Experimental verification of arm-locking for LISA using electronic phase delay [rapid communication
NASA Astrophysics Data System (ADS)
Thorpe, J. I.; Mueller, G.
2005-07-01
We present results of an electronic model of arm-locking, a proposed technique for reducing the laser phase noise in the laser interferometer space antenna (LISA). The model is based on a delay of 500 ms, achieved using the electronic phase delay (EPD) method. The observed behavior is consistent with predictions.
Probing electron delays in above-threshold ionization
Zipp, Lucas J.; Natan, Adi; Bucksbaum, Philip H.
2014-11-21
Recent experiments have revealed attosecond delays in the emission of electrons from atoms ionized by extreme UV light, offering a glimpse into the ultrafast nature of light-induced electron dynamics. In this work, we extend these measurements to the strong-field above-threshold ionization (ATI) regime, by measuring delays in the photoemission of electrons from argon in the presence of an intense laser field. We probe the ATI process with a weak coherent reference, at half the laser frequency. The interfering ionization signal reveals the relative spectral phase of adjacent ATI channels, with an equivalent resolution of a few attoseconds. These relative delaysmore » depend on the strong field, and approach zero at higher intensity. Our phase measurements of ATI electrons show how strong fields alter ionization dynamics in atoms.« less
Measurement of collective dynamical mass of Dirac fermions in graphene.
Yoon, Hosang; Forsythe, Carlos; Wang, Lei; Tombros, Nikolaos; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Kim, Philip; Ham, Donhee
2014-08-01
Individual electrons in graphene behave as massless quasiparticles. Unexpectedly, it is inferred from plasmonic investigations that electrons in graphene must exhibit a non-zero mass when collectively excited. The inertial acceleration of the electron collective mass is essential to explain the behaviour of plasmons in this material, and may be directly measured by accelerating it with a time-varying voltage and quantifying the phase delay of the resulting current. This voltage-current phase relation would manifest as a kinetic inductance, representing the reluctance of the collective mass to accelerate. However, at optical (infrared) frequencies, phase measurements of current are generally difficult, and, at microwave frequencies, the inertial phase delay has been buried under electron scattering. Therefore, to date, the collective mass in graphene has defied unequivocal measurement. Here, we directly and precisely measure the kinetic inductance, and therefore the collective mass, by combining device engineering that reduces electron scattering and sensitive microwave phase measurements. Specifically, the encapsulation of graphene between hexagonal boron nitride layers, one-dimensional edge contacts and a proximate top gate configured as microwave ground together enable the inertial phase delay to be resolved from the electron scattering. Beside its fundamental importance, the kinetic inductance is found to be orders of magnitude larger than the magnetic inductance, which may be utilized to miniaturize radiofrequency integrated circuits. Moreover, its bias dependency heralds a solid-state voltage-controlled inductor to complement the prevalent voltage-controlled capacitor.
General relation between the group delay and dwell time in multicomponent electron systems
NASA Astrophysics Data System (ADS)
Zhai, Feng; Lu, Junqiang
2016-10-01
For multicomponent electron scattering states, we derive a general relation between the Wigner group delay and the Bohmian dwell time. It is found that the definition of group delay should account for the phase of the spinor wave functions of propagating modes. The difference between the group delay and dwell time comes from both the interference delay and the decaying modes. For barrier tunneling of helical electrons on a surface of topological insulators, our calculations including the trigonal-warping term show that the decaying modes can contribute greatly to the group delay. The derived relation between the group delay and the dwell time is helpful to unify the two definitions of tunneling time in a quite general situation.
Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same
NASA Technical Reports Server (NTRS)
Logan, Ronald T. (Inventor)
1997-01-01
The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.
ELECTRONIC PHASE CONTROL CIRCUIT
Salisbury, J.D.; Klein, W.W.; Hansen, C.F.
1959-04-21
An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.
Electron acceleration and kinetic energy tailoring via ultrafast terahertz fields.
Greig, S R; Elezzabi, A Y
2014-11-17
We propose a mechanism for tuning the kinetic energy of surface plasmon generated electron pulses through control of the time delay between a pair of externally applied terahertz pulses. Varying the time delay results in translation, compression, and broadening of the kinetic energy spectrum of the generated electron pulse. We also observe that the electrons' kinetic energy dependence on the carrier envelope phase of the surface plasmon is preserved under the influence of a terahertz electric field.
Dispersion-free continuum two-dimensional electronic spectrometer
Zheng, Haibin; Caram, Justin R.; Dahlberg, Peter D.; Rolczynski, Brian S.; Viswanathan, Subha; Dolzhnikov, Dmitriy S.; Khadivi, Amir; Talapin, Dmitri V.; Engel, Gregory S.
2015-01-01
Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an ~180 nm window of the available bandwidth at ~10 fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a. PMID:24663470
Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.
Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu
2017-06-03
Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.
Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels
Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu
2017-01-01
Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility. PMID:28772975
Energy-resolved attosecond interferometric photoemission from Ag(111) and Au(111) surfaces
NASA Astrophysics Data System (ADS)
Ambrosio, M. J.; Thumm, U.
2018-04-01
Photoelectron emission from solid surfaces induced by attosecond pulse trains into the electric field of delayed phase-coherent infrared (IR) pulses allows the surface-specific observation of energy-resolved electronic phase accumulations and photoemission delays. We quantum-mechanically modeled interferometric photoemission spectra from the (111) surfaces of Au and Ag, including background contributions from secondary electrons and direct emission by the IR pulse, and adjusted parameters of our model to energy-resolved photoelectron spectra recently measured at a synchrotron light source by Roth et al. [J. Electron Spectrosc. 224, 84 (2018), 10.1016/j.elspec.2017.05.008]. Our calculated spectra and photoelectron phase shifts are in fair agreement with the experimental data of Locher et al. [Optica 2, 405 (2015), 10.1364/OPTICA.2.000405]. Our model's not reproducing the measured energy-dependent oscillations of the Ag(111) photoemission phases may be interpreted as evidence for subtle band-structure effects on the final-state photoelectron-surface interaction not accounted for in our simulation.
Wetzel, Lucas; Jörg, David J.; Pollakis, Alexandros; Rave, Wolfgang; Fettweis, Gerhard; Jülicher, Frank
2017-01-01
Self-organized synchronization occurs in a variety of natural and technical systems but has so far only attracted limited attention as an engineering principle. In distributed electronic systems, such as antenna arrays and multi-core processors, a common time reference is key to coordinate signal transmission and processing. Here we show how the self-organized synchronization of mutually coupled digital phase-locked loops (DPLLs) can provide robust clocking in large-scale systems. We develop a nonlinear phase description of individual and coupled DPLLs that takes into account filter impulse responses and delayed signal transmission. Our phase model permits analytical expressions for the collective frequencies of synchronized states, the analysis of stability properties and the time scale of synchronization. In particular, we find that signal filtering introduces stability transitions that are not found in systems without filtering. To test our theoretical predictions, we designed and carried out experiments using networks of off-the-shelf DPLL integrated circuitry. We show that the phase model can quantitatively predict the existence, frequency, and stability of synchronized states. Our results demonstrate that mutually delay-coupled DPLLs can provide robust and self-organized synchronous clocking in electronic systems. PMID:28207779
Attosecond relative delay among xenon 5p, 5s, and 4d photoionization
NASA Astrophysics Data System (ADS)
Magrakvelidze, Maia; Madjet, Mohamed; Chakraborty, Himadri
2017-04-01
Attosecond Wigner-Smith (WS) time delays of the photoemissions of Xe valence 5p, 5s, and core 4d electrons are investigated in details using the time-dependent local density approximation (TDLDA). Electron correlations determine the energy-dependent structures in ionization phases of the dipole channels and in the resulting WS delays at various shape resonances, induced by the collective motion of 4d electrons, and at various Cooper minima. We find that our calculation closely agrees with the streaking measurement for the delay of 4d relative to 5s, and predicts accelerated emission of 5p with respect to 4d as was experimentally observed at similar photon energies for Xe atoms adsorbed on the tungsten surface. This work was supported by the U.S. National Science Foundation.
High Temperature Superconductivity Applications for Electronic Warfare and Microwave Systems
1990-05-01
instantaneous frequency measurement (IFM), as well as, switched delay lines for EW radar range deception and low loss, high resolution MMIC phase...Junction (JJ). This device has been demonstrated in LTSC and is used in very stable ( low noise ), frequency selective, oscillators and very low noise ...following HTSC components: 1) MMIC Filters 2) MMIC Delay Lines/Phase Shifters 3) Microwave Resonators 4) Antenna Feed Networks 5) Low Frequency Antennas 1
Irregularities and Forecast Studies of Equatorial Spread
2016-07-13
less certain and requires investigation. It should be possible to observe the Faraday rotation of the signals received at Jicamarca. This is another...indication of the line-integrated electron number 9 DISTRIBUTION A: Distribution approved for public release. density. Like the phase delay, the Faraday ...angle is a modulo-two-pi quantity that is best used to constrain the time evolution of the ionosphere. Both the Faraday angle and the phase delay are
Attosecond delay in the molecular photoionization of asymmetric molecules.
Chacón, Alexis; Ruiz, Camilo
2018-02-19
We report theoretical calculations of the delay in photoemission from CO with particular emphasis on the role of the ultrafast electronic bound dynamics. We study the delays in photoionization in the HOMO and HOMO-1 orbitals of the CO molecule by looking into the stereo Wigner time delay technique. That compares the delay in photoemission from electrons emitted to the left and right to extract structural and dynamical information of the ionization process. For this we apply two techniques: The attosecond streak camera and the time of flight technique. Although they should provide the same results we have found large discrepancies of up to 36 in the case of HOMO, while for the HOMO-1 we obtain the same results with the two techniques. We have found that the large time delays observed in the HOMO orbital with the streaking technique are a consequence of the resonant transition triggered by the streaking field. This resonant transition produces a bound electron wavepacket that modifies the measurements of delay in photoionization. As a result of this observation, our technique allows us to reconstruct the bound wavepacket dynamics induced by the streaking field. By measuring the expected value of the electron momentum along the polarization direction after the streaking field has finished, we can recover the relative phase between the complex amplitudes of the HOMO and LUMO orbitals. These theoretical calculations pave the way for the measurement of ultrafast bound-bound electron transitionsand its crucial role for the delay in photoemission observation.
Photoemission and photoionization time delays and rates
Gallmann, L.; Jordan, I.; Wörner, H. J.; Castiglioni, L.; Hengsberger, M.; Osterwalder, J.; Arrell, C. A.; Chergui, M.; Liberatore, E.; Rothlisberger, U.; Keller, U.
2017-01-01
Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid–vacuum interface. PMID:29308414
NASA Technical Reports Server (NTRS)
Berman, A. L.; Wackley, J. A.; Hietzke, W. H.
1982-01-01
The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU.
NASA Technical Reports Server (NTRS)
Maker, Paul D.; Muller, Richard E.
1994-01-01
Complex, computer-generated phase holograms written in thin films of poly(methyl methacrylate) (PMMA) by process of electron-beam exposure followed by chemical development. Spatial variations of phase delay in holograms quasi-continuous, as distinquished from stepwise as in binary phase holograms made by integrated-circuit fabrication. Holograms more precise than binary holograms. Greater continuity and precision results in decreased scattering loss and increased imaging efficiency.
NASA Technical Reports Server (NTRS)
Pesnell, W. D.; Goldberg, R. A.; Chenette, D. L.; Gaines, E. E.
1999-01-01
The High Energy Particle Spectrometer (HEPS) instrument on the Upper Atmosphere Research Satellite (UARS) provides a database of electron intensities well resolved in energy and pitch-angle. Because of its 57 deg. orbital inclination, UARS encounters with magnetic shells L greater than 2 occur quite far off-equator (B/B (sub 0) greater than 9), corresponding to equatorial pitch angle alpha (sub 0) greater than 20 deg. Data acquired by HEPS (October 1991 through September 1994) span the declining phase of Solar Cycle 22. To reveal the storm-associated time dependence of relativistic electron intensities over the wide range of energies (50 keV to 5 MeV) covered by HEPS, we divide the daily average of the measured spectrum at a given L value (bin width = 0.25) by the corresponding 500-day average and plot the results with a color scale that spans only 2.5 decades. The data show that our off-equatorial electron intensities typically increase with time after the end of recovery phase (not during main phase or recovery phase) of each geomagnetic storm. The delay in off-equatorial energetic electron response and the subsequent lifetime of the corresponding electron flux enhancement seem to increase with particle energy above 300 keV. The trend below 300 keV seems to be opposite, such that the delay varies inversely with electron energy. Our working hypothesis for interpretation is that stormtime radial transport tends to increase the phase-space densities of trapped relativistic electrons but typically leads to a flux increases at specified energies only as the current (as indicated by Dst) decays. Flux enhancements in early recovery phase are greatest for equatorially mirroring electrons, and to pitch-angle anisotropies are initially large. Subsequent pitch-angle diffusion broadens the flux enhancement to particles that mirror off equator, thus gradually increasing low-altitude electron intensities (as detected by HEPS/UARS) on time scales equal to about 20% of corresponding lifetimes against diffusion into the loss cone. Alternative interpretations will also be examined.
NASA Astrophysics Data System (ADS)
Mitryk, Shawn; Mueller, Guido
The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.
Ionospheric corrections to precise time transfer using GPS
NASA Technical Reports Server (NTRS)
Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.
1994-01-01
The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of ionospheric time delay in the northeastern U.S., and initial results with the ICS-4000Z, will be presented.
Impulsive effects of phase-locked pulse pairs on nuclear motion in the electronic ground state
NASA Astrophysics Data System (ADS)
Cina, J. A.; Smith, T. J.
1993-06-01
The nonlinear effects of ultrashort phase-locked electronically resonant pulse pairs on the ground state nuclear motion are investigated theoretically. The pulse-pair propagator, momentum impulse, and displacement are determined in the weak field limit for pulse pairs separated by a time delay short on a nuclear time scale. Possible application to large amplitude vibrational excitation of the 104 cm-1 mode of α-perylene is considered and comparisons are made to other Raman excitation methods.
Birth of a resonant attosecond wavepacket
NASA Astrophysics Data System (ADS)
Argenti, L.; Gruson, V.; Barreau, L.; Jimenez-Galan, A.; Risoud, F.; Caillat, J.; Maquet, A.; Carre, B.; Lepetit, F.; Hergott, J.-F.; Ruchon, T.; Taieb, R.; Martin, F.; Salieres, P.
2016-05-01
Both amplitude and phase are needed to characterize the dynamics of a wavepacket. However, such characterization is difficult when both attosecond and femtosecond timescales are involved, as it is the case for broadband photoionization to a continuum encompassing autoionizing states. Here we demonstrate that Rainbow RABBIT, a new attosecond interferometry, allows the measurement of amplitude and phase of a photoelectron wavepacket created through a Fano resonance with unprecedented precision. In the experiment, a tunable attosecond pulse train is combined with the fundamental laser pulse to induce two-photon transitions in helium via an intermediate autoionizing state. From the energy and time-delay resolved signal, we fully reconstruct the resonant electron wavepacket as it builds up in the continuum. Measurements accurately match the predictions of a new time-resolved multi-photon resonant model, known to reproduce ab initio calculations. This agreement confirms the potential of Rainbow RABBIT to investigate photoemission delays in ultrafast processes governed by electron correlation, as well as to control structured electron wavepackets. now at Univ. Central Florida, Orlando, FL (USA).
Assessing Visual Delays using Pupil Oscillations
NASA Technical Reports Server (NTRS)
Mulligan, Jeffrey B.
2012-01-01
Stark (1962) demonstrated vigorous pupil oscillations by illuminating the retina with a beam of light focussed to a small spot near the edge of the pupil. Small constrictions of the pupil then are sufficient to completely block the beam, amplifying the normal relationship between pupil area and retinal illuminance. In addition to this simple and elegant method, Stark also investigated more complex feedback systems using an electronic "clamping box" which provided arbitrary gain and phase delay between a measurement of pupil area and an electronically controlled light source. We have replicated Stark's results using a video-based pupillometer to control the luminance of a display monitor. Pupil oscillations were induced by imposing a linear relationship between pupil area and display luminance, with a variable delay. Slopes of the period-vs-delay function for 3 subjects are close to the predicted value of 2 (1.96-2.39), and the implied delays range from 254 to 376 508 to 652 milliseconds. Our setup allows us to extend Stark's work by investigating a broader class of stimuli.
He, Feng; Ruiz, Camilo; Becker, Andreas
2007-08-24
We study the control of dissociation of the hydrogen molecular ion and its isotopes exposed to two ultrashort laser pulses by solving the time-dependent Schrödinger equation. While the first ultraviolet pulse is used to excite the electron wave packet on the dissociative 2psigma{u} state, a second time-delayed near-infrared pulse steers the electron between the nuclei. Our results show that by adjusting the time delay between the pulses and the carrier-envelope phase of the near-infrared pulse, a high degree of control over the electron localization on one of the dissociating nuclei can be achieved (in about 85% of all fragmentation events). The results demonstrate that current (sub-)femtosecond technology can provide a control over both electron excitation and localization in the fragmentation of molecules.
Investigating tunneling process of atom exposed in circularly polarized strong-laser field
NASA Astrophysics Data System (ADS)
Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing
2017-03-01
We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.
Advanced Gouy phase high harmonics interferometer
NASA Astrophysics Data System (ADS)
Mustary, M. H.; Laban, D. E.; Wood, J. B. O.; Palmer, A. J.; Holdsworth, J.; Litvinyuk, I. V.; Sang, R. T.
2018-05-01
We describe an extreme ultraviolet (XUV) interferometric technique that can resolve ∼100 zeptoseconds (10‑21 s) delay between high harmonic emissions from two successive sources separated spatially along the laser propagation in a single Gaussian beam focus. Several improvements on our earlier work have been implemented in the advanced interferometer. In this paper, we report on the design, characterization and optimization of the advanced Gouy phase interferometer. Temporal coherence for both atomic argon and molecular hydrogen gases has been observed for several harmonic orders. It has been shown that phase shift of XUV pulses mainly originates from the emission time delay due to the Gouy phase in the laser focus and the observed interference is independent of the generating medium. This interferometer can be a useful tool for measuring the relative phase shift between any two gas species and for studying ultrafast dynamics of their electronic and nuclear motion.
Kajimoto, Shinji; Shirasawa, Daisuke; Horimoto, Noriko Nishizawa; Fukumura, Hiroshi
2013-05-14
Ultrafast phase separation of water and 2-butoxyethanol mixture was induced by nanosecond IR laser pulse irradiation. After a certain delay time, a UV laser pulse was introduced to induce photoreduction of aurate ions, which led to the formation of gold nanoparticles in dynamic phase-separating media. The structure and size of the nanoparticles varied depending on the delay time between the IR and UV pulses. For a delay time of 5 and 6 μs, gold square plates having edge lengths of 150 and 100 nm were selectively obtained, respectively. With a delay time of 3 μs, on the other hand, the size of the square plates varied widely from 100 nm to a few micrometers. The size of the gold square plates was also varied by varying the total irradiation time of the IR and UV pulses. The size distribution of the square plates obtained under different conditions suggests that the growth process of the square plates was affected by the size of the nanophases during phase separation. Electron diffraction patterns of the synthesized square plates showed that the square plates were highly crystalline with a Au(100) surface. These results showed that the nanophases formed during laser-induced phase separation can provide detergent-free reaction fields for size-controlled nanomaterial synthesis.
Atmospheric Phase Delay in Sentinel SAR Interferometry
NASA Astrophysics Data System (ADS)
Krishnakumar, V.; Monserrat, O.; Crosetto, M.; Crippa, B.
2018-04-01
The repeat-pass Synthetic Aperture Radio Detection and Ranging (RADAR) Interferometry (InSAR) has been a widely used geodetic technique for observing the Earth's surface, especially for mapping the Earth's topography and deformations. However, InSAR measurements are prone to atmospheric errors. RADAR waves traverse the Earth's atmosphere twice and experience a delay due to atmospheric refraction. The two major layers of the atmosphere (troposphere and ionosphere) are mainly responsible for this delay in the propagating RADAR wave. Previous studies have shown that water vapour and clouds present in the troposphere and the Total Electron Content (TEC) of the ionosphere are responsible for the additional path delay in the RADAR wave. The tropospheric refractivity is mainly dependent on pressure, temperature and partial pressure of water vapour. The tropospheric refractivity leads to an increase in the observed range. These induced propagation delays affect the quality of phase measurement and introduce errors in the topography and deformation fields. The effect of this delay was studied on a differential interferogram (DInSAR). To calculate the amount of tropospheric delay occurred, the meteorological data collected from the Spanish Agencia Estatal de Meteorología (AEMET) and MODIS were used. The interferograms generated from Sentinel-1 carrying C-band Synthetic Aperture RADAR Single Look Complex (SLC) images acquired on the study area are used. The study area consists of different types of scatterers exhibiting different coherence. The existing Saastamoinen model was used to perform a quantitative evaluation of the phase changes caused by pressure, temperature and humidity of the troposphere during the study. Unless the phase values due to atmospheric disturbances are not corrected, it is difficult to obtain accurate measurements. Thus, the atmospheric error correction is essential for all practical applications of DInSAR to avoid inaccurate height and deformation measurements.
Hybrid optical and electronic laser locking using slow light due to spectral holes
NASA Astrophysics Data System (ADS)
Tay, Jian Wei; Farr, Warrick G.; Ledingham, Patrick M.; Korystov, Dmitry; Longdell, Jevon J.
2013-06-01
We report on a narrow linewidth laser diode system that is stabilized using both optical and electronic feedback to a spectral hole in cryogenic Tm:YAG. The large group delay of the spectral hole leads to a laser with very low phase noise. The laser has proved useful for quantum optics and sensing applications involving cryogenic rare-earth-ion dopants.
Zhu, Weida; Wang, Rui; Zhang, Chunfeng; Wang, Guodong; Liu, Yunlong; Zhao, Wei; Dai, Xingcan; Wang, Xiaoyong; Cerullo, Giulio; Cundiff, Steven; Xiao, Min
2017-09-04
We introduce a novel configuration for two-dimensional electronic spectroscopy (2DES) that combines the partially collinear pump-probe geometry with active phase locking. We demonstrate the method on a solution sample of CdSe/ZnS nanocrystals by employing two non-collinear optical parametric amplifiers as the pump and probe sources. The two collinear pump pulse replicas are created using a Mach-Zehnder interferometer phase stabilized by active feedback electronics. Taking the advantage of separated paths of the two pump pulses in the interferometer, we improve the signal-to-noise ratio with double modulation of the individual pump beams. In addition, a quartz wedge pair manipulates the phase difference between the two pump pulses, enabling the recovery of the rephasing and non-rephasing signals. Our setup integrates many advantages of available 2DES techniques with robust phase stabilization, ultrafast time resolution, two-color operation, long delay scan, individual polarization manipulation and the ease of implementation.
All-optical regenerator of multi-channel signals.
Li, Lu; Patki, Pallavi G; Kwon, Young B; Stelmakh, Veronika; Campbell, Brandon D; Annamalai, Muthiah; Lakoba, Taras I; Vasilyev, Michael
2017-10-12
One of the main reasons why nonlinear-optical signal processing (regeneration, logic, etc.) has not yet become a practical alternative to electronic processing is that the all-optical elements with nonlinear input-output relationship have remained inherently single-channel devices (just like their electronic counterparts) and, hence, cannot fully utilise the parallel processing potential of optical fibres and amplifiers. The nonlinear input-output transfer function requires strong optical nonlinearity, e.g. self-phase modulation, which, for fundamental reasons, is always accompanied by cross-phase modulation and four-wave mixing. In processing multiple wavelength-division-multiplexing channels, large cross-phase modulation and four-wave mixing crosstalks among the channels destroy signal quality. Here we describe a solution to this problem: an optical signal processor employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without such nonlinear crosstalk. We demonstrate, for the first time to our knowledge, simultaneous all-optical regeneration of up to 16 wavelength-division-multiplexing channels by one device. This multi-channel concept can be extended to other nonlinear-optical processing schemes.Nonlinear optical processing devices are not yet fully practical as they are single channel. Here the authors demonstrate all-optical regeneration of up to 16 channels by one device, employing a group-delay-managed nonlinear medium where strong self-phase modulation is achieved without nonlinear inter-channel crosstalk.
Surface acoustic wave (SAW) vibration sensors.
Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz
2011-01-01
In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit.
Application of Signal Analysis to the Climate
2014-01-01
The primary ingredient of the Anthropogenic Global Warming hypothesis, namely, the assumption that additional atmospheric carbon dioxide substantially raises the global temperature, is studied. This is done by looking at the data of temperature and CO2, both in the time domain and in the phase domain of periodic data. Bicentenary measurements are analyzed and a relaxation model is introduced in the form of an electronic equivalent circuit. The effects of this relaxation manifest themselves in delays in the time domain and correlated phase shifts in the phase domain. For extremely long relaxation time constants, the delay is maximally one-quarter period, which for the yearly-periodic signal means 3 months. This is not in line with the analyzed data, the latter showing delays of 9 (−3) months. These results indicate a reverse function of cause and effect, with temperature being the cause for atmospheric CO2 changes, rather than their effect. These two hypotheses are discussed on basis of literature, where it was also reported that CO2 variations are lagging behind temperature variations. PMID:27350978
Group delay variations of GPS transmitting and receiving antennas
NASA Astrophysics Data System (ADS)
Wanninger, Lambert; Sumaya, Hael; Beer, Susanne
2017-09-01
GPS code pseudorange measurements exhibit group delay variations at the transmitting and the receiving antenna. We calibrated C1 and P2 delay variations with respect to dual-frequency carrier phase observations and obtained nadir-dependent corrections for 32 satellites of the GPS constellation in early 2015 as well as elevation-dependent corrections for 13 receiving antenna models. The combined delay variations reach up to 1.0 m (3.3 ns) in the ionosphere-free linear combination for specific pairs of satellite and receiving antennas. Applying these corrections to the code measurements improves code/carrier single-frequency precise point positioning, ambiguity fixing based on the Melbourne-Wübbena linear combination, and determination of ionospheric total electron content. It also affects fractional cycle biases and differential code biases.
Time-dependent local density approximation study of iodine photoionization delay
NASA Astrophysics Data System (ADS)
Magrakvelidze, Maia; Chakraborty, Himadri
2017-04-01
We investigate dipole quantum phases and Wigner-Smith (WS) time delays in the photoionization of iodine using Kohn-Sham time-dependent local density approximation (TDLDA) with the Leeuwen and Baerends exchange-correlation functional. Study of the effects of electron correlations on the absolute as well as relative delays in emissions from both valence 5p and 5s, and core 4d, 4p and 4s levels has been carried out. Particular emphasis is paid to unravel the role of correlations to induce structures in the delay as a function of energy at resonances and Cooper minima. The results should encourage attosecond measurements of iodine photoemission and probe the WS-temporal landscape of an open-shell atomic system. This work was supported by the U.S. National Science Foundation.
Carrier-phase two-way satellite frequency transfer over a very long baseline
NASA Astrophysics Data System (ADS)
Fujieda, M.; Piester, D.; Gotoh, T.; Becker, J.; Aida, M.; Bauch, A.
2014-06-01
In this paper we report that carrier-phase two-way satellite time and frequency transfer (TWSTFT) was successfully demonstrated over a very long baseline of 9000 km, established between the National Institute of Information and Communications Technology (NICT) and the Physikalisch-Technische Bundesanstalt (PTB). We verified that the carrier-phase TWSTFT (TWCP) result agreed with those obtained by conventional TWSTFT and GPS carrier-phase (GPSCP) techniques. Moreover, a much improved short-term instability for frequency transfer of 2 × 10-13 at 1 s was achieved, which is at the same level as previously confirmed over a shorter baseline within Japan. The precision achieved was so high that the effects of ionospheric delay became significant; they are ignored in conventional TWSTFT even over a long link. We compensated for these effects using ionospheric delays computed from regional vertical total electron content maps. The agreement between the TWCP and GPSCP results was improved because of this compensation.
1979-10-01
modification. Phase VII of this prgram , Preliminary Radar Associate/Nonradar Control Training and Assistant Controller Duties, is currently programmed for...software diagnostics. Advantage. The additional staffing would handle the increased workload in an efficient manner and prevent a deterioration of morale...alternative 2 can be employed if any delays or problems prevent the timely installation of the additional storage element. SELECTOR CHANNEL. The selector
Carrier Dynamics and Application of the Phase Coherent Photorefractive Effect in ZnSe Quantum Wells
NASA Astrophysics Data System (ADS)
Dongol, Amit
The intensity dependent diffraction efficiency of a phase coherent photorefractive (PCP) ZnSe quantum well (QW) is investigated at 80 K in a two-beam four-wave mixing (FWM) configuration using 100 fs laser pulses with a repetition rate of 80 MHz. The observed diffraction efficiencies of the first and second-order diffracted beam are on the order of 10-3 and 10-5, respectively, revealing nearly no intensity dependence. The first-order diffraction is caused by the PCP effect where the probe-pulse is diffracted due to a long-living incoherent electron density grating in the QW. The second-order diffraction is created by a combination of diffraction processes. For negative probe-pulse delay, the exciton polarization is diffracted at the electron grating twice by a cascade effect. For positive delay, the diffracted signal is modified by the destructive interference with a chi(5) generated signal due to a dynamical screening effect. Model calculations of the signal traces based on the optical Bloch equations considering inhomogeneous broadening of exciton energies are in good agreement with the experimental data. To study the carrier dynamics responsible for the occurrence of the PCP effect, threebeam FWM experiments are carried out. The non-collinear wave-vectors k1 , k2 and k3 at central wavelength of 441 nm (~2.81 eV) were resonantly tuned to the heavy-hole exciton transition energy at 20 K. In the FWM experiment the time coincident strong pump pulses k1 and k2 create both an exciton density grating in the QW and an electron-hole pair grating in the GaAs while the delayed weak pulse k3 simultaneously probes the exciton lifetime as well as the electron grating capture time. The model calculations are in good agreement with the experimental results also providing information about the transfer delay of electrons arriving from the substrate to the QW. For negative probe-pulse delay we still observe a diffracted signal due to the long living electron density grating in the QW. The electron grating build-up and decay times are also studied with the modified three-beam FWM set-up. Using an optical shutter for pump pulses k1and k2, the dynamics of the electron grating formation and its decay is continuously probed by a delayed pulse k3. The obtained build-up and decay times are found to depend nearly linearly on the intensity of incident pulses k1 and k2 being on the order of several microseconds at low pump intensities. The PCP effect in ZnSe QW possesses a time-gating capability which can be used for real-time holographic imaging. In this work we demonstrate contrast enhanced real time holographic imaging (CEHI) of floating glass beads and of living unicellular animals (Paramecium and Euglena cells) in aqueous solution. We also demonstrate CEHI of a ~100 im thick wire concealed behind a layer of chicken skin. The results demonstrate the potential of PCP QWs for real-time and depth-resolved imaging of moving micrometer sized biological objects in transparent media or of obscured objects in turbid media.
Phase-locking and coherent power combining of broadband linearly chirped optical waves.
Satyan, Naresh; Vasilyev, Arseny; Rakuljic, George; White, Jeffrey O; Yariv, Amnon
2012-11-05
We propose, analyze and demonstrate the optoelectronic phase-locking of optical waves whose frequencies are chirped continuously and rapidly with time. The optical waves are derived from a common optoelectronic swept-frequency laser based on a semiconductor laser in a negative feedback loop, with a precisely linear frequency chirp of 400 GHz in 2 ms. In contrast to monochromatic waves, a differential delay between two linearly chirped optical waves results in a mutual frequency difference, and an acoustooptic frequency shifter is therefore used to phase-lock the two waves. We demonstrate and characterize homodyne and heterodyne optical phase-locked loops with rapidly chirped waves, and show the ability to precisely control the phase of the chirped optical waveform using a digital electronic oscillator. A loop bandwidth of ~ 60 kHz, and a residual phase error variance of < 0.01 rad(2) between the chirped waves is obtained. Further, we demonstrate the simultaneous phase-locking of two optical paths to a common master waveform, and the ability to electronically control the resultant two-element optical phased array. The results of this work enable coherent power combining of high-power fiber amplifiers-where a rapidly chirping seed laser reduces stimulated Brillouin scattering-and electronic beam steering of chirped optical waves.
NASA Astrophysics Data System (ADS)
Xiao, Yao; Qing-hui, Liu
2018-01-01
Time delay and phase fluctuation are produced when the signals of a spacecraft are transmitted through the ionosphere of the earth, which give rise to a great influence on the measurement precision of VLBI (Very Long Baseline Interferometry). Using the 1-year same-beam VLBI data of 2 satellites (Rstar and Vstar) in the Japanese lunar exploration project SELENE, we obtained a model of the relation between the fluctuation of double differential total electron content in the ionosphere and the angular distance of the two satellites. For the 6 baselines, the root mean square r of fluctuation (in units of TECU) and the angular distance of the two satellites θ (in units of ∘) has a relation of r = 0.773θ + 0.562, and for the 4 VLBI stations, the relation is r = 0.554θ + 0.399 from the baselines inversion. The results can serve as a reference for the derivation of differential phase delay and for the occultation observation and study of planetary ionospheres.
NASA Astrophysics Data System (ADS)
Banerjee, Tanmoy; Biswas, Debabrata
2013-12-01
We explore and experimentally demonstrate the phenomena of amplitude death (AD) and the corresponding transitions through synchronized states that lead to AD in coupled intrinsic time-delayed hyperchaotic oscillators interacting through mean-field diffusion. We identify a novel synchronization transition scenario leading to AD, namely transitions among AD, generalized anticipatory synchronization (GAS), complete synchronization (CS), and generalized lag synchronization (GLS). This transition is mediated by variation of the difference of intrinsic time-delays associated with the individual systems and has no analogue in non-delayed systems or coupled oscillators with coupling time-delay. We further show that, for equal intrinsic time-delays, increasing coupling strength results in a transition from the unsynchronized state to AD state via in-phase (complete) synchronized states. Using Krasovskii-Lyapunov theory, we derive the stability conditions that predict the parametric region of occurrence of GAS, GLS, and CS; also, using a linear stability analysis, we derive the condition of occurrence of AD. We use the error function of proper synchronization manifold and a modified form of the similarity function to provide the quantitative support to GLS and GAS. We demonstrate all the scenarios in an electronic circuit experiment; the experimental time-series, phase-plane plots, and generalized autocorrelation function computed from the experimental time series data are used to confirm the occurrence of all the phenomena in the coupled oscillators.
Structural Effects of Lanthanide Dopants on Alumina
Patel, Ketan; Blair, Victoria; Douglas, Justin; Dai, Qilin; Liu, Yaohua; Ren, Shenqiang; Brennan, Raymond
2017-01-01
Lanthanide (Ln3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications. PMID:28059121
Structural Effects of Lanthanide Dopants on Alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Ketan; Blair, Victoria; Douglas, Justin
Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO 3, Ln 2O 3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. In addition, the delay in phase transition (θ → α),more » and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. Lastly, this study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less
Structural Effects of Lanthanide Dopants on Alumina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Ketan; Blair, Victoria; Douglas, Justin
Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO3, Ln2O3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. The delay in phase transition (θ → α), and alteration of powder morphology,more » particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. This study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less
Structural Effects of Lanthanide Dopants on Alumina
Patel, Ketan; Blair, Victoria; Douglas, Justin; ...
2017-01-06
Lanthanide (Ln 3+) doping in alumina has shown great promise for stabilizing and promoting desirable phase formation to achieve optimized physical and chemical properties. However, doping alumina with Ln elements is generally accompanied by formation of new phases (i.e. LnAlO 3, Ln 2O 3), and therefore inclusion of Ln-doping mechanisms for phase stabilization of the alumina lattice is indispensable. In this study, Ln-doping (400 ppm) of the alumina lattice crucially delays the onset of phase transformation and enables phase population control, which is achieved without the formation of new phases. In addition, the delay in phase transition (θ → α),more » and alteration of powder morphology, particle dimensions, and composition ratios between α- and θ-alumina phases are studied using a combination of solid state nuclear magnetic resonance, electron microscopy, digital scanning calorimetry, and high resolution X-ray diffraction with refinement fitting. Loading alumina with a sparse concentration of Ln-dopants suggests that the dopants reside in the vacant octahedral locations within the alumina lattice, where complete conversion into the thermodynamically stable α-domain is shown in dysprosium (Dy)- and lutetium (Lu)-doped alumina. Lastly, this study opens up the potential to control the structure and phase composition of Ln-doped alumina for emerging applications.« less
NASA Astrophysics Data System (ADS)
Kobayashi, T.; Ida, K.; Itoh, K.; Yoshinuma, M.; Moon, C.; Inagaki, S.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Ohdachi, S.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.
2016-04-01
This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp; Yoshinuma, M.; Ohdachi, S.
2016-04-15
This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.
Kobayashi, T; Ida, K; Itoh, K; Yoshinuma, M; Moon, C; Inagaki, S; Yamada, I; Funaba, H; Yasuhara, R; Tsuchiya, H; Ohdachi, S; Yoshimura, Y; Igami, H; Shimozuma, T; Kubo, S; Tsujimura, T I
2016-04-01
This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.
Femtosecond profiling of shaped x-ray pulses
NASA Astrophysics Data System (ADS)
Hoffmann, M. C.; Grguraš, I.; Behrens, C.; Bostedt, C.; Bozek, J.; Bromberger, H.; Coffee, R.; Costello, J. T.; DiMauro, L. F.; Ding, Y.; Doumy, G.; Helml, W.; Ilchen, M.; Kienberger, R.; Lee, S.; Maier, A. R.; Mazza, T.; Meyer, M.; Messerschmidt, M.; Schorb, S.; Schweinberger, W.; Zhang, K.; Cavalieri, A. L.
2018-03-01
Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fully suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. This achievement completes an important step toward future x-ray pulse shaping techniques.
Probing electronic binding potentials with attosecond photoelectron wavepackets
NASA Astrophysics Data System (ADS)
Kiesewetter, D.; Jones, R. R.; Camper, A.; Schoun, S. B.; Agostini, P.; Dimauro, L. F.
2018-01-01
The central goal of attosecond science is to visualize, understand and ultimately control electron dynamics in matter over the fastest relevant timescales. To date, numerous schemes have demonstrated exquisite temporal resolution, on the order of ten attoseconds, in measurements of the response of photo-excited electrons to time-delayed probes. However, attributing this response to specific dynamical mechanisms is difficult, requiring guidance from advanced calculations. Here we show that energy transfer between an oscillating field and low-energy attosecond photoelectron wavepackets directly provides coarse-grained information on the effective binding potential from which the electrons are liberated. We employ a dense extreme ultraviolet (XUV) harmonic comb to photoionize He, Ne and Ar atoms and record the electron spectra as a function of the phase of a mid-infrared dressing field. The amplitude and phase of the resulting interference modulations in the electron spectra reveal the average momentum and change in momentum of the electron wavepackets during the first quarter-period of the dressing field after their creation, reflecting the corresponding coarse characteristics of the binding potential.
Stauffer, Hans U; Roy, Sukesh; Schmidt, Jacob B; Wrzesinski, Paul J; Gord, James R
2016-09-28
A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.
NASA Astrophysics Data System (ADS)
Xiong, Chao; Zhou, Yun-Liang; Lühr, Hermann; Ma, Shu-Ying
2016-09-01
In this study we have provided new insights into the local time gradient of F region electron density (ΔNe) derived from the lower pair of Swarm satellites flying side by side. Our result shows that the electron density (Ne) increase starts just at sunrise, around 06:00 LT, simultaneously at low and middle latitudes due to the increased photoionization. At equatorial latitudes the increase in electron density gets even steeper after 07:00 LT, and the steepest increase of electron density (about 3 · 1010 m-3 within 6 min) occurs around 09:00 LT. We suggest that the upward vertical plasma drift in connection with the buildup of the equatorial fountain effect plays a major role. We also found that the local time variations of the equatorial ionization anomaly (EIA) crest electron density during daytime are similar to the respective evolutions at the equator, but about 1-2 h delayed. We relate this delay to the response time between the equatorial electric field and the buildup of the plasma fountain. At equinox months a fast decrease of the F region electron density is seen at the EIA trough region during the prereversal enhancement, while an increase is found meanwhile at crest regions. Afterward, a fast decrease of the EIA crest electron density occurs between 19:00 and 23:00 LT, with seasonal dependence. The local time gradient between Swarm A and C shows also prominent longitudinal wave-4 pattern around August months, and the phase of DE3 in ΔNe is found to be delayed by 6 h compared to that in Ne.
1984-01-01
and that a residual 1100 quadratic phase error across the aperture remained uncorrected. K --] In Fig.4 the measured far field pattern of the horn...The radio frequency (RF) source consists of a 10-mW klystron at 35 GHz which is phase locked to a stable 5 MHz crystal oscillator . The 35 GHz sig...electronics, the purchased components have worked to specifica- tions, but our earliest work was delayed by phase locked oscillator instabil- ities until
NASA Technical Reports Server (NTRS)
Gu, Ye-Ming; Li, Chung-Sheng
1986-01-01
On the basis of the summing-up and analysis of the observations and theories about the impulsive microwave and hard X-ray bursts, the correlations between these two kinds of emissions were investigated. It is shown that it is only possible to explain the optically-thin microwave spectrum and its relations with the hard X-ray spectrum by means of the nonthermal source model. A simple nonthermal trap model in the mildly-relativistic case can consistently explain the main characteristics of the spectrum and the relative time delays.
Do nuclei move on an attosecond timescale in strong-field photodissociation?
NASA Astrophysics Data System (ADS)
Esry, B. D.
2017-04-01
Without the ready availability of single attosecond pulses with sufficient energy to perform pump-probe experiments, the push to measure electronic dynamics on its natural timescale of attoseconds has enlisted less direct measurements. Photoionization ``time delays'', in particular, have been measured and calculated to be on the attosecond timescale and thus have attracted considerable attention. The ultimate goal of such attosecond-scale measurements is the molecular movie - i.e., making movies of the electronic motion during chemical reactions. It has been universally assumed, however, that any measured attosecond timescales in observables relate exclusively to electronic dynamics, even during a reaction which necessarily includes nuclear motion. I will explore some of the limits of this assumption and highlight a few specific cases where it fails, emphasizing in the process that phases should be favored over ``time delays''. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.
Femtosecond Pulse Characterization as Applied to One-Dimensional Photonic Band Edge Structures
NASA Technical Reports Server (NTRS)
Fork, Richard L.; Gamble, Lisa J.; Diffey, William M.
1999-01-01
The ability to control the group velocity and phase of an optical pulse is important to many current active areas of research. Electronically addressable one-dimensional photonic crystals are an attractive candidate to achieve this control. This report details work done toward the characterization of photonic crystals and improvement of the characterization technique. As part of the work, the spectral dependence of the group delay imparted by a GaAs/AlAs photonic crystal was characterized. Also, a first generation an electrically addressable photonic crystal was tested for the ability to electronically control the group delay. The measurement technique, using 100 femtosecond continuum pulses was improved to yield high spectral resolution (1.7 nanometers) and concurrently with high temporal resolution (tens of femtoseconds). Conclusions and recommendations based upon the work done are also presented.
Prompt acceleration of ions by oblique turbulent shocks in solar flares
NASA Technical Reports Server (NTRS)
Decker, R. B.; Vlahos, L.
1985-01-01
Solar flares often accelerate ions and electrons to relativistic energies. The details of the acceleration process are not well understood, but until recently the main trend was to divide the acceleration process into two phases. During the first phase elctrons and ions are heated and accelerated up to several hundreds of keV simultaneously with the energy release. These mildly relativistic electrons interact with the ambient plasma and magnetic fields and generate hard X-ray and radio radiation. The second phase, usually delayed from the first by several minutes, is responsible for accelerating ions and electrons to relativistic energies. Relativistic electrons and ions interact with the solar atmosphere or escape from the Sun and generate gamma ray continuum, gamma ray line emission, neutron emission or are detected in space by spacecraft. In several flares the second phase is coincident with the start of a type 2 radio burst that is believed to be the signature of a shock wave. Observations from the Solar Maximum Mission spacecraft have shown, for the first time, that several flares accelerate particles to all energies nearly simultaneously. These results posed a new theoretical problem: How fast are shocks and magnetohydrodynamic turbulence formed and how quickly can they accelerate ions to 50 MeV in the lower corona? This problem is discussed.
Kerns, Q.A.; Anderson, O.A.
1960-05-01
An electronic control circuit is described in which a first signal frequency is held in synchronization with a second varying reference signal. The circuit receives the first and second signals as inputs and produces an output signal having an amplitude dependent upon rate of phase change between the two signals and a polarity dependent on direction of the phase change. The output may thus serve as a correction signal for maintaining the desired synchronization. The response of the system is not dependent on relative phase angle between the two compared signals. By having practically no capacitance in the circuit, there is minimum delay between occurrence of a phase shift and a response in the output signal and therefore very fast synchronization is effected.
Canton, Jillian L; Smith, Mark R; Choi, Ho-Sun; Eastman, Charmane I
2009-07-17
Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Subjects (blue-eyed n = 7; brown eyed n = 6) maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO). Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux). An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline). A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment.Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. The average phase delay of the DLMO was -1.3 +/- 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. A single 2-hour bright light pulse combined with a moderate delay of the sleep/dark episode delayed the circadian clock an average of ~1.5 hours. There was no evidence that iris color influenced the magnitude of the phase shift. Future studies are needed to replicate our findings that iris color does not impact the magnitude of light-induced circadian phase shifts, and that the previously reported differences may be due to race.
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
Phase holograms in PMMA with proximity effect correction
NASA Technical Reports Server (NTRS)
Maker, Paul D.; Muller, R. E.
1993-01-01
Complex computer generated phase holograms (CGPH's) have been fabricated in PMMA by partial e-beam exposure and subsequent partial development. The CGPH was encoded as a sequence of phase delay pixels and written by the JEOL JBX-5D2 E-beam lithography system, a different dose being assigned to each value of phase delay. Following carefully controlled partial development, the pattern appeared rendered in relief in the PMMA, which then acts as the phase-delay medium. The exposure dose was in the range 20-200 micro-C/sq cm, and very aggressive development in pure acetone led to low contrast. This enabled etch depth control to better than plus or minus lambda(sub vis)/60. That result was obtained by exposing isolated 50 micron square patches and measuring resist removal over the central area where the proximity effect dose was uniform and related only to the local exposure. For complex CGPH's with pixel size of the order of the e-beam proximity effect radius, the patterns must be corrected for the extra exposure caused by electrons scattered back up out of the substrate. This has been accomplished by deconvolving the two-dimensional dose deposition function with the desired dose pattern. The deposition function, which plays much the same role as an instrument response function, was carefully measured under the exact conditions used to expose the samples. The devices fabricated were designed with 16 equal phase steps per retardation cycle, were up to 1 cm square, and consisted of up to 100 million 0.3-2.0 micron square pixels. Data files were up to 500 MB long and exposure times ranged to tens of hours. A Fresnel phase lens was fabricated that had diffraction limited optical performance with better than 85 percent efficiency.
Simulation and mitigation of higher-order ionospheric errors in PPP
NASA Astrophysics Data System (ADS)
Zus, Florian; Deng, Zhiguo; Wickert, Jens
2017-04-01
We developed a rapid and precise algorithm to compute ionospheric phase advances in a realistic electron density field. The electron density field is derived from a plasmaspheric extension of the International Reference Ionosphere (Gulyaeva and Bilitza, 2012) and the magnetic field stems from the International Geomagnetic Reference Field. For specific station locations, elevation and azimuth angles the ionospheric phase advances are stored in a look-up table. The higher-order ionospheric residuals are computed by forming the standard linear combination of the ionospheric phase advances. In a simulation study we examine how the higher-order ionospheric residuals leak into estimated station coordinates, clocks, zenith delays and tropospheric gradients in precise point positioning. The simulation study includes a few hundred globally distributed stations and covers the time period 1990-2015. We take a close look on the estimated zenith delays and tropospheric gradients as they are considered a data source for meteorological and climate related research. We also show how the by product of this simulation study, the look-up tables, can be used to mitigate higher-order ionospheric errors in practise. Gulyaeva, T.L., and Bilitza, D. Towards ISO Standard Earth Ionosphere and Plasmasphere Model. In: New Developments in the Standard Model, edited by R.J. Larsen, pp. 1-39, NOVA, Hauppauge, New York, 2012, available at https://www.novapublishers.com/catalog/product_info.php?products_id=35812
Saxvig, Ingvild W; Wilhelmsen-Langeland, Ane; Pallesen, Ståle; Vedaa, Oystein; Nordhus, Inger H; Sørensen, Eli; Bjorvatn, Bjørn
2013-08-01
Delayed sleep phase disorder is characterized by a delay in the timing of the major sleep period relative to conventional norms. The sleep period itself has traditionally been described as normal. Nevertheless, it is possible that sleep regulatory mechanism disturbances associated with the disorder may affect sleep duration and/or architecture. Polysomnographic data that may shed light on the issue are scarce. Hence, the aim of this study was to examine polysomnographic measures of sleep in adolescents and young adults with delayed sleep phase disorder, and to compare findings to that of healthy controls. A second aim was to estimate dim light melatonin onset as a marker of circadian rhythm and to investigate the phase angle relationship (time interval) between dim light melatonin onset and the sleep period. Data from 54 adolescents and young adults were analysed, 35 diagnosed with delayed sleep phase disorder and 19 healthy controls. Results show delayed timing of sleep in participants with delayed sleep phase disorder, but once sleep was initiated no group differences in sleep parameters were observed. Dim light melatonin onset was delayed in participants with delayed sleep phase disorder, but no difference in phase angle was observed between the groups. In conclusion, both sleep and dim light melatonin onset were delayed in participants with delayed sleep phase disorder. The sleep period appeared to occur at the same circadian phase in both groups, and once sleep was initiated no differences in sleep parameters were observed. © 2013 European Sleep Research Society.
A COLD FLARE WITH DELAYED HEATING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleishman, Gregory D.; Pal'shin, Valentin D.; Lysenko, Alexandra L.
2016-05-10
Recently, a number of peculiar flares have been reported that demonstrate significant nonthermal particle signatures with low, if any, thermal emission, which implies a close association of the observed emission with the primary energy release/electron acceleration region. This paper presents a flare that appears “cold” at the impulsive phase, while displaying delayed heating later on. Using hard X-ray data from Konus- Wind , microwave observations by SSRT, RSTN, NoRH, and NoRP, context observations, and three-dimensional modeling, we study the energy release, particle acceleration, and transport, and the relationships between the nonthermal and thermal signatures. The flaring process is found tomore » involve the interaction between a small loop and a big loop with the accelerated particles divided roughly equally between them. Precipitation of the electrons from the small loop produced only a weak thermal response because the loop volume was small, while the electrons trapped in the big loop lost most of their energy in the coronal part of the loop, which resulted in coronal plasma heating but no or only weak chromospheric evaporation, and thus unusually weak soft X-ray emission. The energy losses of the fast electrons in the big tenuous loop were slow, which resulted in the observed delay of the plasma heating. We determined that the impulsively accelerated electron population had a beamed angular distribution in the direction of the electric force along the magnetic field of the small loop. The accelerated particle transport in the big loop was primarily mediated by turbulent waves, which is similar to other reported cold flares.« less
NASA Astrophysics Data System (ADS)
Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen
2017-05-01
In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.
On the role of differenced phase-delays in high-precision wide-field multi-source astrometry
NASA Astrophysics Data System (ADS)
Martí-Vidal, I.; Marcaide, J. M.; Guirado, J. C.
2007-07-01
Phase-delay is, by far, the most precise observable used in interferometry. In typical very-long-baseline-interferometry (VLBI) observations, the uncertainties of the phase-delays can be about 100 times smaller than those of the group delays. However, the phase-delays have an important handicap: they are ambiguous, since they are computed from the relative phases of the signals of the different antennas, and an indeterminate number of complete 2¶- cycles can be added to those phases leaving them unchanged. There are different approaches to solve the ambiguity problem of the phase delays (Shapiro et al., 1979; Beasley & Conway, 1995), but none of them has been ever used in observations involving more than 2.3 sources. In this contribution, we will report for the first-time wide-field multi-source astrometric analysis that has been performed on a complete set of radio sources using the phase-delay observable. The target of our analysis is the S5 polar cap sample, consisting on 13 bright ICRF sources near the North Celestial Pole. We have developed new algorithms and updated existing software to correct, in an automatic way, the ambiguities of the phase-delay and, therefore, perform a phasedelay astrometric analysis of all the sources in the sample. We will also discuss on the impact of the use of phase-delays in the astrometric precision.
NASA Astrophysics Data System (ADS)
Wang, He
The few-cycle femtosecond laser pulse has proved itself to be a powerful tool for controlling the electron dynamics inside atoms and molecules. By applying such few-cycle pulses as a driving field, single isolated attosecond pulses can be produced through the high-order harmonic generation process, which provide a novel tool for capturing the real time electron motion. The first part of the thesis is devoted to the state of the art few-cycle near infrared (NIR) laser pulse development, which includes absolute phase control (carrier-envelope phase stabilization), amplitude control (power stabilization), and relative phase control (pulse compression and shaping). Then the double optical gating (DOG) method for generating single attosecond pulses and the attosecond streaking experiment for characterizing such pulses are presented. Various experimental limitations in the attosecond streaking measurement are illustrated through simulation. Finally by using the single attosecond pulses generated by DOG, an attosecond transient absorption experiment is performed to study the autoionization process of argon. When the delay between a few-cycle NIR pulse and a single attosecond XUV pulse is scanned, the Fano resonance shapes of the argon autoionizing states are modified by the NIR pulse, which shows the direct observation and control of electron-electron correlation in the temporal domain.
Femtosecond profiling of shaped x-ray pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, M. C.; Grguras, I.; Behrens, C.
Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less
Femtosecond profiling of shaped x-ray pulses
Hoffmann, M. C.; Grguras, I.; Behrens, C.; ...
2018-03-26
Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less
Dynamics and control of gold-encapped gallium arsenide nanowires imaged by 4D electron microscopy
Chen, Bin; Fu, Xuewen; Tang, Jau; Lysevych, Mykhaylo; Tan, Hark Hoe; Jagadish, Chennupati; Zewail, Ahmed H.
2017-01-01
Eutectic-related reaction is a special chemical/physical reaction involving multiple phases, solid and liquid. Visualization of a phase reaction of composite nanomaterials with high spatial and temporal resolution provides a key understanding of alloy growth with important industrial applications. However, it has been a rather challenging task. Here, we report the direct imaging and control of the phase reaction dynamics of a single, as-grown free-standing gallium arsenide nanowire encapped with a gold nanoparticle, free from environmental confinement or disturbance, using four-dimensional (4D) electron microscopy. The nondestructive preparation of as-grown free-standing nanowires without supporting films allows us to study their anisotropic properties in their native environment with better statistical character. A laser heating pulse initiates the eutectic-related reaction at a temperature much lower than the melting points of the composite materials, followed by a precisely time-delayed electron pulse to visualize the irreversible transient states of nucleation, growth, and solidification of the complex. Combined with theoretical modeling, useful thermodynamic parameters of the newly formed alloy phases and their crystal structures could be determined. This technique of dynamical control aided by 4D imaging of phase reaction processes on the nanometer-ultrafast time scale opens new venues for engineering various reactions in a wide variety of other systems. PMID:29158393
Tunable Optical True-Time Delay Devices Would Exploit EIT
NASA Technical Reports Server (NTRS)
Kulikov, Igor; DiDomenico, Leo; Lee, Hwang
2004-01-01
Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.
A Tikhonov Regularization Scheme for Focus Rotations with Focused Ultrasound Phased Arrays
Hughes, Alec; Hynynen, Kullervo
2016-01-01
Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually-driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations. PMID:27913323
A Tikhonov Regularization Scheme for Focus Rotations With Focused Ultrasound-Phased Arrays.
Hughes, Alec; Hynynen, Kullervo
2016-12-01
Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound-phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations.
Topological Acoustic Delay Line
NASA Astrophysics Data System (ADS)
Zhang, Zhiwang; Tian, Ye; Cheng, Ying; Wei, Qi; Liu, Xiaojun; Christensen, Johan
2018-03-01
Topological protected wave engineering in artificially structured media is at the frontier of ongoing metamaterials research that is inspired by quantum mechanics. Acoustic analogues of electronic topological insulators have recently led to a wealth of new opportunities in manipulating sound propagation with strikingly unconventional acoustic edge modes immune to backscattering. Earlier fabrications of topological insulators are characterized by an unreconfigurable geometry and a very narrow frequency response, which severely hinders the exploration and design of useful devices. Here we establish topologically protected sound in reconfigurable phononic crystals that can be switched on and off simply by rotating its three-legged "atoms" without altering the lattice structure. In particular, we engineer robust phase delay defects that take advantage of the ultrabroadband reflection-free sound propagation. Such topological delay lines serve as a paradigm in compact acoustic devices, interconnects, and electroacoustic integrated circuits.
NASA Astrophysics Data System (ADS)
Cao, Zhitao; Jiang, Lan; Wang, Sumei; Wang, Mengmeng; Liu, Lei; Yang, Fan; Lu, Yongfeng
2018-03-01
Femtosecond laser pulse train induced breakdown of fused silica was studied by investigating its plasma emission and the ablated crater morphology. It was demonstrated that the electron dynamics in the ablated fused silica play a dominant role in the emission intensity of induced plasma and the volume of material removal, corresponding to the evolution of free-electron, self-trapped excitons, and the phase change of the fused silica left over by the first pulse. For a fluence of 11 J/cm2, the maximum plasma intensity of double-pulse irradiation at an interpulse delay of 120 ps was about 35 times stronger than that of a single-pulse, while the ablated crater was reduced by 27% in volume. The ionization of slow plume component generated by the first pulse was found to be the main reason for the extremely high intensity enhancement for an interpulse delay of over 10 ps. The results serve as a route to simultaneously increase the spatial resolution and plasma intensity in laser-induced breakdown spectroscopy of dielectrics.
The delayed-detonation model of a type Ia supernovae. 1: The deflagration phase
NASA Technical Reports Server (NTRS)
Arnett, David; Livne, Eli
1994-01-01
The nature of the 'delayed detonation' mechanism of Khokhlov for the explosion of Type Ia supernovae is investigated by using two-dimensional numerical hydrodynamics simulations. A new algorithm is used to treat the deflagration front. Assuming that it propagates locally at the laminar flame speed, the deflagration is insufficient to unbind the star. Expansion shuts of the flame; much of this small production of iron group nuclei occurs at lower densities, which reduces the electron-capture problem. The burning front does become wrinkled, but the wavelength of the instability is much larger than the computational grid size and is resolved; this is consistent with previous analysis. Because the degenerate star has an adiabatic exponent only slightly above 4/3, the energy released by deflagration drives a pulsation of large amplitude. During the first expansion phase, adiabatic cooling shuts off the burning, and a Rayleigh-Taylor instability then gives mixing of high-entropy ashes with low-entropy fuel. During the first contraction phase, compressional heating reignites the material. This paper deals with the deflagration phase, from the onset of burning, through expansion and quenching of the flame, to the first contraction.
Spectroscopy of the UO+2 cation and the delayed ionization of UO2.
Merritt, Jeremy M; Han, Jiande; Heaven, Michael C
2008-02-28
Vibronically resolved spectra for the UO+2 cation have been recorded using the pulsed field ionization zero electron kinetic energy (PFI-ZEKE) technique. For the ground state, long progressions in both the bending and symmetric stretch vibrations were observed. Bend and stretch progressions of the first electronically excited state were also observed, and the origin was found at an energy of 2678 cm(-1) above the ground state zero-point level. This observation is consistent with a recent theoretical prediction [Infante et al., J. Chem. Phys. 127, 124308 (2007)]. The ionization energy for UO2, derived from the PFI-ZEKE spectrum, namely, 6.127(1) eV, is in excellent agreement with the value obtained from an earlier photoionization efficiency measurement. Delayed ionization of UO2 in the gas phase has been reported previously [Han et al., J. Chem. Phys. 120, 5155 (2004)]. Here, we extend the characterization of the delayed ionization process by performing a quantitative study of the ionization rate as a function of the energy above the ionization threshold. The ionization rate was found to be 5 x 10(6) s(-1) at threshold, and increased linearly with increasing energy in the range investigated (0-1200 cm(-1)).
Injection locking of a two-mode electron oscillator with close frequencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starodubova, E. N.; Usacheva, S. A.; Ryskin, N. M.
2015-03-15
Theory of injection locking is developed for a two-mode electron maser with close frequencies, when the driving signal affects both modes. There exist two regimes of phase locking in which either first or second mode dominates. Hard transitions between the two regimes are observed with variation of the driving frequency. The results of numerical simulations are presented for the case of driving by a signal with linear frequency chirp, as well as by a signal with sinusoidal frequency modulation. The effect of bifurcation delay is observed with the increase of chirp rate.
