles responsible for these very high flows. Finally, the competition between demand for blood flow by contracting muscles and maximum systemic cardiac output is discussed as a potential challenge to blood pressure regulation during heavy large muscle mass or whole body exercise in humans. At this time, no one dominant dilator mechanism accounts for exercise hyperemia. Additionally, complex interactions between the sympathetic nervous system and the microcirculation facilitate high levels of systemic oxygen extraction and permit just enough sympathetic control of blood flow to contracting muscles to regulate blood pressure during large muscle mass exercise in humans. PMID:25834232

  14. Self-generated zonal flows in the plasma turbulence driven by trapped-ion and trapped-electron instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drouot, T.; Gravier, E.; Reveille, T.

    This paper presents a study of zonal flows generated by trapped-electron mode and trapped-ion mode micro turbulence as a function of two plasma parameters—banana width and electron temperature. For this purpose, a gyrokinetic code considering only trapped particles is used. First, an analytical equation giving the predicted level of zonal flows is derived from the quasi-neutrality equation of our model, as a function of the density fluctuation levels and the banana widths. Then, the influence of the banana width on the number of zonal flows occurring in the system is studied using the gyrokinetic code. Finally, the impact of themore » temperature ratio T{sub e}/T{sub i} on the reduction of zonal flows is shown and a close link is highlighted between reduction and different gyro-and-bounce-average ion and electron density fluctuation levels. This reduction is found to be due to the amplitudes of gyro-and-bounce-average density perturbations n{sub e} and n{sub i} gradually becoming closer, which is in agreement with the analytical results given by the quasi-neutrality equation.« less

  15. Gas Control System for HEAO-B

    NASA Technical Reports Server (NTRS)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  16. Development of an activated carbon-packed microbial bioelectrochemical system for azo dye degradation.

    PubMed

    Cardenas-Robles, Arely; Martinez, Eduardo; Rendon-Alcantar, Idelfonso; Frontana, Carlos; Gonzalez-Gutierrez, Linda

    2013-01-01

    A microbial bioelectrochemical reactor (BER) was employed for the degradation of azo dyes without the use of an external electron donor, using activated carbon (GAC) as a redox mediator. Contribution of pH values, open circuit potential (OCP), dye concentration and applied current were individually studied. A batch system and an upflow fixed bed bioreactor were built for analyzing the effect of the applied current on biodegradation of the azo dye Reactive Red 272. The presence of GAC (20% w/v) regulated both pH and OCP values in solution and led to a removal efficiency of 98%. Cyclic voltammetry results indicate a dependence of the electron transfer mechanism with the concentration of the azo compound. With these results, a continuous flow reactor operating with J=0.045 mA cm(-2), led to removal rates of 95% (± 3.5%) in a half-residence time of 1 hour. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Electron Energization and Mixing Observed by MMS in the Vicinity of an Electron Diffusion Region During Magnetopause Reconnection

    NASA Technical Reports Server (NTRS)

    Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John; hide

    2016-01-01

    Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.

  18. Electron energization and mixing observed by MMS in the vicinity of an electron diffusion region during magnetopause reconnection

    NASA Astrophysics Data System (ADS)

    Chen, Li-Jen; Hesse, Michael; Wang, Shan; Gershman, Daniel; Ergun, Robert; Pollock, Craig; Torbert, Roy; Bessho, Naoki; Daughton, William; Dorelli, John; Giles, Barbara; Strangeway, Robert; Russell, Christopher; Khotyaintsev, Yuri; Burch, Jim; Moore, Thomas; Lavraud, Benoit; Phan, Tai; Avanov, Levon

    2016-06-01

    Measurements from the Magnetospheric Multiscale (MMS) mission are reported to show distinct features of electron energization and mixing in the diffusion region of the terrestrial magnetopause reconnection. At the ion jet and magnetic field reversals, distribution functions exhibiting signatures of accelerated meandering electrons are observed at an electron out-of-plane flow peak. The meandering signatures manifested as triangular and crescent structures are established features of the electron diffusion region (EDR). Effects of meandering electrons on the electric field normal to the reconnection layer are detected. Parallel acceleration and mixing of the inflowing electrons with exhaust electrons shape the exhaust flow pattern. In the EDR vicinity, the measured distribution functions indicate that locally, the electron energization and mixing physics is captured by two-dimensional reconnection, yet to account for the simultaneous four-point measurements, translational invariant in the third dimension must be violated on the ion-skin-depth scale.

  19. Cytochrome b 6 f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow.

    PubMed

    Dumas, Louis; Chazaux, Marie; Peltier, Gilles; Johnson, Xenie; Alric, Jean

    2016-09-01

    Both the structure and the protein composition of thylakoid membranes have an impact on light harvesting and electron transfer in the photosynthetic chain. Thylakoid membranes form stacks and lamellae where photosystem II and photosystem I localize, respectively. Light-harvesting complexes II can be associated to either PSII or PSI depending on the redox state of the plastoquinone pool, and their distribution is governed by state transitions. Upon state transitions, the thylakoid ultrastructure and lateral distribution of proteins along the membrane are subject to significant rearrangements. In addition, quinone diffusion is limited to membrane microdomains and the cytochrome b 6 f complex localizes either to PSII-containing grana stacks or PSI-containing stroma lamellae. Here, we discuss possible similarities or differences between green algae and C3 plants on the functional consequences of such heterogeneities in the photosynthetic electron transport chain and propose a model in which quinones, accepting electrons either from PSII (linear flow) or NDH/PGR pathways (cyclic flow), represent a crucial control point. Our aim is to give an integrated description of these processes and discuss their potential roles in the balance between linear and cyclic electron flows.

  20. Go with the Flow: Cerebrospinal Fluid Flow Regulates Neural Stem Cell Proliferation.

    PubMed

    Kaneko, Naoko; Sawamoto, Kazunobu

    2018-06-01

    Adult neural stem cells in the wall of brain ventricles make direct contact with cerebrospinal fluid. In this issue of Cell Stem Cell, Petrik et al. (2018) demonstrate that these neural stem cells sense the flow of cerebrospinal fluid through a transmembrane sodium channel, ENaC, which regulates their proliferation. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Feedback regulated induction heater for a flowing fluid

    DOEpatents

    Migliori, Albert; Swift, Gregory W.

    1985-01-01

    A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable proportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005.degree. C. at a flow rate of 50 cm.sup.3 /second with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

  2. Feedback regulated induction heater for a flowing fluid

    DOEpatents

    Migliori, A.; Swift, G.W.

    1984-06-13

    A regulated induction heater for heating a stream of flowing fluid to a predetermined desired temperature. The heater includes a radiofrequency induction coil which surrounds a glass tube through which the fluid flows. A heating element consisting of a bundle of approximately 200 stainless steel capillary tubes located within the glass tube couples the output of the induction coil to the fluid. The temperature of the fluid downstream from the heating element is sensed with a platinum resistance thermometer, the output of which is applied to an adjustable porportional and integral feedback control circuit which regulates the power applied to the induction coil. The heater regulates the fluid temperature to within 0.005/sup 0/C at a flow rate of 50 cm/sup 3//sec with a response time of less than 0.1 second, and can accommodate changes in heat load up to 1500 watts.

  3. Fuel cell membrane hydration and fluid metering

    DOEpatents

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  4. Three dimensional instabilities of an electron scale current sheet in collisionless magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Neeraj; Büchner, Jörg; Max Planck Institute for Solar System Research, Justus-Von-Liebig-Weg-3, Göttingen

    In collisionless magnetic reconnection, electron current sheets (ECS) with thickness of the order of an electron inertial length form embedded inside ion current sheets with thickness of the order of an ion inertial length. These ECS's are susceptible to a variety of instabilities which have the potential to affect the reconnection rate and/or the structure of reconnection. We carry out a three dimensional linear eigen mode stability analysis of electron shear flow driven instabilities of an electron scale current sheet using an electron-magnetohydrodynamic plasma model. The linear growth rate of the fastest unstable mode was found to drop with themore » thickness of the ECS. We show how the nature of the instability depends on the thickness of the ECS. As long as the half-thickness of the ECS is close to the electron inertial length, the fastest instability is that of a translational symmetric two-dimensional (no variations along flow direction) tearing mode. For an ECS half thickness sufficiently larger or smaller than the electron inertial length, the fastest mode is not a tearing mode any more and may have finite variations along the flow direction. Therefore, the generation of plasmoids in a nonlinear evolution of ECS is likely only when the half-thickness is close to an electron inertial length.« less

  5. Azimuthal ExB drift of electrons induced by the radial electric field flowing through a longitudinal magnetic channel with non-magnetized ions

    NASA Astrophysics Data System (ADS)

    Akatsuka, Hiroshi; Takeda, Jun; Nezu, Atsushi

    2016-09-01

    To examine of the effect of the radial electric field on the azimuthal electron motion under E × B field for plasmas with magnetized electrons and non-magnetized ions, an experimental study is conducted by a stationary plasma flow. The argon plasma flow is generated by a DC arc generator under atmospheric pressure, followed by a cw expansion into a rarefied gas-wind tunnel with a uniform magnetic field 0 . 16 T. Inside one of the magnets, we set a ring electrode to apply the radial electric field. We applied an up-down probe for the analysis of the electron motion, where one of the tips is also used as a Langmuir probe to measure electron temperature, density and the space potential. We found that the order of the radial electric field is about several hundred V/m, which should be caused by the difference in the magnetization between electrons and ions. Electron saturation current indicates the existence of the E × B rotation of electrons, whose order is about 2000 - 4000 m/s. The order of the observed electron drift velocity is consistent with the theoretical value calculated from the applied magnetic field and the measured electric field deduced from the space potential.

  6. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.

    PubMed

    Han, Chuang; Quan, Quan; Chen, Hao Ming; Sun, Yugang; Xu, Yi-Jun

    2017-04-01

    Surface plasmon resonance (SPR)-mediated photocatalysis without the bandgap limitations of traditional semiconductor has aroused significant attention in solar-to-chemical energy conversion. However, the photocatalytic efficiency barely initiated by the SPR effects is still challenged by the low concentration and ineffective extraction of energetic hot electrons, slow charge migration rates, random charge diffusion directions, and the lack of highly active sites for redox reactions. Here, the tunable, progressive harvesting of visible-to-near infrared light (vis-NIR, λ > 570 nm) by designing plasmonic Au nanorods and metal (Au, Ag, or Pt) nanoparticle codecorated 1D CdS nanowire (1D CdS NW) ensemble is reported. The intimate integration of these metal nanostructures with 1D CdS NWs promotes the extraction and manipulated directional separation and migration of hot charge carriers in a more effective manner. Such cooperative synergy with tunable control of interfacial interaction, morphology optimization, and cocatalyst strategy results in the distinctly boosted performance for vis-NIR-driven plasmonic photocatalysis. This work highlights the significance of rationally progressive design of plasmonic metal-semiconductor-based composite system for boosting the regulated directional flow of hot charge carrier and thus the more efficient use of broad-spectrum solar energy conversion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 77 FR 76426 - Payout Requirements for Type III Supporting Organizations That Are Not Functionally Integrated

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-28

    ... Federal Register also serves as the text of these proposed regulations. DATES: Written or electronic... Organizations''). Those regulations reflect changes to the law made by the Pension Protection Act of 2006... regulations are adopted as final regulations, consideration will be given to any electronic comments or...

  8. Extension of the Mott-Gurney Law for a Bilayer Gap

    NASA Astrophysics Data System (ADS)

    Dubinov, A. E.; Kitayev, I. N.

    2018-04-01

    Steady drift states of an electron flow in a planar gap filled with a bilayer dielectric have been considered. Exact mathematical formulas have been derived that describe the distributions of the electrostatic potential and space charge limited electron flow current (extended Mott-Gurney law for a bilayer diode).

  9. Compare Vehicle Technologies | Transportation Research | NREL

    Science.gov Websites

    electric car diagramming energy storage, power electronics, and climate control components, as well as storage, power electronics, and climate control components, as well as energy flow among components. 3-D control components, as well as energy flow among components. 3-D illustration of electric car diagramming

  10. Flow Synthesis of Diaryliodonium Triflates

    PubMed Central

    2017-01-01

    A safe and scalable synthesis of diaryliodonium triflates was achieved using a practical continuous-flow design. A wide array of electron-rich to electron-deficient arenes could readily be transformed to their respective diaryliodonium salts on a gram scale, with residence times varying from 2 to 60 s (44 examples). PMID:28695736

  11. Integrated control system and method

    DOEpatents

    Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin

    2013-10-29

    An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.

  12. Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle

    PubMed Central

    Ross-Elliott, Timothy J; Jensen, Kaare H; Haaning, Katrine S; Wager, Brittney M; Knoblauch, Jan; Howell, Alexander H; Mullendore, Daniel L; Monteith, Alexander G; Paultre, Danae; Yan, Dawei; Otero, Sofia; Bourdon, Matthieu; Sager, Ross; Lee, Jung-Youn; Helariutta, Ykä; Knoblauch, Michael; Oparka, Karl J

    2017-01-01

    In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here, we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of ‘funnel plasmodesmata’. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as ‘batch unloading’. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots. DOI: http://dx.doi.org/10.7554/eLife.24125.001 PMID:28230527

  13. 48 CFR 4.502 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Policy. 4.502 Section 4.502 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION GENERAL ADMINISTRATIVE MATTERS Electronic Commerce in Contracting 4.502 Policy. (a) The Federal Government shall use electronic...

  14. Multiscale interaction between a large scale magnetic island and small scale turbulence

    NASA Astrophysics Data System (ADS)

    Choi, M. J.; Kim, J.; Kwon, J.-M.; Park, H. K.; In, Y.; Lee, W.; Lee, K. D.; Yun, G. S.; Lee, J.; Kim, M.; Ko, W.-H.; Lee, J. H.; Park, Y. S.; Na, Y.-S.; Luhmann, N. C., Jr.; Park, B. H.

    2017-12-01

    Multiscale interaction between the magnetic island and turbulence has been demonstrated through simultaneous two-dimensional measurements of turbulence and temperature and flow profiles. The magnetic island and turbulence can mutually interact via coupling between the electron temperature (T e ) gradient, the T e turbulence, and the poloidal flow. The T e gradient altered by the magnetic island steepens outside and flattens inside the island. The T e turbulence can appear in increased T e gradient regions. The combined effects of the T e gradient and the poloidal flow shear determines the two-dimensional distribution of the T e turbulence. When the poloidal vortex flow forms, it can maintain the steepest T e gradient and the magnetic island acts more like an electron heat transport barrier. Interestingly, when the T e gradient, the T e turbulence, and the vortex flow shear increase beyond critical levels, the magnetic island turns into a fast electron heat transport channel, which directly leads to the minor disruption.

  15. Water outlet control mechanism for fuel cell system operation in variable gravity environments

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo (Inventor); McCurdy, Kerri L. (Inventor); Bradley, Karla F. (Inventor)

    2007-01-01

    A self-regulated water separator provides centrifugal separation of fuel cell product water from oxidant gas. The system uses the flow energy of the fuel cell's two-phase water and oxidant flow stream and a regulated ejector or other reactant circulation pump providing the two-phase fluid flow. The system further uses a means of controlling the water outlet flow rate away from the water separator that uses both the ejector's or reactant pump's supply pressure and a compressibility sensor to provide overall control of separated water flow either back to the separator or away from the separator.

  16. Effect of electronic excitation on high-temperature flows behind strong shock waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Istomin, V. A.; Kustova, E. V.

    2014-12-09

    In the present paper, a strongly non-equilibrium one-dimensional steady-state flow behind the plane shock wave is studied. We consider a high-temperature chemically reacting five-component ionized mixture of nitrogen species (N{sub 2}/N{sub 2}{sup 2}/N/N{sup +}/e{sup −}) taking into account electronic degrees of freedom in N and N{sup +} (170 and 625 electronic energy levels respectively), and electronic-rotational-vibrational modes in N{sub 2} and N{sub 2}{sup +} (5 and 7 electronic terms). Non-equilibrium reactions of ionization, dissociation, recombination and charge-transfer are included to the kinetic scheme. The system of governing equations is written under the assumption that translation and internal energy relaxation ismore » fast whereas chemical reactions and ionization proceed on the macroscopic gas-dynamics time-scale. The developed model is applied to simulate the flow behind a plane shock wave under initial conditions characteristic for the spacecraft re-entry from an interplanetary flight (Hermes and Fire II experiments). Fluid-dynamic parameters behind the shock wave as well as transport coefficients and the heat flux are calculated for the (N{sub 2}/N{sub 2}{sup +}/N/N{sup +}/e{sup −}) mixture. The effect of electronic excitation on kinetics, dynamics and heat transfer is analyzed. Whereas the contribution of electronic degrees of freedom to the flow macroparameters is negligible, their influence on the heat flux is found to be important under conditions of Hermes re-entry.« less

  17. Bio-medical flow sensor. [intrvenous procedures

    NASA Technical Reports Server (NTRS)

    Winkler, H. E. (Inventor)

    1981-01-01

    A bio-medical flow sensor including a packageable unit of a bottle, tubing and hypodermic needle which can be pre-sterilized and is disposable. The tubing has spaced apart tubular metal segments. The temperature of the metal segments and fluid flow therein is sensed by thermistors and at a downstream location heat is input by a resistor to the metal segment by a control electronics. The fluids flow and the electrical power required for the resisto to maintain a constant temperature differential between the tubular metal segments is a measurable function of fluid flow through the tubing. The differential temperature measurement is made in a control electronics and also can be used to control a flow control valve or pump on the tubing to maintain a constant flow in the tubing and to shut off the tubing when air is present in the tubing.

  18. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities formore » each plasma flow are determined.« less

  19. A Real-Time Fast-Flow Tube Study of VOC and Particulate Emissions from Electronic, Potentially Reduced-Harm, Conventional, and Reference Cigarettes

    PubMed Central

    Blair, Sandra L.; Epstein, Scott A.; Nizkorodov, Sergey A.; Staimer, Norbert

    2015-01-01

    Tobacco-free electronic cigarettes (e-cigarettes), which are currently not regulated by the FDA, have become widespread as a “safe” form of smoking. One approach to evaluate the potential toxicity of e-cigarettes and other types of potentially “reduced-harm” cigarettes is to compare their emissions of volatile organic compounds (VOCs), including reactive organic electrophillic compounds such as acrolein, and particulate matter to those of conventional and reference cigarettes. Our newly designed fast-flow tube system enabled us to analyze VOC composition and particle number concentration in real-time by promptly diluting puffs of mainstream smoke obtained from different brands of combustion cigarettes and e-cigarettes. A proton transfer reaction time-of-flight mass spectrometer (PTRMS) was used to analyze real-time cigarette VOC emissions with a 1 s time resolution. Particles were detected with a condensation particle counter (CPC). This technique offers real-time analysis of VOCs and particles in each puff without sample aging and does not require any sample pretreatment or extra handling. Several important determining factors in VOC and particle concentration were investigated: (1) puff frequency; (2) puff number; (3) tar content; (4) filter type. Results indicate that electronic cigarettes are not free from acrolein and acetaldehyde emissions and produce comparable particle number concentrations to those of combustion cigarettes, more specifically to the 1R5F reference cigarette. Unlike conventional cigarettes, which emit different amounts of particles and VOCs each puff, there was no significant puff dependence in the e-cigarette emissions. Charcoal filter cigarettes did not fully prevent the emission of acrolein and other VOCs. PMID:26726281

  20. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    DOEpatents

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  1. 48 CFR 311.7000 - Defining electronic information technology requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Defining electronic information technology requirements. 311.7000 Section 311.7000 Federal Acquisition Regulations System HEALTH... Accessibility Standards 311.7000 Defining electronic information technology requirements. HHS staff that define...

  2. 48 CFR 311.7000 - Defining electronic information technology requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Defining electronic information technology requirements. 311.7000 Section 311.7000 Federal Acquisition Regulations System HEALTH... Accessibility Standards 311.7000 Defining electronic information technology requirements. HHS staff that define...

  3. 48 CFR 311.7000 - Defining electronic information technology requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Defining electronic information technology requirements. 311.7000 Section 311.7000 Federal Acquisition Regulations System HEALTH... Accessibility Standards 311.7000 Defining electronic information technology requirements. HHS staff that define...

  4. 48 CFR 311.7000 - Defining electronic information technology requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Defining electronic information technology requirements. 311.7000 Section 311.7000 Federal Acquisition Regulations System HEALTH... Accessibility Standards 311.7000 Defining electronic information technology requirements. HHS staff that define...

  5. 48 CFR 311.7000 - Defining electronic information technology requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Defining electronic information technology requirements. 311.7000 Section 311.7000 Federal Acquisition Regulations System HEALTH... Accessibility Standards 311.7000 Defining electronic information technology requirements. HHS staff that define...

  6. 7 CFR 735.403 - Audits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Electronic Providers § 735.403... electronic data processing audit that meets the minimum requirements as provided in the applicable provider agreement. The electronic data processing audit will be used by DACO to evaluate current computer operations...

  7. 7 CFR 735.403 - Audits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Electronic Providers § 735.403... electronic data processing audit that meets the minimum requirements as provided in the applicable provider agreement. The electronic data processing audit will be used by DACO to evaluate current computer operations...

  8. Beaver herbivory of willow under two flow regimes: A comparative study on the Green and Yampa rivers

    USGS Publications Warehouse

    Breck, Stewart W.; Wilson, Kenneth R.; Andersen, Douglas C.

    2003-01-01

    The effect of flow regulation on plant-herbivore ecology has received very little attention, despite the fact that flow regulation can alter both plant and animal abundance and environmental factors that mediate interactions between them. To determine how regulated flows have impacted beaver (Castor canadensis) and sandbar willow (Salix exigua) ecology, we first quantified the abundance and mapped the spatial distribution of sandbar willow on alluvial sections of the flow-regulated Green River and free-flowing Yampa River in northwestern Colorado. We then established 16 and 15 plots (1 m × 2.7 m) in patches of willow on the Green and Yampa Rivers, respectively, to determine whether rates of beaver herbivory of willow differed between rivers (Green versus Yampa River), seasons (fall-winter versus spring-summer), and years (spring 1998-spring 1999 versus spring 1999-spring 2000). Areal extent of willow was similar on each river, but Green River willow patches were smaller and more numerous. Beavers cut more stems during fall and winter than spring and summer and cut over 6 times more stems (percentage basis) on the Green River than on the Yampa River. We attribute the between-river difference in herbivory to higher availability of willow, greater beaver density, and lower availability of young Fremont cottonwood (Populus deltoides subsp. wislizenii; an alternative food source) on the Green River. Flow regulation increased willow availability to beaver by promoting the formation of island patches that are continuously adjacent to water and feature a perimeter with a relatively high proportion of willow interfacing with water.

  9. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  10. Evolutionary sheath structure in magnetized collisionless plasma with electron inertia

    NASA Astrophysics Data System (ADS)

    Gohain, M.; Karmakar, P. K.

    2017-09-01

    A classical hydrodynamic model is methodologically formulated to see the equilibrium properties of a planar plasma sheath in two-component magnetized bounded plasma. It incorporates the weak but finite electron inertia instead of asymptotically inertialess electrons. The effects of the externally applied oblique (relative to the bulk plasma flow) magnetic field are judiciously accented. It is, for the sake of simplicity, assumed that the relevant physical parameters (plasma density, electrostatic potential, and flow velocity) vary only in a direction normal to the confining wall boundary. It is noticed for the first time that the derived Bohm condition for sheath formation is modified conjointly by the electron inertia, magnetic field, and field orientation. It is manifested that the electron inertia in the presence of plasma gyrokinetic effects slightly enhances the ion Mach threshold value (typically, M i0 ≥ 1.139) toward the sheath entrance. This flow supercriticality is in contrast with the heuristic formalism ( M i0 ≥ 1) for the zero-inertia electrons. A numerical illustrative scheme on the parametric sheath features on diverse nontrivial apposite arguments is constructed alongside ameliorative scope.

  11. Flow regulation and fragmentation imperil pelagic-spawning riverine fishes.

    PubMed

    Dudley, Robert K; Platania, Steven P

    2007-10-01

    Flow regulation and fragmentation of the world's rivers threaten the integrity of freshwater ecosystems and have resulted in the loss or decline of numerous fish species. Pelagic-spawning fishes (pelagophils) are thought to be particularly susceptible to river regulation because their early life stages (ichthyoplankton) drift until becoming free-swimming, although the extent of transport is largely unknown. Transport velocity and distance were determined for passively drifting particles, which mimicked physical properties of ichthyoplankton, in two large, regulated rivers (Rio Grande and Pecos River) of the arid Southwest United States. Particle drift data were incorporated into celerity-discharge equations (r2 > 0.90; P < 0.001), and reach-specific transport velocity was modeled as a function of discharge. Transport velocities of particles exceeded 0.7 m/s in all river reaches during typical spawning flows (i.e., reservoir releases or rainstorms) and were greatest in highly incised and narrow channel reaches. Mean transport distance of particles released in the Pecos River during sustained reservoir flows (141.1 km; 95% CI = 117.0-177.5 km) was significantly longer than during declining reservoir flows that mimicked a natural rainstorm (52.4 km; 95% CI = 48.8-56.5 km). Mean transport distance of particles in the Rio Grande during sustained reservoir flows was 138.7 km (95% CI = 131.0-147.2 km). There are 68 dams and 13 reservoirs that fragment habitats and regulate flow in the Rio Grande Basin (Rio Grande and Pecos River) in areas historically occupied by pelagophils. While the basin historically provided 4029 km of free-flowing riverine habitat, reservoir habitat now represents > 10% of the longitudinal distance. Only five unfragmented nonreservoir reaches > 100 km remain in the Rio Grande, and two remain in the Pecos River. Pelagophils were extirpated from all reservoirs and from nearly all short, fragmented reaches (< 100 km) of the Rio Grande Basin, but at least some fraction persisted in all longer reaches (> 100 km). The recovery and long-term persistence of pelagophils in regulated rivers, including those in this study, will likely depend on reestablishment and protection of long unfragmented reaches coupled with mimicry of the natural flow regime.

