Sample records for electronic pressure algometer

  1. The effectiveness of manual versus algometer pressure release techniques for treating active myofascial trigger points of the upper trapezius.

    PubMed

    Abu Taleb, Walaa; Rehan Youssef, Aliaa; Saleh, Amir

    2016-10-01

    Manual pressure release (MPR) is a popular treatment of trigger points. Yet, treatment response may be influenced by inconsistent application of pressure. Further, it may contribute to increased risk of work-related musculoskeletal disorders of the wrist and hand in therapists. Therefore, this study aimed at introducing a novel method to apply pressure using the algometer and to compare its effectiveness to MPR. Forty-five volunteers with active trigger points of the upper trapezius received algometer pressure release (APR), MPR, or sham ultrasound (US). Pain pressure threshold (PPT) and contralateral active and passive neck side-bending ranges were assessed at baseline and immediately after a single session. Results showed no significant differences in post-treatment PPT between the study groups (p > 0.05). The APR group showed a significant increase in passive side-bending range compared with the two other groups, whereas active range improved in the APR compared with the US group (p < 0.05). Our results show that using algometer to apply pressure release to upper trapezius trigger points is more effective compared with manual release and sham US. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Effects of Transcranial Direct Current Stimulation (tDCS) on Pain Distress Tolerance: A Preliminary Study.

    PubMed

    Mariano, Timothy Y; van't Wout, Mascha; Jacobson, Benjamin L; Garnaat, Sarah L; Kirschner, Jason L; Rasmussen, Steven A; Greenberg, Benjamin D

    2015-08-01

    Pain remains a critical medical challenge. Current treatments target nociception without addressing affective symptoms. Medically intractable pain is sometimes treated with cingulotomy or deep brain stimulation to increase tolerance of pain-related distress. Transcranial direct current stimulation (tDCS) may noninvasively modulate cortical areas related to sensation and pain representations. The present study aimed to test the hypothesis that cathodal ("inhibitory") stimulation targeting left dorsal anterior cingulate cortex (dACC) would increase tolerance to distress from acute painful stimuli vs anodal stimulation. Forty healthy volunteers received both anodal and cathodal stimulation. During stimulation, we measured pain distress tolerance with three tasks: pressure algometer, cold pressor, and breath holding. We measured pain intensity with a visual-analog scale before and after each task. Mixed ANOVA revealed that mean cold pressor tolerance tended to be higher with cathodal vs anodal stimulation (P = 0.055) for participants self-completing the task. Pressure algometer (P = 0.81) and breath holding tolerance (P = 0.19) did not significantly differ. The pressure algometer exhibited a statistically significant order effect irrespective of stimulation polarity (all P < 0.008). Pain intensity ratings increased acutely after cold pressor and pressure algometer tasks (both P < 0.01), but not after breath holding (P = 0.099). Cold pressor pain ratings tended to rise less after cathodal vs anodal tDCS (P = 0.072). Although our primary results were nonsignificant, there is a preliminary suggestion that cathodal tDCS targeting left dACC may increase pain distress tolerance to cold pressor. Pressure algometer results are consistent with task-related sensitization. Future studies are needed to refine this novel approach for pain neuromodulation. Wiley Periodicals, Inc.

  3. An investigation of mechanical nociceptive thresholds in dogs with hind limb joint pain compared to healthy control dogs.

    PubMed

    Harris, L K; Whay, H R; Murrell, J C

    2018-04-01

    This study investigated the effects of osteoarthritis (OA) on somatosensory processing in dogs using mechanical threshold testing. A pressure algometer was used to measure mechanical thresholds in 27 dogs with presumed hind limb osteoarthritis and 28 healthy dogs. Mechanical thresholds were measured at the stifles, radii and sternum, and were correlated with scores from an owner questionnaire and a clinical checklist, a scoring system that quantified clinical signs of osteoarthritis. The effects of age and bodyweight on mechanical thresholds were also investigated. Multiple regression models indicated that, when bodyweight was taken into account, dogs with presumed osteoarthritis had lower mechanical thresholds at the stifles than control dogs, but not at other sites. Non-parametric correlations showed that clinical checklist scores and questionnaire scores were negatively correlated with mechanical thresholds at the stifles. The results suggest that mechanical threshold testing using a pressure algometer can detect primary, and possibly secondary, hyperalgesia in dogs with presumed osteoarthritis. This suggests that the mechanical threshold testing protocol used in this study might facilitate assessment of somatosensory changes associated with disease progression or response to treatment. Copyright © 2017. Published by Elsevier Ltd.

  4. Usefulness of tenderness to characterise fibromyalgia severity in women.

    PubMed

    Aparicio, V A; Carbonell-Baeza, A; Ortega, F B; Estevez, F; Ruiz, J R; Delgado-Fernández, M

    2011-01-01

    To investigate the usefulness of tenderness (tender points count (TPC) and algometer score) to characterise fibromyalgia (FM) severity and symptomatology in women. The study sample comprised 174 women aged 51±7 years. We ossesse tenderness using pressure algometry; quality of life by means of the Short-Form 36 Health Survey (SF-36) and the Hospital Anxiety and Depression Scale (HADS). We used the FM impact questionnaire (FIQ) to assess FM severity and symptomatology. Patients were categorised according to three FIQ-derived categories: FIQ<70 vs. ≥70; FIQ<59 vs. ≥59; and FM-type I and II. TPC was significantly higher in the group of patients with FIQ≥59 (16.9±2 vs. 15.6±4, p=0.02), whereas no differences between groups were observed according to FIQ≥70 (17.0±2 vs. 16.2±3, p=0.12) or FM type (16.8±3 for type II vs. 15.9±4 for type I, p=0.13). We observed a significant association between TPC and FIQ-job difficulty, pain, morning tiredness and stiffness dimensions (all p<0.05), yet it was not correlated with total score of FIQ, FIQ-anxiety, fatigue and depression dimensions (all p>0.05). Algometer score was lower in the FIQ≥70 (45.7±12 vs. 51.1±14, p=0.05) and FIQ≥59 (46.7±13 vs. 52.7±14, p=0.05) groups, and there were no difference between FM types (48.7±13 vs. 49.5±14 for type II and I respectively, p=0.81). Algometer score was not associated with total score of FIQ or FIQ dimensions (all p≥0.1). Widespread pain and pain hypersensitivity, as measured by TPC and algometer score, do not seem to be useful to characterise FM severity and symptomatology (measured by FIQ) in women.

  5. Noxious inhibition of temporal summation is impaired in chronic tension-type headache.

    PubMed

    Cathcart, Stuart; Winefield, Anthony H; Lushington, Kurt; Rolan, Paul

    2010-03-01

    To examine effects of stress on noxious inhibition and temporal summation (TS) in tension-type headache. Stress is the most commonly reported trigger of a chronic tension-type headache (CTH) episode; however, the mechanisms underlying this are unclear. Stress affects pain processing throughout the central nervous system, including, potentially, mechanisms of TS and diffuse noxious inhibitory controls (DNIC), both of which may be abnormal in CTH sufferers (CTH-S). No studies have examined TS of pressure pain or DNIC of TS in CTH-S to date. Similarly, effects of stress on TS or DNIC of TS have not been reported in healthy subjects or CTH-S to date. The present study measured TS and DNIC of TS in CTH-S and healthy controls (CNT) exposed to an hour-long stressful mental task, and in CTH-S exposed to an hour-long neutral condition. TS was elicited at finger and shoulder via 10 pulses from a pressure algometer, applied before and during stimulation from an occlusion cuff at painful intensity. Algometer pain ratings increased more in the CTH compared with the CNT group, and were inhibited during occlusion cuff more in the CNT compared with CTH groups. Task effects on TS or DNIC were not significant. The results indicate increased TS to pressure pain and impaired DNIC of TS in CTH-S. Stress does not appear to aggravate abnormal TS or DNIC mechanisms in CTH-S.

  6. Pain and functional capacity in female fibromyalgia patients.

    PubMed

    Carbonell-Baeza, Ana; Aparicio, Virginia A; Sjöström, Michael; Ruiz, Jonatan R; Delgado-Fernández, Manuel

    2011-11-01

    To examine the association between pain and functional capacity levels. [corrected] Cross-sectional study. University of Granada. One hundred twenty-three women with fibromyalgia (51.7 ± 7.2 years). We measured weight and height, and body mass index (BMI) was calculated. We assessed tender points by pressure pain and functional capacity by means of the 30-second chair stand, handgrip strength, chair sit and reach, back scratch, blind flamingo, 8-ft up and go and 6-minute walk tests. We observed an association of tender points count with the chair stand and 6-minute walk tests (r = -0.273, P = 0.004 and r = -0.183, P = 0.046, respectively). These associations became nonsignificant once the analyses were adjusted by weight or BMI. We observed an association of algometer score with the back scratch, chair stand, and 6-minute walk tests (r = 0.238, P = 0.009; r = 0.363, P < 0.001; and r = 0.186, P = 0.043, respectively), which remained after adjusting for weight or BMI, except the association between algometer score and the 6-minute walk test that became nonsignificant once the analyses were adjusted by weight. Prevalence of overweight and obesity was 39.2 and 33.3%, respectively. There is an inverse association of tender points count with the chair stand and distance walked in the 6-minute walk tests, and a positive association of algometer score with the chair stand, distance walked in the 6-minute walk and back scratch tests, yet, weight status seems to play a role in these associations. Wiley Periodicals, Inc.

  7. Reliability, standard error, and minimum detectable change of clinical pressure pain threshold testing in people with and without acute neck pain.

    PubMed

    Walton, David M; Macdermid, Joy C; Nielson, Warren; Teasell, Robert W; Chiasson, Marco; Brown, Lauren

    2011-09-01

    Clinical measurement. To evaluate the intrarater, interrater, and test-retest reliability of an accessible digital algometer, and to determine the minimum detectable change in normal healthy individuals and a clinical population with neck pain. Pressure pain threshold testing may be a valuable assessment and prognostic indicator for people with neck pain. To date, most of this research has been completed using algometers that are too resource intensive for routine clinical use. Novice raters (physiotherapy students or clinical physiotherapists) were trained to perform algometry testing over 2 clinically relevant sites: the angle of the upper trapezius and the belly of the tibialis anterior. A convenience sample of normal healthy individuals and a clinical sample of people with neck pain were tested by 2 different raters (all participants) and on 2 different days (healthy participants only). Intraclass correlation coefficient (ICC), standard error of measurement, and minimum detectable change were calculated. A total of 60 healthy volunteers and 40 people with neck pain were recruited. Intrarater reliability was almost perfect (ICC = 0.94-0.97), interrater reliability was substantial to near perfect (ICC = 0.79-0.90), and test-retest reliability was substantial (ICC = 0.76-0.79). Smaller change was detectable in the trapezius compared to the tibialis anterior. This study provides evidence that novice raters can perform digital algometry with adequate reliability for research and clinical use in people with and without neck pain.

  8. Study protocol of hypoalgesic effects of low frequency and burst-modulated alternating currents on healthy individuals.

    PubMed

    Rampazo da Silva, Érika Patrícia; da Silva, Viviane Ribeiro; Bernardes, Anabelly Sato; Matuzawa, Fabio Massao; Liebano, Richard Eloin

    2018-03-01

    The aim of the study will be to compare different types of analgesic electrical currents in relation to the pressure pain threshold and sensory comfort in healthy individuals. A total of 100 individuals will be randomly assigned to four groups: transcutaneous electrical nerve stimulation, interferential current, Aussie current or placebo. The electrical stimulation will be administered with a strong level for 30 min and to the placebo group, the electrodes will be positioned while the equipment will remain switched off. The pressure pain threshold and sensory comfort will be measured with an algometer and the visual analogue scale, respectively. The level of significance will be p < 0.05. NCT01950728 (clinical trials).

  9. Usefulness of posture training for patients with temporomandibular disorders.

    PubMed

    Wright, E F; Domenech, M A; Fischer, J R

    2000-02-01

    Many practitioners have found that posture training has a positive impact on temporomandibular, or TMD, symptoms. The authors conducted a study to evaluate its effectiveness. Sixty patients with TMD and a primary muscle disorder were randomized into two groups: one group received posture training and TMD self-management instructions while the control group received TMD self-management instructions only. Four weeks after the study began, the authors reexamined the subjects for changes in symptoms, pain-free opening and pressure algometer pain thresholds. In addition, pretreatment and posttreatment posture measurements were recorded for subjects in the treatment group. Statistically significant improvement was demonstrated by the modified symptom severity index, maximum pain-free opening and pressure algometer threshold measurements, as well as by the subjects' perceived TMD and neck symptoms. Subjects in the treatment group reported having experienced a mean reduction in TMD and neck symptoms of 41.9 and 38.2 percent, respectively, while subjects in the control group reported a mean reduction in these symptoms of 8.1 and 9.3 percent. Within the treatment group, the authors found significant correlations between improvements in TMD symptoms and improvements in neck symptoms (P < .005) as well as between TMD symptom improvement and the difference between head and shoulder posture measurements at the outset of treatment (P < .05). Posture training and TMD self-management instructions are significantly more effective than TMD self-management instructions alone for patients with TMD who have a primary muscle disorder. Patients with TMD who hold their heads farther forward relative to the shoulders have a high probability of experiencing symptom improvement as a result of posture training and being provided with selfmanagement instructions.

  10. Effects of manual lymph drainage on cardiac autonomic tone in healthy subjects.

    PubMed

    Kim, Sung-Joong; Kwon, Oh-Yun; Yi, Chung-Hwi

    2009-01-01

    This study was designed to investigate the effects of manual lymph drainage on the cardiac autonomic tone. Thirty-two healthy male subjects were randomly assigned to manual lymph drainage (MLD) (experimental) and rest (control) groups. Electrocardiogram (ECG) parameters were recorded with bipolar electrocardiography using standard limb lead positions. The pressure-pain threshold (PPT) was quantitatively measured using an algometer. Heart rate variability differed significantly between the experimental and control groups (p < 0.05), but the PPT in the upper trapezius muscle did not (p > 0.05). These findings indicate that the application of MLD was effective in reducing the activity of the sympathetic nervous system.