Hydrogen and Ethene Plasma Assisted Ignition by NS discharge at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Starikovskiy, Andrey
2015-09-01
The kinetics of ignition in lean H2:O2:Ar and C2H4:O2:Ar mixtures has been studied experimentally and numerically after a high-voltage nanosecond discharge. The ignition delay time behind a reflected shock wave was measured with and without the discharge. It was shown that the initiation of the discharge with a specific deposited energy of 10 - 30 mJ/cm3 leads to an order of magnitude decrease in the ignition delay time. Discharge processes and following chain chemical reactions with energy release were simulated. The generation of atoms, radicals and excited and charged particles was numerically simulated using the measured time - resolved discharge current and electric field in the discharge phase. The calculated densities of the active particles were used as input data to simulate plasma-assisted ignition. Good agreement was obtained between the calculated ignition delay times and the experimental data. It follows from the analysis of the calculated results that the main mechanism of the effect of gas discharge on the ignition of hydrocarbons is the electron impact dissociation of O2 molecules in the discharge phase. Detailed kinetic mechanism for plasma assisted ignition of hydrogen and ethene is elaborated and verified.
Ionizing radiation and cell cycle progression in ataxia telangiectasia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beamish, H.; Khanna, K.K.; Lavin, M.F.
1994-04-01
Exposure of mammalian cells to ionizing radiation causes delay in normal progress through the cell cycle at a number of different checkpoints. Abnormalities in these checkpoints have been described for ataxia telangiectasia cells after irradiation. In this report we show that these abnormalities occur at different phases in the cell cycle in several ataxia telangiectasia lymphoblastoid cells. Ataxia telangiectasia cells, synchronized in late G{sub 1} phase with either mimosine or aphidicolin and exposed to radiation, showed a reduced delay in entering S phase compared to irradiated control cells. Failure to exhibit G{sub 1}-phase delay in ataxia telangiectasia cells is accompaniedmore » by a reduced ability of radiation to activate the product of the tumor suppressor gene p53, a protein involved in G{sub 1}/S-phase delay. When the progress of irradiated G{sub 1}-phase cells was followed into the subsequent G{sub 2} and G{sub 1} phases ataxia telangiectasia cells showed a more pronounced accumulation in G{sub 2} phase than control cells. When cells were irradiated in S phase and extent of delay was more evident in G{sub 2} phase and ataxia telangiectasia cells were delayed to a greater extent. These results suggest that the lack of initial delay in both G{sub 1} and S phases to the radiosensitivity observed in this syndrome. 26 refs., 3 figs., 2 tabs.« less
Device For Trapping Laser Pulses In An Optical Delay Line
Yu, David U. L.; Bullock, Donald L.
1997-12-23
A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.
NASA Technical Reports Server (NTRS)
Davies, K.; Fritz, R. B.; Grubb, R. N.; Jones, J. E.
1975-01-01
The Radio Beacon Experiment aboard Applications Technology Satellite-6 (ATS-6) is designed to measure the total electron content and the ionospheric electron content between the satellite and ground. The spaceborne beacon transmits signals on frequencies of 40, 140, and 360 MHz with amplitude modulations of 1 MHz and/or 0.1 MHz for the measurement of modulation phase, Faraday rotation, and amplitude. The modulation phase delays are calibrated in the satellite and in the ground equipment, and the polarization of the emitted signals are predetermined by standard antenna range techniques. The design of the ATS-6 receiver in Boulder, Colorado, is discussed. The antennae are of the short backfire type described by Ehrenspeck (1967), with nominal gains of 13, 19, and 22 dB at 40, 140, and 360 MHz, respectively. Data recording and overall supervision of the receiver is carried out by a 16-bit minicomputer with 8 k of memory. Overall performance of the system is satisfactory. Sample data on the monthly median hourly values of the total electron content, plasmospheric content, and shape factor show distinct seasonal and diurnal variations.
Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles
NASA Technical Reports Server (NTRS)
Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian
2012-01-01
A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly steer the beam. The array of phased ring radiators is unique in that it provides improved gain for a small rocket or missile that uses spin stabilization for stability. The antenna pattern created is symmetric about the roll axis (like an omnidirectional wraparound), and is thus capable of providing continuous coverage that is compatible with very fast spinning rockets. For larger ELVs with roll control, a linear array of elements can be used for the 1D scanned beamformer and phased array, or a 2D scanned beamformer can be used with an NxN element array.
Laurent, G; Cao, W; Li, H; Wang, Z; Ben-Itzhak, I; Cocke, C L
2012-08-24
We experimentally demonstrate that atomic orbital parity mix interferences can be temporally controlled on an attosecond time scale. Electron wave packets are formed by ionizing argon gas with a comb of odd and even high-order harmonics, in the presence of a weak infrared field. Consequently, a mix of energy-degenerate even and odd parity states is fed in the continuum by one- and two-photon transitions. These interfere, leading to an asymmetric electron emission along the polarization vector. The direction of the emission can be controlled by varying the time delay between the comb and infrared field pulses. We show that such asymmetric emission provides information on the relative phase of consecutive odd and even order harmonics in the attosecond pulse train.
Precise measurement method for ionospheric total electron content using signals from GPS satellites
NASA Technical Reports Server (NTRS)
Imae, Michito; Kiuchi, Hitoshi; Kaneko, Akihiro; Hama, Shinichi; Miki, Chihiro
1990-01-01
A GPS codeless receiver called GTR-2 was for measuring total electron content (TEC) along the line of sight to the GPS satellite by using the cross correlation amplitude of the received P-code signals carried by L1(1575.42 MHz) and L2(1227.6 MHz). This equipment has the performance of uncertainty in the measurement of TEC of about 2 X 10(exp 16) electrons/sq m when a 10 dBi gain antenna was used. To increase the measurement performance, an upper version of GTR-2 called GTR-3 is planned which uses the phase information of the continuous signals obtained by making a cross correlation or multiplication of the received L1 and L2 P-code signals. By using the difference of these measured phases values, the ionospheric delay with the ambiguities of the periods of L1+L2 and L1-L2 signals can be estimated.
Electron heating by intense short-pulse lasers propagating through near-critical plasmas
NASA Astrophysics Data System (ADS)
Debayle, A.; Mollica, F.; Vauzour, B.; Wan, Y.; Flacco, A.; Malka, V.; Davoine, X.; Gremillet, L.
2017-12-01
We investigate the electron heating induced by a relativistic-intensity laser pulse propagating through a near-critical plasma. Using particle-in-cell simulations, we show that a specific interaction regime sets in when, due to the energy depletion caused by the plasma wakefield, the laser front profile has steepened to the point of having a length scale close to the laser wavelength. Wave breaking and phase mixing have then occurred, giving rise to a relativistically hot electron population following the laser pulse. This hot electron flow is dense enough to neutralize the cold bulk electrons during their backward acceleration by the wakefield. This neutralization mechanism delays, but does not prevent the breaking of the wakefield: the resulting phase mixing converts the large kinetic energy of the backward-flowing electrons into thermal energy greatly exceeding the conventional ponderomotive scaling at laser intensities > {10}21 {{{W}}{cm}}-2 and gas densities around 10% of the critical density. We develop a semi-numerical model, based on the Akhiezer-Polovin equations, which correctly reproduces the particle-in-cell-predicted electron thermal energies over a broad parameter range. Given this good agreement, we propose a criterion for full laser absorption that includes field-induced ionization. Finally, we show that our predictions still hold in a two-dimensional geometry using a realistic gas profile.
NASA Technical Reports Server (NTRS)
Johnson, Dean; Calhoun, Malcolm; Sydnor, Richard; Lutes, George
1993-01-01
An active wide-band fiber optic frequency distribution system employing a thermally controlled phase compensator to stabilize phase variations induced by environmental temperature changes is described. The distribution system utilizes bidirectional dual wavelength transmission to provide optical feedback of induced phase variations of 100 MHz signals propagating along the distribution cable. The phase compensation considered differs from earlier narrow-band phase compensation designs in that it uses a thermally controlled fiber delay coil rather than a VCO or phase modulation to compensate for induced phase variations. Two advantages of the wide-band system over earlier designs are (1) that it provides phase compensation for all transmitted frequencies, and (2) the compensation is applied after the optical interface rather than electronically ahead of it as in earlier schemes. Experimental results on the first prototype shows that the thermal stabilizer reduces phase variations and Allan deviation by a factor of forty over an equivalent uncompensated fiber optic distribution system.
Furlan, A; Marin, D; Vanzulli, A; Patera, G Palermo; Ronzoni, A; Midiri, M; Bazzocchi, M; Lagalla, R; Brancatelli, G
2011-01-01
Objectives Our aim was to compare retrospectively hepatic venous and delayed phase images for the detection of tumour washout during multiphasic multidetector row CT (MDCT) of the liver in patients with hepatocellular carcinoma (HCC). Methods 30 cirrhotic patients underwent multiphasic MDCT in the 90 days before liver transplantation. MDCT was performed before contrast medium administration and during hepatic arterial hepatic venous and delayed phases, images were obtained at 12, 55 and 120 s after trigger threshold. Two radiologists qualitatively evaluated images for lesion attenuation. Tumour washout was evaluated subjectively and objectively. Tumour-to-liver contrast (TLC) was measured for all pathologically proven HCCs. Results 48 HCCs were detected at MDCT. 46 of the 48 tumours (96%) appeared as either hyper- or isoattenuating during the hepatic arterial phase subjective washout was present in 15 HCCs (33%) during the hepatic venous phase and in 35 (76%) during the delayed phase (p<0.001, McNemar’s test). Objective washout was present in 30 of the 46 HCCs (65%) during the hepatic venous phase and in 42 of the HCCs (91%) during the delayed phase (p=0.001). The delayed phase yielded significantly higher mean TLC absolute values compared with the hepatic venous phase (−16.1±10.8 HU vs −10.5±10.2 HU; p<0.001). Conclusions The delayed phase is superior to the hepatic venous phase for detection of tumour washout of pathologically proven HCC in cirrhotic patients. PMID:21081569
NASA Astrophysics Data System (ADS)
Zhou, Qiujiao; Qi, Bing; Huang, Jianjun; Pan, Lizhu; Liu, Ying
2016-04-01
The properties of a helium atmospheric-pressure plasma jet (APPJ) are diagnosed with a dual assisted grounded electrode dielectric barrier discharge device. In the glow discharge, we captured the current waveforms at the positions of the three grounded rings. From the current waveforms, the time delay between the adjacent positions of the rings is employed to calculate the plasma bullet velocity of the helium APPJ. Moreover, the electron density is deduced from a model combining with the time delay and current intensity, which is about 1011 cm-3. In addition, The ion-neutral particles collision frequency in the radial direction is calculated from the current phase difference between two rings, which is on the order of 107 Hz. The results are helpful for understanding the basic properties of APPJs. supported by National Natural Science Foundation of China (No. 11105093), the Technological Project of Shenzhen, China (No. JC201005280485A), and the Planned S&T Program of Shenzhen, China (No. JC201105170703A)
Radar wideband digital beamforming based on time delay and phase compensation
NASA Astrophysics Data System (ADS)
Fu, Wei; Jiang, Defu
2018-07-01
In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.
Goodwin, Laura; Jones, Margaret; Rona, Roberto J; Sundin, Josefin; Wessely, Simon; Fear, Nicola T
2012-05-01
Delayed-onset posttraumatic stress disorder (PTSD) is defined as onset at least 6 months after a traumatic event. This study investigates the prevalence of delayed-onset PTSD in 1397 participants from a two-phase prospective cohort study of UK military personnel. Delayed-onset PTSD was categorized as participants who did not meet the criteria for probable PTSD (assessed using the PTSD Checklist Civilian version) at phase 1 but met the criteria by phase 2. Of the participants, 3.5% met the criteria for delayed-onset PTSD. Subthreshold PTSD, common mental disorder (CMD), poor/fair self-reported health, and multiple physical symptoms at phase 1 and the onset of alcohol misuse or CMD between phases 1 and 2 were associated with delayed-onset PTSD. Delayed-onset PTSD exists in this UK military sample. Military personnel who developed delayed-onset PTSD were more likely to have psychological ill-health at an earlier assessment, and clinicians should be aware of the potential comorbidity in these individuals, including alcohol misuse. Leaving the military or experiencing relationship breakdown was not associated.
A statistical approach to determining energetic outer radiation belt electron precipitation fluxes
NASA Astrophysics Data System (ADS)
Simon Wedlund, Mea; Clilverd, Mark A.; Rodger, Craig J.; Cresswell-Moorcock, Kathy; Cobbett, Neil; Breen, Paul; Danskin, Donald; Spanswick, Emma; Rodriguez, Juan V.
2014-05-01
Subionospheric radio wave data from an Antarctic-Arctic Radiation-Belt (Dynamic) Deposition VLF Atmospheric Research Konsortia (AARDDVARK) receiver located in Churchill, Canada, is analyzed to determine the characteristics of electron precipitation into the atmosphere over the range 3 < L < 7. The study advances previous work by combining signals from two U.S. transmitters from 20 July to 20 August 2010, allowing error estimates of derived electron precipitation fluxes to be calculated, including the application of time-varying electron energy spectral gradients. Electron precipitation observations from the NOAA POES satellites and a ground-based riometer provide intercomparison and context for the AARDDVARK measurements. AARDDVARK radiowave propagation data showed responses suggesting energetic electron precipitation from the outer radiation belt starting 27 July 2010 and lasting ~20 days. The uncertainty in >30 keV precipitation flux determined by the AARDDVARK technique was found to be ±10%. Peak >30 keV precipitation fluxes of AARDDVARK-derived precipitation flux during the main and recovery phase of the largest geomagnetic storm, which started on 4 August 2010, were >105 el cm-2 s-1 sr-1. The largest fluxes observed by AARDDVARK occurred on the dayside and were delayed by several days from the start of the geomagnetic disturbance. During the main phase of the disturbances, nightside fluxes were dominant. Significant differences in flux estimates between POES, AARDDVARK, and the riometer were found after the main phase of the largest disturbance, with evidence provided to suggest that >700 keV electron precipitation was occurring. Currently the presence of such relativistic electron precipitation introduces some uncertainty in the analysis of AARDDVARK data, given the assumption of a power law electron precipitation spectrum.
Patel, Mainak; Joshi, Badal
2013-10-07
The widespread presence of synchronized neuronal oscillations within the brain suggests that a mechanism must exist that is capable of decoding such activity. Two realistic designs for such a decoder include: (1) a read-out neuron with a high spike threshold, or (2) a phase-delayed inhibition network motif. Despite requiring a more elaborate network architecture, phase-delayed inhibition has been observed in multiple systems, suggesting that it may provide inherent advantages over simply imposing a high spike threshold. In this work, we use a computational and mathematical approach to investigate the efficacy of the phase-delayed inhibition motif in detecting synchronized oscillations. We show that phase-delayed inhibition is capable of creating a synchrony detector with sharp synchrony filtering properties that depend critically on the time course of inputs. Additionally, we show that phase-delayed inhibition creates a synchrony filter that is far more robust than that created by a high spike threshold. Copyright © 2013 Elsevier Ltd. All rights reserved.
Effect of processing route for preparation of mullite from kaolinite and alumina
NASA Astrophysics Data System (ADS)
Behera, Pallavi Suhasinee; Bhattacharyya, Sunipa
2018-05-01
In current work, two different types of mullite ceramic powder were prepared using kaolinite and alumina by solid state and chemical precipitation route. The phases, bond types and microstructural evolution of the mullite powders were investigated by X-ray diffraction, infrared analysis, and field emission scanning electron microscopy to study the mullitisation behavior. The solid state method evident a pure mullite phase formation at 1550 °C. In case of chemical precipitation route small amount of alumina peak was noticed along with major phase of mullite which was also clearly apprehended from FESEM micrographs and IR spectra. Densification was more for the samples prepared by solid state process which may be correlated to the delayed mullitization process in chemical precipitation route.
Remote control of the dissociative ionization of H2 based on electron-H2 + entanglement
NASA Astrophysics Data System (ADS)
Wang, Jun-Ping; He, Feng
2018-04-01
The single ionization of H2 in strong laser fields creates the correlated electron-H2 + pair. Based on such a correlation, we conceive a strategy to control the energy spectra of the freed electron or dissociative fragments by simulating the time-dependent Schrödinger equation. Two attosecond pulses in a train produce the replica of electron-H2 + pairs, which are to be steered by a time-delayed phase-stabilized (mid)infrared laser pulse. By controlling the behavior of the freed electron, the dissociation of H2 + can be controlled even though there is no direct laser-H2 + coupling. On the other hand, the photoelectron energy spectra can be manipulated via laser-H2 + coupling. This study demonstrates the entanglement of molecular quantum wave packets, and affords a route to remotely control molecular dissociative ionization.
Challet, E; Turek, F W; Laute, M; Van Reeth, O
2001-08-03
The circadian pacemaker in the suprachiasmatic nuclei is primarily synchronized to the daily light-dark cycle. The phase-shifting and synchronizing effects of light can be modulated by non-photic factors, such as behavioral, metabolic or serotonergic cues. The present experiments examine the effects of sleep deprivation on the response of the circadian pacemaker to light and test the possible involvement of serotonergic and/or metabolic cues in mediating the effects of sleep deprivation. Photic phase-shifting of the locomotor activity rhythm was analyzed in mice transferred from a light-dark cycle to constant darkness, and sleep-deprived for 8 h from Zeitgeber Time 6 to Zeitgeber Time 14. Phase-delays in response to a 10-min light pulse at Zeitgeber Time 14 were reduced by 30% in sleep-deprived mice compared to control mice, while sleep deprivation without light exposure induced no significant phase-shifts. Stimulation of serotonin neurotransmission by fluoxetine (10 mg/kg), a serotonin reuptake inhibitor that decreases light-induced phase-delays in non-deprived mice, did not further reduce light-induced phase-delays in sleep-deprived mice. Impairment of serotonin neurotransmission with p-chloroamphetamine (three injections of 10 mg/kg), which did not increase light-induced phase-delays in non-deprived mice significantly, partially normalized light-induced phase-delays in sleep-deprived mice. Injections of glucose increased light-induced phase-delays in control and sleep-deprived mice. Chemical damage of the ventromedial hypothalamus by gold-thioglucose (600 mg/kg) prevented the reduction of light-induced phase-delays in sleep-deprived mice, without altering phase-delays in control mice. Taken together, the present results indicate that sleep deprivation can reduce the light-induced phase-shifts of the mouse suprachiasmatic pacemaker, due to serotonergic and metabolic changes associated with the loss of sleep.
Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong
2015-02-13
An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration.
Widely tunable opto-electronic oscillator
NASA Astrophysics Data System (ADS)
Maxin, J.; Pillet, G.; Morvan, L.; Dolfi, D.
2012-03-01
We present here a widely tunable opto-electronic oscillator (OEO) based on an Er,Yb:glass Dual Frequency Laser (DFL) at 1.53 μm. The beatnote is stabilized with an optical fiber delay line. Compared to classical optoelectronic oscillators, this architecture does not need RF filter and offers a wide tunability. We measured a reduction of 67 dB of the phase noise power spectral density (PSD) at 10 Hz of the carrier optical fiber leading to a level of -27 dBc/Hz with only 100 m optical fiber. Moreover, the scheme offers a microwave signal tunability from 2.5 to 5.5 GHz limited by the RF components.
High-temperature superconductivity for avionic electronic warfare and radar systems
NASA Astrophysics Data System (ADS)
Ryan, Paul A.
1994-01-01
The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS.
Inducing jet-lag in older people: directional asymmetry
NASA Technical Reports Server (NTRS)
Monk, T. H.; Buysse, D. J.; Carrier, J.; Kupfer, D. J.
2000-01-01
Twenty healthy elderly subjects (12 female, 8 male; mean age 81 years, range 67-87 years) each experienced a 15-day time isolation protocol in which they lived individually in a special laboratory apartment in which sleep and circadian rhythm measures could be taken. There were two experiments: one (6 females, 4 males) involved a 6-h phase advance of the sleep/wake cycle, and the other (6 females, 4 males) a 6-h phase delay. Each started with 5 baseline days, immediately followed by the phase shift. The subject was then held to the phase shifted routine for the remainder of the study. Rectal temperatures were recorded minute-by-minute throughout the entire experiment and each night of sleep was recorded using polysomnography. A directional asymmetry in phase-shift effects was apparent, with significantly more sleep disruption and circadian rhythm amplitude disruption after the phase advance than after the phase delay. Sleep disruption was reflected in reduced time spent asleep, and in changed REM latency, which increased in the phase advance direction but decreased in the phase delay direction. Although the phase advance led to a significant increase in wakefulness in the first half of the night, the phase delay did not lead to an equivalent increase in wakefulness during the second half of the night. Examination of both raw and 'demasked' circadian rectal temperature rhythms confirmed that phase adjustment was slow in both directions, but was less slow (and more monotonic) after the phase delay than after the phase advance. Subjective alertness suffered more disruption after the phase advance than after the phase delay.
Digitally Enhanced Heterodyne Interferometry
NASA Technical Reports Server (NTRS)
Shaddock, Daniel; Ware, Brent; Lay, Oliver; Dubovitsky, Serge
2010-01-01
Spurious interference limits the performance of many interferometric measurements. Digitally enhanced interferometry (DEI) improves measurement sensitivity by augmenting conventional heterodyne interferometry with pseudo-random noise (PRN) code phase modulation. DEI effectively changes the measurement problem from one of hardware (optics, electronics), which may deteriorate over time, to one of software (modulation, digital signal processing), which does not. DEI isolates interferometric signals based on their delay. Interferometric signals are effectively time-tagged by phase-modulating the laser source with a PRN code. DEI improves measurement sensitivity by exploiting the autocorrelation properties of the PRN to isolate only the signal of interest and reject spurious interference. The properties of the PRN code determine the degree of isolation.
Transient current interruption mechanism in a magnetically delayed vacuum switch
NASA Technical Reports Server (NTRS)
Morris, Gibson, Jr.; Dougal, Roger A.
1993-01-01
The capacity of a magnetically delayed vacuum switch to conduct current depends on the density of plasma injected into the switch. Exceeding the current capacity results in the switch entering a lossy mode of operation characterized by a transient interruption of the main current (opening behavior) and a rapid increase of voltage across the vacuum gap. Streak and framing photographs of the discharge indicate that a decrease of luminosity near the middle of the gap preceeds the transition to the opening phase. The zone of low luminosity propagates toward the cathode. This evidence suggests that the mechanism causing the opening phase is erosion of the background plasma in a manner similar to that in a plasma-opening switch. The resulting ion depletion forces a space-charge-limited conduction mode. The switch inductance maintains a high discharge current even during the space-charge-limited conduction phase, thus producing high internal fields. The high accelerating voltage, in turn, produces electron and ion beams that heat the electrode surfaces. As a result of the heating, jets of electrode vapor issue from the electrodes, either cathode or anode, depending on the selection of electrode materials.
Atmospheric Phase Delay Correction of D-Insar Based on SENTINEL-1A
NASA Astrophysics Data System (ADS)
Li, X.; Huang, G.; Kong, Q.
2018-04-01
In this paper, we used the Generic Atmospheric Correction Online Service for InSAR (GACOS) tropospheric delay maps to correct the atmospheric phase delay of the differential interferometric synthetic aperture radar (D-InSAR) monitoring, and we improved the accuracy of subsidence monitoring using D-InSAR technology. Atmospheric phase delay, as one of the most important errors that limit the monitoring accuracy of InSAR, would lead to the masking of true phase in subsidence monitoring. For the problem, this paper used the Sentinel-1A images and the tropospheric delay maps got from GACOS to monitor the subsidence of the Yellow River Delta in Shandong Province. The conventional D-InSAR processing was performed using the GAMMA software. The MATLAB codes were used to correct the atmospheric delay of the D-InSAR results. The results before and after the atmospheric phase delay correction were verified and analyzed in the main subsidence area. The experimental results show that atmospheric phase influences the deformation results to a certain extent. After the correction, the measurement error of vertical deformation is reduced by about 18 mm, which proves that the removal of atmospheric effects can improve the accuracy of the D-InSAR monitoring.
Describing-function analysis of a ripple regulator with slew-rate limits and time delays
NASA Technical Reports Server (NTRS)
Wester, Gene W.
1990-01-01
The effects of time delays and slew-rate limits on the steady-state operating points and performance of a free-running ripple regulator are evaluated using describing-function analysis. The describing function of an ideal comparator (no time delays or slew rate limits) has no phase shift and is independent of frequency. It is found that turn-on delay and turn-off delay have different effects on gain and phase and cannot be combined. Comparator hysteresis affects both gain and phase; likewise, time delays generally affect both gain and phase. It is found that the effective time delay around the feedback loop is one half the sum of turn-on and turn-off delays, regardless of whether the delays are caused by storage time or slew rate limits. Expressions are formulated for the switching frequency, switch duty ratio, dc output, and output ripple. For the case of no hysteresis, a simple, graphical solution for the switching frequency is possible, and the resulting switching frequency is independent of first-order variations of input or load.
Daley, Matthew F; Glanz, Jason M; Newcomer, Sophia R; Jackson, Michael L; Groom, Holly C; Lugg, Marlene M; McLean, Huong Q; Klein, Nicola P; Weintraub, Eric S; McNeil, Michael M
2017-04-04
To address public concern about the safety of the childhood immunization schedule, the Institute of Medicine recommended observational studies comparing adverse health outcomes of fully vaccinated children to children under-vaccinated due to parental choice. Misclassification of vaccination status could bias such studies. To assess risk of misclassification of vaccination status within the Vaccine Safety Datalink (VSD). A retrospective cohort study was conducted in three phases. In phase 1, electronic health record (EHR) data were used to identify patterns of under-vaccination during the first 24months of life potentially due to parental choice. In phase 2, a random sample of records of under-vaccinated children was manually reviewed. In phase 3, a separate sample of parents were surveyed to assess whether EHR data accurately reflected their child's vaccination status. Phases 1 and 2 were conducted at 6 VSD sites, phase 3 at 1 site. The study cohort included 361,901 children born 2004 through 2012. By 24months of age, 198,249 (54.8%) were fully vaccinated with no delays, 84,698 (23.4%) experienced delays but were fully vaccinated by 24months of age, 4865 (1.3%) received no vaccines, 3789 (1.0%) delayed starting vaccination until ≥4months of age, 4781 (1.3%) had consistent vaccine-limiting (≤2 vaccines per visit), and the remaining 65,519 (18.1%) were missing vaccine series or doses. When a diagnosis code for vaccine refusal was present in EHR data, encounter notes confirmed vaccine refusal as the reason for under-vaccination for nearly 100% of sampled records. Parent surveys confirmed these findings. Parents of under-vaccinated children were more likely to report visiting an alternative medical provider than parents of fully vaccinated children. Specific groups of children, under-vaccinated due to parental choice, can be identified with relatively low likelihood of misclassification of vaccination status using EHR-based vaccine data and diagnosis codes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lesions Responsible for Delayed Oral Transit Time in Post-stroke Dysphagia.
Moon, Hyun Im; Yoon, Seo Yeon; Yi, Tae Im; Jeong, Yoon Jeong; Cho, Tae Hwan
2018-06-01
Some stroke patients show oral phase dysphagia, characterized by a markedly prolonged oral transit time that hinders oral feeding. The aim of this study was to clarify the clinical characteristics and lesions responsible for delayed swallowing. We reviewed 90 patients with stroke. The oral processing time plus the postfaucial aggregation time required to swallow semisolid food was assessed. The patients were divided into two groups according to oral transit time, and we analyzed the differences in characteristics such as demographic factors, lesion factors, and cognitive function. Logistic regression analyses were performed to examine the predictors of delayed oral transit time. Lesion location and volume were measured on brain magnetic resonance images. We generated statistic maps of lesions related to delayed oral phase in swallowing using voxel-based lesion symptom mapping (VLSM). The group of patients who showed delayed oral transit time had significantly low cognitive function. Also, in a regression model, delayed oral phase was predicted with low K-MMSE (Korean version of the Mini Mental Status Exam). Using VLSM, we found the lesion location to be associated with delayed oral phase after adjusting for K-MMSE score. Although these results did not reach statistical significance, they showed the lesion pattern with predominant distribution in the left frontal lobe. Delayed oral phase in post-stroke patients was not negligible clinically. Patients' cognitive impairments affect the oral transit time. When adjusting it, we found a trend that the lesion responsible for delayed oral phase was located in the left frontal lobe, though the association did not reach significance. The delay might be related to praxis function.
NASA Astrophysics Data System (ADS)
Arahman, Nasrul; Maimun, Teuku; Mukramah, Syawaliah
2017-01-01
The composition of polymer solution and the methods of membrane preparation determine the solidification process of membrane. The formation of membrane structure prepared via non-solvent induced phase separation (NIPS) method is mostly determined by phase separation process between polymer, solvent, and non-solvent. This paper discusses the phase separation process of polymer solution containing Polyethersulfone (PES), N-methylpirrolidone (NMP), and surfactant Tetronic 1307 (Tet). Cloud point experiment is conducted to determine the amount of non-solvent needed on induced phase separation. Amount of water required as a non-solvent decreases by the addition of surfactant Tet. Kinetics of phase separation for such system is studied by the light scattering measurement. With the addition of Tet., the delayed phase separation is observed and the structure growth rate decreases. Moreover, the morphology of fabricated membrane from those polymer systems is analyzed by scanning electron microscopy (SEM). The images of both systems show the formation of finger-like macrovoids through the cross-section.
Zero-lag synchronization in coupled time-delayed piecewise linear electronic circuits
NASA Astrophysics Data System (ADS)
Suresh, R.; Srinivasan, K.; Senthilkumar, D. V.; Raja Mohamed, I.; Murali, K.; Lakshmanan, M.; Kurths, J.
2013-07-01
We investigate and report an experimental confirmation of zero-lag synchronization (ZLS) in a system of three coupled time-delayed piecewise linear electronic circuits via dynamical relaying with different coupling configurations, namely mutual and subsystem coupling configurations. We have observed that when there is a feedback between the central unit (relay unit) and at least one of the outer units, ZLS occurs in the two outer units whereas the central and outer units exhibit inverse phase synchronization (IPS). We find that in the case of mutual coupling configuration ZLS occurs both in periodic and hyperchaotic regimes, while in the subsystem coupling configuration it occurs only in the hyperchaotic regime. Snapshots of the time evolution of outer circuits as observed from the oscilloscope confirm the occurrence of ZLS experimentally. The quality of ZLS is numerically verified by correlation coefficient and similarity function measures. Further, the transition to ZLS is verified from the changes in the largest Lyapunov exponents and the correlation coefficient as a function of the coupling strength. IPS is experimentally confirmed using time series plots and also can be visualized using the concept of localized sets which are also corroborated by numerical simulations. In addition, we have calculated the correlation of probability of recurrence to quantify the phase coherence. We have also analytically derived a sufficient condition for the stability of ZLS using the Krasovskii-Lyapunov theory.
Improved estimation of Mars ionosphere total electron content
NASA Astrophysics Data System (ADS)
Cartacci, M.; Sánchez-Cano, B.; Orosei, R.; Noschese, R.; Cicchetti, A.; Witasse, O.; Cantini, F.; Rossi, A. P.
2018-01-01
We describe an improved method to estimate the Total Electron Content (TEC) of the Mars ionosphere from the echoes recorded by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) (Picardi et al., 2005; Orosei et al., 2015) onboard Mars Express in its subsurface sounding mode. In particular, we demonstrate that this method solves the issue of the former algorithm described at (Cartacci et al., 2013), which produced an overestimation of TEC estimates on the day side. The MARSIS signal is affected by a phase distortion introduced by the Mars ionosphere that produces a variation of the signal shape and a delay in its travel time. The new TEC estimation is achieved correlating the parameters obtained through the correction of the aforementioned effects. In detail, the knowledge of the quadratic term of the phase distortion estimated by the Contrast Method (Cartacci et al., 2013), together with the linear term (i.e. the extra time delay), estimated through a radar signal simulator, allows to develop a new algorithm particularly well suited to estimate the TEC for solar zenith angles (SZA) lower than 95° The new algorithm for the dayside has been validated with independent data from MARSIS in its Active Ionospheric Sounding (AIS) operational mode, with comparisons with other previous algorithms based on MARSIS subsurface data, with modeling and with modeling ionospheric distortion TEC reconstruction.
Phase-Controlled Polarization Modulators
NASA Technical Reports Server (NTRS)
Chuss, D. T.; Wollack, E. J.; Novak, G.; Moseley, S. H.; Pisano, G.; Krejny, M.; U-Yen, K.
2012-01-01
We report technology development of millimeter/submillimeter polarization modulators that operate by introducing a a variable, controlled phase delay between two orthogonal polarization states. The variable-delay polarization modulator (VPM) operates via the introduction of a variable phase delay between two linear orthogonal polarization states, resulting in a variable mapping of a single linear polarization into a combination of that Stokes parameter and circular (Stokes V) polarization. Characterization of a prototype VPM is presented at 350 and 3000 microns. We also describe a modulator in which a variable phase delay is introduced between right- and left- circular polarization states. In this architecture, linear polarization is fully modulated. Each of these devices consists of a polarization diplexer parallel to and in front of a movable mirror. Modulation involves sub-wavelength translations of the mirror that change the magnitude of the phase delay.
Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang
2014-07-07
We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height ormore » incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.« less
Short nights reduce light-induced circadian phase delays in humans.
Burgess, Helen J; Eastman, Charmane I
2006-01-01
Short sleep episodes are common in modern society. We recently demonstrated that short nights reduce phase advances to light. Here we show that short nights also reduce phase delays to light. Two weeks of 6-hour sleep episodes in the dark (short nights) and 2 weeks of long 9-hour sleep episodes (long nights) in counterbalanced order, separated by 7 days. Following each series of nights, there was a dim-light phase assessment to assess baseline phase. Three days later, subjects were exposed to a phase-delaying light stimulus for 2 days, followed by a final phase assessment. Subjects slept at home in dark bedrooms but came to the laboratory for the phase assessments and light stimulus. Seven young healthy subjects. The 3.5-hour light stimulus was four 30-minute pulses of bright light (-5000 lux) separated by 30-minute intervals of room light. The stimulus began 2.5 hours after each subject's dim-light melatonin onset, followed by a 6- or 9-hour sleep episode. On the second night, the bright light and sleep episode began 1 hour later. The dim-light melatonin onset and dimlight melatonin offset phase delayed 1.4 and 0.7 hours less in the short nights, respectively (both p < or = .015). These results indicate for the first time that short nights can reduce circadian phase delays, that long nights can increase phase delays to light, or both. People who curtail their sleep may inadvertently reduce their circadian responsiveness to evening light.
A dynamic model of the radiation-belt electron phase-space density based on POLAR/HIST measurements
NASA Astrophysics Data System (ADS)
Vassiliadis, D.; Green, J. C.
2007-12-01
The response of the energetic-electron phase-space density (PSD) in the radiation belts is subject to a delicate combination of acceleration and loss processes which are strongly determined by the magnetospheric configuration and field disturbance level. We quantify the response of the density to stormtime fields as observed by the HIST detector on board POLAR. Several distinct modes are identified, characterized by peak second- and third- adiabatic invariants and peak delay time. The modes represent quasiadiabatic transport due to ring current activity; high L* (~6), day-long acceleration linked to ULF wave-particle interaction; and low-L* (~3), minute- to hour-long acceleration interpreted to be due to transient inductive fields or VLF wave-particle interaction. The net transport due to these responses is not always or everywhere diffusive, therefore we quantify the degree of departure from diffusive transport for specific storm intervals and radial ranges. Taken together the response modes comprise a dynamic, nonlinear model which allows us to better understand the historic variability of the high-energy tail of the electron distribution in the inner magnetosphere.
Kubota, Kaoru; Saito, Mitsue; Aogi, Kenjiro; Sekine, Ikuo; Yoshizawa, Hirohisa; Yanagita, Yasuhiro; Sakai, Hiroshi; Inoue, Kenichi; Kitagawa, Chiyoe; Ogura, Takashi
2016-09-01
In a comparative phase 3 study involving 1114 Japanese patients receiving highly emetogenic chemotherapy (HEC), palonosetron (PALO) was found to be superior to granisetron (GRA) for the prophylaxis of chemotherapy-induced nausea and vomiting (CINV) in the delayed phase. This post hoc analysis of the phase 3 study evaluated the efficacy of PALO for the control of nausea. The proportion of patients without nausea was assessed at 24-h intervals during the acute phase (0-24 h), delayed phase (24-120 h), and overall (0-120 h). No nausea rates were also evaluated by sex, type of chemotherapy (cisplatin or doxorubicin/epirubicin plus cyclophosphamide [AC/EC]), and age (<55 vs. ≥55 years). Nausea severity was categorized using a 4-point Likert scale (0 = no nausea to 3 = severe nausea). The proportion of patients without nausea was significantly higher in the PALO arm than in the GRA arm in the delayed phase (37.8 % vs. 27.2 %; p = 0.002) and overall (31.9 % vs. 25.0 %; p = 0.0117). When analyzed by stratification factors, the proportion of patients without nausea was significantly higher in the PALO arm in the delayed phase and overall in patients who were female, younger, or treated with cisplatin and in the delayed phase in patients who were older or treated with doxorubicin or epirubicin plus cyclophosphamide (all p < 0.05). PALO was more effective than GRA in prophylaxis of HEC-induced nausea in the delayed phase and overall. In addition, PALO was more effective than GRA in young and female patients, who are at high risk of CINV, both in the delayed phase and overall.
Schnadig, Ian D; Agajanian, Richy; Dakhil, Christopher; Gabrail, Nashat Y; Smith, Robert E; Taylor, Charles; Wilks, Sharon T; Schwartzberg, Lee S; Cooper, William; Mosier, Michael C; Payne, J Yvette; Klepper, Michael J; Vacirca, Jeffrey L
2016-06-01
APF530, extended-release granisetron, provides sustained release for ≥5 days for acute- and delayed-phase chemotherapy-induced nausea and vomiting (CINV). We compared efficacy and safety of APF530 versus ondansetron for delayed CINV after highly emetogenic chemotherapy (HEC), following a guideline-recommended three-drug regimen. HEC patients received APF530 500 mg subcutaneously or ondansetron 0.15 mg/kg intravenously, with dexamethasone and fosaprepitant. Primary end point was delayed-phase complete response (no emesis or rescue medication). A higher percentage of APF530 versus ondansetron patients had delayed-phase complete response (p = 0.014). APF530 was generally well tolerated; treatment-emergent adverse event incidence was similar across arms, mostly mild-to-moderate injection-site reactions. APF530 versus the standard three-drug regimen provided superior control of delayed-phase CINV following HEC. ClinicalTrials.gov : NCT02106494.
Electron trapping in evolving coronal structures during a large gradual hard X-ray/radio burst
NASA Technical Reports Server (NTRS)
Bruggmann, G.; Vilmer, N.; Klein, K.-L.; Kane, S. R.
1994-01-01
Gradual hard X-ray/radio bursts are characterized by their long duration, smooth time profile, time delays between peaks at different hard X-ray energies and microwaves, and radiation from extended sources in the low and middle corona. Their characteristic properties have been ascribed to the dynamic evolution of the accelerated electrons in coronal magnetic traps or to the separate acceleration of high-energy electrons in a 'second step' process. The information available so far was drawn from quality considerations of time profiles or even only from the common occurrence of emissions in different spectral ranges. This paper presents model computations of the temporal evolution of hard X-ray and microwave spectra, together with a qualitative discussion of radio lightcurves over a wide spectral range, and metric imaging observations. The basis hypothesis investigated is that the peculiar 'gradual' features can be related to the dynamical evolution of electrons injected over an extended time interval in a coronal trap, with electrons up to relativistic energies being injected simultaneously. The analyzed event (26 April. 1981) is particularly challenging to this hypothesis because of the long time delays between peaks at different X-ray energies and microwave frequencies. The observations are shown to be consistent with the hypothesis, provided that the electrons lose their energy by Coulomb collisions and possibly betatron deceleration. The access of the electrons to different coronal structures varies in the course of the event. The evolution and likely destabilization of part of the coronal plasma-magnetic field configuration is of crucial influence in determining the access to these structures and possibly the dynamical evolution of the trapped electrons through betatron deceleration in the late phase of the event.
Multipath noise reduction spread spectrum signals
NASA Technical Reports Server (NTRS)
Meehan, Thomas K. (Inventor)
1994-01-01
The concepts of early-prompt delay tracking, multipath correction of early-prompt delay tracking from correlation shape, and carrier phase multipath correction are addressed. In early-prompt delay tracking, since multipath is always delayed with respect to the direct signals, the system derives phase and pseudorange observables from earlier correlation lags. In multipath correction of early-prompt delay tracking from correlation shape, the system looks for relative variations of amplitude across the code correlation function that do not match the predicted multipath-free code cross-correlation shape. The system then uses deviations from the multipath-free shape to infer the magnitude of multipath, and to generate corrections pseudorange observables. In carrier phase multipath correction, the system looks for variations of phase among plural early and prompt lags. The system uses the measured phase variations, along with the general principle that the multipath errors are larger for later lags, to infer the presence of multipath, and to generate corrections for carrier-phase observables.
NASA Astrophysics Data System (ADS)
Efimov, Denis; Schiffer, Johannes; Ortega, Romeo
2016-05-01
Motivated by the problem of phase-locking in droop-controlled inverter-based microgrids with delays, the recently developed theory of input-to-state stability (ISS) for multistable systems is extended to the case of multistable systems with delayed dynamics. Sufficient conditions for ISS of delayed systems are presented using Lyapunov-Razumikhin functions. It is shown that ISS multistable systems are robust with respect to delays in a feedback. The derived theory is applied to two examples. First, the ISS property is established for the model of a nonlinear pendulum and delay-dependent robustness conditions are derived. Second, it is shown that, under certain assumptions, the problem of phase-locking analysis in droop-controlled inverter-based microgrids with delays can be reduced to the stability investigation of the nonlinear pendulum. For this case, corresponding delay-dependent conditions for asymptotic phase-locking are given.
Van der Maren, Solenne; Moderie, Christophe; Duclos, Catherine; Paquet, Jean; Daneault, Véronique; Dumont, Marie
2018-04-01
A number of factors can contribute to a delayed sleep schedule. An important factor could be a daily profile of light exposure favoring a later circadian phase. This study aimed to compare light exposure between 14 young adults complaining of a delayed sleep schedule and 14 matched controls and to identify possible associations between habitual light exposure and circadian phase. Exposure to white and blue light was recorded with ambulatory monitors for 7 consecutive days. Participants also noted their daily use of light-emitting devices before bedtime. Endogenous circadian phase was estimated with the dim light melatonin onset (DLMO) in the laboratory. The amplitude of the light-dark cycle to which the subjects were exposed was smaller in delayed than in control subjects, and smaller amplitude was associated with a later DLMO. Smaller amplitude was due to both decreased exposure in the daytime and increased exposure at night. Total exposure to blue light, but not to white light, was lower in delayed subjects, possibly due to lower exposure to blue-rich outdoor light. Lower daily exposure to blue light was associated with a later DLMO. Timing of relative increases and decreases of light exposure in relation to endogenous circadian phase was also compared between the 2 groups. In delayed subjects, there was a relatively higher exposure to white and blue light 2 h after DLMO, a circadian time with maximal phase-delaying effect. Delayed participants also had higher exposure to light 8 to 10 h after DLMO, which occurred mostly during their sleep episode but may have some phase-advancing effects. Self-reported use of light-emitting devices before bedtime was higher in delayed than in control subjects and was associated with a later DLMO. This study suggests that individuals complaining of a delayed sleep schedule engage in light-related behaviors favoring a later circadian phase and a later bedtime.
Precision digital pulse phase generator
McEwan, T.E.
1996-10-08
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.
Precision digital pulse phase generator
McEwan, Thomas E.
1996-01-01
A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.
NASA Astrophysics Data System (ADS)
Harrington, M.; Kujawski, J. T.; Adrian, M. L.; Weatherwax, A. T.
2013-12-01
Electrons are, by definition, a fundamental, chemical and electromagnetic constituent of any plasma. This is especially true within the partially ionized plasmas of Earth's ionosphere where electrons are a critical component of a vast array of plasma processes. Siena College is working on a novel method of processing information from electron spectrometer anodes using delay line techniques and inexpensive COTS electronics to track the movement of high-energy particles. Electron spectrometers use a variety of techniques to determine where an amplified electron cloud falls onto a collecting surface. One traditional method divides the collecting surface into sectors and uses a single detector for each sector. However, as the angular and spatial resolution increases, so does the number of detectors, increasing power consumption, cost, size, and weight of the system. An alternative approach is to connect each sector with a delay line built within the PCB material which is shielded from cross talk by a flooded ground plane. Only one pair of detectors (e.g., one at each end of the chain) are needed with the delay line technique which is different from traditional delay line detectors which use either Application Specific Integrated Circuits (ASICs) or very fast clocks. In this paper, we report on the implementation and testing of a delay line detector using a low-cost Xilinx FPGA and a thirty-two sector delay system. This Delay Line Detector has potential satellite and rocket flight applications due to its low cost, small size and power efficiency
Moderie, Christophe; Van der Maren, Solenne; Dumont, Marie
2017-06-01
To assess factors that might contribute to a delayed sleep schedule in young adults with sub-clinical features of delayed sleep phase disorder. Two groups of 14 young adults (eight women) were compared: one group complaining of a delayed sleep schedule and a control group with an earlier bedtime and no complaint. For one week, each subject maintained a target bedtime reflecting their habitual sleep schedule. Subjects were then admitted to the laboratory for the assessment of circadian phase (dim light melatonin onset), subjective sleepiness, and non-visual light sensitivity. All measures were timed relative to each participant's target bedtime. Non-visual light sensitivity was evaluated using subjective sleepiness and salivary melatonin during 1.5-h exposure to blue light, starting one hour after target bedtime. Compared to control subjects, delayed subjects had a later circadian phase and a slower increase of subjective sleepiness in the late evening. There was no group difference in non-visual sensitivity to blue light, but we found a positive correlation between melatonin suppression and circadian phase within the delayed group. Our results suggest that a late circadian phase, a slow build-up of sleep need, and an increased circadian sensitivity to blue light contribute to the complaint of a delayed sleep schedule. These findings provide targets for strategies aiming to decreasing the severity of a sleep delay and the negative consequences on daytime functioning and health. Copyright © 2017 Elsevier B.V. All rights reserved.
Real-time estimation of ionospheric delay using GPS measurements
NASA Astrophysics Data System (ADS)
Lin, Lao-Sheng
1997-12-01
When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is able to estimate the sum of the satellite and receiver L1/L2 differential delay for each tracked GPS satellite. A 'UNSW grid-based algorithm' is proposed to improve the accuracy of real-time ionosphere modelling. The proposed algorithm is similar to the conventional grid-based algorithm. However, two modifications were made to the algorithm: (1) an 'exponential function' is adopted as the weighting function, and (2) the 'grid-based ionosphere model' estimated from the previous day is used to predict the ionospheric delay ratios between the grid point and reference points. (Abstract shortened by UMI.)
NASA Technical Reports Server (NTRS)
Terry, R.; Flaherty, B. J.; Dubroff, R. E.
1972-01-01
The theory and development of a VHF correlation radio interferometer for investigating ionospheric disturbances are discussed. The system was developed to receive signals from the geostationary Applications Technology Satellites. Amplitude and phase variations of the signal passing through the ionosphere can be detected by this instrument. The system consists of two superheterodyne receivers separated by a distance known as the baseline of the system. Since the system is a phase sensitive instrument, the local oscillators of the two receivers must be phase coherent. This is accomplished by using phase-locked loops for generating the local oscillators. The two signals from the separate receivers are cross-correlated by multiplying the two signals together and then time averaging the result. The sensitivity of the instrument is increased by off-setting one of the local oscillators by a small amount.
Kuwada, S; Yin, T C
1983-10-01
Detailed, quantitative studies were made of the interaural phase sensitivity of 197 neurons with low best frequency in the inferior colliculus (IC) of the barbiturate-anesthetized cat. We analyzed the responses of single cells to interaural delays in which tone bursts were delivered to the two ears via sealed earphones and the onset of the tone to one ear with respect to the other was varied. For most (80%) cells the discharge rate is a cyclic function of interaural delay at a period corresponding to that of the stimulating frequency. The cyclic nature of the interaural delay curve indicates that these cells are sensitive to the interaural phase difference. These cells are distributed throughout the low-frequency zone of the IC, but they are less numerous in the medial and caudal zones. Cells with a wide variety of response patterns will exhibit interaural phase sensitivities at stimulating frequencies up to 3,100 Hz, although above 2,500 Hz the number of such cells decrease markedly. Using dichotic stimuli we could study the cell's sensitivity to the onset delay and interaural phase independently. The large majority of IC cells respond only to changes in interaural phase, with no sensitivity to the onset delay. However, a small number (7%) of cells exhibit a sensitivity to the onset delay as well as to the interaural phase disparity, and most of these cells show an onset response. The effects of changing the stimulus intensity equally to both ears or of changing the interaural intensity difference on the mean interaural phase were studied. While some neurons are not affected by level changes, others exhibit systematic phase shifts for both average and interaural intensity variations, and there is a continuous distribution of sensitivities between these extremes. A few cells also showed systematic changes in the shape of the interaural delay curves as a function of interaural intensity difference, especially at very long delays. These shifts can be interpreted as a form of time-intensity trading. A few cells demonstrated orderly changes in the interaural delay curve as the repetition rate of the stimulus was varied. Some of these changes are consonant with an inhibitory effect that occurs at stimulus offset. The responses of the neurons show a strong bias for stimuli that would originate from he contralateral sound field; 77% of the responses display mean interaural phase angles that are less than 0.5 of a cycle, which are delays to the ipsilateral tone.(ABSTRACT TRUNCATED AT 400 WORDS)
NASA Astrophysics Data System (ADS)
Fokin, Vladimir B.; Povarnitsyn, Mikhail E.; Levashov, Pavel R.
2017-02-01
We elaborated two numerical methods, two-temperature hydrodynamics and hybrid two-temperature molecular dynamics, which take into account basic mechanisms of a metal target response to ultrashort laser irradiation. The model used for the description of the electronic subsystem is identical for both approaches, while the ionic part is defined by an equation of state in hydrodynamics and by an interatomic potential in molecular dynamics. Since the phase diagram of the equation of state and corresponding potential match reasonably well, the dynamics of laser ablation obtained by both methods is quite similar. This correspondence can be considered as a first step towards the development of a self-consistent combined model. Two important processes are highlighted in simulations of double-pulse ablation: (1) the crater depth decrease as a result of recoil flux formation in the nascent plume when the delay between the pulses increases; (2) the plume reheating by the second pulse that gives rise to two- three-fold growth of the electron temperature with the delay varying from 0 to 200 ps.
Disruption avoidance by means of electron cyclotron waves
NASA Astrophysics Data System (ADS)
Esposito, B.; Granucci, G.; Maraschek, M.; Nowak, S.; Lazzaro, E.; Giannone, L.; Gude, A.; Igochine, V.; McDermott, R.; Poli, E.; Reich, M.; Sommer, F.; Stober, J.; Suttrop, W.; Treutterer, W.; Zohm, H.; ASDEX Upgrade, the; FTU Teams
2011-12-01
Disruptions are very challenging to ITER operation as they may cause damage to plasma facing components due to direct plasma heating, forces on structural components due to halo and eddy currents and the production of runaway electrons. Electron cyclotron (EC) waves have been demonstrated as a tool for disruption avoidance by a large set of recent experiments performed in ASDEX Upgrade and FTU using various disruption types, plasma operating scenarios and power deposition locations. The technique is based on the stabilization of magnetohydrodynamic (MHD) modes (mainly m/n = 2/1) through the localized injection of EC power on the resonant surface. This paper presents new results obtained in ASDEX Upgrade regarding stable operation above the Greenwald density achieved after avoidance of density limit disruptions by means of ECRH and suitable density feedback control (L-mode ohmic plasmas, Ip = 0.6 MA, Bt = 2.5 T) and NTM-driven disruptions at high-β limit delayed/avoided by means of both co-current drive (co-ECCD) and pure heating (ECRH) with power <=1.7 MW (H-mode NBI-heated plasmas, PNBI ~ 7.5 MW, Ip = 1 MA, Bt = 2.1 T, q95 ~ 3.6). The localized perpendicular injection of ECRH/ECCD onto a resonant surface leads to the delay and/or complete avoidance of disruptions. The experiments indicate the existence of a power threshold for mode stabilization to occur. An analysis of the MHD mode evolution using the generalized Rutherford equation coupled to the frequency and phase evolution equations shows that control of the modes is due to EC heating close to the resonant surface. The ECRH contribution (Δ'H term) is larger than the co-ECCD one in the initial and more important phase when the discharge is 'saved'. Future research and developments of the disruption avoidance technique are also discussed.
Phase and group delay of S-band megawatt Cassegrain diplexer and S-band megawatt transmit filter
NASA Technical Reports Server (NTRS)
Lay, R.
1977-01-01
The phase characteristics and group delay of the S-band Megawatt Cassegrain Diplexer (MCD) and S-band Megawatt Transmit Filter (MTF) are reported. These phase measurements on the MCD and MTF were done in response to the need to obtain the total DSS hardware ground delay required for very long baseline interferometry and ranging radio metric measurements.
Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel
2010-10-11
We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.
Spectral Evolution of Intensive Microwave Bursts at Centimeter-Millimeter Wavelengths
NASA Astrophysics Data System (ADS)
Melnikov, V. F.; Magun, A.
The dynamics of the frequency spectrum of intensive broad band microwave bursts with one spectral maximum and simple time profiles are investigated. The aim of the study is to correlate the temporal evolution of the microwave burst spectrum above and below the spectral peak frequency f_p, as well as to compare these features with theoretical expectations. The analysis was carried out by using the data from the patrol instruments of IAP, Bern University and NIRFI, Nizhnii Novgorod (10 fixed frequencies in the range 1-50 GHz). It has been found for the majority of these bursts that: a) during the rise phase of the burst flux there is an anticorrelation of the absolute values of the spectral indices above and below peak frequency whereas a good correlation during the decay phase was found; b) time delays between flux profiles at neighbouring frequencies change sign under the transition from low to high frequencies. As a rule the lower frequency emission is delayed at frequencies below f_p whereas at high frequencies (f>f_p) the higher frequency emission is delayed (see also Melnikov and Magun, 1998). Qualitatively these results fit well the calculated spectral evolution of the gyrosynchrotron if one takes into account the flattening of the electron energy spectrum in a flare loop (Melnikov and Magun, 1996) due to Coulomb collisions (Vilmer et al., 1982), and uses values for the background plasma density derived from hard X-ray data (Aschwanden et al., 1997). For some of the bursts, however, quantitative discrepancies with the predictions of the homogeneous model have been found. For these bursts the absolute value of the spectral index at low frequencies is remarkably smaller, and the time delay remarkably higher than expected. We have investigated several possibilities to obtain an agremeent between theory and observations. Special attention is paid to model calculations taking into account the dynamics of energetic electrons in flare loops with an inhomogeneous magnetic field and plasma density. In this context the capabilities of the models for the diagnostics of the physical conditions in flare loops using observations with high spatial
The delayed-detonation model of Type Ia supernovae. 2: The detonation phase
NASA Technical Reports Server (NTRS)
Arnett, David; Livne, Eli
1994-01-01
The investigation, by use of two-dimensional numerical hydrodynamics simulations, of the 'delayed detonation' mechanism of Khokhlov for the explosion of Type Ia supernovae is continued. Previously we found that the deflagration is insufficient to unbind the star. Expansion shuts off the flame; much of this small production of iron group nuclei occurs at lower densities, which reduces the electron-capture problem. Because the degenerate star has an adiabatic exponent only slightly above 4/3, the energy released by deflagration drives a pulsation of large amplitude. During the first expansion phase, adiabatic cooling shuts off the burning, and a Rayleigh-Taylor instability then gives mixing of high-entropy ashes with low-entropy fuel. During the first contraction phase, compressional heating reignites the material. The burning was allowed to develop into a detonation in these nonspherical models. The detonation grows toward spherical symmetry at late times. At these densities (rho approx. 10(exp 7) to 10(exp 8) g cm(exp -3)), either Ni-56 or nuclei of the Si-Ca group are the dominant products of the burning. The bulk yields are sensitive to the density of the star when the transition to detonation occurs. The relevance of the abundances, velocities, mixing, and total energy release to the theory and interpretation of Type Ia supernovae is discussed.
Watanabe, K; Deboer, T; Meijer, J H
2001-12-01
The suprachiasmatic nuclei of the hypothalamus contain the major circadian pacemaker in mammals, driving circadian rhythms in behavioral and physiological functions. This circadian pacemaker's responsiveness to light allows synchronization to the light-dark cycle. Phase shifting by light often involves several transient cycles in which the behavioral activity rhythm gradually shifts to its steady-state position. In this article, the authors investigate in Syrian hamsters whether a phase-advancing light pulse results in immediate shifts of the PRC at the next circadian cycle. In a first series of experiments, the authors aimed a light pulse at CT 19 to induce a phase advance. It appeared that the steady-state phase advances were highly correlated with activity onset in the first and second transient cycle. This enabled them to make a reliable estimate of the steady-state phase shift induced by a phase-advancing light pulse on the basis of activity onset in the first transient cycle. In the next series of experiments, they presented a light pulse at CT 19, which was followed by a second light pulse aimed at the delay zone of the PRC on the next circadian cycle. The immediate and steady-state phase delays induced by the second light pulse were compared with data from a third experiment in which animals received a phase-delaying light pulse only. The authors observed that the waveform of the phase-delay part of the PRC (CT 12-16) obtained in Experiment 2 was virtually identical to the phase-delay part of the PRC for a single light pulse (obtained in Experiment 3). This finding allowed for a quantitative assessment of the data. The analysis indicates that the delay part of the PRC-between CT 12 and CT 16-is rapidly reset following a light pulse at CT 19. These findings complement earlier findings in the hamster showing that after a light pulse at CT 19, the phase-advancing part of the PRC is immediately shifted. Together, the data indicate that the basis for phase advancing involves rapid resetting of both advance and delay components of the PRC.
Prevalence and correlates of delayed sleep phase in high school students.
Saxvig, Ingvild W; Pallesen, Ståle; Wilhelmsen-Langeland, Ane; Molde, Helge; Bjorvatn, Bjørn
2012-02-01
To investigate prevalence and correlates of delayed sleep phase, characterized by problems falling asleep in the evening and rising at adequate times in the morning, in a large sample of Norwegian high school students. A randomized sample of 1285 high school students (aged 16-19 years) participated in an internet based study answering questions about sleep habits, height, weight, smoking, alcohol use, school grades, and anxiety and depression symptoms. Delayed sleep phase was operationalized as difficulties falling asleep before 2 a.m. at least three nights per week together with much or very much difficulty waking up in the morning. The results show a prevalence of delayed sleep phase of 8.4%. In all, 68% of these students (5.7% of the total sample) also reported problems advancing their sleep period as well as one daytime consequence (oversleeping at least two days a week or experiencing much/very much sleepiness at school). Delayed sleep phase was associated with lower average school grades, smoking, alcohol usage, and elevated anxiety and depression scores. Delayed sleep phase appears to be common amongst Norwegian adolescents and is associated with negative outcomes such as lower average school grades, smoking, alcohol usage, and elevated anxiety and depression scores. Copyright © 2011 Elsevier B.V. All rights reserved.
Optical resonators for true-time-delay beam steering
NASA Astrophysics Data System (ADS)
Gesell, Leslie H.; Evanko, Stephen M.
1996-06-01
Conventional true time delay beamforming and steering devices rely on switching between various lengths of delay line. Therefore only discrete delays are possible. Proposed is a new photonics concept for true time delay beamforming which provides a finely controlled continuum of delays with switching speeds on the order of 10's of nanoseconds or faster. The architecture uses an array of waveguide cavities with different resonate frequencies to channelize the signal. Each spectral component of the signal is phase shifted by an amount proportional to the frequency of that component and the desired time delay. These phase shifted spectral components are then summed to obtain the delayed signal. This paper provides an overview of the results of a Phase I SBIR contract where this concept has been refined and analyzed. The parameters for an operational system are determined and indication of the feasibility of this approach is given. Among the issues addressed are the requirements of the resonators and the methods necessary to implement fiber optic Bragg gratings as these resonators.
Operating Room Delays: Meaningful Use in Electronic Health Record.
Van Winkle, Rachelle A; Champagne, Mary T; Gilman-Mays, Meri; Aucoin, Julia
2016-06-01
Perioperative areas are the most costly to operate and account for more than 40% of expenses. The high costs prompted one organization to analyze surgical delays through a retrospective review of their new electronic health record. Electronic health records have made it easier to access and aggregate clinical data; 2123 operating room cases were analyzed. Implementing a new electronic health record system is complex; inaccurate data and poor implementation can introduce new problems. Validating the electronic health record development processes determines the ease of use and the user interface, specifically related to user compliance with the intent of the electronic health record development. The revalidation process after implementation determines if the intent of the design was fulfilled and data can be meaningfully used. In this organization, the data fields completed through automation provided quantifiable, meaningful data. However, data fields completed by staff that required subjective decision making resulted in incomplete data nearly 24% of the time. The ease of use was further complicated by 490 permutations (combinations of delay types and reasons) that were built into the electronic health record. Operating room delay themes emerged notwithstanding the significant complexity of the electronic health record build; however, improved accuracy could improve meaningful data collection and a more accurate root cause analysis of operating room delays. Accurate and meaningful use of data affords a more reliable approach in quality, safety, and cost-effective initiatives.