  12. Validation of Multitemperature Nozzle Flow Code

    NASA Technical Reports Server (NTRS)

    Park, Chul; Lee, Seung -Ho.

    1994-01-01

    A computer code nozzle in n-temperatures (NOZNT), which calculates one-dimensional flows of partially dissociated and ionized air in an expanding nozzle, is tested against three existing sets of experimental data taken in arcjet wind tunnels. The code accounts for the differences among various temperatures, i.e., translational-rotational temperature, vibrational temperatures of individual molecular species, and electron-electronic temperature, and the effects of impurities. The experimental data considered are (1) the spectroscopic emission data; (2) electron beam data on vibrational temperature; and (3) mass-spectrometric species concentration data. It is shown that the impurities are inconsequential for the arcjet flows, and the NOZNT code is validated by numerically reproducing the experimental data.

  13. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume II Yakima (Overview, Report, Appendices).

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamieson, Bob; Braatne, Jeffrey H.

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systemsmore » with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.« less

  14. 78 FR 35262 - Detection and Avoidance of Counterfeit Electronic Parts

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-12

    ... DEPARTMENT OF DEFENSE Defense Acquisition Regulations System [DFARS Case 2012-D055] Detection and Avoidance of Counterfeit Electronic Parts AGENCY: Defense Acquisition Regulations System, Department of... detection and avoidance coverage proposed to be included in the Defense Federal Acquisition Regulation...

  15. Quasi-exospheric heat flux of solar-wind electrons

    NASA Technical Reports Server (NTRS)

    Eviatar, A.; Schultz, M.

    1975-01-01

    Density, bulk-velocity, and heat-flow moments are calculated for truncated Maxwellian distributions representing the cool and hot populations of solar-wind electrons, as realized at the base of a hypothetical exosphere. The electrostatic potential is thus calculated by requiring charge quasi-neutrality and the absence of electrical current. Plasma-kinetic coupling of the cool-electron and proton bulk velocities leads to an increase in the electrostatic potential and a decrease in the heat-flow moment.

  16. National Dam Safety Program. Little Creek Reservoir Dam (Inventory Number VA 09506), James River Basin, James City County, Commonwealth of Virginia. Phase I Inspection Report.

    DTIC Science & Technology

    1981-02-01

    losses for the PMF were estimated at an initial loss of 1.0 inch and a constant loss rate of 0.05 inches per hour thereafter. 5.5 Reservoir Regulation ...Pertinent dam and reservoir data are shown in Table 1.1, paragraph 1.3.3. Regulation of flow from the reservoir is primarily an automatic function...Normal flows are maintained by the crest of the spillway riser at elevation 60.0 feet M.S.L. Some flow regulation can be exercised by the operation of

  17. Elevated CO2 causes changes in the photosynthetic apparatus of a toxic cyanobacterium, Cylindrospermopsis raciborskii.

    PubMed

    Pierangelini, Mattia; Stojkovic, Slobodanka; Orr, Philip T; Beardall, John

    2014-07-15

    We studied the physiological acclimation of growth, photosynthesis and CO2-concentrating mechanism (CCM) in Cylindrospermopsis raciborskii exposed to low (present day; L-CO2) and high (1300ppm; H-CO2) pCO2. Results showed that under H-CO2 the cell specific division rate (μc) was higher and the CO2- and light-saturated photosynthetic rates (Vmax and Pmax) doubled. The cells' photosynthetic affinity for CO2 (K0.5CO2) was halved compared to L-CO2 cultures. However, no significant differences were found in dark respiration rates (Rd), pigment composition and light harvesting efficiency (α). In H-CO2 cells, non-photochemical quenching (NPQ), associated with state transitions of the electron transport chain (ETC), was negligible. Simultaneously, a reorganisation of PSII features including antenna connectivity (JconPSIIα), heterogeneity (PSIIα/β) and effective absorption cross sectional area (σPSIIα/β) was observed. In relation to different activities of the CCM, our findings suggest that for cells grown under H-CO2: (1) there is down-regulation of CCM activity; (2) the ability of cells to use the harvested light energy is altered; (3) the occurrence of state transitions is likely to be associated with changes of electron flow (cyclic vs linear) through the ETC; (4) changes in PSII characteristics are important in regulating state transitions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  18. Biocompatible circuit-breaker chip for thermal management of biomedical microsystems

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Dahmardeh, Masoud; Takahata, Kenichi

    2015-05-01

    This paper presents a thermoresponsive micro circuit breaker for biomedical applications specifically targeted at electronic intelligent implants. The circuit breaker is micromachined to have a shape-memory-alloy cantilever actuator as a normally closed temperature-sensitive switch to protect the device of interest from overheating, a critical safety feature for smart implants including those that are electrothermally driven with wireless micro heaters. The device is fabricated in a size of 1.5  ×  2.0  ×  0.46 mm3 using biocompatible materials and a chip-based titanium package, exhibiting a nominal cold-state resistance of 14 Ω. The breaker rapidly enters the full open condition when the chip temperature exceeds 63 °C, temporarily breaking the circuit of interest to lower its temperature until chip temperature drops to 51 °C, at which the breaker closes the circuit to allow current to flow through it again, physically limiting the maximum temperature of the circuit. This functionality is tested in combination with a wireless resonant heater powered by radio-frequency electromagnetic radiation, demonstrating self-regulation of heater temperature. The developed circuit-breaker chip operates in a fully passive manner that removes the need for active sensor and circuitry to achieve temperature regulation in a target device, contributing to the miniaturization of biomedical microsystems including electronic smart implants where thermal management is essential.

  19. An organic self-regulating microfluidic system.

    PubMed

    Eddington, D T; Liu, R H; Moore, J S; Beebe, D J

    2001-12-01

    In this paper we present an organic feedback scheme that merges microfluidics and responsive materials to address several limitations of current microfluidic systems. By using in situ fabrication and by taking advantage of microscale phenomena (e.g., laminar flow, short diffusion times), we have demonstrated feedback control of the output pH in a completely organic system. The system autonomously regulates an output stream at pH 7 under a range of input flow conditions. A single responsive hydrogel component performs the functionality of traditional feedback system components. Vertically stacked laminar flow is used to improve the time response of the hydrogel actuator. A star shaped orifice is utilized to improve the flow characteristics of the membrane/orifice valve. By changing the chemistry of the hydrogel component, the system can be altered to regulate flow based on hydrogels sensitive to temperature, light, biological/molecular, and others.

  20. Method of Testing Oxygen Regulators

    NASA Technical Reports Server (NTRS)

    Sontag, Harcourt; Borlik, E L

    1935-01-01

    Oxygen regulators are used in aircraft to regulate automatically the flow of oxygen to the pilot from a cylinder at pressures ranging up to 150 atmospheres. The instruments are adjusted to open at an altitude of about 15,000 ft. and thereafter to deliver oxygen at a rate which increases with the altitude. The instruments are tested to determine the rate of flow of oxygen delivered at various altitudes and to detect any mechanical defects which may exist. A method of testing oxygen regulators was desired in which the rate of flow could be determined more accurately than by the test method previously used (reference 1) and by which instruments defective mechanically could be detected. The new method of test fulfills these requirements.

  1. Procedure for Implementing the Cross-Media Electronic Reporting Regulation (CROMERR) for EPA and Co-Regulator Systems

    EPA Pesticide Factsheets

    This procedure describes how to apply for and obtain approval of electronic reporting systems used to receive electronic documents in lieu of paper where the report is made pursuant to requirements or authority codified in CFR 40.

  2. Circadian changes in uterine artery and ovarian stromal blood flow after pituitary down-regulation.

    PubMed

    Chan, Carina C W; Ng, Ernest H Y; Tang, Oi-Shan; Ho, Pak-Chung

    2005-09-01

    To investigate changes in the uterine artery and ovarian stromal blood flow in relation to the time of the day after pituitary down-regulation during in vitro fertilization treatment. Thirteen women were recruited. The uterine artery blood flow was studied using pulsed color Doppler ultrasonography and the ovarian stromal blood flow was measured using three-dimensional power Doppler ultrasonography. Ultrasound scan examinations and blood pressure measurements were performed in the morning and evening. The diastolic and the mean arterial pressures were significantly higher in the evening. An increase in the uterine artery pulsatility index and resistance index in the evening was observed. The ovarian vascularization index, vascularization flow index, and right ovarian flow index were significantly lower in the evening. Despite the small sample size, we have demonstrated the presence of a diurnal change in uterine artery and ovarian stromal blood flow after pituitary down-regulation. Such changes may be related to the systemic change in the sympathetic system and hence vascular resistance. Future study regarding ovarian stromal blood flow should take into account the effect of the time of the day on the readings in order to avoid misleading interpretation of data.

  3. Mammary blood flow regulation in the nursing rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, M.; Creasy, R.K.

    Cardiac output and mammary blood flow distribution prior to and after suckling were studied in 10 nursing rabbits by means of radionuclide-labeled microspheres. Suckling was followed by a 5.8% rise in cardiac output and a 20.4% rise in mammary blood flow. Determinations of intraglandular blood flow distribution have shown that there was a 43% increase in blood flow to the glands suckled from as compared to a 22.7% rise to the contralateral untouched glands and a 4.9% rise in the remainder of untouched glands. The conclusion is that a local mechanism may be involved in the regulation of mammary bloodmore » flow in the nursing rabbit.« less

  4. A model of the saturation of coupled electron and ion scale gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staebler, Gary M.; Howard, Nathan T.; Candy, Jeffrey M.

    A new paradigm of zonal flow mixing as the mechanism by which zonal E × B fluctuations impact the saturation of gyrokinetic turbulence has recently been deduced from the nonlinear 2D spectrum of electric potential fluctuations in gyrokinetic simulations. These state of the art simulations span the physical scales of both ion and electron turbulence. It was found that the zonal flow mixing rate, rather than zonal flow shearing rate, competes with linear growth at both electron and ion scales. A model for saturation of the turbulence by the zonal flow mixing was developed and applied to the quasilinear trappedmore » gyro-Landau fluid transport model (TGLF). The first validation tests of the new saturation model are reported in this paper with data from L-mode and high-β p regime discharges from the DIII-D tokamak. Lastly, the shortfall in the predicted L-mode edge electron energy transport is improved with the new saturation model for these discharges but additional multiscale simulations are required in order to verify the safety factor and collisionality dependencies found in the modeling.« less

  5. A model of the saturation of coupled electron and ion scale gyrokinetic turbulence

    DOE PAGES

    Staebler, Gary M.; Howard, Nathan T.; Candy, Jeffrey M.; ...

    2017-05-09

    A new paradigm of zonal flow mixing as the mechanism by which zonal E × B fluctuations impact the saturation of gyrokinetic turbulence has recently been deduced from the nonlinear 2D spectrum of electric potential fluctuations in gyrokinetic simulations. These state of the art simulations span the physical scales of both ion and electron turbulence. It was found that the zonal flow mixing rate, rather than zonal flow shearing rate, competes with linear growth at both electron and ion scales. A model for saturation of the turbulence by the zonal flow mixing was developed and applied to the quasilinear trappedmore » gyro-Landau fluid transport model (TGLF). The first validation tests of the new saturation model are reported in this paper with data from L-mode and high-β p regime discharges from the DIII-D tokamak. Lastly, the shortfall in the predicted L-mode edge electron energy transport is improved with the new saturation model for these discharges but additional multiscale simulations are required in order to verify the safety factor and collisionality dependencies found in the modeling.« less

  6. Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases.

    PubMed

    Yoshizumi, Masanori; Abe, Jun-Ichi; Tsuchiya, Koichiro; Berk, Bradford C; Tamaki, Toshiaki

    2003-03-01

    Atherosclerosis preferentially occurs in areas of turbulent blood flow and low fluid shear stress, whereas laminar blood flow and high shear stress are atheroprotective. Inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-alpha), stimulate expression of endothelial cell (EC) genes that may promote atherosclerosis. Recent findings suggest a steady laminar blood flow decreases EC apoptosis and inhibits TNF-mediated EC activation. EC apoptosis or activation is suggested to be involved in plaque erosion, which may lead to platelet aggregation. TNF-alpha regulates gene expression in ECs, in part, by stimulating mitogen-activated protein (MAP) kinases, which phosphorylate transcription factors. We hypothesized that steady laminar flow inhibits cytokine-mediated activation of MAP kinases in ECs. To test this hypothesis, we determined the effects of steady laminar flow (shear stress = 12 dynes/cm(2)) on TNF-alpha-stimulated activity of three MAP kinases in human umbilical vein ECs (HUVEC): extracellular signal-regulated kinase (ERK1/2), c-Jun N-terminal kinase (JNK), and p38. TNF-alpha activated ERK1/2, JNK, and p38 maximally at 15 min in HUVEC. Pre-exposing HUVEC for 10 min to flow inhibited TNF-alpha activation of JNK, but showed no significant effect on ERK1/2 or p38 activation. Incubation of HUVEC with PD98059, a specific ERK1/2 inhibitor, blocked the flow-mediated inhibition of TNF activation of JNK. Transfection studies with dominant-negative constructs of the protein kinase MEK5 suggested an important role for big mitogen-activated protein kinase 1 (BMK1) in flow-mediated regulation of EC activation by TNF-alpha. Understanding the mechanisms by which steady laminar flow regulates JNK activation by cytokines may provide insight into the atheroprotective mechanisms induced by laminar blood flow.

  7. Photochemical Synthesis of Complex Carbazoles: Evaluation of Electronic Effects in Both UV- and Visible-Light Methods in Continuous Flow.

    PubMed

    Hernandez-Perez, Augusto C; Caron, Antoine; Collins, Shawn K

    2015-11-09

    An evaluation of both a visible-light- and UV-light-mediated synthesis of carbazoles from various triarylamines with differing electronic properties under continuous-flow conditions has been conducted. In general, triarylamines bearing electron-rich groups tend to produce higher yields than triarylamines possessing electron-withdrawing groups. The incorporation of nitrogen-based heterocycles, as well as halogen-containing arenes in carbazole skeletons, was well tolerated, and often synthetically useful complementarity was observed between the UV-light and visible-light (photoredox) methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Temporal and spatial scales of geomorphic adjustments to reduced competency following flow regulation in bedload-dominated systems

    NASA Astrophysics Data System (ADS)

    Curtis, Katherine E.; Renshaw, Carl E.; Magilligan, Francis J.; Dade, William B.

    2010-05-01

    Because of the combined effects of reduced sediment transport capacity and competency following flow regulation, morphological changes are expected to occur in channels downstream from dams and, specifically, at tributary junctions where local inputs of water and sediment occur. Using a combination of historical aerial photographs, mainstem- and tributary-channel pebble counts, and HEC-RAS flow modeling for two watersheds in south-central VT, one unregulated and the other regulated since 1961, we document the time series of post-regulation channel narrowing and associated bar growth due to the influx of tributary sediment. Channel adjustments at regulated tributary junctions have been significant in ca. 50 years following impoundment, with channels downstream of the confluences narrowing over 15% after an initial ca. 20-year lag before the onset of accelerated narrowing. Moreover, flow modeling suggests that downstream of regulated confluences, the modern median grain size ( d50) along the channel bed is immobile. No significant channel narrowing has occurred either above or below unregulated tributary junctions or on the mainstem upstream of regulated confluences. However, greater channel sediment fining is observed upstream of regulated confluences than above unregulated confluences. Thus, the primary mode of mainstem channel adjustment differs up- and downstream of regulated tributaries. These confluence effects have occurred where the tributary drainage area is only 0.2 times that of the mainstem, well below the threshold ratio of 0.6 required for significant geomorphic effects at unregulated confluences, highlighting the geomorphic scale shift of dams. Lastly, we evaluate the downstream length required for a river to recover from the impacts of impoundment and demonstrate that even distal locations are impacted by flow regulation. Unlike the impacts of flow regulation in the western US where channel incision and bar erosion predominate following impoundment, we find that in situations where bed incision is minimal and where sediment loads are low but bed caliber high, bar growth and channel narrowing are significant adjustments at tributary junctions following impoundment. Therefore, at our sites the effects of dams on reduced competency may be more profound than on reduced sediment transport capacity, highlighting the importance of geologic and geomorphic settings in understanding fluvial responses to impoundment.

  9. Dynamic hydro-climatic networks in pristine and regulated rivers

    NASA Astrophysics Data System (ADS)

    Botter, G.; Basso, S.; Lazzaro, G.; Doulatyari, B.; Biswal, B.; Schirmer, M.; Rinaldo, A.

    2014-12-01

    Flow patterns observed at-a-station are the dynamical byproduct of a cascade of processes involving different compartments of the hydro-climatic network (e.g., climate, rainfall, soil, vegetation) that regulates the transformation of rainfall into streamflows. In complex branching rivers, flow regimes result from the heterogeneous arrangement around the stream network of multiple hydrologic cascades that simultaneously occur within distinct contributing areas. As such, flow regimes are seen as the integrated output of a complex "network of networks", which can be properly characterized by its degree of temporal variability and spatial heterogeneity. Hydrologic networks that generate river flow regimes are dynamic in nature. In pristine rivers, the time-variance naturally emerges at multiple timescales from climate variability (namely, seasonality and inter-annual fluctuations), implying that the magnitude (and the features) of the water flow between two nodes may be highly variable across different seasons and years. Conversely, the spatial distribution of river flow regimes within pristine rivers involves scale-dependent transport features, as well as regional climatic and soil use gradients, which in small and meso-scale catchments (A < 103 km2) are usually mild enough to guarantee quite uniform flow regimes and high spatial correlations. Human-impacted rivers, instead, constitute hybrid networks where observed spatio-temporal patterns are dominated by anthropogenic shifts, such as landscape alterations and river regulation. In regulated rivers, the magnitude and the features of water flows from node to node may change significantly through time due to damming and withdrawals. However, regulation may impact river regimes in a spatially heterogeneous manner (e.g. in localized river reaches), with a significant decrease of spatial correlations and network connectivity. Provided that the spatial and temporal dynamics of flow regimes in complex rivers may strongly impact important biotic processes involved in the river food web (e.g. biofilm and riparian vegetation dynamics), the study of rivers as dynamic networks provides important clues to water management strategies and freshwater ecosystem studies.

  10. Full Freedom of Expression for the Media.

    ERIC Educational Resources Information Center

    Packwood, Bob

    1984-01-01

    While print media are protected by the First Amendment, the electronic media are subject to content regulations. Gives an historical overview, showing how the Federal Communications Commission came to regulate radio. There should be a constitutional solution, an amendment protecting electronic media from government regulations. (CS)

  11. Behavioral Regulations and Dispositional Flow in Exercise among American College Students Relative to Stages of Change and Gender

    ERIC Educational Resources Information Center

    Ersöz, Gözde; Eklund, Robert C.

    2017-01-01

    Objective: The purpose of this study was to examine behavioral regulations and dispositional flow in exercise among university students in terms of gender and stage of change. Participants: Data were collected from American college students (N = 257; M[subscript age] ± SD = 23.02 ± 4.05) in Spring 2013. Methods: Behavioral regulations and…

  12. Comparison of choroidal and optic nerve head blood flow regulation during changes in ocular perfusion pressure.

    PubMed

    Schmidl, Doreen; Boltz, Agnes; Kaya, Semira; Werkmeister, Rene; Dragostinoff, Nikolaus; Lasta, Michael; Polska, Elzbieta; Garhöfer, Gerhard; Schmetterer, Leopold

    2012-07-01

    We compared the response of choroidal and optic nerve head blood flow (ChBF, ONHBF) in response to an increase in ocular perfusion pressure (OPP) during isometric exercise and during a decrease in OPP during an artificial increase in intraocular pressure (IOP). We included 96 healthy subjects in our study. In 48 subjects OPP was increased by 6 minutes of squatting, and either ONHBF (n = 24) or ChBF (n = 24) was measured continuously. In 48 other healthy subjects either ONHBF (n = 24) or ChBF (n = 24) was measured continuously during a period of artificial increase in IOP using a suction cup. All blood flow measurements were done using laser Doppler flowmetry. During all experiments the response in blood flow was less pronounced than the response in OPP, indicating for flow regulation. During isometric exercise ChBF regulated better than ONHBF (P = 0.023). During artificial IOP increase ONHBF regulated better than ChBF (P = 0.001). Inter-individual variability in blood flow responses was high. During squatting ONHBF decreased considerably below baseline ONHBF when OPP fluctuated in 3 subjects, although OPP still was much higher than at baseline. This phenomenon was not observed in the choroid. Our data indicate that regulation of ChBF and ONHBF during changes in OPP is different and complex. In some subjects performing squatting, considerable ONHBF reductions were observed during OPP fluctuations, although OPP still was high. Whether this predisposes to ocular disease remains unclear.

  13. 78 FR 46005 - NPDES Electronic Reporting Rule

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-30

    ... reports, and enforcement responses is provided (i.e., electronic rather than paper-based), it does not... is proposing a regulation that would require electronic reporting for current paper-based NPDES....regulations.gov Web site is an ``anonymous access'' system, which means EPA will not know your identity or...

  14. Encouraging Self-Regulated Learning through Electronic Portfolios

    ERIC Educational Resources Information Center

    Abrami, Philip C.; Wade, C. Anne; Pillay, Vanitha; Aslan, Ofra; Bures, Eva M.; Bentley, Caitlin

    2008-01-01

    At the Centre for the Study of Learning and Performance (CSLP) at Concordia University in Montreal, Quebec, we have developed the Electronic Portfolio Encouraging Active Reflective Learning Software (ePEARL) to promote student self-regulation and enhance student core competencies. This paper summarizes the literature on electronic portfolios…

  15. 7 CFR 735.303 - Electronic warehouse receipts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Electronic warehouse receipts. 735.303 Section 735.303... AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Warehouse Receipts § 735.303 Electronic warehouse receipts. (a) Warehouse operators issuing EWR under the Act may issue EWR...

  16. 7 CFR 735.303 - Electronic warehouse receipts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Electronic warehouse receipts. 735.303 Section 735.303... AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Warehouse Receipts § 735.303 Electronic warehouse receipts. (a) Warehouse operators issuing EWR under the Act may issue EWR...

  17. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow

    PubMed Central

    Kulessa, Bernd; Hubbard, Alun L.; Booth, Adam D.; Bougamont, Marion; Dow, Christine F.; Doyle, Samuel H.; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A. W.; Jones, Glenn A.

    2017-01-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms. PMID:28835915

  18. Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow.

    PubMed

    Kulessa, Bernd; Hubbard, Alun L; Booth, Adam D; Bougamont, Marion; Dow, Christine F; Doyle, Samuel H; Christoffersen, Poul; Lindbäck, Katrin; Pettersson, Rickard; Fitzpatrick, Andrew A W; Jones, Glenn A

    2017-08-01

    The land-terminating margin of the Greenland Ice Sheet has slowed down in recent decades, although the causes and implications for future ice flow are unclear. Explained originally by a self-regulating mechanism where basal slip reduces as drainage evolves from low to high efficiency, recent numerical modeling invokes a sedimentary control of ice sheet flow as an alternative hypothesis. Although both hypotheses can explain the recent slowdown, their respective forecasts of a long-term deceleration versus an acceleration of ice flow are contradictory. We present amplitude-versus-angle seismic data as the first observational test of the alternative hypothesis. We document transient modifications of basal sediment strengths by rapid subglacial drainages of supraglacial lakes, the primary current control on summer ice sheet flow according to our numerical model. Our observations agree with simulations of initial postdrainage sediment weakening and ice flow accelerations, and subsequent sediment restrengthening and ice flow decelerations, and thus confirm the alternative hypothesis. Although simulated melt season acceleration of ice flow due to weakening of subglacial sediments does not currently outweigh winter slowdown forced by self-regulation, they could dominate over the longer term. Subglacial sediments beneath the Greenland Ice Sheet must therefore be mapped and characterized, and a sedimentary control of ice flow must be evaluated against competing self-regulation mechanisms.

  19. The demographic response of bank-dwelling beavers to flow regulation: A comparison on the Green and Yampa rivers

    USGS Publications Warehouse

    Breck, S.W.; Wilson, K.R.; Andersen, D.C.