  11. Development of the quantitative indicator of abdominal examination for clinical application: a pilot study.

    PubMed

    Ko, Seok-Jae; Lee, Hyunju; Kim, Seul-Ki; Kim, Minji; Kim, Jinsung; Lee, Beom-Joon; Park, Jae-Woo

    2015-06-01

    Abdominal examination (AE) is the evaluation of the status of illness by examining the abdominal region in traditional Korean medicine (TKM). Although AE is currently considered an important diagnostic method in TKM, owing to its clinical usage, no studies have been conducted to objectively assess its accuracy and develop standards. Twelve healthy subjects and 21 patients with functional dyspepsia have participated in this study. The patients were classified into epigastric discomfort group (n=11) and epigastric discomfort with tenderness group (n=10) according to the clinical diagnosis by AE. After evaluating the subjective epigastric discomfort in all subjects, two independent clinicians measured the pressure pain threshold (PPT) two times at an acupoint (CV 14) using an algometer. We then assessed the interrater and intrarater reliability of the PPT measurements and evaluated the validity (sensitivity and specificity) via a receiver operating characteristic plot and optimal cutoff value. The results of the interrater reliability test showed a very strong correlation (correlation coefficient range: 0.82-0.91). The results of intrarater reliability test also showed a higher than average correlation (intraclass correlation coefficient: 0.58-0.70). The optimal cutoff value of PPT in the epigastric area was 1.8 kg/cm(2) with 100% sensitivity and 54.54% specificity. PPT measurements in the epigastric area with an algometer demonstrated high reliability and validity for AE, which makes this approach potentially useful in clinical applications as a new quantitative measurement in TKM.

  12. The effects of aerobic exercise and strengthening exercise on pain pressure thresholds.

    PubMed

    Lee, Han Suk

    2014-07-01

    [Purpose] We assessed the effects of aerobic exercise and strengthening exercise on pain pressure thresholds (PPTs) over time. [Subjects and Methods] Fifteen healthy participants were recruited and randomly divided into 3 groups: aerobic exercise, strengthening exercise, and control. The subjects in the aerobic group walked on a treadmill for 40 min at 6.5 km/h. The subjects in the strength group performed circuit training that included bench press, lat pull down, biceps curl, triceps extension, and shoulder press based on the perceived exertion for 40 min. The subjects in the control group rested without any exercise in a quiet room for 40 min. The PPTs of 5 potential muscle trigger points before exercise, and immediately after 10 and 40 min of exercise or rest were measured using an electronic algometer (JTECH Medical, USA). The Friedman's, Kruskal-Wallis, and Mann-Whitney tests were performed using SPSS 18.0 (IBM, Korea). [Results] The PPTs of all subjects decreased after 10 min of exercise, but the difference was not statistically significant. The PPTs of the control group decreased after 40 min. Furthermore, the PPTs of 3 muscles increased after 40 min of aerobic exercise and of 6 muscles after 40 min of strengthening exercise. No significant difference in PPTs was noted among the groups. [Conclusion] The results show that 40 min is a more appropriate exercise time, although the efficacy of controlling pain did not differ between strengthening exercise and aerobic exercise.

  13. Temperament as a modulating factor of pain sensitivity in combat sport athletes.

    PubMed

    Leźnicka, Katarzyna; Starkowska, Anna; Tomczak, Maciej; Cięszczyk, Paweł; Białecka, Monika; Ligocka, Maria; Żmijewski, Piotr; Pawlak, Maciej

    2017-10-15

    The aim of this study was to characterise the temperament of combat athletes in comparison to that of individuals who do not practise any sports with regard to pain sensitivity measured with the cold pressor test (CPT) and pressure pain threshold (PPT). The study involved 284 healthy men, aged 18 to 43years. The first group consisted of 198 combat athletes, including boxing (n=19), mixed martial arts (MMA) (n=97) and karate (n=82), aged from 18 to 43years. The control group consisted of 86 subjects between the ages of 18 and 26years, academic students not practising any sport professionally. Pain threshold and pain tolerance were evaluated using the CPT and a pressure algometer. Temperament was measured with the Formal Characteristics of Behaviour - Temperament Inventory (FCB-TI). The contact athletes showed much higher tolerance to pain than the control group using both tools: CPT (p=0.007) and PPT (p<0.001). In athletes, but not in controls, relationships were noted between BMI and endurance (r=0.20; p=0.004), BMI and activity (r=-0.283; p<0.001), BMI and pain threshold (r=0.15; p<0.05), and BMI and pain tolerance (r=0.30; p<0.001), when measured by the algometer - this necessitating adjustment for further analysis. The athletes and students in the study groups differed significantly with regard to intensity of four temperamental traits, but after BMI adjustments only group differences in Preservation, Sensory sensitivity and Emotional reactivity remained significant'. These differences indicate individual differences in perception and reaction to external stimuli. Significantly higher pain tolerance (CPT and PPT) in the athletes studied was related to specific psychological features. The obtained results of temperamental characteristics may indicate higher resilience of the nervous system in combat athletes in comparison to non-athletes. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Multiple active myofascial trigger points and pressure pain sensitivity maps in the temporalis muscle are related in women with chronic tension type headache.

    PubMed

    Fernández-de-las-Peñas, César; Caminero, Ana B; Madeleine, Pascal; Guillem-Mesado, Amparo; Ge, Hong-You; Arendt-Nielsen, Lars; Pareja, Juan A

    2009-01-01

    To describe the common locations of active trigger points (TrPs) in the temporalis muscle and their referred pain patterns in chronic tension type headache (CTTH), and to determine if pressure sensitivity maps of this muscle can be used to describe the spatial distribution of active TrPs. Forty women with CTTH were included. An electronic pressure algometer was used to assess pressure pain thresholds (PPT) from 9 points over each temporalis muscle: 3 points in the anterior, medial and posterior part, respectively. Both muscles were examined for the presence of active TrPs over each of the 9 points. The referred pain pattern of each active TrP was assessed. Two-way analysis of variance detected significant differences in mean PPT levels between the measurement points (F=30.3; P<0.001), but not between sides (F=2.1; P=0.2). PPT scores decreased from the posterior to the anterior column (P<0.001). No differences were found in the number of active TrPs (F=0.3; P=0.9) between the dominant side the nondominant side. Significant differences were found in the distribution of the active TrPs (chi2=12.2; P<0.001): active TrPs were mostly found in the anterior column and in the middle of the muscle belly. The analysis of variance did not detect significant differences in the referred pain pattern between active TrPs (F=1.1, P=0.4). The topographical pressure pain sensitivity maps showed the distinct distribution of the TrPs indicated by locations with low PPTs. Multiple active TrPs in the temporalis muscle were found, particularly in the anterior column and in the middle of the muscle belly. Bilateral posterior to anterior decreased distribution of PPTs in the temporalis muscle in women with CTTH was found. The locations of active TrPs in the temporalis muscle corresponded well to the muscle areas with lower PPT, supporting the relationship between multiple active muscle TrPs and topographical pressure sensitivity maps in the temporalis muscle in women with CTTH.

  15. Percutaneous Soft Tissue Release for Treating Chronic Recurrent Myofascial Pain Associated with Lateral Epicondylitis: 6 Case Studies

    PubMed Central

    Lin, Ming-Ta; Chou, Li-Wei; Chen, Hsin-Shui; Kao, Mu-Jung

    2012-01-01

    Objective. The purpose of this pilot study is to investigate the effectiveness of the percutaneous soft tissue release for the treatment of recurrent myofascial pain in the forearm due to recurrent lateral epicondylitis. Methods. Six patients with chronic recurrent pain in the forearm with myofascial trigger points (MTrPs) due to chronic lateral epicondylitis were treated with percutaneous soft tissue release of Lin's technique. Pain intensity (measured with a numerical pain rating scale), pressure pain threshold (measured with a pressure algometer), and grasping strength (measured with a hand dynamometer) were assessed before, immediately after, and 3 months and 12 months after the treatment. Results. For every individual case, the pain intensity was significantly reduced (P < 0.01) and the pressure pain threshold and the grasping strength were significantly increased (P < 0.01) immediately after the treatment. This significant effectiveness lasts for at least one year. Conclusions. It is suggested that percutaneous soft tissue release can be used for treating chronic recurrent lateral epicondylitis to avoid recurrence, if other treatment, such as oral anti-inflammatory medicine, physical therapy, or local steroid injection, cannot control the recurrent pain. PMID:23243428

  16. Influence of different frequencies of transcutaneous electrical nerve stimulation on the threshold and pain intensity in young subjects

    PubMed Central

    Gomes, Adriana de Oliveira; Silvestre, Ana Caroline; da Silva, Cristina Ferreira; Gomes, Mariany Ribeiro; Bonfleur, Maria Lúcia; Bertolini, Gladson Ricardo Flor

    2014-01-01

    Objective To investigate the effects of different transcutaneous electrical nerve stimulation frequencies in nociception front of a pressure pain threshold and cold in healthy individuals. Methods Twenty healthy subjects were divided into four groups, all of which have gone through all forms of electrical stimulation at different weeks. Assessments were pre and post-therapy, 20 and 60 minutes after stimulation. To evaluate the pressure pain threshold, an algometer was used with one tapered tip, pressing the hypothenar region until voluntary report the word “pain”. Cold pain intensity was assessed by immersion in water at 5°C for 30 seconds; at the end, the subject was asked to quantify the pain intensity on a Visual Analog Scale for Pain. For electrical stimulation, two electrodes were used near the elbow, for 20 minutes, with an intensity strong, but not painful. The frequency was in accordance with the group: 0Hz (placebo); 7Hz; 100Hz; and 255Hz. Results Both for the assessment of pressure pain threshold as the cold pain intensity, there was no significant difference (p>0.05). Conclusion We conclude that the use of transcutaneous electrical nerve stimulation on dermatomes C6 to C8 produced no significant change in pressure pain threshold or cold discomfort. PMID:25295453

  17. Association of serum total antioxidant capacity and total oxidant status with pain perception in patients with myofacial pain dysfunction.

    PubMed

    Etoz, Osman A; Ataoglu, Hanife; Erel, Ozcan; Celik, Hakim; Herken, Emine Nur; Bayazit, Yildirim Ahmet

    2009-01-01

    We aimed to find out the association of total antioxidant capacity (TAC) and total oxidant status (TOS) with generalized pressure pain thresholds (PPT) of patients with myofacial pain dysfunction (MPD). PPT scores of patients with MPD (n = 37) and healthy individuals (n = 43) were measured on the hypothenar region of the hand using a mechanical algometer. Serum samples were collected and TAC and TOS were measured by novel methods. The TAC of patients was significantly lower than that of the control subjects. The difference between the TOS measurements of patients and control subjects was not significant. The PPT scores of the patients were significantly lower than that of control subjects. There may be an association between serum antioxidant capacity and MPD. Low serum TAC might also be related with pain perception.

  18. Thresholds and tolerance of physical pain among young adults who self-injure

    PubMed Central

    McCoy, Katrina; Fremouw, William; McNeil, Daniel W

    2010-01-01

    Prevalence rates of nonsuicidal self-injury among college students range from 17% to 38%. Research indicates that individuals with borderline personality disorder who self-injure sometimes report an absence of pain during self-injury. Furthermore, self-injury in the absence of pain has been associated with more frequent suicide attempts. The present study examined pain thresholds and tolerance among 44 college students (11 who engaged in self-injury and 33 who did not). Pain thresholds and tolerance were measured using an algometer pressure device that was used to produce pain in previous laboratory research. Participants who engaged in self-injury had a higher pain tolerance than those who did not. In addition, participants who engaged in self-injury rated the pain as less intense than participants who did not. ANCOVAs revealed that depression was associated with pain rating and pain tolerance. PMID:21165371

  19. Randall Selitto pressure algometry for assessment of bone-related pain in rats.

    PubMed

    Falk, S; Ipsen, D H; Appel, C K; Ugarak, A; Durup, D; Dickenson, A H; Heegaard, A M

    2015-03-01

    Deep pain is neglected compared with cutaneous sources. Pressure algometry has been validated in the clinic for assessment of bone-related pain in humans. In animal models of bone-related pain, we have validated the Randall Selitto behavioural test for assessment of acute and pathological bone pain and compared the outcome with more traditional pain-related behaviour measures. Randall Selitto pressure algometry was performed over the anteromedial part of the tibia in naïve rats, sham-operated rats, and rats inoculated with MRMT-1 carcinoma cells in the left tibia, and the effect of morphine was investigated. Randall Selitto measures of cancer-induced bone pain were supplemented by von Frey testing, weight-bearing and limb use test. Contribution of cutaneous nociception to Randall Selitto measures were examined by local anaesthesia. Randall Selitto pressure algometry over the tibia resulted in reproducible withdrawal thresholds, which were dose-dependently increased by morphine. Cutaneous nociception did not contribute to Randall Selitto measures. In cancer-bearing animals, compared with sham, significant differences in pain-related behaviours were demonstrated by the Randall Selitto test on day 17 and 21 post-surgery. A difference was also demonstrated by von Frey testing, weight-bearing and limb use tests. Our results indicate that pressure applied by the Randall Selitto algometer on a region, where the bone is close to the skin, may offer a way to measure bone-related pain in animal models and could provide a supplement to the traditional behavioural tests and a means to study deep pain. © 2014 European Pain Federation - EFIC®

  20. Effects of stabilization exercises with a Swiss ball on neck-shoulder pain and mobility of adults with prolonged exposure to VDTs.

    PubMed

    Ahn, Jeoung-Ah; Kim, Joong-Hwi; Bendik, Anthony L; Shin, Ju-Yong

    2015-04-01

    [Purpose] This study compared the effects on neck-shoulder pain and mobility of strengthening exercises for the neck flexors and scapular retractors performed on a Swiss ball and a mat. [Subjects] Twenty student volunteers were the subjects. [Methods] The students were randomly assigned to two groups: Mat group (n=10), and Swiss ball group (n=10). At pre-test, post-test, and 1-week follow-up pain was assessed using the visual analogue scale (VAS), the pain pressure threshold (PPT) of the shoulder was measured with an algometer, and neck mobility was measured with a Zebris. [Results] The data analysis revealed that there was a significant decrease in pain and significant increase in neck flexion in both groups, and the Swiss ball group showed better results. [Conclusion] Strengthening the neck flexors and scapular retractors for stabilization of the neck using exercises on a Swiss ball was more effective at reducing the pain and stabilizing the neck than mat exercises.

  1. Feasibility and repeatability of cold and mechanical quantitative sensory testing in normal dogs

    PubMed Central

    Briley, Jessica D.; Williams, Morika D.; Freire, Mila; Griffith, Emily H.; Lascelles, B. Duncan X.