Lithium hydroxide, LiOH, at elevated densities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, Andreas; Ashcroft, N. W.; Hoffmann, Roald
2014-07-14
We discuss the high-pressure phases of crystalline lithium hydroxide, LiOH. Using first-principles calculations, and assisted by evolutionary structure searches, we reproduce the experimentally known phase transition under pressure, but we suggest that the high-pressure phase LiOH-III be assigned to a new hydrogen-bonded tetragonal structure type that is unique amongst alkali hydroxides. LiOH is at the intersection of both ionic and hydrogen bonding, and we examine the various ensuing structural features and their energetic driving mechanisms. At P = 17 GPa, we predict another phase transition to a new phase, Pbcm-LiOH-IV, which we find to be stable over a wide pressuremore » range. Eventually, at extremely high pressures of 1100 GPa, the ground state of LiOH is predicted to become a polymeric structure with an unusual graphitic oxygen-hydrogen net. However, because of its ionic character, the anticipated metallization of LiOH is much delayed; in fact, its electronic band gap increases monotonically into the TPa pressure range.« less
Gannon, Robert L; Millan, Mark J
2011-01-01
Glutamate released from retinal ganglion cells conveys information about the daily light:dark cycle to master circadian pacemaker neurons within the suprachiasmatic nucleus that then synchronize internal circadian rhythms with the external day-length. Glutamate activation of ionotropic glutamate receptors in the suprachiasmatic nucleus is well established, but the function of the metabotropic glutamate receptors that are also located in this nucleus is not known. Therefore, in this study we evaluated agonists and antagonists acting at orthosteric or allosteric sites for mGluR5 and mGluR2/3 metabotropic glutamate receptors for their ability to modulate light-induced phase advances and delays of hamster circadian activity rhythms. mGluR5 allosteric antagonists fenobam, MPEP and MTEP, each 10 mg/kg, potentiated light-induced phase advances of hamster circadian activity rhythms, while the mGluR5 agonists CHPG, (S)-3,5-DHPG or positive allosteric modulator CDPPB had no effect. Neither mGluR5 agonists nor antagonists had any effect on light-induced phase delays of activity rhythms. The competitive mGluR2/3 antagonist LY341495, 10 mg/kg, also potentiated light-induced phase advances, but inhibited light-induced phase delays. The mGluR2/3 agonists LY354740 and LY404039 were without effect on phase advances while a third agonist LY379268, 10 mg/kg, inhibited both light-induced advances and delays. Finally, mGluR2/3 agonists LY379268 and LY404039 also inhibited light-induced phase delays of activity rhythms. These results suggest that during light-induced phase advances, mGluR2/3 and mGluR5 receptors act to negatively modulate the effects of light on the circadian pacemaker or its output(s). mGluR5 receptors do not appear to be involved during light-induced phase delays. In contrast, the role for mGluR2/3 receptors during phase delays is more complicated as both agonists and antagonists inhibit light-induced phase delays. Dysfunctions in human circadian rhythms have been implicated in some forms of depression, and metabotropic glutamate receptor ligands, which are also being evaluated for antidepressant activity, are shown here to be capable of modifying light-induced phase shifts of circadian activity rhythms. Copyright © 2010 Elsevier Ltd. All rights reserved.
Semi-classical approach to compute RABBITT traces in multi-dimensional complex field distributions.
Lucchini, M; Ludwig, A; Kasmi, L; Gallmann, L; Keller, U
2015-04-06
We present a semi-classical model to calculate RABBITT (Reconstruction of Attosecond Beating By Interference of Two-photon Transitions) traces in the presence of a reference infrared field with a complex two-dimensional (2D) spatial distribution. The evolution of the electron spectra as a function of the pump-probe delay is evaluated starting from the solution of the classical equation of motion and incorporating the quantum phase acquired by the electron during the interaction with the infrared field. The total response to an attosecond pulse train is then evaluated by a coherent sum of the contributions generated by each individual attosecond pulse in the train. The flexibility of this model makes it possible to calculate spectrograms from non-trivial 2D field distributions. After confirming the validity of the model in a simple 1D case, we extend the discussion to describe the probe-induced phase in photo-emission experiments on an ideal metallic surface.
VLF wave growth and discrete emission triggering in the magnetosphere - A feedback model
NASA Technical Reports Server (NTRS)
Helliwell, R. A.; Inan, U. S.
1982-01-01
A simple nonlinear feedback model is presented to explain VLF wave growth and emission triggering observed in VLF transmission experiments. The model is formulated in terms of the interaction of electrons with a slowly varying wave in an inhomogeneous medium as in an unstable feedback amplifier with a delay line; constant frequency oscillations are generated on the magnetic equator, while risers and fallers are generated on the downstream and upstream sides of the equator, respectively. Quantitative expressions are obtained for the stimulated radiation produced by energy exchanged between energetic electrons and waves by Doppler-shifted cyclotron resonance, and feedback between the stimulated radiation and the phase bunched currents is incorporated in terms of a two-port discrete time model. The resulting model is capable of explaining the observed temporal growth and saturation effects, phase advance, retardation or frequency shift during growth in the context of a single parameter depending on the energetic particle distribution function, as well as pretermination triggering.
A review of ionospheric effects on Earth-space propagation
NASA Technical Reports Server (NTRS)
Klobuchar, J. A.
1984-01-01
A short description is given of each ionospheric total electron content (TEC) effect upon radio waves, along with a representative value of the magnitude of each of these effects under normal ionospheric conditions. A discussion is given of the important characteristics of average ionospheric TEC behavior and the temporal and spatial variability of TEC. Radio waves undergo several effects when they pass through the Earth's ionosphere. One of the most important of these effects is a retardation, or group delay, on the modulation or information carried on the radio wave that is due to its encounter with the free, thermal electrons in the Earth's ionosphere. Other effects the ionosphere has on radio waves include: radio frequency (RF) carrier phase advance; Doppler shift of the RF carrier of the radio wave; Faraday rotation of the plane of polarization of linearly polarized waves; angular refraction or bending of the radio wave path as it travels through the ionosphere; and amplitude and phase scintillations.
Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System.
Xie, Ruihong; Zhang, Tao; Li, Jiaquan; Dai, Ming
2017-05-09
This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight) motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration) control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square) error is 1.253 mrad when tracking 10° 0.2 Hz signal.
Timely response to secure messages from primary care patients.
Rohrer, James E; North, Frederick; Angstman, Kurt B; Oberhelman, Sara S; Meunier, Matthew R
2013-01-01
To assess delays in response to patient secure e-mail messages in primary care. Secure electronic messages are initiated by primary care patients. Timely response is necessary for patient safety and quality. A database of secure messages. A random sample of 353 secure electronic messages initiated by primary care patients treated in 4 clinics. Message not opened after 12 hours or messages not responded to after 36 hours. A total of 8.5% of electronic messages were not opened within 12 hours, and 17.6% did not receive a response in 36 hours. Clinic location, being a clinic employee, and patient sex were not related to delays. Patients older than 50 years were more likely to receive a delayed response (25.7% delayed, P = .013). The risk of both kinds of delays was higher on weekends (P < .001 for both). The e-mail message system resulted in high rates of delayed response. Delays were concentrated on weekends (Friday-Sunday). Reducing delayed responses may require automatic rerouting of messages to message centers staffed 24-7 or other mechanisms to manage this after-hours work flow.
NASA Astrophysics Data System (ADS)
Doin, Marie-Pierre; Lasserre, Cécile; Peltzer, Gilles; Cavalié, Olivier; Doubre, Cécile
2010-05-01
The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.
NASA Astrophysics Data System (ADS)
Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C.
2009-09-01
The main limiting factor on the accuracy of Interferometric SAR measurements (InSAR) comes from phase propagation delays through the troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal, and a turbulent component. We use Global Atmospheric Models (GAM) to estimate the stratified phase delay and delay-elevation ratio at epochs of SAR acquisitions, and compare them to observed phase delay derived from SAR interferograms. Three test areas are selected with different geographic and climatic environments and with large SAR archive available. The Lake Mead, Nevada, USA is covered by 79 ERS1/2 and ENVISAT acquisitions, the Haiyuan Fault area, Gansu, China, by 24 ERS1/2 acquisitions, and the Afar region, Republic of Djibouti, by 91 Radarsat acquisitions. The hydrostatic and wet stratified delays are computed from GAM as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. The hydrostatic delay, which depends on ratio P/ T, varies significantly at low elevation and cannot be neglected. The wet component of the delay depends mostly on the near surface specific humidity. GAM predicted delay-elevation ratios are in good agreement with the ratios derived from InSAR data away from deforming zones. Both estimations of the delay-elevation ratio can thus be used to perform a first order correction of the observed interferometric phase to retrieve a ground motion signal of low amplitude. We also demonstrate that aliasing of daily and seasonal variations in the stratified delay due to uneven sampling of SAR data significantly bias InSAR data stacks or time series produced after temporal smoothing. In all three test cases, the InSAR data stacks or smoothed time series present a residual stratified delay of the order of the expected deformation signal. In all cases, correcting interferograms from the stratified delay removes all these biases. We quantify the standard error associated with the correction of the stratified atmospheric delay. It varies from one site to another depending on the prevailing atmospheric conditions, but remains bounded by the standard deviation of the daily fluctuations of the stratified delay around the seasonal average. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependence to the elevation derived from GAM.
Ionospheric Slant Total Electron Content Analysis Using Global Positioning System Based Estimation
NASA Technical Reports Server (NTRS)
Komjathy, Attila (Inventor); Mannucci, Anthony J. (Inventor); Sparks, Lawrence C. (Inventor)
2017-01-01
A method, system, apparatus, and computer program product provide the ability to analyze ionospheric slant total electron content (TEC) using global navigation satellite systems (GNSS)-based estimation. Slant TEC is estimated for a given set of raypath geometries by fitting historical GNSS data to a specified delay model. The accuracy of the specified delay model is estimated by computing delay estimate residuals and plotting a behavior of the delay estimate residuals. An ionospheric threat model is computed based on the specified delay model. Ionospheric grid delays (IGDs) and grid ionospheric vertical errors (GIVEs) are computed based on the ionospheric threat model.
Flexible pulse delay control up to picosecond for high-intensity twin electron bunches
Zhang, Zhen; Ding, Yuantao; Emma, Paul; ...
2015-09-10
Two closely spaced electron bunches have attracted strong interest due to their applications in two color X-ray free-electron lasers as well as witness bunch acceleration in plasmas and dielectric structures. In this paper, we propose a new scheme of delay system to vary the time delay up to several picoseconds while not affecting the bunch compression. Numerical simulations based on the Linac Coherent Light Source are performed to demonstrate the feasibility of this method.
Athanasopoulos, Georgios I; Carey, Stephen J; Hatfield, John V
2011-07-01
This paper describes the design of a programmable transmit beamformer application-specific integrated circuit (ASIC) with 8 channels for ultrasound imaging systems. The system uses a 20-MHz reference clock. A digital delay-locked loop (DLL) was designed with 50 variable delay elements, each of which provides a clock with different phase from a single reference. Two phase detectors compare the phase difference of the reference clock with the feedback clock, adjusting the delay of the delay elements to bring the feedback clock signal in phase with the reference clock signal. Two independent control voltages for the delay elements ensure that the mark space ratio of the pulses remain at 50%. By combining a 10- bit asynchronous counter with the delays from the DLL, each channel can be programmed to give a maximum time delay of 51 μs with 1 ns resolution. It can also give bursts of up to 64 pulses. Finally, for a single pulse, it can adjust the pulse width between 9 ns and 100 ns by controlling the current flowing through a capacitor in a one-shot circuit, for use with 40-MHz and 5-MHz transducers, respectively.
Ben, Shuai; Wang, Tian; Xu, Tongtong; Guo, Jing; Liu, Xueshen
2016-04-04
The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.
Attari, Seyedeh Maryam; Ozgoli, Giti; Solhi, Mahnaz; Alavi Majd, Hamid
2016-01-01
One of the major causes of morbidity and mortality in breast cancer patients is delay in seeking help. Leventhal's self-regulation model provides an appropriate framework to assess delay in seeking help. The aim of this study was to investigate the relationship between "illness perception" and "help seeking delay" in breast cancer patients based on Leventhal's self-regulation model. In this correlational descriptive study with convenience sampling conducted in 2013, participants were 120 women with breast cancer who were diagnosed in the last year and referred to chemotherapy and radiotherapy centers in Rasht, Iran. Data collection scales included demographic data, Revised Illness Perception Questionnaire (IPQ-R)and a researcher made questionnaire to measure the delay in seeking help. Pre-hospital delay (help seeking delay) was evaluated in 3 phases (assessment, disease, behavior). The data were analyzed using SPSS-19. The mean (SD) age calculated for the patients was 47.3±10.2. Some 43% of the patients had a high school or higher education level and 82% were married. The "pre-hospital delay" was reported ≥3 months. Logistic regression analysis showed that none of the illness perception components were correlated with appraisal and behavioral delay phases. In the illness delay phase, "time line" (p-value =0.04) and "risk factors"(p-value=0.03) had significant effects on reducing and "psychological attributions" had significant effects on increasing the delay (p-value =0.01). "Illness coherence" was correlated with decreased pre-hospital patient delay (p-value<0.01). Women's perceptions of breast cancer influences delay in seeking help. In addition to verifying the validity of Leventhal's self-regulation model in explaining delay in seeking help, the results signify the importance of the "illness delay phase" (decision to seek help) and educational interventions-counseling for women in the community.
Optoelectronic frequency discriminated phase tuning technology and its applications
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru; Chang, Yung-Cheng
2000-07-01
By using a phase-tunable optoelectronic phase-locked loop, we are able to continuously change the phase as well as the delay-time of optically distributed microwave clock signals or optical pulse train. The advantages of the proposed technique include such as wide-band operation up to 20GHz, wide-range tuning up to 640 degrees, high tuning resolution of <6x10-2 degree/mV, ultra-low short-term phase fluctuation and drive of 4.7x10-2 degree and 3.4x10- 3 degree/min, good linearity with acceptable deviations, and frequency-independent transferred function with slope of nearly 90 degrees/volt, etc. The novel optoelectronic phase shifter is performed by using a DC-voltage controlled, optoelectronic-mixer-based, frequency-down-converted digital phase-locked-loop. The maximum delay-time is continuously tunable up to 3.9 ns for optical pulses repeated at 500 MHz from a gain-switched laser diode. This corresponds to a delay responsivity of about 0.54 ps/mV. The using of the OEPS as being an optoelectronic delay-time controller for optical pulses is demonstrated with temporal resolution of <0.2 ps. Electro-optic sampling of high-frequency microwave signals by using the in-situ delay-time-tunable pulsed laser as a novel optical probe is primarily reported.
Typical teleoperator time delay profiles, phase 2. [remotely controlled manipulator arms
NASA Technical Reports Server (NTRS)
Wetherington, R. D.; Walsh, J. R.
1974-01-01
The results of the second phase of a study on time delays in communications systems applicable to the teleoperator program are presented. Estimates of the maximum time delays that will be encountered and presents time delay profiles are given for (1) ground control to teleoperator in low earth orbit, (2) ground control to teleoperator in geosynchronous orbit, and (3) low earth orbit control to teleoperator in low earth orbit.
On readout of vibrational qubits using quantum beats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shyshlov, Dmytro; Babikov, Dmitri, E-mail: Dmitri.Babikov@mu.edu; Berrios, Eduardo
2014-12-14
Readout of the final states of qubits is a crucial step towards implementing quantum computation in experiment. Although not scalable to large numbers of qubits per molecule, computational studies show that molecular vibrations could provide a significant (factor 2–5 in the literature) increase in the number of qubits compared to two-level systems. In this theoretical work, we explore the process of readout from vibrational qubits in thiophosgene molecule, SCCl{sub 2}, using quantum beat oscillations. The quantum beats are measured by first exciting the superposition of the qubit-encoding vibrational states to the electronically excited readout state with variable time-delay pulses. Themore » resulting oscillation of population of the readout state is then detected as a function of time delay. In principle, fitting the quantum beat signal by an analytical expression should allow extracting the values of probability amplitudes and the relative phases of the vibrational qubit states. However, we found that if this procedure is implemented using the standard analytic expression for quantum beats, a non-negligible phase error is obtained. We discuss the origin and properties of this phase error, and propose a new analytical expression to correct the phase error. The corrected expression fits the quantum beat signal very accurately, which may permit reading out the final state of vibrational qubits in experiments by combining the analytic fitting expression with numerical modelling of the readout process. The new expression is also useful as a simple model for fitting any quantum beat experiments where more accurate phase information is desired.« less
BRIEF COMMUNICATIONS: Dynamics of lasing of two TEA CO2 lasers coupled by a nonlinear SF6 cell
NASA Astrophysics Data System (ADS)
Baranov, V. Yu; Dyad'kin, A. P.; Shpilyun, O. V.
1991-10-01
A study was made of the kinetics of stimulated emission from two TEA CO2 lasers in a system with frequency locking by phase conjugation as a result of a four-wave interaction of light [V. Yu. Baranov, A. P. Dyad'kin, V. V. Likhanskiĭ et al., Sov. J. Quantum Electron. 18, 1462 (1988)]. A simple method for ensuring two-pulse lasing with a variable time delay between the pulses in one gas-discharge chamber was proposed.
On-chip programmable ultra-wideband microwave photonic phase shifter and true time delay unit.
Burla, Maurizio; Cortés, Luis Romero; Li, Ming; Wang, Xu; Chrostowski, Lukas; Azaña, José
2014-11-01
We proposed and experimentally demonstrated an ultra-broadband on-chip microwave photonic processor that can operate both as RF phase shifter (PS) and true-time-delay (TTD) line, with continuous tuning. The processor is based on a silicon dual-phase-shifted waveguide Bragg grating (DPS-WBG) realized with a CMOS compatible process. We experimentally demonstrated the generation of delay up to 19.4 ps over 10 GHz instantaneous bandwidth and a phase shift of approximately 160° over the bandwidth 22-29 GHz. The available RF measurement setup ultimately limits the phase shifting demonstration as the device is capable of providing up to 300° phase shift for RF frequencies over a record bandwidth approaching 1 THz.
Evaluating the Coda Phase Delay Method for Determining Temperature Ratios in Windy Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albert, Sarah; Bowman, Daniel; Rodgers, Arthur
2017-07-01
We evaluate the acoustic coda phase delay method for estimating changes in atmospheric phenomena in realistic environments. Previous studies verifying the method took place in an environment with negligible wind. The equation for effective sound speed, which the method is based upon, shows that the influence of wind is equal to the square of temperature. Under normal conditions, wind is significant and therefore cannot be ignored. Results from this study con rm the previous statement. The acoustic coda phase delay method breaks down in non-ideal environments, namely those where wind speed and direction varies across small distances. We suggest thatmore » future studies make use of gradiometry to better understand the effect of wind on the acoustic coda and subsequent phase delays.« less
Zhu, Bangyan; Li, Jiancheng; Chu, Zhengwei; Tang, Wei; Wang, Bin; Li, Dawei
2016-01-01
Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS) pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS. PMID:27420066
Zhu, Bangyan; Li, Jiancheng; Chu, Zhengwei; Tang, Wei; Wang, Bin; Li, Dawei
2016-07-12
Spatial and temporal variations in the vertical stratification of the troposphere introduce significant propagation delays in interferometric synthetic aperture radar (InSAR) observations. Observations of small amplitude surface deformations and regional subsidence rates are plagued by tropospheric delays, and strongly correlated with topographic height variations. Phase-based tropospheric correction techniques assuming a linear relationship between interferometric phase and topography have been exploited and developed, with mixed success. Producing robust estimates of tropospheric phase delay however plays a critical role in increasing the accuracy of InSAR measurements. Meanwhile, few phase-based correction methods account for the spatially variable tropospheric delay over lager study regions. Here, we present a robust and multi-weighted approach to estimate the correlation between phase and topography that is relatively insensitive to confounding processes such as regional subsidence over larger regions as well as under varying tropospheric conditions. An expanded form of robust least squares is introduced to estimate the spatially variable correlation between phase and topography by splitting the interferograms into multiple blocks. Within each block, correlation is robustly estimated from the band-filtered phase and topography. Phase-elevation ratios are multiply- weighted and extrapolated to each persistent scatter (PS) pixel. We applied the proposed method to Envisat ASAR images over the Southern California area, USA, and found that our method mitigated the atmospheric noise better than the conventional phase-based method. The corrected ground surface deformation agreed better with those measured from GPS.
Influence of cue word perceptual information on metamemory accuracy in judgement of learning.
Hu, Xiao; Liu, Zhaomin; Li, Tongtong; Luo, Liang
2016-01-01
Previous studies have suggested that perceptual information regarding to-be-remembered words in the study phase affects the accuracy of judgement of learning (JOL). However, few have investigated whether the perceptual information in the JOL phase influences JOL accuracy. This study examined the influence of cue word perceptual information in the JOL phase on immediate and delayed JOL accuracy through changes in cue word font size. In Experiment 1, large-cue word pairs had significantly higher mean JOL magnitude than small-cue word pairs in immediate JOLs and higher relative accuracy than small-cue pairs in delayed JOLs, but font size had no influence on recall performance. Experiment 2 increased the JOL time, and mean JOL magnitude did not reliably differ for large-cue compared with small-cue pairs in immediate JOLs. However, the influence on relative accuracy still existed in delayed JOLs. Experiment 3 increased the familiarity of small-cue words in the delayed JOL phase by adding a lexical decision task. The results indicated that cue word font size no longer affected relative accuracy in delayed JOLs. The three experiments in our study indicated that the perceptual information regarding cue words in the JOL phase affects immediate and delayed JOLs in different ways.
Solar flare induced ionospheric D-region enhancements from VLF phase and amplitude observations
NASA Astrophysics Data System (ADS)
McRae, Wayne M.; Thomson, Neil R.
2004-01-01
Ionospheric perturbations due to solar flares, measured at VLF in both phase and amplitude on long subionospheric paths, are used to determine the accompanying D-region electron density enhancements as a function of the flare X-ray fluxes measured by the GOES satellites. The electron densities are characterised by the two traditional parameters, H' and β (being measures of the ionospheric height and the rate of increase of electron density with height, respectively), found by computational modelling of the observed phases and amplitudes using the NOSC Earth-ionosphere waveguide programs (LWPC and ModeFinder) over a wide range of VLF frequencies, 10.2-24.8kHz, along a number of transequatorial paths across the Pacific Ocean to Dunedin, New Zealand. The transmitters monitored include Omega Japan, Omega Hawaii, NPM in Hawaii, and NLK near Seattle, USA, for which the paths range in length from 8.1 to 12.3Mm. The observations include flares up to a magnitude of about X5(5×10-4Wm-2 at 0.1-0.8nm). These gave VLF phase delay reductions of up to about 52μs and amplitude enhancements up to nearly 10dB for the 12.3Mm NLK to Dunedin path on 24.8kHz which corresponded, under low to medium solar cycle conditions (1994-1998), to a reduction in H' from about 71km down to about 58km and an increase in β from about 0.39km-1 up to a definite `saturation' level of about 0.52km-1. These experimentally determined values of H' and β were then used in LWPC to predict flare-induced VLF phase and amplitude perturbations over a wider range of frequencies than were actually available for observation.
A Theoretical Investigation of Optical Emission in Solar Flares
NASA Astrophysics Data System (ADS)
Abbett, William Paul
A dynamic theoretical model of a flare loop from its footpoints in the photosphere to its apex in the corona is presented, and the effects of non-thermal heating of the lower atmosphere by accelerated electrons and soft X-ray irradiation from the flare heated transition region and corona are investigated. Important transitions of hydrogen, helium, and singly ionized calcium and magnesium are treated in non-LTE. Three main conclusions are drawn from the models. First, even the strongest of impulsive events can be described as having two phases: a gentle phase characterized by a state of near equilibrium, and an explosive phase characterized by large material flows, and strong hydrodynamic waves and shocks. During the gentle phase, one or possibly two temperature 'plateaus' form in the upper chromosphere. The line emission generated in these regions produces profiles that are generally symmetric and undistorted, in contrast to emission produced during the explosive phase, where large velocity gradients that occur in the upper atmosphere produce line profiles that are highly asymmetric and show large emission peaks and troughs. Second, a significant continuum (or 'white light') brightening results from increased hydrogen recombination radiation in the upper chromosphere at the point where the accelerated electrons deposit the bulk of their energy. Third, there exists a measurable time lag between the brightening of the near wings of Hα and the brightening of the Paschen continuum. This delay is controlled by the amount of time it takes for electron densities in the upper chromosphere to become high enough, and the densities of hydrogen atoms in high energy bound states to become low enough, to allow the number of recombinations to dominate the number of photoionizations in the region.
Binder, Pauline; Johnsdotter, Sara; Essén, Birgitta
2012-12-01
Women from high-mortality settings in sub-Saharan Africa can remain at risk for adverse maternal outcomes even after migrating to low-mortality settings. To conceptualise underlying socio-cultural factors, we assume a 'maternal migration effect' as pre-migration influences on pregnant women's post-migration care-seeking and consistent utilisation of available care. We apply the 'three delays' framework, developed for low-income African contexts, to a high-income western scenario, and aim to identify delay-causing influences on the pathway to optimal facility treatment. We also compare factors influencing the expectations of women and maternal health providers during care encounters. In 2005-2006, we interviewed 54 immigrant African women and 62 maternal providers in greater London, United Kingdom. Participants were recruited by snowball and purposive sampling. We used a hermeneutic, naturalistic study design to create a qualitative proxy for medical anthropology. Data were triangulated to the framework and to the national health system maternity care guidelines. This maintained the original three phases of (1) care-seeking, (2) facility accessibility, and (3) receipt of optimal care, but modified the framework for a migration context. Delays to reciprocal care encounters in Phase 3 result from Phase 1 factors of 'broken trust, which can be mutually held between women and providers. An additional factor is women's 'negative responses to future care', which include rationalisations made during non-emergency situations about future late-booking, low-adherence or refusal of treatment. The greatest potential for delay was found during the care encounter, suggesting that perceived Phase 1 factors have stronger influence on Phase 3 than in the original framework. Phase 2 'language discordance' can lead to a 'reliance on interpreter service', which can cause delays in Phase 3, when 'reciprocal incongruent language ability' is worsened by suboptimal interpreter systems. 'Non-reciprocating care conceptualisations', 'limited system-level care guidelines', and 'low staff levels' can additionally delay timely care in Phase 3. Copyright © 2012 Elsevier Ltd. All rights reserved.
Widely tunable opto-electronic oscillator based on a dual frequency laser
NASA Astrophysics Data System (ADS)
Maxin, J.; Saleh, K.; Pillet, G.; Morvan, L.; Llopis, O.; Dolfi, D.
2013-03-01
We present the stabilization of the beatnote of an Er,Yb:glass Dual Frequency Laser at 1.53 μm with optical fiber delay lines. Instead of standard optoelectronics oscillators, this architecture does not need RF filter and offers a wide tunability from 2.5 to 5.5 GHz. Thank to a fine analysis of the laser RIN to phase noise conversion in the photodiodes, the expected RF-amplifiers noise limit is reached with a phase noise power spectral density of -25 dBc/Hz at 10 Hz (respectively -110 dBc/Hz at 10 kHz) from the carrier over the whole tuning range. Implementation of a double fiber coil architecture improves the oscillator spectral purity: the phase noise reaches a level of -35 dBc/Hz at 10 Hz (respectively -112 dBc/Hz respectively 10 kHz) from the carrier.
Chaotic simulated annealing by a neural network with a variable delay: design and application.
Chen, Shyan-Shiou
2011-10-01
In this paper, we have three goals: the first is to delineate the advantages of a variably delayed system, the second is to find a more intuitive Lyapunov function for a delayed neural network, and the third is to design a delayed neural network for a quadratic cost function. For delayed neural networks, most researchers construct a Lyapunov function based on the linear matrix inequality (LMI) approach. However, that approach is not intuitive. We provide a alternative candidate Lyapunov function for a delayed neural network. On the other hand, if we are first given a quadratic cost function, we can construct a delayed neural network by suitably dividing the second-order term into two parts: a self-feedback connection weight and a delayed connection weight. To demonstrate the advantage of a variably delayed neural network, we propose a transiently chaotic neural network with variable delay and show numerically that the model should possess a better searching ability than Chen-Aihara's model, Wang's model, and Zhao's model. We discuss both the chaotic and the convergent phases. During the chaotic phase, we simply present bifurcation diagrams for a single neuron with a constant delay and with a variable delay. We show that the variably delayed model possesses the stochastic property and chaotic wandering. During the convergent phase, we not only provide a novel Lyapunov function for neural networks with a delay (the Lyapunov function is independent of the LMI approach) but also establish a correlation between the Lyapunov function for a delayed neural network and an objective function for the traveling salesman problem. © 2011 IEEE
Estimating tropospheric phase delay in SAR interferograms using Global Atmospheric Models
NASA Astrophysics Data System (ADS)
Doin, M.; Lasserre, C.; Peltzer, G.; Cavalie, O.; Doubre, C.
2008-12-01
The main limiting factor on the accuracy of Interferometric SAR (InSAR) measurements comes from phase propagation delays through the Earth's troposphere. The delay can be divided into a stratified component, which correlates with the topography and often dominates the tropospheric signal in InSAR data, and a turbulent component. The stratified delay can be expressed as a function of atmospheric pressure P, temperature T, and water vapor partial pressure e vertical profiles. We compare the stratified delay computed using results from global atmospheric models with the topography-dependent signal observed in interferograms covering three test areas in different geographic and climatic environments: Lake Mead, Nevada, USA, the Haiyuan fault area, Gansu, China, and Afar, Republic of Djibouti. For each site we compute a multi-year series of interferograms. The phase-elevation ratio is estimated for each interferogram and the series is inverted to form a timeline of delay-elevation ratios characterizing each epoch of data acquisition. InSAR derived ratios are in good agreement with the ratios computed from global atmospheric models. This agreement shows that both estimations of the delay-elevation ratio can be used to perform a first order correction of the InSAR phase. Seasonal variations of the atmosphere significantly affect the phase delay throughout the year, aliasing the results of time series inversions using temporal smoothing or data stacking when the acquisitions are not evenly distributed in time. This is particularly critical when the spatial shape of the signal of interest correlates with topography. In the Lake Mead area, the irregular temporal sampling of our SAR data results in an interannual bias of amplitude ~2~cm on range change estimates. In the Haiyuan Fault area, the coarse and uneven data sampling results in a bias of up to ~0.5~cm/yr on the line of sight velocity across the fault. In the Afar area, the seasonal signal exceeds the deformation signal in the phase time series. In all cases, correcting interferograms from the stratified delay helps removing these biases. Finally we suggest that the phase delay correction can potentially be improved by introducing a non-linear dependance to the elevation, as consistent non-linear relationships are observed in many interferograms as well as in global atmospheric models.
Elliott, Rohan A; Lee, Cik Yin; Hussainy, Safeera Y
2016-06-01
Objectives The aims of the study were to investigate discrepancies between general practitioners' paper medication orders and pharmacy-prepared electronic medication administration charts, back-up paper charts and dose-administration aids, as well as delays between prescribing, charting and administration, at a 90-bed residential aged care facility that used a hybrid paper-electronic medication management system. Methods A cross-sectional audit of medication orders, medication charts and dose-administration aids was performed to identify discrepancies. In addition, a retrospective audit was performed of delays between prescribing and availability of an updated electronic medication administration chart. Medication administration records were reviewed retrospectively to determine whether discrepancies and delays led to medication administration errors. Results Medication records for 88 residents (mean age 86 years) were audited. Residents were prescribed a median of eight regular medicines (interquartile range 5-12). One hundred and twenty-five discrepancies were identified. Forty-seven discrepancies, affecting 21 (24%) residents, led to a medication administration error. The most common discrepancies were medicine omission (44.0%) and extra medicine (19.2%). Delays from when medicines were prescribed to when they appeared on the electronic medication administration chart ranged from 18min to 98h. On nine occasions (for 10% of residents) the delay contributed to missed doses, usually antibiotics. Conclusion Medication discrepancies and delays were common. Improved systems for managing medication orders and charts are needed. What is known about the topic? Hybrid paper-electronic medication management systems, in which prescribers' orders are transcribed into an electronic system by pharmacy technicians and pharmacists to create medication administration charts, are increasingly replacing paper-based medication management systems in Australian residential aged care facilities. The accuracy and safety of these systems has not been studied. What does this paper add? The present study identified discrepancies between general practitioners' orders and pharmacy-prepared electronic medication administration charts, back-up paper medication charts and dose-administration aids, as well as delays between ordering, charting and administering medicines. Discrepancies and delays sometimes led to medication administration errors. What are the implications for practitioners? Facilities that use hybrid systems need to implement robust systems for communicating medication changes to their pharmacy and reconciling prescribers' orders against pharmacy-generated medication charts and dose-administration aids. Fully integrated, paperless medication management systems, in which prescribers' electronic medication orders directly populate an electronic medication administration chart and are automatically communicated to the facility's pharmacy, could improve patient safety.
Instrument to synchronize Thomson scattering diagnostic measurements with MHD acitivity in a tokamak
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wintenberg, A.L.
1985-04-01
An instrument to synchronize the firing of a ruby laser for a Thomson scattering diagnostic with plasma oscillations was designed, developed, and evaluated. The instrument will fire the laser at a user-selected phase of an input sine or sawtooth wave with an accuracy of +-15/sup 0/. Allowable frequencies range from 20 to 500 Hz for a sawtooth and from 1 to 30 kHz for a sine wave. The instrument also allows synchronization with a sine wave to be enabled by a preselected sawtooth phase. The instrument uses analog signal processing circuits to separate the signal components, remove unwanted components, andmore » produce zero-phase synchronization pulses. The instrument measures the period between zero-phase pulses in order to produce phase synchronization pulses delayed a fraction of the period from the zero-phase pulses. The laser is fired by the phase synchronization pulse. Unwanted signal components are attenuated by bandpass filters. A digitally controlled self-adjusting bandpass filter for sine processing. The instrument was used to investigate the variation of the electron temperature profile with the phase of the x-ray signal from an Impurity Studies Experiment (ISX-B) plasma exhibiting magnetohydrodynamic (MHD) activity.« less
Cable delay compensator for microwave signal distribution over optical fibers
NASA Astrophysics Data System (ADS)
Primas, Lori E.
1990-12-01
The basic principles of microwave fiber-optic systems are outlined with emphasis on fiber-optic cable delay compensators (CDC). Degradation of frequency and phase stability is considered, and it is pointed out that the long-term stability of a fiber-optic link is degraded by group delay variations due to temperature fluctuations in the optical fiber and low-frequency noise characteristics of the laser. A CDC employing a voltage-controlled oscillator to correct for phase variations in the optical fiber is presented, and the static as well as dynamic closed-loop analyses of the fiber-optic CDC are discussed. A constructed narrow-band fiber-optic CDC is shown to reduce phase variations caused by temperature fluctuations by a factor of 400. A wide-band CDC utilizing a temperature-controlled coil of fiber to compensate for phase delay is also proposed.
NASA Astrophysics Data System (ADS)
Proctor, K. W.; Montgomery, Q. W.; Prairie, J. C.
2016-02-01
Marine snow aggregates play a fundamental role in the marine carbon cycle. Since marine snow aggregates are larger and thus sink faster than individual phytoplankton, aggregates often dominate carbon flux. Previous studies have shown that marine snow aggregates will significantly decrease their settling velocity when passing through sharp density transitions within the ocean, a phenomenon defined as delayed settling. Given the importance of aggregate settling to carbon export, these small-scale changes in aggregate settling dynamics may have significant impacts on the efficiency of the biological pump. However, there is still a lack of knowledge about how different physical properties of aggregates can affect this delayed settling. In this study, we investigated the effect of phytoplankton growth phase on delayed settling behavior. Using phytoplankton cultures stopped at four different growth phases, we formed marine snow aggregates in the laboratory in rotating cylindrical tanks. We then observed individual aggregates as they settled through a stratified tank. We will present data which illustrates that aggregates experience greatly reduced settling rates when passing through sharp density gradients and that the growth phase of the phytoplankton used to form these aggregates has a significant effect on this delayed settling behavior. A thorough understanding of the impact of phytoplankton growth phase on the delayed settling behavior of marine snow will offer insight into the way phytoplankton growth phase may influence the efficiency of the biological pump, carbon flux, and the carbon cycle as a whole.
Organization of Anti-Phase Synchronization Pattern in Neural Networks: What are the Key Factors?
Li, Dong; Zhou, Changsong
2011-01-01
Anti-phase oscillation has been widely observed in cortical neural network. Elucidating the mechanism underlying the organization of anti-phase pattern is of significance for better understanding more complicated pattern formations in brain networks. In dynamical systems theory, the organization of anti-phase oscillation pattern has usually been considered to relate to time delay in coupling. This is consistent to conduction delays in real neural networks in the brain due to finite propagation velocity of action potentials. However, other structural factors in cortical neural network, such as modular organization (connection density) and the coupling types (excitatory or inhibitory), could also play an important role. In this work, we investigate the anti-phase oscillation pattern organized on a two-module network of either neuronal cell model or neural mass model, and analyze the impact of the conduction delay times, the connection densities, and coupling types. Our results show that delay times and coupling types can play key roles in this organization. The connection densities may have an influence on the stability if an anti-phase pattern exists due to the other factors. Furthermore, we show that anti-phase synchronization of slow oscillations can be achieved with small delay times if there is interaction between slow and fast oscillations. These results are significant for further understanding more realistic spatiotemporal dynamics of cortico-cortical communications. PMID:22232576
Tanaka, Saori; Sugiyama, Nanae; Takahashi, Yuko; Mantoku, Daiki; Sawabe, Yukinori; Kuwabara, Hiroko; Nakano, Takashi; Shimamoto, Chikao; Matsumura, Hitoshi; Marunaka, Yoshinori; Nakahari, Takashi
2014-12-15
In antral mucous cells, acetylcholine (ACh, 1 μM) activates Ca(2+)-regulated exocytosis, consisting of a peak in exocytotic events that declines rapidly (initial phase) followed by a second slower decline (late phase) lasting during ACh stimulation. GW7647 [a peroxisome proliferation activation receptor α (PPARα) agonist] enhanced the ACh-stimulated initial phase, and GW6471 (a PPARα antagonist) abolished the GW7647-induced enhancement. However, GW6471 produced the delayed, but transient, increase in the ACh-stimulated late phase, and it also decreased the initial phase and produced the delayed increase in the late phase during stimulation with ACh alone. A similar delayed increase in the ACh-stimulated late phase is induced by an inhibitor of the PKG, Rp8BrPETcGMPS, suggesting that GW6471 inhibits cGMP accumulation. An inhibitor of nitric oxide synthase 1 (NOS1), N(5)-[imino(propylamino)methyl]-L-ornithine hydrochloride (N-PLA), also abolished the GW7647-induced-enhancement of ACh-stimulated initial phase but produced the delayed increase in the late phase. However, in the presence of N-PLA, an NO donor or 8BrcGMP enhanced the ACh-stimulated initial phase and abolished the delayed increase in the late phase. Moreover, GW7647 and ACh stimulated NO production and cGMP accumulation in antral mucosae, which was inhibited by GW6471 or N-PLA. Western blotting and immunohistochemistry revealed that NOS1 and PPARα colocalize in antral mucous cells. In conclusion, during ACh stimulation, a PPARα autocrine mechanism, which accumulates NO via NOS1 leading to cGMP accumulation, modulates the Ca(2+)-regulated exocytosis in antral mucous cells. Copyright © 2014 the American Physiological Society.
Wavepacket dynamics of a Rydberg atom monitored by a pair of time-delayed laser pulses
NASA Astrophysics Data System (ADS)
Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Liu, HongPing
2018-02-01
We have investigated the Rydberg state population of an argon atom by an intense laser pulse and its wavepacket dynamics monitored by another successive laser pulse in the tunneling regime. A wavepacket comprising a superposition of close high-lying Rydberg states is irradiated by a multicycle laser pulse, where the sub-wave components in the wavepacket have fixed relative phases. A time-delayed second laser pulse is employed to apply on the excited Rydberg atom. If the time is properly chosen, one of the sub-wave components will be guided towards the ionization area while the rest remains intact. By means of this pump-probe technique, we could control and monitor the Rydberg wavepacket dynamics and reveal some interesting phenomenon such as the survival rate of individual Rydberg states related to the classical orbital period of electron.
Wigner time delay in photodetachment of Tm-and in photoionization of Yb: A comparative study
NASA Astrophysics Data System (ADS)
Saha, Soumyajit; Jose, Jobin; Deshmukh, Pranawa; Dolmatov, Valeriy; Kheifets, Anatoli; Manson, Steven
2017-04-01
Preliminary studies of Wigner time delay in photodetachment spectra of negative ions have been reported. Photodetachment time delay for some dipole channels of Tm- and of Cl- were calculated using relativistic random phase approximation (RRPA). Comparisons between photodetachment time delay of Cl- and photoionization time delay of Ar were made. We investigate the photodetachment time delay for all three relativistically split nd -> ɛ f channels of Tm- and for nd -> ɛ f channels of Yb (isoelectronic to Tm-) using RRPA. We study the effect of the shape resonance, brought about by the centrifugal barrier potential, on photodetachment time delay. A negative ion is a good laboratory for studying the effects of shape resonances on time delay since the phase is unaffected by the Coulomb component. Wigner time delay in photodetachment of Tm- and in photoionization of Yb: A comparative study.
NASA Astrophysics Data System (ADS)
Pan, Zeyu; Subbaraman, Harish; Zhang, Cheng; Li, Qiaochu; Xu, Xiaochuan; Chen, Xiangning; Zhang, Xingyu; Zou, Yi; Panday, Ashwin; Guo, L. Jay; Chen, Ray T.
2016-02-01
Phased-array antenna (PAA) technology plays a significant role in modern day radar and communication networks. Truetime- delay (TTD) enabled beam steering networks provide several advantages over their electronic counterparts, including squint-free beam steering, low RF loss, immunity to electromagnetic interference (EMI), and large bandwidth control of PAAs. Chip-scale and integrated TTD modules promise a miniaturized, light-weight system; however, the modules are still rigid and they require complex packaging solutions. Moreover, the total achievable time delay is still restricted by the wafer size. In this work, we propose a light-weight and large-area, true-time-delay beamforming network that can be fabricated on light-weight and flexible/rigid surfaces utilizing low-cost "printing" techniques. In order to prove the feasibility of the approach, a 2-bit thermo-optic polymer TTD network is developed using a combination of imprinting and ink-jet printing. RF beam steering of a 1×4 X-band PAA up to 60° is demonstrated. The development of such active components on large area, light-weight, and low-cost substrates promises significant improvement in size, weight, and power (SWaP) requirements over the state-of-the-art.
Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg
2016-01-01
Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287
Effect of time delay on surgical performance during telesurgical manipulation.
Fabrizio, M D; Lee, B R; Chan, D Y; Stoianovici, D; Jarrett, T W; Yang, C; Kavoussi, L R
2000-03-01
Telementoring allows a less experienced surgeon to benefit from an expert surgical consultation, reducing cost, travel, and the learning curve associated with new procedures. However, there are several technical limitations that affect practical applications. One potentially serious problem is the time delay that occurs any time data are transferred across long distances. To date, the effect of time delay on surgical performance has not been studied. A two-phase trial was designed to examine the effect of time delay on surgical performance. In the first phase, a series of tasks was performed, and the numbers of robotic movements required for completion was counted. Programmed incremental time delays were made in audiovisual acquisition and robotic controls. The number of errors made while performing each task at various time delay intervals was noted. In the second phase, a remote surgeon in Baltimore performed the tasks 9000 miles away in Singapore. The number of errors made was recorded. As the time delay increased, the number of operator errors increased. The accuracy needed to perform remote robotic procedures was diminished as the time delay increased. A learning curve did exist for each task, but as the time delay interval increased, it took longer to complete the task. Time delay does affect surgical performance. There is an acceptable delay of <700 msec in which surgeons can compensate for this phenomenon. Clinical studies will be needed to evaluate the true impact of time delay.
Coherent control of the formation of cold heteronuclear molecules by photoassociation
NASA Astrophysics Data System (ADS)
de Lima, Emanuel F.
2017-01-01
We consider the formation of cold diatomic molecules in the electronic ground state by photoassociation of atoms of dissimilar species. A combination of two transition pathways from the free colliding pair of atoms to a bound vibrational level of the electronic molecular ground state is envisioned. The first pathway consists of a pump-dump scheme with two time-delayed laser pulses in the near-infrared frequency domain. The pump pulse drives the transition to a bound vibrational level of an excited electronic state, while the dump pulse transfers the population to a bound vibrational level of the electronic ground state. The second pathway takes advantage of the existing permanent dipole moment and employs a single pulse in the far-infrared domain to drive the transition from the unbound atoms directly to a bound vibrational level in the electronic ground state. We show that this scheme offers the possibility to coherently control the photoassociation yield by manipulating the relative phase and timing of the pulses. The photoassociation mechanism is illustrated for the formation of cold LiCs molecules.
Design of a microfluidic cell using microstereolithography for electronic tongue applications
NASA Astrophysics Data System (ADS)
Jacesko, Stefany L.; Ji, Taeksoo; Abraham, Jose K.; Varadan, Vijay K.; Gardner, Julian W.
2003-07-01
In this paper we present design, fabrication and integration of a micro fluidic cell for use with the electronic tongue. The cell was machined using microstereo lithography on a Hexanediol Diacrylate (HDDA) liquid monomer. The wet cell was designed to confine the liquid under test to the sensing area and insure complete isolation of the interdigital transducers (IDTs). The electronic tongue is a shear horizontal surface acoustic wave (SH-SAW) device. Shear horizontally polarized Love-waves are guided between transmitting and receiving IDTs, over a piezoelectric substrate, which creates an electronic oscillator effect. This device has a dual delay line configuration, which accounts for the measuring of both mechanical and electrical properties of a liquid, simultaneously, with the ability to eliminate environmental factors. The data collected is distinguished using principal components analysis in conjunction with pre-processing parameters. The experiments show that the micro fluidic cell for this electronic tongue does not affect the losses or phase of the device to any extent of concern. Experiments also show that liquids such as Strawberry Hi-C, Teriyaki Sauce, DI Water, Coca Cola, and Pepsi are distinguishable using these methods.
NASA Astrophysics Data System (ADS)
Levin, V. L.; Servali, A.; Dunham, B.; Klaser, M.
2015-12-01
A 1200 km long array of seismic observatories from James Bay to the Atlantic coast covers nearly 2 Ga in time, from the Archean Superior Province to the Paleozoic Appalachian Orogen. We use traditional (P-to-SV) receiver function analysis for detailed characterization of the lithospheric mantle along the array, focusing on the 5-15 s delay range where direct conversions from within the lithosphere and crustal multiples are expected.Superior craton sites show exceptionaly clear receiver functions dominated by the first crustal multiple. Also, a negative phase consistent with impedance decrease at the Mid-Lithospheric Discontinuity (~8 s delay) is observed north of 51°N, within the La Grande and Opinaca terranes of the Superior province. In the Opatica terrane further south we see a positive phase at similar delays instead. This implies a downward impedance increase 70-80 km deep within the lithosphere, consistent with the Hales discontinuity. In the Abitibi terrane just north of the Grenville Front we see evidence for two impedance drops in the 60-130 km depth range. Within the Proterozoic Grenvile province receiver functions vary with direction at individual sites, and lack regional consistency. Crustal multiples are noticeably weaker. South of 49°N we once again find negative phases in the 8-10 s delay range. While weak and directionally-dependent in the central Grenville province, these phases are clear near the Appalachian Front (AF), and are followed by positive phases, suggesting thin low-velocity layers in the lower part of the lithosphere. Similarity of receiver function signatures on opposite sides of the AF suggests continuity of the lithosphere beneath it.South of the AF and north of the Norumbega Fault Zone (NFZ) in Maine we find positive phases at ~10 s delays. The implied increase in impedance at ~75 km depth is puzzling. We also find previously-reported weak negative phases in the 6-8 s delay range. South of the NFZ a strong negative phase at ~9 s delay likely marks the bottom of the lithosphere.
System for stabilizing cable phase delay utilizing a coaxial cable under pressure
NASA Technical Reports Server (NTRS)
Clements, P. A. (Inventor)
1974-01-01
Stabilizing the phase delay of signals passing through a pressurizable coaxial cable is disclosed. Signals from an appropriate source at a selected frequency, e.g., 100 MHz, are sent through the controlled cable from a first cable end to a second cable end which, electrically, is open or heavily mismatched at 100 MHz, thereby reflecting 100 MHz signals back to the first cable end. Thereat, the phase difference between the reflected-back signals and the signals from the source is detected by a phase detector. The output of the latter is used to control the flow of gas to or from the cable, thereby controlling the cable pressure, which in turn affects the cable phase delay.
Multi-delay, phase coherent pulse pair generation for precision Ramsey-frequency comb spectroscopy.
Morgenweg, J; Eikema, K S E
2013-03-11
We demonstrate the generation of phase-stable mJ-pulse pairs at programmable inter-pulse delays up to hundreds of nanoseconds. A detailed investigation of potential sources for phase shifts during the parametric amplification of the selected pulses from a Ti:Sapphire frequency comb is presented, both numerically and experimentally. It is shown that within the statistical error of the phase measurement of 10 mrad, there is no dependence of the differential phase shift over the investigated inter-pulse delay range of more than 300 ns. In combination with nonlinear upconversion of the amplified pulses, the presented system will potentially enable short wavelength (<100 nm), multi-transition Ramsey-frequency comb spectroscopy at the kHz-level.
NASA Astrophysics Data System (ADS)
Nelson, D. J.
2007-09-01
In the basic correlation process a sequence of time-lag-indexed correlation coefficients are computed as the inner or dot product of segments of two signals. The time-lag(s) for which the magnitude of the correlation coefficient sequence is maximized is the estimated relative time delay of the two signals. For discrete sampled signals, the delay estimated in this manner is quantized with the same relative accuracy as the clock used in sampling the signals. In addition, the correlation coefficients are real if the input signals are real. There have been many methods proposed to estimate signal delay to more accuracy than the sample interval of the digitizer clock, with some success. These methods include interpolation of the correlation coefficients, estimation of the signal delay from the group delay function, and beam forming techniques, such as the MUSIC algorithm. For spectral estimation, techniques based on phase differentiation have been popular, but these techniques have apparently not been applied to the correlation problem . We propose a phase based delay estimation method (PBDEM) based on the phase of the correlation function that provides a significant improvement of the accuracy of time delay estimation. In the process, the standard correlation function is first calculated. A time lag error function is then calculated from the correlation phase and is used to interpolate the correlation function. The signal delay is shown to be accurately estimated as the zero crossing of the correlation phase near the index of the peak correlation magnitude. This process is nearly as fast as the conventional correlation function on which it is based. For real valued signals, a simple modification is provided, which results in the same correlation accuracy as is obtained for complex valued signals.
Designing Estimator/Predictor Digital Phase-Locked Loops
NASA Technical Reports Server (NTRS)
Statman, J. I.; Hurd, W. J.
1988-01-01
Signal delays in equipment compensated automatically. New approach to design of digital phase-locked loop (DPLL) incorporates concepts from estimation theory and involves decomposition of closed-loop transfer function into estimator and predictor. Estimator provides recursive estimates of phase, frequency, and higher order derivatives of phase with respect to time, while predictor compensates for delay, called "transport lag," caused by PLL equipment and by DPLL computations.
Solar wind electron densities from Viking dual-frequency radio measurements
NASA Technical Reports Server (NTRS)
Muhleman, D. O.; Anderson, J. D.
1981-01-01
Simultaneous phase coherent, two-frequency measurements of the time delay between the earth station and the Viking spacecraft have been analyzed in terms of the electron density profiles from 4 solar radii to 200 solar radii. The measurements were made during a period of solar activity minimum (1976-1977) and show a strong solar latitude effect. The data were analyzed with both a model independent, direct numerical inversion technique and with model fitting, yielding essentially the same results. It is shown that the solar wind density can be represented by two power laws near the solar equator proportional to r exp -2.7 and r exp -2.04. However, the more rapidly falling term quickly disappears at moderate latitudes (approximately 20 deg) leaving only the inverse-square behavior.
René de Cotret, Laurent P; Siwick, Bradley J
2017-07-01
The general problem of background subtraction in ultrafast electron powder diffraction (UEPD) is presented with a focus on the diffraction patterns obtained from materials of moderately complex structure which contain many overlapping peaks and effectively no scattering vector regions that can be considered exclusively background. We compare the performance of background subtraction algorithms based on discrete and dual-tree complex (DTCWT) wavelet transforms when applied to simulated UEPD data on the M1-R phase transition in VO 2 with a time-varying background. We find that the DTCWT approach is capable of extracting intensities that are accurate to better than 2% across the whole range of scattering vector simulated, effectively independent of delay time. A Python package is available.
NASA Astrophysics Data System (ADS)
Moser, Simon
2008-03-01
To get insight to time resolved inner atomic or molecular processes, laser pulses of few femtoseconds or even attoseconds are needed. These short light pulse techniques ask for broad frequency spectra, control of dispersion and control of phase. Hence, linear optics fails and nonlinear optics in high electromagnetic fields is needed to satisfy the amount of control that is needed. One recent application of attosecond laser pulses is time resolved visualization of tunnel ionization in atoms applied to high electromagnetic fields. Here, Ne atom electrons are excited by an extreme ultraviolet attosecond laser pulse. After a while, a few cycles nearly infrared femtosecond laser pulse is applied to the atom causing tunnel ionization. The ion yield distribution can be measured as function of the delay time between excitation and ionization and so deliver insight to the time resolved mechanisms.
NASA Technical Reports Server (NTRS)
Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana
2011-01-01
This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.
Synchronization properties of network motifs: Influence of coupling delay and symmetry
NASA Astrophysics Data System (ADS)
D'Huys, O.; Vicente, R.; Erneux, T.; Danckaert, J.; Fischer, I.
2008-09-01
We investigate the effect of coupling delays on the synchronization properties of several network motifs. In particular, we analyze the synchronization patterns of unidirectionally coupled rings, bidirectionally coupled rings, and open chains of Kuramoto oscillators. Our approach includes an analytical and semianalytical study of the existence and stability of different in-phase and out-of-phase periodic solutions, complemented by numerical simulations. The delay is found to act differently on networks possessing different symmetries. While for the unidirectionally coupled ring the coupling delay is mainly observed to induce multistability, its effect on bidirectionally coupled rings is to enhance the most symmetric solution. We also study the influence of feedback and conclude that it also promotes the in-phase solution of the coupled oscillators. We finally discuss the relation between our theoretical results on delay-coupled Kuramoto oscillators and the synchronization properties of networks consisting of real-world delay-coupled oscillators, such as semiconductor laser arrays and neuronal circuits.
NASA Astrophysics Data System (ADS)
Basak, Tamal; Chakrabarti, Sandip Kumar
Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (DeltaA) and amplitude time delay (Deltat) (vis- ´a-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22(°) 27'N, 87(°) 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient (alpha_{eff}) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Deltat). For the C-class flares we find that there is a direct correspondence between Deltat of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Deltat for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux phi_{max} independent of these time slots, the goodness of fit, as measured by reduced-chi(2) , actually worsens as the day progresses. The variation of the Z dependence of reduced-chi(2) seems to follow the variation of standard deviation of Z along the T_x-R_x propagation path. In other words, for the flares having almost constant Z over the path a tighter anti-correlation between Deltat and phi_{max} was observed.
NASA Astrophysics Data System (ADS)
Basak, Tamal; Chakrabarti, Sandip K.
2013-12-01
Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (Δ A) and amplitude time delay (Δ t) (vis-á-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22∘ 27'N, 87∘ 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient ( α eff ) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Δ t). For the C-class flares we find that there is a direct correspondence between Δ t of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Δ t for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux ϕ max independent of these time slots, the goodness of fit, as measured by reduced- χ 2, actually worsens as the day progresses. The variation of the Z dependence of reduced- χ 2 seems to follow the variation of standard deviation of Z along the T x - R x propagation path. In other words, for the flares having almost constant Z over the path a tighter anti-correlation between Δ t and ϕ max was observed.
Impact of laser phase and amplitude noises on streak camera temporal resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wlotzko, V., E-mail: wlotzko@optronis.com; Optronis GmbH, Ludwigstrasse 2, 77694 Kehl; Uhring, W.
2015-09-15
Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement withmore » a streak camera combined with a Ti:Al{sub 2}O{sub 3} solid state laser oscillator and also a fiber oscillator.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Byeong M.; Wang, Ju
This paper presents the mathematical modeling and analysis of a wide bandwidth bipolar power supply for the fast correctors in the APS Upgrade. A wide bandwidth current regulator with a combined PI and phase-lead compensator has been newly proposed, analyzed, and simulated through both a mathematical model and a physical electronic circuit model using MATLAB and PLECS. The proposed regulator achieves a bandwidth with a -1.23dB attenuation and a 32.40° phase-delay at 10 kHz for a small signal less than 1% of the DC scale. The mathematical modeling and design, simulation results of a fast corrector power supply control systemmore » are presented in this paper.« less
Security-enhanced chaos communication with time-delay signature suppression and phase encryption.
Xue, Chenpeng; Jiang, Ning; Lv, Yunxin; Wang, Chao; Li, Guilan; Lin, Shuqing; Qiu, Kun
2016-08-15
A security-enhanced chaos communication scheme with time delay signature (TDS) suppression and phase-encrypted feedback light is proposed, in virtue of dual-loop feedback with independent high-speed phase modulation. We numerically investigate the property of TDS suppression in the intensity and phase space and quantitatively discuss security of the proposed system by calculating the bit error rate of eavesdroppers who try to crack the system by directly filtering the detected signal or by using a similar semiconductor laser to synchronize the link signal and extract the data. The results show that TDS embedded in the chaotic carrier can be well suppressed by properly setting the modulation frequency, which can keep the time delay a secret from the eavesdropper. Moreover, because the feedback light is encrypted, without the accurate time delay and key, the eavesdropper cannot reconstruct the symmetric operation conditions and decode the correct data.
Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay
NASA Astrophysics Data System (ADS)
Pan, C.; Liu, Q. H.; Zheng, X.; He, Q. B.; Wu, Y. J.
2015-07-01
On 2013 December 14, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking the photos of each other. With the same beam VLBI (Very long baseline interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect a minor change of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in moving process, and lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.
Speed Measurement and Motion Analysis of Chang'E-3 Rover Based on Differential Phase Delay
NASA Astrophysics Data System (ADS)
Chao, Pan; Qing-hui, Liu; Xin, Zheng; Qing-bao, He; Ya-jun, Wu
2016-04-01
On 14th December 2013, the Chang'E-3 made a successful soft landing on the lunar surface, and then carried out the tasks of separating the lander and the rover, and taking pictures of each other. With the same beam VLBI (Very Long Baseline Interferometry) technique to observe the signals transmitted by the lander and the rover simultaneously, the differential phase delay between them is calculated, which can reflect the minor changes of the rover's position on a scale of a few centimeters. Based on the high sensitivity of differential phase delay, the rover's speeds during 5 movements are obtained with an average of 0.056 m/s. The relationship between the rover's shake in the moving process and the lunar terrain is analyzed by using the spectrum of the residual of the differential phase delay after the first-order polynomial fitting.
Phase-locked-loop-based delay-line-free picosecond electro-optic sampling system
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru; Chang, Yung-Cheng
2003-04-01
A delay-line-free, high-speed electro-optic sampling (EOS) system is proposed by employing a delay-time-controlled ultrafast laser diode as the optical probe. Versatile optoelectronic delay-time controllers (ODTCs) based on modified voltage-controlled phase-locked-loop phase-shifting technologies are designed for the laser. The integration of the ODTC circuit and the pulsed laser diode has replaced the traditional optomechanical delay-line module used in the conventional EOS system. This design essentially prevents sampling distortion from misalignment of the probe beam, and overcomes the difficulty in sampling free-running high-speed transients. The maximum tuning range, error, scanning speed, tuning responsivity, and resolution of the ODTC are 3.9π (700°), <5% deviation, 25-2405 ns/s, 0.557 ps/mV, and ˜1 ps, respectively. Free-running wave forms from the analog, digital, and pulsed microwave signals are sampled and compared with those measured by the commercial apparatus.
Akimenko, Vitalii; Anguelov, Roumen
2017-12-01
In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.
Juswardy, Budi; Xiao, Feng; Alameh, Kamal
2009-03-16
This paper proposes a novel Opto-VLSI-based tunable true-time delay generation unit for adaptively steering the nulls of microwave phased array antennas. Arbitrary single or multiple true-time delays can simultaneously be synthesized for each antenna element by slicing an RF-modulated broadband optical source and routing specific sliced wavebands through an Opto-VLSI processor to a high-dispersion fiber. Experimental results are presented, which demonstrate the principle of the true-time delay unit through the generation of 5 arbitrary true-time delays of up to 2.5 ns each. (c) 2009 Optical Society of America
Introducing causality violation for improved DPOAE component unmixing
NASA Astrophysics Data System (ADS)
Moleti, Arturo; Sisto, Renata; Shera, Christopher A.