    2001-01-01

    We assessed the effects of flow regulation on the demography of beavers (Castor canadensis) by comparing the density, home-range size, and body size of bank-dwelling beavers on two sixth-order alluvial river systems, the flow-regulated Green River and the free-flowing Yampa River, from 1997 to 2000. Flow regulation on the Green River has altered fluvial geomorphic processes, influencing the availability of willow and cottonwood, which, in turn, has influenced the demography of beavers. Beaver density was higher on the Green River (0.5–0.6 colonies per kilometre of river) than on the Yampa River (0.35 colonies per kilometre of river). Adult and subadult beavers on the Green River were in better condition, as indicated by larger body mass and tail size. There was no detectable difference in home-range size, though there were areas on the Yampa River that no beavers used. We attribute the improved habitat quality on the Green River to a greater availability of willow. We suggest that the sandy flats and sandbars that form during base flows and the ice cover that forms over winter on the Yampa River increase the energy expended by the beavers to obtain food and increase predation risk and thus lowers the availability of woody forage.

  20. Amount of water needed to save 1 m3 of water: life cycle assessment of a flow regulator

    NASA Astrophysics Data System (ADS)

    Berger, Markus; Söchtig, Michael; Weis, Christoph; Finkbeiner, Matthias

    2017-06-01

    Water saving devices in the sanitary equipment, such as flow regulators, are assumed to be environmentally advantageous even though their environmental benefit has never been compared to the environmental burden caused during their production und disposal. Therefore, a life cycle assessment according to ISO 14044 has been conducted to identify and quantify the environmental effects throughout the lifespan of a flow regulator. The analysis comprises the production of materials, manufacturing of components at suppliers, the assembly at NEOPERL®, all transports, savings of water and thermal energy during use as well as waste incineration including energy recovery in the end-of-life stage. Results show that the production of one flow regulator causes 0.12 MJ primary energy demand, a global warming potential of 5.9 g CO2-equivalent, and a water consumption of 30.3 ml. On the other hand, during a use of 10 years, it saves 19,231 MJ primary energy, 1223 kg CO2-equivalent, and avoids a water consumption of 790 l (166,200 l water use). Since local impacts of water consumption are more relevant than volumes, consequences of water consumption have been analyzed using recently developed impact assessment models. Accordingly, the production of a flow regulator causes 8.5 ml freshwater depletion, 1.4 × 10-13 disability adjusted life years, and 4.8 × 10-6 potentially disappeared fractions of species m2 a. Even though avoided environmental impacts resulting from water savings highly depend on the region where the flow regulator is used, the analysis has shown that environmental benefits are at least 15,000 times higher than impacts caused during the production.

  1. On the Electron Diffusion Region in Asymmetric Reconnection with a Guide Magnetic Field

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Liu, Yi-Hsin; Chen, Li-Jen; Bessho, Naoki; Kuznetsova, Masha; Birn, Joachim; Burch, James L.

    2016-01-01

    Particle-in-cell simulations in a 2.5-D geometry and analytical theory are employed to study the electron diffusion region in asymmetric reconnection with a guide magnetic field. The analysis presented here demonstrates that similar to the case without guide field, in-plane flow stagnation and null of the in-plane magnetic field are well separated. In addition, it is shown that the electric field at the local magnetic X point is again dominated by inertial effects, whereas it remains dominated by nongyrotropic pressure effects at the in-plane flow stagnation point. A comparison between local electron Larmor radii and the magnetic gradient scale lengths predicts that distribution should become nongyrotropic in a region enveloping both field reversal and flow stagnation points. This prediction is verified by an analysis of modeled electron distributions, which show clear evidence of mixing in the critical region.

  2. Validation of multi-temperature nozzle flow code NOZNT

    NASA Technical Reports Server (NTRS)

    Park, Chul; Lee, Seung-Ho

    1993-01-01

    A computer code NOZNT (Nozzle in n-Temperatures), which calculates one-dimensional flows of partially dissociated and ionized air in an expanding nozzle, is tested against five existing sets of experimental data. The code accounts for: a) the differences among various temperatures, i.e., translational-rotational temperature, vibrational temperatures of individual molecular species, and electron-electronic temperature, b) radiative cooling, and c) the effects of impurities. The experimental data considered are: 1) the sodium line reversal and 2) the electron temperature and density data, both obtained in a shock tunnel, and 3) the spectroscopic emission data, 4) electron beam data on vibrational temperature, and 5) mass-spectrometric species concentration data, all obtained in arc-jet wind tunnels. It is shown that the impurities are most likely responsible for the observed phenomena in shock tunnels. For the arc-jet flows, impurities are inconsequential and the NOZNT code is validated by numerically reproducing the experimental data.

  3. 78 FR 68981 - Electronic Retirement Processing

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-18

    ... in which a single key is used to sign and verify an electronic document. The single key (also known...-0299. SUPPLEMENTARY INFORMATION: On March 5, 2013, OPM published (at 78 FR 14233) proposed regulations... received no comments on the proposed regulations. Accordingly, we are now adopting the proposed regulations...

  4. 76 FR 39315 - Preliminary Plan for Retrospective Analysis of Existing Rules; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-06

    ...Rulemaking Portal: http://www.regulations.gov . Follow the instructions for submitting comments. Electronic...Rulemaking Portal at http://www.regulations.gov . Electronic submission of comments allows the commenter... for General Law, Ethics, and Regulation at [email protected] . SUPPLEMENTARY INFORMATION: On...

  5. Linking fish tolerance to water quality criteria for the assessment of environmental flows: A practical method for streamflow regulation and pollution control.

    PubMed

    Zhao, Changsen; Yang, Shengtian; Liu, Junguo; Liu, Changming; Hao, Fanghua; Wang, Zhonggen; Zhang, Huitong; Song, Jinxi; Mitrovic, Simon M; Lim, Richard P

    2018-05-15

    The survival of aquatic biota in stream ecosystems depends on both water quantity and quality, and is particularly susceptible to degraded water quality in regulated rivers. Maintenance of environmental flows (e-flows) for aquatic biota with optimum water quantity and quality is essential for sustainable ecosystem services, especially in developing regions with insufficient stream monitoring of hydrology, water quality and aquatic biota. Few e-flow methods are available that closely link aquatic biota tolerances to pollutant concentrations in a simple and practical manner. In this paper a new method was proposed to assess e-flows that aimed to satisfy the requirements of aquatic biota for both the quantity and quality of the streamflow by linking fish tolerances to water quality criteria, or the allowable concentration of pollutants. For better operation of water projects and control of pollutants discharged into streams, this paper presented two coefficients for streamflow adjustment and pollutant control. Assessment of e-flows in the Wei River, the largest tributary of the Yellow River, shows that streamflow in dry seasons failed to meet e-flow requirements. Pollutant influx exerted a large pressure on the aquatic ecosystem, with pollutant concentrations much higher than that of the fish tolerance thresholds. We found that both flow velocity and water temperature exerted great influences on the pollutant degradation rate. Flow velocity had a much greater influence on pollutant degradation than did the standard deviation of flow velocity. This study provides new methods to closely link the tolerance of aquatic biota to water quality criteria for e-flow assessment. The recommended coefficients for streamflow adjustment and pollutant control, to dynamically regulate streamflow and control pollutant discharge, are helpful for river management and ecosystems rehabilitation. The relatively low data requirement also makes the method easy to use efficiently in developing regions, and thus this study has significant implications for managing flows in polluted and regulated rivers worldwide. Copyright © 2018. Published by Elsevier Ltd.

  6. Restoring ecological integrity of great rivers: Historical hydrographs aid in defining reference conditions for the Missouri River

    USGS Publications Warehouse

    Galat, D.L.; Lipkin, R.

    2000-01-01

    Restoring the ecological integrity of regulated large rivers necessitates characterizing the natural flow regime. We applied 'Indicators of Hydrologic Alteration' to assess the natural range of variation of the Missouri River's flow regime at 11 locations before (1929-1948) and after (1967-1996) mainstem impoundment. The 3768 km long Missouri River was divided into three sections: upper basin least-altered from flow regulation, including the lower Yellowstone River; middle basin inter-reservoir, and lower basin channelized. Flow regulation was associated with a reduction in magnitude and duration of the annual flood pulse, an increase in magnitude and duration of annual discharge minima, a reduction in frequency of annual low-flow pulses, earlier timing of March-October low-flow pulses, and a general increase in frequency of flow reversals with a reduction in the rate of change in river flows. Hydrologic alterations were smallest at two least-altered upper-basin sites and most frequent and severe in inter-reservoir and upper-channelized river sections. The influence of reservoir operations on depressing the annual flood pulse was partially offset by tributary inflow in the lower 600 km of river. Reservoir operations could be modified to more closely approximate the 1929-1948 flow regime to establish a simulated natural riverine ecosystem. For inter-reservoir and upper channelized-river sections, we recommend periodic controlled flooding through managed reservoir releases during June and July; increased magnitude, frequency and duration of annual high-flow pulses; and increased annual rates of hydrograph rises and falls. All of the regulated Missouri River would benefit from reduced reservoir discharges during August-February, modified timing of reservoir releases and a reduced number of annual hydrograph reversals. Assessment of ecological responses to a reregulation of Missouri River flows that more closely approximates the natural flow regime should then be used in an adaptive fashion to further adjust reservoir operations.

  7. Quantum decoherence in electronic current flowing through carbon nanotubes induced by thermal atomic vibrations

    NASA Astrophysics Data System (ADS)

    Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro

    2018-06-01

    We theoretically investigate quantum decoherence in electronic currents flowing through metallic carbon nanotubes caused by thermal atomic vibrations using the time-dependent Schrödinger equation for an open system. We reveal that the quantum coherence of conduction electrons decays exponentially with tube length at a fixed temperature, and that the decay rate increases with temperature. We also find that the phase relaxation length due to the thermal atomic vibrations is inversely proportional to temperature.

  8. Interdomain electron transfer in cellobiose dehydrogenase is governed by surface electrostatics.

    PubMed

    Kadek, Alan; Kavan, Daniel; Marcoux, Julien; Stojko, Johann; Felice, Alfons K G; Cianférani, Sarah; Ludwig, Roland; Halada, Petr; Man, Petr

    2017-02-01

    Cellobiose dehydrogenase (CDH) is a fungal extracellular oxidoreductase which fuels lytic polysaccharide monooxygenase with electrons during cellulose degradation. Interdomain electron transfer between the flavin and cytochrome domain in CDH, preceding the electron flow to lytic polysaccharide monooxygenase, is known to be pH dependent, but the exact mechanism of this regulation has not been experimentally proven so far. To investigate the structural aspects underlying the domain interaction in CDH, hydrogen/deuterium exchange (HDX-MS) with improved proteolytic setup (combination of nepenthesin-1 with rhizopuspepsin), native mass spectrometry with ion mobility and electrostatics calculations were used. HDX-MS revealed pH-dependent changes in solvent accessibility and hydrogen bonding at the interdomain interface. Electrostatics calculations identified these differences to result from charge neutralization by protonation and together with ion mobility pointed at higher electrostatic repulsion between CDH domains at neutral pH. In addition, we uncovered extensive O-glycosylation in the linker region and identified the long-unknown exact cleavage point in papain-mediated domain separation. Transition of CDH between its inactive (open) and interdomain electron transfer-capable (closed) state is shown to be governed by changes in the protein surface electrostatics at the domain interface. Our study confirms that the interdomain electrostatic repulsion is the key factor modulating the functioning of CDH. The results presented in this paper provide experimental evidence for the role of charge repulsion in the interdomain electron transfer in cellobiose dehydrogenases, which is relevant for exploiting their biotechnological potential in biosensors and biofuel cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Effects of water flow regulation on ecosystem functioning in a Mediterranean river network assessed by wood decomposition.

    PubMed

    Abril, Meritxell; Muñoz, Isabel; Casas-Ruiz, Joan P; Gómez-Gener, Lluís; Barceló, Milagros; Oliva, Francesc; Menéndez, Margarita

    2015-06-01

    Mediterranean rivers are extensively modified by flow regulation practises along their courses. An important part of the river impoundment in this area is related to the presence of small dams constructed mainly for water abstraction purposes. These projects drastically modified the ecosystem morphology, transforming lotic into lentic reaches and increasing their alternation along the river. Hydro-morphologial differences between these reaches indicate that flow regulation can trigger important changes in the ecosystem functioning. Decomposition of organic matter is an integrative process and this complexity makes it a good indicator of changes in the ecosystem. The aim of this study was to assess the effect caused by flow regulation on ecosystem functioning at the river network scale, using wood decomposition as a functional indicator. We studied the mass loss from wood sticks during three months in different lotic and lentic reaches located along a Mediterranean river basin, in both winter and summer. Additionally, we identified the environmental factors affecting decomposition rates along the river orders. The results revealed differences in decomposition rates between sites in both seasons that were principally related to the differences between stream orders. The rates were mainly related to temperature, nutrient concentrations (NO2(-), NO3(2-)) and water residence time. High-order streams with higher temperature and nutrient concentrations exhibited higher decomposition rates compared with low-order streams. The effect of the flow regulation on the decomposition rates only appeared to be significant in high orders, especially in winter, when the hydrological characteristics of lotic and lentic habitats widely varied. Lotic reaches with lower water residence time exhibited greater decomposition rates compared with lentic reaches probably due to more physical abrasion and differences in the microbial assemblages. Overall, our study revealed that in high orders the reduction of flow caused by flow regulation affects the wood decomposition indicating changes in ecosystem functioning. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. 17 CFR 232.405 - Interactive Data File submissions and postings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Xbrl-Related Documents § 232... this section; or (ii) If the electronic filer is not an open-end management investment company...) If the electronic filer is an open-end management investment company registered under the Investment...

  11. 17 CFR 232.405 - Interactive Data File submissions and postings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COMMISSION REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Xbrl-Related Documents § 232... this section; or (ii) If the electronic filer is not an open-end management investment company...) If the electronic filer is an open-end management investment company registered under the Investment...

  12. 78 FR 49365 - Electronic Fund Transfers (Regulation E); Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... BUREAU OF CONSUMER FINANCIAL PROTECTION 12 CFR Part 1005 [Docket No. CFPB-2012-0050] RIN 3170-AA33 Electronic Fund Transfers (Regulation E); Correction AGENCY: Bureau of Consumer Financial Protection. ACTION... 2013 Final Rule, which along with three other final rules \\1\\ implements the Electronic Fund Transfer...

  13. The interaction of ultra-low-frequency pc3-5 waves with charged particles in Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Zong, Qiugang; Rankin, Robert; Zhou, Xuzhi

    2017-12-01

    One of the most important issues in space physics is to identify the dominant processes that transfer energy from the solar wind to energetic particle populations in Earth's inner magnetosphere. Ultra-low-frequency (ULF) waves are an important consideration as they propagate electromagnetic energy over vast distances with little dissipation and interact with charged particles via drift resonance and drift-bounce resonance. ULF waves also take part in magnetosphere-ionosphere coupling and thus play an essential role in regulating energy flow throughout the entire system. This review summarizes recent advances in the characterization of ULF Pc3-5 waves in different regions of the magnetosphere, including ion and electron acceleration associated with these waves.

  14. Embodiment design for a multipropellant resistojet

    NASA Technical Reports Server (NTRS)

    Bao, Johnny; Chilosi, Thierry; Goodwin, Jason; Mocio, Jim; Yeh, Bruce

    1993-01-01

    This document presents the design of a multipropellant resistojet to use as an auxiliary propulsion system on the Space Station. Such a system is necessary to counteract atmospheric drag effects encountered by the Station in its orbit. NASA specifications are strictly followed with emphasis on reliability, operating life, multipropellant capability, and exhaust emission control. Several design variants are considered, and the final solution is a resistojet with an electronic pressure regulator, variable control, an internal flow heater, and a conical nozzle. To construct the resistojet, the important components are resolved independently and then integrated with secondary units. The document also includes engineering drawings of the final design with assembly instructions. Before final utilization, a prototype testing is recommended to uncover possible problems.

  15. Characterization of a Latent Virus-Like Infection of Symbiotic Zooxanthellae▿

    PubMed Central

    Lohr, Jayme; Munn, Colin B.; Wilson, William H.

    2007-01-01

    A latent virus-like agent, which we designated zooxanthella filamentous virus 1 (ZFV1), was isolated from Symbiodinium sp. strain CCMP 2465 and characterized. Transmission electron microscopy and analytical flow cytometry revealed the presence of a new group of distinctive filamentous virus-like particles after exposure of the zooxanthellae to UV light. Examination of thin sections of the zooxanthellae revealed the formation and proliferation of filamentous virus-like particles in the UV-induced cells. Assessment of Symbiodinium sp. cultures was used here as a model to show the effects of UV irradiance and induction of potential latent viruses. The unique host-virus system described here provides insight into the role of latent infections in zooxanthellae through environmentally regulated viral induction mechanisms. PMID:17351090

  16. Characterization of a latent virus-like infection of symbiotic zooxanthellae.

    PubMed

    Lohr, Jayme; Munn, Colin B; Wilson, William H

    2007-05-01

    A latent virus-like agent, which we designated zooxanthella filamentous virus 1 (ZFV1), was isolated from Symbiodinium sp. strain CCMP 2465 and characterized. Transmission electron microscopy and analytical flow cytometry revealed the presence of a new group of distinctive filamentous virus-like particles after exposure of the zooxanthellae to UV light. Examination of thin sections of the zooxanthellae revealed the formation and proliferation of filamentous virus-like particles in the UV-induced cells. Assessment of Symbiodinium sp. cultures was used here as a model to show the effects of UV irradiance and induction of potential latent viruses. The unique host-virus system described here provides insight into the role of latent infections in zooxanthellae through environmentally regulated viral induction mechanisms.

  17. 40 CFR 140.3 - Standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... traffic subject to this regulation, or in rivers not capable of navigation by interstate vessel traffic... sewage. This shall not be construed to prohibit the carriage of Coast Guard-certified flow-through... promulgation of this regulation with a Coast Guard-certified flow-through marine sanitation device meeting the...

  18. 40 CFR 140.3 - Standard.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... traffic subject to this regulation, or in rivers not capable of navigation by interstate vessel traffic... sewage. This shall not be construed to prohibit the carriage of Coast Guard-certified flow-through... promulgation of this regulation with a Coast Guard-certified flow-through marine sanitation device meeting the...

  19. 40 CFR 140.3 - Standard.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... traffic subject to this regulation, or in rivers not capable of navigation by interstate vessel traffic... sewage. This shall not be construed to prohibit the carriage of Coast Guard-certified flow-through... promulgation of this regulation with a Coast Guard-certified flow-through marine sanitation device meeting the...

  20. Role of the ring current in the dynamics of fluctuating electron and ion flows in the low-latitude magnetosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shyutte, N.M.; Izhovkina, N.I.

    1987-11-01

    Electron and ion flows with fluctuating energy spectra show up on the low L-shells. The authors have discovered that these flows show up less frequently as the absolute value of D/sub st/ increases (for D/sub st/ < 0). Their results are based on data from Kosmos-900. Our results are based on data from Kosmos-900. Their estimates indicate that one of the reasons for this phenomenon may be strong nonlinear diffusion of charged particle flows in VLF waves in the waveguide channels which have been detected at the boundary of the plasmasphere

  1. Effect of temperature on photosynthesis and growth in marine Synechococcus spp.

    PubMed

    Mackey, Katherine R M; Paytan, Adina; Caldeira, Ken; Grossman, Arthur R; Moran, Dawn; McIlvin, Matthew; Saito, Mak A

    2013-10-01

    In this study, we develop a mechanistic understanding of how temperature affects growth and photosynthesis in 10 geographically and physiologically diverse strains of Synechococcus spp. We found that Synechococcus spp. are able to regulate photochemistry over a range of temperatures by using state transitions and altering the abundance of photosynthetic proteins. These strategies minimize photosystem II (PSII) photodamage by keeping the photosynthetic electron transport chain (ETC), and hence PSII reaction centers, more oxidized. At temperatures that approach the optimal growth temperature of each strain when cellular demand for reduced nicotinamide adenine dinucleotide phosphate (NADPH) is greatest, the phycobilisome (PBS) antenna associates with PSII, increasing the flux of electrons into the ETC. By contrast, under low temperature, when slow growth lowers the demand for NADPH and linear ETC declines, the PBS associates with photosystem I. This favors oxidation of PSII and potential increase in cyclic electron flow. For Synechococcus sp. WH8102, growth at higher temperatures led to an increase in the abundance of PBS pigment proteins, as well as higher abundance of subunits of the PSII, photosystem I, and cytochrome b6f complexes. This would allow cells to increase photosynthetic electron flux to meet the metabolic requirement for NADPH during rapid growth. These PBS-based temperature acclimation strategies may underlie the larger geographic range of this group relative to Prochlorococcus spp., which lack a PBS.

  2. Unique Flexibility in Energy Metabolism Allows Mycobacteria to Combat Starvation and Hypoxia

    PubMed Central

    Berney, Michael; Cook, Gregory M.

    2010-01-01

    Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I) and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases) to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation) responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their ability to survive under low energy conditions and hypoxia. PMID:20062806

  3. TGLF Recalibration for ITER Standard Case Parameters FY2015: Theory and Simulation Performance Target Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candy, J.

    2015-12-01

    This work was motivated by the observation, as early as 2008, that GYRO simulations of some ITER operating scenarios exhibited nonlinear zonal-flow generation large enough to effectively quench turbulence inside r /a ~ 0.5. This observation of flow-dominated, low-transport states persisted even as more accurate and comprehensive predictions of ITER profiles were made using the state-of-the-art TGLF transport model. This core stabilization is in stark contrast to GYRO-TGLF comparisons for modern-day tokamaks, for which GYRO and TGLF are typically in very close agreement. So, we began to suspect that TGLF needed to be generalized to include the effect of zonal-flowmore » stabilization in order to be more accurate for the conditions of reactor simulations. While the precise cause of the GYRO-TGLF discrepancy for ITER parameters was not known, it was speculated that closeness to threshold in the absence of driven rotation, as well as electromagnetic stabilization, created conditions more sensitive the self-generated zonal-flow stabilization than in modern tokamaks. Need for nonlinear zonal-flow stabilization: To explore the inclusion of a zonal-flow stabilization mechanism in TGLF, we started with a nominal ITER profile predicted by TGLF, and then performed linear and nonlinear GYRO simulations to characterize the behavior at and slightly above the nominal temperature gradients for finite levels of energy transport. Then, we ran TGLF on these cases to see where the discrepancies were largest. The predicted ITER profiles were indeed near to the TGLF threshold over most of the plasma core in the hybrid discharge studied (weak magnetic shear, q > 1). Scanning temperature gradients above the TGLF power balance values also showed that TGLF overpredicted the electron energy transport in the low-collisionality ITER plasma. At first (in Q3), a model of only the zonal-flow stabilization (Dimits shift) was attempted. Although we were able to construct an ad hoc model of the zonal flows that fit the GYRO simulations, the parameters of the model had to be tuned to each case. A physics basis for the zonal flow model was lacking. Electron energy transport at short wavelength: A secondary issue – the high-k electron energy flux – was initially assumed to be independent of the zonal flow effect. However, detailed studies of the fluctuation spectra from recent multiscale (electron and ion scale) GYRO simulations provided a critical new insight into the role of zonal flows. The multiscale simulations suggested that advection by the zonal flows strongly suppressed electron-scale turbulence. Radial shear of the zonal E×B fluctuation could not compete with the large electron-scale linear growth rate, but the k x-mixing rate of the E×B advection could. This insight led to a preliminary new model for the way zonal flows saturate both electron- and ion-scale turbulence. It was also discovered that the strength of the zonal E×B velocity could be computed from the linear growth rate spectrum. The new saturation model (SAT1), which replaces the original model (SAT0), was fit to the multiscale GYRO simulations as well as the ion-scale GYRO simulations used to calibrate the original SAT0 model. Thus, SAT1 captures the physics of both multiscale electron transport and zonal-flow stabilization. In future work, the SAT1 model will require significant further testing and (expensive) calibration with nonlinear multiscale gyrokinetic simulations over a wider variety of plasma conditions – certainly more than the small set of scans about a single C-Mod L-mode discharge. We believe the SAT1 model holds great promise as a physics-based model of the multiscale turbulent transport in fusion devices. Correction to ITER performance predictions: Finally, the impact of the SAT1model on the ITER hybrid case is mixed. Without the electron-scale contribution to the fluxes, the Dimits shift makes a significant improvement in the predicted fusion power as originally posited. Alas, including the high-k electron transport reduces the improvement, yielding a modest net increase in predicted fusion power compared to the TGLF prediction with the original SAT0 model.« less

  4. Legislation: Legislation and Regulations Affecting Libraries in 2002; Legislation and Regulations Affecting Publishing in 2002.