    2015-01-01

    Feasibility and inter-session repeatability of cold and mechanical quantitative sensory testing (QST) were assessed in 24 normal dogs. Cold thermal latencies were evaluated using a thermal probe (0 °C) applied to three pelvic limb sites. Mechanical thresholds were measured using an electronic von Frey anesthesiometer (EVF) and a blunt-probed pressure algometer (PA) applied to the dorsal aspect of the metatarsus. All QST trials were performed with dogs in lateral recumbency. Collection of cold QST data was easy (feasible) in 19/24 (79%) dogs. However, only 18.4%, 18.9% and 13.2% of cold QST trials elicited a response at the medial tibia, third digital pad and plantar metatarsal regions, respectively. Collection of mechanical QST data was easy (feasible) in 20/24 (83%) dogs for both EVF and PA. At consecutive sampling times, approximately 2 weeks apart, the average EVF sensory thresholds were 414 ± 186 g and 379 ± 166 g, respectively, and the average PA sensory thresholds were 1089 ± 414 g and 1028 ± 331 g, respectively. There was no significant difference in inter-session or inter-limb threshold values for either mechanical QST device. The cold QST protocol in this study was achievable, but did not provide consistently quantifiable results. Both mechanical QST devices tested provided repeatable, reliable sensory threshold measurements in normal, client-owned dogs. These findings contribute to the validation of the EVF and PA as tools to obtain repeated QST data over time in dogs to assess somatosensory processing changes. PMID:24268475

  2. The effectiveness of Kinesio Taping on pain and disability in cervical myofascial pain syndrome.

    PubMed

    Ay, Saime; Konak, Hatice Ecem; Evcik, Deniz; Kibar, Sibel

    The aim of this study was to investigate the effectiveness of Kinesio Taping and sham Kinesio Taping on pain, pressure pain threshold, cervical range of motion, and disability in cervical myofascial pain syndrome patients (MPS). This study was designed as a randomized, double-blind placebo controlled study. Sixty-one patients with MPS were randomly assigned into two groups. Group 1 (n=31) was treated with Kinesio Taping and group 2 (n=30) was treated sham taping five times by intervals of 3 days for 15 days. Additionally, all patients were given neck exercise program. Patients were evaluated according to pain, pressure pain threshold, cervical range of motion and disability. Pain was assessed by using Visual Analog Scale, pressure pain threshold was measured by using an algometer, and active cervical range of motion was measured by using goniometry. Disability was assessed with the neck pain disability index disability. Measurements were taken before and after the treatment. At the end of the therapy, there were statistically significant improvements on pain, pressure pain threshold, cervical range of motion, and disability (p<0.05) in both groups. Also there was a statistical difference between the groups regarding pain, pressure pain threshold, cervical flexion-extension (p<0.05); except cervical rotation, cervical lateral flexion and disability (p>0.05). This study shows that Kinesio Taping leads to improvements on pain, pressure pain threshold and cervical range of motion, but not disability in short time. Therefore, Kinesio Taping can be used as an alternative therapy method in the treatment of patients with MPS. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.

  3. Neuro Emotional Technique for the treatment of trigger point sensitivity in chronic neck pain sufferers: A controlled clinical trial

    PubMed Central

    Bablis, Peter; Pollard, Henry; Bonello, Rod

    2008-01-01

    Background Trigger points have been shown to be active in many myofascial pain syndromes. Treatment of trigger point pain and dysfunction may be explained through the mechanisms of central and peripheral paradigms. This study aimed to investigate whether the mind/body treatment of Neuro Emotional Technique (NET) could significantly relieve pain sensitivity of trigger points presenting in a cohort of chronic neck pain sufferers. Methods Sixty participants presenting to a private chiropractic clinic with chronic cervical pain as their primary complaint were sequentially allocated into treatment and control groups. Participants in the treatment group received a short course of Neuro Emotional Technique that consists of muscle testing, general semantics and Traditional Chinese Medicine. The control group received a sham NET protocol. Outcome measurements included pain assessment utilizing a visual analog scale and a pressure gauge algometer. Pain sensitivity was measured at four trigger point locations: suboccipital region (S); levator scapulae region (LS); sternocleidomastoid region (SCM) and temporomandibular region (TMJ). For each outcome measurement and each trigger point, we calculated the change in measurement between pre- and post- treatment. We then examined the relationships between these measurement changes and six independent variables (i.e. treatment group and the above five additional participant variables) using forward stepwise General Linear Model. Results The visual analog scale (0 to 10) had an improvement of 7.6 at S, 7.2 at LS, 7.5 at SCM and 7.1 at the TMJ in the treatment group compared with no improvement of at S, and an improvement of 0.04 at LS, 0.1 at SCM and 0.1 at the TMJ point in the control group, (P < 0.001). Conclusion After a short course of NET treatment, measurements of visual analog scale and pressure algometer recordings of four trigger point locations in a cohort of chronic neck pain sufferers were significantly improved when compared to a control group which received a sham protocol of NET. Chronic neck pain sufferers may benefit from NET treatment in the relief of trigger point sensitivity. Further research including long-term randomised controlled trials for the effect of NET on chronic neck pain, and other chronic pain syndromes are recommended. Trial Registration This trial has been registered and allocated the Australian Clinical Trials Registry (ACTR) number ACTRN012607000358448. The ACTR has met the requirements of the ICMJE's trials registration policy and is an ICMJE acceptable registry. PMID:18495042

  4. The effects of spinal support device on pain and extensibility of the hamstrings in patients with non-specific low back pain.

    PubMed

    Jeon, Eun Tae; Jung, Jin-Hwa; Moon, Jong Hoon; Jung, Kyoung-Sim; Won, Young Sik; Kim, Sung-Jin; Hahm, Suk-Chan; Cho, Hwi-Young

    2017-08-01

    [Purpose] The objective of this study was to investigate the effects of spinal support device (SSD) on pain and hamstring extensibility in patients with non-specific low back pain (NSLBP). [Subjects and Methods] 20 patients with NSLBP were recruited and randomly assigned to either the SSD group or the control group. In the SSD group, SSD was applied; in the control group, bed rest in supine position was performed. Both groups underwent treatment 20 min/day, 3 times a week, for a duration of 4 weeks. To assess the hamstring extensibility, sit and reach test (SRT) was performed. To assess pain pressure threshold (PPT) of the sacroiliac joint, a pressure algometer was used. Visual analog scale (VAS) was used to quantify pain. [Results] The SSD group showed a significant improvement in sacroiliac joint pain with increased VAS, and the control group showed a significantly increased VAS after intervention. In the SSD group, VAS was significantly increased, but SRT was not changed compared with the control group. [Conclusion] These results demonstrated that an application of SSD effectively attenuates low back pain. Therefore, SSD may be a suitable intervention for pain control in patients with NSLBP.

  5. Effect of painless diabetic neuropathy on pressure pain hypersensitivity (hyperalgesia) after acute foot trauma

    PubMed Central

    Wienemann, Tobias; Chantelau, Ernst A.; Koller, Armin

    2014-01-01

    Introduction and objective Acute injury transiently lowers local mechanical pain thresholds at a limb. To elucidate the impact of painless (diabetic) neuropathy on this post-traumatic hyperalgesia, pressure pain perception thresholds after a skeletal foot trauma were studied in consecutive persons without and with neuropathy (i.e. history of foot ulcer or Charcot arthropathy). Design and methods A case–control study was done on 25 unselected clinical routine patients with acute unilateral foot trauma (cases: elective bone surgery; controls: sprain, toe fracture). Cases were 12 patients (11 diabetic subjects) with severe painless neuropathy and chronic foot pathology. Controls were 13 non-neuropathic persons. Over 1 week after the trauma, cutaneous pressure pain perception threshold (CPPPT) and deep pressure pain perception threshold (DPPPT) were measured repeatedly, adjacent to the injury and at the opposite foot (pinprick stimulators, Algometer II®). Results In the control group, post-traumatic DPPPT (but not CPPPT) at the injured foot was reduced by about 15–25%. In the case group, pre- and post-operative CPPPT and DPPPT were supranormal. Although DPPPT fell post-operatively by about 15–20%, it remained always higher than the post-traumatic DPPPT in the control group: over musculus abductor hallucis 615 kPa (kilopascal) versus 422 kPa, and over metatarsophalangeal joint 518 kPa versus 375 kPa (medians; case vs. control group); CPPPT did not decrease post-operatively. Conclusion Physiological nociception and post-traumatic hyperalgesia to pressure are diminished at the foot with severe painless (diabetic) neuropathy. A degree of post-traumatic hypersensitivity required to ‘pull away’ from any one, even innocuous, mechanical impact in order to avoid additional damage is, therefore, lacking. PMID:25397867

  6. Causes of Hand Tingling in Visual Display Terminal Workers

    PubMed Central

    Oh, Sein; Kim, Hyung Kuk; Kwak, Jehwan; Kim, Taikon; Jang, Seong Ho; Lee, Kyu Hoon; Kim, Mi Jung; Park, Si-Bog

    2013-01-01

    Objective To offer the basic data about the causes and distribution of hand tingling, symptoms and physical findings, and pressure pain threshold in desk workers. Methods Five physiatrists participated in the screening test composed of history and physical examination. A total of 876 desk workers were evaluated and of them 37 subjects with hand tingling were selected. For further analyzing, detailed history taking and meticulous physical examination were taken. Pressure pain threshold (PPT) at the infraspinatus, upper trapezius, flexor carpi radialis, rhomboideus, and flexor pollicis longus were examined. PPT measurements were repeated three times with two minute intervals by a pressure algometer. Electrodiagnostic study was done to detect potential neurologic abnormalities. Results The causes of hand tingling in order of frequency were: myofascial pain syndrome, 68%; cervical radiculopathy, 27%; rotator cuff syndrome, 11%; tenosynovitis, 8%; and carpal tunnel syndrome, 5%. The location of trigger points in the myofascial pain syndrome, which were proven to evoke a tingling sensation to the hand in order of frequency were: infraspinatus, 65.4%; upper trapezius, 57.7%; flexor carpi radialis, 38.5%; rhomboideus 15.4%; and flexor pollicis longus 11.5%. The PPT of the affected side was significantly lower than that of the unaffected side in myofascial pain syndrome (p<0.05). Conclusion The most common cause of hand tingling in desk workers was myofascial pain syndrome rather than carpal tunnel syndrome. Common trigger points to evoke hand tingling were in the infraspinatus and upper trapezius. PMID:23705117

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Nicholas A. D.C.

    Cranial Laser Reflex Technique (CLRT) is a novel method involving a brief low level laser stimulation of specific cranial reflex points to reduce musculoskeletal pain. Objective: The objective of the study was to compare the immediate effects of CLRT with a sham treatment on chronic musculoskeletal pain using pressure algometry in a double-blinded randomized controlled trial. Methods: Fifty-seven (57) volunteers with various musculoskeletal pains gave informed consent and were randomly allocated to either the CLRT treatment or sham group. Painful trigger points and/or tender spinal joints were found in each patient. Using a digital algometer, the pain/pressure threshold (PPT) wasmore » determined and a pain rating was given using a numerical pain scale from 0-10. CLRT or a sham treatment was performed with a 50 mW, 840 nm laser, for a maximum of 20 seconds to the each cranial reflex. The initial pressure (PPT) was immediately delivered to the same spot, and the pain rated again. Results: There was a statistically significant difference in pain scores between CLRT and sham groups immediately following treatment. Improvement was reported in 95% of the treatment group, with 59% reporting an improvement of 2 points or greater. The average change in pain scores in the treatment group was 2.6 points (p 0.000) versus negligible change (p= 0.4) for the control group. Conclusion: The results show that CLRT is effective at immediately reducing chronic musculoskeletal pain. Further studies are needed with additional outcome measures to.« less

  8. Local and Systemic Changes in Pain Sensitivity After 4 Weeks of Calf Muscle Stretching in a Nonpainful Population: A Randomized Trial.

    PubMed

    Bartholdy, Cecilie; Zangger, Graziella; Hansen, Lisbeth; Ginnerup-Nielsen, Elisabeth; Bliddal, Henning; Henriksen, Marius

    2016-07-01

    Stretching is often used in clinical practice for a variety of purposes, including pain therapy. The possible mechanism behind the effect of stretching remains to be clarified. To investigate whether 4 weeks of unilateral stretching of the calf muscles would affect local and central pain sensitivity. This study was a randomized assessor-blinded clinical study. Healthy participants (age 18 to 40) were included and randomized. Participants in the intervention group were instructed to perform 2 stretching exercises targeting the calf muscles; 3 times 30 seconds, 7 days a week for 4 weeks on the dominant leg. Participants in the control group were instructed not to do any stretching for 4 weeks. Pressure pain threshold (PPT) and temporal summation (TS) of pressure pain were measured on the stretched calf, the contra-lateral calf, and contra-lateral lower arm using a computerized cuff algometer. Analyses of variance on the per-protocol population (defined as participants that adhered to the protocol) were used to assess group differences in the changes from baseline. Forty healthy volunteers were included, of which 34 participants adhered to the protocol (15 intervention group/19 control group). No statistically significant group differences in the changes from baseline were found regarding PPT and TS measurements for the stretched calf, the contra-lateral calf, and the arm. Four weeks of regular stretching of the calf muscles does not affect pressure pain sensitivity, suggesting that pressure pain sensitivity is unaffected by stretching in a healthy population. The mechanisms underlying any benefits of regular stretching remain to be explained. © 2015 World Institute of Pain.

  9. Patients with chronic tension-type headache demonstrate increased mechano-sensitivity of the supra-orbital nerve.

    PubMed

    Fernández-de-Las-Peñas, César; Coppieters, Michel W; Cuadrado, María Luz; Pareja, Juan A

    2008-04-01

    This study aimed to establish whether increased sensitivity to mechanical stimuli is present in neural tissues in chronic tension-type headache (CTTH). Muscle hyperalgesia is a common finding in CTTH. No previous studies have investigated the sensitivity of peripheral nerves in patients with CTTH. A blinded controlled study. Pressure pain thresholds (PPT) and pain intensity following palpation of the supra-orbital nerve (V1) were compared between 20 patients with CTTH and 20 healthy matched subjects. A pressure algometer and numerical pain rate scale were used to quantify PPT and pain to palpation. A headache diary was kept for 4 weeks to substantiate the diagnosis and record the pain history. The analysis of variance demonstrated significantly lower PPT for patients (0.86+/-0.13 kg/cm2) than controls (1.50+/-0.19 kg/cm2) (P<.001). Pain to palpation was also higher for patients (2.73+/-1.58) than controls (0.15+/-0.28) (P<.001). Within the CTTH group, intensity, frequency, and duration of the headaches were negatively correlated with PPT (rsor=0.72; P<.001). These findings reveal that mechanical hypersensitivity is not limited to muscles but also occurs in cranial nerves, and that the level of sensitization, either due to peripheral or central processes, is related to the severity of the primary headache.

  10. A comparison of modality-specific somatosensory changes during menstruation in dysmenorrheic and nondysmenorrheic women.