2018-05-01
The DPOAE response consists of the linear superposition of two components, a nonlinear distortion component generated in the overlap region, and a reflection component generated by roughness in the DP resonant region. Due to approximate scaling symmetry, the DPOAE distortion component has approximately constant phase. As the reflection component may be considered as a SFOAE generated by the forward DP traveling wave, it has rapidly rotating phase, relative to that of its source, which is also equal to the phase of the DPOAE distortion component. This different phase behavior permits effective separation of the DPOAE components (unmixing), using time-domain or time-frequency domain filtering. Departures from scaling symmetry imply fluctuations around zero delay of the distortion component, which may seriously jeopardize the accuracy of these filtering techniques. The differential phase-gradient delay of the reflection component obeys causality requirements, i.e., the delay is positive only, and the fine-structure oscillations of amplitude and phase are correlated to each other, as happens for TEOAEs and SFOAEs relative to their stimulus phase. Performing the inverse Fourier (or wavelet) transform of a modified DPOAE complex spectrum, in which a constant phase function is substituted for the measured one, the time (or time-frequency) distribution shows a peak at (exactly) zero delay and long-latency specular symmetric components, with a modified (positive and negative) delay, which is that relative to that of the distortion component in the original response. Component separation, applied to this symmetrized distribution, becomes insensitive to systematic errors associated with violation of the scaling symmetry in specific frequency ranges.
Method and system of doppler correction for mobile communications systems
NASA Technical Reports Server (NTRS)
Georghiades, Costas N. (Inventor); Spasojevic, Predrag (Inventor)
1999-01-01
Doppler correction system and method comprising receiving a Doppler effected signal comprising a preamble signal (32). A delayed preamble signal (48) may be generated based on the preamble signal (32). The preamble signal (32) may be multiplied by the delayed preamble signal (48) to generate an in-phase preamble signal (60). The in-phase preamble signal (60) may be filtered to generate a substantially constant in-phase preamble signal (62). A plurality of samples of the substantially constant in-phase preamble signal (62) may be accumulated. A phase-shifted signal (76) may also be generated based on the preamble signal (32). The phase-shifted signal (76) may be multiplied by the delayed preamble signal (48) to generate an out-of-phase preamble signal (80). The out-of-phase preamble signal (80) may be filtered to generate a substantially constant out-of-phase preamble signal (82). A plurality of samples of the substantially constant out-of-phase signal (82) may be accumulated. A sum of the in-phase preamble samples and a sum of the out-of-phase preamble samples may be normalized relative to each other to generate an in-phase Doppler estimator (92) and an out-of-phase Doppler estimator (94).
Control of amplitude chimeras by time delay in oscillator networks
NASA Astrophysics Data System (ADS)
Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna
2017-04-01
We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.
Molecular interferometer to decode attosecond electron-nuclear dynamics.
Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando
2014-03-18
Understanding the coupled electronic and nuclear dynamics in molecules by using pump-probe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos, Desireé M. de los, E-mail: desire.delossantos@uca.es; Navas, Javier, E-mail: javier.navas@uca.es; Sánchez-Coronilla, Antonio
2015-10-15
Highlights: • Highly Al-doped TiO{sub 2} nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO{sub 2} nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy.more » The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti{sup 4+} ions by Al{sup 3+} in the TiO{sub 2} lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature.« less
Graphene-based fine-tunable optical delay line for optical beamforming in phased-array antennas.
Tatoli, Teresa; Conteduca, Donato; Dell'Olio, Francesco; Ciminelli, Caterina; Armenise, Mario N
2016-06-01
The design of an integrated graphene-based fine-tunable optical delay line on silicon nitride for optical beamforming in phased-array antennas is reported. A high value of the optical delay time (τg=920 ps) together with a compact footprint (4.15 mm2) and optical loss <27 dB make this device particularly suitable for highly efficient steering in active phased-array antennas. The delay line includes two graphene-based Mach-Zehnder interferometer switches and two vertically stacked microring resonators between which a graphene capacitor is placed. The tuning range is obtained by varying the value of the voltage applied to the graphene electrodes, which controls the optical path of the light propagation and therefore the delay time. The graphene provides a faster reconfigurable time and low values of energy dissipation. Such significant advantages, together with a negligible beam-squint effect, allow us to overcome the limitations of conventional RF beamformers. A highly efficient fine-tunable optical delay line for the beamsteering of 20 radiating elements up to ±20° in the azimuth direction of a tile in a phased-array antenna of an X-band synthetic aperture radar has been designed.
Chen, Tun-Chieh; Lin, Wei-Ru; Lu, Po-Liang; Lin, Chun-Yu; Lin, Shu-Hui; Lin, Chuen-Ju; Feng, Ming-Chu; Chiang, Horn-Che; Chen, Yen-Hsu; Huang, Ming-Shyan
2011-06-01
We investigated the impacts of introducing an expedited acid-fast bacilli (AFB) smear laboratory procedure and an automatic, real-time laboratory notification system by short message with mobile phones on delays in prompt isolation of patients with pulmonary tuberculosis (TB). We analyzed the data for all patients with active pulmonary tuberculosis at a hospital in Kaohsiung, Taiwan, a 1,600-bed medical center, during baseline (January 2004 to February 2005) and intervention (July 2005 to August 2006) phases. A total of 96 and 127 patients with AFB-positive TB was reported during the baseline and intervention phases, respectively. There were significant decreases in health care system delays (ie, laboratory delays: reception of sputum to reporting, P < .001; response delays: reporting to patient isolation, P = .045; and interval from admission to patient isolation, P < .001) during the intervention phase. Significantly fewer nurses were exposed to each patient with active pulmonary TB during the intervention phase (P = .039). Implementation of expedited AFB smear laboratory procedures and an automatic, real-time laboratory mobile notification system significantly decreased delays in the diagnosis and isolation of patients with active TB. Copyright © 2011 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.
Obtaining reliable phase-gradient delays from otoacoustic emission data.
Shera, Christopher A; Bergevin, Christopher
2012-08-01
Reflection-source otoacoustic emission phase-gradient delays are widely used to obtain noninvasive estimates of cochlear function and properties, such as the sharpness of mechanical tuning and its variation along the length of the cochlear partition. Although different data-processing strategies are known to yield different delay estimates and trends, their relative reliability has not been established. This paper uses in silico experiments to evaluate six methods for extracting delay trends from reflection-source otoacoustic emissions (OAEs). The six methods include both previously published procedures (e.g., phase smoothing, energy-weighting, data exclusion based on signal-to-noise ratio) and novel strategies (e.g., peak-picking, all-pass factorization). Although some of the methods perform well (e.g., peak-picking), others introduce substantial bias (e.g., phase smoothing) and are not recommended. In addition, since standing waves caused by multiple internal reflection can complicate the interpretation and compromise the application of OAE delays, this paper develops and evaluates two promising signal-processing strategies, the first based on time-frequency filtering using the continuous wavelet transform and the second on cepstral analysis, for separating the direct emission from its subsequent reflections. Altogether, the results help to resolve previous disagreements about the frequency dependence of human OAE delays and the sharpness of cochlear tuning while providing useful analysis methods for future studies.
Ultraino: An Open Phased-Array System for Narrowband Airborne Ultrasound Transmission.
Marzo, Asier; Corkett, Tom; Drinkwater, Bruce W
2018-01-01
Modern ultrasonic phased-array controllers are electronic systems capable of delaying the transmitted or received signals of multiple transducers. Configurable transmit-receive array systems, capable of electronic steering and shaping of the beam in near real-time, are available commercially, for example, for medical imaging. However, emerging applications, such as ultrasonic haptics, parametric audio, or ultrasonic levitation, require only a small subset of the capabilities provided by the existing controllers. To meet this need, we present Ultraino, a modular, inexpensive, and open platform that provides hardware, software, and example applications specifically aimed at controlling the transmission of narrowband airborne ultrasound. Our system is composed of software, driver boards, and arrays that enable users to quickly and efficiently perform research in various emerging applications. The software can be used to define array geometries, simulate the acoustic field in real time, and control the connected driver boards. The driver board design is based on an Arduino Mega and can control 64 channels with a square wave of up to 17 Vpp and /5 phase resolution. Multiple boards can be chained together to increase the number of channels. The 40-kHz arrays with flat and spherical geometries are demonstrated for parametric audio generation, acoustic levitation, and haptic feedback.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J; Polsky, Yarom; Kisner, Roger A
2015-09-01
For the past quarter, we have placed our effort in implementing the first version of the ModelBased Iterative Reconstruction (MBIR) algorithm, assembling and testing the electronics, designing transducers mounts, and defining our laboratory test samples. We have successfully developed the first implementation of MBIR for ultrasound imaging. The current algorithm was tested with synthetic data and we are currently making new modifications for the reconstruction of real ultrasound data. Beside assembling and testing the electronics, we developed a LabView graphic user interface (GUI) to fully control the ultrasonic phased array, adjust the time-delays of the transducers, and store the measuredmore » reflections. As part of preparing for a laboratory-scale demonstration, the design and fabrication of the laboratory samples has begun. Three cement blocks with embedded objects will be fabricated, characterized, and used to demonstrate the capabilities of the system. During the next quarter, we will continue to improve the current MBIR forward model and integrate the reconstruction code with the LabView GUI. In addition, we will define focal laws for the ultrasonic phased array and perform the laboratory demonstration. We expect to perform laboratory demonstration by the end of October 2015.« less
NASA Astrophysics Data System (ADS)
Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Liao, Qing; Adhikari, Pradip; Basnayake, Gihan; Schlegel, H. Bernhard; Li, Wen
2017-09-01
With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.
Interleukin-6 and Delayed Onset Muscle Soreness Do Not Vary during the Menstrual Cycle
ERIC Educational Resources Information Center
Chaffin, Morgan E.; Berg, Kris E.; Meendering, Jessica R.; Llewellyn, Tamra L.; French, Jeffrey A.; Davis, Jeremy E.
2011-01-01
The purpose of this study was to determine if a difference in interleukin-6 (IL-6) and delayed onset muscles soreness (DOMS) exists in two different phases of the menstrual cycle. Nine runners performed one 75-min high-intensity interval running session during the early follicular (EF) phase and once during the midluteal (ML) phase of the…
Longitudinal dynamics of twin electron bunches in the Linac Coherent Light Source
Zhang, Zhen; Ding, Yuantao; Marinelli, Agostino; ...
2015-03-02
The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We find that the wakefields in the accelerator structures play an important role in the twin-bunchmore » compression, and through analysis show that they can be used to extend the available time delay range. As a result, based on the theoretical model and simulations we propose several methods to achieve larger time delay.« less
Spatial phase-shift dual-beam speckle interferometry.
Gao, Xinya; Yang, Lianxiang; Wang, Yonghong; Zhang, Boyang; Dan, Xizuo; Li, Junrui; Wu, Sijin
2018-01-20
The spatial phase-shift technique has been successfully applied to an out-of-plane speckle interferometry system. Its application to a pure in-plane sensitive system has not been reported yet. This paper presents a novel optical configuration that enables the application of the spatial phase-shift technique to pure in-plane sensitive dual-beam speckle interferometry. The new spatial phase-shift dual-beam speckle interferometry (SPS-DBSP) uses a dual-beam in-plane electronic speckle pattern interferometry configuration with individual aperture shears, avoiding the interference in the object plane by the use of a low-coherence source, and different optical paths. The measured object is illuminated by two incoherent beams that are generated by a delay line, which is larger than the coherence length of the laser. The two beams reflected from the object surface interfere with each other at the CCD plane because of different optical paths. A spatial phase shift is introduced by the angle between the two apertures when they are mapped to the same optical axis. The phase of the in-plane deformation can directly be extracted from the speckle patterns by the Fourier transform method. The capability of SPS-DBSI is demonstrated by theoretical discussion as well as experiments.
NASA Astrophysics Data System (ADS)
Lin, Gong-Ru
2002-12-01
We develop a delay-line-free and frequency traceable electro-optic sampling oscilloscope by use of a digital phase-locked loop phase shifter (PLL-PS) controlled delay-time-tunable gain-switched laser diode (GSLD). The home-made voltage-controllable PLL-PS exhibits a linear transfer function with ultra-wide phase shifting range of ±350° and tuning error of <±5%, which benefits the advantages of frequency tracking to free-running signals with suppressed timing-jitter. The maximum delay-time of PLL-PS controlled GSLD is up to 1.95 periods by changing the controlling voltage ( VREF) from -3.5 to 3.5 V, which corresponds to 3.9 ns at repetition frequency of 500 MHz. The tuning responsivity and resolution are about 0.56 ns/V and 0.15˜0.2 ps, respectively. The maximum delay-time switching bandwidth of 100 Hz is determined under the control of a saw-tooth modulated VREF function. The waveform sampling of microwave PECL signals generated from a free-running digital frequency divider is performed with acceptable measuring deviation.
Time delay induced different synchronization patterns in repulsively coupled chaotic oscillators
NASA Astrophysics Data System (ADS)
Yao, Chenggui; Yi, Ming; Shuai, Jianwei
2013-09-01
Time delayed coupling plays a crucial role in determining the system's dynamics. We here report that the time delay induces transition from the asynchronous state to the complete synchronization (CS) state in the repulsively coupled chaotic oscillators. In particular, by changing the coupling strength or time delay, various types of synchronous patterns, including CS, antiphase CS, antiphase synchronization (ANS), and phase synchronization, can be generated. In the transition regions between different synchronous patterns, bistable synchronous oscillators can be observed. Furthermore, we show that the time-delay-induced phase flip bifurcation is of key importance for the emergence of CS. All these findings may light on our understanding of neuronal synchronization and information processing in the brain.
In-Band Asymmetry Compensation for Accurate Time/Phase Transport over Optical Transport Network
Siu, Sammy; Hu, Hsiu-fang; Lin, Shinn-Yan; Liao, Chia-Shu; Lai, Yi-Liang
2014-01-01
The demands of precise time/phase synchronization have been increasing recently due to the next generation of telecommunication synchronization. This paper studies the issues that are relevant to distributing accurate time/phase over optical transport network (OTN). Each node and link can introduce asymmetry, which affects the adequate time/phase accuracy over the networks. In order to achieve better accuracy, protocol level full timing support is used (e.g., Telecom-Boundary clock). Due to chromatic dispersion, the use of different wavelengths consequently causes fiber link delay asymmetry. The analytical result indicates that it introduces significant time error (i.e., phase offset) within 0.3397 ns/km in C-band or 0.3943 ns/km in L-band depending on the wavelength spacing. With the proposed scheme in this paper, the fiber link delay asymmetry can be compensated relying on the estimated mean fiber link delay by the Telecom-Boundary clock, while the OTN control plane is responsible for processing the fiber link delay asymmetry to determine the asymmetry compensation in the timing chain. PMID:24982948
NASA Astrophysics Data System (ADS)
Zetterlind, Virgil E., III; Magee, Eric P.
2002-06-01
This study extends branch point tolerant phase reconstructor research to examine the effect of finite time delays and measurement error on system performance. Branch point tolerant phase reconstruction is particularly applicable to atmospheric laser weapon and communication systems, which operate in extended turbulence. We examine the relative performance of a least squares reconstructor, least squares plus hidden phase reconstructor, and a Goldstein branch point reconstructor for various correction time-delays and measurement noise scenarios. Performance is evaluated using a wave-optics simulation that models a 100km atmospheric propagation of a point source beacon to a transmit/receive aperture. Phase-only corrections are then calculated using the various reconstructor algorithms and applied to an outgoing uniform field. Point Strehl is used as the performance metric. Results indicate that while time delays and measurement noise reduce the performance of branch point tolerant reconstructors, these reconstructors can still outperform least squares implementations in many cases. We also show that branch point detection becomes the limiting factor in measurement noise corrupted scenarios.
Richardson, C; Micic, G; Cain, N; Bartel, K; Maddock, B; Gradisar, M
2018-06-01
The present study aimed to investigate whether Australian adolescents with Delayed Sleep-Wake Phase Disorder have impaired cognitive performance and whether chronobiological treatment for Delayed Sleep-Wake Phase Disorder improves adolescents' sleep, daytime functioning and cognitive performance. Adolescents with Delayed Sleep-Wake Phase Disorder (mean = 15.68 ± 2.1 y, 62% f) reported significantly later sleep timing (d = 1.03-1.45), less total sleep time (d = 0.82) and greater daytime sleepiness (d = 2.66), fatigue (d = 0.63) and impairment (d = 2.41), compared to good sleeping adolescents (mean = 15.9 ± 2.4 y, 75% f). However, there were no significant between-group differences (all p > 0.05) in performance on the Operation Span (ηp 2 = 0.043), Digit Span (forwards: ηp 2 = 0.002, backwards: ηp 2 = 0.003), Letter Number Sequencing (ηp 2 < 0.001) (working memory) and Digit-Symbol Substitution Tasks (ηp 2 = 0.010) (processing speed). Adolescents with Delayed Sleep-Wake Phase Disorder went on to receive 3 weeks of light therapy. At 3 months post-treatment, adolescents with Delayed Sleep-Wake Phase Disorder reported significantly advanced sleep timing (d = 0.56-0.65), greater total sleep time (d = 0.52) and improved daytime sleepiness (d = 1.33), fatigue (d = 0.84) and impairment (d = 0.78). Performance on the Operation Span (d = 0.46), Letter Number Sequencing (d = 0.45) and Digit-Symbol Substitution tasks (d = 0.57) also significantly improved. Copyright © 2018. Published by Elsevier Ltd.
Kapur, Ajay; Potters, Louis
2012-01-01
The purpose of this work was to develop and implement six sigma practices toward the enhancement of patient safety in an electronic, quality checklist-driven, multicenter, paperless radiation medicine department. A quality checklist process map (QPM), stratified into consultation through treatment-completion stages was incorporated into an oncology information systems platform. A cross-functional quality management team conducted quality-function-deployment and define-measure-analyze-improve-control (DMAIC) six sigma exercises with a focus on patient safety. QPM procedures were Pareto-sorted in order of decreasing patient safety risk with failure mode and effects analysis (FMEA). Quantitative metrics for a grouped set of highest risk procedures were established. These included procedural delays, associated standard deviations and six sigma Z scores. Baseline performance of the QPM was established over the previous year of usage. Data-driven analysis led to simplification, standardization, and refinement of the QPM with standard deviation, slip-day reduction, and Z-score enhancement goals. A no-fly policy (NFP) for patient safety was introduced at the improve-control DMAIC phase, with a process map interlock imposed on treatment initiation in the event of FMEA-identified high-risk tasks being delayed or not completed. The NFP was introduced in a pilot phase with specific stopping rules and the same metrics used for performance assessments. A custom root-cause analysis database was deployed to monitor patient safety events. Relative to the baseline period, average slip days and standard deviations for the risk-enhanced QPM procedures improved by over threefold factors in the NFP period. The Z scores improved by approximately 20%. A trend for proactive delays instead of reactive hard stops was observed with no adverse effects of the NFP. The number of computed potential no-fly delays per month dropped from 60 to 20 over a total of 520 cases. The fraction of computed potential no-fly cases that were delayed in NFP compliance rose from 28% to 45%. Proactive delays rose to 80% of all delayed cases. For potential no-fly cases, event reporting rose from 18% to 50%, while for actually delayed cases, event reporting rose from 65% to 100%. With complex technologies, resource-compromised staff, and pressures to hasten treatment initiation, the use of the six sigma driven process interlocks may mitigate potential patient safety risks as demonstrated in this study. Copyright © 2012 American Society for Radiation Oncology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sugioka, Hideyuki
2016-08-01
The standard theory of induced-charge electro-osmosis (ICEO) often overpredicts experimental values of ICEO velocities. Using a nonsteady direct multiphysics simulation technique based on the coupled Poisson-Nernst-Planck and Stokes equations for an electrolyte around a conductive cylinder subject to an ac electric field, we find that a phase delay effect concerning an ion response provides a fundamental mechanism for electrokinetic suppression. A surprising aspect of our findings is that the phase delay effect occurs even at much lower frequencies (e.g., 50 Hz) than the generally believed charging frequency of an electric double layer (typically, 1 kHz) and it can decrease the electrokinetic velocities in one to several orders. In addition, we find that the phase delay effect may also cause a change in the electrokinetic flow directions (i.e., flow reversal) depending on the geometrical conditions. We believe that our findings move toward a more complete understanding of complex experimental nonlinear electrokinetic phenomena.
Design and analysis of coherent OCDM en/decoder based on photonic crystal
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun
2008-08-01
The design and performance analysis of a new coherent optical en/decoder based on photonic crystal (PhC) for optical code -division -multiple (OCDM) are presented in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by photonic crystal phase shifter and time delayer by using the appropriate design of fabrication. According to the PhC transmission matrix theorem, combination calculation of the impurity and normal period layers is applied, and performances of the PhC-based optical en/decoder are also analyzed. The reflection, transmission, time delay characteristic and optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by numerical calculation. Theoretical analysis and numerical results indicate that the optical pulse is achieved to properly phase modulation and time delay, and an auto-correlation of about 8 dB ration and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.
Sento, Shinya; Kitamura, Naoya; Yamamoto, Tetsuya; Nakashiro, Koichi; Hamakawa, Hiroyuki; Ibaragi, Soichiro; Sasaki, Akira; Takamaru, Natsumi; Miyamoto, Yoji; Kodani, Isamu; Ryoke, Kazuo; Mishima, Katsuaki; Ueyama, Yoshiya
2017-12-01
To evaluate the efficacy of palonosetron in preventing acute and delayed nausea and vomiting in patients receiving highly emetogenic chemotherapy (HEC) in oral cancer patients. Oral cancer patients receiving HEC were enrolled; among the 40 patients, 87 courses of chemotherapy were administered. On day 1, 0.75 mg palonosetron was intravenously administrated just before chemotherapy. The primary endpoint was the proportion of patients with a complete response (CR) and the secondary endpoint was the proportion of patients with complete control (CC) during the acute and delayed phase. During the acute phase, 86 of 87 courses (98.9%) had CR and 84 of 87 courses (96.6%) had CC. During the delayed phase, 84 of 87 courses (96.6%) had CR and 70 of 87 courses (80.5%) had CC. Palonosetron is effective at preventing HEC-induced chemotherapy-induced nausea and vomiting (CINV) in oral cancer chemotherapeutic regimens in the acute and delayed phases. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
NASA Astrophysics Data System (ADS)
Miksovsky, J.; Raidl, A.
Time delays phase space reconstruction represents one of useful tools of nonlinear time series analysis, enabling number of applications. Its utilization requires the value of time delay to be known, as well as the value of embedding dimension. There are sev- eral methods how to estimate both these parameters. Typically, time delay is computed first, followed by embedding dimension. Our presented approach is slightly different - we reconstructed phase space for various combinations of mentioned parameters and used it for prediction by means of the nearest neighbours in the phase space. Then some measure of prediction's success was computed (correlation or RMSE, e.g.). The position of its global maximum (minimum) should indicate the suitable combination of time delay and embedding dimension. Several meteorological (particularly clima- tological) time series were used for the computations. We have also created a MS- Windows based program in order to implement this approach - its basic features will be presented as well.
Martínez-Llinàs, Jade; Colet, Pere; Erneux, Thomas
2015-03-01
We consider a model for two delay-coupled optoelectronic oscillators under positive delayed feedback as prototypical to study the conditions for synchronization of asymmetric square-wave oscillations, for which the duty cycle is not half of the period. We show that the scenario arising for positive feedback is much richer than with negative feedback. First, it allows for the coexistence of multiple in- and out-of-phase asymmetric periodic square waves for the same parameter values. Second, it is tunable: The period of all the square-wave periodic pulses can be tuned with the ratio of the delays, and the duty cycle of the asymmetric square waves can be changed with the offset phase while the total period remains constant. Finally, in addition to the multiple in- and out-of-phase periodic square waves, low-frequency periodic asymmetric solutions oscillating in phase may coexist for the same values of the parameters. Our analytical results are in agreement with numerical simulations and bifurcation diagrams obtained by using continuation techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su Jing; Chen Shaohao; Jaron-Becker, Agnieszka
We theoretically study the control of two-photon excitation to bound and dissociative states in a molecule induced by trains of laser pulses, which are equivalent to certain sets of spectral phase modulated pulses. To this end, we solve the time-dependent Schroedinger equation for the interaction of molecular model systems with an external intense laser field. Our numerical results for the temporal evolution of the population in the excited states show that, in the case of an excited dissociative state, control schemes, previously validated for the atomic case, fail due to the coupling of electronic and nuclear motion. In contrast, formore » excitation to bound states the two-photon excitation probability is controlled via the time delay and the carrier-envelope phase difference between two consecutive pulses in the train.« less
Time delay in the Kuramoto model of coupled-phase oscillators
NASA Astrophysics Data System (ADS)
Yeung, Man Kit Stephen
1999-10-01
The Kuramoto model is a mean-field model of coupled phase oscillators with distributed natural frequencies. It was proposed to study collective synchronization in large systems of nonlinear oscillators. Here we generalize this model to allow time-delayed interactions. Despite the delay, synchronization is still possible. We derive exact stability conditions for the incoherent state, and for synchronized states and clustering states in the special case of noiseless identical oscillators. We also study the bifurcations of these states. We find that the incoherent state loses stability in a Hopf bifurcation. In the absence of noise, this leads to partial synchrony, where some oscillators are entrained to a common frequency. New phenomena caused by the delay include multistability among synchronization, incoherence, and clustering; and unsteady solutions with time-dependent order parameters. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase- locked loops, lasers, and communication satellites.
Measurement of time delay for a prospectively gated CT simulator.
Goharian, M; Khan, R F H
2010-04-01
For the management of mobile tumors, respiratory gating is the ideal option, both during imaging and during therapy. The major advantage of respiratory gating during imaging is that it is possible to create a single artifact-free CT data-set during a selected phase of the patient's breathing cycle. The purpose of the present work is to present a simple technique to measure the time delay during acquisition of a prospectively gated CT. The time delay of a Philips Brilliance BigBore (Philips Medical Systems, Madison, WI) scanner attached to a Varian Real-Time Position Management (RPM) system (Varian Medical Systems, Palo Alto, CA) was measured. Two methods were used to measure the CT time delay: using a motion phantom and using a recorded data file from the RPM system. In the first technique, a rotating wheel phantom was altered by placing two plastic balls on its axis and rim, respectively. For a desired gate, the relative positions of the balls were measured from the acquired CT data and converted into corresponding phases. Phase difference was calculated between the measured phases and the desired phases. Using period of motion, the phase difference was converted into time delay. The Varian RPM system provides an external breathing signal; it also records transistor-transistor logic (TTL) 'X-Ray ON' status signal from the CT scanner in a text file. The TTL 'X-Ray ON' indicates the start of CT image acquisition. Thus, knowledge of the start time of CT acquisition, combined with the real-time phase and amplitude data from the external respiratory signal, provides time-stamping of all images in an axial CT scan. The TTL signal with time-stamp was used to calculate when (during the breathing cycle) a slice was recorded. Using the two approaches, the time delay between the prospective gating signal and CT simulator has been determined to be 367 +/- 40 ms. The delay requires corrections both at image acquisition and while setting gates for the treatment delivery; otherwise the simulation and treatment may not be correlated with the patient's breathing.
Investigation of the delay time distribution of high power microwave surface flashover
NASA Astrophysics Data System (ADS)
Foster, J.; Krompholz, H.; Neuber, A.
2011-01-01
Characterizing and modeling the statistics associated with the initiation of gas breakdown has proven to be difficult due to a variety of rather unexplored phenomena involved. Experimental conditions for high power microwave window breakdown for pressures on the order of 100 to several 100 torr are complex: there are little to no naturally occurring free electrons in the breakdown region. The initial electron generation rate, from an external source, for example, is time dependent and so is the charge carrier amplification in the increasing radio frequency (RF) field amplitude with a rise time of 50 ns, which can be on the same order as the breakdown delay time. The probability of reaching a critical electron density within a given time period is composed of the statistical waiting time for the appearance of initiating electrons in the high-field region and the build-up of an avalanche with an inherent statistical distribution of the electron number. High power microwave breakdown and its delay time is of critical importance, since it limits the transmission through necessary windows, especially for high power, high altitude, low pressure applications. The delay time distribution of pulsed high power microwave surface flashover has been examined for nitrogen and argon as test gases for pressures ranging from 60 to 400 torr, with and without external UV illumination. A model has been developed for predicting the discharge delay time for these conditions. The results provide indications that field induced electron generation, other than standard field emission, plays a dominant role, which might be valid for other gas discharge types as well.
NASA Astrophysics Data System (ADS)
Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim
2017-10-01
Ultra-low emittance beams can be generated using ionization injection of electrons into a wakefield excited by a plasma beatwave accelerator. This all-optical method of electron beam generation uses three laser pulses of different colors. Two long-wavelength laser pulses, with frequency difference equal to the plasma frequency, resonantly drive a plasma wave without fully ionizing a gas. A short-wavelength injection laser pulse (with a small ponderomotive force and large peak electric field), co-propagating and delayed with respect to the beating long-wavelength lasers, ionizes a fraction of the remaining bound electrons at a trapped wake phase, generating an electron beam that is accelerated in the wakefield. Using the beating of long-wavelength pulses to generate the wakefield enables atomically-bound electrons to remain at low ionization potentials, reducing the required amplitude of the ionization pulse, and, hence, the initial transverse momentum and emittance of the injected electrons. An example is presented using two lines of a CO2 laser to form a plasma beatwave accelerator to drive the wake and a frequency-doubled Ti:Al2O3 laser for ionization injection. Supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Anticipated and zero-lag synchronization in motifs of delay-coupled systems
NASA Astrophysics Data System (ADS)
Mirasso, Claudio R.; Carelli, Pedro V.; Pereira, Tiago; Matias, Fernanda S.; Copelli, Mauro
2017-11-01
Anticipated and zero-lag synchronization have been observed in different scientific fields. In the brain, they might play a fundamental role in information processing, temporal coding and spatial attention. Recent numerical work on anticipated and zero-lag synchronization studied the role of delays. However, an analytical understanding of the conditions for these phenomena remains elusive. In this paper, we study both phenomena in systems with small delays. By performing a phase reduction and studying phase locked solutions, we uncover the functional relation between the delay, excitation and inhibition for the onset of anticipated synchronization in a sender-receiver-interneuron motif. In the case of zero-lag synchronization in a chain motif, we determine the stability conditions. These analytical solutions provide an excellent prediction of the phase-locked regimes of Hodgkin-Huxley models and Roessler oscillators.
Observation of the avalanche of runaway electrons in air in a strong electric field.
Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A
2012-08-24
The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.
Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field
NASA Astrophysics Data System (ADS)
Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.
2012-08-01
The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.
Prolonged CT urography in duplex kidney.
Gong, Honghan; Gao, Lei; Dai, Xi-Jian; Zhou, Fuqing; Zhang, Ning; Zeng, Xianjun; Jiang, Jian; He, Laichang
2016-05-13
Duplex kidney is a common anomaly that is frequently associated with multiple complications. Typical computed tomography urography (CTU) includes four phases (unenhanced, arterial, parenchymal and excretory) and has been suggested to considerably aid in the duplex kidney diagnosi. Unfortunately, regarding duplex kidney with prolonged dilatation, the affected parenchyma and tortuous ureters demonstrate a lack of or delayed excretory opacification. We used prolonged-delay CTU, which consists of another prolonged-delay phase (1- to 72-h delay; mean delay: 24 h) to opacify the duplicated ureters and affected parenchyma. Seventeen patients (9 males and 8 females; age range: 2.5-56 y; mean age: 40.4 y) with duplex kidney were included in this study. Unenhanced scans did not find typical characteristics of duplex kidney, except for irregular perirenal morphology. Duplex kidney could not be confirmed on typical four-phase CTU, whereas it could be easily diagnosed in axial and CT-3D reconstruction using prolonged CTU (prolonged-delay phase). Between January 2005 and October 2010, in this review board-approved study (with waived informed consent), 17 patients (9 males and 8 females; age range: 2.5 ~ 56 y; mean age: 40.4 y) with suspicious duplex kidney underwent prolonged CTU to opacify the duplicated ureters and confirm the diagnosis. Our results suggest the validity of prolonged CTU to aid in the evaluation of the function of the affected parenchyma and in the demonstration of urinary tract malformations.
Characterization and Application of Isolated Attosecond Pulses
NASA Astrophysics Data System (ADS)
Wei, Hui
Isolated attosecond pulse (IAP) is a tool of probing electronic dynamics occurring in atoms, molecules, clusters and solids, since the time scale of electronic motion is on the order of attoseconds. The generation, characterization and applications of IAPs has become one of the fast frontiers of laser experiments. This dissertation focuses on several aspects of attosecond physics. First, we study the driving wavelength scaling of the yield of high-order harmonic generation (HHG) by applying the quantum orbit theory. The unfavorable scaling law especially for the short quantum orbit is of great importance to attoseond pulse generation toward hundreds of eVs or keV photon energy region by mid-infrared (mid-IR) lasers. Second, we investigate the accuracy of the current frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG-CRAB) and phase retrieval by omega oscillation filtering (PROOF) methods for IAP characterization by simulating the experimental data by theoretical calculation. This calibration is critical but has not been carefully carried out before. We also present an improved method, namely the swPROOF which is more universal and robust than the original PROOF method. Third, we investigate the controversial topic of photoionization time delay. We find the limitation of the FROG-CRAB method which has been used to extract the photoionization time delay between the 2s and 2p channels in neon. The time delay retrieval is sensitive to the attochirp of the XUV pulse, which may lead to discrepancies between experiment and theory. A new fitting method is proposed in order to overcome the limitations of FROG-CRAB. Finally, IAPs are used to probe the dynamic of electron correlation in helium atom by means of attosecond transient absorption spectroscopy. The agreement between the measurement and our analytical model verifies the observation of time-dependent build up of the 2s2p Fano resonance.
Impulsive phase soft X-ray blueshifts at a loop footpoint
NASA Astrophysics Data System (ADS)
Zarro, Dominic M.; Slater, Gregory L.; Freeland, Samuel L.
1988-10-01
Solar Maximum Mission (SMM) observations of a solar flare that occurred on May 24, 1987 are described. The event was noteworthy in that it was observed during the impulsive phase with the SMM X-ray Poly-chromator (XRP) pointed at a location associated with the chromospheric footpoints of a system of coronal loops. Density-sensitive line ratios at the flare site imply an initially large electron density of 5 x 10 to the 12th/cu cm, which decreased an order of magnitude during the flare. Spectral scans of the soft X-ray Mg XI line at the site reveal asymmetric blueshifted (200 km/s) profiles concurrent with impulsive hard X-ray emission. The blueshift amplitude was correlated with the intensity of hard X-rays (with a phase delay of about 30 s) and showed fluctuations on a time scale comparable with the variation of hard X-ray emission. These observations are interpreted as evidence for chromospheric evaporation produced by heating and expansion of footpoint plasma.
Impulsive phase soft X-ray blueshifts at a loop footpoint
NASA Technical Reports Server (NTRS)
Zarro, Dominic M.; Slater, Gregory L.; Freeland, Samuel L.
1988-01-01
Solar Maximum Mission (SMM) observations of a solar flare that occurred on May 24, 1987 are described. The event was noteworthy in that it was observed during the impulsive phase with the SMM X-ray Poly-chromator (XRP) pointed at a location associated with the chromospheric footpoints of a system of coronal loops. Density-sensitive line ratios at the flare site imply an initially large electron density of 5 x 10 to the 12th/cu cm, which decreased an order of magnitude during the flare. Spectral scans of the soft X-ray Mg XI line at the site reveal asymmetric blueshifted (200 km/s) profiles concurrent with impulsive hard X-ray emission. The blueshift amplitude was correlated with the intensity of hard X-rays (with a phase delay of about 30 s) and showed fluctuations on a time scale comparable with the variation of hard X-ray emission. These observations are interpreted as evidence for chromospheric evaporation produced by heating and expansion of footpoint plasma.
Impulsive phase soft X-ray blueshifts at a loop footpoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarro, D.M.; Slater, G.L.; Freeland, S.L.
Solar Maximum Mission (SMM) observations of a solar flare that occurred on May 24, 1987 are described. The event was noteworthy in that it was observed during the impulsive phase with the SMM X-ray Poly-chromator (XRP) pointed at a location associated with the chromospheric footpoints of a system of coronal loops. Density-sensitive line ratios at the flare site imply an initially large electron density of 5 x 10 to the 12th/cu cm, which decreased an order of magnitude during the flare. Spectral scans of the soft X-ray Mg XI line at the site reveal asymmetric blueshifted (200 km/s) profiles concurrentmore » with impulsive hard X-ray emission. The blueshift amplitude was correlated with the intensity of hard X-rays (with a phase delay of about 30 s) and showed fluctuations on a time scale comparable with the variation of hard X-ray emission. These observations are interpreted as evidence for chromospheric evaporation produced by heating and expansion of footpoint plasma. 13 references.« less
NASA Astrophysics Data System (ADS)
Saleh, K.; Bouchier, A.; Merrer, P. H.; Llopis, O.; Cibiel, G.
2011-03-01
In the microwave domain and among many other advantages, optics represents an elegant solution to increase the quality Q factor in a system. Different types of optical resonators lead to Q factors above 109, and these resonators can be used as an alternative to optical delay lines to set up the frequency in optoelectronic oscillators (OEO). However, microwave-optics is also a complex field, and if the use of optical resonators in high spectral purity frequency generation systems like OEO has been already demonstrated, many aspects of these OEOs are still incompletely understood, especially the contribution to the oscillator phase noise of the different optical and microwave elements used in the oscillator system. In order to improve the phase noise of a fiber ring resonator based OEO, this oscillator has been theoretically studied in term of white frequency noise. In this paper, we present a theoretical study that has lead us to optimize a fiber ring resonator and the experimental phase noise results obtained for an OEO based on an optimized optical resonator. The OEO thermal stability is also investigated in this paper.
Time-delayed directional beam phased array antenna
Fund, Douglas Eugene; Cable, John William; Cecil, Tony Myron
2004-10-19
An antenna comprising a phased array of quadrifilar helix or other multifilar antenna elements and a time-delaying feed network adapted to feed the elements. The feed network can employ a plurality of coaxial cables that physically bridge a microstrip feed circuitry to feed power signals to the elements. The cables provide an incremental time delay which is related to their physical lengths, such that replacing cables having a first set of lengths with cables having a second set of lengths functions to change the time delay and shift or steer the antenna's main beam. Alternatively, the coaxial cables may be replaced with a programmable signal processor unit adapted to introduce the time delay using signal processing techniques applied to the power signals.
Doggrell, Sheila A
2017-07-01
Chemotherapy-induced nausea and vomiting (CINV) has a negative impact on the lives of subjects receiving chemotherapy. In 2009, the second generation 5-HT 3 -receptor antagonist, palonosetron, which is longer-acting than granisetron, was shown, as part of dual therapy with dexamethasone, to be superior to intravenous granisetron in the delayed phase of CINV. Area covered: In an attempt to maintain plasma levels of granisetron during the delayed phase of CINV, longer-acting preparations of granisetron have been manufactured. In addition to comparing intravenous/oral granisetron with palonosetron, this review considers the new longer-acting preparations of granisetron (transdermal and subcutanous) with emphasis on whether they are effective in the delayed phase of CINV. Expert opinion: Comparison of intravenous/oral granisetron and palonosetron, as part of triple therapy against the delayed phase of CINV, do not give clear-cut results as to non-inferiority or superiority of either agent. Subcutaneous granisetron is more convenient to use than transdermal granisetron, and has been shown to be non-inferior to palonosetron, as part of dual therapy, in the treatment of the acute and delayed phases of CINV. At present, it seems likely that there will be ongoing roles for intravenous and subcutaneous granisetron in CINV, but further data is required to ascertain the future of transdermal granisetron.
Linear-phase delay filters for ultra-low-power signal processing in neural recording implants.
Gosselin, Benoit; Sawan, Mohamad; Kerherve, Eric
2010-06-01
We present the design and implementation of linear-phase delay filters for ultra-low-power signal processing in neural recording implants. We use these filters as low-distortion delay elements along with an automatic biopotential detector to perform integral waveform extraction and efficient power management. The presented delay elements are realized employing continuous-time OTA-C filters featuring 9th-order equiripple transfer functions with constant group delay. Such analog delay enables processing neural waveforms with reduced overhead compared to a digital delay since it does not requires sampling and digitization. It uses an allpass transfer function for achieving wider constant-delay bandwidth than all-pole does. Two filters realizations are compared for implementing the delay element: the Cascaded structure and the Inverse follow-the-leader feedback filter. Their respective strengths and drawbacks are assessed by modeling parasitics and non-idealities of OTAs, and by transistor-level simulations. A budget of 200 nA is used in both filters. Experimental measurements with the chosen filter topology are presented and discussed.
McAlpine, D; Jiang, D; Shackleton, T M; Palmer, A R
1998-08-01
Responses of low-frequency neurons in the inferior colliculus (IC) of anesthetized guinea pigs were studied with binaural beats to assess their mean best interaural phase (BP) to a range of stimulating frequencies. Phase plots (stimulating frequency vs BP) were produced, from which measures of characteristic delay (CD) and characteristic phase (CP) for each neuron were obtained. The CD provides an estimate of the difference in travel time from each ear to coincidence-detector neurons in the brainstem. The CP indicates the mechanism underpinning the coincidence detector responses. A linear phase plot indicates a single, constant delay between the coincidence-detector inputs from the two ears. In more than half (54 of 90) of the neurons, the phase plot was not linear. We hypothesized that neurons with nonlinear phase plots received convergent input from brainstem coincidence detectors with different CDs. Presentation of a second tone with a fixed, unfavorable delay suppressed the response of one input, linearizing the phase plot and revealing other inputs to be relatively simple coincidence detectors. For some neurons with highly complex phase plots, the suppressor tone altered BP values, but did not resolve the nature of the inputs. For neurons with linear phase plots, the suppressor tone either completely abolished their responses or reduced their discharge rate with no change in BP. By selectively suppressing inputs with a second tone, we are able to reveal the nature of underlying binaural inputs to IC neurons, confirming the hypothesis that the complex phase plots of many IC neurons are a result of convergence from simple brainstem coincidence detectors.
NASA Astrophysics Data System (ADS)
Qi, Chenkun; Gao, Feng; Zhao, Xianchao; Wang, Qian; Ren, Anye
2018-06-01
On the ground the hardware-in-the-loop (HIL) simulation is a good approach to test the contact dynamics of spacecraft docking process in space. Unfortunately, due to the time delay in the system the HIL contact simulation becomes divergent. However, the traditional first-order phase lead compensation approach still result in a small divergence for the pure time delay. The serial Smith predictor and phase lead compensation approach proposed by the authors recently will lead to an over-compensation and an obvious convergence. In this study, a hybrid Smith predictor and phase lead compensation approach is proposed. The hybrid Smith predictor and phase lead compensation can achieve a higher simulation fidelity with a little convergence. The phase angle of the compensator is analyzed and the stability condition of the HIL simulation system is given. The effectiveness of the proposed compensation approach is tested by simulations on an undamped elastic contact process.
Chang, Anne-Marie; Aeschbach, Daniel; Duffy, Jeanne F.; Czeisler, Charles A.
2015-01-01
In the past 50 y, there has been a decline in average sleep duration and quality, with adverse consequences on general health. A representative survey of 1,508 American adults recently revealed that 90% of Americans used some type of electronics at least a few nights per week within 1 h before bedtime. Mounting evidence from countries around the world shows the negative impact of such technology use on sleep. This negative impact on sleep may be due to the short-wavelength–enriched light emitted by these electronic devices, given that artificial-light exposure has been shown experimentally to produce alerting effects, suppress melatonin, and phase-shift the biological clock. A few reports have shown that these devices suppress melatonin levels, but little is known about the effects on circadian phase or the following sleep episode, exposing a substantial gap in our knowledge of how this increasingly popular technology affects sleep. Here we compare the biological effects of reading an electronic book on a light-emitting device (LE-eBook) with reading a printed book in the hours before bedtime. Participants reading an LE-eBook took longer to fall asleep and had reduced evening sleepiness, reduced melatonin secretion, later timing of their circadian clock, and reduced next-morning alertness than when reading a printed book. These results demonstrate that evening exposure to an LE-eBook phase-delays the circadian clock, acutely suppresses melatonin, and has important implications for understanding the impact of such technologies on sleep, performance, health, and safety. PMID:25535358
Chang, Anne-Marie; Aeschbach, Daniel; Duffy, Jeanne F; Czeisler, Charles A
2015-01-27
In the past 50 y, there has been a decline in average sleep duration and quality, with adverse consequences on general health. A representative survey of 1,508 American adults recently revealed that 90% of Americans used some type of electronics at least a few nights per week within 1 h before bedtime. Mounting evidence from countries around the world shows the negative impact of such technology use on sleep. This negative impact on sleep may be due to the short-wavelength-enriched light emitted by these electronic devices, given that artificial-light exposure has been shown experimentally to produce alerting effects, suppress melatonin, and phase-shift the biological clock. A few reports have shown that these devices suppress melatonin levels, but little is known about the effects on circadian phase or the following sleep episode, exposing a substantial gap in our knowledge of how this increasingly popular technology affects sleep. Here we compare the biological effects of reading an electronic book on a light-emitting device (LE-eBook) with reading a printed book in the hours before bedtime. Participants reading an LE-eBook took longer to fall asleep and had reduced evening sleepiness, reduced melatonin secretion, later timing of their circadian clock, and reduced next-morning alertness than when reading a printed book. These results demonstrate that evening exposure to an LE-eBook phase-delays the circadian clock, acutely suppresses melatonin, and has important implications for understanding the impact of such technologies on sleep, performance, health, and safety.
Delayed Sleep Phase Disorder In Temporal Isolation
Campbell, Scott S.; Murphy, Patricia J.
2007-01-01
Study Objectives: This study sought to characterize sleep and the circadian rhythm of body core temperature of an individual with delayed sleep phase disorder (DSPD) in the absence of temporal cues and social entrainment and to compare those measures to age-matched normal control subjects studied under identical conditions. Design: Polysomnography and body temperature were recorded continuously for 4 days in entrained conditions, followed immediately by 17 days in a “free-running” environment. Setting: Temporal isolation facility in the Laboratory of Human Chronobiology, Weill Cornell Medical College. Participants: One individual who met criteria for delayed sleep phase disorder according to the International Classification of Sleep Disorders Diagnostic and Coding Manual (ICSD-2) and 3 age-matched control subjects. Interventions: None. Measurements and Results: The DSPD subject had a spontaneous period length (tau) of 25.38 hours compared to an average tau of 24.44 hours for the healthy controls. The DSPD subject also showed an altered phase relationship between sleep/wake and body temperature rhythms, as well as longer sleep latency, poorer sleep efficiency, and altered distribution of slow wave sleep (SWS) within sleep episodes, compared to control subjects. Conclusions: Delayed sleep phase disorder may be the reflection of an abnormal circadian timing system characterized not only by a long tau, but also by an altered internal phase relationship between the sleep/wake system and the circadian rhythm of body temperature. The latter results in significantly disturbed sleep, even when DSPD patients are permitted to sleep and wake at their preferred times. Citation: Campbell SS; Murphy PJ. Delayed sleep phase disorder in temporal isolation. SLEEP 2007;30(9):1225-1228. PMID:17910395
Analysis of ELF Radio Atmospherics Radiated by Rocket-Triggered Lightning
NASA Astrophysics Data System (ADS)
Dupree, N. A.; Moore, R. C.; Pilkey, J. T.; Uman, M. A.; Jordan, D. M.; Caicedo, J. A.; Hare, B.; Ngin, T. K.
2014-12-01
Experimental observations of ELF radio atmospherics produced by rocket-triggered lightning flashes are used to analyze Earth-ionosphere waveguide excitation and propagation characteristics. Rocket-triggered lightning experiments are performed at the International Center for Lightning Research and Testing (ICLRT) located at Camp Blanding, Florida. Long-distance ELF observations are performed in California, Greenland, and Antarctica. The lightning current waveforms directly measured at the base of the lightning channel (at the ICLRT) along with pertinent Lightning Mapping Array (LMA) data are used together with the Long Wavelength Propagation Capability (LWPC) code to predict the radio atmospheric (sferic) waveform observed at the receiver locations under various ionospheric conditions. We identify fitted exponential electron density profiles that accurately describe the observed propagation delays, phase delays, and signal amplitudes. The ability to infer ionospheric characteristics using distant ELF observations greatly enhances ionospheric remote sensing capabilities, especially in regard to interpreting observations of transient luminous events (TLEs) and other ionospheric effects associated with lightning.
Fujiki, Sadahiro; Watanabe, Narumi; Iwao, Yasunori; Noguchi, Shuji; Mizoguchi, Midori; Iwamura, Takeru; Itai, Shigeru
2015-08-01
The pharmaceutical properties of clarithromycin (CAM) tablets containing the metastable form I of crystalline CAM were investigated. Although the dissolution rate of form I was higher than that of stable form II, the release of CAM from form I tablet was delayed. Disintegration test and liquid penetration test showed that the disintegration of the tablet delayed because of the slow penetration of an external solution into form I tablet. Investigation by scanning electron microscopy revealed that the surface of form I tablet was covered with fine needle-shaped crystals following an exposure to the external solution. These crystals were identified as form IV crystals by powder X-ray diffraction. The phenomenon that CAM releases from tablet was inhibited by fine crystals spontaneously formed on the tablet surface could be applied to the design of sustained-release formulation systems with high CAM contents by minimizing the amount of functional excipients. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Gladwin, D.; Stewart, P.; Stewart, J.
2011-02-01
This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesterova, E.V.; Bouvier, S.; Bacroix, B.
Transmission electron microscopy (TEM) microstructures of a high-strength dual-phase steel DP800 have been examined after moderate plastic deformations in simple shear and uniaxial tension. Special attention has been paid to the effect of the intergranular hard phase (martensite) on the microstructure evolution in the near-grain boundary regions. Quantitative parameters of dislocation patterning have been determined and compared with the similar characteristics of previously examined single-phase steels. The dislocation patterning in the interiors of the ferrite grains in DP800 steel is found to be similar to that already observed in the single-phase IF (Interstitial Free) steel whereas the martensite-affected zones presentmore » a delay in patterning and display very high gradients of continuous (gradual) disorientations associated with local internal stresses. The above stresses are shown to control the work-hardening of dual-phase materials at moderate strains for monotonic loading and are assumed to influence their microstructure evolution and mechanical behavior under strain-path changes. - Highlights: • The microstructure evolution has been studied by TEM in a DP800 steel. • It is influenced by both martensite and dislocations in the initial state. • The DP800 steel presents a high work-hardening rate due to internal stresses.« less
Simulation of a circular phased array for a portable ultrasonic polar scan
NASA Astrophysics Data System (ADS)
Daemen, Jannes; Kersemans, Mathias; Martens, Arvid; Verboven, Erik; Delrue, Steven; Van Paepegem, Wim; Degrieck, Joris; Van Den Abeele, Koen
2018-04-01
The development of new composite materials, often anisotropic in nature, requires intricate approaches to characterize these materials and to detect internal defects. The Ultrasonic Polar Scan (UPS) is able to achieve both goals. During an UPS experiment, a material spot is insonified at several angles Ψ(θ,ϕ), after which the reflected or transmitted signal is recorded. While excellent results have been obtained using an in-house developed 5-axis scanner, UPS measurements with the current set-up are too lengthy and cumbersome for in-situ industrial application. Therefore, we propose to replace the complex mechanical steering of the transducers by a hemispherical phased array consisting of small PZT elements. This allows to create a compact and portable setup without compromising the current data quality. By successively activating a specific set of elements of the array and choosing appropriate inter-element time delays, the beam can be electronically steered from any angle to a fixed position on the targeted sample. Consequently, UPS reflection measurements can be performed at this position from a wide range of angles in a timeframe of seconds. Additionally, by using apodization windows, it is possible to efficiently reduce the intensity of unwanted side lobes and to create a phase profile which closely resembles that of a bounded plane wave, leading to an easier interpretation of the recorded data. The appropriate time delays and apodization parameters can be found though a multi-objective inverse problem in which both the phase profile and the side lobe reduction are optimized. This approach enables the creation of an effective beam profile to be used during UPS experiments for the characterization and inspection of composite materials. Our simulation approach is a crucial step towards a next-generation UPS device for industrial applications and in-field measurements.
NASA Astrophysics Data System (ADS)
Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.
2017-06-01
Spectral investigations of low-temperature photoionized plasmas created in a Kr/Ne/H2 gas mixture were performed. The low-temperature plasmas were generated by gas mixture irradiation using extreme ultraviolet pulses from a laser-plasma source. Emission spectra in the ultraviolet/visible range from the photoionized plasmas contained lines that mainly corresponded to neutral atoms and singly charged ions. Temporal variations in the plasma electron temperature and electron density were studied using different characteristic emission lines at various delay times. Results, based on Kr II lines, showed that the electron temperature decreased from 1.7 to 0.9 eV. The electron densities were estimated using different spectral lines at each delay time. In general, except for the Hβ line, in which the electron density decreased from 3.78 × 1016 cm-3 at 200 ns to 5.77 × 1015 cm-3 at 2000 ns, most of the electron density values measured from the different lines were of the order of 1015 cm-3 and decreased slightly while maintaining the same order when the delay time increased. The time dependences of the measured and simulated intensities of a spectral line of interest were also investigated. The validity of the partial or full local thermodynamic equilibrium (LTE) conditions in plasma was explained based on time-resolved electron density measurements. The partial LTE condition was satisfied for delay times in the 200 ns to 1500 ns range. The results are summarized, and the dominant basic atomic processes in the gas mixture photoionized plasma are discussed.
NASA Technical Reports Server (NTRS)
Cavicchia, M. A.; Alfano, R. R.
1995-01-01
The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.
Solar corona electron density distribution
NASA Astrophysics Data System (ADS)
Esposito, P. B.; Edenhofer, P.; Lueneburg, E.
1980-07-01
The paper discusses the three and one-half months of single-frequency time delay data which were acquired from the Helios 2 spacecraft around the time of its solar occultation. The excess time delay due to integrated effect of free electrons along the signal's ray path could be separated and modeled following the determination of the spacecraft trajectory. An average solar corona and equatorial electron density profile during solar minimum were deduced from the time delay measurements acquired within 5-60 solar radii of the sun. As a point of reference at 10 solar radii from the sun, an average electron density was 4500 el/cu cm. However, an asymmetry was found in the electron density as the ray path moved from the west to east solar limb. This may be related to the fact that during entry into occultation the heliographic latitude of the ray path was about 6 deg, while during exit it was 7 deg. The Helios density model is compared with similar models deduced from different experimental techniques.
Chaos control in delayed phase space constructed by the Takens embedding theory
NASA Astrophysics Data System (ADS)
Hajiloo, R.; Salarieh, H.; Alasty, A.
2018-01-01
In this paper, the problem of chaos control in discrete-time chaotic systems with unknown governing equations and limited measurable states is investigated. Using the time-series of only one measurable state, an algorithm is proposed to stabilize unstable fixed points. The approach consists of three steps: first, using Takens embedding theory, a delayed phase space preserving the topological characteristics of the unknown system is reconstructed. Second, a dynamic model is identified by recursive least squares method to estimate the time-series data in the delayed phase space. Finally, based on the reconstructed model, an appropriate linear delayed feedback controller is obtained for stabilizing unstable fixed points of the system. Controller gains are computed using a systematic approach. The effectiveness of the proposed algorithm is examined by applying it to the generalized hyperchaotic Henon system, prey-predator population map, and the discrete-time Lorenz system.
Shao, Jing; Sun, Junqiang
2012-08-15
We propose and experimentally demonstrate a simple and flexible photonic scheme for generation and modulation of ultrawideband (UWB) using a phase modulator and a fiber delay interferometer (DI)-based multichannel frequency discrimination. By introducing a Gaussian signal to the phase modulator, the UWB polarity-switchable doublet pulses can be achieved by combining the pair of UWB monocycle pulses with inverted polarities at the DI outputs under proper time delay. Furthermore, the pulse shape modulation, pulse position modulation, and on-off keying can be performed by coding the electrical data patterns and adjusting the time delay between the two monocycle pulses. Only a laser source introduced in the architecture guarantees the excellent dispersion tolerance over 75 km optical fiber link for UWB pulse sequence, which has potential application in future high-speed UWB impulse radio over optical fiber access networks.
Multichannel heterodyning for wideband interferometry, correlation and signal processing
Erskine, David J.
1999-01-01
A method of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized.
Multichannel heterodyning for wideband interferometry, correlation and signal processing
Erskine, D.J.
1999-08-24
A method is disclosed of signal processing a high bandwidth signal by coherently subdividing it into many narrow bandwidth channels which are individually processed at lower frequencies in a parallel manner. Autocorrelation and correlations can be performed using reference frequencies which may drift slowly with time, reducing cost of device. Coordinated adjustment of channel phases alters temporal and spectral behavior of net signal process more precisely than a channel used individually. This is a method of implementing precision long coherent delays, interferometers, and filters for high bandwidth optical or microwave signals using low bandwidth electronics. High bandwidth signals can be recorded, mathematically manipulated, and synthesized. 50 figs.
Yu, Haitao; Wang, Jiang; Du, Jiwei; Deng, Bin; Wei, Xile
2015-02-01
Effects of time delay on the local and global synchronization in small-world neuronal networks with chemical synapses are investigated in this paper. Numerical results show that, for both excitatory and inhibitory coupling types, the information transmission delay can always induce synchronization transitions of spiking neurons in small-world networks. In particular, regions of in-phase and out-of-phase synchronization of connected neurons emerge intermittently as the synaptic delay increases. For excitatory coupling, all transitions to spiking synchronization occur approximately at integer multiples of the firing period of individual neurons; while for inhibitory coupling, these transitions appear at the odd multiples of the half of the firing period of neurons. More importantly, the local synchronization transition is more profound than the global synchronization transition, depending on the type of coupling synapse. For excitatory synapses, the local in-phase synchronization observed for some values of the delay also occur at a global scale; while for inhibitory ones, this synchronization, observed at the local scale, disappears at a global scale. Furthermore, the small-world structure can also affect the phase synchronization of neuronal networks. It is demonstrated that increasing the rewiring probability can always improve the global synchronization of neuronal activity, but has little effect on the local synchronization of neighboring neurons.
The Induction of Chaos in Electronic Circuits Final Report-October 1, 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
R.M.Wheat, Jr.
2003-04-01
This project, now known by the name ''Chaos in Electronic Circuits,'' was originally tasked as a two-year project to examine various ''fault'' or ''non-normal'' operational states of common electronic circuits with some focus on determining the feasibility of exploiting these states. Efforts over the two-year duration of this project have been dominated by the study of the chaotic behavior of electronic circuits. These efforts have included setting up laboratory space and hardware for conducting laboratory tests and experiments, acquiring and developing computer simulation and analysis capabilities, conducting literature surveys, developing test circuitry and computer models to exercise and test ourmore » capabilities, and experimenting with and studying the use of RF injection as a means of inducing chaotic behavior in electronics. An extensive array of nonlinear time series analysis tools have been developed and integrated into a package named ''After Acquisition'' (AA), including capabilities such as Delayed Coordinate Embedding Mapping (DCEM), Time Resolved (3-D) Fourier Transform, and several other phase space re-creation methods. Many computer models have been developed for Spice and for the ATP (Alternative Transients Program), modeling the several working circuits that have been developed for use in the laboratory. And finally, methods of induction of chaos in electronic circuits have been explored.« less
Xiang, Zheng; Ni, Binbin; Zhou, Chen; ...