    ERIC Educational Resources Information Center

    Sheketoff, Emily; Costabile, Mary R.; Adler, Allan

    2003-01-01

    Reviews legislation and regulations affecting libraries and the publishing industry, including the Museum and Library Services Act; Office of Educational Research and Improvement (OERI); copyright; access to electronic government information; telecommunications and technology; electronic surveillance and privacy, including the USA Patriot Act;…

  5. Human neuronal uncoupling proteins 4 and 5 (UCP4 and UCP5): structural properties, regulation, and physiological role in protection against oxidative stress and mitochondrial dysfunction.

    PubMed

    Ramsden, David B; Ho, Philip W-L; Ho, Jessica W-M; Liu, Hui-Fang; So, Danny H-F; Tse, Ho-Man; Chan, Koon-Ho; Ho, Shu-Leong

    2012-07-01

    Uncoupling proteins (UCPs) belong to a large family of mitochondrial solute carriers 25 (SLC25s) localized at the inner mitochondrial membrane. UCPs transport protons directly from the intermembrane space to the matrix. Of five structural homologues (UCP1 to 5), UCP4 and 5 are principally expressed in the central nervous system (CNS). Neurons derived their energy in the form of ATP that is generated through oxidative phosphorylation carried out by five multiprotein complexes (Complexes I-V) embedded in the inner mitochondrial membrane. In oxidative phosphorylation, the flow of electrons generated by the oxidation of substrates through the electron transport chain to molecular oxygen at Complex IV leads to the transport of protons from the matrix to the intermembrane space by Complex I, III, and IV. This movement of protons to the intermembrane space generates a proton gradient (mitochondrial membrane potential; MMP) across the inner membrane. Complex V (ATP synthase) uses this MMP to drive the conversion of ADP to ATP. Some electrons escape to oxygen-forming harmful reactive oxygen species (ROS). Proton leakage back to the matrix which bypasses Complex V resulting in a major reduction in ROS formation while having a minimal effect on MMP and hence, ATP synthesis; a process termed "mild uncoupling." UCPs act to promote this proton leakage as means to prevent excessive build up of MMP and ROS formation. In this review, we discuss the structure and function of mitochondrial UCPs 4 and 5 and factors influencing their expression. Hypotheses concerning the evolution of the two proteins are examined. The protective mechanisms of the two proteins against neurotoxins and their possible role in regulating intracellular calcium movement, particularly with regard to the pathogenesis of Parkinson's disease are discussed.

  6. Security of the distributed electronic patient record: a case-based approach to identifying policy issues.

    PubMed

    Anderson, J G

    2000-11-01

    The growth of managed care and integrated delivery systems has created a new commodity, health information and the technology that it requires. Surveys by Deloitte and Touche indicate that over half of the hospitals in the US are in the process of implementing electronic patient record (EPR) systems. The National Research Council has established that industry spends as much as $15 billion on information technology (IT), an amount that is expanding by 20% per year. The importance of collecting, electronically storing, and using the information is undisputed. This information is needed by consumers to make informed choices; by physicians to provide appropriate quality clinical care: and by health plans to assess outcomes, control costs and monitor quality. The collection, storage and communication of a large variety of personal patient data, however, present a major dilemma. How can we provide the data required by the new forms of health care delivery and at the same time protect the personal privacy of patients? Recent debates concerning medical privacy legislation, software regulation, and telemedicine suggest that this dilemma will not be easily resolved. The problem is systemic and arises out of the routine use and flow of information throughout the health industry. Health care information is primarily transferred among authorized users. Not only is the information used for patient care and financial reimbursement, secondary users of the information include medical, nursing, and allied health education, research, social services, public health, regulation, litigation, and commercial purposes such as the development of new medical technology and marketing. The main threats to privacy and confidentiality arise from within the institutions that provide patient care as well as institutions that have access to patient data for secondary purposes.

  7. Shear flow driven tripolar vortices in a nonuniform electron-ion magnetoplasma with non-Maxwellian electrons

    NASA Astrophysics Data System (ADS)

    Masood, W.; Mirza, Arshad M.

    2014-04-01

    A set of nonlinear equations governing the dynamics of finite amplitude drift-ion acoustic-waves is derived for sheared ion flows parallel and perpendicular to the ambient magnetic field in the presence of Cairns and Kappa distributed electrons. It is shown that stationary solution of the nonlinear equations can be represented in the form of a tripolar vortex for specific profiles of the equilibrium sheared flows. The tripolar vortices are, however, observed to form on a scale of the order of ion Larmor radius ρ i which is calculated to be around a Kilometer for the plasma parameters found in the Saturn's E-ring. The relevance of the present investigation in planetary environments is also pointed out.

  8. Implementation of a standardized electronic tool improves compliance, accuracy, and efficiency of trainee-to-trainee patient care handoffs after complex general surgical oncology procedures.

    PubMed

    Clarke, Callisia N; Patel, Sameer H; Day, Ryan W; George, Sobha; Sweeney, Colin; Monetes De Oca, Georgina Avaloa; Aiss, Mohamed Ait; Grubbs, Elizabeth G; Bednarski, Brian K; Lee, Jeffery E; Bodurka, Diane C; Skibber, John M; Aloia, Thomas A

    2017-03-01

    Duty-hour regulations have increased the frequency of trainee-trainee patient handoffs. Each handoff creates a potential source for communication errors that can lead to near-miss and patient-harm events. We investigated the utility, efficacy, and trainee experience associated with implementation of a novel, standardized, electronic handoff system. We conducted a prospective intervention study of trainee-trainee handoffs of inpatients undergoing complex general surgical oncology procedures at a large tertiary institution. Preimplementation data were measured using trainee surveys and direct observation and by tracking delinquencies in charting. A standardized electronic handoff tool was created in a research electronic data capture (REDCap) database using the previously validated I-PASS methodology (illness severity, patient summary, action list, situational awareness and contingency planning, and synthesis). Electronic handoff was augmented by direct communication via phone or face-to-face interaction for inpatients deemed "watcher" or "unstable." Postimplementation handoff compliance, communication errors, and trainee work flow were measured and compared to preimplementation values using standard statistical analysis. A total of 474 handoffs (203 preintervention and 271 postintervention) were observed over the study period; 86 handoffs involved patients admitted to the surgical intensive care unit, 344 patients admitted to the surgical stepdown unit, and 44 patients on the surgery ward. Implementation of the structured electronic tool resulted in an increase in trainee handoff compliance from 73% to 96% (P < .001) and decreased errors in communication by 50% (P = .044) while improving trainee efficiency and workflow. A standardized electronic tool augmented by direct communication for higher acuity patients can improve compliance, accuracy, and efficiency of handoff communication between surgery trainees. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Age-related Changes in the Hepatic Microcirculation in Mice

    PubMed Central

    Ito, Yoshiya; Sørensen, Karen K.; Bethea, Nancy W.; Svistounov, Dmitri; McCuskey, Margaret K.; Smedsrød, Bård H.; McCuskey, Robert S.

    2007-01-01

    Aging of the liver is associated with impaired metabolism of drugs, adverse drug interactions, and susceptibility to toxins. Since reduced hepatic blood flow is suspected to contribute this impairment, we examined age-related alterations in hepatic microcirculation.. Livers of C57Bl/6 mice were examined at 0.8 (pre-pubertal), 3 (young adult), 14 (middle-aged) and 27 (senescent) months of age using in vivo and electron microscopic methods. The results demonstrated a 14% reduction in the numbers of perfused sinusoids between 0.8 and 27 month mice associated with 35% reduction in sinusoidal blood flow. This was accompanied by an inflammatory response evidenced by a 5-fold increase in leukocyte adhesion in 27 month mice, up-regulated expression of ICAM-1, and increases in intrahepatic macrophages. Sinusoidal diameter decreased 6-10%. Liver sinusoidal endothelial cell (LSEC) dysfunction was seen as early as 14 months when there was a 3-fold increase in the numbers of swollen LSEC. The endocytotic capacity of LSEC also was found to be reduced in older animals. The sinusoidal endothelium in 27 month old mice exhibited pseudocapillarization. In conclusion, the results suggest that leukocyte accumulation in the sinusoids and narrowing of sinusoidal lumens due to pseudocapillarization and dysfunction of LSEC reduce sinusoidal blood flow in aged livers. PMID:17582718

  10. In vitro reconstruction of hybrid vascular tissue. Hierarchic and oriented cell layers.

    PubMed

    Kanda, K; Matsuda, T; Oka, T

    1993-01-01

    Hybrid vascular tissue was hierarchically reconstructed in vitro. A hybrid medial layer composed of type I collagen gel, in which SMCs derived from a mongrel dog were embedded, was formed on the inner surface of a compliant porous polyurethane graft (internal diameter = 3 mm). Endothelial cells (ECs) from the same animal were seeded and cultured on the hybrid media to build an intimal layer. Subsequently, hierarchically structured grafts constructed in this manner were subjected to pulsatile flow (flow rate: 8.5 ml/min; frequency: 60 rpm; amplitude: 5% of graft outer diameter) of culture medium (Medium 199 supplemented with 20% fetal calf serum). After stress loading for as long as 10 days, tissues were morphologically investigated with a light microscope and a scanning electron microscope. Inner surfaces of the hybrid tissues were covered with EC monolayers that aligned along the direction of the flow (i.e., longitudinally). However, SMCs beneath the intima aligned in the circumferential direction. These cellular orientations resembled those in native muscular arteries. The pulsatile stress loaded hybrid tissue mimicked native muscular arteries with respect to hierarchic structure and cellular orientation. In vitro mechanical stress loading on a hybrid graft might provide a high degree of integrity in terms of tissue structure that promises high tolerance toward hydrodynamic stress and regulation of vasomotor tone upon implantation.

  11. Precision Adjustable Liquid Regulator (ALR)

    NASA Astrophysics Data System (ADS)

    Meinhold, R.; Parker, M.

    2004-10-01

    A passive mechanical regulator has been developed for the control of fuel or oxidizer flow to a 450N class bipropellant engine for use on commercial and interplanetary spacecraft. There are several potential benefits to the propulsion system, depending on mission requirements and spacecraft design. This system design enables more precise control of main engine mixture ratio and inlet pressure, and simplifies the pressurization system by transferring the function of main engine flow rate control from the pressurization/propellant tank assemblies, to a single component, the ALR. This design can also reduce the thermal control requirements on the propellant tanks, avoid costly Qualification testing of biprop engines for missions with more stringent requirements, and reduce the overall propulsion system mass and power usage. In order to realize these benefits, the ALR must meet stringent design requirements. The main advantage of this regulator over other units available in the market is that it can regulate about its nominal set point to within +/-0.85%, and change its regulation set point in flight +/-4% about that nominal point. The set point change is handled actively via a stepper motor driven actuator, which converts rotary into linear motion to affect the spring preload acting on the regulator. Once adjusted to a particular set point, the actuator remains in its final position unpowered, and the regulator passively maintains outlet pressure. The very precise outlet regulation pressure is possible due to new technology developed by Moog, Inc. which reduces typical regulator mechanical hysteresis to near zero. The ALR requirements specified an outlet pressure set point range from 225 to 255 psi, and equivalent water flow rates required were in the 0.17 lb/sec range. The regulation output pressure is maintained at +/-2 psi about the set point from a P (delta or differential pressure) of 20 to over 100 psid. Maximum upstream system pressure was specified at 320 psi. The regulator is fault tolerant in that it was purposely designed with no shutoff capability, such that the minimum flow position of the poppet still allows the subsystem to provide adequate flow to the main engine for basic operation.

  12. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.

    PubMed

    Persson, Patrik; Fasching, Angelica; Teerlink, Tom; Hansell, Peter; Palm, Fredrik

    2017-02-01

    Diabetes mellitus is associated with decreased nitric oxide bioavailability thereby affecting renal blood flow regulation. Previous reports have demonstrated that cellular uptake of l-arginine is rate limiting for nitric oxide production and that plasma l-arginine concentration is decreased in diabetes. We therefore investigated whether regional renal blood flow regulation is affected by cellular l-arginine uptake in streptozotocin-induced diabetic rats. Rats were anesthetized with thiobutabarbital, and the left kidney was exposed. Total, cortical, and medullary renal blood flow was investigated before and after renal artery infusion of increasing doses of either l-homoarginine to inhibit cellular uptake of l-arginine or N ω -nitro- l-arginine methyl ester (l-NAME) to inhibit nitric oxide synthase. l-Homoarginine infusion did not affect total or cortical blood flow in any of the groups, but caused a dose-dependent reduction in medullary blood flow. l-NAME decreased total, cortical and medullary blood flow in both groups. However, the reductions in medullary blood flow in response to both l-homoarginine and l-NAME were more pronounced in the control groups compared with the diabetic groups. Isolated cortical tubular cells displayed similar l-arginine uptake capacity whereas medullary tubular cells isolated from diabetic rats had increased l-arginine uptake capacity. Diabetics had reduced l-arginine concentrations in plasma and medullary tissue but increased l-arginine concentration in cortical tissue. In conclusion, the reduced l-arginine availability in plasma and medullary tissue in diabetes results in reduced nitric oxide-mediated regulation of renal medullary hemodynamics. Cortical blood flow regulation displays less dependency on extracellular l-arginine and the upregulated cortical tissue l-arginine may protect cortical hemodynamics in diabetes. Copyright © 2017 the American Physiological Society.

  13. Mechanical properties of the gastro-esophageal junction in health, achalasia, and scleroderma.

    PubMed

    Mearin, F; Fonollosa, V; Vilardell, M; Malagelada, J R

    2000-07-01

    Manometric assessment of the gastro-esophageal junction (GEJ) is deceptive in that ignores key dynamic properties of the junction, such as resistance to flow and compliance. Our aim was to investigate the mechanical properties of the GEJ comprising intraluminal pressure (measured by manometry), resistance to flow and compliance (measured by resistometry). We studied 8 healthy subjects, 11 patients with achalasia and 11 patients with scleroderma. We used a pneumatic resistometer, previously developed and validated in our laboratory. The resistometer consists of a flaccid polyurethane 5-cm cylinder connected to an electronically regulated nitrogen-injection system; the instrument records nitrogen flow through the cylinder while maintaining a constant pressure gradient between its proximal and distal ends. By placing the cylinder successively in the proximal stomach and along the GEJ we measured the GEJ-gastric resistance gradient (GEJ resistance minus gastric resistance) and were able to calculate the cumulative resistance (sum of resistance exerted at each pressure level), peak resistance (at any injection pressure), nil resistance point (injection pressure in mmHg at which GEJ resistance equals gastric resistance), and compliance slope (flow/pressure relationship). We found that GEJ resistance to flow (cumulative resistance, peak resistance, and nil resistance point) is significantly increased in achalasia and decreased in scleroderma (P < 0.05 versus health) while GEJ compliance is diminished in achalasia (P < 0.05 versus health) and normal in scleroderma. Achalasia is a disease characterized by increased GEJ resistance and rigidity. By contrast, although scleroderma is characterized by decreased GEJ resistance, GEJ compliance may be normal.

  14. ITEL Experiment Module and its Flight on MASER9

    NASA Astrophysics Data System (ADS)

    Löth, K.; Schneider, H.; Larsson, B.; Jansson, O.; Houltz, Y.

    2002-01-01

    The ITEL (Interfacial Turbulence in Evaporating Liquid) module is built under contract from the European Space Agency (ESA) and is scheduled to fly onboard a Sounding Rocket (MASER 9) in March 2002. The project is conducted by Swedish Space Corporation (SSC) with Lambda-X as a subcontractor responsible for the optical system. The Principle Investigator is Pierre Colinet from Université Libre de Bruxelles (ULB). The experiment in ITEL on Maser 9 is part of a research program, which will make use of the International Space Station. The purpose of the flight on Maser 9 is to observe the cellular convection (Marangoni-Bénard instability) which arise when the surface tension varies with temperature yielding thermocapillary instabilities. During the 6 minutes of microgravity of the ITEL experiment, a highly volatile liquid layer (ethyl alcohol) will be evaporated, and the convection phenomena generated by the evaporation process will be visualized. Due to the cooling by latent heat consumption at the level of the evaporating free surface, a temperature gradient is induced perpendicularly to it. The flight experiment module contains one experiment cell, including a gas system for regulation of nitrogen flow over the evaporating surface and an injection unit that is used for injection of liquid into the cell both initially and during surface regulation. The experiment cell is equipped with pressure and flow sensors as well as thermocouples both inside the liquid and at different positions in the cell. Two optical diagnostic systems have been developed around the experiment cell. An interferometric optical tomograph measures the 3-dimensional distribution of temperature in the evaporating liquid and a Schlieren system visualizes the temperature gradients inside the liquid together with the liquid surface deformation. A PC/104 based electronic system is used for management and control of the experiment. The electronic system handles measurements, housekeeping, image capture system, surface and pressure regulation as well as storage of data. The images are stored onboard on three DV tape recorders. At flight, video images as well as data is sent to ground and the experiment can be controlled via telecommands. In this presentation we will focus on the technical parts of the experiment, the overall module and the preliminary technical results obtained from the flight, including reconstructions of 3-dimensional temperature distributions.

  15. Non-isomorphic radial wavenumber dependencies of residual zonal flows in ion and electron Larmor radius scales, and effects of initial parallel flow and electromagnetic potentials in a circular tokamak

    NASA Astrophysics Data System (ADS)

    Yamagishi, Osamu

    2018-04-01

    Radial wavenumber dependencies of the residual zonal potential for E × B flow in a circular, large aspect ratio tokamak is investigated by means of the collisionless gyrokinetic simulations of Rosenbluth-Hinton (RH) test and the semi-analytic approach using an analytic solution of the gyrokinetic equation Rosenbluth and Hinton (1998 Phys. Rev. Lett. 80 724). By increasing the radial wavenumber from an ion Larmor radius scale {k}r{ρ }i≲ 1 to an electron Larmor radius scale {k}r{ρ }e≲ 1, the well-known level ˜ O[1/(1+1.6{q}2/\\sqrt{r/{R}0})] is retained, while the level remains O(1) when the wavenumber is decreased from the electron to the ion Larmor radius scale, if physically same adiabatic assumption is presumed for species other than the main species that is treated kinetically. The conclusion is not modified by treating both species kinetically, so that in the intermediate scale between the ion and electron Larmor radius scale it seems difficult to determine the level uniquely. The toroidal momentum conservation property in the RH test is also investigated by including an initial parallel flow in addition to the perpendicular flow. It is shown that by taking a balance between the initial parallel flow and perpendicular flows which include both E × B flow and diamagnetic flow in the initial condition, the mechanical toroidal angular momentum is approximately conserved despite the toroidal symmetry breaking due to the finite radial wavenumber zonal modes. Effect of electromagnetic potentials is also investigated. When the electromagnetic potentials are applied initially, fast oscillations which are faster than the geodesic acoustic modes are introduced in the decay phase of the zonal modes. Although the residual level in the long time limit is not modified, this can make the time required to reach the stationary zonal flows longer and may weaken the effectiveness of the turbulent transport suppression by the zonal flows.

  16. Regulation of exercise blood flow: Role of free radicals.

    PubMed

    Trinity, Joel D; Broxterman, Ryan M; Richardson, Russell S

    2016-09-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an "optimal" redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs. Published by Elsevier Inc.

  17. Regulation of Exercise Blood Flow: Role of Free Radicals

    PubMed Central

    Trinity, Joel D.; Broxterman, Ryan M.; Richardson, Russell S.

    2016-01-01

    During exercise, oxygen and nutrient rich blood must be delivered to the active skeletal muscle, heart, skin, and brain through the complex and highly regulated integration of central and peripheral hemodynamic factors. Indeed, even minor alterations in blood flow to these organs have profound consequences on exercise capacity by modifying the development of fatigue. Therefore, the fine-tuning of blood flow is critical for optimal physical performance. At the level of the peripheral circulation, blood flow is regulated by a balance between the mechanisms responsible for vasodilation and vasoconstriction. Once thought of as toxic by-products of in vivo chemistry, free radicals are now recognized as important signaling molecules that exert potent vasoactive responses that are dependent upon the underlying balance between oxidation-reduction reactions or redox balance. Under normal healthy conditions with low levels of oxidative stress, free radicals promote vasodilation, which is attenuated with exogenous antioxidant administration. Conversely, with advancing age and disease where background oxidative stress is elevated, an exercise-induced increase in free radicals can further shift the redox balance to a pro-oxidant state, impairing vasodilation and attenuating blood flow. Under these conditions, exogenous antioxidants improve vasodilatory capacity and augment blood flow by restoring an “optimal” redox balance. Interestingly, while the active skeletal muscle, heart, skin, and brain all have unique functions during exercise, the mechanisms by which free radicals contribute to the regulation of blood flow is remarkably preserved across each of these varied target organs. PMID:26876648

  18. Identifying environmental correlates of intraspecific genetic variation.

    PubMed

    Harrisson, K A; Yen, J D L; Pavlova, A; Rourke, M L; Gilligan, D; Ingram, B A; Lyon, J; Tonkin, Z; Sunnucks, P

    2016-09-01

    Genetic variation is critical to the persistence of populations and their capacity to adapt to environmental change. The distribution of genetic variation across a species' range can reveal critical information that is not necessarily represented in species occurrence or abundance patterns. We identified environmental factors associated with the amount of intraspecific, individual-based genetic variation across the range of a widespread freshwater fish species, the Murray cod Maccullochella peelii. We used two different approaches to statistically quantify the relative importance of predictor variables, allowing for nonlinear relationships: a random forest model and a Bayesian approach. The latter also accounted for population history. Both approaches identified associations between homozygosity by locus and both disturbance to the natural flow regime and mean annual flow. Homozygosity by locus was negatively associated with disturbance to the natural flow regime, suggesting that river reaches with more disturbed flow regimes may support larger, more genetically diverse populations. Our findings are consistent with the hypothesis that artificially induced perennial flows in regulated channels may provide greater and more consistent habitat and reduce the frequency of population bottlenecks that can occur frequently under the highly variable and unpredictable natural flow regime of the system. Although extensive river regulation across eastern Australia has not had an overall positive effect on Murray cod numbers over the past century, regulation may not represent the primary threat to Murray cod survival. Instead, pressures other than flow regulation may be more critical to the persistence of Murray cod (for example, reduced frequency of large floods, overfishing and chemical pollution).

  19. Early time evolution of a chemically produced electron depletion

    NASA Technical Reports Server (NTRS)

    Scales, W. A.; Bernhardt, P. A.; Ganguli, G.

    1995-01-01

    The early time evolution of an ionospheric electron depletion produced by a radially expanding electron attachment chemical release is studied with a two-dimensional simulation model. The model includes electron attachment chemistry, incorporates fluid electrons, particle ions and neutrals, and considers the evolution in a plane perpendicular to the geomagnetic field for a low beta plasma. Timescales considered are of the order of or less than the cyclotron period of the negative ions that result as a by-product of the electron attacment reaction. This corresponds to time periods of tenths of seconds during recent experiemts. Simulation results show that a highly sheared azimuthal electron flow velocity develops in the radially expanding depletion boundary. This sheared electron flow velocity and the steep density gradients in the boundary give rise to small-scale irregulatities in the form of electron density cavities and spikes. The nonlinear evolution of these irregularities results in trapping and ultimately turbulent heating of the negative ions.

  20. Plasma Relaxation and Topological Aspects in Electron Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, Bhimsen

    2016-10-01

    Parker's formulation of isotopological plasma relaxation process toward minimum magnetics energy states in magnetohydrodynamics (MHD) is extended to electron MHD (EMHD). The lower bound on magnetic energy in EMHD is determined by both the magnetic field and the electron vorticity field topologies, and is shown to be reduced further in EMHD by an amount proportional to the sum of total electron-flow kinetic energy and total electron-flow enstrophy. The EMHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D) hydrodynamics, and the torsion coefficient and turns out to be proportional to potential vorticity. The winding pattern of the magnetic field lines appears to evolve therefore in the same way as potential vorticity lines in 2D hydrodynamics.

  1. Plasma relaxation and topological aspects in electron magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Shivamoggi, B. K.

    2016-07-01

    Parker's formulation of isotopological plasma relaxation process toward minimum magnetics energy states in magnetohydrodynamics (MHD) is extended to electron MHD (EMHD). The lower bound on magnetic energy in EMHD is determined by both the magnetic field and the electron vorticity field topologies, and is shown to be reduced further in EMHD by an amount proportional to the sum of total electron-flow kinetic energy and total electron-flow enstrophy. The EMHD Beltrami condition becomes equivalent to the potential vorticity conservation equation in two-dimensional (2D) hydrodynamics, and the torsion coefficient α turns out to be proportional to potential vorticity. The winding pattern of the magnetic field lines appears to evolve, therefore, in the same way as potential vorticity lines in 2D hydrodynamics.

  2. 17 CFR 232.401 - XBRL-Related Document submissions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Xbrl-Related Documents § 232.401 XBRL-Related Document submissions. (a) Only an electronic filer that is an investment company registered under... XBRL-Related Documents relate; or, if the electronic filer is eligible to file a Form 8-K (§ 249.308 of...