    PubMed

    Bajaj, Priti; Bajaj, Prem; Madsen, Hans; Arendt-Nielsen, Lars

    2002-01-01

    The objective was to evaluate somatosensory thresholds to a multimodality stimulation regimen applied both within and outside areas of referred menstrual pain in dysmenorrheic women, over four phases of confirmed ovulatory cycles, and to compare them with thresholds in nondysmenorrheic women during menstruation. Twenty dysmenorrheic women with menstrual pain scoring 5.45 +/- 0.39 cm (mean +/- standard error of mean) on a visual analog scale (10 cm) participated. Fifteen nondysmenorrheic women with a menstrual pain score of 0.4 +/- 0.2 cm participated as controls. Ovulation was confirmed by an enzyme-multiplied immunoassay technique. Menstrual pain was described with the McGill Pain Questionnaire. Areas within menstrual pain referral were two abdominal sites and the midline of the low back, and the arm and thigh were the control areas. The pressure pain threshold (PPT) and pinch pain threshold were determined by a hand-held electronic pressure algometer, the heat pain threshold (HPT) by a contact thermode, and the tactile threshold with von Frey hairs. In dysmenorrheic women the McGill Pain Questionnaire showed a larger sensory and affective component of pain than the evaluative and miscellaneous groups. The HPT and PPT were lower in the menstrual phase than in the ovulatory, luteal, and premenstrual phases, both within and outside areas of referred menstrual pain (p <0.01), with a more pronounced decrease at the referral pain areas. The pinch pain threshold was lower in the menstrual phase than in the ovulatory phase (p <0.02), and the tactile threshold did not differ significantly across the menstrual phases or within any site. Dysmenorrheic women had a lower HPT at the control sites and a lower PPT at the abdomen, back, and control sites, than in those of nondysmenorrheic women in the menstrual phase. The results show reduced somatosensory pain thresholds during menstruation to heat and pressure stimulation, both within and outside areas of referred menstrual pain in dysmenorrheic women. Dysmenorrheic women showed a lower HPT at the control sites and a lower PPT at all the sites than those for nondysmenorrheic women in the menstrual phase. The altered somatosensory thresholds may be dependent on a spinal mechanism of central hyperexcitability, induced by recurrent moderate to severe menstrual pain.

  11. Relieving dyspnoea by non-invasive ventilation decreases pain thresholds in amyotrophic lateral sclerosis.

    PubMed

    Dangers, Laurence; Laviolette, Louis; Georges, Marjolaine; Gonzalez-Bermejo, Jésus; Rivals, Isabelle; Similowski, Thomas; Morelot-Panzini, Capucine

    2017-03-01

    Dyspnoea is a threatening sensation of respiratory discomfort that presents many similarities with pain. Experimental dyspnoea in healthy subjects induces analgesia. This 'dyspnoea-pain counter-irritation' could, in reverse, imply that relieving dyspnoea in patients with chronic respiratory diseases would lower their pain thresholds. We first determined pressure pain thresholds in 25 healthy volunteers (22-31 years; 13 men; handheld algometer), during unloaded breathing (BASELINE) and during inspiratory threshold loading (ITL). Two levels of loading were used, adjusted to induce dyspnoea self-rated at 60% or 80% of a 10 cm visual analogue scale (ITL6 and ITL8). 18 patients with chronic respiratory failure due to amyotrophic lateral sclerosis (ALS) were then studied during unassisted breathing and after 30 and 60 min of non-invasive ventilation-NIV30 and NIV60-(same dyspnoea evaluation). In healthy volunteers, pressure pain thresholds increased significantly in the deltoid during ITL6 (p<0.05) and ITL8 (p<0.05) and in the trapezius during ITL8 (p<0.05), validating the use of pressure pain thresholds to study dyspnoea-pain counter-irritation. In patients with ALS, the pressure pain thresholds measured in the deltoid during unassisted breathing decreased by a median of 24.5%-33.0% of baseline during NIV30 and NIV60 (p<0.05). Relieving dyspnoea by NIV in patients with ALS having respiratory failure is associated with decreased pressure pain thresholds. Clinical implications have yet to be determined, but this observation suggests that patients with ALS could become more susceptible to pain after the institution of NIV, hence the need for reinforced attention towards potentially painful diagnostic and therapeutic interventions. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Assessment of deep dynamic mechanical sensitivity in individuals with tension-type headache: The dynamic pressure algometry.

    PubMed

    Palacios-Ceña, M; Wang, K; Castaldo, M; Guerrero-Peral, Á; Caminero, A B; Fernández-de-Las-Peñas, C; Arendt-Nielsen, L

    2017-09-01

    To explore the validity of dynamic pressure algometry for evaluating deep dynamic mechanical sensitivity by assessing its association with headache features and widespread pressure sensitivity in tension-type headache (TTH). One hundred and eighty-eight subjects with TTH (70% women) participated. Deep dynamic sensitivity was assessed with a dynamic pressure algometry set (Aalborg University, Denmark © ) consisting of 11 different rollers including fixed levels from 500 g to 5300 g. Each roller was moved at a speed of 0.5 cm/s over a 60-mm horizontal line covering the temporalis muscle. Dynamic pain threshold (DPT-level of the first painful roller) was determined and pain intensity during DPT was rated on a numerical pain rate scale (NPRS, 0-10). Headache clinical features were collected on a headache diary. As gold standard, static pressure pain thresholds (PPT) were assessed over temporalis, C5/C6 joint, second metacarpal, and tibialis anterior muscle. Side-to-side consistency between DPT (r = 0.843, p < 0.001) and pain evoked (r = 0.712; p < 0.001) by dynamic algometer was observed. DPT was moderately associated with widespread PPTs (0.526 > r > 0.656, all p < 0.001). Furthermore, pain during DPT was negatively associated with widespread PPTs (-0.370 < r < -0.162, all p < 0.05). Dynamic pressure algometry was a valid tool for assessing deep dynamic mechanical sensitivity in TTH. DPT was associated with widespread pressure sensitivity independently of the frequency of headaches supporting that deep dynamic pressure sensitivity within the trigeminal area is consistent with widespread pressure sensitivity. Assessing deep static and dynamic somatic tissue pain sensitivity may provide new opportunities for differentiated diagnostics and possibly a new tool for assessing treatment effects. The current study found that dynamic pressure algometry in the temporalis muscle was associated with widespread pressure pain sensitivity in individuals with tension-type headache. The association was independent of the frequency of headaches. Assessing deep static and dynamic somatic tissue pain sensitivity may provide new opportunities for differentiated diagnostics and possibly a tool for assessing treatment effects. © 2017 European Pain Federation - EFIC®.

  13. Is bone tenderness, as measured by manual algometry, associated with vitamin D deficiency?

    PubMed Central

    Dresser, Jocelyn; MacIntyre, Mike; Chisholm, Brittney; Lawson, G.E.

    2014-01-01

    Objective: To explore the relationship between serum 25-hydroxycholecalciferol (25[OH]D3) and pressure-pain thresholds, as measured by algometer, in advance of a main study to determine whether PPT is a potentially cost-effective proxy measure of 25[OH]D3 status in the general population. Methods: The cross-sectional pilot study involved a convenience sample of twenty-two subjects (10 males, 12 females), aged 18 to 67 years. All subjects consented to three trials of pressure-pain threshold readings on both tibiae and the manubrium. Serum 25[OH]D3 levels were determined from blood samples drawn post-algometry. Results: The average pressure pain thresholds were 14.92 (±6.03), 15.07(±6.07), 11.10 (±6.68) for the left and right tibia and sternum, respectively. The stability between the measurements was very high with the interclass correlation coefficient (95% CI) calculated as 0.94 (0.62–1.00), 0.9 (0.81–1.00), 0.96(0.93–1.00). The Pearson correlation coefficients were 0.03 for the left tibia, 0.17 for the right tibia and 0.20 for the sternum, J Dresser, M MacIntyre, B Chisholm, GE Lawson showing a negligible correlation for the left and right tibia, but a low positive correlation for the sternum. Conclusion: We did not find preliminary evidence of a strong or otherwise clinically meaningful correlation between bone tenderness and manual algometry in this pilot study. Only a weak linear relationship between PPT in the sternum and serum 25[OH]D3 concentrations was found. Replication of this study is warranted in larger and more representative study populations of interest. Discussion on a number of feasibility issues is provided to inform those future studies. PMID:25202161

  14. Is bone tenderness, as measured by manual algometry, associated with vitamin D deficiency?

    PubMed

    Dresser, Jocelyn; MacIntyre, Mike; Chisholm, Brittney; Lawson, G E

    2014-09-01

    To explore the relationship between serum 25-hydroxycholecalciferol (25[OH]D3) and pressure-pain thresholds, as measured by algometer, in advance of a main study to determine whether PPT is a potentially cost-effective proxy measure of 25[OH]D3 status in the general population. The cross-sectional pilot study involved a convenience sample of twenty-two subjects (10 males, 12 females), aged 18 to 67 years. All subjects consented to three trials of pressure-pain threshold readings on both tibiae and the manubrium. Serum 25[OH]D3 levels were determined from blood samples drawn post-algometry. The average pressure pain thresholds were 14.92 (±6.03), 15.07(±6.07), 11.10 (±6.68) for the left and right tibia and sternum, respectively. The stability between the measurements was very high with the interclass correlation coefficient (95% CI) calculated as 0.94 (0.62-1.00), 0.9 (0.81-1.00), 0.96(0.93-1.00). The Pearson correlation coefficients were 0.03 for the left tibia, 0.17 for the right tibia and 0.20 for the sternum, J Dresser, M MacIntyre, B Chisholm, GE Lawson showing a negligible correlation for the left and right tibia, but a low positive correlation for the sternum. We did not find preliminary evidence of a strong or otherwise clinically meaningful correlation between bone tenderness and manual algometry in this pilot study. Only a weak linear relationship between PPT in the sternum and serum 25[OH]D3 concentrations was found. Replication of this study is warranted in larger and more representative study populations of interest. Discussion on a number of feasibility issues is provided to inform those future studies.

  15. Combined electric and pressure cuff pain stimuli for assessing conditioning pain modulation (CPM).

    PubMed

    Tsukamoto, M; Petersen, K K; Mørch, C D; Arendt-Nielsen, L

    2017-12-29

    Aims Traditionally, conditioning pain modulation (CPM) can be assessed by applying a test stimulus (TS) before and after application of a conditioning stimulus (CS), which is normally applied extra-segmental. Currently, no studies have attempted to apply the TS and CS to the same site using different stimuli modalities. The aim of this study was to evaluate electrical TS and cuff pressure CS applied to the same experimental site for studying CPM. Methods 20 male volunteers participated in this study, which consisted of stimulations applied by a cuff-algometer (NociTech and Aalborg University, Denmark) and current stimulator (Digitimer DS5, UK), through two Ag/AgCl electrodes (Ambu® Neuroline 700, Denmark). The cuff was wrapped around the lower leg and stimulation electrodes were placed under the cuff and to the same location on the contralateral leg. Electrical TS were applied to the non-dominant leg with or without cuff pressure CS on the dominant (CS1) or the same (non-dominant) leg (CS2, electrode under cuff). The subjects were instructed to rate the electrical evoked pain intensity on a 10-cm continuous visual analog scale (VAS, "0" represented "no pain", and "10" represented "maximal pain"). The pain detection threshold (PDT) was defined as "1" on the VAS scale. Results There was no significant deference in PDT for neither CS1 nor CS2. A median split subanalysis on CPM-responders versus CPM-nonresponders to the TS + CS1 combination. Using this grouping, there was significant increase in PDT when comparing TS to TS + CS1 or TS + CS2 (4.0 mA vs 5.6 mA; P < 0.05, 4.0 mA vs 5.1 mA; P < 0.05). Conclusions The study indicates that CPM can be evoked in a subgroup of subjects by applying the electrical test stimulus and cuff pressure conditioning stimuli to the same experimental site.

  16. The role of circulating sex hormones in menstrual cycle dependent modulation of pain-related brain activation

    PubMed Central

    Veldhuijzen, Dieuwke S.; Keaser, Michael L.; Traub, Deborah S.; Zhuo, Jiachen; Gullapalli, Rao P.; Greenspan, Joel D.

    2013-01-01

    Sex differences in pain sensitivity have been consistently found but the basis for these differences is incompletely understood. The present study assessed how pain-related neural processing varies across the menstrual cycle in normally cycling, healthy females, and whether menstrual cycle effects are based on fluctuating sex hormone levels. Fifteen subjects participated in four test sessions during their menstrual, mid-follicular, ovulatory, and midluteal phases. Brain activity was measured while nonpainful and painful stimuli were applied with a pressure algometer. Serum hormone levels confirmed that scans were performed at appropriate cycle phases in 14 subjects. No significant cycle phase differences were found for pain intensity or unpleasantness ratings of stimuli applied during fMRI scans. However, lower pressure pain thresholds were found for follicular compared to other phases. Pain-specific brain activation was found in several regions traditionally associated with pain processing, including the medial thalamus, anterior and mid-insula, mid-cingulate, primary and secondary somatosensory cortices, cerebellum, and frontal regions. The inferior parietal lobule, occipital gyrus, cerebellum and several frontal regions demonstrated interaction effects between stimulus level and cycle phase, indicating differential processing of pain-related responses across menstrual cycle phases. Correlational analyses indicated that cycle-related changes in pain sensitivity measures and brain activation were only partly explained by varying sex hormone levels. These results show that pain-related cerebral activation varies significantly across the menstrual cycle, even when perceived pain intensity and unpleasantness remain constant. The involved brain regions suggest that cognitive pain or more general bodily awareness systems are most susceptible to menstrual cycle effects. PMID:23528204

  17. Explanatory factors and predictors of fatigue in persons with rheumatoid arthritis: A longitudinal study.

    PubMed

    Feldthusen, Caroline; Grimby-Ekman, Anna; Forsblad-d'Elia, Helena; Jacobsson, Lennart; Mannerkorpi, Kaisa

    2016-04-28

    To investigate the impact of disease-related aspects on long-term variations in fatigue in persons with rheumatoid arthritis. Observational longitudinal study. Sixty-five persons with rheumatoid arthritis, age range 20-65 years, were invited to a clinical examination at 4 time-points during the 4 seasons. Outcome measures were: general fatigue rated on visual analogue scale (0-100) and aspects of fatigue assessed by the Bristol Rheumatoid Arthritis Fatigue Multidimensional Questionnaire. Disease-related variables were: disease activity (erythrocyte sedimentation rate), pain threshold (pressure algometer), physical capacity (six-minute walk test), pain (visual analogue scale (0-100)), depressive mood (Hospital Anxiety and Depression scale, depression subscale), personal factors (age, sex, body mass index) and season. Multivariable regression analysis, linear mixed effects models were applied. The strongest explanatory factors for all fatigue outcomes, when recorded at the same time-point as fatigue, were pain threshold and depressive mood. Self-reported pain was an explanatory factor for physical aspects of fatigue and body mass index contributed to explaining the consequences of fatigue on everyday living. For predicting later fatigue pain threshold and depressive mood were the strongest predictors. Pain threshold and depressive mood were the most important factors for fatigue in persons with rheumatoid arthritis.