2016-05-03
Radiation belt electron flux dropouts are a kind of drastic variation in the Earth's magnetosphere, understanding of which is of both scientific and societal importance. We report multi-satellite simultaneous observations of magnetopause and atmospheric losses of radiation belt electrons during an event of intense solar wind dynamic pressure pulse, using electron flux data from a group of 14 satellites. Moreover, when the pulse occurred, magnetopause and atmospheric loss could take effect concurrently contributing to the electron flux dropout. Losses through the magnetopause were observed to be efficient and significant at L ≳ 5, owing to the magnetopause intrusion into Lmore » ~6 and outward radial diffusion associated with sharp negative gradient in electron phase space density. Losses to the atmosphere were directly identified from the precipitating electron flux observations, for which pitch angle scattering by plasma waves could be mainly responsible. While the convection and substorm injections strongly enhanced the energetic electron fluxes up to hundreds of keV, they could delay other than avoid the occurrence of electron flux dropout at these energies. Finally, we demonstrate that the pulse-time radiation belt electron flux dropout depends strongly on the specific interplanetary and magnetospheric conditions and that losses through the magnetopause and to the atmosphere and enhancements of substorm injection play an essential role in combination, which should be incorporated as a whole into future simulations for comprehending the nature of radiation belt electron flux dropouts.« less
Jensen, Judy L; Jones, Christopher R; Kartsonaki, Christiana; Packer, Kristyn A; Adler, Frederick R; Liou, Theodore G
2017-08-01
Cystic fibrosis (CF) transmembrane regulator (CFTR) protein dysfunction causes CF. Improving survival allows detection of increasingly subtle disease manifestations. CFTR dysfunction in the central nervous system (CNS) may disturb circadian rhythm and thus sleep phase. We studied sleep in adults to better understand potential CNS CFTR dysfunction. We recruited participants from April 2012 through April 2015 and administered the Munich Chronotype Questionnaire (MCTQ). We compared free-day sleep measurements between CF and non-CF participants and investigated associations with CF survival predictors. We recruited 23 female and 22 male adults with CF aged 18 to 46 years and 26 female and 22 male volunteers aged 18 to 45 years. Compared with volunteers without CF, patients with CF had delayed sleep onset (0.612 h; P = .015), midsleep (1.11 h; P < .001), and wake (1.15 h; P < .001) times and prolonged sleep latency (7.21 min; P = .05) and duration (0.489 h; P = .05). Every hour delay in sleep onset was associated with shorter sleep duration by 0.29 h in patients with CF and 0.75 h in subjects without CF (P = .007) and longer sleep latency by 7.51 min in patients with CF and 1.6 min in volunteers without CF (P = .035). Among patients with CF, FEV 1 % predicted, prior acute pulmonary exacerbations, and weight were independent of all free-day sleep measurements. CF in adults is associated with marked delays in sleep phase consistent with circadian rhythm phase delays. Independence from disease characteristics predictive of survival suggests that sleep phase delay is a primary manifestation of CFTR dysfunction in the CNS. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
Realization of Ultra-High Spectral Purity with the Opto-Electronic Oscillator
NASA Technical Reports Server (NTRS)
Yao, Steve; Maleki, Lute; Ji, Yu; Dick, John
2000-01-01
Recent results with the Opto-Electronic Oscillator (OEO) have led to the realization of very high spectral purity. Experimental results have produced a performance characterized by a noise as low as by -50 dBc/Hz at 10 Hz for a 10 GHz OEO. The unit was built in a compact package containing an integrated DFB laser and the modulator. This performance is significant because the oscillator is free running, and since the noise in an OEO is independent of the oscillation frequency, the same result can also be obtained at higher frequencies. The result also demonstrates that high frequency, high performance, low cost, and miniature OEO can be realized with the integrated photonic technology. We have also developed a novel carrier suppression technique to reduce the 1/f phase noise of the oscillator even further. The technique is based on the use of a long fiber delay, in place of the high Q cavity, to implement carrier suppression. Our preliminary experimental results indicate an extra 10 to 20 dB phase noise reduction of the OEO with this novel technique. Further noise reduction beyond this value is expected with improved circuit design and longer reference fiber.
Simulation of angular-resolved RABBITT measurements in noble-gas atoms
NASA Astrophysics Data System (ADS)
Bray, Alexander W.; Naseem, Faiza; Kheifets, Anatoli S.
2018-06-01
We simulate angular-resolved RABBITT (reconstruction of attosecond beating by interference of two-photon transitions) measurements on valence shells of noble-gas atoms (Ne, Ar, Kr, and Xe). Our nonperturbative numerical simulation is based on solution of the time-dependent Schrödinger equation (TDSE) for a target atom driven by an ionizing XUV and dressing IR fields. From these simulations we extract the angular-dependent magnitude and phase of the RABBITT oscillations and deduce the corresponding angular anisotropy β parameter and Wigner time delay τW for the single XUV photon absorption that initiates the RABBITT process. Said β and τW parameters are compared with calculations in the random-phase approximation with exchange (RPAE), which includes intershell correlation. This comparison is used to test various effective potentials employed in the one-electron TDSE. In lighter atoms (Ne and Ar), several effective potentials are found to provide accurate simulations of RABBITT measurements for a wide range of photon energies up to 100 eV above the valence-shell threshold. In heavier atoms (Kr and Xe), the onset of strong correlation with the d shell restricts the validity of the single active electron approximation to several tens of eV above the valence-shell threshold.
Creating high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses
NASA Astrophysics Data System (ADS)
Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Xu, ZiShan; Liu, HongPing
2018-04-01
We propose a method of producing high-purity angular-momentum-state Rydberg atoms by a pair of unipolar laser pulses. The first positive-polarity optical half-cycle pulse is used to prepare an excited-state wave packet while the second one is less intense, but with opposite polarity and time delayed, and is employed to drag back the escaping free electron and clip the shape of the bound Rydberg wave packet, selectively increasing or decreasing a fraction of the angular-momentum components. An intelligent choice of laser parameters such as phase and amplitude helps us to control the orbital-angular-momentum composition of an electron wave packet with more facility; thus, a specified angular-momentum state with high purity can be achieved. This scheme of producing high-purity angular-momentum-state Rydberg atoms has significant application in quantum-information processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Gisbergen, J.G.M.; Meijer, H.E.H.
1991-01-01
The microrheology of polymer blends as influenced by crosslinks induced in the dispersed phase via electron beam irradiation, is systematically investigated for the model system polystyrene/low density polyethylene (PS/LDPE). Both break-up of threads and coalescence of particles are delayed to a large extent, but are not inhibited completely and occur faster than would be expected for a nonirradiated material with a comparable viscosity. Small amplitude, dynamic rheological measurements indicated that in the irradiated materials a yield stress could exist. In contrast, direct microrheological measurements showed that this yield stress, which would prevent both break-up and coalescence, could not be realizedmore » by EB irradiation. Apparently, the direct study of the microrheology of a blend system is important for the prediction of the development of its morphology and it is not possible to rely only on rheological data obtained via other methods.« less
NASA Astrophysics Data System (ADS)
Martinez, F.; Marx, G.; Schweikhard, L.; Vass, A.; Ziegler, F.
2011-07-01
ClusterTrap has been designed to investigate properties of atomic clusters in the gas phase with particular emphasis on the dependence on the cluster size and charge state. The combination of cluster source, Penning trap and time-of-flight mass spectrometry allows a variety of experimental schemes including collision-induced dissociation, photo-dissociation, further ionization by electron impact, and electron attachment. Due to the storage capability of the trap extended-delay reaction experiments can be performed. Several recent modifications have resulted in an improved setup. In particular, an electrostatic quadrupole deflector allows the coupling of several sources or detectors to the Penning trap. Furthermore, a linear radio-frequency quadrupole trap has been added for accumulation and ion bunching and by switching the potential of a drift tube the kinetic energy of the cluster ions can be adjusted on their way towards or from the Penning trap. Recently, experiments on multiply negatively charged clusters have been resumed.
GPS detection of ionospheric perturbations following the January 17, 1994, northridge earthquake
NASA Technical Reports Server (NTRS)
Calais, Eric; Minster, J. Bernard
1995-01-01
Sources such as atmospheric or buried explosions and shallow earthquakes producing strong vertical ground displacements produce pressure waves that propagate at infrasonic speeds in the atmosphere. At ionospheric altitudes low frequency acoustic waves are coupled to ionispheric gravity waves and induce variations in the ionoispheric electron density. Global Positioning System (GPS) data recorded in Southern California were used to compute ionospheric electron content time series for several days preceding and following the January 17, 1994, M(sub w) = 6.7 Northridge earthquake. An anomalous signal beginning several minutes after the earthquake with time delays that increase with distance from the epicenter was observed. The signal frequency and phase velocity are consistent with results from numerical models of atmospheric-ionospheric acoustic-gravity waves excited by seismic sources as well as previous electromagnetic sounding results. It is believed that these perturbations are caused by the ionospheric response to the strong ground displacement associated with the Northridge earthquake.
The WS transform for the Kuramoto model with distributed amplitudes, phase lag and time delay
NASA Astrophysics Data System (ADS)
Lohe, M. A.
2017-12-01
We apply the Watanabe-Strogatz (WS) transform to a generalized Kuramoto model with distributed parameters describing the amplitude of oscillation, phase lag, and time delay at each node of the system. The model has global coupling and identical frequencies, but allows for repulsive interactions at arbitrary nodes leading to conformist-contrarian phenomena together with variable amplitude and time-delay effects. We show how to determine the initial values of the WS system for any initial conditions for the Kuramoto system, and investigate the asymptotic behaviour of the WS variables. For the case of zero time delay the possible asymptotic configurations are determined by the sign of a single parameter μ which measures whether or not the attractive nodes dominate the repulsive nodes. If μ>0 the system completely synchronizes from general initial conditions, whereas if μ<0 one of two types of phase-locked synchronization occurs, depending on the initial values, while for μ=0 periodic solutions can occur. For the case of arbitrary non-uniform time delays we derive a stability condition for completely synchronized solutions.
NASA Astrophysics Data System (ADS)
Nakano, Tomoyuki; Tanaka, Yasunori; Murai, K.; Uesugi, Y.; Ishijima, T.; Tomita, K.; Suzuki, K.; Shinkai, T.
2018-05-01
This paper focuses on a fundamental experimental approach to thermal arc re-ignition processes in a variety of gas flows in a nozzle. Using power semiconductor switches in the experimental system, the arc current and the voltage applied to the arc were controlled with precise timing. With this system, residual arcs were created in decaying phase under free recovery conditions; arc re-ignition was then intentionally instigated by application of artificial voltage—i.e. quasi-transient recovery voltage—to study the arc behaviour in both decaying and re-ignition phases. In this study, SF6, CO2, N2, O2, air and Ar arcs were intentionally re-ignited by quasi-TRV application at 20 μs delay time from initiation of free recovery condition. Through these experiments, the electron density at the nozzle throat was measured using a laser Thomson scattering method together with high speed video camera observation during the re-ignition process. Temporal variations in the electron density from the arc decaying to re-ignition phases were successfully obtained for each gas-blast arc at the nozzle throat. In addition, initial dielectric recovery properties of SF6, CO2, air and Ar arcs were measured under the same conditions. These data will be useful in the fundamental elucidation of thermal arc re-ignition processes.
Digital signal processor and processing method for GPS receivers
NASA Technical Reports Server (NTRS)
Thomas, Jr., Jess B. (Inventor)
1989-01-01
A digital signal processor and processing method therefor for use in receivers of the NAVSTAR/GLOBAL POSITIONING SYSTEM (GPS) employs a digital carrier down-converter, digital code correlator and digital tracking processor. The digital carrier down-converter and code correlator consists of an all-digital, minimum bit implementation that utilizes digital chip and phase advancers, providing exceptional control and accuracy in feedback phase and in feedback delay. Roundoff and commensurability errors can be reduced to extremely small values (e.g., less than 100 nanochips and 100 nanocycles roundoff errors and 0.1 millichip and 1 millicycle commensurability errors). The digital tracking processor bases the fast feedback for phase and for group delay in the C/A, P.sub.1, and P.sub.2 channels on the L.sub.1 C/A carrier phase thereby maintaining lock at lower signal-to-noise ratios, reducing errors in feedback delays, reducing the frequency of cycle slips and in some cases obviating the need for quadrature processing in the P channels. Simple and reliable methods are employed for data bit synchronization, data bit removal and cycle counting. Improved precision in averaged output delay values is provided by carrier-aided data-compression techniques. The signal processor employs purely digital operations in the sense that exactly the same carrier phase and group delay measurements are obtained, to the last decimal place, every time the same sampled data (i.e., exactly the same bits) are processed.
Mohajerin-Ariaei, Amirhossein; Ziyadi, Morteza; Chitgarha, Mohammad Reza; Almaiman, Ahmed; Cao, Yinwen; Shamee, Bishara; Yang, Jeng-Yuan; Akasaka, Youichi; Sekiya, Motoyoshi; Takasaka, Shigehiro; Sugizaki, Ryuichi; Touch, Joseph D; Tur, Moshe; Langrock, Carsten; Fejer, Martin M; Willner, Alan E
2015-07-15
We demonstrate an all-optical phase noise mitigation scheme based on the generation, delay, and coherent summation of higher order signal harmonics. The signal, its third-order harmonic, and their corresponding delayed variant conjugates create a staircase phase-transfer function that quantizes the phase of quadrature-phase-shift-keying (QPSK) signal to mitigate phase noise. The signal and the harmonics are automatically phase-locked multiplexed, avoiding the need for phase-based feedback loop and injection locking to maintain coherency. The residual phase noise converts to amplitude noise in the quantizer stage, which is suppressed by parametric amplification in the saturation regime. Phase noise reduction of ∼40% and OSNR-gain of ∼3 dB at BER 10(-3) are experimentally demonstrated for 20- and 30-Gbaud QPSK input signals.
LIGHT EXPOSURE AMONG ADOLESCENTS WITH DELAYED SLEEP PHASE DISORDER: A PROSPECTIVE COHORT STUDY
Auger, R. Robert; Burgess, Helen J.; Dierkhising, Ross A.; Sharma, Ruchi G.; Slocumb, Nancy L.
2012-01-01
Our study objective was to compare light exposure and sleep parameters between adolescents with delayed sleep phase disorder (n=16, 15.3 ± 1.8 years) and unaffected controls (n=22, 13.7 ± 2.4 years) using a prospective cohort design. Participants wore wrist actigraphs with photosensors for 14 days. Mean hourly lux levels from 20:00-05:00 h and 05:00-14:00 h were examined, in addition to the 9-hour intervals prior to sleep onset and after sleep offset. Sleep parameters were compared separately, and were also included as covariates within models that analyzed associations with specified light intervals. Additional covariates included group and school night status. Adolescent subjects with delayed sleep phase disorder received more evening (p<0.02, 22:00-02:00 h) and less morning light (p<0.05, 08:00-09:00 h and 10:00-12:00 h) than controls, but had less pre-sleep exposure with adjustments for the time of sleep onset (p<0.03, fifth-seventh hours prior to onset hour). No differences were identified with respect to the sleep offset interval. Increased total sleep time and later sleep offset times were associated with decreased evening (p<0.001 and p=0.02, respectively) and morning (p=0.01 and p<0.001, respectively) exposure, and later sleep onset times were associated with increased evening exposure (p<0.001). Increased total sleep time also correlated with increased exposure during the 9 hours before sleep-onset (p=0.01), and a later sleep onset time corresponded with decreased exposure during the same interval (p<0.001). Outcomes persisted regardless of school night status. In conclusion, light exposure interpretation requires adjustments for sleep timing among adolescents with delayed sleep phase disorder. Pre- and post-sleep exposure do not appear to contribute directly to phase delays. Sensitivity to morning light may be reduced among adolescents with delayed sleep phase disorder. PMID:22080736
Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase.
Lu, Jian; Zhang, Yaqing; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A
2016-10-18
Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.
Development of gait segmentation methods for wearable foot pressure sensors.
Crea, S; De Rossi, S M M; Donati, M; Reberšek, P; Novak, D; Vitiello, N; Lenzi, T; Podobnik, J; Munih, M; Carrozza, M C
2012-01-01
We present an automated segmentation method based on the analysis of plantar pressure signals recorded from two synchronized wireless foot insoles. Given the strict limits on computational power and power consumption typical of wearable electronic components, our aim is to investigate the capability of a Hidden Markov Model machine-learning method, to detect gait phases with different levels of complexity in the processing of the wearable pressure sensors signals. Therefore three different datasets are developed: raw voltage values, calibrated sensor signals and a calibrated estimation of total ground reaction force and position of the plantar center of pressure. The method is tested on a pool of 5 healthy subjects, through a leave-one-out cross validation. The results show high classification performances achieved using estimated biomechanical variables, being on average the 96%. Calibrated signals and raw voltage values show higher delays and dispersions in phase transition detection, suggesting a lower reliability for online applications.
Loui, Hung; Brock, Billy C.
2016-10-25
The various embodiments presented herein relate to beam steering an array antenna by modifying intermediate frequency (IF) waveforms prior to conversion to RF signals. For each channel, a direct digital synthesis (DDS) component can be utilized to generate a waveform or modify amplitude, timing and phase of a waveform relative to another waveform, whereby the generation/modification can be performed prior to the IF input port of a mixer on each channel. A local oscillator (LO) signal can be utilized to commonly drive each of the mixers. After conversion at the RF output port of each of the mixers, each RF signal can be transmitted by a respective antenna element in the antenna array. Initiation of transmission of each RF signal can be performed simultaneously at each antenna. The process can be reversed during receive whereby timing, amplitude, and phase of the received can be modified digitally post ADC conversion.
Automated delay estimation at signalized intersections : phase I concept and algorithm development.
DOT National Transportation Integrated Search
2011-07-01
Currently there are several methods to measure the performance of surface streets, but their capabilities in dynamically estimating vehicle delay are limited. The objective of this research is to develop a method to automate traffic delay estimation ...
Delayed feedback control in quantum transport.
Emary, Clive
2013-09-28
Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.
Thermally activated delayed fluorescence of a Zr-based metal–organic framework
Mieno, H.; Kabe, R.; Allendorf, M. D.; ...
2017-12-22
Here, the first metal–organic framework exhibiting thermally activated delayed fluorescence (TADF) was developed. The zirconium-based framework (UiO-68-dpa) uses a newly designed linker composed of a terphenyl backbone, an electron-accepting carboxyl group, and an electron-donating diphenylamine and exhibits green TADF emission with a photoluminescence quantum yield of 30% and high thermal stability.
Controlled patterns of daytime light exposure improve circadian adjustment in simulated night work.
Dumont, Marie; Blais, Hélène; Roy, Joanie; Paquet, Jean
2009-10-01
Circadian misalignment between the endogenous circadian signal and the imposed rest-activity cycle is one of the main sources of sleep and health troubles in night shift workers. Timed bright light exposure during night work can reduce circadian misalignment in night workers, but this approach is limited by difficulties in incorporating bright light treatment into most workplaces. Controlled light and dark exposure during the daytime also has a significant impact on circadian phase and could be easier to implement in real-life situations. The authors previously described distinctive light exposure patterns in night nurses with and without circadian adaptation. In the present study, the main features of these patterns were used to design daytime light exposure profiles. Profiles were then tested in a laboratory simulation of night work to evaluate their efficacy in reducing circadian misalignment in night workers. The simulation included 2 day shifts followed by 4 consecutive night shifts (2400-0800 h). Healthy subjects (15 men and 23 women; 20-35 years old) were divided into 3 groups to test 3 daytime light exposure profiles designed to produce respectively a phase delay (delay group, n=12), a phase advance (advance group, n=13), or an unchanged circadian phase (stable group, n=13). In all 3 groups, light intensity was set at 50 lux during the nights of simulated night work. Salivary dim light melatonin onset (DLMO) showed a significant phase advance of 2.3 h (+/-1.3 h) in the advance group and a significant phase delay of 4.1 h (+/-1.3 h) in the delay group. The stable group showed a smaller but significant phase delay of 1.7 h (+/-1.6 h). Urinary 6-sulfatoxymelatonin (aMT6s) acrophases were highly correlated to salivary DLMOs. Urinary aMT6s acrophases were used to track daily phase shifts. They showed that phase shifts occurred rapidly and differed between the 3 groups by the 3rd night of simulated night work. These results show that significant phase shifts can be achieved in night workers by controlling daytime light exposure, with no nighttime intervention.
NASA Technical Reports Server (NTRS)
Chomiuk, Laura; Nelson, Thomas; Mukai, Koji; Solokoski, J. L.; Rupen, Michael P.; Page, Kim L.; Osborne, Julian P.; Kuulkers, Erik; Mioduszewski, Amy J.; Roy, Nirupam;
2014-01-01
The recurrent nova T Pyx underwent its sixth historical outburst in 2011, and became the subject of an intensive multi-wavelength observational campaign.We analyze data from the Swift and Suzaku satellites to produce a detailed X-ray light curve augmented by epochs of spectral information. X-ray observations yield mostly non-detections in the first four months of outburst, but both a super-soft and hard X-ray component rise rapidly after Day 115. The super-soft X-ray component, attributable to the photosphere of the nuclear-burning white dwarf, is relatively cool (approximately 45 electron volts) and implies that the white dwarf in T Pyx is significantly below the Chandrasekhar mass (approximately 1 M). The late turn-on time of the super-soft component yields a large nova ejecta mass (approximately greater than 10(exp -5) solar mass), consistent with estimates at other wavelengths. The hard X-ray component is well fit by a approximately 1 kiloelectron volt thermal plasma, and is attributed to shocks internal to the 2011 nova ejecta. The presence of a strong oxygen line in this thermal plasma on Day 194 requires a significantly super-solar abundance of oxygen and implies that the ejecta are polluted by white dwarf material. The X-ray light curve can be explained by a dual-phase ejection, with a significant delay between the first and second ejection phases, and the second ejection finally released two months after outburst. A delayed ejection is consistent with optical and radio observations of T Pyx, but the physical mechanism producing such a delay remains a mystery.
Pulmonary MRA: differentiation of pulmonary embolism from truncation artefact.
Bannas, Peter; Schiebler, Mark L; Motosugi, Utaroh; François, Christopher J; Reeder, Scott B; Nagle, Scott K
2014-08-01
Truncation artefact (Gibbs ringing) causes central signal drop within vessels in pulmonary magnetic resonance angiography (MRA) that can be mistaken for emboli, reducing diagnostic accuracy for pulmonary embolism (PE). We propose a quantitative approach to differentiate truncation artefact from PE. Twenty-eight patients who underwent pulmonary computed tomography angiography (CTA) for suspected PE were recruited for pulmonary MRA. Signal intensity drops within pulmonary arteries that persisted on both arterial-phase and delayed-phase MRA were identified. The percent signal loss between the vessel lumen and central drop was measured. CTA served as the reference standard for presence of pulmonary emboli. A total of 65 signal intensity drops were identified on MRA. Of these, 48 (74%) were artefacts and 17 (26%) were PE, as confirmed by CTA. Truncation artefacts had a significantly lower median signal drop than PE on both arterial-phase (26% [range 12-58%] vs. 85% [range 53-91%]) and delayed-phase MRA (26% [range 11-55%] vs. 77% [range 47-89%]), p < 0.0001 for both. Receiver operating characteristic (ROC) analyses revealed a threshold value of 51% (arterial phase) and 47% signal drop (delayed phase) to differentiate between truncation artefact and PE with 100% sensitivity and greater than 90% specificity. Quantitative signal drop is an objective tool to help differentiate truncation artefact and pulmonary embolism in pulmonary MRA. • Inexperienced readers may mistake truncation artefacts for emboli on pulmonary MRA • Pulmonary emboli have non-uniform signal drop • 51% (arterial phase) and 47% (delayed phase) cut-off differentiates truncation artefact from PE • Quantitative signal drop measurement enables more accurate pulmonary embolism diagnosis with MRA.
Bakare, Muideen O; Bello-Mojeed, Mashudat A; Munir, Kerim M; Ogun, Oluwayemi C; Eaton, Julian
2016-04-29
Late diagnosis and interventions characterize childhood neurodevelopmental disorders in Sub-Saharan Africa. This has negatively impacted on the prognosis of the children with neurodevelopmental disorders. This study examined the prevalence and pattern of neurodevelopmental delays among children under the age of 3 years attending immunization clinics in Lagos State, Nigeria and also affords opportunity of early follow-up and interventions, which had been documented to improve prognosis. The study involved two stage assessments; which consisted of first phase screening of the children for neurodevelopmental delays in immunization clinics at primary healthcare centers Lagos State, Nigeria and second phase which consists of definitive clinical evaluation and follow-up interventions for children screened positive for neurodevelopmental delays. Twenty seven (0.9%) of a total of 3,011 children under the age of 3 years were screened positive for neurodevelopmental delays and subsequently undergoing clinical evaluation and follow-up interventions. Preliminary working diagnoses among these children include cerebral palsy, autism spectrum disorder trait, nutritional deficiency, Down syndrome and Non-specific neurodevelopmental delay with co-morbid seizure disorder accounting for 33.3%, 14.8%, 18.5%, 7.4% and 25.9% respectively. This is a preliminary report that would be followed up with information on medium and long term intervention phase.
Delay of behavioral estrus in hamsters and phenobarbital.
Alleva, J J
1989-01-01
The onset of behavioral estrus was used as a phase marker of the hamster timing system in SLD 16:8 (dark 20:00-04:00). TZ was injected between 11:00 of cycle day 3 and noon of cycle day 4 when onset of estrus was determined. At no time did injection of TZ cause a phase advance in SLD 16:8. Small delays of estrus resulted from 11:00-16:00 injections but marked delays began with the 17:00 injection. Phenobarbital was injected between noon and 19:30 on cycle day 3. Injections between noon and 16:00 had no effect but all later injections beginning at 17:00 delayed estrus, the 17:30 injection causing the greatest delay. Diazepam also markedly delayed estrus when tested at 17:30. These results with three drugs support results with light pulses that 18:00 in SLD 16:8 marks the same phase of the 24-h hamster timing system as the onset of wheel running does in DD, LL, and WLD. These findings with three GABA potentiators extend to SLD previous evidence based on the onset of wheel running in DD, LL and WLD that GABA may be involved in hamster timekeeping and its responses to light and drugs.
Development and testing of a decision aid for women considering delayed breast reconstruction.
Metcalfe, Kelly; Zhong, Toni; O'Neill, Anne C; McCready, David; Chan, Linda; Butler, Kate; Brennenstuhl, Sarah; Hofer, Stefan O P
2018-03-01
The decision to have post-mastectomy breast reconstruction (PMBR) is highly complex and many women feel ill equipped to make this decision. Decision aids have been advocated to promote patient involvement in decision-making by streamlining and standardizing communication between the patient and the health care professional. In this study, we report on the development and testing of a decision aid (DA) for breast cancer survivors considering delayed PMBR. The DA was developed and evaluated in three phases. The first phase included the development of the DA with input and review by practitioners and key stakeholders. The second phase involved pilot testing of the feasibility and acceptability of the DA with a convenience sample of women with delayed PMBR. The third phase involved a pretest/post-test evaluation of the DA for women who were making decisions about their PMBR options. The DA was developed using the Ottawa Decision Support Framework. In the second phase of the study, 21 women completed the acceptability survey, of whom 100% reported that they would recommend the DA to other women. In the third phase, decisional conflict decreased significantly (p < 0.001) and knowledge increased significantly (p < 0.001) from prior to using the DA to 1-2 weeks after using the DA. The DA is feasible and acceptable to women considering delayed PMBR. Furthermore, the DA is effective at reducing decisional conflict and increasing knowledge about delayed PMBR. The DA is an appropriate tool to be used in addition with standard care in women considering PMBR. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Macdoran, P. F. (Inventor)
1984-01-01
The columnar electron content of the ionosphere between a spacecraft and a receiver is measured in realtime by cross correlating two coherently modulated signals transmitted at different frequencies (L1,L2) from the spacecraft to the receiver using a cross correlator. The time difference of arrival of the modulated signals is proportional to electron content of the ionosphere. A variable delay is adjusted relative to a fixed delay in the respective channels (L1,L2) to produce a maximum at the cross correlator output. The difference in delay required to produce this maximum is a measure of the columnar electron content of the ionosphere. A plurality of monitoring stations and spacecraft (Global Positioning System satellites) are employed to locate any terrestrial event that produces an ionospheric disturbance.
NASA Astrophysics Data System (ADS)
Yang, Dingge; Wang, Lijun; Jia, Shenli; Huo, Xintao; Zhang, Ling; Liu, Ke; Shi, Zongqian
2009-03-01
Based on a two-dimensional magnetohydrodynamic model, the dynamic process in a high-current vacuum arc (as in a high-power circuit breaker) was simulated and analysed. A half-wave of sinusoidal current was represented as a series of discrete steps, rather than as a continuous wave. The simulation was done at each step, i.e. at each of the discrete current values. In the simulation, the phase delay by which the axial magnetic field lags the current was taken into account. The curves which represent the variation of arc parameters (such as electron temperature) look sinusoidal, but the parameter values at a discrete moment in the second 1/4 cycle are smaller than those at the corresponding moment in the first 1/4 cycle (although the currents are equal at these two moments). This is perhaps mainly due to the magnetic field delay. In order to verify the correctness of the simulation, the simulation results were compared in part with the experimental results. It was seen from the experimental results that the arc column was darker but more uniform in the second 1/4 cycle than in the first 1/4 cycle, in agreement with the simulation results.
Ultra-fast movies of thin-film laser ablation
NASA Astrophysics Data System (ADS)
Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.
2012-11-01
Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.
NASA Astrophysics Data System (ADS)
Mathar, Richard J.
Long-baseline interferometry detects fringes created by superposition of two beams of light collected by two telescopes pointing into a common direction. The external path difference is commonly compensated by adding a variable optical path length (delay) through air for one beam such that the optical path difference between the beams remains close to zero near the detector. The ABCD formula assigns a (wrapped) phase to the signals A to D of an interference pattern shifted by multiples of 90 degrees in phase. We study the interplay between a broad spectral passband of the optics and the dispersion of the air in the compensating delay, which leads to small deviations between the ABCD phase and the reduced, monochromatic group-delay representation of the wave packets. This adds dispersion to the effects that have been discussed for evacuated interferometers before (Milman 2005).
Kumar, Anita J.; Rowe, Jacob M.; Goldstone, Anthony H; Fielding, Adele; Marks, David I; Litzow, Mark; Paietta, Elisabeth; Lazarus, Hillard M.; Tallman, Martin S.; Luger, Selina M.; Loren, Alison W.
2016-01-01
Adults with acute lymphoblastic leukemia (ALL) have a poorer prognosis than children due to a high risk of relapse. One explanation may be variable adherence to dose-intense chemotherapy. However, little is known about risk factors for delays in therapy and their impact on survival. We conducted an analysis of ECOG 2993/UKALLXII trial to study delays in post-remission chemotherapy in adults with newly-diagnosed ALL. Logistic regression was used to identify risk factors for a very long delay (>4 weeks, VLD) in start of intensification therapy. Cox regression was used to evaluate the impact of delays on overall and event-free survival (OS, EFS). We evaluated 1076 Philadelphia chromosome negative (Ph-) patients who completed induction chemotherapy, achieved complete remission, and started intensification. Factors independently associated with VLD included: duration of hospitalization (Odds Ratio (OR)=1.2, p<0.001) during Phase I; thrombocytopenia during Phase I (OR=1.16, p=0.004) or Phase II (OR 1.13, p=0.001); chemotherapy dose reductions during induction Phase I (OR=1.72, p<0.014); female sex (OR=1.53, p=0.010); Black (OR=3.24, p=0.003) and Asian (OR=2.26, p=0.021) race; and increasing age (OR=1.31, p<0.001). In multivariate Cox regression, patients who underwent allogeneic stem cell transplant (alloHCT) had significantly worse OS (HR 1.4, p=0.03) and EFS (HR 1.4, p=0.02) after experiencing a VLD compared to alloHCT patients who experienced <=4 weeks delay. Specific populations (female, older, Black, and Asian patients) were more likely to experience delays in chemotherapy, as were those with significant toxicity during induction. Very long delays in therapy negatively affected outcomes in patients undergoing allografting. PMID:27468137
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernhard, E.J.; Maity, A.; McKenna, W.G.
1994-12-01
The irradiation of cells results in delayed progression through the G{sub 2} phase of the cell cycle. Treatment of irradiated HeLa cells with caffeine greatly reduces the G{sub 2}-phase delay, while caffeine does not alter progression of cells through the cell cycle in unirradiated cells. In this report we demonstrate that treatment of HeLa cells with the kinase inhibitor staurosporine, but not with the inhibitor H7, also results in a reduction of the G{sub 2}-phase arrest after irradiation. Cell cycle progression in unirradiated cells is unaffected by 4.4 nM (2ng/ml) staurosporine, which releases the radiation-induced G{sub 2}-phase arrest. In HeLamore » cells, the G{sub 2}-phase delay after irradiation in S phase is accompanied by decreased expression of cyclin B1 mRNA. Coincident with the reduction in G{sub 2}-phase delay, we observed an increase in cyclin B1 mRNA accumulation in irradiated, staurosporine-treated cells compared to cells treated with irradiation alone. Caffeine treatment of irradiated HeLa cells also resulted in an elevation in the levels of cyclin B1 message. These results support the hypothesis that diminished cyclin B1 mRNA levels influence G{sub 2}-phase arrest to some degree. The findings that both staurosporine and caffeine treatments reverse the depression in cyclin B1 expression suggest that these two compounds may act on a common pathway of cell cycle control in response to radiation injury. 33 refs., 6 figs.« less
Locey, Matthew L; Dallery, Jesse
2009-03-01
Many drugs of abuse produce changes in impulsive choice, that is, choice for a smaller-sooner reinforcer over a larger-later reinforcer. Because the alternatives differ in both delay and amount, it is not clear whether these drug effects are due to the differences in reinforcer delay or amount. To isolate the effects of delay, we used a titrating delay procedure. In phase 1, 9 rats made discrete choices between variable delays (1 or 19 s, equal probability of each) and a delay to a single food pellet. The computer titrated the delay to a single food pellet until the rats were indifferent between the two options. This indifference delay was used as the starting value for the titrating delay for all future sessions. We next evaluated the acute effects of nicotine (subcutaneous 1.0, 0.3, 0.1, and 0.03 mg/kg) on choice. If nicotine increases delay discounting, it should have increased preference for the variable delay. Instead, nicotine had very little effect on choice. In a second phase, the titrated delay alternative produced three food pellets instead of one, which was again produced by the variable delay (1 s or 19 s) alternative. Under this procedure, nicotine increased preference for the one pellet alternative. Nicotine-induced changes in impulsive choice are therefore likely due to differences in reinforcer amount rather than differences in reinforcer delay. In addition, it may be necessary to include an amount sensitivity parameter in any mathematical model of choice when the alternatives differ in reinforcer amount.
Modeling the global positioning system signal propagation through the ionosphere
NASA Technical Reports Server (NTRS)
Bassiri, S.; Hajj, G. A.
1992-01-01
Based on realistic modeling of the electron density of the ionosphere and using a dipole moment approximation for the Earth's magnetic field, one is able to estimate the effect of the ionosphere on the Global Positioning System (GPS) signal for a ground user. The lowest order effect, which is on the order of 0.1-100 m of group delay, is subtracted out by forming a linear combination of the dual frequencies of the GPS signal. One is left with second- and third-order effects that are estimated typically to be approximately 0-2 cm and approximately 0-2 mm at zenith, respectively, depending on the geographical location, the time of day, the time of year, the solar cycle, and the relative geometry of the magnetic field and the line of sight. Given the total electron content along a line of sight, the authors derive an approximation to the second-order term which is accurate to approximately 90 percent within the magnetic dipole moment model; this approximation can be used to reduce the second-order term to the millimeter level, thus potentially improving precise positioning in space and on the ground. The induced group delay, or phase advance, due to second- and third-order effects is examined for two ground receivers located at equatorial and mid-latitude regions tracking several GPS satellites.
Husarik, Daniela B; Gupta, Rajan T; Ringe, Kristina I; Boll, Daniel T; Merkle, Elmar M
2011-12-01
To assess the enhancement pattern of focal confluent fibrosis (FCF) on contrast-enhanced hepatic magnetic resonance imaging (MRI) using hepatocyte-specific (Gd-EOB-DTPA) and extracellular (ECA) gadolinium-based contrast agents in patients with primary sclerosing cholangitis (PSC). After institutional review board approval, 10 patients with PSC (6 male, 4 female; 33-61 years) with 13 FCF were included in this retrospective study. All patients had a Gd-EOB-DTPA-enhanced liver MRI exam, and a comparison ECA-enhanced MRI. On each T1-weighted dynamic dataset, the signal intensity (SI) of FCF and the surrounding liver as well as the paraspinal muscle (M) were measured. In the Gd-EOB-DTPA group, hepatocyte phase images were also included. SI FCF/SI M, SI liver/SI M, and [(SI liver - SI FCF)/SI liver] were compared between the different contrast agents for each dynamic phase using the paired Student's t-test. There was no significant difference in SI FCF/SI M in all imaging phases. SI liver/SI M was significantly higher for the Gd-EOB-DTPA group in the delayed phase (P < .001), whereas there was no significant difference in all other imaging phases. In the Gd-EOB-DTPA group, mean [(SI liver - SI FCF)/SI liver] were as follows (values for ECA group in parentheses): unenhanced phase: 0.26 (0.26); arterial phase: 0.01 (-0.31); portal venous phase (PVP): -0.05 (-0.26); delayed phase (DP): 0.14 (-0.54); and hepatocyte phase: 0.26. Differences were significant for the DP (P < .001). On delayed phase MR images the FCF-to-liver contrast is reversed with the lesions appearing hyperintense on ECA enhanced images and hypointense on Gd-EOB-DTPA-enhanced images. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Ionosphere Profile Estimation Using Ionosonde & GPS Data in an Inverse Refraction Calculation
NASA Astrophysics Data System (ADS)
Psiaki, M. L.
2014-12-01
A method has been developed to assimilate ionosonde virtual heights and GPS slant TEC data to estimate the parameters of a local ionosphere model, including estimates of the topside and of latitude and longitude variations. This effort seeks to better assimilate a variety of remote sensing data in order to characterize local (and eventually regional and global) ionosphere electron density profiles. The core calculations involve a forward refractive ray-tracing solution and a nonlinear optimal estimation algorithm that inverts the forward model. The ray-tracing calculations solve a nonlinear two-point boundary value problem for the curved ionosonde or GPS ray path through a parameterized electron density profile. It implements a full 3D solution that can handle the case of a tilted ionosphere. These calculations use Hamiltonian equivalents of the Appleton-Hartree magneto-plasma refraction index model. The current ionosphere parameterization is a modified Booker profile. It has been augmented to include latitude and longitude dependencies. The forward ray-tracing solution yields a given signal's group delay and beat carrier phase observables. An auxiliary set of boundary value problem solutions determine the sensitivities of the ray paths and observables with respect to the parameters of the augmented Booker profile. The nonlinear estimation algorithm compares the measured ionosonde virtual-altitude observables and GPS slant-TEC observables to the corresponding values from the forward refraction model. It uses the parameter sensitivities of the model to iteratively improve its parameter estimates in a way the reduces the residual errors between the measurements and their modeled values. This method has been applied to data from HAARP in Gakona, AK and has produced good TEC and virtual height fits. It has been extended to characterize electron density perturbations caused by HAARP heating experiments through the use of GPS slant TEC data for an LOS through the heated zone. The next planned extension of the method is to estimate the parameters of a regional ionosphere profile. The input observables will be slant TEC from an array of GPS receivers and group delay and carrier phase observables from an array of high-frequency beacons. The beacon array will function as a sort of multi-static ionosonde.
A late wake time phase delays the human dim light melatonin rhythm.
Burgess, Helen J; Eastman, Charmane I
2006-03-13
Short sleep/dark durations, due to late bedtimes or early wake times or both, are common in modern society. We have previously shown that a series of days with a late bedtime phase delays the human dim light melatonin rhythm, as compared to a series of days with an early bedtime, despite a fixed wake time. Here we compared the effect of an early versus late wake time with a fixed bedtime on the human dim light melatonin rhythm. Fourteen healthy subjects experienced 2 weeks of short 6h nights with an early wake time fixed at their habitual weekday wake time and 2 weeks of long 9 h nights with a wake time that occurred 3h later than the early wake time, in counterbalanced order. We found that after 2 weeks with the late wake time, the dim light melatonin onset delayed by 2.4 h and the dim light melatonin offset delayed by 2.6 h (both p < 0.001), as compared to after 2 weeks with the early wake time. These results highlight the substantial influence that wake time, likely via the associated morning light exposure, has on the timing of the human circadian clock. Furthermore, the results suggest that when people truncate their sleep by waking early their circadian clocks phase advance and when people wake late their circadian clocks phase delay.
Kilappa, Vantte; Moilanen, Petro; Salmi, Ari; Haeggström, Edward; Zhao, Zuomin; Myllylä, Risto; Timonen, Jussi
2015-03-01
The fundamental flexural guided wave (FFGW) enables ultrasonic assessment of cortical bone thickness. In vivo, it is challenging to detect this mode, as its power ratio with respect to disturbing ultrasound is reduced by soft tissue covering the bone. A phase-delayed ultrasound source is proposed to tailor the FFGW excitation in order to improve its power ratio. This situation is analyzed by 2D finite-element simulations. The soft tissue coating (7-mm thick) was simulated as a fluid covering an elastic plate (bone, 2-6 mm thick). A six-element array of emitters on top of the coating was excited by 50-kHz tone bursts so that each emitter was appropriately delayed from the previous one. Response was recorded by an array of receivers on top of the coating, 20-50 mm away from the closest emitter. Simulations predicted that such tailored/phase-delayed excitations should improve the power ratio of FFGW by 23 ± 5 dB, independent of the number of emitters (N). On the other hand, the FFGW magnitude should increase by 5.8 ± 0.5 dB for each doubling of N. This suggests that mode tailoring based on phase-delayed excitation may play a key role in the development of an in vivo FFGW assessment.
Ultrafast dynamics of vibrational symmetry breaking in a charge-ordered nickelate
Coslovich, Giacomo; Kemper, Alexander F.; Behl, Sascha; Huber, Bernhard; Bechtel, Hans A.; Sasagawa, Takao; Martin, Michael C.; Lanzara, Alessandra; Kaindl, Robert A.
2017-01-01
The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-terahertz response of the model stripe compound La1.75Sr0.25NiO4, yielding novel insight into its electronic and structural dynamics following an ultrafast optical quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen—as witnessed by time-delayed suppression of zone-folded Ni–O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. The hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry-breaking dynamics in solids. PMID:29202025
Ultrafast dynamics of vibrational symmetry breaking in a charge-ordered nickelate
Coslovich, Giacomo; Kemper, Alexander F.; Behl, Sascha; ...
2017-11-24
The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-terahertz response of the model stripe compound La 1.75Sr 0.25NiO 4, yielding novel insight into its electronic and structural dynamics following an ultrafast opticalmore » quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen—as witnessed by time-delayed suppression of zone-folded Ni–O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. As a result, the hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry-breaking dynamics in solids.« less
Ultrafast dynamics of vibrational symmetry breaking in a charge-ordered nickelate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coslovich, Giacomo; Kemper, Alexander F.; Behl, Sascha
The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-terahertz response of the model stripe compound La 1.75Sr 0.25NiO 4, yielding novel insight into its electronic and structural dynamics following an ultrafast opticalmore » quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen—as witnessed by time-delayed suppression of zone-folded Ni–O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. As a result, the hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry-breaking dynamics in solids.« less
Reduced order modelling in searches for continuous gravitational waves - I. Barycentring time delays
NASA Astrophysics Data System (ADS)
Pitkin, M.; Doolan, S.; McMenamin, L.; Wette, K.
2018-06-01
The frequencies and phases of emission from extra-solar sources measured by Earth-bound observers are modulated by the motions of the observer with respect to the source, and through relativistic effects. These modulations depend critically on the source's sky-location. Precise knowledge of the modulations are required to coherently track the source's phase over long observations, for example, in pulsar timing, or searches for continuous gravitational waves. The modulations can be modelled as sky-location and time-dependent time delays that convert arrival times at the observer to the inertial frame of the source, which can often be the Solar system barycentre. We study the use of reduced order modelling for speeding up the calculation of this time delay for any sky-location. We find that the time delay model can be decomposed into just four basis vectors, and with these the delay for any sky-location can be reconstructed to sub-nanosecond accuracy. When compared to standard routines for time delay calculation in gravitational wave searches, using the reduced basis can lead to speed-ups of 30 times. We have also studied components of time delays for sources in binary systems. Assuming eccentricities <0.25, we can reconstruct the delays to within 100 s of nanoseconds, with best case speed-ups of a factor of 10, or factors of two when interpolating the basis for different orbital periods or time stamps. In long-duration phase-coherent searches for sources with sky-position uncertainties, or binary parameter uncertainties, these speed-ups could allow enhancements in their scopes without large additional computational burdens.
Dolfi, D; Joffre, P; Antoine, J; Huignard, J P; Philippet, D; Granger, P
1996-09-10
The experimental demonstration and the far-field pattern characterization of an optically controlled phased-array antenna are described. It operates between 2.5 and 3.5 GHz and is made of 16 radiating elements. The optical control uses a two-dimensional architecture based on free-space propagation and on polarization switching by N spatial light modulators of p × p pixels. It provides 2(N-1) time-delay values and an analog control of the 0 to 2π phase for each of the p × p signals feeding the antenna (N = 5, p = 4).
NASA Astrophysics Data System (ADS)
van Howe, James William
Telecommunication technology has often been applied to areas of science and engineering seemingly unrelated to communication systems. Innovations such as electronic amplifiers, the transistor, digital coding, optical fiber, and the laser, which all had roots in communication technology, have been implemented in devices from bar-code scanners to fiber endoscopes for medical procedures. In the same way, the central theme of the work in the following chapters has been to borrow both the concepts and technology of telecommunications systems to develop novel optical instrumentation for non-telecom pursuits. This work particularly leverages fiber-integrated electro-optic phase modulators to apply custom phase profiles to ultrafast pulses for control and manipulation. Such devices are typically used in telecom transmitters to encode phase data onto optical pulses (differential phase-shift keying), or for chirped data transmission. We, however, use electro-optic phase modulators to construct four novel optical devices: (1) a programmable ultrafast optical delay line with record scanning speed for applications in optical metrology, interferometry, or broad-band phase arrays, (2) a multiwavelength pulse generator for real-time optical sampling of electronic waveforms, (3) a simple femtosecond pulse generator for uses in biomedical imaging or ultrafast spectroscopy, and (4) a nonlinear phase compensator to increase the energy of fiber-amplified ultrashort pulse systems. In addition, we describe a fifth instrument which makes use of a higher-order mode fiber, similar in design to dispersion compensating fibers used for telecom. Through soliton self-frequency shift in the higher-order mode fiber, we can broadly-tune the center frequency of ultrashort pulses in energy regimes useful for biomedical imaging or ultrafast spectroscopy. The advantages gained through using telecom components in each of these systems are the simplicity and robustness of all-fiber configurations, high-speed operation, and electronic control of signals. Finally, we devote much attention to the paradigm of space-time duality and temporal imaging which allows the electro-optic phase modulators used in our instrumentation to be framed as temporal analogs of diffractive optical elements such as lenses and prisms. We show how the concepts of "time-lenses" and "time-prisms" give an intuitive understanding of our work as well as insight for the general development of optical instrumentation.
Method and apparatus for measuring the intensity and phase of an ultrashort light pulse
Kane, Daniel J.; Trebino, Rick P.
1998-01-01
The pulse shape I(t) and phase evolution x(t) of ultrashort light pulses are obtained using an instantaneously responding nonlinear optical medium to form a signal pulse. A light pulse, such a laser pulse, is split into a gate pulse and a probe pulse, where the gate pulse is delayed relative to the probe pulse. The gate pulse and the probe pulse are combined within an instantaneously responding optical medium to form a signal pulse functionally related to a temporal slice of the gate pulse corresponding to the time delay of the probe pulse. The signal pulse is then input to a wavelength-selective device to output pulse field information comprising intensity vs. frequency for a first value of the time delay. The time delay is varied over a range of values effective to yield an intensity plot of signal intensity vs. wavelength and delay. In one embodiment, the beams are overlapped at an angle so that a selected range of delay times is within the intersection to produce a simultaneous output over the time delays of interest.
The LISA benchtop simulator at the University of Florida
NASA Astrophysics Data System (ADS)
Thorpe, James; Cruz, Rachel; Guntaka, Sridhar; Mueller, Guido
2006-11-01
The Laser Interferometer Space Antenna (LISA) is a joint NASA-ESA mission to detect gravitational radiation in space. The detector is designed to see gravitational waves from various exciting sources in the frequency range of 3x10-5 to 1 Hz. LISA consists of three spacecraft forming a triangle with 5x10^9 m long arms. The spacecraft house proof masses and act to shield the proof masses from external forces so that they act as freely-falling test particles of the gravitational radiation. Laser interferometry is used to monitor the distance between proof masses on different spacecraft and will be designed to see variations on the order of 10 pm. Pre-stabilization, arm-locking, and time delay interferometry (TDI) will be employed to meet this sensitivity. At the University of Florida, we are developing an experimental LISA simulator to test aspects of LISA interferometry. The foundation of the simulator is a pair of cavity-stabilized lasers that provide realistic, LISA-like phase noise for our measurements. The light travel time between spacecraft is recreated in the lab by use of an electronic phase delay technique. Initial tests of the simulator have focused on phasemeter implementation, first-generation TDI, and arm-locking. We will present results from these experiments as well as discuss current and future upgrades in the effort to make the LISA simulator as realistic as possible.
NASA Astrophysics Data System (ADS)
Kobayashi, Yuki; Reduzzi, Maurizio; Chang, Kristina F.; Timmers, Henry; Neumark, Daniel M.; Leone, Stephen R.
2018-06-01
Experiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe+ and Xe2 + . A high degree of coherence g =0.4 is observed between
NASA Astrophysics Data System (ADS)
Kubo, Keita; Kanai, Nanae; Kobayashi, Fumiya; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji
2017-07-01
We designed surface acoustic wave (SAW) filters for a multiplex transmission system of multilevel inverter circuits, and applied them to a single-phase three-level inverter. To reduce the transmission delay time of the SAW filters, a four-channel SAW filter array was fabricated and its characteristics were measured. The delay time of the SAW filters was <350 ns, and the delay time difference was reduced to ≤184 ns, less than half that previously reported. The SAW filters withstood up to 990 V, which is sufficient for the inverters used in most domestic appliances. A single-phase three-level inverter with the fabricated SAW filters worked with a total delay time shorter than our target delay time of 2.5 µs. The delay time difference of the proposed system was 0.26 µs, which is sufficient for preventing the inverter circuit from short-circuiting. The SAW filters controlled a multilevel inverter system with simple signal wiring and high dielectric withstanding voltages.
Large tunable optical delays via self-phase modulation and dispersion
NASA Astrophysics Data System (ADS)
Okawachi, Yoshitomo; Sharping, Jay E.; Xu, Chris; Gaeta, Alexander L.
2006-12-01
We demonstrate all-optically tunable delays in optical fiber via a dispersive stage and two stages of nonlinear spectral broadening and filtering. With this scheme, we achieve continuously tunable delays of 3.5- ps pulses and advancements over a total range of more than 1200 pulsewidths. Our technique is applicable to a wide range of pulse durations and delays.
Berrah, Nora; Fang, Li; Murphy, Brendan F.; ...
2016-05-20
We built a two-mirror based X-ray split and delay (XRSD) device for soft X-rays at the Linac Coherent Light Source free electron laser facility. The instrument is based on an edge-polished mirror design covering an energy range of 250 eV-1800 eV and producing a delay between the two split pulses variable up to 400 femtoseconds with a sub-100 attosecond resolution. We present experimental and simulation results regarding molecular dissociation dynamics in CH3I and CO probed by the XRSD device. In conclusion, we observed ion kinetic energy and branching ratio dependence on the delay times which were reliably produced by themore » XRSD instrument.« less
Phase stabilization for mode locked lasers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, M.T.
A method is described for stabilizing a phase relationship between two mode locked lasers, comprising: driving through a power splitter the mode lockers of both lasers from a single stable radio frequency source; monitoring the phase of pulses from each laser utilizing a fast photodiode output of each laser; feeding the output of the fast photodiodes to a phase detector and comparator; measuring a relative phase difference between the lasers with a phase detector and comparator, producing a voltage output signal or phase error signal representing the phase difference; amplifying and filtering the voltage output signal with an amplifier andmore » loop filter; feeding the resulting output signal to a voltage controlled phase delay between the power splitter and one of the lasers; and delaying the RF drive to the one laser to achieve a desired phase relationship, between the two lasers.« less
Antimatched Electromagnetic Metasurfaces for Broadband Arbitrary Phase Manipulation in Reflection
Tsilipakos, Odysseas; Koschny, Thomas; Soukoulis, Costas M.
2018-03-21
Metasurfaces impart phase discontinuities on impinging electromagnetic waves that are typically limited to 0-2π. Here, we demonstrate that multiresonant metasurfaces can break free from this limitation and supply arbitrarily large, tunable time delays over ultrawide bandwidths. As such, ultrathin metasurfaces can act as the equivalent of thick bulk structures by emulating the multiple geometric resonances of three-dimensional systems that originate from phase accumulation with effective material resonances implemented on the surface itself via suitable subwavelength meta-atoms. We describe a constructive procedure for defining the required sheet admittivities of such metasurfaces. Importantly, the proposed approach provides an exactly linear phase responsemore » so that broadband pulses can experience the desired group delay without any distortion of the pulse shape. We focus on operation in reflection by exploiting an antimatching condition, satisfied by interleaved electric and magnetic Lorentzian resonances in the surface admittivities, which completely zeroes out transmission through the metasurface. As a result, the proposed metasurfaces can perfectly reflect a broadband pulse imparting a prescribed group delay. The group delay can be tuned by modifying the implemented resonances, thus opening up diverse possibilities in the temporal applications of metasurfaces.« less
Vrijsen, N H; Jansen, J W; Compter, J C; Lomonova, E A
2013-07-01
A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet. The force measurements are conducted with a piezoelectric load cell (Kistler type 9272). This high-bandwidth force measurement instrument is identified in the frequency domain using a voice-coil actuator that has negligible magnetic hysteresis and eddy currents. Specifically, the phase delay between the current and force of the voice-coil actuator is used for the calibration of the measurement instrument. This phase delay is also obtained by evaluation of the measured force and flux variation in the E-core actuator, both with and without permanent magnet on the middle tooth. The measured magnetic flux variation is used to distinguish the phase delay due to magnetic hysteresis from the measured phase delay between the current and the force of the E-core actuator. Finally, an open loop steady-state ac model is presented that predicts the magnetic hysteresis effects in the force of the E-core actuator.
Antimatched Electromagnetic Metasurfaces for Broadband Arbitrary Phase Manipulation in Reflection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsilipakos, Odysseas; Koschny, Thomas; Soukoulis, Costas M.
Metasurfaces impart phase discontinuities on impinging electromagnetic waves that are typically limited to 0-2π. Here, we demonstrate that multiresonant metasurfaces can break free from this limitation and supply arbitrarily large, tunable time delays over ultrawide bandwidths. As such, ultrathin metasurfaces can act as the equivalent of thick bulk structures by emulating the multiple geometric resonances of three-dimensional systems that originate from phase accumulation with effective material resonances implemented on the surface itself via suitable subwavelength meta-atoms. We describe a constructive procedure for defining the required sheet admittivities of such metasurfaces. Importantly, the proposed approach provides an exactly linear phase responsemore » so that broadband pulses can experience the desired group delay without any distortion of the pulse shape. We focus on operation in reflection by exploiting an antimatching condition, satisfied by interleaved electric and magnetic Lorentzian resonances in the surface admittivities, which completely zeroes out transmission through the metasurface. As a result, the proposed metasurfaces can perfectly reflect a broadband pulse imparting a prescribed group delay. The group delay can be tuned by modifying the implemented resonances, thus opening up diverse possibilities in the temporal applications of metasurfaces.« less
Fragmentation mechanism of UV-excited peptides in the gas phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabuga, Aleksandra V., E-mail: aleksandra.zabuga@epfl.ch; Kamrath, Michael Z.; Boyarkin, Oleg V.
We present evidence that following near-UV excitation, protonated tyrosine- or phenylalanine–containing peptides undergo intersystem crossing to produce a triplet species. This pathway competes with direct dissociation from the excited electronic state and with dissociation from the electronic ground state subsequent to internal conversion. We employ UV-IR double-resonance photofragment spectroscopy to record conformer-specific vibrational spectra of cold peptides pre-excited to their S{sub 1} electronic state. The absorption of tunable IR light by these electronically excited peptides leads to a drastic increase in fragmentation, selectively enhancing the loss of neutral phenylalanine or tyrosine side-chain, which are not the lowest dissociation channels inmore » the ground electronic state. The recorded IR spectra evolve upon increasing the time delay between the UV and IR pulses, reflecting the dynamics of the intersystem crossing on a timescale of ∼80 ns and <10 ns for phenylalanine- and tyrosine-containing peptides, respectively. Once in the triplet state, phenylalanine-containing peptides may live for more than 100 ms, unless they absorb IR photons and undergo dissociation by the loss of an aromatic side-chain. We discuss the mechanism of this fragmentation channel and its possible implications for photofragment spectroscopy and peptide photostability.« less
Dark goggles and bright light improve circadian rhythm adaptation to night-shift work.
Eastman, C I; Stewart, K T; Mahoney, M P; Liu, L; Fogg, L F
1994-09-01
We compared the contributions of bright light during the night shift and dark goggles during daylight for phase shifting the circadian rhythm of temperature to realign with a 12-hour shift of sleep. After 10 baseline days there were 8 night-work/day-sleep days. Temperature was continuously recorded from 50 subjects. There were four groups in a 2 x 2 design: light (bright, dim), goggles (yes, no). Subjects were exposed to bright light (about 5,000 lux) for 6 hours on the first 2 night shifts. Dim light was < 500 lux. Both bright light and goggles were significant factors for producing circadian rhythm phase shifts. The combination of bright light plus goggles was the most effective, whereas the combination of dim light and no goggles was the least effective. The temperature rhythm either phase advanced or phase delayed when it aligned with daytime sleep. However, when subjects did not have goggles only phase advances occurred. Goggles were necessary for producing phase delays. The most likely explanation is that daylight during the travel-home window after a night shift inhibits phase-delay shifts, and goggles can prevent this inhibition. Larger temperature-rhythm phase shifts were associated with better subjective daytime sleep, less subjective fatigue and better mood.
Robust Weak Chimeras in Oscillator Networks with Delayed Linear and Quadratic Interactions
NASA Astrophysics Data System (ADS)
Bick, Christian; Sebek, Michael; Kiss, István Z.
2017-10-01
We present an approach to generate chimera dynamics (localized frequency synchrony) in oscillator networks with two populations of (at least) two elements using a general method based on a delayed interaction with linear and quadratic terms. The coupling design yields robust chimeras through a phase-model-based design of the delay and the ratio of linear and quadratic components of the interactions. We demonstrate the method in the Brusselator model and experiments with electrochemical oscillators. The technique opens the way to directly bridge chimera dynamics in phase models and real-world oscillator networks.
Wang, Jian; Hou, Peipei; Cai, Haiwen; Sun, Jianfeng; Wang, Shunan; Wang, Lijuan; Yang, Fei
2015-04-06
We propose an optically controlled phased array antenna (PAA) based on differential true time delay constructed optical beamforming network (OBFN). Differential true time delay is realized by stack integrated micro-optical components. Optically-controlled angle steering of radio frequency (RF) beams are realized and demonstrated by this configuration. Experimental results demonstrate that OBFN based PAA can accomplish RF-independent broadband beam steering without beam squint effect and can achieve continuous angle steering. In addition, multi-beams for different steering angles are acquired synchronously.
Theory of post-block 2 VLBI observable extraction
NASA Technical Reports Server (NTRS)
Lowe, Stephen T.
1992-01-01
The algorithms used in the post-Block II fringe-fitting software called 'Fit' are described. The steps needed to derive the very long baseline interferometry (VLBI) charged-particle corrected group delay, phase delay rate, and phase delay (the latter without resolving cycle ambiguities) are presented beginning with the set of complex fringe phasors as a function of observation frequency and time. The set of complex phasors is obtained from the JPL/CIT Block II correlator. The output of Fit is the set of charged-particle corrected observables (along with ancillary information) in a form amenable to the software program 'Modest.'
Dupuis, L Lee; Kelly, Kara M; Krischer, Jeffrey P; Langevin, Anne-Marie; Tamura, Roy N; Xu, Ping; Chen, Lu; Kolb, E Anders; Ullrich, Nicole J; Sahler, Olle Jane Z; Hendershot, Eleanor; Stratton, Ann; Sung, Lillian; McLean, Thomas W
2018-03-15
Chemotherapy-induced nausea and vomiting remain common, distressing side effects of chemotherapy. It has been reported that acupressure prevents chemotherapy-induced nausea in adults, but it has not been well studied in children. In this multicenter, prospective, randomized, single-blind, sham-controlled trial, the authors compared acute-phase nausea severity in patients ages 4 to 18 years who were receiving highly emetic chemotherapy using standard antiemetic agents combined with acupressure wrist bands, the most common type of acupressure, versus sham bands. Patients wore acupressure or sham bands continuously on each day of chemotherapy and for up to 7 days afterward. Chemotherapy-induced nausea severity in the delayed phase and chemotherapy-induced vomiting control in the acute and delayed phases also were compared. Of the 187 patients randomized, 165 contributed nausea severity assessments during the acute phase. Acupressure bands did not reduce the severity of chemotherapy-induced nausea in the acute phase (odds ratio [OR], 1.33; 95% confidence limits, 0.89-2.00, in which an OR <1.00 favored acupressure) or in the delayed phase (OR, 1.23; 95% CL, 0.75-2.01). Furthermore, acupressure bands did not improve daily vomiting control during the acute phase (OR, 1.57; 95% CL, 0.95-2.59) or the delayed phase (OR, 0.84; 95% CL, 0.45-1.58). No serious adverse events were reported. Acupressure bands were safe but did not improve chemotherapy-induced nausea or vomiting in pediatric patients who were receiving highly emetic chemotherapy. Cancer 2018;124:1188-96. © 2017 American Cancer Society. © 2017 American Cancer Society.