  3. 17 CFR 232.401 - XBRL-Related Document submissions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Xbrl-Related Documents § 232.401 XBRL-Related Document submissions. (a) Only an electronic filer that is an investment company registered under... XBRL-Related Documents relate; or, if the electronic filer is eligible to file a Form 8-K (§ 249.308 of...

  4. 17 CFR 232.401 - XBRL-Related Document submissions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Xbrl-Related Documents § 232.401 XBRL-Related Document submissions. (a) Only an electronic filer that is an investment company registered under... XBRL-Related Documents relate; or, if the electronic filer is eligible to file a Form 8-K (§ 249.308 of...

  5. 17 CFR 232.401 - XBRL-Related Document submissions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Xbrl-Related Documents § 232.401 XBRL-Related Document submissions. (a) Only an electronic filer that is an investment company registered under... XBRL-Related Documents relate; or, if the electronic filer is eligible to file a Form 8-K (§ 249.308 of...

  6. 17 CFR 232.401 - XBRL-Related Document submissions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... REGULATION S-T-GENERAL RULES AND REGULATIONS FOR ELECTRONIC FILINGS Xbrl-Related Documents § 232.401 XBRL-Related Document submissions. (a) Only an electronic filer that is an investment company registered under... XBRL-Related Documents relate; or, if the electronic filer is eligible to file a Form 8-K (§ 249.308 of...

  7. 29 CFR 2520.104a-2 - Electronic filing of annual reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 9 2011-07-01 2011-07-01 false Electronic filing of annual reports. 2520.104a-2 Section 2520.104a-2 Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION... AND REGULATIONS FOR REPORTING AND DISCLOSURE Reporting Requirements § 2520.104a-2 Electronic filing of...

  8. 29 CFR 2520.104a-2 - Electronic filing of annual reports.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 9 2014-07-01 2014-07-01 false Electronic filing of annual reports. 2520.104a-2 Section 2520.104a-2 Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION... AND REGULATIONS FOR REPORTING AND DISCLOSURE Reporting Requirements § 2520.104a-2 Electronic filing of...

  9. 29 CFR 2520.104a-2 - Electronic filing of annual reports.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Electronic filing of annual reports. 2520.104a-2 Section 2520.104a-2 Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION... AND REGULATIONS FOR REPORTING AND DISCLOSURE Reporting Requirements § 2520.104a-2 Electronic filing of...

  10. France acts on electronic cigarettes.

    PubMed

    Cahn, Zachary

    2013-11-01

    France is deciding how to regulate electronic cigarettes. I first consider the French approach and how it contrasts with other attempts at electronic cigarette regulation globally. Next, I critique the individual elements of the French proposal. The overall approach taken by France is a positive development, but banning indoor use appears unnecessary and banning advertising may be counterproductive.

  11. Geomorphic Framework to assess changes to aquatic habitat due to flow regulation and channel and floodplain alteration, Cedar River, Washington

    USGS Publications Warehouse

    Gendaszek, Andrew S.; Magirl, Christopher S.; Czuba, Christiana R.; Konrad, Christopher P.; Little, Rand

    2010-01-01

    Flow regulation, bank armoring, and floodplain alteration since the early 20th century have contributed to significant changes in the hydrologic regime and geomorphic processes of the Cedar River in Washington State. The Cedar River originates in the Cascade Range, provides drinking water to the Seattle metropolitan area, and supports several populations of anadromous salmonids. Flow regulation currently has limited influence on the magnitude, duration, and timing of high-flow events, which affect the incubation of salmonids as well as the production and maintenance of their habitat. Unlike structural changes to the channel and floodplain, flow regulation may be modified in the short-term to improve the viability of salmon populations. An understanding of the effects of flow regulation on those populations must be discerned over a range of scales from individual floods that affect the size of individual year classes to decadal high flow regime that influences the amount and quality of channel and off-channel habitat available for spawning and rearing. We present estimates of reach-scale sediment budgets and changes to channel morphology derived from historical orthoimagery, specific gage analyses at four long-term streamflow-gaging stations to quantify trends in aggradation, and hydrologic statistics of the magnitude and duration of peak streamflows. These data suggest a gradient of channel types from unconfined, sediment-rich segments to confined, sediment-poor segments that are likely to have distinct responses to high flows. Particle-size distribution data and longitudinal water surface and streambed profiles for the 56 km downstream of Chester Morse Lake measured in 2010 show the spatial extent of preferred salmonid habitat along the Cedar River. These historical and current data constitute a geomorphic framework to help assess different river management scenarios for salmonid habitat and population viability. PDF version of a presentation on changes to aquatic habitat at the Cedar River in Washington state. Presented at the American Geophysical Union Fall Meeting 2010.

  12. A Generalized Electron Heat Flow Relation and its Connection to the Thermal Force and the Solar Wind Parallel Electric Field

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.

    2017-12-01

    Enroute to a new formulation of the heat law for the solar wind plasma the role of the invariably neglected, but omnipresent, thermal force for the multi-fluid physics of the corona and solar wind expansion will be discussed. This force (a) controls the size of the collisional ion electron energy exchange, favoring the thermal vs supra thermal electrons; (b) occurs whenever heat flux occurs; (c) remains after the electron and ion fluids come to a no slip, zero parallel current, equilibrium; (d) enhances the equilibrium parallel electric field; but (e) has a size that is theoretically independent of the electron collision frequency - allowing its importance to persist far up into the corona where collisions are invariably ignored in first approximation. The constituent parts of the thermal force allow the derivation of a new generalized electron heat flow relation that will be presented. It depends on the separate field aligned divergences of electron and ion pressures and the gradients of the ion gravitational potential and parallel flow energies and is based upon a multi-component electron distribution function. The new terms in this heat law explicitly incorporate the astrophysical context of gradients, acceleration and external forces that make demands on the parallel electric field and quasi-neutrality; essentially all of these effects are missing in traditional formulations.

  13. Proteomic analysis of enterotoxigenic Escherichia coli (ETEC) in neutral and alkaline conditions.

    PubMed

    Gonzales-Siles, Lucia; Karlsson, Roger; Kenny, Diarmuid; Karlsson, Anders; Sjöling, Åsa

    2017-01-07

    Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhea in children and travelers to endemic areas. Secretion of the heat labile AB 5 toxin (LT) is induced by alkaline conditions. In this study, we determined the surface proteome of ETEC exposed to alkaline conditions (pH 9) as compared to neutral conditions (pH 7) using a LPI Hexalane FlowCell combined with quantitative proteomics. Relative quantitation with isobaric labeling (TMT) was used to compare peptide abundance and their corresponding proteins in multiple samples at MS/MS level. For protein identification and quantification samples were analyzed using either a 1D-LCMS or a 2D-LCMS approach. Strong up-regulation of the ATP synthase operon encoding F1Fo ATP synthase and down-regulation of proton pumping proteins NuoF, NuoG, Ndh and WrbA were detected among proteins involved in regulating the proton and electron transport under alkaline conditions. Reduced expression of proteins involved in osmotic stress was found at alkaline conditions while the Sec-dependent transport over the inner membrane and outer membrane protein proteins such as OmpA and the β-Barrel Assembly Machinery (BAM) complex were up-regulated. ETEC exposed to alkaline environments express a specific proteome profile characterized by up-regulation of membrane proteins and secretion of LT toxin. Alkaline microenvironments have been reported close to the intestinal epithelium and the alkaline proteome may hence represent a better view of ETEC during infection.

  14. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Procedures for air flow tests of micronaire reading. 28.603 Section 28.603 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON...

  15. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Procedures for air flow tests of micronaire reading. 28.603 Section 28.603 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON...

  16. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Procedures for air flow tests of micronaire reading. 28.603 Section 28.603 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON...

  17. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Procedures for air flow tests of micronaire reading. 28.603 Section 28.603 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS COTTON...

  18. Debris flows in Grand Canyon National Park, Arizona: magnitude, frequency and effects on the Colorado River

    USGS Publications Warehouse

    Melis, Theodre S.; Webb, Robert H.; ,

    1993-01-01

    Debris flows are recurrent sediment-transport processes in 525 tributaries of the Colorado River in Grand Canyon. Arizona. Initiated by slope failures in bedrock and (or) colluvium during intense rainfall, Grand Canyon debris flows are high-magnitude, short-duration floods. Debris flows in these tributaries transport very large boulders into the river where they accumulate on debris fans and form rapids. The frequency of debris flows range from less than 1 per century to 10 or more per century in these tributaries. Before regulation by Glen Canyon Dam in 1963, high-magnitude floods on the Colorado River reworked debris fans by eroding all particles except large boulders. Because flow regulation has substantially decreased the river's competence, debris flows occurring after 1963 have increased accumulation of finer-grained sediments on debris fans and in rapids.

  19. 79. VIEW OF SPILLWAY THAT AUTOMATICALLY REGULATES HEIGHT OF WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    79. VIEW OF SPILLWAY THAT AUTOMATICALLY REGULATES HEIGHT OF WATER IN RESERVOIR, 'BACKWATER OVERFLOW,' Print No. 233, April 1904 - Electron Hydroelectric Project, Along Puyallup River, Electron, Pierce County, WA

  20. A cell-penetrating peptide analogue, P7, exerts antimicrobial activity against Escherichia coli ATCC25922 via penetrating cell membrane and targeting intracellular DNA.

    PubMed

    Li, Lirong; Shi, Yonghui; Cheng, Xiangrong; Xia, Shufang; Cheserek, Maureen Jepkorir; Le, Guowei

    2015-01-01

    The antibacterial activities and mechanism of a new P7 were investigated in this study. P7 showed antimicrobial activities against five harmful microorganisms which contaminate and spoil food (MIC=4-32 μM). Flow cytometry and scanning electron microscopy analyses demonstrated that P7 induced pore-formation on the cell surface and led to morphological changes but did not lyse cell. Confocal fluorescence microscopic observations and flow cytometry analysis expressed that P7 could penetrate the Escherichia coli cell membrane and accumulate in the cytoplasm. Moreover, P7 possessed a strong DNA binding affinity. Further cell cycle analysis and change in gene expression analysis suggested that P7 induced a decreased expression in the genes involved in DNA replication. Up-regulated expression genes encoding DNA damage repair. This study suggests that P7 could be applied as a candidate for the development of new food preservatives as it exerts its antibacterial activities by penetrating cell membranes and targets intracellular DNA. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A modified Bitter-type electromagnet and control system for cold atom experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luan, Tian; Zhou, Tianwei; Chen, Xuzong, E-mail: xuzongchen@pku.edu.cn

    2014-02-15

    We present a modified Bitter-type electromagnet which features high magnetic field, fine electronic properties and efficient heat removal. The electromagnet is constructed from a stack of copper layers separated by mica layers that have the same shape. A distinctive design of cooling channels on the insulating layers and the parallel ducts between the layers ensures low resistance for cooling water to flow. A continuous current control system is also made to regulate the current through the electromagnet. In our experiment, versatile electromagnets are applied to generate magnetic field and gradient field. From our measurements, a peak magnetic field of 1000more » G and a peak gradient field of 80 G/cm are generated in the center of the apparatuses which are 7 cm and 5 cm away from the edge of each electromagnet with a current of 230 A and 120 A, respectively. With the effective feedback design in the current control system and cooling water flow of 3.8 l/min, the stability of the current through the electromagnets can reach 10{sup −5}.« less

  2. A molecular design principle of lyotropic liquid-crystalline conjugated polymers with directed alignment capability for plastic electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Bong-Gi; Jeong, Eun Jeong; Chung, Jong Won

    Conjugated polymers with a one-dimensional p-orbital overlap exhibit optoelectronic anisotropy. Their unique anisotropic properties can be fully realized in device applications only when the conjugated chains are aligned. Here, we report a molecular design principle of conjugated polymers to achieve concentration-regulated chain planarization, self-assembly, liquid-crystal-like good mobility and non-interdigitated side chains. As a consequence of these intra- and intermolecular attributes, chain alignment along an applied flow field occurs. This liquid-crystalline conjugated polymer was realized by incorporating intramolecular sulphur–fluorine interactions and bulky side chains linked to a tetrahedral carbon having a large form factor. By optimizing the polymer concentration and themore » flow field, we could achieve a high dichroic ratio of 16.67 in emission from conducting conjugated polymer films. Two-dimensional grazing-incidence X-ray diffraction was performed to analyse a well-defined conjugated polymer alignment. Thin-film transistors built on highly aligned conjugated polymer films showed more than three orders of magnitude faster carrier mobility along the conjugated polymer alignment direction than the perpendicular direction.« less

  3. Neurogenic regulation of renal tubular sodium reabsorption.

    PubMed

    DiBona, G F

    1977-08-01

    The evidence supporting a role for direct neurogenic control of renal tubular sodium reabsorption is reviewed. Electron microscopic and fluorescence histochemical studies have demonstrated adrenergic nerve terminals in direct contact with basement membranes of mammalian (rat, dog, and monkey) renal tubular epithelial cells. Low-level direct or baroreceptor reflex stimulation of renal sympathetic nerves produces an increase in renal tubular sodium reabsorption without alterations in glomerular filtration rate, renal blood flow, or intrarenal distribution of blood flow. Antinatriuresis was prevented by prior treatment of the kidney with guanethidine or phenoxybenzamine. Rat kidney micropuncture studies have localized a site of enhanced tubular sodium reabsorption to the proximal tubule. Possible indirect mediation of the antinatriuresis by other humoral agents known to be released from the kidney on renal nerve stimulation (angiotensin II, prostaglandin) was excluded by experiments with appropriate blocking agents. The possible effects of anesthesia and uncertainties about the completeness of surgical renal denervation and other tubular segmental sites of action are critically analyzed. The clinical implications of this mechanism in pathologic conditions of sodium and water retention are discussed and and a prospectus for future work is presented.

  4. Impact of flow regulation and power plant effluents on the flow and temperature regimes of the Chattahoochee River; Atlanta to Whitesburg, Georgia

    USGS Publications Warehouse

    Faye, Robert E.; Jobson, Harvey E.; Land, Larry F.

    1978-01-01

    A calibrated and verified transient-flow temperature model was used to evaluate the effects of flow regulation and powerplant loadings on the natural temperature regime of the Chattahoochee River in northeast Georgia. Estimates were made of both instantaneous and average natural temperatures in the river during an 8-day period in August 1976. Differences between the computed average natural temperature and an independent estimateof natural temperature based on observed equilibrium temperatures were less than 0.5C. The combined thermal effects of flow regulation and powerplant effluents resulted in mean daily river temperatures downstreams of the powerplants about equal to or less than computed mean natural temperatures. The range and rates of change of computed natural diurnal temperature fluctuations were considerably less than those presently observed (1976) in the river. Except during periods of peak water-supply demand, differences between computed year 2000 river temperatures and observed present-day temperatures were less than 2C. (Woodard-USGS)

  5. Engineered channel controls limiting spawning habitat rehabilitation success on regulated gravel-bed rivers

    NASA Astrophysics Data System (ADS)

    Brown, Rocko A.; Pasternack, Gregory B.

    2008-05-01

    In efforts to rehabilitate regulated rivers for ecological benefits, the flow regime has been one of the primary focal points of management strategies. However, channel engineering can impact channel geometry such that hydraulic and geomorphic responses to flow reregulation do not yield the sought for benefits. To illustrate and assess the impacts of structural channel controls and flow reregulation on channel processes and fish habitat quality in multiple life stages, a highly detailed digital elevation model was collected and analyzed for a river reach right below a dam using a suite of hydrologic, hydraulic, geomorphic, and ecological methods. Results showed that, despite flow reregulation to produce a scaled-down natural hydrograph, anthropogenic boundary controls have severely altered geomorphic processes associated with geomorphic self-sustainability and instream habitat availability in the case study. Given the similarity of this stream to many others, we concluded that the potential utility of natural flow regime reinstatement in regulated gravel-bed rivers is conditional on concomitant channel rehabilitation.

  6. Dual-hologram shearing interference technique with regulated sensitivity

    NASA Astrophysics Data System (ADS)

    Toker, Gregory R.; Levin, Daniel

    1998-06-01

    A novel optical diagnostic technique,namely, a dual hologram shearing interferometry with regulated sensitivity, is proposed for visualization and measuring the density gradients of compressible flows in wind tunnels. It has advantages over conventional shearing interferometry in both accuracy and sensitivity. The method is especially useful for strong turbulent or unsteady regions of the flows including shock flows. The interferometer proved to be insensitive to mechanical vibrations and allowed to record holograms during the noisy wind tunnel run. The proposed approach was demonstrated by its application to a supersonic flow over spherically blunted and sharp nose cone/cylinder models. It is believed that the technique will become an effective tool for receiving optical data in many flow facilities.

  7. Dual-hologram shearing interferometry with regulated sensitivity

    NASA Astrophysics Data System (ADS)

    Toker, Gregory R.; Levin, Daniel

    1998-07-01

    A novel optical diagnostic technique, namely, a dual hologram shearing interferometry with regulated sensitivity, is proposed for visualization and measuring the density gradients of compressible flows in wind tunnels. It has advantages over conventional shearing interferometry in both accuracy and sensitivity. The method is especially useful for strong turbulent or unsteady regions of the flows including shock flows. The interferometer proved to be insensitive to mechanical vibrations and allowed to record holograms during the noisy wind tunnel run. The proposed approach was demonstrated by its application to a supersonic flow over spherically blunted and sharp nose cone/cylinder models. It is believed that the technique will become an effective tool for receiving optical data in many flow facilities.

  8. 40 CFR 89.419 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements are as follows: (1) This sampling system requires the use of a PDP-CVS and a heat exchanger or a CFV-CVS with either a heat exchanger or electronic flow compensation. Figure 2 in appendix A to this..., either a heat exchanger or electronic flow compensation is required (see Figure 3 in appendix A to this...

  9. 40 CFR 89.419 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements are as follows: (1) This sampling system requires the use of a PDP-CVS and a heat exchanger or a CFV-CVS with either a heat exchanger or electronic flow compensation. Figure 2 in appendix A to this..., either a heat exchanger or electronic flow compensation is required (see Figure 3 in appendix A to this...

  10. 40 CFR 89.419 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements are as follows: (1) This sampling system requires the use of a PDP-CVS and a heat exchanger or a CFV-CVS with either a heat exchanger or electronic flow compensation. Figure 2 in appendix A to this..., either a heat exchanger or electronic flow compensation is required (see Figure 3 in appendix A to this...

  11. Contamination and Micropropulsion Technology

    DTIC Science & Technology

    2012-07-01

    23, 027101 (2011) Evaluation of active flow control applied to wind turbine blade section J. Renewable Sustainable Energy 2, 063101 (2010) Effect...field lines at high latitudes where solar wind electrons can readily access the upper atmosphere. The electron energy distribution in the auroral... slip behavior of n-hexadecane in large amplitude oscillatory shear flow via nonequilibrium molecular dynamic simulation J. Chem. Phys. 136, 104904

  12. 40 CFR 89.419 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requirements are as follows: (1) This sampling system requires the use of a PDP-CVS and a heat exchanger or a CFV-CVS with either a heat exchanger or electronic flow compensation. Figure 2 in appendix A to this..., either a heat exchanger or electronic flow compensation is required (see Figure 3 in appendix A to this...

  13. Passive flow regulators for drug delivery and hydrocephalus treatment

    NASA Astrophysics Data System (ADS)

    Chappel, E.; Dumont-Fillon, D.; Mefti, S.

    2014-03-01

    Passive flow regulators are usually intended to deliver or drain a fluid at a constant rate independently from pressure variations. New designs of passive flow regulators made of a stack of a silicon membrane anodically bonded to a Pyrex substrate are proposed. A first design has been built for the derivation of cerebrospinal fluid (CSF) towards peritoneum for hydrocephalus treatment. The device allows draining CSF at the patient production rate independently from postural changes. The flow rate is regulated at 20 ml/h in the range 10 to 40 mbar. Specific features to adjust in vivo the nominal flow rate are shown. A second design including high pressure shut-off feature has been made. The intended use is drug delivery with pressurized reservoir of typically 100 to 300 mbar. In both cases, the membrane comprises several holes facing pillars in the Pyrex substrate. These pillars are machined in a cavity which ensures a gap between the membrane and the pillars at rest. The fluid in the pressurized reservoir is directly in contact with the top surface of the membrane, inducing its deflection towards Pyrex substrate and closing progressively the fluidic pathway through each hole of the membrane. Since the membrane deflection is highly non-linear, FEM simulations have been performed to determine both radial position and diameter of the membrane holes that ensure a constant flow rate for a given range of pressure.

  14. Paper to Electronic Questionnaires: Effects on Structured Questionnaire Forms

    NASA Technical Reports Server (NTRS)

    Trujillo, Anna C.

    2009-01-01

    With the use of computers, paper questionnaires are being replaced by electronic questionnaires. The formats of traditional paper questionnaires have been found to effect a subject's rating. Consequently, the transition from paper to electronic format can subtly change results. The research presented begins to determine how electronic questionnaire formats change subjective ratings. For formats where subjects used a flow chart to arrive at their rating, starting at the worst and middle ratings of the flow charts were the most accurate but subjects took slightly more time to arrive at their answers. Except for the electronic paper format, starting at the worst rating was the most preferred. The paper and electronic paper versions had the worst accuracy. Therefore, for flowchart type of questionnaires, flowcharts should start at the worst rating and work their way up to better ratings.

  15. Performance of a restrictive flow device and an electronic syringe driver for continuous subcutaneous infusion.

    PubMed

    Capes, D; Martin, K; Underwood, R

    1997-10-01

    The aim of this study was to investigate the flow performance of the mechanical Springfusor 30 short model and the electronic Graseby MS16A. Flow rate was measured gravimetrically in a temperature-controlled cabinet. There was no statistically significant difference between the Graseby and Springfusor syringe drivers in the flow rate error at 25 degrees C. The percentage of flow rates within +/-20% accuracy during a 35-min periods at 25 degrees C was significantly less with the Graseby, being 91.9% compared with 100% for the Springfusor. Only 58.2% of flow rates with the Graseby were within the manufacturer claimed accuracy of +/-5%. The flow rate of the Springfusor was affected by temperature; at 30 degrees C the mean flow rate was 10.8% greater than at 25 degrees C. These results indicate that the Springfusor 30 had less flow rate variation than the Graseby MS16A. However, this would not be expected to cause noticeable clinical effects when used for opioid infusion in palliative care.

  16. One-way coupling of an integrated assessment model and a water resources model: evaluation and implications of future changes over the US Midwest

    NASA Astrophysics Data System (ADS)

    Voisin, N.; Liu, L.; Hejazi, M.; Tesfa, T.; Li, H.; Huang, M.; Liu, Y.; Leung, L. R.

    2013-11-01

    An integrated model is being developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and to evaluate how system interactions will be affected by a changing climate at the regional scale. As a first step towards that goal, a global integrated assessment model, which includes a water-demand model driven by socioeconomics at regional and global scales, is coupled in a one-way fashion with a land surface hydrology-routing-water resources management model. To reconcile the scale differences between the models, a spatial and temporal disaggregation approach is developed to downscale the annual regional water demand simulations into a daily time step and subbasin representation. The model demonstrates reasonable ability to represent the historical flow regulation and water supply over the US Midwest (Missouri, Upper Mississippi, and Ohio river basins). Implications for future flow regulation, water supply, and supply deficit are investigated using climate change projections with the B1 and A2 emission scenarios, which affect both natural flow and water demand. Although natural flow is projected to increase under climate change in both the B1 and A2 scenarios, there is larger uncertainty in the changes of the regulated flow. Over the Ohio and Upper Mississippi river basins, changes in flow regulation are driven by the change in natural flow due to the limited storage capacity. However, both changes in flow and demand have effects on the Missouri River Basin summer regulated flow. Changes in demand are driven by socioeconomic factors, energy and food demands, global markets and prices with rainfed crop demand handled directly by the land surface modeling component. Even though most of the changes in supply deficit (unmet demand) and the actual supply (met demand) are driven primarily by the change in natural flow over the entire region, the integrated framework shows that supply deficit over the Missouri River Basin sees an increasing sensitivity to changes in demand in future periods. It further shows that the supply deficit is six times as sensitive as the actual supply to changes in flow and demand. A spatial analysis of the supply deficit demonstrates vulnerabilities of urban areas located along mainstream with limited storage.

  17. Simulating and mapping the spatial and seasonal effects of future climate and land -use changes on ecosystem services in the Yanhe watershed, China.