  18. The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance.

    PubMed

    Algafly, Amin A; George, Keith P

    2007-06-01

    To determine the impact of the application of cryotherapy on nerve conduction velocity (NCV), pain threshold (PTH) and pain tolerance (PTO). A within-subject experimental design; treatment ankle (cryotherapy) and control ankle (no cryotherapy). Hospital-based physiotherapy laboratory. A convenience sample of adult male sports players (n = 23). NCV of the tibial nerve via electromyogram as well as PTH and PTO via pressure algometer. All outcome measures were assessed at two sites served by the tibial nerve: one receiving cryotherapy and one not receiving cryotherapy. In the control ankle, NCV, PTH and PTO did not alter when reassessed. In the ankle receiving cryotherapy, NCV was significantly and progressively reduced as ankle skin temperature was reduced to 10 degrees C by a cumulative total of 32.8% (p<0.05). Cryotherapy led to an increased PTH and PTO at both assessment sites (p<0.05). The changes in PTH (89% and 71%) and PTO (76% and 56%) were not different between the iced and non-iced sites. The data suggest that cryotherapy can increase PTH and PTO at the ankle and this was associated with a significant decrease in NCV. Reduced NCV at the ankle may be a mechanism by which cryotherapy achieves its clinical goals.

  19. The effect of cryotherapy on nerve conduction velocity, pain threshold and pain tolerance

    PubMed Central

    Algafly, Amin A; George, Keith P

    2007-01-01

    Objectives To determine the impact of the application of cryotherapy on nerve conduction velocity (NCV), pain threshold (PTH) and pain tolerance (PTO). Design A within‐subject experimental design; treatment ankle (cryotherapy) and control ankle (no cryotherapy). Setting Hospital‐based physiotherapy laboratory. Participants A convenience sample of adult male sports players (n = 23). Main outcome measures NCV of the tibial nerve via electromyogram as well as PTH and PTO via pressure algometer. All outcome measures were assessed at two sites served by the tibial nerve: one receiving cryotherapy and one not receiving cryotherapy. Results In the control ankle, NCV, PTH and PTO did not alter when reassessed. In the ankle receiving cryotherapy, NCV was significantly and progressively reduced as ankle skin temperature was reduced to 10°C by a cumulative total of 32.8% (p<0.05). Cryotherapy led to an increased PTH and PTO at both assessment sites (p<0.05). The changes in PTH (89% and 71%) and PTO (76% and 56%) were not different between the iced and non‐iced sites. Conclusions The data suggest that cryotherapy can increase PTH and PTO at the ankle and this was associated with a significant decrease in NCV. Reduced NCV at the ankle may be a mechanism by which cryotherapy achieves its clinical goals. PMID:17224445

  20. A double-blind, randomized clinical study to determine the efficacy of benzocaine 10% on histamine-induced pruritus and UVB-light induced slight sunburn pain.

    PubMed

    Bauer, Martin; Schwameis, Richard; Scherzer, Thomas; Lang-Zwosta, Isabelle; Nishino, Kanako; Zeitlinger, Markus

    2015-01-01

    This study aims to explore the efficacy of the topical application of 10% benzocaine for treating pruritus and pain as compared to vehicle ointment. Twenty male subjects were treated in a randomized double-blind fashion with the investigational medicinal product (IMPD) and vehicle. Immediately after the injection of 100 µg histamine on both arms, subjects received topical treatment and pruritus was subsequently assessed with visual analogue scale (VASpruritus) and Eppendorfer questionnaire. Ultraviolet B radiation (UVB) was administered on the back to induce slight sunburn. Twelve hours after UVB application again the IMPD was applied on the right or left upper back and vehicle on the other side and pain related to sunburn was measured with VASpain and pressure algometry. A trend towards better reduction of pruritus was shown for benzocaine in VASpruritus. For the VASpain significant differences in group comparison (p = 0.02) were observed. Algometer measurements showed onset of pain reduction in the verum group after 20 min whereas in the vehicle-treated area pain relief occurred only after 60 min after application. The topically administered ointment containing 10% benzocaine was found superior over vehicle for treating pain, but not pruritus.

  1. Efficacy of Biodanza for treating women with fibromyalgia.

    PubMed

    Carbonell-Baeza, Ana; Aparicio, Virginia A; Martins-Pereira, Clelia M; Gatto-Cardia, Claudia M; Ortega, Francisco B; Huertas, Francisco J; Tercedor, Pablo; Ruiz, Jonatan R; Delgado-Fernandez, Manuel

    2010-11-01

    The objective of this study was to determine the effects of a 3-month Biodanza intervention in women with fibromyalgia (FM). This was a controlled trial. The study was conducted at a university research laboratory and social center. The study comprised 59 women with FM recruited from a local association of patients with FM. Participants were allocated to the Biodanza intervention group (n = 27) or usual-care group (n = 32). The Biodanza intervention was carried out once a week for 3 months. The outcome measures included the following: Pain threshold, body composition (body-mass index and estimated body fat percentage), physical fitness (30-second chair stand, handgrip strength, chair sit and reach, back scratch, blind flamingo, 8 feet up and go, and 6-minute walk test) and psychologic outcomes (Fibromyalgia Impact Questionnaire [FIQ], Short-Form Health Survey 36, Vanderbilt Pain Management Inventory, Hospital Anxiety and Depression Scale, General Self-Efficacy Scale, and Rosenberg Self-Esteem Scale). We observed a significant interaction effect (group*time) for pain threshold of several tender points (left [L] and right [R] side of the anterior cervical and supraspinatus, trapezius L and lateral epicondyle R, algometer score, tender points count), body fat percentage, and FIQ total score. In the intervention group, post hoc analysis revealed a significant improvement in pain threshold of the anterior cervical R and L and supraspinatus R and L tender points (all p < 0.05), algometer score (p = 0.008), tender point count (p = 0.002), body fat percentage (p = 0.001), and FIQ total score (p = 0.003). A 3-month (one session per week) Biodanza intervention shows improvements on pain, body composition, and FM impact in female patients.

  2. Pain pressure threshold of a muscle tender spot increases following local and non-local rolling massage.

    PubMed

    Aboodarda, S J; Spence, A J; Button, Duane C

    2015-09-28

    The aim of the present study was to determine the acute effect of rolling massage on pressure pain threshold (PPT) in individuals with tender spots in their plantar flexor muscles. In a randomized control trial and single blinded study, tender spots were identified in 150 participants' plantar flexor muscles (gastrocnemius or soleus). Then participants were randomly assigned to one of five intervention groups (n = 30): 1) heavy rolling massage on the calf that exhibited the higher tenderness (Ipsi-R), 2) heavy rolling massage on the contralateral calf (Contra-R), 3) light stroking of the skin with roller massager on the calf that exhibited the higher tenderness (Sham), 4) manual massage on the calf that exhibited the higher tenderness (Ipsi-M) and 5) no intervention (Control). PPT was measured at 30 s and up to 15 min post-intervention via a pressure algometer. At 30 s post-intervention, the Ipsi-R (24 %) and Contra-R (21 %) demonstrated higher (p < 0.03) PPT values compared with Control and Sham. During 15 min post-intervention, PPT was higher (p < 0.05) following Ipsi-R (19.2 %), Contra-R (15.9 %) and Ipsi-M (10.9 %) compared with Control. There was no difference between the effects of three deep tissue massages (Ipsi-R, Ipsi-M and Contra-R) on PPT. Whereas the increased PPT following ipsilateral massage (Ipsi-R and Ipsi-M) might be attributed to the release of fibrous adhesions; the non-localized effect of rolling massage on the contralateral limb suggests that other mechanisms such as a central pain-modulatory system play a role in mediation of perceived pain following brief tissue massage. Overall, rolling massage over a tender spot reduces pain perception. ClinicalTrials.gov ( NCT02528812 ), August 19(th), 2015.

  3. Oral opioid administration and hyperalgesia in patients with cancer or chronic nonmalignant pain.

    PubMed

    Reznikov, Igor; Pud, Dorit; Eisenberg, Elon

    2005-09-01

    Previous research has reported on reduced paw withdrawal latencies to heat and mechanical stimuli after parenteral administration of opioids in animals and on increased pain sensitivity in humans subsequent to postoperative infusions of short-acting opioids or in drug addicts. The aim of the present study was to explore the possibility that oral opioid treated patients with cancer-related or chronic nonmalignant pain differ in their pain sensitivity from patients treated with non-opioid analgesics. The study population consisted of 224 patients, including 142 in the opioid-treated group and 82 in the non-opioid-treated group. Pain thresholds for punctuate measured by von Frey filaments (g), mechanical pressure measured by pressure algometer (mmHg), heat stimuli measured by quantitative sensory testing (degrees C), as well as suprathreshold tonic heat pain intensity (46.5 degrees C for 1 min) measured by 0-10 numerical pain scale (NPS) were obtained at a nonpainful site (thenar eminence) in all patients. No differences between the groups were found for gender, age, duration of pain, or duration of treatment (independent variables). No significant differences between the groups were found in punctuate (difference = 17.0 g (95% CI -8.8, 42.8), P = 0.19), pressure (2.2 mmHg (-28.7, 33.2), P = 0.89) and heat (-0.3 degrees C (-1.5, 0.9), P = 0.70) pain thresholds, or in suprathreshold heat pain intensity (difference between maximal pain intensities -0.4 NPS units (95% CI -1.2, 0.4), P = 0.31). Pearson correlations within the opioid-treated group failed to show significant relationships between any of the independent variables and the outcome measures. A further comparison of the outcomes between the 'weak' opioid-treated subgroup and the 'strong' opioid-treated subgroup again revealed insignificant results. These results suggest that the administration of 'commonly used' dosages of oral opioids does not result in abnormal pain sensitivity beyond that of patients receiving non-opioid analgesia.

  4. The effects of KinesioTape on the treatment of lateral epicondylitis.

    PubMed

    Shakeri, Hassan; Soleimanifar, Manijeh; Arab, A M; Hamneshin Behbahani, Shirin

    Randomized clinical trial. KinesioTape (KT) is a noninvasive method to treat pain and muscular dysfunction. To investigate the effect of KT with and without tension on pain intensity, pain pressure threshold, grip strength and disability in individuals with lateral epicondylitis, and myofacial trigger points in forearm muscles. Thirty women with lateral epicondylitis and myofacial trigger point in forearm muscles were randomly assigned to KT with tension and placebo (KT without tension). The treatment was provided 3 times in one week, and outcome measures were assess pre-post treatment. The mean score of visual analogue scale (VAS) during activity decreased significantly from 6.4 and 6 pretest to 2.53 and 4.66 posttest, respectively, for the KT with and without tension groups. The mean score of Disabilities of the Arm, Shoulder and Hand decreased significantly from 16.82 and 22.79 pretest to 8.65 and 8.29 posttest, respectively, for the KT with and without tension groups. A paired t-test revealed a significant reduction in VAS during activity and Disabilities of the Arm, Shoulder and Hand before and after treatment in both groups (P < .05). Pain pressure threshold, grip strength, and VAS using an algometer revealed no significant differences. The study showed no significant difference in variables immediately after intervention. Improvements in functional disability were superior when KT was used with tension, than obtained with a placebo-no tension application. The application of KT produces an improvement in pain intensity and upper extremity disability in subjects with LE and MTP in forearm muscles, and KT with tension was more effective than placebo group. NA. 100-216. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  5. Adults with patellofemoral pain do not exhibit manifestations of peripheral and central sensitization when compared to healthy pain-free age and sex matched controls – An assessor blinded cross-sectional study

    PubMed Central

    Rathleff, Camilla Rams; Stephenson, Aoife; Mellor, Rebecca; Matthews, Mark; Crossley, Kay; Vicenzino, Bill

    2017-01-01

    Patellofemoral Pain (PFP) is highly prevalent among adults and adolescents. Localized mechanical hyperalgesia around the knee and tibialis anterior have been observed in people with PFP, but limited knowledge of potential manifestations of central sensitisation exists. The aims of this study were to study conditioned pain modulation (CPM) and wide-spread hyperalgesia in adults with PFP. This assessor-blinded cross-sectional study design compared CPM and mechanical pressure pain thresholds (PPT) between 33 adults (23 females) diagnosed with PFP and 32 age and sex matched pain-free controls. The investigator taking the PPT measurements was blinded to which participants had PFP. PPTs were reliably measured using a Somedic hand-held pressure algometer at three sites: 1) The centre of the patella, 2) the tibialis anterior muscle and 3) a remote site on the lateral epicondyle. For the assessment of CPM, experimental pain was induced to the contralateral hand by immersion into a cold water bath (conditioning stimulus), and assessment of PPTs (the test stimulus) was performed before and immediately after the conditioning stimulation. On average, the CPM paradigm induced a significant increase in PPTs across the three sites (6.3–13.5%, P<0.05), however there was no difference in CPM between young adults with PFP compared to the control group, (F(1,189) = 0.39, P = 0.89). There was no difference in mechanical PPTs between the two groups (F(1,189) = 0.03, P = 0.86). Contrary to our a-priori hypothesis, we found no difference in CPM or PPT between young adults with PFP and age and sex matched pain-free controls. PMID:29220355

  6. Parecoxib increases muscle pain threshold and relieves shoulder pain after gynecologic laparoscopy: a randomized controlled trial.

    PubMed

    Zhang, Hufei; Liu, Xinhe; Jiang, Hongye; Liu, Zimeng; Zhang, Xu-Yu; Xie, Hong-Zhe

    2016-01-01

    Postlaparoscopic shoulder pain (PLSP) remains a common problem after laparoscopies. The aim of this study was to investigate the correlation between pressure pain threshold (PPT) of different muscles and PLSP after gynecologic laparoscopy, and to explore the effect of parecoxib, a cyclooxygenase-2 inhibitor, on the changes of PPT. The patients were randomly allocated into two groups; group P and group C. In group P, parecoxib 40 mg was intravenously infused at 30 minutes before surgery and 8 and 20 hours after surgery. In group C, normal saline was infused at the corresponding time point. PPT assessment was performed 1 day before surgery and at postoperative 24 hours by using a pressure algometer at bilateral shoulder muscles (levator scapulae and supraspinatus) and forearm (flexor carpi ulnaris). Meanwhile, bilateral shoulder pain was evaluated through visual analog scale score at 24 hours after surgery. Preoperative PPT level of the shoulder, but not of the forearm, was significantly and negatively correlated with the intensity of ipsilateral PLSP. In group C, PPT levels of shoulder muscles, but not of forearm muscles, decreased after laparoscopy at postoperative 24 hours. The use of parecoxib significantly improved the decline of PPT levels of bilateral shoulder muscles (all P <0.01). Meanwhile, parecoxib reduced the incidence of PLSP (group P: 45% vs group C: 83.3%; odds ratio: 0.164; 95% confidence interval: 0.07-0.382; P <0.001) and the intensity of bilateral shoulder pain (both P <0.01). Preoperative PPT levels of shoulder muscles are closely associated with the severity of shoulder pain after gynecologic laparoscopy. PPT levels of shoulder muscles, but not of forearm muscles, significantly decreased after surgery. Parecoxib improved the decrease of PPT and relieved PLSP.