Shape calibration of a conformal ultrasound therapy array.
McGough, R J; Cindric, D; Samulski, T V
2001-03-01
A conformal ultrasound phased array prototype with 96 elements was recently calibrated for electronic steering and focusing in a water tank. The procedure for calibrating the shape of this 2D therapy array consists of two steps. First, a least squares triangulation algorithm determines the element coordinates from a 21 x 21 grid of time delays. The triangulation algorithm also requires temperature measurements to compensate for variations in the speed of sound. Second, a Rayleigh-Sommerfeld formulation of the acoustic radiation integral is aligned to a second grid of measured pressure amplitudes in a least squares sense. This shape calibration procedure, which is applicable to a wide variety of ultrasound phased arrays, was tested on a square array panel consisting of 7- x 7-mm elements operating at 617 kHz. The simulated fields generated by an array of 96 equivalent elements are consistent with the measured data, even in the fine structure away from the primary focus and sidelobes. These two calibration steps are sufficient for the simulation model to predict successfully the pressure field generated by this conformal ultrasound phased array prototype.
Dai, Yitang; Cen, Qizhuang; Wang, Lei; Zhou, Yue; Yin, Feifei; Dai, Jian; Li, Jianqiang; Xu, Kun
2015-12-14
Extraction of a microwave component from a low-time-jitter femtosecond pulse train has been attractive for current generation of spectrally pure microwave. In order to avoid the transfer from the optical amplitude noise to microwave phase noise (AM-PM), we propose to down-convert the target component to intermediate frequency (IF) before the opto-electronic conversion. Due to the much lower carrier frequency, the AM-PM is greatly suppressed. The target is then recovered by up-conversion with the same microwave local oscillation (LO). As long as the time delay of the second LO matches that of the IF carrier, the phase noise of the LO shows no impact on the extraction process. The residual noise of the proposed extraction is analyzed in theory, which is also experimentally demonstrated as averagely around -155 dBc/Hz under offset frequency larger than 1 kHz when 10-GHz tone is extracted from a home-made femtosecond fiber laser. Large tunable extraction from 1 GHz to 10 GHz is also reported.
NASA Astrophysics Data System (ADS)
Jadhav, Shital; Powar, Amit; Patil, Sandip; Supare, Ashish; Farane, Bhagwan; Singh, Rajkumar, Dr.
2017-05-01
The present study was performed to investigate the effect of volume fraction of alpha and transformed beta phase on the high-cycle fatigue (HCF) properties of the bimodal titanium Ti6Al4V alloy. The effect of such morphology on mechanical properties was studied using tensile and rotating bending fatigue test as per ASTM standards. Microstructures and fractography of the specimens were studied using optical and scanning electron microscopy (SEM) respectively.Ti6Al4V alloy samples were heat treated to have three distinctive volume fractions of alpha and transformed beta phase. With an increase in quench delay from 30,50 and 70 sec during quenching after solutionizing temperature of 967°C, the volume fraction of alpha was found to be increased from 20% to 67%. Tests on tensile and rotating bending fatigue showed that the specimen with 20% volume fraction of alpha phase exhibited the highest tensile and fatigue strength, however the properties gets deteriorate with increase in volume fraction of alpha.
Repetition rate multiplication of frequency comb using all-pass fiber resonator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Lijun; Yang, Honglei; Zhang, Hongyuan
2016-09-15
We propose a stable method for repetition rate multiplication of a 250-MHz Er-fiber frequency comb by a phase-locked all-pass fiber ring resonator, whose phase-locking configuration is simple. The optical path length of the fiber ring resonator is automatically controlled to be accurately an odd multiple of half of the original cavity length using an electronical phase-locking unit with an optical delay line. As for shorter cavity length of the comb, high-order odd multiple is preferable. Because the power loss depends only on the net-attenuation of the fiber ring resonator, the energetic efficiency of the proposed method is high. The inputmore » and output optical spectrums show that the spectral width of the frequency comb is clearly preserved. Besides, experimental results show less pulse intensity fluctuation and 35 dB suppression ratio of side-modes while providing a good long-term and short-term frequency stability. Higher-order repetition rate multiplication to several GHz can be obtained by using several fiber ring resonators in cascade configuration.« less
Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels
NASA Astrophysics Data System (ADS)
Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve
Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.
Lim, Heeseon; Kwon, Hyuksang; Kim, Sang Kyu; Kim, Jeong Won
2017-10-05
Light absorption in organic molecules on an inorganic substrate and subsequent electron transfer to the substrate create so-called hybrid charge transfer exciton (HCTE). The relaxation process of the HCTE states largely determines charge separation efficiency or optoelectronic device performance. Here, the study on energy and time-dispersive behavior of photoelectrons at the hybrid interface of copper phthalocyanine (CuPc)/p-GaAs(001) upon light excitation of GaAs reveals a clear pathway for HCTE relaxation and delayed triplet-state formation. According to the ground-state energy level alignment at the interface, CuPc/p-GaAs(001) shows initially fast hole injection from GaAs to CuPc. Thus, the electrons in GaAs and holes in CuPc form an unusual HCTE state manifold. Subsequent electron transfer from GaAs to CuPc generates the formation of the triplet state in CuPc with a few picoseconds delay. Such two-step charge transfer causes delayed triplet-state formation without singlet excitation and subsequent intersystem crossing within the CuPc molecules.
Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea.
De Jonghe, Bart C; Holland, Ruby A; Olivos, Diana R; Rupprecht, Laura E; Kanoski, Scott E; Hayes, Matthew R
2016-01-01
While chemotherapy-induced nausea and vomiting are clinically controlled in the acute (<24 h) phase following treatment, the anorexia, nausea, fatigue, and other illness-type behaviors during the delayed phase (>24 h) of chemotherapy are largely uncontrolled. As the hindbrain glucagon-like peptide-1 (GLP-1) system contributes to energy balance and mediates aversive and stressful stimuli, here we examine the hypothesis that hindbrain GLP-1 signaling mediates aspects of chemotherapy-induced nausea and reductions in feeding behavior in rats. Specifically, hindbrain GLP-1 receptor (GLP-1R) blockade, via 4th intracerebroventricular (ICV) exendin-(9-39) injections, attenuates the anorexia, body weight reduction, and pica (nausea-induced ingestion of kaolin clay) elicited by cisplatin chemotherapy during the delayed phase (48 h) of chemotherapy-induced nausea. Additionally, the present data provide evidence that the central GLP-1-producing preproglucagon neurons in the nucleus tractus solitarius (NTS) of the caudal brainstem are activated by cisplatin during the delayed phase of chemotherapy-induced nausea, as cisplatin led to a significant increase in c-Fos immunoreactivity in NTS GLP-1-immunoreactive neurons. These data support a growing body of literature suggesting that the central GLP-1 system may be a potential pharmaceutical target for adjunct anti-emetics used to treat the delayed-phase of nausea and emesis, anorexia, and body weight loss that accompany chemotherapy treatments. Copyright © 2015 Elsevier Inc. All rights reserved.
Using convolutional decoding to improve time delay and phase estimation in digital communications
Ormesher, Richard C [Albuquerque, NM; Mason, John J [Albuquerque, NM
2010-01-26
The time delay and/or phase of a communication signal received by a digital communication receiver can be estimated based on a convolutional decoding operation that the communication receiver performs on the received communication signal. If the original transmitted communication signal has been spread according to a spreading operation, a corresponding despreading operation can be integrated into the convolutional decoding operation.
Yuan, Kai-Jun; Bandrauk, André D
2017-10-04
Exploring ultrafast charge migration is of great importance in biological and chemical reactions. We present a scheme to monitor attosecond charge migration in molecules by electron diffraction with spatial and temporal resolutions from ab initio numerical simulations. An ultraviolet pulse creates a coherent superposition of electronic states, after which a time-delayed attosecond X-ray pulse is used to ionize the molecule. It is found that diffraction patterns in the X-ray photoelectron spectra show an asymmetric structure, which is dependent on the time delay between the pump-probe pulses, encoding the information of molecular orbital symmetry and chemical bonding. We describe these phenomena by developing an electronic time-dependent ultrafast molecular photoionization model of a coherent superposition state. The periodical distortion of electron diffraction patterns illustrates the evolution of the electronic coherence, providing a tool for attosecond imaging of ultrafast molecular reaction processes.
A Low Power Linear Phase Programmable Long Delay Circuit.
Rodriguez-Villegas, Esther; Logesparan, Lojini; Casson, Alexander J
2014-06-01
A novel linear phase programmable delay is being proposed and implemented in a 0.35 μm CMOS process. The delay line consists of N cascaded cells, each of which delays the input signal by Td/N, where Td is the total line delay. The delay generated by each cell is programmable by changing a clock frequency and is also fully independent of the frequency of the input signal. The total delay hence depends only on the chosen clock frequency and the total number of cascaded cells. The minimum clock frequency is limited by the maximum time a voltage signal can effectively be held by an individual cell. The maximum number of cascaded cells will be limited by the effects of accumulated offset due to transistor mismatch, which eventually will affect the operating mode of the individual transistors in a cell. This latter limitation has however been dealt with in the topology by having an offset compensation mechanism that makes possible having a large number of cascaded cells and hence a long resulting delay. The delay line has been designed for scalp-based neural activity analysis that is predominantly in the sub-100 Hz frequency range. For these signals, the delay generated by a 31-cell cascade has been demonstrated to be programmable from 30 ms to 3 s. Measurement results demonstrate a 31 stage, 50 Hz bandwidth, 0.3 s delay that operates from a 1.1 V supply with power consumption of 270 nW.
Optical injection phase-lock loops
NASA Astrophysics Data System (ADS)
Bordonalli, Aldario Chrestani
Locking techniques have been widely applied for frequency synchronisation of semiconductor lasers used in coherent communication and microwave signal generation systems. Two main locking techniques, the optical phase-lock loop (OPLL) and optical injection locking (OIL) are analysed in this thesis. The principal limitations on OPLL performance result from the loop propagation delay, which makes difficult the implementation of high gain and wide bandwidth loops, leading to poor phase noise suppression performance and requiring the linewidths of the semiconductor laser sources to be less than a few megahertz for practical values of loop delay. The OIL phase noise suppression is controlled by the injected power. The principal limitations of the OIL implementation are the finite phase error under locked conditions and the narrow stable locking range the system provides at injected power levels required to reduce the phase noise output of semiconductor lasers significantly. This thesis demonstrates theoretically and experimentally that it is possible to overcome the limitations of OPLL and OIL systems by combining them, to form an optical injection phase-lock loop (OIPLL). The modelling of an OIPLL system is presented and compared with the equivalent OPLL and OIL results. Optical and electrical design of an homodyne OIPLL is detailed. Experimental results are given which verify the theoretical prediction that the OIPLL would keep the phase noise suppression as high as that of the OIL system over a much wider stable locking range, even with wide linewidth lasers and long loop delays. The experimental results for lasers with summed linewidth of 36 MHz and a loop delay of 15 ns showed measured phase error variances as low as 0.006 rad2 (500 MHz bandwidth) for locking bandwidths greater than 26 GHz, compared with the equivalent OPLL phase error variance of around 1 rad2 (500 MHz bandwidth) and the equivalent OIL locking bandwidth of less than 1.2 GHz.
Ensemble codes involving hippocampal neurons are at risk during delayed performance tests.
Hampson, R E; Deadwyler, S A
1996-11-26
Multielectrode recording techniques were used to record ensemble activity from 10 to 16 simultaneously active CA1 and CA3 neurons in the rat hippocampus during performance of a spatial delayed-nonmatch-to-sample task. Extracted sources of variance were used to assess the nature of two different types of errors that accounted for 30% of total trials. The two types of errors included ensemble "miscodes" of sample phase information and errors associated with delay-dependent corruption or disappearance of sample information at the time of the nonmatch response. Statistical assessment of trial sequences and associated "strength" of hippocampal ensemble codes revealed that miscoded error trials always followed delay-dependent error trials in which encoding was "weak," indicating that the two types of errors were "linked." It was determined that the occurrence of weakly encoded, delay-dependent error trials initiated an ensemble encoding "strategy" that increased the chances of being correct on the next trial and avoided the occurrence of further delay-dependent errors. Unexpectedly, the strategy involved "strongly" encoding response position information from the prior (delay-dependent) error trial and carrying it forward to the sample phase of the next trial. This produced a miscode type error on trials in which the "carried over" information obliterated encoding of the sample phase response on the next trial. Application of this strategy, irrespective of outcome, was sufficient to reorient the animal to the proper between trial sequence of response contingencies (nonmatch-to-sample) and boost performance to 73% correct on subsequent trials. The capacity for ensemble analyses of strength of information encoding combined with statistical assessment of trial sequences therefore provided unique insight into the "dynamic" nature of the role hippocampus plays in delay type memory tasks.
The N-policy for an unreliable server with delaying repair and two phases of service
NASA Astrophysics Data System (ADS)
Choudhury, Gautam; Ke, Jau-Chuan; Tadj, Lotfi
2009-09-01
This paper deals with an MX/G/1 with an additional second phase of optional service and unreliable server, which consist of a breakdown period and a delay period under N-policy. While the server is working with any phase of service, it may break down at any instant and the service channel will fail for a short interval of time. Further concept of the delay time is also introduced. If no customer arrives during the breakdown period, the server becomes idle in the system until the queue size builds up to a threshold value . As soon as the queue size becomes at least N, the server immediately begins to serve the first phase of regular service to all the waiting customers. After the completion of which, only some of them receive the second phase of the optional service. We derive the queue size distribution at a random epoch and departure epoch as well as various system performance measures. Finally we derive a simple procedure to obtain optimal stationary policy under a suitable linear cost structure.
NASA Astrophysics Data System (ADS)
Liu, Teng; Zhang, Baocheng; Yuan, Yunbin; Li, Min
2018-01-01
Precise Point Positioning (PPP) is an absolute positioning technology mainly used in post data processing. With the continuously increasing demand for real-time high-precision applications in positioning, timing, retrieval of atmospheric parameters, etc., Real-Time PPP (RTPPP) and its applications have drawn more and more research attention in recent years. This study focuses on the models, algorithms and ionospheric applications of RTPPP on the basis of raw observations, in which high-precision slant ionospheric delays are estimated among others in real time. For this purpose, a robust processing strategy for multi-station RTPPP with raw observations has been proposed and realized, in which real-time data streams and State-Space-Representative (SSR) satellite orbit and clock corrections are used. With the RTPPP-derived slant ionospheric delays from a regional network, a real-time regional ionospheric Vertical Total Electron Content (VTEC) modeling method is proposed based on Adjusted Spherical Harmonic Functions and a Moving-Window Filter. SSR satellite orbit and clock corrections from different IGS analysis centers are evaluated. Ten globally distributed real-time stations are used to evaluate the positioning performances of the proposed RTPPP algorithms in both static and kinematic modes. RMS values of positioning errors in static/kinematic mode are 5.2/15.5, 4.7/17.4 and 12.8/46.6 mm, for north, east and up components, respectively. Real-time slant ionospheric delays from RTPPP are compared with those from the traditional Carrier-to-Code Leveling (CCL) method, in terms of function model, formal precision and between-receiver differences of short baseline. Results show that slant ionospheric delays from RTPPP are more precise and have a much better convergence performance than those from the CCL method in real-time processing. 30 real-time stations from the Asia-Pacific Reference Frame network are used to model the ionospheric VTECs over Australia in real time, with slant ionospheric delays from both RTPPP and CCL methods for comparison. RMS of the VTEC differences between RTPPP/CCL method and CODE final products is 0.91/1.09 TECU, and RMS of the VTEC differences between RTPPP and CCL methods is 0.67 TECU. Slant Total Electron Contents retrieved from different VTEC models are also validated with epoch-differenced Geometry-Free combinations of dual-frequency phase observations, and mean RMS values are 2.14, 2.33 and 2.07 TECU for RTPPP method, CCL method and CODE final products, respectively. This shows the superiority of RTPPP-derived slant ionospheric delays in real-time ionospheric VTEC modeling.
Shinozaki, Ayako; Misawa, Kenichiro; Ikeda, Yuko; Haraguchi, Atsushi; Kamagata, Mayo; Tahara, Yu; Shibata, Shigenobu
2017-01-01
Flavonoids are natural polyphenols that are widely found in plants. The effects of flavonoids on obesity and numerous diseases such as cancer, diabetes, and Alzheimer's have been well studied. However, little is known about the relationships between flavonoids and the circadian clock. In this study, we show that continuous or transient application of flavonoids to the culture medium of embryonic fibroblasts from PER2::LUCIFERASE (PER2::LUC) mice induced various modifications in the circadian clock amplitude, period, and phase. Transient application of some of the tested flavonoids to cultured cells induced a phase delay of the PER2::LUC rhythm at the down slope phase. In addition, continuous application of the polymethoxy flavonoids nobiletin and tangeretin increased the amplitude and lengthened the period of the PER2::LUC rhythm. The nobiletin-induced phase delay was blocked by co-treatment with U0126, an ERK inhibitor. In summary, among the tested flavonoids, polymethoxy flavones increased the amplitude, lengthened the period, and delayed the phase of the PER2::LUC circadian rhythm. Therefore, foods that contain polymethoxy flavones may have beneficial effects on circadian rhythm disorders and jet lag.
Effect of caffeine on radiation-induced mitotic delay: delayed expression of G/sub 2/ arrest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowley, R.; Zorch, M.; Leeper, D.B.
1984-01-01
In the presence of 5 mM caffeine, irradiated (1.5 Gy) S and G/sub 2/ cells progressed to mitosis in register and without arrest in G/sub 2/. Caffeine (5 mM) markedly reduced mitotic delay even after radiation doses up to 20 Gy. When caffeine was removed from irradiated (1.5 Gy) and caffeine-treated cells, a period of G/sub 2/ arrest followed, similar in length to that produced by radiation alone. The arrest expressed was independent of the duration of the caffeine treatment for exposures up to 3 hr. The similarity of the response to the cited effects of caffeine on S-phase delaymore » suggests a common basis for delay induction in S and G/sub 2/ phases.« less
Propagation of light through small clouds of cold interacting atoms
NASA Astrophysics Data System (ADS)
Jennewein, S.; Sortais, Y. R. P.; Greffet, J.-J.; Browaeys, A.
2016-11-01
We demonstrate experimentally that a dense cloud of cold atoms with a size comparable to the wavelength of light can induce large group delays on a laser pulse when the laser is tightly focused on it and is close to an atomic resonance. Delays as large as -10 ns are observed, corresponding to "superluminal" propagation with negative group velocities as low as -300 m /s . Strikingly, this large delay is associated with a moderate extinction owing to the very small size of the dense cloud. It implies that a large phase shift is imprinted on the continuous laser beam. Our system may thus be useful for applications to quantum technologies, such as variable delay line for individual photons or phase imprint between two beams at the single-photon level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jeongho; Kim, Kyung Hwan; Oang, Key Young
Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump–probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive tomore » changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions.« less
Coupled lasers: phase versus chaos synchronization.
Reidler, I; Nixon, M; Aviad, Y; Guberman, S; Friesem, A A; Rosenbluh, M; Davidson, N; Kanter, I
2013-10-15
The synchronization of chaotic lasers and the optical phase synchronization of light originating in multiple coupled lasers have both been extensively studied. However, the interplay between these two phenomena, especially at the network level, is unexplored. Here, we experimentally compare these phenomena by controlling the heterogeneity of the coupling delay times of two lasers. While chaotic lasers exhibit deterioration in synchronization as the time delay heterogeneity increases, phase synchronization is found to be independent of heterogeneity. The experimental results are found to be in agreement with numerical simulations for semiconductor lasers.
Clinical efficacy of dim light melatonin onset testing in diagnosing delayed sleep phase syndrome.
Rahman, Shadab A; Kayumov, Leonid; Tchmoutina, Ekaterina A; Shapiro, Colin M
2009-05-01
Delayed Sleep Phase Syndrome (DSPS) arises from biological clock desynchrony and accounts for 10% of chronic insomnia patients. Currently DSPS is diagnosed based on sleep/wake cycle disruptions rather than examining the underlying biological clock alterations. The objective of the study was to determine the sensitivity and specificity of the Dim Light Melatonin Onset (DLMO) Test in diagnosing DSPS in a clinical setting. Fifty-six patients (mean age 28 years) symptomatic of DSPS participated in the study. Following an initial assessment of DSPS using sleep diaries, participants underwent two consecutive nights of polysomnography (PSG), with an imposed sleep period on the second night to demonstrate the delay in the timing of habitual sleep period and to thereby confirm DSPS. Circadian phase delays were also measured using melatonin secretion profiles, and the efficacy of diagnosing DSPS using DLMO was compared to using sleep diaries and PSG. Melatonin secretion was assayed for each individual by ELISA using saliva samples. Main outcome measures included the time of melatonin secretion onset, clinical sensitivity and specificity of the DLMO test. The time of melatonin secretion onset was significantly delayed in DSPS patients. Clinical sensitivity and specificity of the DLMO test in diagnosing DSPS were 90.3% and 84.0%, respectively. The DLMO test is an accurate tool for differentiating between sleep disorder patients with or without underlying circadian rhythm disruption. It is effective for phase typing DSPS patients in a clinical setting.
Tunable delay time and Hartman effect in graphene magnetic barriers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ban, Yue; Wang, Lin-Jun; Chen, Xi, E-mail: xchen@shu.edu.cn
2015-04-28
Tunable group delay and Hartman effect have been investigated for massless Dirac electrons in graphene magnetic barriers. In the presence of magnetic field, dwell time is found to be equal to net group delay plus the group delay contributing from the lateral shifts. The group delay times are discussed in both cases of normal and oblique incidence, to clarify the nature of Hartman effect. In addition, the group delay in transmission can be modulated from subluminality to superluminality by adjusting the magnetic field, which may also lead to potential applications in graphene-based microelectronics.
Delay time and Hartman effect in strain engineered graphene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi, E-mail: xchen@shu.edu.cn; Deng, Zhi-Yong; Ban, Yue, E-mail: yban@shu.edu.cn
2014-05-07
Tunneling times, including group delay and dwell time, are studied for massless Dirac electrons transmitting through a one-dimensional barrier in strain-engineered graphene. The Hartman effect, the independence of group delay on barrier length, is induced by the strain effect, and associated with the transmission gap and the evanescent mode. The influence of barrier height/length and strain modulus/direction on the group delay is also discussed, which provides the flexibility to control the group delay with applications in graphene-based devices. The relationship between group delay and dwell time is finally derived to clarify the nature of the Hartman effect.
Wide Band Low Noise Love Wave Magnetic Field Sensor System.
Kittmann, Anne; Durdaut, Phillip; Zabel, Sebastian; Reermann, Jens; Schmalz, Julius; Spetzler, Benjamin; Meyners, Dirk; Sun, Nian X; McCord, Jeffrey; Gerken, Martina; Schmidt, Gerhard; Höft, Michael; Knöchel, Reinhard; Faupel, Franz; Quandt, Eckhard
2018-01-10
We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/[Formula: see text], a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.
Almeida, Sintia; Legembre, Patrick; Edmond, Valérie; Azevedo, Vasco; Miyoshi, Anderson; Even, Sergine; Taieb, Frédéric; Arlot-Bonnemains, Yannick; Le Loir, Yves; Berkova, Nadia
2013-01-01
Staphylococcus aureus is a highly versatile, opportunistic pathogen and the etiological agent of a wide range of infections in humans and warm-blooded animals. The epithelial surface is its principal site of colonization and infection. In this work, we investigated the cytopathic effect of S. aureus strains from human and animal origins and their ability to affect the host cell cycle in human HeLa and bovine MAC-T epithelial cell lines. S. aureus invasion slowed down cell proliferation and induced a cytopathic effect, resulting in the enlargement of host cells. A dramatic decrease in the number of mitotic cells was observed in the infected cultures. Flow cytometry analysis revealed an S. aureus-induced delay in the G2/M phase transition in synchronous HeLa cells. This delay required the presence of live S. aureus since the addition of the heat-killed bacteria did not alter the cell cycle. The results of Western blot experiments showed that the G2/M transition delay was associated with the accumulation of inactive cyclin-dependent kinase Cdk1, a key inducer of mitosis entry, and with the accumulation of unphosphorylated histone H3, which was correlated with a reduction of the mitotic cell number. Analysis of S. aureus proliferation in asynchronous, G1- and G2-phase-enriched HeLa cells showed that the G2 phase was preferential for bacterial infective efficiency, suggesting that the G2 phase delay may be used by S. aureus for propagation within the host. Taken together, our results divulge the potential of S. aureus in the subversion of key cellular processes such as cell cycle progression, and shed light on the biological significance of S. aureus-induced host cell cycle alteration. PMID:23717407
NASA Astrophysics Data System (ADS)
Andoh, Masayoshi; Nakajima, Chihiro; Wada, Hiroshi
2005-09-01
Although the auditory transduction process is dependent on neural excitation of the auditory nerve in relation to motion of the basilar membrane (BM) in the organ of Corti (OC), specifics of this process are unclear. In this study, therefore, an attempt was made to estimate the phase of the neural excitation relative to the BM motion using a finite-element model of the OC at the basal turn of the gerbil, including the fluid-structure interaction with the lymph fluid. It was found that neural excitation occurs when the BM exhibits a maximum velocity toward the scala vestibuli at 10 Hz and shows a phase delay relative to the BM motion with increasing frequency up to 800 Hz. It then shows a phase advance until the frequency reaches 2 kHz. From 2 kHz, neural excitation again shows a phase delay with increasing frequency. From 800 Hz up to 2 kHz, the phase advances because the dominant force exerted on the hair bundle shifts from a velocity-dependent Couette flow-induced force to a displacement-dependent force induced by the pressure difference. The phase delay that occurs from 2 kHz is caused by the resonance process of the hair bundle of the IHC.
Lee, Jiyoung; Aizawa, Naoya; Numata, Masaki; Adachi, Chihaya; Yasuda, Takuma
2017-01-01
Concentration quenching of thermally activated delayed fluorescence is found to be dominated by electron-exchange interactions, as described by the Dexter energy-transfer model. Owing to the short-range nature of the electron-exchange interactions, even a small modulation in the molecular geometric structure drastically affects the concentration-quenching, leading to enhanced solid-state photoluminescence and electroluminescence quantum efficiencies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Generator voltage stabilisation for series-hybrid electric vehicles.
Stewart, P; Gladwin, D; Stewart, J; Cowley, R
2008-04-01
This paper presents a controller for use in speed control of an internal combustion engine for series-hybrid electric vehicle applications. Particular reference is made to the stability of the rectified DC link voltage under load disturbance. In the system under consideration, the primary power source is a four-cylinder normally aspirated gasoline internal combustion engine, which is mechanically coupled to a three-phase permanent magnet AC generator. The generated AC voltage is subsequently rectified to supply a lead-acid battery, and permanent magnet traction motors via three-phase full bridge power electronic inverters. Two complementary performance objectives exist. Firstly to maintain the internal combustion engine at its optimal operating point, and secondly to supply a stable 42 V supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the internal combustion engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. An electronically operated throttle allows closed loop engine velocity control. System time delays and nonlinearities render closed loop control design extremely problematic. A model-based controller is designed and shown to be effective in controlling the DC link voltage, resulting in the well-conditioned operation of the hybrid vehicle.
Comparison of IRI-Plas and IONOLAB Slant Total Electron Content for Disturbed Days of Ionosphere
NASA Astrophysics Data System (ADS)
Shukurov, Seymur; Gulyaeva, Tamara; Arikan, Feza; Necat Deviren, M.; Tuna, Hakan; Arikan, Orhan
Variabilities due to geomagnetic, and seismic activities in ionosphere can be observed by using Total Electron Content (TEC). TEC estimated on a path between a dual-frequency Global Positioning System (GPS) receiver and a GPS satellite at a given date and time is called Slant TEC (STEC). STEC contains the variability of ionosphere on a given path, therefore it is a useful variable to identify the anisotropicity. IONOLAB group has developed a novel method for STEC estimation (IONOLAB-STEC) from GPS phase delay recordings resolving the phase ambiguity and calculating IONOLAB-BIAS as receiver interfrequency bias. International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) is the standard climatic model of ionosphere. IONOLAB group automatized the computation of STEC between a GPS satellite and receiver for a given date. In this study, IRI-Plas-STEC and IONOLAB-STEC are compared for geomagnetically active storm days and for the days prior to earthquakes over Turkey using Symmetric Kullback-Liebler Distance (SKLD). It is observed that IRI-Plas-STEC and IONOLAB-STEC are very similar for magnetically quiet days, and IRI-Plas-STEC provides a background ionosphere. This study is supported by the joint grant of TUBITAK 112E568 and RFBR 13-02-91370-CT_a.
Behaviour of fractional loop delay zero crossing digital phase locked loop (FR-ZCDPLL)
NASA Astrophysics Data System (ADS)
Nasir, Qassim
2018-01-01
This article analyses the performance of the first-order zero crossing digital phase locked loops (FR-ZCDPLL) when fractional loop delay is added to loop. The non-linear dynamics of the loop is presented, analysed and examined through bifurcation behaviour. Numerical simulation of the loop is conducted to proof the mathematical analysis of the loop operation. The results of the loop simulation show that the proposed FR-ZCDPLL has enhanced the performance compared to the conventional zero crossing DPLL in terms of wider lock range, captured range and stable operation region. In addition, extensive experimental simulation was conducted to find the optimum loop parameters for different loop environmental conditions. The addition of the fractional loop delay network in the conventional loop also reduces the phase jitter and its variance especially when the signal-to-noise ratio is low.
NASA Technical Reports Server (NTRS)
Yildiz, Yildiray; Kolmanovsky, Ilya V.
2010-01-01
This paper proposes a control allocation technique that can help pilots recover from pilot induced oscillations (PIO). When actuators are rate-saturated due to aggressive pilot commands, high gain flight control systems or some anomaly in the system, the effective delay in the control loop may increase depending on the nature of the cause. This effective delay increase manifests itself as a phase shift between the commanded and actual system signals and can instigate PIOs. The proposed control allocator reduces the effective time delay by minimizing the phase shift between the commanded and the actual attitude accelerations. Simulation results are reported, which demonstrate phase shift minimization and recovery from PIOs. Conversion of the objective function to be minimized and constraints to a form that is suitable for implementation is given.
Quick Phases of Infantile Nystagmus Show the Saccadic Inhibition Effect
Harrison, James J.; Sumner, Petroc; Dunn, Matt J.; Erichsen, Jonathan T.; Freeman, Tom C. A.
2015-01-01
Purpose. Infantile nystagmus (IN) is a pathological, involuntary oscillation of the eyes consisting of slow, drifting eye movements interspersed with rapid reorienting quick phases. The extent to which quick phases of IN are programmed similarly to saccadic eye movements remains unknown. We investigated whether IN quick phases exhibit ‘saccadic inhibition,' a phenomenon typically related to normal targeting saccades, in which the initiation of the eye movement is systematically delayed by task-irrelevant visual distractors. Methods. We recorded eye position from 10 observers with early-onset idiopathic nystagmus while task-irrelevant distractor stimuli were flashed along the top and bottom of a large screen at ±10° eccentricity. The latency distributions of quick phases were measured with respect to these distractor flashes. Two additional participants, one with possible albinism and one with fusion maldevelopment nystagmus syndrome, were also tested. Results. All observers showed that a distractor flash delayed the execution of quick phases that would otherwise have occurred approximately 100 ms later, exactly as in the standard saccadic inhibition effect. The delay did not appear to differ between the two main nystagmus types under investigation (idiopathic IN with unidirectional and bidirectional jerk). Conclusions. The presence of the saccadic inhibition effect in IN quick phases is consistent with the idea that quick phases and saccades share a common programming pathway. This could allow quick phases to take on flexible, goal-directed behavior, at odds with the view that IN quick phases are stereotyped, involuntary eye movements. PMID:25670485
Synchronization in oscillator networks with delayed coupling: a stability criterion.
Earl, Matthew G; Strogatz, Steven H
2003-03-01
We derive a stability criterion for the synchronous state in networks of identical phase oscillators with delayed coupling. The criterion applies to any network (whether regular or random, low dimensional or high dimensional, directed or undirected) in which each oscillator receives delayed signals from k others, where k is uniform for all oscillators.
Yu, Shiying; Burke, Thomas A; Chan, Alexandre; Kim, Hoon-Kyo; Hsieh, Ruey Kuen; Hu, Xichun; Liang, Jin-Tung; Baños, Ana; Spiteri, Carmel; Keefe, Dorothy M K
2015-01-01
This paper reports prescribing patterns for prophylaxis of chemotherapy-induced nausea and vomiting (CINV) after highly or moderately emetogenic chemotherapy (HEC or MEC) for cancer in six Asia Pacific countries. In a prospective noninterventional study, 31 sites in Australia, China, India, Singapore, South Korea, and Taiwan recorded details of CINV prophylaxis for the acute phase (first 24 h) and delayed phase (days 2-5) after single-day HEC or MEC for adult patients. Additional information on CINV prophylactic medications was collected from 6-day patient diaries. Primary antiemetic therapies were defined as corticosteroids, the 5-hydroxytryptamine-3 receptor antagonists (5HT3-RAs), and neurokinin-1 receptor antagonists (NK1-RAs). Evaluable patients in cycle 1 numbered 648 (318 [49%] HEC and 330 [51%] MEC) of mean (SD) age of 56 (12) years, including 58% women. For the acute phase after HEC, overall (and country range), 96% (91-100%) of patients received a 5HT3-RA, 87% (70-100%) a corticosteroid, and 43% (0-91%) an NK1-RA. CINV prophylaxis for the HEC delayed phase was more variable: including 22% (7-65%) 5HT3-RA, 52% (12-93%) corticosteroid, and 46% (0-88%) NK1-RA. For the MEC acute phase, 97% (87-100%) of patients received 5HT3-RA and 86% (73-97%) a corticosteroid. For the MEC delayed phase, 201 patients (61%) received a primary antiemetic, including 5HT3-RA (41%), corticosteroid (37%), and/or NK1-RA (4%). The 5HT3-RAs were prescribed consistently in all countries, while prescribing of other antiemetic therapies was variable, and corticosteroids were under-prescribed for CINV prophylaxis, particularly in the delayed phase.
NASA Astrophysics Data System (ADS)
Ishbulatov, Yu. M.; Karavaev, A. S.; Kiselev, A. R.; Semyachkina-Glushkovskaya, O. V.; Postnov, D. E.; Bezruchko, B. P.
2018-04-01
A method for the reconstruction of time-delayed feedback system is investigated, which is based on the detection of synchronous response of a slave time-delay system with respect to the driving from the master system under study. The structure of the driven system is similar to the structure of the studied time-delay system, but the feedback circuit is broken in the driven system. The method efficiency is tested using short and noisy data gained from an electronic chaotic oscillator with time-delayed feedback.
Evidence of a Critical Phase Transition in Purely Temporal Dynamics with Long-Delayed Feedback
NASA Astrophysics Data System (ADS)
Faggian, Marco; Ginelli, Francesco; Marino, Francesco; Giacomelli, Giovanni
2018-04-01
Experimental evidence of an absorbing phase transition, so far associated with spatiotemporal dynamics, is provided in a purely temporal optical system. A bistable semiconductor laser, with long-delayed optoelectronic feedback and multiplicative noise, shows the peculiar features of a critical phenomenon belonging to the directed percolation universality class. The numerical study of a simple, effective model provides accurate estimates of the transition critical exponents, in agreement with both theory and our experiment. This result pushes forward a hard equivalence of nontrivial stochastic, long-delayed systems with spatiotemporal ones and opens a new avenue for studying out-of-equilibrium universality classes in purely temporal dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Debajyoti; Ghoshal, Debashis; Sen, Anjan Ananda, E-mail: debajyoti.choudhury@gmail.com, E-mail: dghoshal@mail.jnu.ac.in, E-mail: anjan.ctp@jmi.ac.in
2012-02-01
The introduction of a delay in the Friedmann equation of cosmological evolution is shown to result in the very early universe undergoing the necessary accelerated expansion in the usual radiation (or matter) dominated phase. Occurring even without a violation of the strong energy condition, this expansion slows down naturally to go over to the decelerated phase, namely the standard Hubble expansion. This may obviate the need for a scalar field driven inflationary epoch.
Monolithic mm-wave phase shifter using optically activated superconducting switches
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R. (Inventor); Bhasin, Kul B. (Inventor)
1992-01-01
A phase shifter is disclosed having a reference path and a delay path, light sources, and superconductive switches. Each of the superconductive switches is terminated in a virtual short circuit, which may be a radial stub. Switching between the reference path and delayed path is accomplished by illuminating the superconductive switches connected to the desired path, while not illuminating the superconductive switches connected to the other path.
NASA Astrophysics Data System (ADS)
Xue, Xiaoxiao; Xuan, Yi; Bao, Chengying; Li, Shangyuan; Zheng, Xiaoping; Zhou, Bingkun; Qi, Minghao; Weiner, Andrew M.
2018-06-01
Microwave phased array antennas (PAAs) are very attractive to defense applications and high-speed wireless communications for their abilities of fast beam scanning and complex beam pattern control. However, traditional PAAs based on phase shifters suffer from the beam-squint problem and have limited bandwidths. True-time-delay (TTD) beamforming based on low-loss photonic delay lines can solve this problem. But it is still quite challenging to build large-scale photonic TTD beamformers due to their high hardware complexity. In this paper, we demonstrate a photonic TTD beamforming network based on a miniature microresonator frequency comb (microcomb) source and dispersive time delay. A method incorporating optical phase modulation and programmable spectral shaping is proposed for positive and negative apodization weighting to achieve arbitrary microwave beam pattern control. The experimentally demonstrated TTD beamforming network can support a PAA with 21 elements. The microwave frequency range is $\\mathbf{8\\sim20\\ {GHz}}$, and the beam scanning range is $\\mathbf{\\pm 60.2^\\circ}$. Detailed measurements of the microwave amplitudes and phases are performed. The beamforming performances of Gaussian, rectangular beams and beam notch steering are evaluated through simulations by assuming a uniform radiating antenna array. The scheme can potentially support larger PAAs with hundreds of elements by increasing the number of comb lines with broadband microcomb generation.
Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu
2017-01-01
In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter’s pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection. PMID:29023385
Liu, Peilu; Li, Xinghua; Li, Haopeng; Su, Zhikun; Zhang, Hongxu
2017-10-12
In order to improve the accuracy of ultrasonic phased array focusing time delay, analyzing the original interpolation Cascade-Integrator-Comb (CIC) filter, an 8× interpolation CIC filter parallel algorithm was proposed, so that interpolation and multichannel decomposition can simultaneously process. Moreover, we summarized the general formula of arbitrary multiple interpolation CIC filter parallel algorithm and established an ultrasonic phased array focusing time delay system based on 8× interpolation CIC filter parallel algorithm. Improving the algorithmic structure, 12.5% of addition and 29.2% of multiplication was reduced, meanwhile the speed of computation is still very fast. Considering the existing problems of the CIC filter, we compensated the CIC filter; the compensated CIC filter's pass band is flatter, the transition band becomes steep, and the stop band attenuation increases. Finally, we verified the feasibility of this algorithm on Field Programming Gate Array (FPGA). In the case of system clock is 125 MHz, after 8× interpolation filtering and decomposition, time delay accuracy of the defect echo becomes 1 ns. Simulation and experimental results both show that the algorithm we proposed has strong feasibility. Because of the fast calculation, small computational amount and high resolution, this algorithm is especially suitable for applications with high time delay accuracy and fast detection.
A real time QRS detection using delay-coordinate mapping for the microcontroller implementation.
Lee, Jeong-Whan; Kim, Kyeong-Seop; Lee, Bongsoo; Lee, Byungchae; Lee, Myoung-Ho
2002-01-01
In this article, we propose a new algorithm using the characteristics of reconstructed phase portraits by delay-coordinate mapping utilizing lag rotundity for a real-time detection of QRS complexes in ECG signals. In reconstructing phase portrait the mapping parameters, time delay, and mapping dimension play important roles in shaping of portraits drawn in a new dimensional space. Experimentally, the optimal mapping time delay for detection of QRS complexes turned out to be 20 ms. To explore the meaning of this time delay and the proper mapping dimension, we applied a fill factor, mutual information, and autocorrelation function algorithm that were generally used to analyze the chaotic characteristics of sampled signals. From these results, we could find the fact that the performance of our proposed algorithms relied mainly on the geometrical property such as an area of the reconstructed phase portrait. For the real application, we applied our algorithm for designing a small cardiac event recorder. This system was to record patients' ECG and R-R intervals for 1 h to investigate HRV characteristics of the patients who had vasovagal syncope symptom and for the evaluation, we implemented our algorithm in C language and applied to MIT/BIH arrhythmia database of 48 subjects. Our proposed algorithm achieved a 99.58% detection rate of QRS complexes.
Are superhydrophobic surfaces best for icephobicity?
Jung, Stefan; Dorrestijn, Marko; Raps, Dominik; Das, Arindam; Megaridis, Constantine M; Poulikakos, Dimos
2011-03-15
Ice formation can have catastrophic consequences for human activity on the ground and in the air. Here we investigate water freezing delays on untreated and coated surfaces ranging from hydrophilic to superhydrophobic and use these delays to evaluate icephobicity. Supercooled water microdroplets are inkjet-deposited and coalesce until spontaneous freezing of the accumulated mass occurs. Surfaces with nanometer-scale roughness and higher wettability display unexpectedly long freezing delays, at least 1 order of magnitude longer than typical superhydrophobic surfaces with larger hierarchical roughness and low wettability. Directly related to the main focus on heterogeneous nucleation and freezing delay of supercooled water droplets, the observed ensuing crystallization process consisted of two distinct phases: one very rapid recalescent partial solidification phase and a subsequent slower phase. Observations of the droplet collision process employed for the continuous liquid mass accumulation up to the point of ice formation reveal a previously unseen atmospheric-pressure, subfreezing-temperature regime for liquid-on-liquid bounce. On the basis of the entropy reduction of water near a solid surface, we formulate a modification to the classical heterogeneous nucleation theory, which predicts the observed freezing delay trends. Our results bring to question recent emphasis on super water-repellent surface formulations for ice formation retardation and suggest that anti-icing design must optimize the competing influences of both wettability and roughness.
NASA Astrophysics Data System (ADS)
Gu, Shengfeng; Shi, Chuang; Lou, Yidong; Liu, Jingnan
2015-05-01
Zero-difference (ZD) ambiguity resolution (AR) reveals the potential to further improve the performance of precise point positioning (PPP). Traditionally, PPP AR is achieved by Melbourne-Wübbena and ionosphere-free combinations in which the ionosphere effect are removed. To exploit the ionosphere characteristics, PPP AR with L1 and L2 raw observable has also been developed recently. In this study, we apply this new approach in uncalibrated phase delay (UPD) generation and ZD AR and compare it with the traditional model. The raw observable processing strategy treats each ionosphere delay as an unknown parameter. In this manner, both a priori ionosphere correction model and its spatio-temporal correlation can be employed as constraints to improve the ambiguity resolution. However, theoretical analysis indicates that for the wide-lane (WL) UPD retrieved from L1/L2 ambiguities to benefit from this raw observable approach, high precision ionosphere correction of better than 0.7 total electron content unit (TECU) is essential. This conclusion is then confirmed with over 1 year data collected at about 360 stations. Firstly, both global and regional ionosphere model were generated and evaluated, the results of which demonstrated that, for large-scale ionosphere modeling, only an accuracy of 3.9 TECU can be achieved on average for the vertical delays, and this accuracy can be improved to about 0.64 TECU when dense network is involved. Based on these ionosphere products, WL/narrow-lane (NL) UPDs are then extracted with the raw observable model. The NL ambiguity reveals a better stability and consistency compared to traditional approach. Nonetheless, the WL ambiguity can be hardly improved even constrained with the high spatio-temporal resolution ionospheric corrections. By applying both these approaches in PPP-RTK, it is interesting to find that the traditional model is more efficient in AR as evidenced by the shorter time to first fix, while the three-dimensional positioning accuracy of the RAW model outperforms the combination model by about . This reveals that, with the current ionosphere models, there is actually no optimal strategy for the dual-frequency ZD ambiguity resolution, and the combination approach and raw approach each has merits and demerits.
Liu, Yang; Tong, Shoufeng; Chang, Shuai; Song, Yansong; Dong, Yan; Zhao, Xin; An, Zhe; Yu, Fuwan
2018-05-10
Optical phase-locked loops are an effective detection method in high-speed and long-distance laser communication. Although this method can detect weak signal light and maintain a small bit error rate, it is difficult to perform because identifying the phase difference between the signal light and the local oscillator accurately has always been a technical challenge. Thus, a series of studies is conducted to address this issue. First, a delayed exclusive or gate (XOR) phase detector with multi-level loop compound control is proposed. Then, a 50 ps delay line and relative signal-to-noise ratio control at 15 dB are produced through theoretical derivation and simulation. Thereafter, a phase discrimination module is designed on a 15 cm×5 cm printed circuit board board. Finally, the experiment platform is built for verification. Experimental results show that the phase discrimination range is -1.1 to 1.1 GHz, and the gain is 0.82 mV/MHz. Three times the standard deviation, that is, 0.064 V, is observed between the test and theoretical values. The accuracy of phase detection is better than 0.07 V, which meets the design standards. A coherent carrier recovery test system is established. The delayed XOR gate has good performance in this system. When the communication rate is 5 Gbps, the system realizes a bit error rate of 1.55×10 -8 when the optical power of the signal is -40.4 dBm. When the communication rate is increased to 10 Gbps, the detection sensitivity drops to -39.5 dBm and still shows good performance in high-speed communications. This work provides a reference for future high-speed coherent homodyne detection in space. Ideas for the next phase of this study are presented at the end of this paper.
Carroll, Marilyn E.; Kohl, Emily A.; Johnson, Krista M.; LaNasa, Rachel M.
2013-01-01
Background In previous studies with male and female rhesus monkeys withdrawal of access to oral phencyclidine (PCP) self administration reduced responding for food under a high fixed-ratio (FR) schedule more in males than females and with a delay discounting (DD) task with saccharin (SACC) as the reinforcer. Impulsive choice for SACC increased during PCP withdrawal more than females. Objectives The goal of the present study was to examine the effect of PCP (0.25 or 0.5 mg/ml) withdrawal on impulsive choice for SACC in females during the follicular and luteal phases of the menstrual cycle. Materials and methods In Component 1 PCP and water were available from 2 drinking spouts for 1.5 h sessions under concurrent FR 16 schedules. In Component 2 a SACC solution was available for 45 min under a DD schedule. Monkeys had a choice of one immediate SACC delivery (0.6 ml) or 6 delayed SACC deliveries, and the delay was increased by 1 sec after a response on the delayed lever and decreased by 1 sec after a response on the immediate lever. There was then a 10-day water substitution phase, or PCP-withdrawal, that occurred during the mid-folllicular phase (Days 7–11) or the late-luteal (Days 24–28) phase of the menstrual cycle. Access to PCP and concurrent water was then restored, and the PCP withdrawal procedure was repeated over several follicular and luteal menstrual phases. Results PCP deliveries were higher during the luteal vs the follicular phase. Impulsive choice was greater during the luteal (vs follicular) phase during withdrawal of the higher PCP concentration. Conclusions PCP withdrawal was associated with elevated impulsive choice for SACC, especially in the luteal (vs follicular) phase of the menstrual cycle in female monkeys. PMID:23344553
Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi
2015-01-01
Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773
Delayed photo-emission model for beam optics codes
Jensen, Kevin L.; Petillo, John J.; Panagos, Dimitrios N.; ...
2016-11-22
Future advanced light sources and x-ray Free Electron Lasers require fast response from the photocathode to enable short electron pulse durations as well as pulse shaping, and so the ability to model delays in emission is needed for beam optics codes. The development of a time-dependent emission model accounting for delayed photoemission due to transport and scattering is given, and its inclusion in the Particle-in-Cell code MICHELLE results in changes to the pulse shape that are described. Furthermore, the model is applied to pulse elongation of a bunch traversing an rf injector, and to the smoothing of laser jitter onmore » a short pulse.« less
Rizvydeen, Muneer; Fogg, Louis F.; Keshavarzian, Ali
2016-01-01
Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n = 10 light drinkers, 24–45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n = 14 light drinkers, 22–44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P ≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. PMID:26936778
Burgess, Helen J; Rizvydeen, Muneer; Fogg, Louis F; Keshavarzian, Ali
2016-04-15
Central circadian timing influences mental and physical health. Research in nocturnal rodents has demonstrated that when alcohol is consumed, it reaches the central hypothalamic circadian pacemaker (suprachiasmatic nuclei) and can directly alter circadian phase shifts to light. In two separate studies, we examined, for the first time, the effects of a single dose of alcohol on circadian phase advances and phase delays to light in humans. Two 23-day within-subjects placebo-controlled counterbalanced design studies were conducted. Both studies consisted of 6 days of fixed baseline sleep to stabilize circadian timing, a 2-day laboratory session, a 6-day break, and a repeat of 6 days of fixed sleep and a 2-day laboratory session. In the phase advance study (n= 10 light drinkers, 24-45 yr), the laboratory sessions consisted of a baseline dim light phase assessment, sleep episode, alcohol (0.6 g/kg) or placebo, 2-h morning bright light pulse, and final phase assessment. In the phase-delay study (n= 14 light drinkers, 22-44 yr), the laboratory sessions consisted of a baseline phase assessment, alcohol (0.8 g/kg) or placebo, 2-h late night bright light pulse, sleep episode, and final phase assessment. In both studies, alcohol either increased or decreased the observed phase shifts to light (interaction P≥ 0.46), but the effect of alcohol vs. placebo on phase shifts to light was always on average smaller than 30 min. Thus, no meaningful effects of a single dose of alcohol vs. placebo on circadian phase shifts to light in humans were observed. Copyright © 2016 the American Physiological Society.
Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar
Bates, Mary E.; Simmons, James A.
2011-01-01
Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets. PMID:21228198
Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar.
Bates, Mary E; Simmons, James A
2011-02-01
Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets.
NASA Astrophysics Data System (ADS)
Gourley, Stephen A.; Kuang, Yang
We present a global study on the stability of the equilibria in a nonlinear autonomous neutral delay differential population model formulated by Bocharov and Hadeler. This model may be suitable for describing the intriguing dynamics of an insect population with long larval and short adult phases such as the periodical cicada. We circumvent the usual difficulties associated with the study of the stability of a nonlinear neutral delay differential model by transforming it to an appropriate non-neutral nonautonomous delay differential equation with unbounded delay. In the case that no juveniles give birth, we establish the positivity and boundedness of solutions by ad hoc methods and global stability of the extinction and positive equilibria by the method of iteration. We also show that if the time adjusted instantaneous birth rate at the time of maturation is greater than 1, then the population will grow without bound, regardless of the population death process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Boyun; Wang, Tao, E-mail: wangtao@hust.edu.cn; Tang, Jian
2014-10-07
We theoretically propose a dynamic and ultrafast group delay tuning mechanism in two microcavities side-coupled to a waveguide system through external optical pump beams. The optical Kerr effect modulation method is applied to improve tuning rate with response time of subpicoseconds or even femtoseconds. The group delay of an all-optical analog to electromagnetically induced transparency effect can be controlled by tuning either the frequency of photonic crystal microcavities or the propagation phase of line waveguide. Group delay is controlled between 5.88 and 70.98 ps by dynamically tuning resonant frequencies of the microcavities. Alternatively, the group delay is controlled between 1.86more » and 12.08 ps by dynamically tuning the propagation phase of line waveguide. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Results show a new direction toward microstructure integration optical pulse trapping and all-optical dynamical storage of light devices in optical communication and quantum information processing.« less
NASA Astrophysics Data System (ADS)
Sahay, Peeyush; Almabadi, Huda M.; Pradhan, Prabhakar
Real delay time (τr) provides a measure of the time spent by photons inside an optical system. The measurement of τr is conducted in terms of energy (E) derivative of the Wigner phase delay (φ) , as τr = dϕ / dE dϕ / cdk k and c represents wavenumber and the speed of light, respectively. The characterization of τr requires interferometric system to measure φ of the light waves scattering from the medium [ R =√{ r} exp (- iϕ) ]. We investigated the possibility of extracting the τr information from the intensity measurement of the backscattered waves. The study was performed on a 1D model of weak disordered optical system and short sample length by numerically evaluating the backscattered light intensity. An imaginary delay time (τi) , defined as τi = dθ / cdk , where θ represents an `imaginary phase', was obtained upon expressing the backscattered intensity as RR* =| R | 2 = r = exp (- θ) . The result shows a strong correlation between r and φ with τr and τi exhibiting similar statistical distribution but with a shift. The magnitude and variation of the mean and std values of τr, and the std values of τi with sample lengths are nearly the same, which indicates about one parameter theory of delay time. This work potentially paves way for extracting phase information from the intensity distribution without using interferometric systems.
Deng, Yuqiang; Yang, Weijian; Zhou, Chun; Wang, Xi; Tao, Jun; Kong, Weipeng; Zhang, Zhigang
2008-12-01
We propose and demonstrate an analysis method to directly extract the group delay rather than the phase from the white-light spectral interferogram. By the joint time-frequency analysis technique, group delay is directly read from the ridge of wavelet transform, and group-delay dispersion is easily obtained by additional differentiation. The technique shows reasonable potential for the characterization of ultra-broadband chirped mirrors.
Opto-electronic microwave oscillator
NASA Astrophysics Data System (ADS)
Yao, X. Steve; Maleki, Lute
1996-12-01
Photonic applications are important in RF communication systems to enhance many functions including remote transfer of antenna signals, carrier frequency up or down conversion, antenna beam steering, and signal filtering. Many of these functions require reference frequency oscillators. However, traditional microwave oscillators cannot meet all the requirements of photonic communication systems that need high frequency and low phase noise signal generation. Because photonic systems involve signals in both optical and electrical domains, an ideal signal source should be able to provide electrical and optical signals. In addition, it should be possible to synchronize or control the signal source by both electrical and optical means. We present such a source1-2 that converts continuous light energy into stable and spectrally pure microwave signals. This Opto-Electronic Oscillator, OEO, consists of a pump laser and a feedback circuit including an intensity modulator, an optical fiber delay line, a photodetector, an amplifier, and a filter, as shown in Figure 1a. Its oscillation frequency, limited only by the speed of the modulator, can be up to 75 GHz.
Wilmer, Henry H; Chein, Jason M
2016-10-01
Mobile electronic devices are playing an increasingly pervasive role in our daily activities. Yet, there has been very little empirical research investigating how mobile technology habits might relate to individual differences in cognition and affect. The research presented in this paper provides evidence that heavier investment in mobile devices is correlated with a relatively weaker tendency to delay gratification (as measured by a delay discounting task) and a greater inclination toward impulsive behavior (i.e., weaker impulse control, assessed behaviorally and through self-report) but is not related to individual differences in sensitivity to reward. Analyses further demonstrated that individual variation in impulse control mediates the relationship between mobile technology usage and delay of gratification. Although based on correlational results, these findings lend some backing to concerns that increased use of portable electronic devices could have negative impacts on impulse control and the ability to appropriately valuate delayed rewards.
A liquid lens switching-based motionless variable fiber-optic delay line
NASA Astrophysics Data System (ADS)
Khwaja, Tariq Shamim; Reza, Syed Azer; Sheikh, Mumtaz
2018-05-01
We present a Variable Fiber-Optic Delay Line (VFODL) module capable of imparting long variable delays by switching an input optical/RF signal between Single Mode Fiber (SMF) patch cords of different lengths through a pair of Electronically Controlled Tunable Lenses (ECTLs) resulting in a polarization-independent operation. Depending on intended application, the lengths of the SMFs can be chosen accordingly to achieve the desired VFODL operation dynamic range. If so desired, the state of the input signal polarization can be preserved with the use of commercially available polarization-independent ECTLs along with polarization-maintaining SMFs (PM-SMFs), resulting in an output polarization that is identical to the input. An ECTL-based design also improves power consumption and repeatability. The delay switching mechanism is electronically-controlled, involves no bulk moving parts, and can be fully-automated. The VFODL module is compact due to the use of small optical components and SMFs that can be packaged compactly.
Evolutionary Calculations of Phase Separation in Crystallizing White Dwarf Stars
NASA Astrophysics Data System (ADS)
Montgomery, M. H.; Klumpe, E. W.; Winget, D. E.; Wood, M. A.
1999-11-01
We present an exploration of the significance of carbon/oxygen phase separation in white dwarf stars in the context of self-consistent evolutionary calculations. Because phase separation can potentially increase the calculated ages of the oldest white dwarfs, it can affect the age of the Galactic disk as derived from the downturn in the white dwarf luminosity function. We find that the largest possible increase in ages due to phase separation is ~1.5 Gyr, with a most likely value of approximately 0.6 Gyr, depending on the parameters of our white dwarf models. The most important factors influencing the size of this delay are the total stellar mass, the initial composition profile, and the phase diagram assumed for crystallization. We find a maximum age delay in models with masses of ~0.6 Msolar, which is near the peak in the observed white dwarf mass distribution. In addition, we note that the prescription that we have adopted for the mixing during crystallization provides an upper bound for the efficiency of this process, and hence a maximum for the age delays. More realistic treatments of the mixing process may reduce the size of this effect. We find that varying the opacities (via the metallicity) has little effect on the calculated age delays. In the context of Galactic evolution, age estimates for the oldest Galactic globular clusters range from 11.5 to 16 Gyr and depend on a variety of parameters. In addition, a 4-6 Gyr delay is expected between the formation of the globular clusters and the formation of the Galactic thin disk, while the observed white dwarf luminosity function gives an age estimate for the thin disk of 9.5+1.1-0.8 Gyr, without including the effect of phase separation. Using the above numbers, we see that phase separation could add between 0 and 3 Gyr to the white dwarf ages and still be consistent with the overall picture of Galaxy formation. Our calculated maximum value of <~1.5 Gyr fits within these bounds, as does our best-guess value of ~0.6 Gyr.
Electronic Combat Hardware-in-the-Loop Testing in an Open Air Environment
1994-09-01
APQ- 126 (F-111) Gun Dish Squat Eye ANAWG-9 (F-14) Grill Pan Straight Flush I-Hawk Hawk Screech Sun Visor Head Light Tall King High Fix Team Work High...the required delay to the IF, the SPCs contain a Teledyne Microwave Bulk Acoustic Wave (BAW) delay line as well as a Coherent Variable Delay Unit
Huo, Yijie; Sandhu, Sunil; Pan, Jun; Stuhrmann, Norbert; Povinelli, Michelle L; Kahn, Joseph M; Harris, James S; Fejer, Martin M; Fan, Shanhui
2011-04-15
We measure the group delay in an on-chip photonic-crystal device with two resonators side coupled to a waveguide. We demonstrate that such a group delay can be controlled by tuning either the propagation phase of the waveguide or the frequency of the resonators.
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; ...
2016-08-22
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less
Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; Gati, Cornelius; Kimura, Tetsunari; Milne, Christopher; Milathianaki, Despina; Kubo, Minoru; Wu, Wenting; Conrad, Chelsie; Coe, Jesse; Bean, Richard; Zhao, Yun; Båth, Petra; Dods, Robert; Harimoorthy, Rajiv; Beyerlein, Kenneth R.; Rheinberger, Jan; James, Daniel; DePonte, Daniel; Li, Chufeng; Sala, Leonardo; Williams, Garth J.; Hunter, Mark S.; Koglin, Jason E.; Berntsen, Peter; Nango, Eriko; Iwata, So; Chapman, Henry N.; Fromme, Petra; Frank, Matthias; Abela, Rafael; Boutet, Sébastien; Barty, Anton; White, Thomas A.; Weierstall, Uwe; Spence, John; Neutze, Richard; Schertler, Gebhard; Standfuss, Jörg
2016-01-01
Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX. PMID:27545823
Triple-phase bone image abnormalities in Lyme arthritis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, S.J.; Dadparvar, S.; Slizofski, W.J.
1989-10-01
Arthritis is a frequent manifestation of Lyme disease. Limited triple-phase Tc-99m MDP bone imaging of the wrists and hands with delayed whole-body images was performed in a patient with Lyme arthritis. This demonstrated abnormal joint uptake in the wrists and hands in all three phases, with increased activity seen in other affected joints on delayed whole-body images. These findings are nonspecific and have been previously described in a variety of rheumatologic conditions, but not in Lyme disease. Lyme disease should be considered in the differential diagnosis of articular and periarticular bone scan abnormalities.
Virtual Design of a Controller for a Hydraulic Cam Phasing System
NASA Astrophysics Data System (ADS)
Schneider, Markus; Ulbrich, Heinz
2010-09-01
Hydraulic vane cam phasing systems are nowadays widely used for improving the performance of combustion engines. At stationary operation, these systems should achieve a constant phasing angle, which however is badly disturbed by the alternating torque generated by the valve actuation. As the hydraulic system shows a non-linear characteristic over the full operation range and the inductivity of the hydraulic pipes generates a significant time delay, a full model based control emerges very complex. Therefore a simple feed-forward controller is designed, bridging the time delay of the hydraulic system and improving the system behaviour significantly.