    PubMed

    Chen, Dengshuai; Li, Jing; Zhou, Zixiang; Liu, Yan; Li, Ting; Liu, Jingya

    2018-01-01

    Effective information about ecosystem services is essential to help optimize and prioritize activities that support conservation planning in the face of land use and climate changes. This study shows an approach that integrates several dissimilar models for assessing water-related ecosystem services to predict values in 2050 under three land use scenarios in the Yanhe watershed. The simulated output variables pertaining to water yield and sediment yield were used as indicators for two ecosystem-regulating services, i.e., water flow regulation and erosion regulation, which were quantified using the soil and water assessment tool (SWAT) model. The model results were translated into a relative ecosystem service valuation scale, which facilitated the analysis of spatial and seasonal changes and served as the basis for the applied mapping approach. The simulated results indicate that higher water-related regulation services were concentrated in the middle and lower reaches of rivers with high water yield and low sediment erosion. The highest water flow regulation services occurred in summer; nevertheless, this was when erosion regulation services were the lowest compared to other periods in 2050. A comparison of the three land use scenarios showed differences in the water-related regulation services. Scenario 1, with high forest coverage, had the highest erosion regulation services, but the water flow regulation services were the lowest. Scenario 3 showed the reverse pattern. Scenario 2 had intermediate water flow regulation and erosion regulation. Increasing vegetation cover in the watershed is conducive to controlling water and soil erosion but could lead to a decline in available water resources. Spatial mapping is a powerful tool for displaying the spatiotemporal differences in the water-related regulation services delivered by ecosystems and can help decision makers optimize land use in the future, with the goal of maximizing the benefits offered by ecological services in the Yanhe watershed.

  18. WEEE flow and mitigating measures in China.

    PubMed

    Yang, Jianxin; Lu, Bin; Xu, Cheng

    2008-01-01

    The research presented in this paper shows that Waste Electrical and Electronic Equipment (WEEE) issues associated with home appliances, such as TV sets, refrigerators, washing machines, air conditioners, and personal computers, are linked in the WEEE flow and recycling systems and are important to matters of public policy and regulation. In this paper, the sources and generation of WEEE in China are identified, and WEEE volumes are calculated. The results show that recycling capacity must increase if the rising quantity of domestic WEEE is to be handled properly. Simultaneously, suitable WEEE treatment will generate large volumes of secondary resources. Environmental problems caused by the existing recycling processes have been investigated in a case study. Problems mainly stem from open burning of plastic-metal parts and from precious metals leaching techniques that utilize acids. The existing WEEE flow at the national level was investigated and described. It became obvious that a considerable amount of obsolete items are stored in homes and offices and have not yet entered the recycling system. The reuse of used appliances has become a high priority for WEEE collectors and dealers because reuse generates higher economic profits than simple material recovery. The results of a cost analysis of WEEE flow shows that management and collection costs significantly influence current WEEE management. Heated discussions are ongoing in political and administrative bodies as to whether extended producer responsibilities policies are promoting WEEE recycling and management. This paper also discusses future challenges and strategies for WEEE management in China.

  19. Fibro-vascular coupling in the control of cochlear blood flow.

    PubMed

    Dai, Min; Shi, Xiaorui

    2011-01-01

    Transduction of sound in the cochlea is metabolically demanding. The lateral wall and hair cells are critically vulnerable to hypoxia, especially at high sound levels, and tight control over cochlear blood flow (CBF) is a physiological necessity. Yet despite the importance of CBF for hearing, consensus on what mechanisms are involved has not been obtained. We report on a local control mechanism for regulating inner ear blood flow involving fibrocyte signaling. Fibrocytes in the super-strial region are spatially distributed near pre-capillaries of the spiral ligament of the albino guinea pig cochlear lateral wall, as demonstrably shown in transmission electron microscope and confocal images. Immunohistochemical techniques reveal the inter-connected fibrocytes to be positive for Na+/K+ ATPase β1 and S100. The connected fibrocytes display more Ca(2+) signaling than other cells in the cochlear lateral wall as indicated by fluorescence of a Ca(2+) sensor, fluo-4. Elevation of Ca(2+) in fibrocytes, induced by photolytic uncaging of the divalent ion chelator o-nitrophenyl EGTA, results in propagation of a Ca(2+) signal to neighboring vascular cells and vasodilation in capillaries. Of more physiological significance, fibrocyte to vascular cell coupled signaling was found to mediate the sound stimulated increase in cochlear blood flow (CBF). Cyclooxygenase-1 (COX-1) was required for capillary dilation. The findings provide the first evidence that signaling between fibrocytes and vascular cells modulates CBF and is a key mechanism for meeting the cellular metabolic demand of increased sound activity.

  20. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...

  1. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...

  2. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...

  3. 40 CFR 86.314-79 - Fuel flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent of the measuring weight. (3) If the mass of fuel consumed is measured electronically (load cell... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Fuel flow measurement specifications....314-79 Fuel flow measurement specifications. (a) The fuel flow rate measurement instrument must have a...

  4. High quality and uniformity GaN grown on 150 mm Si substrate using in-situ NH3 pulse flow cleaning process

    NASA Astrophysics Data System (ADS)

    Ji, Panfeng; Yang, Xuelin; Feng, Yuxia; Cheng, Jianpeng; Zhang, Jie; Hu, Anqi; Song, Chunyan; Wu, Shan; Shen, Jianfei; Tang, Jun; Tao, Chun; Pan, Yaobo; Wang, Xinqiang; Shen, Bo

    2017-04-01

    By using in-situ NH3 pulse flow cleaning method, we have achieved the repeated growth of high quality and uniformity GaN and AlGaN/GaN high electron mobility transistors (HEMTs) on 150 mm Si substrate. The two dimensional electron gas (2DEG) mobility is 2200 cm2/Vs with an electron density of 7.3 × 1012 cm-2. The sheet resistance is 305 ± 4 Ω/□ with ±1.3% variation. The achievement is attributed to the fact that this method can significantly remove the Al, Ga, etc. metal droplets coating on the post growth flow flange and reactor wall which are difficult to clean by normal bake process under H2 ambient.

  5. Child-Langmuir flow in a planar diode filled with charged dust impurities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang Xiaoyan; Institut fuer Theoretische Physik IV, Fakultaet fuer Physik und Astronomie, Ruhr-Universitaet Bochum, D-44870 Bochum; Shukla, Padma Kant

    The Child-Langmuir (CL) flow in a planar diode in the presence of stationary charged dust particles is studied. The limiting electron current density and other diode properties, such as the electrostatic potential, the electron flow speed, and the electron number density, are calculated analytically. A comparison of the results with the case without dust impurities reveals that the diode parameters mentioned above decrease with the increase of the dust charge density. Furthermore, it is found that the classical scaling of D{sup -2} (the gap spacing D) for the CL current density remains exactly valid, while the scaling of V{sup 3/2}more » (the applied gap voltage V) can be a good approximation for low applied gap voltage and for low dust charge density.« less

  6. Numerical modeling of a glow discharge through a supersonic bow shock in air

    NASA Astrophysics Data System (ADS)

    Rassou, S.; Packan, D.; Elias, P.-Q.; Tholin, F.; Chemartin, L.; Labaune, J.

    2017-03-01

    The interaction between a glow discharge and the bow shock of a Mach 3 air flow around a truncated conical model with a central spike is modeled, and comparison is made with prior experimental results. The KRONOS workflow for plasma modeling in flow fields, which has recently been developed at ONERA, was used for the modeling. Based on the quasi-neutral approximation, it couples hypersonic and reactive flow fields with electron chemistry, including the effect of non-Maxwellian electron energy distribution function. The model used for the discharge involves 12 species and 82 reactions, including ionization, electronic and vibrational excitation, and attachment. The simulations reproduce the main features of the discharge observed experimentally well, in particular, the very recognizable topology of the discharge. It was found from the simulations that behind the bow shock, in the afterglow, the negative ion flow ensures the electrical conduction and the establishment of the glow discharge. The influence of kinetic rates on the voltage-current characteristics is discussed.

  7. Branched flow and caustics in random media with magnetic fields

    NASA Astrophysics Data System (ADS)

    Metzger, Jakob; Fleischmann, Ragnar; Geisel, Theo

    2009-03-01

    Classical particles as well as quantum mechanical waves exhibit complex behaviour when propagating through random media. One of the dominant features of the dynamics in correlated, weak disorder potentials is the branching of the flow. This can be observed in several physical systems, most notably in the electron flow in two-dimensional electron gases [1], and has also been used to describe the formation of freak waves [2]. We present advances in the theoretical understanding and numerical simulation of classical branched flows in magnetic fields. In particular, we study branching statistics and branch density profiles. Our results have direct consequences for experiments which measure transport properties in electronic systems [3].[1] e.g. M. A. Topinka et al., Nature 410, 183 (2001), M. P. Jura et al., Nature Physics 3, 841 (2007)[2] E. J. Heller, L. Kaplan and A. Dahlen, J. Geophys. Res., 113, C09023 (2008)[3] J. J. Metzger, R. Fleischmann and T. Geisel, in preparation

  8. Junctional complexes in the inner cyst tissue of the cysticercoid of Hymenolepis diminuta (Cestoda).

    PubMed

    Richards, K S; Arme, C

    1983-10-01

    The inner cyst tissue development is anteriad and centripetal. The cells produce lamellar extensions which assume parallel alignment. The first contact points (approximately 4 days post-infection) establish heptalaminar (gap) junctions. Lamellar attenuation results in a decreased intercellular space, and at 5-6 days pentalaminar junctions (with fused outer plasmalemma leaflets to give an electron-dense, approximately 3 nm wide O-O line) occur. This is the first maturation (M1) stage. The O-O lines are permeable to lanthanum, and evidence of their possible transformation from heptalaminar junctions is presented. Continued lamellar attenuation, associated with scolex retraction and subsequent growth, results in cytoplasmic occlusion and contact between the inner leaflets of the same lamella. The resultant electron-dense I-I line is approximately 3 nm wide; the O-O line is now less electron-dense and thinner (approximately 2 nm). This final maturation (M2) stage, resembling vertebrate myelin, occurs over limited areas; closely adjacent regions either remaining at the M1 stage, or not displaying junctional complexes. Since in vivo and in vitro excystment can occur before the M2 stage, the inner cyst tissue is not considered to be protective against the definitive host. That the tissue may function in limiting nutrient flow, thus regulating the size of the presumptive adult, is discussed.

  9. Assessing hydrological changes in a regulated river system over the last 90 years in Rimac Basin (Peru)

    NASA Astrophysics Data System (ADS)

    Vega-Jácome, Fiorella; Lavado-Casimiro, Waldo Sven; Felipe-Obando, Oscar Gustavo

    2018-04-01

    Hydrological changes were assessed considering possible changes in precipitation and regulation or hydraulic diversion projects developed in the basin since 1960s in terms of improving water supply of the Rimac River, which is the main source of fresh water of Peru's capital. To achieve this objective, a trend analysis of precipitation and flow series was assessed using the Mann-Kendall test. Subsequently, the Eco-flow and Indicators of Hydrologic Alteration (IHA) methods were applied for the characterization and quantification of the hydrological change in the basin, considering for the analysis, a natural period (1920-1960) and an altered period (1961-2012). Under this focus, daily hydrologic information of the "Chosica R-2" station (from 1920 to 2013) and monthly rainfall information related to 14 stations (from 1964 to 2013) were collected. The results show variations in the flow seasonality of the altered period in relation to the natural period and a significant trend to increase (decrease) minimum flows (maximum flows) during the analyzed period. The Eco-flow assessment shows a predominance of Eco-deficit from December to May (rainy season), strongly related to negative anomalies of precipitation. In addition, a predominance of Eco-surplus was found from June to November (dry season) with a behavior opposite to precipitation, attributed to the regulations and diversion in the basin during that period. In terms of magnitude, the IHA assessment identified an increase of 51% in the average flows during the dry season and a reduction of 10% in the average flows during the rainy season (except December and May). Furthermore, the minimum flows increased by 35% with shorter duration and frequency, and maximum flows decreased by 29% with more frequency but less duration. Although there are benefits of regulation and diversion for developing anthropic activities, the fact that hydrologic alterations may result in significant modifications in the Rimac River ecosystem must be taken into account.

  10. 48 CFR 232.7003 - Procedures.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 232.7003 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7003 Procedures. (a) The accepted electronic form for...

  11. 48 CFR 232.7001 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 232.7001 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7001 Definitions. Electronic form and payment request...

  12. 48 CFR 232.7003 - Procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 232.7003 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7003 Procedures. (a) The accepted electronic form for...

  13. 48 CFR 232.7001 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 232.7001 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7001 Definitions. Electronic form and payment request...

  14. 48 CFR 232.7001 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 232.7001 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7001 Definitions. Electronic form and payment request...

  15. 48 CFR 232.7003 - Procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 232.7003 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7003 Procedures. (a) The accepted electronic form for...

  16. 48 CFR 232.7001 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 232.7001 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7001 Definitions. Electronic form and payment request...

  17. 48 CFR 232.7001 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 232.7001 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7001 Definitions. Electronic form and payment request...

  18. 48 CFR 232.7003 - Procedures.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 232.7003 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7003 Procedures. (a) The accepted electronic form for...

  19. 48 CFR 232.7003 - Procedures.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 232.7003 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7003 Procedures. (a) The accepted electronic form for...

  20. Survey of Magnetosheath Plasma Properties at Saturn and Inference of Upstream Flow Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomsen, M. F.; Coates, A. J.; Jackman, C. M.

    A new Cassini magnetosheath data set is introduced that is based on a comprehensive survey of intervals in which the observed magnetosheath flow was encompassed within the plasma analyzer field of view and for which the computed numerical moments are therefore expected to be accurate. The data extend from 2004 day 299 to 2012 day 151 and comprise 19,155 416-s measurements. In addition to the plasma ion moments (density, temperature, and flow velocity), merged values of the plasma electron density and temperature, the energetic particle pressure, and the magnetic field vector are included in the data set. Statistical properties ofmore » various magnetosheath parameters, including dependence on local time, are presented. The magnetosheath field and flow are found to be only weakly aligned, primarily because of a relatively large z-component of the magnetic field, attributable to the field being pulled out of the equatorial orientation by flows at higher latitudes. A new procedure for using magnetosheath properties to estimate the upstream solar wind speed is proposed and used to determine that the amount of electron heating at Saturn's high Mach-number bow shock is ~4% of the dissipated flow energy. The data set is available as an electronic supplement to this paper.« less

  1. Survey of Magnetosheath Plasma Properties at Saturn and Inference of Upstream Flow Conditions

    DOE PAGES

    Thomsen, M. F.; Coates, A. J.; Jackman, C. M.; ...

    2018-03-01

    A new Cassini magnetosheath data set is introduced that is based on a comprehensive survey of intervals in which the observed magnetosheath flow was encompassed within the plasma analyzer field of view and for which the computed numerical moments are therefore expected to be accurate. The data extend from 2004 day 299 to 2012 day 151 and comprise 19,155 416-s measurements. In addition to the plasma ion moments (density, temperature, and flow velocity), merged values of the plasma electron density and temperature, the energetic particle pressure, and the magnetic field vector are included in the data set. Statistical properties ofmore » various magnetosheath parameters, including dependence on local time, are presented. The magnetosheath field and flow are found to be only weakly aligned, primarily because of a relatively large z-component of the magnetic field, attributable to the field being pulled out of the equatorial orientation by flows at higher latitudes. A new procedure for using magnetosheath properties to estimate the upstream solar wind speed is proposed and used to determine that the amount of electron heating at Saturn's high Mach-number bow shock is ~4% of the dissipated flow energy. The data set is available as an electronic supplement to this paper.« less

  2. Combined effects of hydrologic alteration and cyprinid fish in mediating biogeochemical processes in a Mediterranean stream.

    PubMed

    Rubio-Gracia, Francesc; Almeida, David; Bonet, Berta; Casals, Frederic; Espinosa, Carmen; Flecker, Alexander S; García-Berthou, Emili; Martí, Eugènia; Tuulaikhuu, Baigal-Amar; Vila-Gispert, Anna; Zamora, Lluis; Guasch, Helena

    2017-12-01

    Flow regimes are important drivers of both stream community and biogeochemical processes. However, the interplay between community and biogeochemical responses under different flow regimes in streams is less understood. In this study, we investigated the structural and functional responses of periphyton and macroinvertebrates to different densities of the Mediterranean barbel (Barbus meridionalis, Cyprinidae) in two stream reaches differing in flow regime. The study was conducted in Llémena Stream, a small calcareous Mediterranean stream with high nutrient levels. We selected a reach with permanent flow (permanent reach) and another subjected to flow regulation (regulated reach) with periods of flow intermittency. At each reach, we used in situ cages to generate 3 levels of fish density. Cages with 10 barbels were used to simulate high fish density (>7indm -2 ); cages with open sides were used as controls (i.e. exposed to actual fish densities of each stream reach) thus having low fish density; and those with no fish were used to simulate the disappearance of fish that occurs with stream drying. Differences in fish density did not cause significant changes in periphyton biomass and macroinvertebrate density. However, phosphate uptake by periphyton was enhanced in treatments lacking fish in the regulated reach with intermittent flow but not in the permanent reach, suggesting that hydrologic alteration hampers the ability of biotic communities to compensate for the absence of fish. This study indicates that fish density can mediate the effects of anthropogenic alterations such as flow intermittence derived from hydrologic regulation on stream benthic communities and associated biogeochemical processes, at least in eutrophic streams. Copyright © 2017. Published by Elsevier B.V.

  3. 75 FR 32533 - WTO Dispute Settlement Proceeding Regarding United States-Anti-Dumping Measures on Certain Shrimp...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... should be submitted electronically to http:[sol][sol] www.regulations.gov , docket number USTR-2010-0008. If you are unable to submit comments using http:[sol][sol] www.regulations.gov , please contact Sandy.... Persons may submit public comments electronically to http:[sol][sol] www.regulations.gov docket number...

  4. 48 CFR 52.232-35 - Designation of Office for Government Receipt of Electronic Funds Transfer Information.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Designation of Office for Government Receipt of Electronic Funds Transfer Information. 52.232-35 Section 52.232-35 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION (CONTINUED) CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT CLAUSES Text of...

  5. HIF isoforms in the skin differentially regulate systemic arterial pressure

    PubMed Central

    Cowburn, Andrew S.; Takeda, Norihiko; Boutin, Adam T.; Kim, Jung-Whan; Sterling, Jane C.; Nakasaki, Manando; Southwood, Mark; Goldrath, Ananda W.; Jamora, Colin; Nizet, Victor; Chilvers, Edwin R.; Johnson, Randall S.

    2013-01-01

    Vascular flow through tissues is regulated via a number of homeostatic mechanisms. Localized control of tissue blood flow, or autoregulation, is a key factor in regulating tissue perfusion and oxygenation. We show here that the net balance between two hypoxia-inducible factor (HIF) transcription factor isoforms, HIF-1α and HIF-2α, is an essential mechanism regulating both local and systemic blood flow in the skin of mice. We also show that balance of HIF isoforms in keratinocyte-specific mutant mice affects thermal adaptation, exercise capacity, and systemic arterial pressure. The two primary HIF isoforms achieve these effects in opposing ways that are associated with HIF isoform regulation of nitric oxide production. We also show that a correlation exists between altered levels of HIF isoforms in the skin and the degree of idiopathic hypertension in human subjects. Thus, the balance between HIF-1α and HIF-2α expression in keratinocytes is a control element of both tissue perfusion and systemic arterial pressure, with potential implications in human hypertension. PMID:24101470

  6. Regulation of the flow rate of liquid-metal coolants on experimental stands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozlov, F.A.; Laptev, G.I.

    Systems for automatic regulation of the flow rate of alkali metals, based on the series ENIV, VIN, and TsLIN three-phase electromagnetic pumps with a pumping rate of 0.5-200 m/sup 3/ per hour, were evaluated. The stability of each system was investigated by the method of undamped oscillations. The possibility of employing the analog temperature regulators VRT-2, RPA-T, and R113 was assessed. The functions performed by the most suitable automatic regulation unit, the RPA-T, were described. The limiting period of flow rate oscillations with a maximum gain of the RPA-T in alkali metal regulation systems equaled about 0.5 sec and themore » minimum integration time of the RPA-T was an order of magnitude longer than the optimal interval. Use of the systems on experimental stands enabled raising the quality of the studies and expanding the zone of servicing of the facilities by the same personnel.« less

  7. The modeling of a standalone solid-oxide fuel cell auxiliary power unit

    NASA Astrophysics Data System (ADS)

    Lu, N.; Li, Q.; Sun, X.; Khaleel, M. A.

    In this research, a Simulink model of a standalone vehicular solid-oxide fuel cell (SOFC) auxiliary power unit (APU) is developed. The SOFC APU model consists of three major components: a controller model; a power electronics system model; and an SOFC plant model, including an SOFC stack module, two heat exchanger modules, and a combustor module. This paper discusses the development of the nonlinear dynamic models for the SOFC stacks, the heat exchangers and the combustors. When coupling with a controller model and a power electronic circuit model, the developed SOFC plant model is able to model the thermal dynamics and the electrochemical dynamics inside the SOFC APU components, as well as the transient responses to the electric loading changes. It has been shown that having such a model for the SOFC APU will help design engineers to adjust design parameters to optimize the performance. The modeling results of the SOFC APU heat-up stage and the output voltage response to a sudden load change are presented in this paper. The fuel flow regulation based on fuel utilization is also briefly discussed.

  8. The Efficacy of International Regulation of Transborder Data Flows: The Case for the Clipper Chip.

    ERIC Educational Resources Information Center

    Mhlaba, Sondlo Leonard

    1995-01-01

    Discusses origins of Transborder Data Flows (TDFs) as an international problem in the early 1970s. Shows how technological development in telecommunications and networks has made regulation more complex and urgent. Recommends the internationalization of the Key Escrowed Encryption System (KEES) and the development of broad international TDF…

  9. Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels.

    PubMed

    Phillis, John W

    2004-01-01

    A considerable volume of evidence implicates the purine adenosine in the regulation of cerebral blood flow during states such as hypotension, neural activation, hypoxia/ischemia, and hypercapnia/acidosis. The aim of this review is to describe developments in our understanding of the roles that adenosine and the adenine nucleotides play in cerebral blood flow control, with some comparisons to coronary blood flow. The first part of the review focuses on the categorization of receptors for adenosine (A1, A2A, A2B, and A3) and the adenine nucleotides, ATP and ADP (P2X and P2Y). Frequently used agonists and antagonists for these different receptors are mentioned. A description follows of the distribution of these different receptors in cerebral arterioles. The second part of the review initially deals with the literature on the release of adenosine and adenine nucleotides into the extracellular space of the brain, describing the various techniques used to make these measurements and assessing the pitfalls associated with their use. This is followed by a discussion of the factors affecting purine release, which include cell swelling and acidosis. The third section evaluates the role of smooth muscle potassium channels in controlling arteriolar diameter. There is evidence for an important role of KATP and KCa channels, but less is known about the contributions of voltage-dependent (KV) and inwardly rectifying (KIR) channels. This section ends with a discussion on the reported inhibitory effect of nitric oxide synthase inhibitors on the KATP channel and the consequences of such an action for the interpretation of much of the published work on nitric oxide as a regulator of cerebral blood flow. The fourth section evaluates the data supporting a role of adenosine and ATP in the regulation of cerebral blood flow during autoregulation, hypotension, neural activity, hypoxia/ ischemia, and hypercapnia. Studies using antagonists and potentiators of adenosine's actions have led to the conclusion that adenosine is involved in vascular flow control, matching metabolic activity to blood flow in all of these conditions, possibly with the exceptions of autoregulation at mean arterial blood pressures above approximately 60 mmHg. Evidence is presented for a major role of A2A, and a more limited role of A2B receptors, in balancing blood flow with metabolism. The primary effect of receptor occupancy is activation of KATP and KCa channels with smooth muscle relaxation and elevated blood flow rates. There are presently fewer data on ATP's participation in flow control, but recent evidence regarding glial cell control of cerebral arteriolar diameter suggests that this may be an important mechanism. The semi-final section, which briefly describes the evidence for a comparable role of adenosine in regulating coronary blood flow, is followed by a concluding statement reaffirming the importance of adenosine as a cerebral blood flow regulator.

  10. Hyporheic Zone Residence Time Distributions in Regulated River Corridors

    NASA Astrophysics Data System (ADS)

    Song, X.; Chen, X.; Shuai, P.; Gomez-Velez, J. D.; Ren, H.; Hammond, G. E.

    2017-12-01

    Regulated rivers exhibit stage fluctuations at multiple frequencies due to both natural processes (e.g., seasonal cycle) and anthropogenic activities (e.g., dam operation). The interaction between the dynamic river flow conditions and the heterogeneous aquifer properties results in complex hydrologic exchange pathways that are ubiquitous in free-flowing and regulated river corridors. The dynamic nature of the exchange flow is reflected in the residence time distribution (RTD) of river water within the groundwater system, which is a key metric that links river corridor biogeochemical processes with the hydrologic exchange. Understanding the dynamics of RTDs is critical to gain the mechanistic understanding of hydrologic exchange fluxes and propose new parsimonious models for river corridors, yet it is understudied primarily due to the high computational demands. In this study, we developed parallel particle tracking algorithms to reveal how river flow variations affect the RTD of river water in the alluvial aquifer. Particle tracking was conducted using the velocity outputs generated by three-dimensional groundwater flow simulations of PFLOTRAN in a 1600 x 800 x 20m model domain within the DOE Hanford Site. Long-term monitoring data of inland well water levels and river stage were used for eight years of flow simulation. Nearly a half million particles were continually released along the river boundary to calculate the RTDs. Spectral analysis of the river stage data revealed high-frequency (sub-daily to weekly) river stage fluctuations caused by dam operations. The higher frequencies of stage variation were progressively filtered to generate multiple sets of flow boundary conditions. A series of flow simulations were performed by using the filtered flow boundary conditions and various degrees of subsurface heterogeneity to study the relative contribution of flow dynamics and physical heterogeneity on river water RTD. Our results revealed multimodal RTDs of river water as a result of the highly variable exchange pathways driven by interactions between dynamic flow and aquifer heterogeneity. A relationship between the RTD and frequency of flow variation was built for each heterogeneity structure, which can be used to assess the potential ecological consequences of dam operations in regulated rivers.