  7. Clinical effects of an avocado-soybean unsaponifiable extract on arthralgia and osteoarthritis of the temporomandibular joint: preliminary study.

    PubMed

    Catunda, I S; Vasconcelos, B C do E; Andrade, E S de S; Costa, D F N

    2016-08-01

    The aim of the present preliminary study was to investigate the effectiveness of an avocado-soybean unsaponifiable extract (ASU) in patients with arthralgia and osteoarthritis of the temporomandibular joint (TMJ). A randomized, double-blind, placebo-controlled trial was carried out. Fourteen women diagnosed with arthralgia and osteoarthritis of the TMJ using the Research Diagnostic Criteria for Temporomandibular Disorders were included in the statistical analysis. The women were allocated randomly to two groups: ASU group and placebo group. Pain was measured using a visual analogue scale and pressure algometer. Mandibular function was evaluated through measurement of mandibular movements. Quality of life was measured using the Oral Health Impact Profile (OHIP-14). The medication (ASU capsules or placebo capsules) was used for 4 months and the total follow-up was 6 months. Those taking the ASU extract had a decrease in pain symptoms and an improvement in quality of life. Moreover, a significant reduction in the use of rescue medication was found in the ASU group compared to the placebo group. This preliminary study provides strong evidence of the effectiveness of an avocado-soybean unsaponifiable extract in patients with degenerative joint diseases and arthralgia in the TMJ. Further studies with larger samples should be performed. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Effect of monophasic pulsed current on heel pain and functional activities caused by plantar fasciitis.

    PubMed

    Alotaibi, Abdullah K; Petrofsky, Jerrold S; Daher, Noha S; Lohman, Everett; Laymon, Michael; Syed, Hasan M

    2015-03-20

    Plantar fasciitis (PF) is a soft tissue disorder considered to be one of the most common causes of inferior heel pain. The aim of this study was to investigate the effect of monophasic pulsed current (MPC) and MPC coupled with plantar fascia-specific stretching exercises (SE) on the treatment of PF. Forty-four participants (22 women and 22 men, with a mean age of 49 years) diagnosed with PF were randomly assigned to receive MPC (n=22) or MPC coupled with plantar fascia-specific SE (n=22). Prior to and after 4 weeks of treatment, participants underwent baseline evaluation; heel pain was evaluated using a visual analogue scale (VAS), heel tenderness threshold was quantified using a handheld pressure algometer (PA), and functional activities level was assessed using the Activities of Daily Living subscale of the Foot and Ankle Ability Measure (ADL/FAAM). Heel pain scores showed a significant reduction in both groups compared to baseline VAS scores (P<0.001). Heel tenderness improved significantly in both groups compared with baseline PA scores (P<0.001). Functional activity level improved significantly in both groups compared with baseline (ADL/FAAM) scores (P<0.001). However, no significant differences existed between the 2 treatment groups in all post-intervention outcome measures. This trial showed that MPC is useful in treating inferior heel symptoms caused by PF.

  9. Effect of Monophasic Pulsed Current on Heel Pain and Functional Activities caused by Plantar Fasciitis

    PubMed Central

    Alotaibi, Abdullah K.; Petrofsky, Jerrold S.; Daher, Noha S.; Lohman, Everett; Laymon, Michael; Syed, Hasan M.

    2015-01-01

    Background Plantar fasciitis (PF) is a soft tissue disorder considered to be one of the most common causes of inferior heel pain. The aim of this study was to investigate the effect of monophasic pulsed current (MPC) and MPC coupled with plantar fascia-specific stretching exercises (SE) on the treatment of PF. Material/Methods Forty-four participants (22 women and 22 men, with a mean age of 49 years) diagnosed with PF were randomly assigned to receive MPC (n=22) or MPC coupled with plantar fascia-specific SE (n=22). Prior to and after 4 weeks of treatment, participants underwent baseline evaluation; heel pain was evaluated using a visual analogue scale (VAS), heel tenderness threshold was quantified using a handheld pressure algometer (PA), and functional activities level was assessed using the Activities of Daily Living subscale of the Foot and Ankle Ability Measure (ADL/FAAM). Results Heel pain scores showed a significant reduction in both groups compared to baseline VAS scores (P<0.001). Heel tenderness improved significantly in both groups compared with baseline PA scores (P<0.001). Functional activity level improved significantly in both groups compared with baseline (ADL/FAAM) scores (P<0.001). However, no significant differences existed between the 2 treatment groups in all post-intervention outcome measures. Conclusions This trial showed that MPC is useful in treating inferior heel symptoms caused by PF. PMID:25791231

  10. Lumbar Facet Joint Compressive Injury Induces Lasting Changes in Local Structure, Nociceptive Scores, and Inflammatory Mediators in a Novel Rat Model

    PubMed Central

    Henry, James L.; Yashpal, Kiran; Vernon, Howard; Kim, Jaesung; Im, Hee-Jeong

    2012-01-01

    Objective. To develop a novel animal model of persisting lumbar facet joint pain. Methods. Sprague Dawley rats were anaesthetized and the right lumbar (L5/L6) facet joint was exposed and compressed to ~1 mm with modified clamps applied for three minutes; sham-operated and naïve animals were used as control groups. After five days, animals were tested for hind-paw sensitivity using von Frey filaments and axial deep tissue sensitivity by algometer on assigned days up to 28 days. Animals were sacrificed at selected times for histological and biochemical analysis. Results. Histological sections revealed site-specific loss of cartilage in model animals only. Tactile hypersensitivity was observed for the ipsi- and contralateral paws lasting 28 days. The threshold at which deep tissue pressure just elicited vocalization was obtained at three lumbar levels; sensitivity at L1 > L3/4 > L6. Biochemical analyses revealed increases in proinflammatory cytokines, especially TNF-α, IL-1α, and IL-1β. Conclusions. These data suggest that compression of a facet joint induces a novel model of local cartilage loss accompanied by increased sensitivity to mechanical stimuli and by increases in inflammatory mediators. This new model may be useful for studies on mechanisms and treatment of lumbar facet joint pain and osteoarthritis. PMID:22966427

  11. Friction massage versus kinesiotaping for short-term management of latent trigger points in the upper trapezius: a randomized controlled trial.

    PubMed

    Mohamadi, Marzieh; Piroozi, Soraya; Rashidi, Iman; Hosseinifard, Saeed

    2017-01-01

    Latent trigger points in the upper trapezius muscle may disrupt muscle movement patterns and cause problems such as cramping and decreased muscle strength. Because latent trigger points may spontaneously become active trigger points, they should be addressed and treated to prevent further problems. In this study we compared the short-term effect of kinesiotaping versus friction massage on latent trigger points in the upper trapezius muscle. Fifty-eight male students enrolled with a stratified sampling method participated in this single-blind randomized clinical trial (Registration ID: IRCT2016080126674N3) in 2016. Pressure pain threshold was recorded with a pressure algometer and grip strength was recorded with a Collin dynamometer. The participants were randomly assigned to two different treatment groups: kinesiotape or friction massage. Friction massage was performed daily for 3 sessions and kinesiotape was used for 72 h. One hour after the last session of friction massage or removal of the kinesiotape, pressure pain threshold and grip strength were evaluated again. Pressure pain threshold decreased significantly after both friction massage (2.66 ± 0.89 to 2.25 ± 0.76; P  = 0.02) and kinesiotaping (2.00 ± 0.74 to 1.71 ± 0.65; P  = 0.01). Grip strength increased significantly after friction massage (40.78 ± 9.55 to 42.17 ± 10.68; P  = 0.03); however there was no significant change in the kinesiotape group (39.72 ± 6.42 to 40.65 ± 7.3; P  = 0.197). There were no significant differences in pressure pain threshold (2.10 ± 0.11 & 1.87 ± 0.11; P  = 0.66) or grip strength (42.17 ± 10.68 & 40.65 ± 7.3; P  = 0.53) between the two study groups. Friction massage and kinesiotaping had identical short-term effects on latent trigger points in the upper trapezius. Three sessions of either of these two interventions did not improve latent trigger points. Registration ID in IRCT: IRCT2016080126674N3.

  12. Duloxetine and 8-OH-DPAT, but not fluoxetine, reduce depression-like behaviour in an animal model of chronic neuropathic pain.

    PubMed

    Hu, Bing; Doods, Henri; Treede, Rolf-Detlef; Ceci, Angelo

    2016-04-21

    The current study assessed whether antidepressant and/or antinociceptive drugs, duloxetine, fluoxetine as well as (±)-8-hydroxy-2-[di-n-propylamino] tetralin (8-OH-DPAT), are able to reverse depression-like behaviour in animals with chronic neuropathic pain. Chronic constriction injury (CCI) of the sciatic nerve in rats was selected as neuropathic pain model. Mechanical hypersensitivity and depression-like behaviour were evaluated 4 weeks after surgery by "electronic algometer" and forced swimming test (FST), which measured the time of immobility, and active behaviours climbing and swimming. The selective noradrenergic and serotonergic uptake blocker duloxetine (20mg/kg) and the selective 5-HT1A agonist 8-OH-DPAT (0.5mg/kg) significantly reversed both mechanical hypersensitivity and depression-like behaviour in CCI animals. Duloxetine significantly reversed depression-like behaviour in CCI rats by increasing the time of climbing and swimming, while 8-OH-DPAT attenuated depression-like behaviour mainly by increasing the time of swimming. However, the selective serotonergic uptake blocker fluoxetine (20mg/kg) failed to attenuate mechanical hypersensitivity and depression-like behaviour, possibly due to confounding pro-nociceptive actions at 5-HT3 receptors. These data suggest to target noradrenergic and 5-HT1A receptors for treatment of chronic pain and its comorbidity depression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Effect of a 24-week physical training programme (in water and on land) on pain, functional capacity, body composition and quality of life in women with fibromyalgia.

    PubMed

    Latorre, Pedro Ángel; Santos, María Aparecida; Heredia-Jiménez, Jose Maria; Delgado-Fernández, Manuel; Soto, Víctor Manuel; Mañas, Alfonso; Carbonell-Baeza, Ana

    2013-01-01

    To analyse the effect of a 24-week physical training programme in water and on land on women with fibromyalgia. A controlled study was conducted from December 2009 to May 2010. Seventy-two women with fibromyalgia (age: 51.79±7.87 years) were assigned to an exercise group (3 sessions/week, 2 sessions in water, 1 session on land) (n=42) and to a control group (n=30). The variables analysed were: number of tender points, visual analogue scale (VAS) of pain, algometer score, functional capacity (leg strength, hand-grip dynamometry, flexibility, agility, balance, aerobic endurance, heart response), body composition (body mass index, fat mass index, skeletal muscle mass index and percentage of body fat) and psychological variables (Fibromyalgia Impact Questionnaire [FIQ] and Short Form Health Survey 36 [SF-36]). The exercise group improved in the algometer score (p<0.001), positive tender points (p=0.005), VAS (p<0.001) and FIQ (p<0.001). Improvements were also detected in functional capacity (leg strength, p=0.001; hand-grip dynamometry, p=0.001; flexibility, p<0.001; balance, p=0.006; 6-minute walk test, p<0.001; mean heart rate, p=0.031; maximum heart rate, p<0.001 and VO2 max, p<0.001). There was a decrease in the percentage of body fat (p=0.040). There was also an improvement in the subscales of the SF-36; vitality (p=0.004), mental health (p=0.001) social role functioning (p=0.020) and general health functioning (p=0.002). The findings of this study show that a 24-week physical training programme (3 sessions/week, of which 2 sessions are in water and 1 session is on land) reduces pain and disease impact and improves functional capacity in women with fibromyalgia.

  14. Oral opioid administration and hyperalgesia in patients with cancer or chronic nonmalignant pain

    PubMed Central

    Reznikov, Igor; Pud, Dorit; Eisenberg, Elon

    2005-01-01

    Aims Previous research has reported on reduced paw withdrawal latencies to heat and mechanical stimuli after parenteral administration of opioids in animals and on increased pain sensitivity in humans subsequent to postoperative infusions of short-acting opioids or in drug addicts. The aim of the present study was to explore the possibility that oral opioid treated patients with cancer-related or chronic nonmalignant pain differ in their pain sensitivity from patients treated with non-opioid analgesics. Methods The study population consisted of 224 patients, including 142 in the opioid-treated group and 82 in the non-opioid-treated group. Pain thresholds for punctuate measured by von Frey filaments (g), mechanical pressure measured by pressure algometer (mmHg), heat stimuli measured by quantitative sensory testing (°C), as well as suprathreshold tonic heat pain intensity (46.5 °C for 1 min) measured by 0–10 numerical pain scale (NPS) were obtained at a nonpainful site (thenar eminence) in all patients. Results No differences between the groups were found for gender, age, duration of pain, or duration of treatment (independent variables). No significant differences between the groups were found in punctuate (difference = 17.0 g (95% CI −8.8, 42.8), P = 0.19), pressure (2.2 mmHg (−28.7, 33.2), P = 0.89) and heat (−0.3 °C (−1.5, 0.9), P = 0.70) pain thresholds, or in suprathreshold heat pain intensity (difference between maximal pain intensities −0.4 NPS units (95% CI −1.2, 0.4), P = 0.31). Pearson correlations within the opioid-treated group failed to show significant relationships between any of the independent variables and the outcome measures. A further comparison of the outcomes between the ‘weak’ opioid-treated subgroup and the ‘strong’ opioid-treated subgroup again revealed insignificant results. Conclusions These results suggest that the administration of ‘commonly used’ dosages of oral opioids does not result in abnormal pain sensitivity beyond that of patients receiving non-opioid analgesia. PMID:16120071

  15. Generalized mechanical pain sensitivity over nerve tissues in patients with strictly unilateral migraine.

    PubMed

    Fernández-de-las-Peñas, César; Arendt-Nielsen, Lars; Cuadrado, María Luz; Pareja, Juan A

    2009-06-01

    No study has previously analyzed pressure pain sensitivity of nerve trunks in migraine. This study aimed to examine the differences in mechanical pain sensitivity over specific nerves between patients with unilateral migraine and healthy controls. Blinded investigators assessed pressure pain thresholds (PPT) over the supra-orbital nerves (V1) and peripheral nerve trunks of both upper extremities (median, radial, and ulnar nerves) in 20 patients with strictly unilateral migraine and 20 healthy matched controls. Pain intensity after palpation over both supra-orbital nerves was also assessed. A pressure algometer was used to quantify PPT, whereas a 10-point numerical pain rate scale was used to evaluate pain to palpation over the supra-orbital nerve. The analysis of covariance revealed that pain to palpation over the supra-orbital nerve was significantly higher (P<0.001) on the symptomatic side (mean: 3.4, SD: 1.5) as compared with the nonsymptomatic side (mean: 0.5, SD: 1.2) in patients with migraine and both the dominant (mean: 0.2, SD: 0.4) and nondominant (mean: 0.3, SD: 0.5) sides in healthy controls. PPT assessed over the supra-orbital nerve on the symptomatic side (mean: 1.05, SD: 0.2 kg/cm) was significantly lower (P<0.05) than PPT measurements on the nonsymptomatic side (mean: 1.35, SD: 0.3 kg/cm) and either the dominant (mean: 1.9, SD: 0.2 kg/cm) or nondominant (mean: 1.9, SD: 0.3 kg/cm) sides in controls (P<0.001). Finally, PPT assessed over the median, ulnar, and radial nerves were significantly lower in patients with migraine as compared with controls (P<0.001), without side-to-side differences (P>0.6). In patients with unilateral migraine, we found increased mechano-sensitivity of the supra-orbital nerve on the symptomatic side of the head. Outside the head, the same patients showed increased mechano-sensitivity of the main peripheral nerves of both upper limbs, without asymmetries. Such diffuse hypersensitivity of the peripheral nerves lends further evidence to the presence of a state of hyperexcitability of the central nervous system in patients with unilateral migraine.