Broadband metasurfaces enabling arbitrarily large delay-bandwidth products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ginis, Vincent; Tassin, Philippe; Koschny, Thomas
2016-01-19
Metasurfaces allow for advanced manipulation of optical signals by imposing phase discontinuities across flat interfaces. Unfortunately, these phase shifts remain restricted to values between 0 and 2π, limiting the delay-bandwidth product of such sheets. Here, we develop an analytical tool to design metasurfaces that mimic three-dimensional materials of arbitrary thickness. In this way, we demonstrate how large phase discontinuities can be realized by combining several subwavelength Lorentzian resonances in the unit cell of the surface. Finally, our methods open up the temporal response of metasurfaces and may lead to the construction of metasurfaces with a plethora of new optical functions.
Time delay and noise explaining the behaviour of the cell growth in fermentation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah
2015-02-03
This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.
Time delay and noise explaining the behaviour of the cell growth in fermentation process
NASA Astrophysics Data System (ADS)
Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md
2015-02-01
This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.
Combinational logic for generating gate drive signals for phase control rectifiers
NASA Technical Reports Server (NTRS)
Dolland, C. R.; Trimble, D. W. (Inventor)
1982-01-01
Control signals for phase-delay rectifiers, which require a variable firing angle that ranges from 0 deg to 180 deg, are derived from line-to-line 3-phase signals and both positive and negative firing angle control signals which are generated by comparing current command and actual current. Line-to-line phases are transformed into line-to-neutral phases and integrated to produce 90 deg phase delayed signals that are inverted to produce three cosine signals, such that for each its maximum occurs at the intersection of positive half cycles of the other two phases which are inputs to other inverters. At the same time, both positive and negative (inverted) phase sync signals are generated for each phase by comparing each with the next and producing a square wave when it is greater. Ramp, sync and firing angle controls signals are than used in combinational logic to generate the gate firing control signals SCR gate drives which fire SCR devices in a bridge circuit.
Vonderschen, Katrin; Wagner, Hermann
2012-04-25
Birds and mammals exploit interaural time differences (ITDs) for sound localization. Subsequent to ITD detection by brainstem neurons, ITD processing continues in parallel midbrain and forebrain pathways. In the barn owl, both ITD detection and processing in the midbrain are specialized to extract ITDs independent of frequency, which amounts to a pure time delay representation. Recent results have elucidated different mechanisms of ITD detection in mammals, which lead to a representation of small ITDs in high-frequency channels and large ITDs in low-frequency channels, resembling a phase delay representation. However, the detection mechanism does not prevent a change in ITD representation at higher processing stages. Here we analyze ITD tuning across frequency channels with pure tone and noise stimuli in neurons of the barn owl's auditory arcopallium, a nucleus at the endpoint of the forebrain pathway. To extend the analysis of ITD representation across frequency bands to a large neural population, we employed Fourier analysis for the spectral decomposition of ITD curves recorded with noise stimuli. This method was validated using physiological as well as model data. We found that low frequencies convey sensitivity to large ITDs, whereas high frequencies convey sensitivity to small ITDs. Moreover, different linear phase frequency regimes in the high-frequency and low-frequency ranges suggested an independent convergence of inputs from these frequency channels. Our results are consistent with ITD being remodeled toward a phase delay representation along the forebrain pathway. This indicates that sensory representations may undergo substantial reorganization, presumably in relation to specific behavioral output.
A finite state machine read-out chip for integrated surface acoustic wave sensors
NASA Astrophysics Data System (ADS)
Rakshit, Sambarta; Iliadis, Agis A.
2015-01-01
A finite state machine based integrated sensor circuit suitable for the read-out module of a monolithically integrated SAW sensor on Si is reported. The primary sensor closed loop consists of a voltage controlled oscillator (VCO), a peak detecting comparator, a finite state machine (FSM), and a monolithically integrated SAW sensor device. The output of the system oscillates within a narrow voltage range that correlates with the SAW pass-band response. The period of oscillation is of the order of the SAW phase delay. We use timing information from the FSM to convert SAW phase delay to an on-chip 10 bit digital output operating on the principle of time to digital conversion (TDC). The control inputs of this digital conversion block are generated by a second finite state machine operating under a divided system clock. The average output varies with changes in SAW center frequency, thus tracking mass sensing events in real time. Based on measured VCO gain of 16 MHz/V our system will convert a 10 kHz SAW frequency shift to a corresponding mean voltage shift of 0.7 mV. A corresponding shift in phase delay is converted to a one or two bit shift in the TDC output code. The system can handle alternate SAW center frequencies and group delays simply by adjusting the VCO control and TDC delay control inputs. Because of frequency to voltage and phase to digital conversion, this topology does not require external frequency counter setups and is uniquely suitable for full monolithic integration of autonomous sensor systems and tags.
Temporary Losses of Highway Capacity and Impacts on Performance: Phase 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, S.M.
2004-11-10
Traffic congestion and its impacts significantly affect the nation's economic performance and the public's quality of life. In most urban areas, travel demand routinely exceeds highway capacity during peak periods. In addition, events such as crashes, vehicle breakdowns, work zones, adverse weather, railroad crossings, large trucks loading/unloading in urban areas, and other factors such as toll collection facilities and sub-optimal signal timing cause temporary capacity losses, often worsening the conditions on already congested highway networks. The impacts of these temporary capacity losses include delay, reduced mobility, and reduced reliability of the highway system. They can also cause drivers to re-routemore » or reschedule trips. Such information is vital to formulating sound public policies for the highway infrastructure and its operation. In response to this need, Oak Ridge National Laboratory, sponsored by the Federal Highway Administration (FHWA), made an initial attempt to provide nationwide estimates of the capacity losses and delay caused by temporary capacity-reducing events (Chin et al. 2002). This study, called the Temporary Loss of Capacity (TLC) study, estimated capacity loss and delay on freeways and principal arterials resulting from fatal and non-fatal crashes, vehicle breakdowns, and adverse weather, including snow, ice, and fog. In addition, it estimated capacity loss and delay caused by sub-optimal signal timing at intersections on principal arterials. It also included rough estimates of capacity loss and delay on Interstates due to highway construction and maintenance work zones. Capacity loss and delay were estimated for calendar year 1999, except for work zone estimates, which were estimated for May 2001 to May 2002 due to data availability limitations. Prior to the first phase of this study, which was completed in May of 2002, no nationwide estimates of temporary losses of highway capacity by type of capacity-reducing event had been made. This report describes the second phase of the TLC study (TLC2). TLC2 improves upon the first study by expanding the scope to include delays from rain, toll collection facilities, railroad crossings, and commercial truck pickup and delivery (PUD) activities in urban areas. It includes estimates of work zone capacity loss and delay for all freeways and principal arterials, rather than for Interstates only. It also includes improved estimates of delays caused by fog, snow, and ice, which are based on data not available during the initial phase of the study. Finally, computational errors involving crash and breakdown delay in the original TLC report are corrected.« less
Madankumar, Arumugam; Jayakumar, Subramaniyan; Gokuladhas, Krishnan; Rajan, Balan; Raghunandhakumar, Subramanian; Asokkumar, Selvamani; Devaki, Thiruvengadam
2013-04-05
Xenobiotic metabolizing enzymes are chief determinants in both the susceptibility to mutagenic effect of chemical carcinogens and in the response of tumors to chemotherapy. The present study was aimed to analyze the effect of geraniol administration on the activity of phase I and phase II carcinogen metabolizing enzymes through the nuclear factor erythroid 2-related factor-2 (Nrf2) activation against 4-niroquinoline-1-oxide (4NQO) induced oral carcinogenesis. The well-known chemical carcinogen 4NQO (50 ppm) was used to induce oral carcinogenesis through drinking water for 4, 12, and 20 weeks. The degree of cancer progression at each stage was confirmed by histological examination. At the end of the experimental period, 100% tumor formation was observed in the oral cavity of 4NQO induced animals with significant (P<0.05) alteration in the status of tumor markers, tongue and liver phase I and phase II drug metabolizing enzymes indicating progression of disease. Oral administration of geraniol at the dose of 200 mg/kg b.wt., thrice a week to 4NQO induced animals was able to inhibit tumor formation and thereby delayed the progression of oral carcinogenesis by modulating tongue and liver phase I and phase II drug metabolizing enzymes, as substantiated further by the histological and transmission electron microscopic studies. Our results demonstrate that geraniol exerts its chemopreventive potential by altering activities of phases I and II drug metabolizing enzymes to achieve minimum bioactivation of carcinogen and maximum detoxification. Copyright © 2013 Elsevier B.V. All rights reserved.
Pulmonary MRA: Differentiation of pulmonary embolism from truncation artifact
Bannas, Peter; Schiebler, Mark L; Motosugi, Utaroh; François, Christopher J; Reeder, Scott B; Nagle, Scott K
2015-01-01
Purpose Truncation artifact (Gibbs ringing) causes central signal drop within vessels in pulmonary MRA that can be mistaken for emboli, reducing the diagnostic accuracy for pulmonary embolism (PE). We propose a quantitative approach to differentiate truncation artifact from PE. Methods Twenty-eight patients who underwent pulmonary CTA for suspected PE were recruited for pulmonary MRA. Signal intensity drops within pulmonary arteries that persisted on both arterial-phase and delayed-phase MRA were identified. The percent signal loss between the vessel lumen and central drop was measured. CTA served as the reference standard for presence of pulmonary emboli. Results A total of 65 signal intensity drops were identified on MRA. 48 (74%) of these were artifact and 17 (26%) were PE, as confirmed by CTA. Truncation artifacts had a significantly lower median signal drop than PE at both arterial-phase (26% [range 12–58%] vs. 85% [range 53–91%]) and at delayed-phase MRA (26% [range 11–55%] vs. 77% [range 47–89%]), p<0.0001 for both. ROC analyses revealed a threshold value of 51% (arterial-phase) and 47%-signal drop (delayed-phase) to differentiate between truncation artifact and PE with 100% sensitivity and >90% specificity. Conclusion Quantitative signal drop is an objective tool to help differentiate truncation artifact and pulmonary embolism in pulmonary MRA. PMID:24863886
Cona, Giorgia; Scarpazza, Cristina; Sartori, Giuseppe; Moscovitch, Morris; Bisiacchi, Patrizia Silvia
2015-05-01
Remembering to realize delayed intentions is a multi-phase process, labelled as prospective memory (PM), and involves a plurality of neural networks. The present study utilized the activation likelihood estimation method of meta-analysis to provide a complete overview of the brain regions that are consistently activated in each PM phase. We formulated the 'Attention to Delayed Intention' (AtoDI) model to explain the neural dissociation found between intention maintenance and retrieval phases. The dorsal frontoparietal network is involved mainly in the maintenance phase and seems to mediate the strategic monitoring processes, such as the allocation of top-down attention both towards external stimuli, to monitor for the occurrence of the PM cues, and to internal memory contents, to maintain the intention active in memory. The ventral frontoparietal network is recruited in the retrieval phase and might subserve the bottom-up attention captured externally by the PM cues and, internally, by the intention stored in memory. Together with other brain regions (i.e., insula and posterior cingulate cortex), the ventral frontoparietal network would support the spontaneous retrieval processes. The functional contribution of the anterior prefrontal cortex is discussed extensively for each PM phase. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamics of scroll waves with time-delay propagation in excitable media
NASA Astrophysics Data System (ADS)
Chen, Jiang-Xing; Xiao, Jie; Qiao, Li-Yan; Xu, Jiang-Rong
2018-06-01
Information transmission delay can be widely observed in various systems. Here, we study the dynamics of scroll waves with time-delay propagation among slices in excitable media. Weak time delay induces scroll waves to meander. Through increasing the time delay, we find a series of dynamical transitions. Firstly, the straight filament of a scroll wave becomes twisted. Then, the scroll wave breaks and forms interesting patterns. With long time delay, loosed scroll waves are maintained while their period are greatly decreased. Also, cylinder waves appears. The influences of diffusively coupling strength on the time-delay-induced scroll waves are studied. It is found that the critical time delay characterizing those transitions decreases as the coupling strength is increased. A phase diagram in the diffusive coupling-time delay plane is presented.
Subband-Based Group Delay Segmentation of Spontaneous Speech into Syllable-Like Units
NASA Astrophysics Data System (ADS)
Nagarajan, T.; Murthy, H. A.
2004-12-01
In the development of a syllable-centric automatic speech recognition (ASR) system, segmentation of the acoustic signal into syllabic units is an important stage. Although the short-term energy (STE) function contains useful information about syllable segment boundaries, it has to be processed before segment boundaries can be extracted. This paper presents a subband-based group delay approach to segment spontaneous speech into syllable-like units. This technique exploits the additive property of the Fourier transform phase and the deconvolution property of the cepstrum to smooth the STE function of the speech signal and make it suitable for syllable boundary detection. By treating the STE function as a magnitude spectrum of an arbitrary signal, a minimum-phase group delay function is derived. This group delay function is found to be a better representative of the STE function for syllable boundary detection. Although the group delay function derived from the STE function of the speech signal contains segment boundaries, the boundaries are difficult to determine in the context of long silences, semivowels, and fricatives. In this paper, these issues are specifically addressed and algorithms are developed to improve the segmentation performance. The speech signal is first passed through a bank of three filters, corresponding to three different spectral bands. The STE functions of these signals are computed. Using these three STE functions, three minimum-phase group delay functions are derived. By combining the evidence derived from these group delay functions, the syllable boundaries are detected. Further, a multiresolution-based technique is presented to overcome the problem of shift in segment boundaries during smoothing. Experiments carried out on the Switchboard and OGI-MLTS corpora show that the error in segmentation is at most 25 milliseconds for 67% and 76.6% of the syllable segments, respectively.
Time delay in atomic photoionization with circularly polarized light
NASA Astrophysics Data System (ADS)
Ivanov, I. A.; Kheifets, A. S.
2013-03-01
We study time delay in atomic photoionization by circularly polarized light. By considering the Li atom in an excited 2p state, we demonstrate a strong time-delay asymmetry between the photoemission of the target electrons that are co- and counter-rotating with the electromagnetic field in the polarization plane. In addition, we observe the time-delay sensitivity to the polar angle of the photoelectron emission in the polarization plane. This modulation depends on the shape and duration of the electromagnetic pulse.
Nuclear structure and weak rates of heavy waiting point nuclei under rp-process conditions
NASA Astrophysics Data System (ADS)
Nabi, Jameel-Un; Böyükata, Mahmut
2017-01-01
The structure and the weak interaction mediated rates of the heavy waiting point (WP) nuclei 80Zr, 84Mo, 88Ru, 92Pd and 96Cd along N = Z line were studied within the interacting boson model-1 (IBM-1) and the proton-neutron quasi-particle random phase approximation (pn-QRPA). The energy levels of the N = Z WP nuclei were calculated by fitting the essential parameters of IBM-1 Hamiltonian and their geometric shapes were predicted by plotting potential energy surfaces (PESs). Half-lives, continuum electron capture rates, positron decay rates, electron capture cross sections of WP nuclei, energy rates of β-delayed protons and their emission probabilities were later calculated using the pn-QRPA. The calculated Gamow-Teller strength distributions were compared with previous calculation. We present positron decay and continuum electron capture rates on these WP nuclei under rp-process conditions using the same model. For the rp-process conditions, the calculated total weak rates are twice the Skyrme HF+BCS+QRPA rates for 80Zr. For remaining nuclei the two calculations compare well. The electron capture rates are significant and compete well with the corresponding positron decay rates under rp-process conditions. The finding of the present study supports that electron capture rates form an integral part of the weak rates under rp-process conditions and has an important role for the nuclear model calculations.
Zero-Extra-Dose PET Delayed Imaging with Data-Driven Attenuation Correction Estimation.
Pang, Lifang; Zhu, Wentao; Dong, Yun; Lv, Yang; Shi, Hongcheng
2018-05-08
Delayed positron emission tomography (PET) imaging may improve sensitivity and specificity in lesion detection. We proposed a PET data-driven method to estimate the attenuation map (AM) for the delayed scan without an additional x-ray computed tomography (CT). An emission-attenuation-scatter joint estimation framework was developed. Several practical issues for clinical datasets were addressed. Particularly, the unknown scatter correction was incorporated in the joint estimation algorithm. The scaling problem was solved using prior information from the early CT scan. Fourteen patient datasets were added to evaluate the method. These patients went through two separate PET/CT scans. The delayed CT-based AM served as ground truth for the delayed scan. Standard uptake values (SUVmean and SUVmax) of lesion and normal tissue regions of interests (ROIs) in the early and delayed phase and the respective %DSUV (percentage change of SUVmean at two different time points) were analyzed, all with estimated and the true AM. Three radiologists participated in lesion detection tasks with images reconstructed with both AMs and rated scores for detectability. The mean relative difference of SUVmean in lesion and normal liver tissue were 3.30 and 6.69 %. The average lesion-to-background contrast (detectability) with delayed PET images using CT AM was 60 % higher than that of the earlier PET image, and was 64 % higher when using the data-based AM. %DSUV for lesions and liver backgrounds with CT-based AM were - 0.058 ± 0.25 and - 0.33 ± 0.08 while with data-based AM were - 0.00 ± 0.26 and - 0.28 ± 0.08. Only slight significance difference was found between using CT-based AM and using the data-based AM reconstruction delay phase on %DSUV of lesion. The scores associated with the two AMs matched well consistently. Our method may be used in delayed PET imaging, which allows no secondary CT radiation in delayed phase. The quantitative analysis for lesion detection purpose could be ensured.
Duan, J; Shen, S; Popple, R; Wu, X; Cardan, R; Brezovich, I
2012-06-01
To assess the trigger delay in respiratory triggered real-time imaging and its impact on image guided radiotherapy (IGRT) with Varian TrueBeam System. A sinusoidal motion phantom with 2cm motion amplitude was used. The trigger delay was determined directly with video image, and indirectly by the distance between expected and actual triggering phantom positions. For the direct method, a fluorescent screen was placed on the phantom to visualize the x-ray. The motion of the screen was recorded at 60 frames/second. The number of frames between the time when the phantom reached expected triggering position and the time when the screen was illuminated by the x-ray was used to determine the trigger delay. In the indirect method, triggered kV x-ray images were acquired in real-time during 'treatment' with triggers set at 25% and 75% respiratory phases where the phantom moved at the maximum speed. 39-40 triggered images were acquired continuously in each series. The distance between the expected and actual triggering points, d, was measured on the images to determine the delay time t by d=Asin(wt), where w=2π/T, T=period and A=amplitude. Motion periods of 2s and 4s were used in the measurement. The trigger delay time determined with direct video imaging was 125ms (7.5 video frames). The average distance between the expected and actual triggering positions determined by the indirect method was 3.93±0.74mm for T=4s and 7.02±1.25mm for T=2s, yielding mean trigger delay times of 126±24ms and 120±22ms, respectively. Although the mean over-travel distance is significant at 25% and 75% phases, clinically, the target over-travel resulted from the trigger delay at the end of expiration (50% phase) is negligibly small(< 0.5mm). The trigger delay in respiration-triggered imaging is in the range of 120-126ms. This delay has negligible clinical effect on gated IGRT. © 2012 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Flock, W. L.
1981-01-01
When high precision is required for range measurement on Earth space paths, it is necessary to correct as accurately as possible for excess range delays due to the dry air, water vapor, and liquid water content of the atmosphere. Calculations based on representative values of atmospheric parameters are useful for illustrating the order of magnitude of the expected delays. Range delay, time delay, and phase delay are simply and directly related. Doppler frequency variations or noise are proportional to the time rate of change of excess range delay. Tropospheric effects were examined as part of an overall consideration of the capability of precision two way ranging and Doppler systems.
Circadian phase resetting in older people by ocular bright light exposure.
Klerman, E B; Duffy, J F; Dijk, D J; Czeisler, C A
2001-01-01
Aging is associated with frequent complaints about earlier bedtimes and waketimes. These changes in sleep timing are associated with an earlier timing of multiple endogenous rhythms, including core body temperature (CBT) and plasma melatonin, driven by the circadian pacemaker. One possible cause of the age-related shift of endogenous circadian rhythms and the timing of sleep relative to clock time is a change in the phase-shifting capacity of the circadian pacemaker in response to the environmental light-dark cycle, the principal synchronizer of the human circadian system. We studied the response of the circadian system of 24 older men and women and 23 young men to scheduled exposure to ocular bright light stimuli. Light stimuli were 5 hours in duration, administered for 3 consecutive days at an illuminance of approximately 10,000 lux. Light stimuli were scheduled 1.5 or 3.5 hours after the CBT nadir to induce shifts of endogenous circadian pacemaker to an earlier hour (phase advances) or were scheduled 1.5 hours before the CBT nadir to induce shifts to a later hour (phase delays). The rhythms of CBT and plasma melatonin assessed under constant conditions served as markers of circadian phase. Bright light stimuli elicited robust responses of the circadian timing system in older people; both phase advances and phase delays were induced. The magnitude of the phase delays did not differ significantly between older and younger individuals, but the phase advances were significantly attenuated in older people. The attenuated response to light stimuli that induce phase advances does not explain the advanced phase of the circadian pacemaker in older people. The maintained responsiveness of the circadian pacemaker to light implies that scheduled bright light exposure can be used to treat circadian phase disturbances in older people.
Arbitrary-step randomly delayed robust filter with application to boost phase tracking
NASA Astrophysics Data System (ADS)
Qin, Wutao; Wang, Xiaogang; Bai, Yuliang; Cui, Naigang
2018-04-01
The conventional filters such as extended Kalman filter, unscented Kalman filter and cubature Kalman filter assume that the measurement is available in real-time and the measurement noise is Gaussian white noise. But in practice, both two assumptions are invalid. To solve this problem, a novel algorithm is proposed by taking the following four steps. At first, the measurement model is modified by the Bernoulli random variables to describe the random delay. Then, the expression of predicted measurement and covariance are reformulated, which could get rid of the restriction that the maximum number of delay must be one or two and the assumption that probabilities of Bernoulli random variables taking the value one are equal. Next, the arbitrary-step randomly delayed high-degree cubature Kalman filter is derived based on the 5th-degree spherical-radial rule and the reformulated expressions. Finally, the arbitrary-step randomly delayed high-degree cubature Kalman filter is modified to the arbitrary-step randomly delayed high-degree cubature Huber-based filter based on the Huber technique, which is essentially an M-estimator. Therefore, the proposed filter is not only robust to the randomly delayed measurements, but robust to the glint noise. The application to the boost phase tracking example demonstrate the superiority of the proposed algorithms.
Highly Efficient, All-Dielectric Huygens Metasurfaces
NASA Astrophysics Data System (ADS)
Ollanik, Adam; Farrar-Foley, Nick; Smith, Jake; Escarra, Matthew
Demonstration of the control of light by the introduction of abrupt phase discontinuities across a subwavelength scale has opened the doors to a new level of wavefront control. All-dielectric Huygens metasurfaces hold significant promise due to their dramatically improved efficiency over plasmonic approaches. We present the successful design, computational modeling, and experimental realization of all-dielectric transmissive Huygens metasurfaces capable of deflection efficiency >90%. Dielectric Huygens sources, taking advantage of spectrally aligned electric and magnetic dipole resonances, are capable of tunable phase delay for transmitted light with near unity efficiency of forward scattering. Using ellipsoidal cylinder nanoantennas, we are able to manipulate the phase response and engineer a metasurface with a spatially gradient phase profile. Through careful design and optimization we mitigate the effects of inter-antenna coupling. We have designed and modeled metasurfaces demonstrating anomalous refraction with very high efficiency (>80%) for wavelength bands from the UV to the near-IR. These surfaces were designed using three distinct nanoantenna materials, Si, TiO2, and GaP, to demonstrate the flexibility of the technique. Experimentally, Si nanoantennas are fabricated using a combination of electron beam lithography and ICP/RIE-etching. Metasurfaces are characterized using a goniospectrometer capable of mapping light intensity on a cylindrical shell surrounding the metasurface.
Matsunaga, H; Andoh, A; Matsubara, T; Fukushima, I; Takahashi, K; Ohkuma, H; Uyama, M
1996-03-01
We performed experiments in 20 monkey eyes in order to clarify basic problems about interpretation of indocyanine green fluorescence angiography (ICG angiography). We severed the temporal group of posterior ciliary arteries to produce choroidal circulatory disturbance. ICG angiography was performed immediately, and 2 days, 4 days, and 2 weeks later. Following each ICG angiography, the eye was studied by plastic vascular cast technique with scanning electron microscopy. Immediately after occlusion, ICG angiography showed filling defect in the temporal choroidal hemisphere during the early phase. In the later phase, this area was gradually filled by the dye from choroidal arteries in the nasal hemisphere and the anterior ciliary arteries. Vascular cast preparations showed filling defect in the temporal choroidal hemisphere, corresponding with the early ICG angiogaphic findings. Both filling delay in ICG angiography and filling defect in vascular casts improved daily after occlusion. Two weeks after occlusion, The area of choroidal infarct temporal to the macula turned into chorioretinal atrophy. This area showed hypofluorescence in the early-phase ICG angiography and filling defect of the choriocapillaris in plastic casts. The early-phase ICG angiographic findings thus corresponded well with observations of vascular casts. We conclude that ICG angiography correctly reflects the actual circulatory disturbances in the choroid.
Very low frequency radio signatures of transient luminous events above thunderstorms
NASA Astrophysics Data System (ADS)
Marshall, Robert Andrew
Lightning discharges emit intense optical and acoustic energy, in the form of lightning and thunder, respectively, but a large amount of energy is emitted as radio-frequency electromagnetic pulses (EMP). These pulses can be detected thousands of kilometers away, thanks to efficient propagation in the waveguide formed by the conducting Earth and the overlying ionosphere. In addition, intense discharges interact with the overlying ionosphere at 80-100 km altitude. The EMP-ionosphere interaction is directly observed in one manifestation as the bright transient optical emissions known as "elves", but in addition, the interaction can directly modify the free electron density in the nighttime lower ionosphere. Modifications of the ionospheric electron density can be detected via subionospheric Very Low Frequency (VLF) remote sensing. In this method, coherent signals from powerful VLF transmitters, built for submarine communication and operated by the Navy, are monitored and their amplitude and phase are tracked in time. The variations of these signais are used to sense ionospheric modifications through rapid changes in the received amplitude and/or phase when the transmitted signal propagates through an ionospheric perturbation. When these perturbations are caused by lightning, they are known as "Early VLF" perturbations, due to the negligible delay between the lightning discharge and the appearance of the VLF signal change, whereas lightning-induced electron precipitation (LEP) events have a delay of 1--2 seconds. In this work, correlations between VLF signatures and optical events are used to show that these Early VLF events may be the signature of ionospheric modification by in-cloud (IC) lightning discharges. While the more impressive cloud-to-ground (CG) lightning discharges are more commonly observed and better understood, they are outnumbered in occurrence 3:1 by IC discharges, whose effects may be relatively stronger in the overlying ionosphere. We use a 3D time-domain model of the lightning EMP-ionosphere interaction to calculate expected ionospheric density changes from IC discharges. We find that bursts of IC-EMPs can significantly modify the lower ionosphere, with both increases and decreases in electron density. We then use a frequency-domain model of the VLF transmitter signal propagation in the Earth-ionosphere waveguide to a receiver to show that these density changes are consistent with measurements. Our results demonstrate that these Early VLF events, which are ubiquitous in VLF data, are signatures of the effects of in-cloud lightning, and that they can be used to quantify the effects of IC lightning on the ionosphere during an intense thunderstorm.
Adams, Marc A; Hurley, Jane C; Todd, Michael; Bhuiyan, Nishat; Jarrett, Catherine L; Tucker, Wesley J; Hollingshead, Kevin E; Angadi, Siddhartha S
2017-03-29
Emerging interventions that rely on and harness variability in behavior to adapt to individual performance over time may outperform interventions that prescribe static goals (e.g., 10,000 steps/day). The purpose of this factorial trial was to compare adaptive vs. static goal setting and immediate vs. delayed, non-contingent financial rewards for increasing free-living physical activity (PA). A 4-month 2 × 2 factorial randomized controlled trial tested main effects for goal setting (adaptive vs. static goals) and rewards (immediate vs. delayed) and interactions between factors to increase steps/day as measured by a Fitbit Zip. Moderate-to-vigorous PA (MVPA) minutes/day was examined as a secondary outcome. Participants (N = 96) were mainly female (77%), aged 41 ± 9.5 years, and all were insufficiently active and overweight/obese (mean BMI = 34.1 ± 6.2). Participants across all groups increased by 2389 steps/day on average from baseline to intervention phase (p < .001). Participants receiving static goals showed a stronger increase in steps per day from baseline phase to intervention phase (2630 steps/day) than those receiving adaptive goals (2149 steps/day; difference = 482 steps/day, p = .095). Participants receiving immediate rewards showed stronger improvement (2762 step/day increase) from baseline to intervention phase than those receiving delayed rewards (2016 steps/day increase; difference = 746 steps/day, p = .009). However, the adaptive goals group showed a slower decrease in steps/day from the beginning of the intervention phase to the end of the intervention phase (i.e. less than half the rate) compared to the static goals group (-7.7 steps vs. -18.3 steps each day; difference = 10.7 steps/day, p < .001) resulting in better improvements for the adaptive goals group by study end. Rate of change over the intervention phase did not differ between reward groups. Significant goal phase x goal setting x reward interactions were observed. Adaptive goals outperformed static goals (i.e., 10,000 steps) over a 4-month period. Small immediate rewards outperformed larger, delayed rewards. Adaptive goals with either immediate or delayed rewards should be preferred for promoting PA. ClinicalTrials.gov ID: NCT02053259 registered prospectively on January 31, 2014.
NASA Technical Reports Server (NTRS)
Clements, P. A.
1975-01-01
It was found that group delay is function of pressure in air dielectric coaxial cable. For example, 600-ft air dielectric cable will change phase 10 deg at 150 MHz when air pressure in cable changes from zero to 20 psi.
Checkpoints: it takes more than time to heal some wounds.
Rhind, N; Russell, P
The S-phase DNA damage checkpoint seems to provide a twist on the checkpoint theme. Instead of delaying replication and allowing repair as a consequence, it may activate repair and delay replication as a consequence.
A fast-locking all-digital delay-locked loop for phase/delay generation in an FPGA
NASA Astrophysics Data System (ADS)
Zhujia, Chen; Haigang, Yang; Fei, Liu; Yu, Wang
2011-10-01
A fast-locking all-digital delay-locked loop (ADDLL) is proposed for the DDR SDRAM controller interface in a field programmable gate array (FPGA). The ADDLL performs a 90° phase-shift so that the data strobe (DQS) can enlarge the data valid window in order to minimize skew. In order to further reduce the locking time and to prevent the harmonic locking problem, a time-to-digital converter (TDC) is proposed. A duty cycle corrector (DCC) is also designed in the ADDLL to adjust the output duty cycle to 50%. The ADDLL, implemented in a commercial 0.13 μm CMOS process, occupies a total of 0.017 mm2 of active area. Measurement results show that the ADDLL has an operating frequency range of 75 to 350 MHz and a total delay resolution of 15 ps. The time interval error (TIE) of the proposed circuit is 60.7 ps.
Zhu, Ping; Jafari, Rana; Jones, Travis; Trebino, Rick
2017-10-02
We introduce a simple delay-scanned complete spatiotemporal intensity-and-phase measurement technique based on wavelength-multiplexed holography to characterize long, complex pulses in space and time. We demonstrate it using pulses emerging from multi-mode fiber. This technique extends the temporal range and spectral resolution of the single-frame STRIPED FISH technique without using an otherwise-required expensive ultranarrow-bandpass filter. With this technique, we measured the complete intensity and phase of up to ten fiber modes from a multi-mode fiber (normalized frequency V ≈10) over a ~3ps time range. Spatiotemporal complexities such as intermodal delay, modal dispersion, and material dispersion were also intuitively displayed by the retrieved results. Agreement between the reconstructed color movies and the monitored time-averaged spatial profiles confirms the validity to this delay-scanned STRIPED FISH method.
Anomalous thermal diffusivity in underdoped YBa2Cu3O6+x
Levenson-Falk, Eli M.; Ramshaw, B. J.; Bonn, D. A.; Liang, Ruixing; Hardy, W. N.; Hartnoll, Sean A.; Kapitulnik, Aharon
2017-01-01
The thermal diffusivity in the ab plane of underdoped YBCO crystals is measured by means of a local optical technique in the temperature range of 25–300 K. The phase delay between a point heat source and a set of detection points around it allows for high-resolution measurement of the thermal diffusivity and its in-plane anisotropy. Although the magnitude of the diffusivity may suggest that it originates from phonons, its anisotropy is comparable with reported values of the electrical resistivity anisotropy. Furthermore, the anisotropy drops sharply below the charge order transition, again similar to the electrical resistivity anisotropy. Both of these observations suggest that the thermal diffusivity has pronounced electronic as well as phononic character. At the same time, the small electrical and thermal conductivities at high temperatures imply that neither well-defined electron nor phonon quasiparticles are present in this material. We interpret our results through a strongly interacting incoherent electron–phonon “soup” picture characterized by a diffusion constant D∼vB2τ, where vB is the soup velocity, and scattering of both electrons and phonons saturates a quantum thermal relaxation time τ∼ℏ/kBT. PMID:28484003
NASA Technical Reports Server (NTRS)
Kundu, M. R.; White, S. M.; Gopalswamy, N.; Lim, J.
1994-01-01
We present comparisons of multiwavelength data for a number of solar flares observed during the major campaign of 1991 June. The different wavelengths are diagnostics of energetic electrons in different energy ranges: soft X-rays are produced by electrons with energies typically below 10 keV, hard X-rays by electrons with energies in the range 10-200 keV, microwaves by electrons in the range 100 keV-1 MeV, and millimeter-wavelength emission by electrons with energies of 0.5 MeV and above. The flares in the 1991 June active period were remarkable in two ways: all have very high turnover frequencies in their microwave spectra, and very soft hard X-ray spectra. The sensitivity of the microwave and millimeter data permit us to study the more energetic (greater than 0.3 MeV) electrons even in small flares, where their high-energy bremsstrahlung is too weak for present detectors. The millimeter data show delays in the onset of emission with respect to the emissions associated with lower energy electrons and differences in time profiles, energy spectral indices incompatible with those implied by the hard X-ray data, and a range of variability of the peak flux in the impulsive phase when compared with the peak hard X-ray flux which is two orders of magnitude larger than the corresponding variability in the peak microwave flux. All these results suggest that the hard X-ray-emitting electrons and those at higher energies which produce millimeter emission must be regarded as separate populations. This has implications for the well-known 'number problem' found previously when comparing the numbers of non thermal electrons required to produce the hard X-ray and radio emissions.
Super-Latent Inhibition of Conditioned Taste Preference with a Long Retention Interval
ERIC Educational Resources Information Center
De la Casa, L. G.; Marquez, R.; Lubow, R. E.
2009-01-01
A long delay inserted between conditioning and test phases of a 3-stage Latent Inhibition (LI) procedure produces differential effects on LI depending on the delay context. Thus, enhanced LI has been obtained when the delay is spent in a context that is different from the remaining experimental contexts, but not when it is the same. The present…
Transitional and Steady-State Choice Behavior under an Adjusting-Delay Schedule
ERIC Educational Resources Information Center
Torres, L. Valencia; Araujo, S. da Costa; Sanchez, C. M. Olarte; Body, S.; Bradshaw, C. M.; Szabadi, E.
2011-01-01
Twelve rats made repeated choices on an adjusting-delay schedule between a smaller reinforcer (A) that was delivered immediately after a response and a larger reinforcer (B) that was delivered after a delay which increased or decreased by 20% depending on the subject's choices in successive blocks of trials. In two phases of the experiment (100…
'Patient's delay'--analysis of the preclinical phase of occupational dermatoses.
Rusca, C; Hinnen, U; Elsner, P
1997-01-01
In order to cure diseases effectively it is important that they are detected in their early stages so that medical precautions can be taken. With job-related disorders it is conceivable that anxiety concerning the workplace, as well as other factors of a demanding nature, may lead to a further delay of diagnosis and treatment. The study was carried out for the purpose of gathering information about the patients' reactions in the preclinical phase of job-related eczema. 79 patients suffering from a job-related skin disease were questioned. The patients were divided up into groups according to their respective delay and the results evaluated in line with the method of logistic regression. The average delay was 8.6 months. Fear of losing their job was mentioned by most participants as the reason for the postponement of seeking medical care. People with a long delay were mainly men, senior and Swiss citizens, those with a higher education and those with a longer professional training. Patient delay in occupational dermatology highly depends on the support of employers and on the counseling of workers on job-related skin disease and their insurance protection.
Sonuga-Barke, Edmund J S; De Houwer, Jan; De Ruiter, Karen; Ajzenstzen, Michal; Holland, Sarah
2004-02-01
The selective attention of children with attention deficit/hyperactivity disorder (AD/HD) to briefly exposed delay-related cues was examined in two experiments using a dot-probe conditioning paradigm. Colour cues were paired with negatively (i.e., imposition of delay) and positively valenced cues (i.e., escape from or avoidance of delay) during a conditioning phase. These cues were presented alongside neutral cues in a subsequent dot-probe detection phase. In experiment 1 teacher-identified children with AD/HD (N = 12), but not controls (N = 12), displayed an attentional bias towards both positively and negatively valenced cues. In experiment 2 children with a diagnosis of hyperkinetic disorder (N = 15), but not controls (N = 15), displayed a bias towards delay-related cues. However, this effect was largely carried by the response to positively valenced cues. These results confirm the dot-probe conditioning paradigm as a useful test of motivational influence on attention. They provide the first evidence of qualitative differences in the attentional style of children with AD/HD and give further support to those theories that highlight the motivational significance of delay in AD/HD.
Aeroservoelastic stabilization technique refinement for hypersonic flight vehicles
NASA Technical Reports Server (NTRS)
Cheng, Peter Y.; Chan, Samuel Y.; Myers, Thomas T.; Klyde, David H.; Mcruer, Duane T.
1992-01-01
Conventional gain-stabilization techniques introduce low frequency effective time delays which can be troublesome from the viewpoint of SSTOV vehicles' flying qualities. These time delays can be alleviated through a blending of gain-stabilization and phase-stabilization techniques; the resulting hybrid phase stabilization (HPS) for the low-frequency structural modes has been noted to have greater residual response than a conventional gain-stabilizer design. HPS design procedures are presently refined, and residual response metrics are developed.
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun
2007-11-01
A coherent optical en/decoder based on photonic crystal (PhC) for optical code-division-multiple (OCDM)-based optical label (OCDM-OL) optical packets switching (OPS) networks is proposed in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by the photonic crystal phase shifter and delayer using the appropriate design of fabrication. In this design, the combination calculation of the impurity and normal period layers is applied, according to the PhC transmission matrix theorem. The design and theoretical analysis of the PhC-based optical coherent en/decoder is mainly focused. In addition, the performances of the PhC-based optical en/decoders are analyzed in detail. The reflection, the transmission, delay characteristic and the optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by the numerical calculation, taking into account 1-Dimension (1D) PhC. Theoretical analysis and numerical results show that optical pulse is achieved to properly phase modulation and time delay by the proposed scheme, optical label based on OCDM is rewrote successfully by new code for OCDM-based OPS (OCDM-OPS), and an over 8.5 dB ration of auto- and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.
Purely temporal figure-ground segregation.
Kandil, F I; Fahle, M
2001-05-01
Visual figure-ground segregation is achieved by exploiting differences in features such as luminance, colour, motion or presentation time between a figure and its surround. Here we determine the shortest delay times required for figure-ground segregation based on purely temporal features. Previous studies usually employed stimulus onset asynchronies between figure- and ground-containing possible artefacts based on apparent motion cues or on luminance differences. Our stimuli systematically avoid these artefacts by constantly showing 20 x 20 'colons' that flip by 90 degrees around their midpoints at constant time intervals. Colons constituting the background flip in-phase whereas those constituting the target flip with a phase delay. We tested the impact of frequency modulation and phase reduction on target detection. Younger subjects performed well above chance even at temporal delays as short as 13 ms, whilst older subjects required up to three times longer delays in some conditions. Figure-ground segregation can rely on purely temporal delays down to around 10 ms even in the absence of luminance and motion artefacts, indicating a temporal precision of cortical information processing almost an order of magnitude lower than the one required for some models of feature binding in the visual cortex [e.g. Singer, W. (1999), Curr. Opin. Neurobiol., 9, 189-194]. Hence, in our experiment, observers are unable to use temporal stimulus features with the precision required for these models.
Electronic Detection of Delayed Test Result Follow-Up in Patients with Hypothyroidism.
Meyer, Ashley N D; Murphy, Daniel R; Al-Mutairi, Aymer; Sittig, Dean F; Wei, Li; Russo, Elise; Singh, Hardeep
2017-07-01
Delays in following up abnormal test results are a common problem in outpatient settings. Surveillance systems that use trigger tools to identify delayed follow-up can help reduce missed opportunities in care. To develop and test an electronic health record (EHR)-based trigger algorithm to identify instances of delayed follow-up of abnormal thyroid-stimulating hormone (TSH) results in patients being treated for hypothyroidism. We developed an algorithm using structured EHR data to identify patients with hypothyroidism who had delayed follow-up (>60 days) after an abnormal TSH. We then retrospectively applied the algorithm to a large EHR data warehouse within the Department of Veterans Affairs (VA), on patient records from two large VA networks for the period from January 1, 2011, to December 31, 2011. Identified records were reviewed to confirm the presence of delays in follow-up. During the study period, 645,555 patients were seen in the outpatient setting within the two networks. Of 293,554 patients with at least one TSH test result, the trigger identified 1250 patients on treatment for hypothyroidism with elevated TSH. Of these patients, 271 were flagged as potentially having delayed follow-up of their test result. Chart reviews confirmed delays in 163 of the 271 flagged patients (PPV = 60.1%). An automated trigger algorithm applied to records in a large EHR data warehouse identified patients with hypothyroidism with potential delays in thyroid function test results follow-up. Future prospective application of the TSH trigger algorithm can be used by clinical teams as a surveillance and quality improvement technique to monitor and improve follow-up.
NASA Technical Reports Server (NTRS)
Danielson, J. D. Sheldon (Inventor)
2006-01-01
An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.
Chromospheric Response during the Precursor and the Main Phase of a B6.4 Flare on 2005 August 20
NASA Astrophysics Data System (ADS)
Awasthi, Arun Kumar; Rudawy, Pawel; Falewicz, Robert; Berlicki, Arkadiusz; Liu, Rui
2018-05-01
Solar flare precursors depict a constrained rate of energy release, in contrast to the imminent rapid energy release, which calls for a different regime of plasma processes to be at play. Due to the subtle emission during the precursor phase, its diagnostics remain delusive, revealing either nonthermal electrons (NTEs) or thermal conduction to be the driver. In this regard, we investigate the chromospheric response during various phases of a B6.4 flare on 2005 August 20. Spatiotemporal investigation of flare ribbon enhancement during the precursor phase, carried out using spectra images recorded in several wavelength positions on the Hα line profile, revealed its delayed response (180 s) compared to the X-ray emission, as well as a sequential increment in the width of the line profile, which are indicative of a slow heating process. However, the energy contained in the Hα emission during the precursor phase can reach as high as 80% of that estimated during the main phase. Additionally, the plasma hydrodynamics during the precursor phase, resulting from the application of a single-loop one-dimensional model, revealed the presence of a power-law extension in the model-generated X-ray spectra, with a flux lower than the RHESSI background. Therefore, our multiwavelength diagnostics and hydrodynamical modeling of the precursor emission indicates the role of a two-stage process. First, reconnection-triggered NTEs, although too small in flux to overcome the observational constraints, thermalize in the upper chromosphere. This leads to the generation of a slow conduction front, which causes plasma heating during the precursor phase.
Implementation of a web-based medication tracking system in a large academic medical center.
Calabrese, Sam V; Williams, Jonathan P
2012-10-01
Pharmacy workflow efficiencies achieved through the use of an electronic medication-tracking system are described. Medication dispensing turnaround times at the inpatient pharmacy of a large hospital were evaluated before and after transition from manual medication tracking to a Web-based tracking process involving sequential bar-code scanning and real-time monitoring of medication status. The transition was carried out in three phases: (1) a workflow analysis, including the identification of optimal points for medication scanning with hand-held wireless devices, (2) the phased implementation of an automated solution and associated hardware at a central dispensing pharmacy and three satellite locations, and (3) postimplementation data collection to evaluate the impact of the new tracking system and areas for improvement. Relative to the manual tracking method, electronic medication tracking allowed the capture of far more data points, enabling the pharmacy team to delineate the time required for each step of the medication dispensing process and to identify the steps most likely to involve delays. A comparison of baseline and postimplementation data showed substantial reductions in overall medication turnaround times with the use of the Web-based tracking system (time reductions of 45% and 22% at the central and satellite sites, respectively). In addition to more accurate projections and documentation of turnaround times, the Web-based tracking system has facilitated quality-improvement initiatives. Implementation of an electronic tracking system for monitoring the delivery of medications provided a comprehensive mechanism for calculating turnaround times and allowed the pharmacy to identify bottlenecks within the medication distribution system. Altering processes removed these bottlenecks and decreased delivery turnaround times.
Kim, Jeongho; Kim, Kyung Hwan; Oang, Key Young; Lee, Jae Hyuk; Hong, Kiryong; Cho, Hana; Huse, Nils; Schoenlein, Robert W; Kim, Tae Kyu; Ihee, Hyotcherl
2016-03-07
Characterization of transient molecular structures formed during chemical and biological processes is essential for understanding their mechanisms and functions. Over the last decade, time-resolved X-ray liquidography (TRXL) and time-resolved X-ray absorption spectroscopy (TRXAS) have emerged as powerful techniques for molecular and electronic structural analysis of photoinduced reactions in the solution phase. Both techniques make use of a pump-probe scheme that consists of (1) an optical pump pulse to initiate a photoinduced process and (2) an X-ray probe pulse to monitor changes in the molecular structure as a function of time delay between pump and probe pulses. TRXL is sensitive to changes in the global molecular structure and therefore can be used to elucidate structural changes of reacting solute molecules as well as the collective response of solvent molecules. On the other hand, TRXAS can be used to probe changes in both local geometrical and electronic structures of specific X-ray-absorbing atoms due to the element-specific nature of core-level transitions. These techniques are complementary to each other and a combination of the two methods will enhance the capability of accurately obtaining structural changes induced by photoexcitation. Here we review the principles of TRXL and TRXAS and present recent application examples of the two methods for studying chemical and biological processes in solution. Furthermore, we briefly discuss the prospect of using X-ray free electron lasers for the two techniques, which will allow us to keep track of structural dynamics on femtosecond time scales in various solution-phase molecular reactions.
Programmable Differential Delay Circuit With Fine Delay Adjustment
DeRyckere, John F.; Jenkins, Philip Nord; Cornett, Frank Nolan
2002-07-09
Circuitry that provides additional delay to early arriving signals such that all data signals arrive at a receiving latch with same path delay. The delay of a forwarded clock reference is also controlled such that the capturing clock edge will be optimally positioned near quadrature (depending on latch setup/hold requirements). The circuitry continuously adapts to data and clock path delay changes and digital filtering of phase measurements reduce errors brought on by jittering data edges. The circuitry utilizes only the minimum amount of delay necessary to achieve objective thereby limiting any unintended jitter. Particularly, this programmable differential delay circuit with fine delay adjustment is designed to allow the skew between ASICS to be minimized. This includes skew between data bits, between data bits and clocks as well as minimizing the overall skew in a channel between ASICS.
Sweeney, Dylan; Mueller, Guido
2012-11-05
The Laser Interferometer Space Antenna (LISA) and other space based gravitational wave detector designs require a laser communication subsystem to, among other things, transfer clock signals between spacecraft (SC) in order to cancel clock noise in post-processing. The original LISA baseline design requires frequency synthesizers to convert each SC clock into a 2 GHz signal, and electro-optic modulators (EOMs) to modulate this 2 GHz clock signal onto the laser light. Both the frequency synthesizers and the EOMs must operate with a phase fidelity of 2×10(-4)cycles/√Hz. In this paper we present measurements of the phase fidelity of frequency synthesizers and EOMs. We found that both the frequency synthesizers and the EOMs meet the requirement when tested independently and together. We also performed an electronic test of the clock noise transfer using frequency synthesizers and the University of Florida LISA Interferometry (UFLIS) phasemeter. We found that by applying a time varying fractional delay filter we could suppress the clock noise to a level below our measurement limit, which is currently determined by timing jitter and is less than an order of magnitude above the LISA requirement for phase measurements.
NASA Astrophysics Data System (ADS)
Shukla, Krishna Dayal; Saxena, Nishant; Durai, Suresh; Manivannan, Anbarasu
2016-11-01
Although phase-change memory (PCM) offers promising features for a ‘universal memory’ owing to high-speed and non-volatility, achieving fast electrical switching remains a key challenge. In this work, a correlation between the rate of applied voltage and the dynamics of threshold-switching is investigated at picosecond-timescale. A distinct characteristic feature of enabling a rapid threshold-switching at a critical voltage known as the threshold voltage as validated by an instantaneous response of steep current rise from an amorphous off to on state is achieved within 250 picoseconds and this is followed by a slower current rise leading to crystallization. Also, we demonstrate that the extraordinary nature of threshold-switching dynamics in AgInSbTe cells is independent to the rate of applied voltage unlike other chalcogenide-based phase change materials exhibiting the voltage dependent transient switching characteristics. Furthermore, numerical solutions of time-dependent conduction process validate the experimental results, which reveal the electronic nature of threshold-switching. These findings of steep threshold-switching of ‘sub-50 ps delay time’, opens up a new way for achieving high-speed non-volatile memory for mainstream computing.
Bates, Mary E; Simmons, James A
2010-08-01
Big brown bats emit FM biosonar sounds containing two principal harmonics (FM1 approximately 55-22 kHz;FM2 approximately 105-45 kHz). To examine the role of harmonics, they were selectively filtered from stimuli in electronic-echo delay discrimination experiments. Positive stimuli were delayed by 3.16 ms (55 cm simulated target range); negative stimuli were by delayed by 3.96 ms (68 cm). This large 800-micros delay difference (nearly 14 cm) was easily discriminated for echoes containing equal-strength FM1 and FM2. Performance gradually decreased as highpass filters removed progressively larger segments from FM1. For echoes with FM2 alone, performance collapsed to chance, but performance remained good for lowpass echoes containing FM1 alone. Attenuation of FM2 by 3 dB relative to FM1 also decreased performance, but shortening electronic delay of the attenuated FM2 by 48 micros counteracted amplitude-latency trading and restored performance. Bats require the auditory representations of FM1 and FM2 to be in temporal register for high delay acuity. Misalignment of neuronal responses degrades acuity, but outright removal of FM2, leaving only FM1, causes little loss of acuity. Functional asymmetry of harmonics reflects lowpass effects from beaming and atmospheric propagation, which leave FM1 intact. It may cooperate with latency shifts to aid in suppression of clutter.
Checkpoints: It takes more than time to heal some wounds
Rhind, Nicholas; Russell, Paul
2010-01-01
The S-phase DNA damage checkpoint seems to provide a twist on the checkpoint theme. Instead of delaying replication and allowing repair as a consequence, it may activate repair and delay replication as a consequence. PMID:11137027
NASA Astrophysics Data System (ADS)
Qin, Xi; Cao, Jihong; Chen, Yong; Zhang, Feng; Jian, Shuisheng
2007-08-01
An analytical expression was proposed to analyze the influence of group-delay ripple (GDR) on timing jitter induced by self-phase modulation (SPM) and intra-channel cross-phase modulation (IXPM) in pseudo-linear transmission systems when dispersion was compensated by chirped fiber Bragg grating (CFBG). Effects of ripple amplitude, period, and phase on timing jitter were discussed by theoretical and numerical analysis in detail. The results show that the influence of GDR on timing jitter changes linearly with the amplitude of GDR and whether it decreases or increases the timing jitter relies on the ripple period and ripple phase. Timing jitter induced by SPM and IXPM could be suppressed totally by adjusting the relative phase between the center frequency of the pulse and the ripples.
Synchronization of unidirectionally delay-coupled chaotic oscillators with memory
NASA Astrophysics Data System (ADS)
Jaimes-Reátegui, Rider; Vera-Ávila, Victor P.; Sevilla-Escoboza, Ricardo; Huerta-Cuéllar, Guillermo; Castañeda-Hernández, Carlos E.; Chiu-Zarate, Roger; Pisarchik, Alexander N.
2016-11-01
We study synchronization of two chaotic oscillators coupled with time delay in a master-slave configuration and with delayed positive feedback in the slave oscillator which acts as memory. The dynamics of the slave oscillator is analyzed with bifurcation diagrams of the peak value of the system variable with respect to the coupling and feedback strengths and two delay times. For small coupling, when the oscillators' phases synchronize, memory can induce bistability and stabilize periodic orbits, whereas for stronger coupling it is not possible. The delayed feedback signal impairs synchronization, simultaneously enhancing coherence of the slave oscillator.
Duan, Ran; Semouchkina, Elena; Pandey, Ravi
2014-11-03
The geometric optics principles are used to develop a unidirectional transmission cloak for hiding objects with dimensions substantially exceeding the incident radiation wavelengths. Invisibility of both the object and the cloak is achieved without metamaterials, so that significant widths of the cloaking bands are provided. For the preservation of wave phases, the λ-multiple delays of waves passing through the cloak are realized. Suppression of reflection losses is achieved by using half-λ multiple thicknesses of optical elements. Due to periodicity of phase delay and reflection suppression conditions, the cloak demonstrates efficient multiband performance confirmed by full-wave simulations.
Effect of nuclear motion on molecular high order harmonic pump probe spectroscopy.
Bredtmann, Timm; Chelkowski, Szczepan; Bandrauk, André D
2012-11-26
We study pump-probe schemes for the real time observation of electronic motion on attosecond time scale in the molecular ion H(2)(+) and its heavier isotope T(2)(+) while these molecules dissociate on femtosecond time scale by solving numerically the non-Born-Oppenheimer time-dependent Schrödinger equation. The UV pump laser pulse prepares a coherent superposition of the three lowest lying quantum states and the time-delayed mid-infrared, intense few-femtosecond probe pulse subsequently generates molecular high-order harmonics (MHOHG) from this coherent electron-nuclear wavepacket (CENWP). Varying the pump-probe time delay by a few hundreds of attoseconds, the MHOHG signal intensity is shown to vary by orders of magnitude. Due to nuclear movement, the coherence of these two upper states and the ground state is lost after a few femtoseconds and the MHOHG intensity variations as function of pump-probe delay time are shown to be equal to the period of electron oscillation in the coherent superposition of the two upper dissociative quantum states. Although this electron oscillation period and hence the periodicity of the harmonic spectra are quite constant over a wide range of internuclear distances, a strong signature of nuclear motion is seen in the actual shapes and ways in which these spectra change as a function of pump-probe delay time, which is illustrated by comparison of the MHOHG spectra generated by the two isotopes H(2)(+) and T(2)(+). Two different regimes corresponding roughly to internuclear distances R < 4a(0) and R > 4a(0) are identified: For R < 4a(0), the intensity of a whole range of frequencies in the plateau region is decreased by orders of magnitude when the delay time is changed by a few hundred attoseconds whereas in the cutoff region the peaks in the MHOHG spectra are red-shifted with increasing pump-probe time delay. For R > 4a(0), on the other hand, the peaks both in the cutoff and plateau region are red-shifted with increasing delay times with only slight variations in the peak intensities. A time-frequency analysis shows that in the case of a two-cycle probe pulse the sole contribution of one long and associated short trajectory correlates with the attenuation of a whole range of frequencies in the plateau region for R < 4a(0) whereas the observed red shift for R > 4a(0), even in the plateau region, correlates with a single electron return within one-half laser cycle.
Spectral Structure Of Phase-Induced Intensity Noise In Recirculating Delay Lines
NASA Astrophysics Data System (ADS)
Tur, M.; Moslehi, B.; Bowers, J. E.; Newton, S. A.; Jackson, K. P.; Goodman, J. W.; Cutler, C. C.; Shaw, H. J.
1983-09-01
The dynamic range of fiber optic signal processors driven by relatively incoherent multimode semiconductor lasers is shown to be severely limited by laser phase-induced noise. It is experimentally demonstrated that while the noise power spectrum of differential length fiber filters is approximately flat, processors with recirculating loops exhibit noise with a periodically structured power spectrum with notches at zero frequency as well as at all other multiples of 1/(loop delay). The experimental results are aug-mented by a theoretical analysis.
Frequency adjustment and synchrony in networks of delayed pulse-coupled oscillators
NASA Astrophysics Data System (ADS)
Nishimura, Joel
2015-01-01
We introduce a system of pulse-coupled oscillators that can change both their phases and frequencies and prove that when there is a separation of time scales between phase and frequency adjustment the system converges to exact synchrony on strongly connected graphs with time delays. The analysis involves decomposing the network into a forest of tree-like structures that capture causality. These results provide a robust method of sensor net synchronization as well as demonstrate a new avenue of possible pulse-coupled oscillator research.
NASA Technical Reports Server (NTRS)
Edenhofer, P.; Lueneburg, E.; Esposito, P. B.; Martin, W. L.; Zygielbaum, A. I.; Hansen, R. T.; Hansen, S. F.
1978-01-01
S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements.
NASA Astrophysics Data System (ADS)
Alizadeh, M.; Schuh, H.; Schmidt, M. G.
2012-12-01
In the last decades Global Navigation Satellite System (GNSS) has turned into a promising tool for probing the ionosphere. The classical input data for developing Global Ionosphere Maps (GIM) is obtained from the dual-frequency GNSS observations. Simultaneous observations of GNSS code or carrier phase at each frequency is used to form a geometric-free linear combination which contains only the ionospheric refraction term and the differential inter-frequency hardware delays. To relate the ionospheric observable to the electron density, a model is used that represents an altitude-dependent distribution of the electron density. This study aims at developing a global multi-dimensional model of the electron density using simulated GNSS observations from about 150 International GNSS Service (IGS) ground stations. Due to the fact that IGS stations are in-homogenously distributed around the world and the accuracy and reliability of the developed models are considerably lower in the area not well covered with IGS ground stations, the International Reference Ionosphere (IRI) model has been used as a background model. The correction term is estimated by applying spherical harmonics expansion to the GNSS ionospheric observable. Within this study this observable is related to the electron density using different functions for the bottom-side and top-side ionosphere. The bottom-side ionosphere is represented by an alpha-Chapman function and the top-side ionosphere is represented using the newly proposed Vary-Chap function.aximum electron density, IRI background model (elec/m3), day 202 - 2010, 0 UT eight of maximum electron density, IRI background model (km), day 202 - 2010, 0 UT
Code of Federal Regulations, 2013 CFR
2013-04-01
... meetings held near completion of Phase 3 and before submission of a marketing application (“pre-NDA... uses under investigation. (ii) Eligibility for meeting. While the end-of-Phase 2 meeting is designed... Phase 3 tests are made. The scheduling of an end-of-Phase 2 meeting is not, however, intended to delay...
Reconstruction of ensembles of coupled time-delay systems from time series.
Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P
2014-06-01
We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.
Sensing device and method for measuring emission time delay during irradiation of targeted samples
NASA Technical Reports Server (NTRS)
Danielson, J. D. Sheldon (Inventor)
2000-01-01
An apparatus for measuring emission time delay during irradiation of targeted samples by utilizing digital signal processing to determine the emission phase shift caused by the sample is disclosed. The apparatus includes a source of electromagnetic radiation adapted to irradiate a target sample. A mechanism generates first and second digital input signals of known frequencies with a known phase relationship, and a device then converts the first and second digital input signals to analog sinusoidal signals. An element is provided to direct the first input signal to the electromagnetic radiation source to modulate the source by the frequency thereof to irradiate the target sample and generate a target sample emission. A device detects the target sample emission and produces a corresponding first output signal having a phase shift relative to the phase of the first input signal, the phase shift being caused by the irradiation time delay in the sample. A member produces a known phase shift in the second input signal to create a second output signal. A mechanism is then provided for converting each of the first and second analog output signals to digital signals. A mixer receives the first and second digital output signals and compares the signal phase relationship therebetween to produce a signal indicative of the change in phase relationship between the first and second output signals caused by the target sample emission. Finally, a feedback arrangement alters the phase of the second input signal based on the mixer signal to ultimately place the first and second output signals in quadrature. Mechanisms for enhancing this phase comparison and adjustment technique are also disclosed.
Quantifying incident-induced travel delays on freeways using traffic sensor data : phase II
DOT National Transportation Integrated Search
2010-12-01
Traffic incidents cause approximately 50 percent of freeway congestion in metropolitan areas, resulting in extra travel time and fuel cost. Quantifying incident-induced delay (IID) will help people better understand the real costs of incidents, maxim...