  11. A prototype heat pipe heat exchanger for the capillary pumped loop flight experiment

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Yun, Seokgeun; Kroliczek, Edward J.

    1992-01-01

    A Capillary Pumped Two-Phase Heat Transport Loop (CAPL) Flight Experiment, currently planned for 1993, will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. CAPL employs a heat pipe heat exchanger (HPHX) to couple the condenser section of the CPL to the radiator assembly. A prototype HPHX consisting of a heat exchanger (HX), a header heat pipe (HHP), a spreader heat pipe (SHP), and a flow regulator has been designed and tested. The HX transmits heat from the CPL condenser to the HHP, while the HHP and SHP transport heat to the radiator assembly. The flow regulator controls flow distribution among multiple parallel HPHX's. Test results indicated that the prototype HPHX could transport up to 800 watts with an overall heat transfer coefficient of more than 6000 watts/sq m-deg C. Flow regulation among parallel HPHX's was also demonstrated.

  12. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  13. Electron Heating by the Ion Cyclotron Instability in Collisionless Accretion Flows. I. Compression-driven Instabilities and the Electron Heating Mechanism

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Narayan, Ramesh

    2015-02-01

    In systems accreting well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the innermost regions of the disk is believed to be collisionless and have two temperatures, with the ions substantially hotter than the electrons. However, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities by means of multidimensional, fully kinetic, particle-in-cell (PIC) simulations. A background large-scale compression—embedded in a novel form of the PIC equations—continuously amplifies the field. This constantly drives a pressure anisotropy P > P ∥ because of the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values β0i ~ 5-30 appropriate for the midplane of low-luminosity accretion flows (here, β0i is the ratio of ion thermal pressure to magnetic pressure), mirror modes dominate if the electron-to-proton temperature ratio is T 0e /T 0i >~ 0.2, whereas for T 0e /T 0i <~ 0.2 the ion cyclotron instability triggers the growth of strong Alfvén-like waves, which pitch-angle scatter the ions to maintain marginal stability. We develop an analytical model of electron heating during the growth of the ion cyclotron instability, which we validate with PIC simulations. We find that for cold electrons (β0e <~ 2 me /mi , where β0e is the ratio of electron thermal pressure to magnetic pressure), the electron energy gain is controlled by the magnitude of the E-cross-B velocity induced by the ion cyclotron waves. This term is independent of the initial electron temperature, so it provides a solid energy floor even for electrons starting with extremely low temperatures. On the other hand, the electron energy gain for β0e >~ 2 me /mi —governed by the conservation of the particle magnetic moment in the growing fields of the instability—is proportional to the initial electron temperature, and it scales with the magnetic energy of ion cyclotron waves. Our results have implications for two-temperature accretion flows as well as for solar wind and intracluster plasmas.

  14. Intrinsic and extrinsic predictors of video-gaming behaviour and adolescent bedtimes: the relationship between flow states, self-perceived risk-taking, device accessibility, parental regulation of media and bedtime.

    PubMed

    Smith, Lisa J; Gradisar, Michael; King, Daniel L; Short, Michelle

    2017-02-01

    How computer games affect the time at which adolescents go to bed is of growing research interest; however, the intrinsic individual and extrinsic sociocultural factors mediating the relationship between gaming and sleep have received minimal attention. This paper investigates how gaming duration mediates the relationship between intrinsic factors (perception of risky events and flow) and extrinsic factors (parental regulation and media accessibility) and adolescent bedtime. Adolescents (N = 422; age = 16.3 ± 2.02 years, 41% M) from six metropolitan schools and the Flinders University completed a questionnaire battery. More flow states (r = .34, p < .01) and increased accessibility (r= .21, p < .01) significantly predicted longer gaming duration, whereas greater parental regulation (r = - .15, p < .01) predicted fewer hours spent playing video games. In addition, higher perception of the negative consequences of risk-taking (r = .14, p < .01) significantly predicted later bedtimes in adolescence. The relationship between flow and bedtime during adolescence was fully mediated by gaming duration (b = .142, p < .001), whereas the association between parental regulation and bedtime was independent of gaming duration. Flow and parental regulation of media were identified as the key points for clinical intervention to decrease the duration of gaming of adolescents, thus promoting earlier bedtimes. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  15. Insights into neutrino decoupling gleaned from considerations of the role of electron mass

    NASA Astrophysics Data System (ADS)

    Grohs, E.; Fuller, George M.

    2017-10-01

    We present calculations showing how electron rest mass influences entropy flow, neutrino decoupling, and Big Bang Nucleosynthesis (BBN) in the early universe. To elucidate this physics and especially the sensitivity of BBN and related epochs to electron mass, we consider a parameter space of rest mass values larger and smaller than the accepted vacuum value. Electromagnetic equilibrium, coupled with the high entropy of the early universe, guarantees that significant numbers of electron-positron pairs are present, and dominate over the number of ionization electrons to temperatures much lower than the vacuum electron rest mass. Scattering between the electrons-positrons and the neutrinos largely controls the flow of entropy from the plasma into the neutrino seas. Moreover, the number density of electron-positron-pair targets can be exponentially sensitive to the effective in-medium electron mass. This entropy flow influences the phasing of scale factor and temperature, the charged current weak-interaction-determined neutron-to-proton ratio, and the spectral distortions in the relic neutrino energy spectra. Our calculations show the sensitivity of the physics of this epoch to three separate effects: finite electron mass, finite-temperature quantum electrodynamic (QED) effects on the plasma equation of state, and Boltzmann neutrino energy transport. The ratio of neutrino to plasma-component energy scales manifests in Cosmic Microwave Background (CMB) observables, namely the baryon density and the radiation energy density, along with the primordial helium and deuterium abundances. Our results demonstrate how the treatment of in-medium electron mass (i.e., QED effects) could translate into an important source of uncertainty in extracting neutrino and beyond-standard-model physics limits from future high-precision CMB data.

  16. Numerical simulations of quantum devices

    NASA Astrophysics Data System (ADS)

    Sandu, Titus

    This work has been motivated by the tremendous effort toward the next generation of electron devices that will replace the present CMOS (Complementary Metal Oxide Semiconductor). Non-equilibrium Green's function formalism (NEGF) and empirical tight-binding (ETB) methods have been utilized in this dissertation. We studied the transport properties of Si/SiO2 resonant tunneling diodes (RTDs) by employing NEGF. We analyzed the physics of electron transport in Si/SiO2 RTDs and provided some guidelines for the fabrication of such devices by considering the effect of interface roughness scattering. Atomic scale roughness is shown to be acceptable. As the island size of the roughness increases, the peak-to-valley ratio degrades to less than 5 for 1 nm roughness and less than 2 for 2 nm roughness. By the ETB method we calculated electronic and optical properties of the relatively new Si/BeSe0.41Te0.59 system, more precisely Si/BeSe0.41Te0.59 [001] superlattices (SLs). Two interface bands were found in the band gap of bulk silicon. They were related to the polar Si/BeSe0.41Te0.59 interface. In addition, numerical calculations showed that the optical gap is close to the fundamental gap of bulk Si and the transitions are optically allowed. Two more aspects have been studied with NEGF: intrinsic bistability and off-zone center current flow of electrons in the RTD. We showed that broadening of the quasi-bound state in the emitter by scattering reduces intrinsic bistability. So far in different theoretical papers dealing with intrinsic bistability, only the scattering in the well has been considered. Finally, we demonstrated that scattering induces off-zone center current flow of electrons in RTDs. In RTDs electrons usually have a zone-center current flow. This is due to the coherent transport for which Tsu-Esaki formula is valid. On the contrary, holes have off-zone-center current flow. We show that, generally, carrier current flow is off-center, which means that the hole behavior is extended to electrons and is related to the breakdown of the Tsu-Esaki formula. Oblique flow is due to incoherent scattering represented by interface roughness and acoustic phonons. This is a quite new result and has been recently seen experimentally for hole transport.

  17. Bicuspid aortic valve

    MedlinePlus

    ... regulates blood flow from the heart into the aorta. The aorta is the major blood vessel that brings oxygen- ... blood to flow from the heart to the aorta. It prevents the blood from flowing back from ...

  18. Electric Current Flow Through Two-Dimensional Networks

    NASA Astrophysics Data System (ADS)

    Gaspard, Mallory

    In modern nanotechnology, two-dimensional atomic network structures boast promising applications as nanoscale circuit boards to serve as the building blocks of more sustainable and efficient, electronic devices. However, properties associated with the network connectivity can be beneficial or deleterious to the current flow. Taking a computational approach, we will study large uniform networks, as well as large random networks using Kirchhoff's Equations in conjunction with graph theoretical measures of network connectedness and flows, to understand how network connectivity affects overall ability for successful current flow throughout a network. By understanding how connectedness affects flow, we may develop new ways to design more efficient two-dimensional materials for the next generation of nanoscale electronic devices, and we will gain a deeper insight into the intricate balance between order and chaos in the universe. Rensselaer Polytechnic Institute, SURP Institutional Grant.

  19. Optical Sensor of Thermal Gas Flow Based on Fiber Bragg Grating.

    PubMed

    Jiang, Xu; Wang, Keda; Li, Junqing; Zhan, Hui; Song, Zhenan; Che, Guohang; Lyu, Guohui

    2017-02-15

    This paper aims at solving the problem of explosion proof in measurement of thermal gas flow using electronic sensor by presenting a new type of flow sensor by optical fiber heating. A measuring unit based on fiber Bragg grating (FBG) for fluid temperature and a unit for heat dissipation are designed to replace the traditional electronic sensors. The light in C band from the amplified spontaneous emission (ASE) light source is split, with one part used to heat the absorbing coating and the other part used in the signal processing unit. In the heating unit, an absorbing coating is introduced to replace the traditional resistance heating module to minimize the risk of explosion. The measurement results demonstrate a fine consistency between the flow and temperature difference in simulation. The method to enhance the measurement resolution of flow is also discussed.

  20. Cooling/heating augmentation during turbine startup/shutdown using a seal positioned by thermal response of turbine parts and consequent relative movement thereof

    DOEpatents

    Schmidt, Mark Christopher

    2000-01-01

    In a turbine rotor, a thermal mismatch between various component parts of the rotor occurs particularly during transient operations such as shutdown and startup. A thermal medium flows past and heats or cools one part of the turbine which may have a deleterious thermal mismatch with another part. By passively controlling the flow of cooling medium past the one part in response to relative movement of thermally responsive parts of the turbine, the flow of thermal medium along the flow path can be regulated to increase or reduce the flow, thereby to regulate the temperature of the one part to maintain the thermal mismatch within predetermined limits.

  1. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.

    PubMed

    Korge, Paavo; Calmettes, Guillaume; Weiss, James N

    2015-01-01

    Both extremes of redox balance are known to cause cardiac injury, with mounting evidence revealing that the injury induced by both oxidative and reductive stress is oxidative in nature. During reductive stress, when electron acceptors are expected to be mostly reduced, some redox proteins can donate electrons to O2 instead, which increases reactive oxygen species (ROS) production. However, the high level of reducing equivalents also concomitantly enhances ROS scavenging systems involving redox couples such as NADPH/NADP+ and GSH/GSSG. Here our objective was to explore how reductive stress paradoxically increases net mitochondrial ROS production despite the concomitant enhancement of ROS scavenging systems. Using recombinant enzymes and isolated permeabilized cardiac mitochondria, we show that two normally antioxidant matrix NADPH reductases, glutathione reductase and thioredoxin reductase, generate H2O2 by leaking electrons from their reduced flavoprotein to O2 when electron flow is impaired by inhibitors or because of limited availability of their natural electron acceptors, GSSG and oxidized thioredoxin. The spillover of H2O2 under these conditions depends on H2O2 reduction by peroxiredoxin activity, which may regulate redox signaling in response to endogenous or exogenous factors. These findings may explain how ROS production during reductive stress overwhelms ROS scavenging capability, generating the net mitochondrial ROS spillover causing oxidative injury. These enzymes could potentially be targeted to increase cancer cell death or modulate H2O2-induced redox signaling to protect the heart against ischemia/reperfusion damage. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. The interplay between the kinetic nonlinear frequency shift and the flowing gradient in stimulated Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Y Zheng, C.; Liu, Z. J.; Xiao, C. Z.; Feng, Q. S.; Zhang, H. C.; He, X. T.

    2018-02-01

    The effect of the kinetic nonlinear frequency shift (KNFS) on backward stimulated Brillouin scattering (SBS) in homogeneous plasmas and inhomogeneous flowing plasmas is investigated by three-wave coupled-mode equations. When the positive contribution to the KNFS from electrons as well as the negative contribution from ions is included, the net KNFS can become positive at a large electron-ion temperature ratio {{ZT}}e/{T}i. In homogeneous plasmas, KNFS can greatly reduce the SBS reflectivity at low or large {{ZT}}e/{T}i but has a weak effect on SBS at {{ZT}}e/{T}i where the positive frequency shifts from electrons almost cancels out the negative shifts from ions. In inhomogeneous plasmas, the net negative frequency shift can enhance the backward SBS reflectivity for the negative gradient of the plasma flowing, and can suppress the reflectivity for the positive case. On the contrary, the net positive frequency can suppress the reflectivity for the negative case of the flowing gradient and enhance the reflectivity for the positive case. This indicates that the SBS in inhomogeneous flowing plasmas can be controlled by changing the sign of the nonlinear frequency shift.

  3. Calcium delivery and storage in plant leaves: exploring the link with water flow.

    PubMed

    Gilliham, Matthew; Dayod, Maclin; Hocking, Bradleigh J; Xu, Bo; Conn, Simon J; Kaiser, Brent N; Leigh, Roger A; Tyerman, Stephen D

    2011-04-01

    Calcium (Ca) is a unique macronutrient with diverse but fundamental physiological roles in plant structure and signalling. In the majority of crops the largest proportion of long-distance calcium ion (Ca(2+)) transport through plant tissues has been demonstrated to follow apoplastic pathways, although this paradigm is being increasingly challenged. Similarly, under certain conditions, apoplastic pathways can dominate the proportion of water flow through plants. Therefore, tissue Ca supply is often found to be tightly linked to transpiration. Once Ca is deposited in vacuoles it is rarely redistributed, which results in highly transpiring organs amassing large concentrations of Ca ([Ca]). Meanwhile, the nutritional flow of Ca(2+) must be regulated so it does not interfere with signalling events. However, water flow through plants is itself regulated by Ca(2+), both in the apoplast via effects on cell wall structure and stomatal aperture, and within the symplast via Ca(2+)-mediated gating of aquaporins which regulates flow across membranes. In this review, an integrated model of water and Ca(2+) movement through plants is developed and how this affects [Ca] distribution and water flow within tissues is discussed, with particular emphasis on the role of aquaporins.

  4. Flow impedance in a uniform magnetically insulated transmission line

    NASA Astrophysics Data System (ADS)

    Mendel, C. W.; Seidel, D. B.

    1999-12-01

    In two recent publications [C. W. Mendel, Jr. and S. E. Rosenthal, Phys. of Plasmas 2, 1332 (1995), C. W. Mendel, Jr. and S. E. Rosenthal, Phys. of Plasmas 3, 4207 (1996)] relativistic electron flow in cylindrical magnetically insulated transmission lines was analyzed and modeled under the assumption of negligible electron pressure. The model allows power flow in these lines to be accurately calculated under most conditions. The model was developed for coaxial right circular cylindrical electrodes. It is shown here that the model applies equally well to arbitrary cylindrical systems, i.e., systems consisting of electrodes of arbitrary cross section.

  5. Direct Simulation of Reentry Flows with Ionization

    NASA Technical Reports Server (NTRS)

    Carlson, Ann B.; Hassan, H. A.

    1989-01-01

    The Direct Simulation Monte Carlo (DSMC) method is applied in this paper to the study of rarefied, hypersonic, reentry flows. The assumptions and simplifications involved with the treatment of ionization, free electrons and the electric field are investigated. A new method is presented for the calculation of the electric field and handling of charged particles with DSMC. In addition, a two-step model for electron impact ionization is implemented. The flow field representing a 10 km/sec shock at an altitude of 65 km is calculated. The effects of the new modeling techniques on the calculation results are presented and discussed.

  6. Nonlinear Modeling and Control of a Propellant Mixer

    NASA Technical Reports Server (NTRS)

    Barbieri, Enrique; Richter, Hanz; Figueroa, Fernando

    2003-01-01

    A mixing chamber used in rocket engine combustion testing at NASA Stennis Space Center is modeled by a second order nonlinear MIMO system. The mixer is used to condition the thermodynamic properties of cryogenic liquid propellant by controlled injection of the same substance in the gaseous phase. The three inputs of the mixer are the positions of the valves regulating the liquid and gas flows at the inlets, and the position of the exit valve regulating the flow of conditioned propellant. The outputs to be tracked and/or regulated are mixer internal pressure, exit mass flow, and exit temperature. The outputs must conform to test specifications dictated by the type of rocket engine or component being tested downstream of the mixer. Feedback linearization is used to achieve tracking and regulation of the outputs. It is shown that the system is minimum-phase provided certain conditions on the parameters are satisfied. The conditions are shown to have physical interpretation.

  7. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    USGS Publications Warehouse

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  8. The Role of Neuronal Signaling in Controlling Cerebral Blood Flow

    ERIC Educational Resources Information Center

    Drake, Carrie T.; Iadecola, Costantino

    2007-01-01

    Well-regulated blood flow within the brain is vital to normal function. The brain's requirement for sufficient blood flow is ensured by a tight link between neural activity and blood flow. The link between regional synaptic activity and regional cerebral blood flow, termed functional hyperemia, is the basis for several modern imaging techniques…

  9. In Silico Analysis of the Regulation of the Photosynthetic Electron Transport Chain in C3 Plants1[OPEN

    PubMed Central

    Kramer, David M.

    2018-01-01

    We present a new simulation model of the reactions in the photosynthetic electron transport chain of C3 species. We show that including recent insights about the regulation of the thylakoid proton motive force, ATP/NADPH balancing mechanisms (cyclic and noncyclic alternative electron transport), and regulation of Rubisco activity leads to emergent behaviors that may affect the operation and regulation of photosynthesis under different dynamic environmental conditions. The model was parameterized with experimental results in the literature, with a focus on Arabidopsis (Arabidopsis thaliana). A dataset was constructed from multiple sources, including measurements of steady-state and dynamic gas exchange, chlorophyll fluorescence, and absorbance spectroscopy under different light intensities and CO2, to test predictions of the model under different experimental conditions. Simulations suggested that there are strong interactions between cyclic and noncyclic alternative electron transport and that an excess capacity for alternative electron transport is required to ensure adequate redox state and lumen pH. Furthermore, the model predicted that, under specific conditions, reduction of ferredoxin by plastoquinol is possible after a rapid increase in light intensity. Further analysis also revealed that the relationship between ATP synthesis and proton motive force was highly regulated by the concentrations of ATP, ADP, and inorganic phosphate, and this facilitated an increase in nonphotochemical quenching and proton motive force under conditions where metabolism was limiting, such as low CO2, high light intensity, or combined high CO2 and high light intensity. The model may be used as an in silico platform for future research on the regulation of photosynthetic electron transport. PMID:28924017

  10. Detecting climate change oriented and human induced changes in stream temperature across the Southeastern U.S.

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Voisin, N.; Cheng, Y.; Niemeyer, R. J.; Nijssen, B.; Yearsley, J. R.; Zhou, T.

    2017-12-01

    In many areas, climate change is expected to alter the flow regime and increase stream temperature, especially during summer low flow periods. During these low flow periods, water management increases flows in order to sustain human activities such as water for irrigation and hydroelectric power generation. Water extraction from rivers during warm season can increase stream temperature while reservoir regulation may cool downstream river temperatures by releasing cool water from deep layers. Thus, it is reasonable to hypothesize that water management changes the sensitivity of the stream temperature regime to climate change when compared to unmanaged resources. The time of emergence of change refers to the point in time when observations, or model simulations, show statistically significant changes from a given baseline period, i.e. above natural variability. Here we aim to address two questions by investigating the time of emergence of changes in stream temperature in the southeastern United States: what is the sensitivity of stream temperature under regulated flow conditions to climate change and what is the contribution of water management in increasing or decreasing stream temperature sensitivity to climate change. We simulate regulated flow by using runoff from the Variable Infiltration Capacity (VIC) macroscale hydrological model as input into a large scale river routing and reservoir model MOSART-WM. The River Basin Model (RBM), a distributed stream temperature model, includes a two-layer thermal stratification module to simulate stream temperature in regulated river systems. We evaluate the timing of emergence of changes in flow and stream temperature based on climate projections from two representative concentration pathways (RCPs; RCP4.5 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We analyze the difference in emergence of change between natural and regulated streamflow. Insights will be provided toward applications for multiple sectors of activities including electrical resources adequacy studies over the southeastern U.S.

  11. Fragment-orbital tunneling currents and electronic couplings for analysis of molecular charge-transfer systems.

    PubMed

    Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn

    2018-04-04

    In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.

  12. Regulation of flow computers for the measurement of biofuels

    NASA Astrophysics Data System (ADS)

    Almeida, R. O.; Aguiar Júnior, E. A.; Costa-Felix, R. P. B.

    2018-03-01

    This article aims to discuss the need to develop a standard or regulation applicable to flow computers in the measurement of biofuels. International standards and recommendations are presented which are possibly adequate to fill this gap and at the end of the article a way is proposed to obtain a single document on the subject.

  13. Eppur Si Muove: The Dynamic Nature of Physiological Control of Renal Blood Flow by the Renal Sympathetic Nerves

    PubMed Central

    Schiller, Alicia M.; Pellegrino, Peter Ricci; Zucker, Irving H.

    2016-01-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. PMID:27514571

  14. Eppur Si Muove: The dynamic nature of physiological control of renal blood flow by the renal sympathetic nerves.

    PubMed

    Schiller, Alicia M; Pellegrino, Peter Ricci; Zucker, Irving H

    2017-05-01

    Tubuloglomerular feedback and the myogenic response are widely appreciated as important regulators of renal blood flow, but the role of the sympathetic nervous system in physiological renal blood flow control remains controversial. Where classic studies using static measures of renal blood flow failed, dynamic approaches have succeeded in demonstrating sympathetic control of renal blood flow under normal physiological conditions. This review focuses on transfer function analysis of renal pressure-flow, which leverages the physical relationship between blood pressure and flow to assess the underlying vascular control mechanisms. Studies using this approach indicate that the renal nerves are important in the rapid regulation of the renal vasculature. Animals with intact renal innervation show a sympathetic signature in the frequency range associated with sympathetic vasomotion that is eliminated by renal denervation. In conscious rabbits, this sympathetic signature exerts vasoconstrictive, baroreflex control of renal vascular conductance, matching well with the rhythmic, baroreflex-influenced control of renal sympathetic nerve activity and complementing findings from other studies employing dynamic approaches to study renal sympathetic vascular control. In this light, classic studies reporting that nerve stimulation and renal denervation do not affect static measures of renal blood flow provide evidence for the strength of renal autoregulation rather than evidence against physiological renal sympathetic control of renal blood flow. Thus, alongside tubuloglomerular feedback and the myogenic response, renal sympathetic outflow should be considered an important physiological regulator of renal blood flow. Clinically, renal sympathetic vasomotion may be important for solving the problems facing the field of therapeutic renal denervation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Miniaturized pressurization system

    DOEpatents

    Whitehead, John C.; Swink, Don G.

    1991-01-01

    The invention uses a fluid stored at a low pressure and provides the fluid at a high pressure. The invention allows the low pressure fluid to flow to a fluid bore of a differential pump and from the pump to a fluid pressure regulator. After flowing through the regulator the fluid is converted to a gas which is directed to a gas bore of the differential pump. By controlling the flow of gas entering and being exhausted from the gas bore, the invention provides pressure to the fluid. By setting the regulator, the high pressure fluid can be set at predetermined values. Because the invention only needs a low pressure fluid, the inventive apparatus has a low mass, and therefore would be useful in rocket propulsion systems.