  16. Importance of Ambipolar Electric Field in the Ion Loss from Mars- Results from a Multi-fluid MHD Model with the Electron Pressure Equation Included

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Dong, C.; van der Holst, B.; Nagy, A. F.; Bougher, S. W.; Toth, G.; Cravens, T.; Yelle, R. V.; Jakosky, B. M.

    2017-12-01

    The multi-fluid (MF) magnetohydrodynamic (MHD) model of Mars is further improved by solving an additional electron pressure equation. Through the electron pressure equation, the electron temperature is calculated based on the effects from various electrons related heating and cooling processes (e.g. photo-electron heating, electron-neutral collision and electron-ion collision), and thus the improved model is able to calculate the electron temperature and the electron pressure force self-consistently. Electron thermal conductivity is also considered in the calculation. Model results of a normal case with electron pressure equation included (MFPe) are compared in detail to an identical case using the regular MF model to identify the effect of the improved physics. We found that when the electron pressure equation is included, the general interaction patterns are similar to that of the case with no electron pressure equation. The model with electron pressure equation predicts that electron temperature is much larger than the ion temperature in the ionosphere, consistent with both Viking and MAVEN observations. The inclusion of electron pressure equation significantly increases the total escape fluxes predicted by the model, indicating the importance of the ambipolar electric field(electron pressure gradient) in driving the ion loss from Mars.

  17. Reduction of pain thresholds in fibromyalgia after very low-intensity magnetic stimulation: a double-blinded, randomized placebo-controlled clinical trial.

    PubMed

    Maestú, Ceferino; Blanco, Manuel; Nevado, Angel; Romero, Julia; Rodríguez-Rubio, Patricia; Galindo, Javier; Bautista Lorite, Juan; de las Morenas, Francisco; Fernández-Argüelles, Pedro

    2013-01-01

    Exposure to electromagnetic fields has been reported to have analgesic and antinociceptive effects in several organisms. To test the effect of very low-intensity transcranial magnetic stimulation on symptoms associated with fibromyalgia syndrome. A double-blinded, placebo-controlled clinical trial was performed in the Sagrado Corazón Hospital, Seville, Spain. Female fibromyalgia patients (22 to 50 years of age) were randomly assigned to either a stimulation group or a sham group. The stimulation group (n=28) was stimulated using 8 Hz pulsed magnetic fields of very low intensity, while the sham group (n=26) underwent the same protocol without stimulation. Pressure pain thresholds before and after stimulation were determined using an algometer during the eight consecutive weekly sessions of the trial. In addition, blood serotonin levels were measured and patients completed questionnaires to monitor symptom evolution. A repeated-measures ANOVA indicated statistically significant improvement in the stimulation group compared with the control group with respect to somatosensory pain thresholds, ability to perform daily activities, perceived chronic pain and sleep quality. While improvement in pain thresholds was apparent after the first stimulation session, improvement in the other three measures occurred after the sixth week. No significant between-group differences were observed in scores of depression, fatigue, severity of headaches or serotonin levels. No adverse side effects were reported in any of the patients. Very low-intensity magnetic stimulation may represent a safe and effective treatment for chronic pain and other symptoms associated with fibromyalgia.

  18. Reduction of pain thresholds in fibromyalgia after very low-intensity magnetic stimulation: A double-blinded, randomized placebo-controlled clinical trial

    PubMed Central

    Maestú, Ceferino; Blanco, Manuel; Nevado, Angel; Romero, Julia; Rodríguez-Rubio, Patricia; Galindo, Javier; Lorite, Juan Bautista; de las Morenas, Francisco; Fernández-Argüelles, Pedro

    2013-01-01

    BACKGROUND: Exposure to electromagnetic fields has been reported to have analgesic and antinociceptive effects in several organisms. OBJECTIVE: To test the effect of very low-intensity transcranial magnetic stimulation on symptoms associated with fibromyalgia syndrome. METHODS: A double-blinded, placebo-controlled clinical trial was performed in the Sagrado Corazón Hospital, Seville, Spain. Female fibromyalgia patients (22 to 50 years of age) were randomly assigned to either a stimulation group or a sham group. The stimulation group (n=28) was stimulated using 8 Hz pulsed magnetic fields of very low intensity, while the sham group (n=26) underwent the same protocol without stimulation. Pressure pain thresholds before and after stimulation were determined using an algometer during the eight consecutive weekly sessions of the trial. In addition, blood serotonin levels were measured and patients completed questionnaires to monitor symptom evolution. RESULTS: A repeated-measures ANOVA indicated statistically significant improvement in the stimulation group compared with the control group with respect to somatosensory pain thresholds, ability to perform daily activities, perceived chronic pain and sleep quality. While improvement in pain thresholds was apparent after the first stimulation session, improvement in the other three measures occurred after the sixth week. No significant between-group differences were observed in scores of depression, fatigue, severity of headaches or serotonin levels. No adverse side effects were reported in any of the patients. CONCLUSIONS: Very low-intensity magnetic stimulation may represent a safe and effective treatment for chronic pain and other symptoms associated with fibromyalgia. PMID:24308025

  19. Impulsivity and suicidality: the mediating role of painful and provocative experiences.

    PubMed

    Bender, Theodore W; Gordon, Kathryn H; Bresin, Konrad; Joiner, Thomas E

    2011-03-01

    Multiple studies have reported a link between high levels of impulsivity and suicidal behavior. Joiner's (2005) explanation for this link is that impulsive individuals have a greater tendency to experience painful and provocative events that habituate them to fear and pain, which leads to an acquired capability for engaging in suicidal behavior. Study 1 tested Joiner's (2005) hypothesis in a sample of 182 undergraduate students who completed self-report questionnaires on impulsivity, frequency of painful and provocative events, and acquired capability for suicide. In addition to self-report, pain tolerance (an aspect of acquired capability for suicide) was measured with a pressure algometer. Study 2 sought to replicate our findings from Study 1 in a sample of 516 clinical outpatients using a multi-faceted measure of impulsivity. Consistent with prediction, product of coefficients tests for mediation (MacKinnon et al., 2002) revealed that impulsivity has an indirect relationship with acquired capability for suicidal behavior, and that this relationship is mediated by painful and provocative events. Data from our studies are cross-sectional in nature, which does not allow for conclusions about the temporal ordering of our variables. In addition, self-report was used to measure most variables. Future research may benefit from a longitudinal design and the inclusion of other modes of assessment (e.g., behavioral measures of impulsivity). Our findings suggest that the link between impulsivity and suicidal behavior occurs because impulsive people tend to have a greater capability for suicidal behavior, which they have acquired through experiencing painful and provocative events. Copyright © 2010 Elsevier B.V. All rights reserved.

  20. [Comparison between aquatic-biodanza and stretching for improving quality of life and pain in patients with fibromyalgia].

    PubMed

    López-Rodríguez, María del Mar; Castro-Sánchez, Adelaida María; Fernández-Martínez, Manuel; Matarán-Peñarrocha, Guillermo A; Rodríguez-Ferrer, María Encarnación

    2012-11-01

    To determine the level of improvement, as regards pain, impact on fibromyalgia and depression, achieved by patients with fibromyalgia by comparing aquatic biodanza and stretching exercises. Randomised controlled trial with two intervention groups. Five health centres (Almeria). A total of 82 fibromyalgia patients between 18 and 65 years old, diagnosed by American College of Rheumatology criteria, were included, with 12 patients declining to take part in the study. The 70 remaining patients were randomly assigned to two groups of 35 patients each: aquatic biodanza and stretching exercises. Those who did not attend in at least 14 sessions or changed their treatment during the studio were excluded. The final sample consisted of 19 patients in aquatic biodanza group and 20 in stretching group. The limitations of the study included, the open evaluation design and a sample size reduced by defaults. The outcome measures were sociodemographic data, quality of life (Fibromyalgia Impact Questionnaire), pain (McGill-Melzack questionnaire; and Visual Analogue Scale), pressure algometry (Wagner FPI10 algometer) and depression (Beck Inventory). These were carried out before and after a 12-week therapy. The mean age of the sample was 55.41 years. The mean period from diagnosis was 13.44 years. The sample consisted mainly of housewives. There were significant differences (P<.05) between groups, in pain (P<.01), fibromyalgia impact (P<.01), and depression (P<.04) after the treatment. The biodanza aquatic exercises improve pain and quality of life in fibromyalgia patients. Copyright © 2011 Elsevier España, S.L. All rights reserved.

  1. Electron and Nuclear Pressures in Electron-Nucleus Mixtures

    NASA Astrophysics Data System (ADS)

    Chihara, J.; Yamagiwa, M.

    2007-12-01

    For a solid metal with frozen nuclei, the density-functional theory provides a unique definition of the electron pressure in an electron-nucleus mixture, and the total pressure of this mixture is represented as the sum of the electron and nuclear pressures. This fact leads to definitions of the electron and nuclear pressures on the basis of the virial theorem in terms of the wall potentials confining the electrons and nuclei. These definitions take a general form applicable without use of the adiabatic approximation. In this situation, we show that Janak's definition of the electron pressure in terms of the nuclear virial term is inappropriate; a similar statement holds for the definition of the stress tensor in this mixture. It is also demonstrated that both the electron and nuclear pressures become zero individually for a metal in vacuum, in contrast to the conventional understanding, according to which zero pressure is realized as a result of a cancellation of the elect ron and nuclear pressures. On the basis of these facts, a simple equation of state for liquid metals is derived, and it is examined numerically for the case of liquid alkaline metals by use of the quantum hypernetted chain equation and the Ashcroft model potential.

  2. Structural changes induced by lattice-electron interactions: SiO2 stishovite and FeTiO3 ilmenite.

    PubMed

    Yamanaka, Takamitsu

    2005-09-01

    The bright source and highly collimated beam of synchrotron radiation offers many advantages for single-crystal structure analysis under non-ambient conditions. The structure changes induced by the lattice-electron interaction under high pressure have been investigated using a diamond anvil pressure cell. The pressure dependence of electron density distributions around atoms is elucidated by a single-crystal diffraction study using deformation electron density analysis and the maximum entropy method. In order to understand the bonding electrons under pressure, diffraction intensity measurements of FeTiO3 ilmenite and gamma-SiO2 stishovite single crystals at high pressures were made using synchrotron radiation. Both diffraction studies describe the electron density distribution including bonding electrons and provide the effective charge of the cations. In both cases the valence electrons are more localized around the cations with increasing pressure. This is consistent with molecular orbital calculations, proving that the bonding electron density becomes smaller with pressure. The thermal displacement parameters of both samples are reduced with increasing pressure.

  3. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges.

    PubMed

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-31

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  4. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    NASA Astrophysics Data System (ADS)

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-03-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ~3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics.

  5. Integrated arrays of air-dielectric graphene transistors as transparent active-matrix pressure sensors for wide pressure ranges

    PubMed Central

    Shin, Sung-Ho; Ji, Sangyoon; Choi, Seiho; Pyo, Kyoung-Hee; Wan An, Byeong; Park, Jihun; Kim, Joohee; Kim, Ju-Young; Lee, Ki-Suk; Kwon, Soon-Yong; Heo, Jaeyeong; Park, Byong-Guk; Park, Jang-Ung

    2017-01-01

    Integrated electronic circuitries with pressure sensors have been extensively researched as a key component for emerging electronics applications such as electronic skins and health-monitoring devices. Although existing pressure sensors display high sensitivities, they can only be used for specific purposes due to the narrow range of detectable pressure (under tens of kPa) and the difficulty of forming highly integrated arrays. However, it is essential to develop tactile pressure sensors with a wide pressure range in order to use them for diverse application areas including medical diagnosis, robotics or automotive electronics. Here we report an unconventional approach for fabricating fully integrated active-matrix arrays of pressure-sensitive graphene transistors with air-dielectric layers simply formed by folding two opposing panels. Furthermore, this realizes a wide tactile pressure sensing range from 250 Pa to ∼3 MPa. Additionally, fabrication of pressure sensor arrays and transparent pressure sensors are demonstrated, suggesting their substantial promise as next-generation electronics. PMID:28361867

  6. Evolution of two-dimensional plasma parameters in the plane of the wafer during the E- to H- and H- to E-mode transition in an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Park, Il-Seo; Kim, Kyung-Hyun; Kim, Tae-Woo; Kim, Kwan-Youg; Moon, Ho-Jun; Chung, Chin-Wook

    2018-05-01

    The evolution of plasma parameters during the transition from E- to H- and from H- to E-mode is measured at the wafer level two-dimensionally at low and high pressures. The plasma parameters, such as electron density and electron temperature, are obtained through a floating harmonic sideband method. During the E- to H-mode transition, while the electron kinetics remains in the non-local regime at low pressure, the electron kinetics is changed from the non-local to the local regime at high pressure. The two-dimensional profiles of the electron density at two different pressures have similar convex shape despite different electron kinetics. However, in the case of the electron temperature, at high pressure, the profiles of the electron temperature are changed from flat to convex shape. These results can be understood by the diffusion of the plasma to the wafer-level probe. Moreover, between the transition of E to H and reverse H to E, hysteresis is observed even at the wafer level. The hysteresis is clearly shown at high pressure compared to low pressure. This can be explained by a variation of collisional energy loss including effects of electron energy distribution function (bi-Maxwellian, Maxwellian, Druyvesteyn distribution) on the rate constant and multistep ionization of excited state atoms. During the E- to H-mode transition, Maxwellization is caused by increased electron‑electron collisions, which reduces the collisional energy loss at high pressure (Druyvesteyn distribution) and increases it at low pressure (bi-Maxwellian distribution). Thus, the hysteresis is intensified at high pressure because the reduced collisional energy loss leads to higher ionization efficiency.