Roy, Manas K
2002-11-01
The technique of feed-forward amplitude control has been widely used in the linearization of power amplifiers for wireless communication systems. In this technique, an error signal due to third order intermodulation distortion (IMD) is extracted, amplified, and used to correct the delayed main line distorted signal. For example, a miniature prototype base station for the Global System for Mobile Communications/Code Division Multiple Access (GSM/CDMA) cellular system uses feed-forward amplifiers with bulky and expensive coaxial cables, about 20 feet in length, to provide about 25 ns of delay. This paper shows alternate space-saving approaches of achieving these delays using three different types of delay filters: electromagnetic interdigital/lumped (<2.5"), ceramic (<1.8"), and ladder-type surface acoustic wave (SAW) (0.15"). The delay lines introduce phase and amplitude imbalance and delay mismatch in the linearization loop due to fabrication tolerances. These adversely affect the IMD cancellation. Using an RF system simulation tool, this paper critically compares the IMD cancellation performance achieved using the three technologies. Simulation results show that the optimization of delay mismatch can achieve the desired cancellation more easily than other parameters. It is shown that, if the critical system parameter (phase deviation from linearity), is maintained at <2.5 degrees peak-to-peak over a 20 MHz bandwidth in the frequency range 855 MHz to 875 MHz, one can achieve 25 dB of IMD cancellation performance. This paper concludes with the suggestion of a set of realistic specifications for a miniature delay filter for the low power loop of the feed-forward amplifier.
Induction of a G1-S checkpoint in fission yeast.
Bøe, Cathrine A; Krohn, Marit; Rødland, Gro Elise; Capiaghi, Christoph; Maillard, Olivier; Thoma, Fritz; Boye, Erik; Grallert, Beáta
2012-06-19
Entry into S phase is carefully regulated and, in most organisms, under the control of a G(1)-S checkpoint. We have previously described a G(1)-S checkpoint in fission yeast that delays formation of the prereplicative complex at chromosomal replication origins after exposure to UV light (UVC). This checkpoint absolutely depends on the Gcn2 kinase. Here, we explore the signal for activation of the Gcn2-dependent G(1)-S checkpoint in fission yeast. If some form of DNA damage can activate the checkpoint, deficient DNA repair should affect the length of the checkpoint-induced delay. We find that the cell-cycle delay differs in repair-deficient mutants from that in wild-type cells. However, the duration of the delay depends not only on the repair capacity of the cells, but also on the nature of the repair deficiency. First, the delay is abolished in cells that are deficient in the early steps of repair. Second, the delay is prolonged in repair mutants that fail to complete repair after the incision stage. We conclude that the G(1)-S delay depends on damage to the DNA and that the activating signal derives not from the initial DNA damage, but from a repair intermediate(s). Surprisingly, we find that activation of Gcn2 does not depend on the processing of DNA damage and that activated Gcn2 alone is not sufficient to delay entry into S phase in UVC-irradiated cells. Thus, the G(1)-S delay depends on at least two different inputs.
Guidelines for the use of protected/permissive left-turn phasing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agent, K.R.
1987-07-01
Turning left across opposing traffic at a signalized intersection could result in a traffic accident, as well as create motorist delay. A solution to the left-turn problem may be the addition of a left-turn phase when certain guidelines are met. After a decision has been made to add a left-turn phase, one of two basic alternative phasing methods is . In a previous research study, the results of replacing protected-only (exclusive) with protected/permissive (permissive) phasing at four trial intersections were studied. The permissive phasing provided a substantial reduction in delay and was popular with local drivers. However, several left-turn relatedmore » accidents occurred at those locations. Since those initial trial installations, permissive phasing has been used at several intersections across the state. This created a larger data base that could be used to determine when permissive phasing could be used without causing an accident problem. The objective of this study was to develop guidelines to aid traffic engineers in deciding whether permissive left-turn phasing is appropriate for use at a given location.« less
Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys
Lu, Chenyang; Yang, Taini; Jin, Ke; ...
2017-01-12
A group of single-phase concentrated solid-solution alloys (SP-CSAs), including NiFe, NiCoFe, NiCoFeCr, as well as a high entropy alloy NiCoFeCrMn, was irradiated with 3 MeV Ni 2+ ions at 773 K to a fluence of 5 10 16 ions/cm 2 for the study of radiation response with increasing compositional complexity. Advanced transmission electron microscopy (TEM) with electron energy loss spectroscopy (EELS) was used to characterize the dislocation loop distribution and radiation-induced segregation (RIS) on defect clusters in the SP-CSAs. The results show that a higher fraction of faulted loops exists in the more compositionally complex alloys, which indicate that increasingmore » compositional complexity can extend the incubation period and delay loop growth. The RIS behaviors of each element in the SP-CSAs were observed as follows: Ni and Co tend to enrich, but Cr, Fe and Mn prefer to deplete near the defect clusters. RIS level can be significantly suppressed by increasing compositional complexity due to the sluggish atom diffusion. According to molecular static (MS) simulations, disk like segregations may form near the faulted dislocation loops in the SP-CSAs. Segregated elements tend to distribute around the whole faulted loop as a disk rather than only around the edge of the loop.« less
NASA Astrophysics Data System (ADS)
Morabito, David D.; D'Addario, Larry; Finley, Susan
2016-02-01
Phased arrays of reflector antennas can be used to obtain effective area and gain that are much larger than is practical with a single antenna. This technique is routinely used by NASA for receiving weak signals from deep space. Phase alignment of the signals can be disrupted by turbulence in the troposphere, which causes fluctuations in the differences of signal delays among the antennas. At the Deep Space Network stations, site test interferometers (STIs) are being used for long-term monitoring of these delay fluctuations using signals from geostationary satellites. In this paper, we compare the STI measurements with the phase variations seen by a nearby two-element array of 34 m diameter antennas tracking 8.4 GHz and 32 GHz signals from the Cassini spacecraft in orbit around Saturn. It is shown that the statistics of the STI delay fluctuations, after appropriate scaling for differences in antenna separation and elevation angle and conversion to phase at the spacecraft frequencies, provide reliable estimates of the phase fluctuations seen by the large antennas on the deep space signal. Techniques for adaptive compensation of the phase fluctuations are available when receiving a sufficiently strong signal, but compensation is often impractical or impossible when using the array for transmitting. These results help to validate the use of long-term STI data for assessing the feasibility of large transmitting arrays at various sites.
Hard X-ray time profiles and acceleration processes in large solar flares
NASA Technical Reports Server (NTRS)
Bai, T.; Ramaty, R.
1979-01-01
The hard X-ray time profiles of the (1972) August 4 and 7 flares are investigated, taking into account a comparison of the time profiles of different energy channels. It is shown that for these flares the temporal features of the intensity profiles of higher energy channels are delayed with respect to those of channel 1. The delay time gradually increases to approximately 5 sec as the channel number increases from 1 to 5, and it jumps to approximately 15 sec for channels 6 and 7. A description is presented of a model in which the delay and other characteristics of the observed time profiles in channels 1-5 are self-consistently explained by the increase of the electron energy loss time with electron energy.
FBG wavelength demodulation based on a radio frequency optical true time delay method.
Wang, Jin; Zhu, Wanshan; Ma, Chenyuan; Xu, Tong
2018-06-01
A new fiber Bragg grating (FBG) wavelength shift demodulation method based on optical true time delay microwave phase detection is proposed. We used a microwave photonic link (MPL) to transport a radio frequency (RF) signal over a dispersion compensation fiber (DCF). The wavelength shift of the FBG will cause the time delay change of the optical carrier that propagates in an optical fiber with chromatic dispersion, which will result in the variation of the RF signal phase. A long DCF was adopted to enlarge the RF signal phase variation. An IQ mixer was used to measure the RF phase variation of the RF signal propagating in the MPL, and the wavelength shift of the FBG can be obtained by the measured RF signal phase variation. The experimental results showed that the wavelength shift measurement resolution is 2 pm when the group velocity dispersion of the DCF is 79.5 ps/nm and the frequency of the RF signal is 18 GHz. The demodulation time is as short as 0.1 ms. The measurement resolution can be improved simply by using a higher frequency of the RF signal and a longer DCF or larger chromatic dispersion value of the DCF.
Spatiotemporal Dynamics of a Network of Coupled Time-Delay Digital Tanlock Loops
NASA Astrophysics Data System (ADS)
Paul, Bishwajit; Banerjee, Tanmoy; Sarkar, B. C.
The time-delay digital tanlock loop (TDTLs) is an important class of phase-locked loop that is widely used in electronic communication systems. Although nonlinear dynamics of an isolated TDTL has been studied in the past but the collective behavior of TDTLs in a network is an important topic of research and deserves special attention as in practical communication systems separate entities are rarely isolated. In this paper, we carry out the detailed analysis and numerical simulations to explore the spatiotemporal dynamics of a network of a one-dimensional ring of coupled TDTLs with nearest neighbor coupling. The equation representing the network is derived and we carry out analytical calculations using the circulant matrix formalism to obtain the stability criteria. An extensive numerical simulation reveals that with the variation of gain parameter and coupling strength the network shows a variety of spatiotemporal dynamics such as frozen random pattern, pattern selection, spatiotemporal intermittency and fully developed spatiotemporal chaos. We map the distinct dynamical regions of the system in two-parameter space. Finally, we quantify the spatiotemporal dynamics by using quantitative measures like Lyapunov exponent and the average quadratic deviation of the full network.
Attosecond control of dissociative ionization of O{sub 2} molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siu, W.; Kelkensberg, F.; Gademann, G.
We demonstrate that dissociative ionization of O{sub 2} can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.
Kuwada, S; Batra, R; Stanford, T R
1989-02-01
1. We studied the effects of sodium pentobarbital on 22 neurons in the inferior colliculus (IC) of the rabbit. We recorded changes in the sensitivity of these neurons to monaural stimulation and to ongoing interaural time differences (ITDs). Monaural stimuli were tone bursts at or near the neuron's best frequency. The ITD was varied by delivering tones that differed by 1 Hz to the two ears, resulting in a 1-Hz binaural beat. 2. We assessed a neuron's ITD sensitivity by calculating three measures from the responses to binaural beats: composite delay, characteristic delay (CD), and characteristic phase (CP). To obtain the composite delay, we first derived period histograms by averaging, showing the response at each stimulating frequency over one period of the beat frequency. Second, the period histograms were replotted as a function of their equivalent interaural delay and then averaged together to yield the composite delay curve. Last, we calculated the composite peak or trough delay by fitting a parabola to the peak or trough of this composite curve. The composite delay curve represents the average response to all frequencies within the neuron's responsive range, and the peak reflects the interaural delay that produces the maximum response. The CD and CP were estimated from a weighted fit of a regression line to the plot of the mean interaural phase of the response versus the stimulating frequency. The slope and phase intercept of this regression line yielded estimates of CD and CP, respectively. These two quantities are thought to reflect the mechanism of ITD sensitivity, which involves the convergence of phase-locked inputs on a binaural cell. The CD estimates the difference in the time required for the two inputs to travel from either ear to this cell, whereas the CP reflects the interaural phase difference of the inputs at this cell. 3. Injections of sodium pentobarbital at subsurgical dosages (less than 25 mg/kg) almost invariably altered the neuron's response rate, response latency, response pattern, and spontaneous activity. Most of these changes were predictable and consistent with an enhancement of inhibitory influences. For example, if the earliest response was inhibitory, later excitation was usually reduced and latency increased. If the earliest response was excitatory, the level of this excitation was unaltered or slightly enhanced, and changes in latency were minimal. 4. The neuron's response pattern also changed in a predictable way. For example, a response with an inhibitory pause could either change to a response with a longer pause or to a response with an onset only.(ABSTRACT TRUNCATED AT 400 WORDS)
S-band SBAW microwave source, phase 2
NASA Technical Reports Server (NTRS)
1983-01-01
Results of aging experiments on 1.072 GHz SBAW oscillators are discussed as well as the design, fabrication and test of 2.143 GHz SBAW delay lines. Two design approaches were implemented. The third harmonic transducer on 36 deg rotated Y cut quartz proved to be the most useful design, whereas the fifth harmonic transducer on - 50 5 deg rotated Y cut quartz suffered from high insertion loss and poor sidelobe rejection. The construction and characterization of the 2 GHz SBAW oscillator are described. Phase noise, frequency dependence on temperature, and 6-month aging were measured. Some SAW and SBAW oscillators were compared as were both the 1 and 2 GHz oscillators. The 2 GHz SBAW oscillator showed significant improvement in phase noise and temperature stability over the 2 GHz SAW oscillator developed in previous NASA programs. A technique to produce SBAW delay lines of different frequencies from a single mask is examined. The delay lines were incorporated into oscillator circuits to demonstrate the ability to select the frequency output of the SBAW oscillator.
NASA Astrophysics Data System (ADS)
Ferrari, F. A. S.; Viana, R. L.; Reis, A. S.; Iarosz, K. C.; Caldas, I. L.; Batista, A. M.
2018-04-01
The cerebral cortex plays a key role in complex cortical functions. It can be divided into areas according to their function (motor, sensory and association areas). In this paper, the cerebral cortex is described as a network of networks (cortex network), we consider that each cortical area is composed of a network with small-world property (cortical network). The neurons are assumed to have bursting properties with the dynamics described by the Rulkov model. We study the phase synchronization of the cortex network and the cortical networks. In our simulations, we verify that synchronization in cortex network is not homogeneous. Besides, we focus on the suppression of neural phase synchronization. Synchronization can be related to undesired and pathological abnormal rhythms in the brain. For this reason, we consider the delayed feedback control to suppress the synchronization. We show that delayed feedback control is efficient to suppress synchronous behavior in our network model when an appropriate signal intensity and time delay are defined.
Fitzpatrick, Ann E; Lincoln, Craig N; van Wilderen, Luuk J G W; van Thor, Jasper J
2012-01-26
The primary photoreactions of the red absorbing ground state (Pr) of the cyanobacterial phytochrome Cph1 from Synechocystis PCC 6803 involve C15═C16 Z-E photoisomerization of its phycocyanobilin chromophore. The first observable product intermediate in pump-probe measurements of the photocycle, "Lumi-R", is formed with picosecond kinetics and involves excited state decay reactions that have 3 and 14 ps time constants. Here, we have studied the photochemical formation of the Lumi-R intermediate using multipulse picosecond visible spectroscopy. Pump-dump-probe (PDP) and pump-repump-probe (PRP) experiments were carried out by employing two femtosecond visible pulses with 1, 14, and 160 ps delays, together with a broadband dispersive visible probe. The time delays between the two excitation pulses have been selected to allow interaction with the dominant (3 and 14 ps) kinetic phases of Lumi-R formation. The frequency dependence of the PDP and PRP amplitudes was investigated at 620, 640, 660, and 680 nm, covering excited state absorption (λ(max) = 620 nm), ground state absorption (λ(max) = 660 nm), and stimulated emission (λ(max) = 680 nm) cross sections. Experimental double difference transient absorbance signals (ΔΔOD), from the PDP and PRP measurements, required corrections to remove contributions from ground state repumping. The sensitivity of the resulting ΔΔOD signals was systematically investigated for possible connectivity schemes and photochemical parameters. When applying a homogeneous (sequentially decaying) connectivity scheme in both the 3 and 14 ps kinetic phases, evidence for repumping of an intermediate that has an electronic ground state configuration (GSI) is taken from the dump-induced S1 formation with 620, 640, and 660 nm wavelengths and 1 and 14 ps repump delays. Evidence for repumping a GSI is also seen, for the same excitation wavelengths, when imposing a target connectivity scheme proposed in the literature for the 1 ps repump delay. In contrast, using a 680 nm dump pulse, ground state formation is observed for all models examined. The ΔΔOD signals were dominated by stimulated emission, at both 1 and 14 ps delays for the longer wavelength excitation. The GSI, which is revealed by the PRP measurements and not resolved from pump-probe measurements, is found to be directly formed from the excited state of Pr, and its formation is considered using heterogeneous, homogeneous, and target models to globally fit the data.
Sack, Robert L; Auckley, Dennis; Auger, R. Robert; Carskadon, Mary A.; Wright, Kenneth P.; Vitiello, Michael V.; Zhdanova, Irina V.
2007-01-01
Objective: This the second of two articles reviewing the scientific literature on the evaluation and treatment of circadian rhythm sleep disorders (CRSDs), employing the methodology of evidence-based medicine. We herein report on the accumulated evidence regarding the evaluation and treatment of Advamced Sleep Phase Disorder (ASPD), Delayed Sleep Phase Disorder (DSPD), Free-Running Disorder (FRD) and Irregular Sleep-Wake Rhythm ISWR). Methods: A set of specific questions relevant to clinical practice were formulated, a systematic literature search was performed, and relevant articles were abstracted and graded. Results: A substantial body of literature has accumulated that provides a rational basis the evaluation and treatment of CRSDs. Physiological assessment has involved determination of circadian phase using core body temperature and the timing of melatonin secretion. Behavioral assessment has involved sleep logs, actigraphy and the Morningness-Eveningness Questionnaire (MEQ). Treatment interventions fall into three broad categories: 1) prescribed sleep scheduling, 2) circadian phase shifting (“resetting the clock”), and 3) symptomatic treatment using hypnotic and stimulant medications. Conclusion: Circadian rhythm science has also pointed the way to rational interventions for CRSDs and these treatments have been introduced into the practice of sleep medicine with varying degrees of success. More translational research is needed using subjects who meet current diagnostic criteria. Citation: Sack R; Auckley D; Auger RR; Carskadon MA; Wright KP; Vitiello MV; Zhdanova IV. Circadian rhythm sleep disorders: Part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. SLEEP 2007;30(11):1484-1501. PMID:18041481
NASA Astrophysics Data System (ADS)
Monfared, Shabnam K.; Hüwel, Lutz
2012-10-01
Atmospheric pressure plasmas in helium-hydrogen mixtures with H2 molar concentrations ranging from 0.13% to 19.7% were investigated at times from 1 to 25 μs after formation by a Q-switched Nd:YAG laser. Spatially integrated electron density values are obtained using time resolved optical emission spectroscopic techniques. Depending on mixture concentration and delay time, electron densities vary from almost 1017 cm-3 to about 1014 cm-3. Helium based results agree reasonably well with each other, as do values extracted from the Hα and Hβ emission lines. However, in particular for delays up to about 7 μs and in mixtures with less than 1% hydrogen, large discrepancies are observed between results obtained from the two species. Differences decrease with increasing hydrogen partial pressure and/or increasing delay time. In mixtures with molecular hydrogen fraction of 7% or more, all methods yield electron densities that are in good agreement. These findings seemingly contradict the well-established idea that addition of small amounts of hydrogen for diagnostic purposes does not perturb the plasma. Using Abel inversion analysis of the experimental data and a semi-empirical numerical model, we demonstrate that the major part of the detected discrepancies can be traced to differences in the spatial distributions of excited helium and hydrogen neutrals. The model yields spatially resolved emission intensities and electron density profiles that are in qualitative agreement with experiment. For the test case of a 1% H2 mixture at 5 μs delay, our model suggests that high electron temperatures cause an elevated degree of ionization and thus a reduction of excited hydrogen concentration relative to that of helium near the plasma center. As a result, spatially integrated analysis of hydrogen emission lines leads to oversampling of the plasma perimeter and thus to lower electron density values compared to those obtained from helium lines.
Ewelina, Grzywna; Krzysztof, Stachura; Marek, Moskala; Krzysztof, Kruczala
2017-12-01
Pathophysiology of delayed cerebral ischemia and cerebral vasospasm following aneurysmal subarachnoid hemorrhage is still poorly recognized, however free radicals are postulated as one of the crucial players. This study was designed to scrutinize whether the concentration of free radicals in the peripheral venous blood is related to the occurrence of delayed cerebral ischemia associated with cerebral vasospasm. Twenty-four aneurysmal subarachnoid hemorrhage patients and seven patients with unruptured intracranial aneurysm (control group) have been studied. Free radicals in patients' blood have been detected by the electron paramagnetic resonance (CMH.HCl spin probe, 150 K, ELEXSYS E500 spectrometer) on admission and at least 72 h from disease onset. Delayed cerebral ischemia monitoring was performed by daily neurological follow-up and transcranial color coded Doppler. Delayed cerebral ischemia observed in six aneurysmal subarachnoid hemorrhage patients was accompanied by cerebral vasospasm in all six cases. No statistically significant difference in average free radicals concentration between controls and study subgroups was noticed on admission (p = .3; Kruskal-Wallis test). After 72 h free radicals concentration in delayed cerebral ischemia patients (3.19 ± 1.52 mmol/l) differed significantly from the concentration in aneurysmal subarachnoid hemorrhage patients without delayed cerebral ischemia (0.65 ± 0.37 mmol/l) (p = .012; Mann-Whitney test). These findings are consistent with our assumptions and seem to confirm the role of free radicals in delayed cerebral ischemia development. Preliminary results presented above are promising and we need perform further investigation to establish whether blood free radicals concentration may serve as the biomarker of delayed cerebral ischemia associated with cerebral vasospasm.
NASA Astrophysics Data System (ADS)
Zubarev, N. M.; Ivanov, S. N.
2018-04-01
The mechanism of runaway electron generation at gas pressures from a few atmospheres to several tens of atmospheres is proposed. According to this mechanism, the electrons pass into the runaway mode in the enhanced field zone that arises between a cathode micropoint—a source of field-emission electrons—and the region of the positive ion space charge accumulated near the cathode in the tails of the developing electron avalanches. As a result, volume gas ionization by runaway electrons begins with a time delay required for the formation of the enhanced field zone. This process determines the delay time of breakdown. The influence of the gas pressure on the formation dynamics of the space charge region is analyzed. At gas pressures of a few atmospheres, the space charge arises due to the avalanche multiplication of the very first field-emission electron, whereas at pressures of several tens of atmospheres, the space charge forms as a result of superposition of many electron avalanches with a relatively small number of charge carriers in each.
Isochronic carrier-envelope phase-shift compensator.
Görbe, Mihaly; Osvay, Karoly; Grebing, Christian; Steinmeyer, Günter
2008-11-15
A concept for orthogonal control of phase and group delay inside a laser cavity by a specially designed compensator assembly is discussed. Similar to the construction of variable polarization retarder, this assembly consists of two thin wedge prisms made from appropriately chosen optical materials. Being shifted as a whole, the assembly allows changing the phase delay with no influence on the cavity round-trip time, whereas relative shifting of the prisms enables adjustment of the latter. This scheme is discussed theoretically and verified experimentally, indicating a factor 30 reduction of the influence on the repetition rate compared to the commonly used silica wedge pair. For a 2pi adjustment of the carrier-envelope phase shift, single-pass timing differences are reduced to the single-femtosecond regime. With negligible distortions of timing and dispersion, the described compensator device greatly simplifies carrier-envelope phase control and experiments in extreme nonlinear optics. Copyright (c) 2008 Optical Society of America.
NASA Astrophysics Data System (ADS)
Yan, Sen-lin
2014-12-01
We study dynamics in an opto-electronic delayed feedback two-section semiconductor laser. We predict theoretically that the system can result in bistability and bifurcation. We analyze numerically the route to chaos from stability to bifurcation by varying the delayed time, feedback strength and two in-currents. The system displays the four distinct types or modes of stable, periodic pulsed or self-pulsing, undamped oscillating or beating, and chaos. The frequency and intensity varying with the delayed time in the self-pulsation regions are discussed detailedly to find that the pulsing frequency is reduced with the long delayed time while the pulsing intensity is added. And the chaotic pulsing frequency is increased with the large in-current Ja. The laser relaxation oscillation frequency is decreased with the large in-current Jb. One in-current characterize dynamics in the laser to conduce to stable, periodic pulsed, beating and chaotic states by altering its values. The other in-current characterize dynamics in the chaotic laser to be controlled to a stable state after a road to quasi-period by adding the values.
Evening daylight may cause adolescents to sleep less in spring than in winter
Figueiro, Mariana G.; Rea, Mark S.
2012-01-01
Sleep restriction commonly experienced by adolescents can stem from greater sleep pressure by the homeostatic processes and from phase delays of the circadian system. With regard to the latter potential cause, we hypothesized that because there is more natural evening light during the spring than winter, a sample of adolescent students would be more phase delayed in spring than in winter, would have later sleep onset times and, because of fixed school schedules, would have shorter sleep durations. Sixteen eighth-grade subjects were recruited for the study. We collected sleep logs and saliva samples to determine their dim light melatonin onset (DLMO), a well-established circadian marker. Actual circadian light exposures experienced by a subset of twelve subjects over the course of seven days in winter and in spring using a personal, head-worn, circadian light measurement device are also reported here. Results showed that this sample of adolescents was exposed to significantly more circadian light in spring than in winter, especially in the evening hours when light exposure would likely delay circadian phase. Consistent with the light data, DLMO and sleep onset times were significantly more delayed, and sleep durations were significantly shorter in spring than in winter. The present ecological study of light, circadian phase, and self-reported sleep suggests that greater access to evening daylight in the spring may lead to sleep restriction in adolescents while attending school. Therefore, lighting schemes that reduce evening light in the spring may encourage longer sleep times in adolescents. PMID:20653452
Piloted simulator study of allowable time delays in large-airplane response
NASA Technical Reports Server (NTRS)
Grantham, William D.; Bert T.?aetingas, Stephen A.dings with ran; Bert T.?aetingas, Stephen A.dings with ran
1987-01-01
A piloted simulation was performed to determine the permissible time delay and phase shift in the flight control system of a specific large transport-type airplane. The study was conducted with a six degree of freedom ground-based simulator and a math model similar to an advanced wide-body jet transport. Time delays in discrete and lagged form were incorporated into the longitudinal, lateral, and directional control systems of the airplane. Three experienced pilots flew simulated approaches and landings with random localizer and glide slope offsets during instrument tracking as their principal evaluation task. Results of the present study suggest a level 1 (satisfactory) handling qualities limit for the effective time delay of 0.15 sec in both the pitch and roll axes, as opposed to a 0.10-sec limit of the present specification (MIL-F-8785C) for both axes. Also, the present results suggest a level 2 (acceptable but unsatisfactory) handling qualities limit for an effective time delay of 0.82 sec and 0.57 sec for the pitch and roll axes, respectively, as opposed to 0.20 sec of the present specifications for both axes. In the area of phase shift between cockpit input and control surface deflection,the results of this study, flown in turbulent air, suggest less severe phase shift limitations for the approach and landing task-approximately 50 deg. in pitch and 40 deg. in roll - as opposed to 15 deg. of the present specifications for both axes.
Systemic cytokine response in moribund mice of streptococcal toxic shock syndrome model.
Saito, Mitsumasa; Kajiwara, Hideko; Iida, Ken-ichiro; Hoshina, Takayuki; Kusuhara, Koichi; Hara, Toshiro; Yoshida, Shin-ichi
2011-02-01
Streptococcus pyogenes causes severe invasive disease in humans, including streptococcal toxic shock syndrome (STSS). We previously reported a mouse model that is similar to human STSS. When mice were infected intramuscularly with 10(7) CFU of S. pyogenes, all of them survived acute phase of infection. After 20 or more days of infection, a number of them died suddenly accompanied by S. pyogenes bacteremia. We call this phenomenon "delayed death". We analyzed the serum cytokine levels of mice with delayed death, and compared them with those of mice who died in the acute phase of intravenous S. pyogenes infection. The serum levels of TNF-α and IFN-γ in mice of delayed death were more than 100 times higher than those in acute death mice. IL-10 and IL-12, which were not detected in acute death, were also significantly higher in mice of delayed death. IL-6 and MCP-1 (CCL-2) were elevated in both groups of mice. It was noteworthy that not only pro-inflammatory cytokines but also anti-inflammatory cytokines were elevated in delayed death. We also found that intravenous TNF-α injection accelerated delayed death, suggesting that an increase of serum TNF-α induced S. pyogenes bacteremia in our mouse model. Copyright © 2010 Elsevier Ltd. All rights reserved.
Correction of ultrasonic wave aberration with a time delay and amplitude filter.
Måsøy, Svein-Erik; Johansen, Tonni F; Angelsen, Bjørn
2003-04-01
Two-dimensional simulations with propagation through two different heterogeneous human body wall models have been performed to analyze different correction filters for ultrasonic wave aberration due to forward wave propagation. The different models each produce most of the characteristic aberration effects such as phase aberration, relatively strong amplitude aberration, and waveform deformation. Simulations of wave propagation from a point source in the focus (60 mm) of a 20 mm transducer through the body wall models were performed. Center frequency of the pulse was 2.5 MHz. Corrections of the aberrations introduced by the two body wall models were evaluated with reference to the corrections obtained with the optimal filter: a generalized frequency-dependent phase and amplitude correction filter [Angelsen, Ultrasonic Imaging (Emantec, Norway, 2000), Vol. II]. Two correction filters were applied, a time delay filter, and a time delay and amplitude filter. Results showed that correction with a time delay filter produced substantial reduction of the aberration in both cases. A time delay and amplitude correction filter performed even better in both cases, and gave correction close to the ideal situation (no aberration). The results also indicated that the effect of the correction was very sensitive to the accuracy of the arrival time fluctuations estimate, i.e., the time delay correction filter.
Binns, Philippa L; Sheppeard, Vicky; Staff, Michael P
2010-01-01
During the DELAY and CONTAIN phases of pandemic (H1N1) 2009 influenza in NSW, public health units needed to rapidly surge operations to manage the 3070 potential cases and 1894 contacts notified to them. The Incident Control System, NetEpi (the web-based multi-user access database), training to up-skill surge staff, and electronic communication were all integral to the outbreak response. Ongoing identification and training of surge staff would assist a timely and effective response to future large scale outbreaks. Investing and incorporating information technology tools into routine public health unit business to assist with communication, outbreak management and reporting will improve familiarity and capability within the network to respond to public health emergencies.
An automatic editing algorithm for GPS data
NASA Technical Reports Server (NTRS)
Blewitt, Geoffrey
1990-01-01
An algorithm has been developed to edit automatically Global Positioning System data such that outlier deletion, cycle slip identification, and correction are independent of clock instability, selective availability, receiver-satellite kinematics, and tropospheric conditions. This algorithm, called TurboEdit, operates on undifferenced, dual frequency carrier phase data, and requires the use of P code pseudorange data and a smoothly varying ionospheric electron content. TurboEdit was tested on the large data set from the CASA Uno experiment, which contained over 2500 cycle slips.Analyst intervention was required on 1 percent of the station-satellite passes, almost all of these problems being due to difficulties in extrapolating variations in the ionospheric delay. The algorithm is presently being adapted for real time data editing in the Rogue receiver for continuous monitoring applications.
Lazoura, Olga; Ismail, Tevfik F; Pavitt, Christopher; Lindsay, Alistair; Sriharan, Mona; Rubens, Michael; Padley, Simon; Duncan, Alison; Wong, Tom; Nicol, Edward
2016-02-01
Assessment of the left atrial appendage (LAA) for thrombus and anatomy is important prior to atrial fibrillation (AF) ablation and LAA exclusion. The use of cardiovascular CT (CCT) to detect LAA thrombus has been limited by the high incidence of pseudothrombus on single-pass studies. We evaluated the diagnostic accuracy of a two-phase protocol incorporating a limited low-dose delayed contrast-enhanced examination of the LAA, compared with a single-pass study for LAA morphological assessment, and transesophageal echocardiography (TEE) for the exclusion of thrombus. Consecutive patients (n = 122) undergoing left atrial interventions for AF were assessed. All had a two-phase CCT protocol (first-past scan plus a limited, 60-s delayed scan of the LAA) and TEE. Sensitivity, specificity, diagnostic accuracy, positive (PPV) and negative predictive values (NPV) were calculated for the detection of true thrombus on first-pass and delayed scans, using TEE as the gold standard. Overall, 20/122 (16.4 %) patients had filling defects on the first-pass study. All affected the full delineation of the LAA morphology; 17/20 (85 %) were confirmed as pseudo-filling defects. Three (15 %) were seen on late-pass and confirmed as true thrombi on TEE; a significant improvement in diagnostic performance relative to a single-pass scan (McNemar Chi-square 17, p < 0.001). The sensitivity, specificity, diagnostic accuracy, PPV and NPV was 100, 85.7, 86.1, 15.0 and 100 % respectively for first-pass scans, and 100 % for all parameters for the delayed scans. The median (range) additional radiation dose for the delayed scan was 0.4 (0.2-0.6) mSv. A low-dose delayed scan significantly improves the identification of true LAA anatomy and thrombus in patients undergoing LA intervention.
Kato, Tsuguhiko; Yorifuji, Takashi; Yamakawa, Michiyo; Inoue, Sachiko
2018-01-31
Cross-sectional studies have shown associations between adolescent sleep problems and the use of electronic devices, such as mobile phones, but longitudinal studies remain scarce. We explored any association between delayed bedtimes at six years old and the excessive use of electronic devices at 12 years of age. Texting was a prime focus. We analysed 9607 adolescents who owned mobile phones in 2013 using the Japanese Longitudinal Survey of Newborns in the 21st Century, which started in 2001. The outcomes were daily excessive use of a mobile phone, television (TV) and video games. Delayed bedtime at the age of six years was associated with excessive texting at weekends. The adjusted odds ratios and 95% confidence intervals obtained from logistic regression analyses were 1.88 (1.14-3.10) for the 10-11 pm group and 1.98 (1.08-3.63) for the after 11 pm group, compared with the before 9 pm group. Later bedtimes were also associated with increased risks of excessive TV viewing and video game use. Our study indicated that six-year-olds who regularly stayed up late at night used electronic devices more frequently, or for longer, at the age of 12. Parents need to be more aware of links between sleep issues and electronic devices. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Relativistic effects in photoionization: Wigner time delay for the noble gases and IIB atoms
NASA Astrophysics Data System (ADS)
Banerjee, Sourav; Deshmukh, Pranawa; Dolmatov, Valeriy; Kheifets, Anatoli; Manson, Steven
2017-04-01
Time delay in atomic photoionization has been observed in several experiments, and various theoretical and experimental approaches are developing rapidly to obtain a better understanding of this phenomena. Theoretical methods that account for many body correlations include the relativistic random phase approximation (RRPA) and its non-relativistic analogue, RPAE. Calculations using RRPA are performed and the impact of relativistic interactions on Wigner time delay are explored via comparison of this result with RPAE results. In addition, results on Wigner time delay for Zn Cd and Hg are presented.
Time Delay in the Kuramoto Model of Coupled Oscillators
NASA Astrophysics Data System (ADS)
Yeung, M. K. Stephen; Strogatz, Steven H.
1999-01-01
We generalize the Kuramoto model of coupled oscillators to allow time-delayed interactions. New phenomena include bistability between synchronized and incoherent states, and unsteady solutions with time-dependent order parameters. We derive exact formulas for the stability boundaries of the incoherent and synchronized states, as a function of the delay, in the special case where the oscillators are identical. The experimental implications of the model are discussed for populations of chirping crickets, where the finite speed of sound causes communication delays, and for physical systems such as coupled phase-locked loops or lasers.
Caught in the Net: Notes from the Electronic Underground.
ERIC Educational Resources Information Center
Readings, Bill
Framed by the rising costs of traditional scholarly publishing and the increasing restrictions on library budgets, the turn to electronic publishing seems to be the way of the future, according to the publisher of an electronic journal, "Surfaces." Costs and delays of production and distribution are massively reduced. The electronic…
NASA Technical Reports Server (NTRS)
Miles, Jeffrey Hilton
2015-01-01
A cross-power spectrum phase based adaptive technique is discussed which iteratively determines the time delay between two digitized signals that are coherent. The adaptive delay algorithm belongs to a class of algorithms that identifies a minimum of a pattern matching function. The algorithm uses a gradient technique to find the value of the adaptive delay that minimizes a cost function based in part on the slope of a linear function that fits the measured cross power spectrum phase and in part on the standard error of the curve fit. This procedure is applied to data from a Honeywell TECH977 static-engine test. Data was obtained using a combustor probe, two turbine exit probes, and far-field microphones. Signals from this instrumentation are used estimate the post-combustion residence time in the combustor. Comparison with previous studies of the post-combustion residence time validates this approach. In addition, the procedure removes the bias due to misalignment of signals in the calculation of coherence which is a first step in applying array processing methods to the magnitude squared coherence data. The procedure also provides an estimate of the cross-spectrum phase-offset.
Sato, Nahoko; Nunome, Hiroyuki; Ikegami, Yasuo
2015-02-01
In hip-hop dance contests, a procedure for evaluating performances has not been clearly defined, and objective criteria for evaluation are necessary. It is assumed that most hip-hop dance techniques have common motion characteristics by which judges determine the dancer's skill level. This study aimed to extract motion characteristics that may be linked to higher evaluations by judges. Ten expert and 12 nonexpert dancers performed basic rhythmic movements at a rate of 100 beats per minute. Their movements were captured using a motion capture system, and eight judges evaluated the performances. Four kinematic parameters, including the amplitude of the body motions and the phase delay, which indicates the phase difference between two joint angles, were calculated. The two groups showed no significant differences in terms of the amplitudes of the body motions. In contrast, the phase delay between the head motion and the other body parts' motions of expert dancers who received higher scores from the judges, which was approximately a quarter cycle, produced a loop-shaped motion of the head. It is suggested that this slight phase delay was related to the judges' evaluations and that these findings may help in constructing an objective evaluation system.
Bates, Mary E.; Simmons, James A.
2010-01-01
Big brown bats emit FM biosonar sounds containing two principal harmonics (FM1∼55–22 kHz;FM2∼105–45 kHz). To examine the role of harmonics, they were selectively filtered from stimuli in electronic-echo delay discrimination experiments. Positive stimuli were delayed by 3.16 ms (55 cm simulated target range); negative stimuli were by delayed by 3.96 ms (68 cm). This large 800-μs delay difference (nearly 14 cm) was easily discriminated for echoes containing equal-strength FM1 and FM2. Performance gradually decreased as highpass filters removed progressively larger segments from FM1. For echoes with FM2 alone, performance collapsed to chance, but performance remained good for lowpass echoes containing FM1 alone. Attenuation of FM2 by 3 dB relative to FM1 also decreased performance, but shortening electronic delay of the attenuated FM2 by 48 μs counteracted amplitude-latency trading and restored performance. Bats require the auditory representations of FM1 and FM2 to be in temporal register for high delay acuity. Misalignment of neuronal responses degrades acuity, but outright removal of FM2, leaving only FM1, causes little loss of acuity. Functional asymmetry of harmonics reflects lowpass effects from beaming and atmospheric propagation, which leave FM1 intact. It may cooperate with latency shifts to aid in suppression of clutter. PMID:20707464
Sea level measurements using multi-frequency GPS and GLONASS observations
NASA Astrophysics Data System (ADS)
Löfgren, Johan S.; Haas, Rüdiger
2014-12-01
Global Positioning System (GPS) tide gauges have been realized in different configurations, e.g., with one zenith-looking antenna, using the multipath interference pattern for signal-to-noise ratio (SNR) analysis, or with one zenith- and one nadir-looking antenna, analyzing the difference in phase delay, to estimate the sea level height. In this study, for the first time, we use a true Global Navigation Satellite System (GNSS) tide gauge, installed at the Onsala Space Observatory. This GNSS tide gauge is recording both GPS and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) signals and makes it possible to use both the one- and two-antenna analysis approach. Both the SNR analysis and the phase delay analysis were evaluated using dual-frequency GPS and GLONASS signals, i.e., frequencies in the L-band, during a 1-month-long campaign. The GNSS-derived sea level results were compared to independent sea level observations from a co-located pressure tide gauge and show a high correlation for both systems and frequency bands, with correlation coefficients of 0.86 to 0.97. The phase delay results show a better agreement with the tide gauge sea level than the SNR results, with root-mean-square differences of 3.5 cm (GPS L1 and L2) and 3.3/3.2 cm (GLONASS L1/L2 bands) compared to 4.0/9.0 cm (GPS L1/L2) and 4.7/8.9 cm (GLONASS L1/L2 bands). GPS and GLONASS show similar performance in the comparison, and the results prove that for the phase delay analysis, it is possible to use both frequencies, whereas for the SNR analysis, the L2 band should be avoided if other signals are available. Note that standard geodetic receivers using code-based tracking, i.e., tracking the un-encrypted C/A-code on L1 and using the manufacturers' proprietary tracking method for L2, were used. Signals with the new C/A-code on L2, the so-called L2 C , were not tracked. Using wind speed as an indicator for sea surface roughness, we find that the SNR analysis performs better in rough sea surface conditions than the phase delay analysis. The SNR analysis is possible even during the highest wind speed observed during this campaign (17.5 m/s), while the phase delay analysis becomes difficult for wind speeds above 6 m/s.
Bell, C; Paterson, D H; Kowalchuk, J M; Padilla, J; Cunningham, D A
2001-09-01
We compared estimates for the phase 2 time constant (tau) of oxygen uptake (VO2) during moderate- and heavy-intensity exercise, and the slow component of VO2 during heavy-intensity exercise using previously published exponential models. Estimates for tau and the slow component were different (P < 0.05) among models. For moderate-intensity exercise, a two-component exponential model, or a mono-exponential model fitted from 20 s to 3 min were best. For heavy-intensity exercise, a three-component model fitted throughout the entire 6 min bout of exercise, or a two-component model fitted from 20 s were best. When the time delays for the two- and three-component models were equal the best statistical fit was obtained; however, this model produced an inappropriately low DeltaVO2/DeltaWR (WR, work rate) for the projected phase 2 steady state, and the estimate of phase 2 tau was shortened compared with other models. The slow component was quantified as the difference between VO2 at end-exercise (6 min) and at 3 min (DeltaVO2 (6-3 min)); 259 ml x min(-1)), and also using the phase 3 amplitude terms (truncated to end-exercise) from exponential fits (409-833 ml x min(-1)). Onset of the slow component was identified by the phase 3 time delay parameter as being of delayed onset approximately 2 min (vs. arbitrary 3 min). Using this delay DeltaVO2 (6-2 min) was approximately 400 ml x min(-1). Use of valid consistent methods to estimate tau and the slow component in exercise are needed to advance physiological understanding.
Local re-acceleration and a modified thick target model of solar flare electrons
NASA Astrophysics Data System (ADS)
Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.
2009-12-01
Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as spatial distribution of atmospheric heating by fast electrons.
Joint Symbol Timing and CFO Estimation for OFDM/OQAM Systems in Multipath Channels
NASA Astrophysics Data System (ADS)
Fusco, Tilde; Petrella, Angelo; Tanda, Mario
2009-12-01
The problem of data-aided synchronization for orthogonal frequency division multiplexing (OFDM) systems based on offset quadrature amplitude modulation (OQAM) in multipath channels is considered. In particular, the joint maximum-likelihood (ML) estimator for carrier-frequency offset (CFO), amplitudes, phases, and delays, exploiting a short known preamble, is derived. The ML estimators for phases and amplitudes are in closed form. Moreover, under the assumption that the CFO is sufficiently small, a closed form approximate ML (AML) CFO estimator is obtained. By exploiting the obtained closed form solutions a cost function whose peaks provide an estimate of the delays is derived. In particular, the symbol timing (i.e., the delay of the first multipath component) is obtained by considering the smallest estimated delay. The performance of the proposed joint AML estimator is assessed via computer simulations and compared with that achieved by the joint AML estimator designed for AWGN channel and that achieved by a previously derived joint estimator for OFDM systems.
Electrically-Tunable Group Delays Using Quantum Wells in a Distributed Bragg Reflector
NASA Technical Reports Server (NTRS)
Nelson, Thomas R., Jr.; Loehr, John P.; Fork, Richard L.; Cole, Spencer; Jones, Darryl K.; Keys, Andrew
1999-01-01
There is a growing interest in the fabrication of semiconductor optical group delay lines for the development of phased arrays of Vertical-Cavity Surface-Emitting Lasers (VCSELs). We present a novel structure incorporating In(x)GA(1-x)As quantum wells in the GaAs quarter-wave layers of a GaAs/AlAs distributed Bragg reflector (DBR). Application of an electric field across the quantum wells leads to red shifting and peak broadening of the el-hhl exciton peak via the quantum-confined Stark effect. Resultant changes in the index of refraction thereby provide a means for altering the group delay of an incident laser pulse. We discuss the tradeoffs between the maximum amount of change in group delay versus absorption losses for such a device. We also compare a simple theoretical model to experimental results, and discuss both angle and position tuning of the BDR band edge resonance relative to the exciton absorption peak. The advantages of such monolithically grown devices for phased-array VCSEL applications will be detailed.
Coles, Meredith E; Sharkey, Katherine M
2011-06-15
Individuals with treatment-resistant obsessive compulsive disorder (OCD) have elevated rates of delayed sleep phase. This report describes a patient with severe OCD who had failed prior trials of pharmacotherapy and psychotherapy, and whose symptoms were associated with delayed bedtimes and delays in the time she initiated her nighttime compulsions. Case report. A 54 year-old woman with OCD kept sleep/symptom logs as an adjunct to traditional cognitive-behavioral therapy for OCD. At presentation, she reported habitual bedtime = 06:00, wake time = 13:00, sleep latency ' 5 min, and total sleep time = 6.5-7.5 h. Later time of initiating her compulsions was associated with longer time performing the compulsions (r = 0.86, p < 0.001). Cognitive-behavioral therapy with adjunctive chronotherapy was associated with substantial improvement. OCD patients with nighttime compulsions may receive light exposure that results in delayed sleep times/circadian phase. Chronotherapy may enhance outcomes for refractory OCD patients, particularly those who perform compulsions at night.
Stability analysis of an HIV/AIDS epidemic model with treatment
NASA Astrophysics Data System (ADS)
Cai, Liming; Li, Xuezhi; Ghosh, Mini; Guo, Baozhu
2009-07-01
An HIV/AIDS epidemic model with treatment is investigated. The model allows for some infected individuals to move from the symptomatic phase to the asymptomatic phase by all sorts of treatment methods. We first establish the ODE treatment model with two infective stages. Mathematical analyses establish that the global dynamics of the spread of the HIV infectious disease are completely determined by the basic reproduction number [real]0. If [real]0<=1, the disease-free equilibrium is globally stable, whereas the unique infected equilibrium is globally asymptotically stable if [real]0>1. Then, we introduce a discrete time delay to the model to describe the time from the start of treatment in the symptomatic stage until treatment effects become visible. The effect of the time delay on the stability of the endemically infected equilibrium is investigated. Moreover, the delay model exhibits Hopf bifurcations by using the delay as a bifurcation parameter. Finally, numerical simulations are presented to illustrate the results.
Optically controlled laser-plasma electron accelerator for compact gamma-ray sources
NASA Astrophysics Data System (ADS)
Kalmykov, S. Y.; Davoine, X.; Ghebregziabher, I.; Shadwick, B. A.
2018-02-01
Generating quasi-monochromatic, femtosecond γ-ray pulses via Thomson scattering (TS) demands exceptional electron beam (e-beam) quality, such as percent-scale energy spread and five-dimensional brightness over 1016 A m-2. We show that near-GeV e-beams with these metrics can be accelerated in a cavity of electron density, driven with an incoherent stack of Joule-scale laser pulses through a mm-size, dense plasma (n 0 ˜ 1019 cm-3). Changing the time delay, frequency difference, and energy ratio of the stack components controls the e-beam phase space on the femtosecond scale, while the modest energy of the optical driver helps afford kHz-scale repetition rate at manageable average power. Blue-shifting one stack component by a considerable fraction of the carrier frequency makes the stack immune to self-compression. This, in turn, minimizes uncontrolled variation in the cavity shape, suppressing continuous injection of ambient plasma electrons, preserving a single, ultra-bright electron bunch. In addition, weak focusing of the trailing component of the stack induces periodic injection, generating, in a single shot, a train of bunches with controllable energy spacing and femtosecond synchronization. These designer e-beams, inaccessible to conventional acceleration methods, generate, via TS, gigawatt γ-ray pulses (or multi-color pulse trains) with the mean energy in the range of interest for nuclear photonics (4-16 MeV), containing over 106 photons within a microsteradian-scale observation cone.
Delayed visual maturation in infants: a disorder of figure-ground separation?
Harris, C M; Kriss, A; Shawkat, F; Taylor, D; Russell-Eggitt, I
1996-01-01
Delayed visual maturation (DVM) is characterised by visual unresponsiveness in early infancy, which subsequently improves spontaneously to normal levels. We studied the optokinetic response and recorded pattern reversal VEPs in six infants with DVM (aged 2-4 months) when they were at the stage of complete visual unresponsiveness. Although no saccades or visual tracking with the eyes or head could be elicited to visual objects, a normal full-field rapid buildup OKN response occurred when viewing biocularly or during monocular stimulation in the temporo-nasal direction of the viewing eye. Almost no monocular OKN could be elicited in the naso-temporal direction, which was significantly poorer than normal age-matched infants. No OKN quick phases were missed, and there were no other signs of "ocular motor apraxia." VEPs were normal in amplitude and latency for age. It appears, therefore, that infants with DVM are delayed in orienting to local regions of the visual field, but can respond to full-field motion. The presence of normal OKN quick-phases and slow-phases suggests normal brain stem function, and the presence of normal pattern VEPs suggests a normal retino-geniculo-striate pathway. These oculomotor and electrophysiological findings suggest delayed development of extra-striate cortical structures, possibly involving either an abnormality in figure-ground segregation or in attentional pathways.
Acousto-optic replication of ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Yushkov, Konstantin B.; Molchanov, Vladimir Ya.; Ovchinnikov, Andrey V.; Chefonov, Oleg V.
2017-10-01
Precisely controlled sequences of ultrashort laser pulses are required in various scientific and engineering applications. We developed a phase-only acousto-optic pulse shaping method for replication of ultrashort laser pulses in a TW laser system. A sequence of several Fourier-transform-limited pulses is generated from a single femtosecond laser pulse by means of applying a piecewise linear phase modulation over the whole emission spectrum. Analysis demonstrates that the main factor which limits maximum delay between the pulse replicas is spectral resolution of the acousto-optic dispersive delay line used for pulse shaping. In experiments with a Cr:forsterite laser system, we obtained delays from 0.3 to 3.5 ps between two replicas of 190 fs transform-limited pulses at the central wavelength of laser emission, 1230 nm.
Catalyst–substrate interaction and growth delay in vapor–liquid–solid nanowire growth
NASA Astrophysics Data System (ADS)
Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš
2018-05-01
Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.
Catalyst-substrate interaction and growth delay in vapor-liquid-solid nanowire growth.
Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš
2018-05-18
Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.
Transmission ultrasonography. [time delay spectrometry for soft tissue transmission imaging
NASA Technical Reports Server (NTRS)
Heyser, R. C.; Le Croissette, D. H.
1973-01-01
Review of the results of the application of an advanced signal-processing technique, called time delay spectrometry, in obtaining soft tissue transmission images by transmission ultrasonography, both in vivo and in vitro. The presented results include amplitude ultrasound pictures and phase ultrasound pictures obtained by this technique. While amplitude ultrasonographs of tissue are closely analogous to X-ray pictures in that differential absorption is imaged, phase ultrasonographs represent an entirely new source of information based on differential time of propagation. Thus, a new source of information is made available for detailed analysis.
Adolescent Changes in the Homeostatic and Circadian Regulation of Sleep
Hagenauer, M.H.; Perryman, J.I.; Lee, T.M.; Carskadon, M.A.
2009-01-01
Sleep deprivation among adolescents is epidemic. We argue that this sleep deprivation is due in part to pubertal changes in the homeostatic and circadian regulation of sleep. These changes promote a delayed sleep phase that is exacerbated by evening light exposure and incompatible with aspects of modern society, notably early school start times. In this review of human and animal literature, we demonstrate that delayed sleep phase during puberty is likely a common phenomenon in mammals, not specific to human adolescents, and we provide insight into the mechanisms underlying this phenomenon. PMID:19546564
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, M. M.
Optical parametric amplifiers using chirped quasi-phase-matching (QPM) gratings offer the possibility of engineering the gain and group delay spectra. We give practical formulas for the design of such amplifiers. We consider linearly chirped QPM gratings providing constant gain over a broad bandwidth, sinusoidally modulated profiles for selective frequency amplification and a pair of QPM gratings working in tandem to ensure constant gain and constant group delay at the same time across the spectrum. Finally, the analysis is carried out in the frequency domain using Wentzel–Kramers–Brillouin analysis.
Bijlenga, Denise; Van Someren, Eus J W; Gruber, Reut; Bron, Tannetje I; Kruithof, I Femke; Spanbroek, Elise C A; Kooij, J J Sandra
2013-12-01
Irregular sleep-wake patterns and delayed sleep times are common in adults with attention-deficit/hyperactivity disorder, but mechanisms underlying these problems are unknown. The present case-control study examined whether circadian abnormalities underlie these sleep problems in a naturalistic home setting. We included 12 medication-naïve patients with attention-deficit/hyperactivity disorder and delayed sleep phase syndrome, and 12 matched healthy controls. We examined associations between sleep/wake rhythm in attention-deficit/hyperactivity disorder and circadian parameters (i.e. salivary melatonin concentrations, core and skin temperatures, and activity patterns) of the patients and controls during five consecutive days and nights. Daily bedtimes were more variable within patients compared with controls (F = 8.19, P < 0.001), but melatonin profiles were equally stable within individuals. Dim-light melatonin onset was about 1.5 h later in the patient group (U = 771, Z = -4.63, P < 0.001). Patients slept about 1 h less on nights before work days compared with controls (F = 11.21, P = 0.002). The interval between dim-light melatonin onset and sleep onset was on average 1 h longer in patients compared with controls (U = 1117, Z = -2.62, P = 0.009). This interval was even longer in patients with extremely late chronotype. Melatonin, activity and body temperatures were delayed to comparable degrees in patients. Overall temperatures were lower in patients than controls. Sleep-onset difficulties correlated with greater distal-proximal temperature gradient (DPG; i.e. colder hands, r(2) = -0.32, P = 0.028) in patients. Observed day-to-day bedtime variability of individuals with attention-deficit/hyperactivity disorder and delayed sleep phase syndrome were not reflected in their melatonin profiles. Irregular sleep-wake patterns and delayed sleep in individuals with attention-deficit/hyperactivity disorder and delayed sleep phase syndrome are associated with delays and dysregulations of the core and skin temperatures. © 2013 European Sleep Research Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavanagh, Molly C.; Young, Ryan M.; Schwartz, Benjamin J.
2008-10-07
Although electron transfer reactions are among the most fundamental in chemistry, it is still not clear how to isolate the roles of the solute and solvent in moving charge between reactants in solution. In this paper, we address this question by comparing the ultrafast charge-transfer-to-solvent (CTTS) dynamics of potasside (K{sup -}) in diethyl ether (DEE) to those of sodide (Na{sup -}) in both DEE and tetrahydrofuran (THF). We find that for sodide in both DEE and THF, CTTS excitation leads to delayed ejection of a solvated electron that appears with its equilibrium absorption spectrum. This indicates that the ejected electronsmore » are localized in pre-existing solvent traps, suggesting that the structure of liquid DEE is characterized by cavities that are favorably polarized to localize an excess electron, as has been previously shown is the case for liquid THF. We also find that the geminate recombination dynamics following CTTS excitation of sodide in THF and DEE are similar, suggesting that the nature of the CTTS excited states and their coupling to the electronic states supported by the naturally occurring solvent cavities are similar in the two solvents. In contrast, the geminate recombination dynamics of potasside and sodide in DEE are different, with red-edge excitation of the K{sup -} CTTS band producing a greater number of long-lived electrons than is seen following the corresponding red-edge excitation of the Na{sup -} CTTS band. This indicates that the CTTS excited states of K{sup -} are better able to couple to the electronic states supported by the naturally occurring solvent cavities, allowing us to compare the energetic positions of the potasside and sodide ground and CTTS excited states on a common absolute scale. Finally, we also observe a strong transient absorption following the CTTS excitation of potasside in DEE that correlates well with the 766 nm position of the gas-phase potassium D-line. The data indicate that CTTS excitation of alkali metal anions essentially instantaneously produces a gas-phase-like neutral alkali metal atom, which then spontaneously undergoes partial ejection of the remaining valence electron to form a neutral alkali metal cation:solvated electron tight-contact pair.« less
Borgwardt, Mario; Wilke, Martin; Kampen, Thorsten; Mähl, Sven; Xiao, Manda; Spiccia, Leone; Lange, Kathrin M.; Kiyan, Igor Yu.; Aziz, Emad F.
2016-01-01
Interfacial charge transfer from photoexcited ruthenium-based N3 dye molecules into ZnO thin films received controversial interpretations. To identify the physical origin for the delayed electron transfer in ZnO compared to TiO2, we probe directly the electronic structure at both dye-semiconductor interfaces by applying ultrafast XUV photoemission spectroscopy. In the range of pump-probe time delays between 0.5 to 1.0 ps, the transient signal of the intermediate states was compared, revealing a distinct difference in their electron binding energies of 0.4 eV. This finding strongly indicates the nature of the charge injection at the ZnO interface associated with the formation of an interfacial electron-cation complex. It further highlights that the energetic alignment between the dye donor and semiconductor acceptor states appears to be of minor importance for the injection kinetics and that the injection efficiency is dominated by the electronic coupling. PMID:27073060
NASA Astrophysics Data System (ADS)
Bai, Yafeng; Tian, Ye; Zhang, Zhijun; Cao, Lihua; Liu, Jiansheng
2018-03-01
The combined action of corrugation and Weibel instabilities was experimentally observed in the interaction between energetic electrons and a laser-irradiated insulated target. The energetic electron beam, driven by an ultrashort laser pulse, splits into filaments with a diameter of ˜10 μm while traversing an insulated target, owing to the corrugation instability. The filaments continued to split into thinner filaments owing to the Weibel instability if a preplasma was induced by a heating beam on the rear side of the target. When the time delay between the heating beam and electron beam was larger than 1 ps, a merging of the current filaments was observed. The characteristic filamentary structures disappeared when the time delay between the two beams was larger than 3 ps. A simplified model was developed to analyze this process; the obtained results were in good agreement with the experiment. Two-dimensional particle-in-cell simulations supported our analysis and reproduced the filamentation of the electron beam inside the plasma.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-20
... Executive Order 13335 and the Virtual Lifetime Electronic Record initiative, a strategic initiative that... microbiology laboratory tests. To delay the effective date would hamper the electronic exchange of health...
Ponderomotive phase plate for transmission electron microscopes
Reed, Bryan W [Livermore, CA
2012-07-10
A ponderomotive phase plate system and method for controllably producing highly tunable phase contrast transfer functions in a transmission electron microscope (TEM) for high resolution and biological phase contrast imaging. The system and method includes a laser source and a beam transport system to produce a focused laser crossover as a phase plate, so that a ponderomotive potential of the focused laser crossover produces a scattering-angle-dependent phase shift in the electrons of the post-sample electron beam corresponding to a desired phase contrast transfer function.
A facility for gas- and condensed-phase measurements behind shock waves
NASA Astrophysics Data System (ADS)
Petersen, Eric L.; Rickard, Matthew J. A.; Crofton, Mark W.; Abbey, Erin D.; Traum, Matthew J.; Kalitan, Danielle M.
2005-09-01
A shock-tube facility consisting of two, single-pulse shock tubes for the study of fundamental processes related to gas-phase chemical kinetics and the formation and reaction of solid and liquid aerosols at elevated temperatures is described. Recent upgrades and additions include a new high-vacuum system, a new gas-handling system, a new control system and electronics, an optimized velocity-detection scheme, a computer-based data acquisition system, several optical diagnostics, and new techniques and procedures for handling experiments involving gas/powder mixtures. Test times on the order of 3 ms are possible with reflected-shock pressures up to 100 atm and temperatures greater than 4000 K. Applications for the shock-tube facility include the study of ignition delay times of fuel/oxidizer mixtures, the measurement of chemical kinetic reaction rates, the study of fundamental particle formation from the gas phase, and solid-particle vaporization, among others. The diagnostic techniques include standard differential laser absorption, FM laser absorption spectroscopy, laser extinction for particle volume fraction and size, temporally and spectrally resolved emission from gas-phase species, and a scanning mobility particle sizer for particle size distributions. Details on the set-up and operation of the shock tube and diagnostics are given, the results of a detailed uncertainty analysis on the accuracy of the test temperature inferred from the incident-shock velocity are provided, and some recent results are presented.
Two-step phase-shifting SPIDER
NASA Astrophysics Data System (ADS)
Zheng, Shuiqin; Cai, Yi; Pan, Xinjian; Zeng, Xuanke; Li, Jingzhen; Li, Ying; Zhu, Tianlong; Lin, Qinggang; Xu, Shixiang
2016-09-01
Comprehensive characterization of ultrafast optical field is critical for ultrashort pulse generation and its application. This paper combines two-step phase-shifting (TSPS) into the spectral phase interferometry for direct electric-field reconstruction (SPIDER) to improve the reconstruction of ultrafast optical-fields. This novel SPIDER can remove experimentally the dc portion occurring in traditional SPIDER method by recording two spectral interferograms with π phase-shifting. As a result, the reconstructed results are much less disturbed by the time delay between the test pulse replicas and the temporal widths of the filter window, thus more reliable. What is more, this SPIDER can work efficiently even the time delay is so small or the measured bandwidth is so narrow that strong overlap happens between the dc and ac portions, which allows it to be able to characterize the test pulses with complicated temporal/spectral structures or narrow bandwidths.