  16. Three-dimensional modeling of electron quasiviscous dissipation in guide-field magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesse, Michael; Kuznetsova, Masha; Schindler, Karl

    2005-10-01

    A numerical study of guide-field magnetic reconnection in a three-dimensional model is presented. Starting from an initial, perturbed, force-free current sheet, it is shown that reconnection develops to an almost translationally invariant state, where magnetic perturbations are aligned primarily along the main current flow direction. An analysis of guide-field and electron flow signatures indicates behavior that is very similar to earlier, albeit not three-dimensional, simulations. Furthermore, a detailed investigation of electron pressure nongyrotropies in the central diffusion region confirms the major role the associated dissipation process plays in establishing the reconnection electric field.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayle, Scott; Gupta, Tanuj; Davis, Sam

    Monitoring of the intrinsic temperature and the thermal management is discussed for the carbon nanotube nano-circuits. The experimental results concerning fabricating and testing of a thermometer able to monitor the intrinsic temperature on nanoscale are reported. We also suggest a model which describes a bi-metal multilayer system able to filter the heat flow, based on separating the electron and phonon components one from another. The bi-metal multilayer structure minimizes the phonon component of the heat flow, while retaining the electronic part. The method allows one to improve the overall performance of the electronic nano-circuits due to minimizing the energy dissipation.

  18. Electron Heat Flux in Pressure Balance Structures at Ulysses

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.

  19. Experimental plasma studies

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.

    1972-01-01

    The rate coefficients for the reactions C(+) + e(-) + e(-) yields C + e(-) and CO(+) + e(-) yields C + O were measured over the electron temperature range of approximately 1500 deg K to 7000 deg K. The measurements were performed in CO that had expanded from equilibrium reservoir conditions of 7060 deg K at 17.3 atm pressure and from 6260 deg K at 10.0 atm pressure. Two RAM flight probes were used to measure electron density and electron temperature in the expanding flow of a shock tunnel. Experiments were performed in the inviscid flow with both probes and in the nozzle-wall boundary layer with the constant bias-voltage probe. The distributions of electron density and electron temperature were independently measured using voltage-swept thin-wire probes. Thin-wire Langmuir probes were also used to measure the electron-density and electron-temperature distributions in the boundary layer of a sharp flat plate located on the nozzle centerline. Admittance measurements were performed with the RAM C and RAM C-C S-band antennas in the presence of an ionized boundary layer.

  20. Flavin redox bifurcation as a mechanism for controlling the direction of electron flow during extracellular electron transfer.

    PubMed

    Okamoto, Akihiro; Hashimoto, Kazuhito; Nealson, Kenneth H

    2014-10-06

    The iron-reducing bacterium Shewanella oneidensis MR-1 has a dual directional electronic conduit involving 40 heme redox centers in flavin-binding outer-membrane c-type cytochromes (OM c-Cyts). While the mechanism for electron export from the OM c-Cyts to an anode is well understood, how the redox centers in OM c-Cyts take electrons from a cathode has not been elucidated at the molecular level. Electrochemical analysis of live cells during switching from anodic to cathodic conditions showed that altering the direction of electron flow does not require gene expression or protein synthesis, but simply redox potential shift about 300 mV for a flavin cofactor interacting with the OM c-Cyts. That is, the redox bifurcation of the riboflavin cofactor in OM c-Cyts switches the direction of electron conduction in the biological conduit at the cell-electrode interface to drive bacterial metabolism as either anode or cathode catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. ELECTRON EMISSION REGULATING MEANS

    DOEpatents

    Brenholdt, I.R.

    1957-11-19

    >An electronic regulating system is described for controlling the electron emission of a cathode, for example, the cathode in a mass spectrometer. The system incorporates a transformer having a first secondary winding for the above-mentioned cathode and a second secondary winding for the above-mentioned cathode and a second secondary winding load by grid controlled vacuum tubes. A portion of the electron current emitted by the cathode is passed through a network which develops a feedback signal. The system arrangement is completed by using the feedback signal to control the vacuum tubes in the second secondary winding through a regulator tube. When a change in cathode emission occurs, the feedback signal acts to correct this change by adjusting the load on the transformer.

  2. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Praphairaksit, Narong

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at ~70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W withmore » an outer gas flow rate of ~4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression of signal for even the most troublesome combination of light analyte and heavy matrix elements can be attenuated from 90-99% to only 2-10% for 2 mM matrix solutions with an ultrasonic nebulizer. The supplemental electron current can be adjusted to ''titrate'' out the matrix effects as desired.« less

  3. Acid/base-regulated reversible electron transfer disproportionation of N–N linked bicarbazole and biacridine derivatives† †Electronic supplementary information (ESI) available: Experimental information, synthesis and characterization data, NMR spectra, solid state NMR data, X-ray data, ESR spectra, UV-Vis-NIR spectra, fluorescence spectra, kinetic experiments, theoretical calculations, Tables S1–S8, Scheme S1, Fig. S1–12, References. CCDC 1025063, 1038914, 1049677 and 1040722. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc00946d

    PubMed Central

    Pandit, Palash; Yamamoto, Koji; Nakamura, Toshikazu; Nishimura, Katsuyuki; Kurashige, Yuki; Yanai, Takeshi; Nakamura, Go; Masaoka, Shigeyuki; Furukawa, Ko; Yakiyama, Yumi; Kawano, Masaki

    2015-01-01

    Regulation of electron transfer on organic substances by external stimuli is a fundamental issue in science and technology, which affects organic materials, chemical synthesis, and biological metabolism. Nevertheless, acid/base-responsive organic materials that exhibit reversible electron transfer have not been well studied and developed, owing to the difficulty in inventing a mechanism to associate acid/base stimuli and electron transfer. We discovered a new phenomenon in which N–N linked bicarbazole (BC) and tetramethylbiacridine (TBA) derivatives undergo electron transfer disproportionation by acid stimulus, forming their stable radical cations and reduced species. The reaction occurs through a biradical intermediate generated by the acid-triggered N–N bond cleavage reaction of BC or TBA, which acts as a two electron acceptor to undergo electron transfer reactions with two equivalents of BC or TBA. In addition, in the case of TBA the disproportionation reaction is highly reversible through neutralization with NEt3, which recovers TBA through back electron transfer and N–N bond formation reactions. This highly reversible electron transfer reaction is possible due to the association between the acid stimulus and electron transfer via the acid-regulated N–N bond cleavage/formation reactions which provide an efficient switching mechanism, the ability of the organic molecules to act as multi-electron donors and acceptors, the extraordinary stability of the radical species, the highly selective reactivity, and the balance of the redox potentials. This discovery provides new design concepts for acid/base-regulated organic electron transfer systems, chemical reagents, or organic materials. PMID:29218181

  4. Properties of two-fluid flowing equilibria observed in double-pulsing coaxial helicity injection on HIST

    NASA Astrophysics Data System (ADS)

    Kanki, T.; Nagata, M.

    2013-10-01

    Multi-pulsing coaxial helicity injection (M-CHI) method which aims to achieve both quasi-steady sustainment and good confinement has been proposed as a refluxing scenario of the CHI. To explore the usefulness of the M-CHI for spherical torus (ST) configurations, the double-pulsing operations have been carried out in the HIST, verifying the flux amplification and the formation of the closed flux surfaces after the second CHI pulse. The purpose of this study is to investigate the properties of the magnetic field and plasma flow structures during the sustainment by comparing the results of plasma flow, density, and magnetic fields measurements with those of two-fluid equilibrium calculations. The two-fluid flowing equilibrium model which is described by a pair of generalized Grad-Shafranov equations for ion and electron surface variables and Bernoulli equations for density is applied to reconstruct the ST configuration with poloidal flow shear observed in the HIST. Due to the negative steep density gradient in high field side, the toroidal field has a diamagnetic profile (volume average beta, < β > = 68 %) in the central open flux column region. The ion flow velocity with strong flow shear from the separatrix in the inboard side to the core region is the opposite direction to the electron flow velocity due to the diamagentic drift through the density gradient. The electric field is relatively small in the whole region, and thus the Lorentz force nearly balances with the two-fluid effect which is particularly significant in a region with the steep density gradient due to the ion and electron diamagnetic drifts.

  5. Measurement of flow speed in the channels of novel threadlike structures on the surfaces of mammalian organs

    NASA Astrophysics Data System (ADS)

    Sung, Baeckkyoung; Kim, Min Su; Lee, Byung-Cheon; Yoo, Jung Sun; Lee, Sang-Hee; Kim, Youn-Joong; Kim, Ki-Woo; Soh, Kwang-Sup

    2008-02-01

    There have been several reports on novel threadlike structures (NTSs) on the surfaces of the internal organs of rats and rabbits since their first observation by Bonghan Kim in 1963. To confirm this novel circulatory function, it is necessary to observe the flow of liquid through the NTS as well as the structurally corroborating channels in the NTS. In this article, we report on the measurement of the flow speed of Alcian blue solution in the NTSs on the organ surfaces of rabbits, and we present electron microscopic images depicting the cribrous cross-section with channels. The speed was measured as 0.3 ± 0.1 mm/s, and the flow distance was up to 12 cm. The flow was unidirectional, and the phase contrast microscopic images showed that the NTSs were strongly stained with Alcian blue. The ultrastructure of the NTSs revealed by cryo-scanning electron microscopy and high-voltage electron microscopy showed that (1) there were cell-like bodies and globular clumps of matter inside the sinus of the channel with thin strands of segregated zones which is a microscopic evidence of the liquid flow, (2) the sinuses have wall structures surrounded with extracellular matrices of collagenous fibers, and (3) there exists a cribriform structure of sinuses. To understand the mechanism for the circulation, a quantitative analysis of the flow speed has been undertaken applying a simplified windkessel model. In this analysis, it was shown that the liquid flow through the NTSs could be due to peristaltic motion of the NTS itself.

  6. Water Quality Conditions in the Missouri River Mainstem System. 2009 Report

    DTIC Science & Technology

    2010-09-01

    Navigation Channel Reach ............................................................................. 117  6.2  Flow Regulation...118  6.2.2  Historic Flow Releases...118  6.2.3  Flow Releases for Water Quality management

  7. Antimycin A inhibits cytochrome b559-mediated cyclic electron flow within photosystem II.

    PubMed

    Takagi, Daisuke; Ifuku, Kentaro; Nishimura, Taishi; Miyake, Chikahiro

    2018-05-22

    The light reactions of photosynthesis are known to comprise both linear and cyclic electron flow in order to convert light energy into chemical energy in the form of NADPH and ATP. Antimycin A (AA) has been proposed as an inhibitor of ferredoxin-dependent cyclic electron flow around photosystem I (CEF-PSI) in photosynthesis research. However, its precise inhibitory mechanism and target site had not been elucidated yet. Here we show that AA inhibits the cyclic (alternative) electron flow via cytochrome b 559 (Cyt b 559 ) within photosystem II (CEF-PSII). When AA was applied to thylakoid membranes isolated from spinach leaves, the high potential form of Cyt b 559 , which was reduced in the dark, was transformed into the lower potential forms and readily oxidized by molecular oxygen. In the absence of AA, the reduced Cyt b 559 was oxidized by P680 + upon light illumination and re-reduced in the dark, mainly by the electron from the Q B site on the acceptor side of PSII. In contrast, AA suppressed the oxidation of Cyt b 559 and induced its reduction under the illumination. This inhibition of Cyt b 559 oxidation by AA enhanced photoinhibition of PSII. Based on the above results, we propose caution regarding the use of AA for evaluating CEF-PSI per se and concurrently propose that AA provides for new insights into, and interpretations of, the physiological importance of Cyt b 559 , rather than that of CEF-PSI in photosynthetic organisms.

  8. Regulation of the calcium-sensing receptor in both stomatal movement and photosynthetic electron transport is crucial for water use efficiency and drought tolerance in Arabidopsis.

    PubMed

    Wang, Wen-Hua; Chen, Juan; Liu, Ting-Wu; Chen, Juan; Han, Ai-Dong; Simon, Martin; Dong, Xue-Jun; He, Jun-Xian; Zheng, Hai-Lei

    2014-01-01

    Production per amount of water used (water use efficiency, WUE) is closely correlated with drought tolerance. Although stomatal aperture can regulate WUE, the underlying molecular mechanisms are still unclear. Previous reports revealed that stomatal closure was inhibited in the calcium-sensing receptor (CAS) antisense line of Arabidopsis (CASas). Here it is shown that decreased drought tolerance and WUE of CASas was associated with higher stomatal conductance due to improper regulation of stomatal aperture, rather than any change of stomatal density. CASas plants also had a lower CO2 assimilation rate that was attributed to a lower photosynthetic electron transport rate, leading to higher chlorophyll fluorescence. Gene co-expression combined with analyses of chlorophyll content and transcription levels of photosynthesis-related genes indicate that CAS is involved in the formation of the photosynthetic electron transport system. These data suggest that CAS regulates transpiration and optimizes photosynthesis by playing important roles in stomatal movement and formation of photosynthetic electron transport, thereby regulating WUE and drought tolerance.

  9. Response of Tropical Stream Fish Assemblages to Small Hydropower Induced Flow Alteration in the Western Ghats of Karnataka, India.

    NASA Astrophysics Data System (ADS)

    Rao, S. T.

    2016-12-01

    Alteration of natural flow regime is considered as one of the major threats to tropical stream fish assemblages as it alters the physio-chemical and micro-habitat features of the river. Flow alteration induced by Small hydro-power (SHP) plants disrupts the flow regime by flow diversion and regulation. The effects of flow alteration on tropical stream fish assemblages, especially in the Western Ghats of India is largely understudied. Such a knowledge is imperative to set limits on flow alteration as SHPs in the Western Ghats are being planned at an unprecedented rate with exemption from environment impact assessments and backing in the form of government subsidies and carbon credits. This study aimed to understand the response of fish assemblages to SHP induced flow alteration in a regulated and unregulated tributary of the Yettinahole River in the Western Ghats of Karnataka. The study intended to quantify the natural and altered flow regime using automated periodic depth measurements, its effect on micro-habitats and environmental variables and finally, understand how fish assemblages respond to such changes. The response of fish assemblage was measured in terms of catch-per-site, species-regime associations and ecological distance between the regimes. The study used a space for time substitution approach and found that the altered flow regime dampened the diurnal and seasonal patterns of natural flow regime. The altered flow regime influenced variations in water quality, micro-habitat heterogeneity and fish assemblage response, each characteristic of the type of flow alteration. The natural flow regime was found to have a higher catch-per-site and strong associations with endemic and niche-specific taxa. Compositional dissimilarities, in terms of ecological distance were observed between the altered and the natural flow regime. Dewatered or flow diverted regime contained species with lentic affinities while an overall low catch-per-site and weak species-regime association was found in the flow regulated regime. The study highlights the importance of natural flow regime in maintaining native biodiversity and suggests the need for cumulative impact assessments for setting limits on flow alteration.

  10. Blood clots are rapidly assembled hemodynamic sensors: flow arrest triggers intraluminal thrombus contraction.

    PubMed

    Muthard, Ryan W; Diamond, Scott L

    2012-12-01

    Blood clots form under flow during intravascular thrombosis or vessel leakage. Prevailing hemodynamics influence thrombus structure and may regulate contraction processes. A microfluidic device capable of flowing human blood over a side channel plugged with collagen (± tissue factor) was used to measure thrombus permeability (κ) and contraction at controlled transthrombus pressure drops. The collagen (κ(collagen)=1.98 × 10(-11) cm(2)) supported formation of a 20-µm thick platelet layer, which unexpectedly underwent massive platelet retraction on flow arrest. This contraction resulted in a 5.34-fold increase in permeability because of collagen restructuring. Without stopping flow, platelet deposits (no fibrin) had a permeability of κ(platelet)=5.45 × 10(-14) cm(2) and platelet-fibrin thrombi had κ(thrombus)=2.71 × 10(-14) cm(2) for ΔP=20.7 to 23.4 mm Hg, the first ever measurements for clots formed under arterial flow (1130 s(-1) wall shear rate). Platelet sensing of flow cessation triggered a 4.6- to 6.5-fold (n=3, P<0.05) increase in contraction rate, which was also observed in a rigid, impermeable parallel-plate microfluidic device. This triggered contraction was blocked by the myosin IIA inhibitor blebbistatin and by inhibitors of thromboxane A2 (TXA(2)) and ADP signaling. In addition, flow arrest triggered platelet intracellular calcium mobilization, which was blocked by TXA(2)/ADP inhibitors. As clots become occlusive or blood pools following vessel leakage, the flow diminishes, consequently allowing full platelet retraction. Flow dilution of ADP and thromboxane regulates platelet contractility with prevailing hemodynamics, a newly defined flow-sensing mechanism to regulate clot function.

  11. Blood clots are rapidly assembled hemodynamic sensors: Flow arrest triggers intraluminal thrombus contraction

    PubMed Central

    Muthard, Ryan W.; Diamond, Scott L.

    2012-01-01

    Objective Blood clots form under flow during intravascular thrombosis or vessel leakage. Prevailing hemodynamics influence thrombus structure and may regulate contraction processes. A microfluidic device capable of flowing human blood over a side channel plugged with collagen (± tissue factor) was used to measure thrombus permeability (κ) and contraction at controlled transthrombus pressure drops. Methods and Results The collagen (κcollagen = 1.98 × 10−11 cm2) supported formation of a 20-μm thick platelet layer, which unexpectedly underwent massive platelet retraction upon flow arrest. This contraction resulted in a 5.34-fold increase in permeability due to collagen restructuring. Without stopping flow, platelet deposits (no fibrin) had a permeability of κplatelet = 5.45 × 10−14 cm2 and platelet-fibrin thrombi had κthrombus = 2.71 × 10−14 cm2 for ΔP = 20.7 to 23.4 mm-Hg, the first ever measurements for clots formed under arterial flow (1130 s−1 wall shear rate). Platelet sensing of flow cessation triggered a 4.6 to 6.5-fold (n=3, P<0.05) increase in contraction rate, which was also observed in a rigid, impermeable parallel-plate microfluidic device. This triggered contraction was blocked by the myosin IIA inhibitor blebbistatin and by inhibitors of thromboxane (TXA2) and ADP signaling. In addition, flow arrest triggered platelet intracellular calcium mobilization, which was blocked by TXA2/ADP inhibitors. As clots become occlusive or vessels rupture, flow around developed clots diminishes facilitating full platelet retraction and hemostasis. Conclusion Flow dilution of ADP and thromboxane regulates platelet contractility with prevailing hemodynamics, a newly defined flow sensing mechanism to regulate clot function. PMID:23087356

  12. The Study of the Application Rate of Effective Learning Technologies in Self-Regulation of KFU and VIIU Students

    ERIC Educational Resources Information Center

    Khuziakhmetov, Anvar N.; Amin, Azimi Sayed

    2015-01-01

    The aim of the present research is the study of the application rate of learning technologies in KFU and VIIU electronic courses to improve students' self-regulation. For this aim, this research was based on Kitsantas research, the rate of the use of effective learning technologies in students' self-regulation in electronic courses in these two…

  13. Numerical simulations of the Cosmic Battery in accretion flows around astrophysical black holes

    NASA Astrophysics Data System (ADS)

    Contopoulos, I.; Nathanail, A.; Sądowski, A.; Kazanas, D.; Narayan, R.

    2018-01-01

    We implement the KORAL code to perform two sets of very long general relativistic radiation magnetohydrodynamic simulations of an axisymmetric optically thin magnetized flow around a non-rotating black hole: one with a new term in the electromagnetic field tensor due to the radiation pressure felt by the plasma electrons on the comoving frame of the electron-proton plasma, and one without. The source of the radiation is the accretion flow itself. Without the new term, the system evolves to a standard accretion flow due to the development of the magneto-rotational instability. With the new term, however, the system eventually evolves to a magnetically arrested disc state in which a large-scale jet-like magnetic field threads the black hole horizon. Our results confirm the secular action of the Cosmic Battery in accretion flows around astrophysical black holes.

  14. High energy density redox flow device

    DOEpatents

    Chiang, Yet-Ming; Carter, W. Craig; Ho, Bryan Y; Duduta, Mihai; Limthongkul, Pimpa

    2014-05-13

    Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and/or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.

  15. Theory of Fine-scale Zonal Flow Generation From Trapped Electron Mode Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu Wang and T.S. Hahm

    Most existing zonal flow generation theory has been developed with a usual assumption of qrρθ¡ << 1 (qr is the radial wave number of zonal flow, and ρθ¡ is the ion poloidal gyrora- dius). However, recent nonlinear gyrokinetic simulations of trapped electron mode (TEM) turbulence exhibit a relatively short radial scale of the zonal flows with qrρθ¡ ~ 1 [Z. Lin et al., IAEA-CN/TH/P2-8 (2006); D. Ernst et al., Phys. Plasmas 16, 055906 (2009)]. This work reports an extension of zonal flow growth calculation to this short wavelength regime via the wave kinetics approach. A generalized expression for the polarizationmore » shielding for arbitrary radial wavelength [Lu Wang and T.S. Hahm, to appear in Phys. Plasmas (2009)] which extends the Rosenbluth-Hinton formula in the long wavelength limit is applied.« less

  16. Kinetic instability of electrostatic ion cyclotron waves in inter-penetrating plasmas

    NASA Astrophysics Data System (ADS)

    Bashir, M. F.; Ilie, R.; Murtaza, G.

    2018-05-01

    The Electrostatic Ion Cyclotron (EIC) instability that includes the effect of wave-particle interaction is studied owing to the free energy source through the flowing velocity of the inter-penetrating plasmas. It is shown that the origin of this current-less instability is different from the classical current driven EIC instability. The threshold conditions applicable to a wide range of plasma parameters and the estimate of the growth rate are determined as a function of the normalized flowing velocity ( u0/vt f e ), the temperature ( Tf/Ts ) and the density ratios ( nf 0/ns 0 ) of flowing component to static one. The EIC instability is driven by either flowing electrons or flowing ions, depending upon the different Doppler shifted frequency domains. It is found that the growth rate for electron-driven instability is higher than the ion-driven one. However, in both cases, the denser (hotter) is the flowing plasma, the lesser (greater) is the growth rate. The possible applications related to the terrestrial solar plasma environment are also discussed.

  17. MASS SPECTROMETER LEAK

    DOEpatents

    Shields, W.R.

    1960-10-18

    An improved valve is described for precisely regulating the flow of a sample fluid to be analyzed, such as in a mass spectrometer, where a gas sample is allowed to "leak" into an evacuated region at a very low, controlled rate. The flow regulating valve controls minute flow of gases by allowing the gas to diffuse between two mating surfaces. The structure of the valve is such as to prevent the corrosive feed gas from contacting the bellows which is employed in the operation of the valve, thus preventing deterioration of the bellows.

  18. Wnt-regulated dynamics of positional information in zebrafish somitogenesis

    PubMed Central

    Bajard, Lola; Morelli, Luis G.; Ares, Saúl; Pécréaux, Jacques; Jülicher, Frank; Oates, Andrew C.

    2014-01-01

    How signaling gradients supply positional information in a field of moving cells is an unsolved question in patterning and morphogenesis. Here, we ask how a Wnt signaling gradient regulates the dynamics of a wavefront of cellular change in a flow of cells during somitogenesis. Using time-controlled perturbations of Wnt signaling in the zebrafish embryo, we changed segment length without altering the rate of somite formation or embryonic elongation. This result implies specific Wnt regulation of the wavefront velocity. The observed Wnt signaling gradient dynamics and timing of downstream events support a model for wavefront regulation in which cell flow plays a dominant role in transporting positional information. PMID:24595291

  19. Optimal pressure regulation of the pneumatic ventricular assist device with bellows-type driver.

    PubMed

    Lee, Jung Joo; Kim, Bum Soo; Choi, Jaesoon; Choi, Hyuk; Ahn, Chi Bum; Nam, Kyoung Won; Jeong, Gi Seok; Lim, Choon Hak; Son, Ho Sung; Sun, Kyung

    2009-08-01

    The bellows-type pneumatic ventricular assist device (VAD) generates pneumatic pressure with compression of bellows instead of using an air compressor. This VAD driver has a small volume that is suitable for portable devices. However, improper pneumatic pressure setup can not only cause a lack of adequate flow generation, but also cause durability problems. In this study, a pneumatic pressure regulation system for optimal operation of the bellows-type VAD has been developed. The optimal pneumatic pressure conditions according to various afterload conditions aiming for optimal flow rates were investigated, and an afterload estimation algorithm was developed. The developed regulation system, which consists of a pressure sensor and a two-way solenoid valve, estimates the current afterload and regulates the pneumatic pressure to the optimal point for the current afterload condition. Experiments were performed in a mock circulation system. The afterload estimation algorithm showed sufficient performance with the standard deviation of error, 8.8 mm Hg. The flow rate could be stably regulated with a developed system under various afterload conditions. The shortcoming of a bellows-type VAD could be handled with this simple pressure regulation system.

  20. Electron cyclotron thruster new modeling results preparation for initial experiments

    NASA Technical Reports Server (NTRS)

    Hooper, E. Bickford

    1993-01-01

    The following topics are discussed: a whistler-based electron cyclotron resonance heating (ECRH) thruster; cross-field coupling in the helicon approximation; wave propagation; wave structure; plasma density; wave absorption; the electron distribution function; isothermal and adiabatic plasma flow; ECRH thruster modeling; a PIC code model; electron temperature; electron energy; and initial experimental tests. The discussion is presented in vugraph form.

Top