  7. Pressure profiles of plasmas confined in the field of a dipole magnet

    NASA Astrophysics Data System (ADS)

    Davis, Matthew Stiles

    Understanding the maintenance and stability of plasma pressure confined by a strong magnetic field is a fundamental challenge in both laboratory and space plasma physics. Using magnetic and X-ray measurements on the Levitated Dipole Experiment (LDX), the equilibrium plasma pressure has been reconstructed, and variations of the plasma pressure for different plasma conditions have been examined. The relationship of these profiles to the magnetohydrodynamic (MHD) stability limit, and to the enhanced stability limit that results from a fraction of energetic trapped electrons, has been analyzed. In each case, the measured pressure profiles and the estimated fractional densities of energetic electrons were qualitatively consistent with expectations of plasma stability. LDX confines high temperature and high pressure plasma in the field of a superconducting dipole magnet. The strong dipole magnet can be either mechanically supported or magnetically levitated. When the dipole was mechanically supported, the plasma density profile was generally uniform while the plasma pressure was highly peaked. The uniform density was attributed to the thermal plasma being rapidly lost along the field to the mechanical supports. In contrast, the strongly peaked plasma pressure resulted from a fraction of energetic, mirror trapped electrons created by microwave heating at the electron cyclotron resonance (ECRH). These hot electrons are known to be gyrokinetically stabilized by the background plasma and can adopt pressure profiles steeper than the MHD limit. X-ray measurements indicated that this hot electron population could be described by an energy distribution in the range 50-100 keV. Combining information from the magnetic reconstruction of the pressure profile, multi-chord interferometer measurements of the electron density profile, and X-ray measurements of the hot electron energy distribution, the fraction of energetic electrons at the pressure peak was estimated to be ˜ 35% of the total electron population. When the dipole was magnetically levitated the plasma density increased substantially because particle losses to the mechanical supports were eliminated so particles could only be lost via slower cross-field transport processes. The pressure profile was observed to be broader during levitated operation than it was during supported operation, and the pressure appeared to be contained in both a thermal population and an energetic electron population. X-ray spectra indicated that the X-rays came from a similar hot electron population during levitated and supported operation; however, the hot electron fraction was an order of magnitude smaller during levitated operation (<3% of the total electron population). Pressure gradients for both supported and levitated plasmas were compared to the MHD limit. Levitated plasmas had pressure profiles that were (i) steeper than, (ii) shallower than, or (iii) near the MHD limit dependent on plasma conditions. However, those profiles that exceeded the MHD limit were observed to have larger fractions of energetic electrons. When the dipole magnet was supported, high pressure plasmas always had profiles that exceeded the MHD interchange stability limit, but the high pressure in these plasmas appeared to arise entirely from a population of energetic trapped electrons.

  8. Nucleation of Bubbles by Electrons in Liquid Helium-4

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Sirisky, S.; Wei, W.; Seidel, G. M.; Maris, H. J.

    2018-02-01

    We report on experiments in which we study cavitation resulting from electrons in liquid helium. Electrons are introduced into the liquid by a radioactive source. After an electron comes to rest in the liquid, it forces open a small cavity referred to as an electron bubble. To study cavitation, a sound pulse is generated by means of a hemispherical piezoelectric transducer producing a large-amplitude pressure oscillation at the acoustic focus. If an electron is in the vicinity of the focus and the negative-going pressure swing exceeds a critical value, a cavitation bubble is produced which can be detected by light scattering. Two distinct critical pressures P_{el} and P_{rare} have been measured. The first corresponds to cavitation resulting from the application of a reduced pressure to liquid containing an electron which has already formed an electron bubble. The second is the critical pressure needed to lead to cavitation when an electron enters the liquid at a time and place where there is already a reduced pressure. We have measured these two pressures as a function of temperature and consider possible explanations for the difference between them. In addition to these clearly seen cavitation thresholds, there are some cavitation events that have been detected with a threshold that is at an even smaller negative pressure than P_{el} and P_{rare}.

  9. Investigations on the electronic transport and piezoresistivity properties of Ni{sub 2−X}Mn{sub 1+X}Ga (X = 0 and 0.15) Heusler alloys under hydrostatic pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devarajan, U.; Kalai Selvan, G.; Sivaprakash, P.

    2014-12-22

    The resisitivity of Ni{sub 2−X}Mn{sub 1+X}Ga (X = 0 and 0.15) magnetic shape memory alloys has been investigated as a function of temperature (4–300 K) and hydrostatic pressure up to 30 kilobars. The resistivity is suppressed (X = 0) and enhanced (X = 0.15) with increasing pressure. A change in piezoresistivity with respect to pressure and temperature is observed. The negative and positive piezoresistivity increases with pressure for both the alloys. The residual resistivity and electron-electron scattering factor as a function of pressure reveal that for Ni{sub 2}MnGa the electron-electron scattering is predominant, while the X = 0.15 specimen is dominated by the electron-magnon scattering. The value of electron-electronmore » scattering factor is positive for both the samples, and it is decreasing (negative trend) for Ni{sub 2}MnGa and increasing (positive trend) for X = 0.15 with pressure. The martensite transition temperature is found to be increased with the application of external pressure for both samples.« less

  10. Evaluation of the pain and local tenderness in bone metastasis treated with magnetic resonance-guided focused ultrasound surgery (MRgFUS)

    NASA Astrophysics Data System (ADS)

    Namba, Hirofumi; Kawasaki, Motohiro; Kato, Tomonari; Tani, Toshikazu; Ushida, Takahiro; Koizumi, Norihiro

    2017-03-01

    It has been reported that MRgFUS has pain palliative effects on the local pain in patients with bone metastasis. In general, a severity of pain has been evaluated using only subjective method with numerical rating scale (NRS) or visual analogue scale (VAS). It is important to evaluate local pain-palliative effects of MRgFUS treatment with objective and quantitative method. The aim of this study is to investigate changes in the severity of local pain of bone metastasis before and after MRgFUS treatments, measuring pressure pain threshold (PPT) using pressure algometer, and pain intensity using electrical stimulation device (the Pain Vision system) at most painful site of bone metastasis. We have conducted MRgFUS for pain palliation of bone metastasis for 8 patients, and evaluated the local tenderness quantitatively for 8 patients, and evaluated local pain intensity for 7 patients. Before the treatments, PPTs were 106.3kPa [40.0-431.5] at metastatic site and 344.8 kPa [206.0-667.0] at normal control site, which showed a significant difference. The PPTs at metastatic site shows a significant increase from 106.3 kPa [40.0-431.5] at the baseline to 270.5 kPa [93.5-533.5] at 3 months after the treatment. The NRS score shows a significant decrease from 6.0 [4-8] at baseline to 1 [0-3] at 3 months after the treatment. Similarly, the pain intensity shows a significant decrease 245 [96.3-888.7] at baseline to 55.9 [2.8-292] at 3 months after the treatment. The results of our study illustrate the pain-relieving effects of MRgFUS for the treatment of painful bone metastasis. PPT might be a useful parameter not only for assessing a treatment's effect, but also for the decision of the painful area to treat with MRgFUS. Pain Vision seems to be useful for quantitative and objective evaluation of local pain of painful bone metastasis.

  11. Self-correcting electronically scanned pressure sensor

    NASA Technical Reports Server (NTRS)

    Gross, C. (Inventor)

    1983-01-01

    A multiple channel high data rate pressure sensing device is disclosed for use in wind tunnels, spacecraft, airborne, process control, automotive, etc., pressure measurements. Data rates in excess of 100,000 measurements per second are offered with inaccuracies from temperature shifts less than 0.25% (nominal) of full scale over a temperature span of 55 C. The device consists of thirty-two solid state sensors, signal multiplexing electronics to electronically address each sensor, and digital electronic circuitry to automatically correct the inherent thermal shift errors of the pressure sensors and their associated electronics.

  12. Simulating Pressure Profiles for the Free-Electron Laser Photoemission Gun Using Molflow+

    NASA Astrophysics Data System (ADS)

    Song, Diego; Hernandez-Garcia, Carlos

    2012-10-01

    The Jefferson Lab Free Electron Laser (FEL) generates tunable laser light by passing a relativistic electron beam generated in a high-voltage DC electron gun with a semiconducting photocathode through a magnetic undulator. The electron gun is in stringent vacuum conditions in order to guarantee photocathode longevity. Considering an upgrade of the electron gun, this project consists of simulating pressure profiles to determine if the novel design meets the electron gun vacuum requirements. The method of simulation employs the software Molflow+, developed by R. Kersevan at the Organisation Europ'eene pour la Recherche Nucl'eaire (CERN), which uses the test-particle Monte Carlo method to simulate molecular flows in 3D structures. Pressure is obtained along specified chamber axes. Results are then compared to measured pressure values from the existing gun for validation. Outgassing rates, surface area, and pressure were found to be proportionally related. The simulations indicate that the upgrade gun vacuum chamber requires more pumping compared to its predecessor, while it holds similar vacuum conditions. The ability to simulate pressure profiles through tools like Molflow+, allows researchers to optimize vacuum systems during the engineering process.

  13. Advanced PIC-MCC simulation for the investigation of step-ionization effect in intermediate-pressure capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Jin Seok; Hur, Min Young; Kim, Chang Ho; Kim, Ho Jun; Lee, Hae June

    2018-03-01

    A two-dimensional parallelized particle-in-cell simulation has been developed to simulate a capacitively coupled plasma reactor. The parallelization using graphics processing units is applied to resolve the heavy computational load. It is found that the step-ionization plays an important role in the intermediate gas pressure of a few Torr. Without the step-ionization, the average electron density decreases while the effective electron temperature increases with the increase of gas pressure at a fixed power. With the step-ionization, however, the average electron density increases while the effective electron temperature decreases with the increase of gas pressure. The cases with the step-ionization agree well with the tendency of experimental measurement. The electron energy distribution functions show that the population of electrons having intermediate energy from 4.2 to 12 eV is relaxed by the step-ionization. Also, it was observed that the power consumption by the electrons is increasing with the increase of gas pressure by the step-ionization process, while the power consumption by the ions decreases with the increase of gas pressure.

  14. Electron kinetics dependence on gas pressure in laser-induced oxygen plasma experiment: Theoretical analysis

    NASA Astrophysics Data System (ADS)

    Gamal, Yosr E. E.-D.; Abdellatif, Galila

    2017-08-01

    A study is performed to investigate the dependency of threshold intensity on gas pressure observed in the measurements of the breakdown of molecular oxygen that carried out by Phuoc (2000) [1]. In this experiment, the breakdown was induced by 532 nm laser radiation of pulse width 5.5 ns and spot size of 8.5 μm, in oxygen over a wide pressure range (190-3000 Torr). The analysis aimed to explore the electron kinetic reliance on gas pressure for the separate contribution of each of the gain and loss processes encountered in this study. The investigation is based on an electron cascade model applied previously in Gamal and Omar (2001) [2] and Gaabour et al. (2013) [3]. This model solves numerically a differential equation designates the time evolution of the electron energy distribution, and a set of rate equations that describe the change of excited states population. The numerical examination of the electron energy distribution function and its parameters revealed that photo-ionization of the excited molecules plays a significant role in enhancing the electron density growth rate over the whole tested gas pressure range. This process is off set by diffusion of electrons out of the focal volume in the low-pressure regime. At atmospheric pressure electron, collisional processes dominate and act mainly to populate the excited states. Hence photo-ionization becomes efficient and compete with the encountered loss processes (electron diffusion, vibrational excitation of the ground state molecules as well as two body attachments). At high pressures ( 3000 Torr) three body attachments are found to be the primary cause of losses which deplete the electron density and hence results in the slow decrease of the threshold intensity.

  15. Variable pressure ionization detector for gas chromatography

    DOEpatents

    Buchanan, Michelle V.; Wise, Marcus B.

    1988-01-01

    Method and apparatus for differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated at pressures ranging from atmospheric to less than 1 torr. Through variation of the pressure within the ECD cell, the organic compounds are induced to either capture or emit electrons. Differentiation of isomeric compounds can be obtianed when, at a given pressure, one isomer is in the emission mode and the other is in the capture mode. Output of the ECD is recorded by chromatogram. The invention also includes a method for obtaining the zero-crossing pressure of a compound, defined as the pressure at which the competing emission and capture reactions are balanced and which may be correlated to the electron affinity of a compound.

  16. Electronic and structural ground state of heavy alkali metals at high pressure

    DOE PAGES

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; ...

    2015-02-17

    Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of themore » valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.« less

  17. Electronically-Scanned Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Coe, C. F.; Parra, G. T.; Kauffman, R. C.

    1984-01-01

    Sensors not pneumatically switched. Electronic pressure-transducer scanning system constructed in modular form. Pressure transducer modules and analog to digital converter module small enough to fit within cavities of average-sized wind-tunnel models. All switching done electronically. Temperature controlled environment maintained within sensor modules so accuracy maintained while ambient temperature varies.

  18. Observation of collisionless heating of low energy electrons in low pressure inductively coupled argon plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Min-Hyong; Lee, Hyo-Chang; Chung, Chin-Wook

    2008-12-01

    Collisionless heating of low energy electrons was observed in low pressure argon rf-biased inductively coupled plasmas (ICPs) by measurement of the electron energy distribution function (EEDF). When only capacitive power (bias) was supplied, the EEDF in the discharge was a bi-Maxwellian distribution with two electron groups. It was found that the low energy electrons were heated up significantly even with a little inductive power (<20 W) even when the discharge was in E mode. Due to the low gas pressure and low temperature of low energy electrons (close to the energy of the Ramsauer minimum), the collisional heating of low energy electrons appears to be negligible. Therefore, this effective heating of the low energy electrons showed a direct experimental evidence of the collisionless heating by inductive field. The significant heating of low energy electrons in E mode indicates that collisionless heating in the skin layer is an important electron heating mechanism of low pressure ICP even when the discharge is in E mode.

  19. Pressure effects on the electronic properties in CeCoIn5: A first-principle study

    NASA Astrophysics Data System (ADS)

    Medeiros, Gustavo; Gonzalez, J. L.; Scopel, Wanderlã L.

    2017-11-01

    Superconducting heavy fermions are exotic materials with strong electronic correlations. The temperature-pressure phase diagrams of some of these materials show a complex interplay between superconductivity and magnetism that is essential to understand the physical properties of these systems. In this work, first principle calculations are performed in order to study the pressure effects on the electronic correlations in the CeCoIn5 system, which is superconducting at ambient pressure with Tc = 2.3 K. The density functional theory (DFT) method was used to include on-site coulomb repulsions (U) at the d (Co and In) and f (Ce) electrons of the CeCoIn5 compound. External applied pressures were simulated by correlating an applied pressure with a reduction of the volume of the unit cell, but keeping constant the c/a relation, as reported in experiments. Our findings reveal that the U parameters for all atomic species increase linearly with the pressure (P), being this effect higher for the f-electrons of the cerium ions, where dU / dP = 1.2 eV/GPa. In summary, these results not only suggest that the pressure effect can be correlated with an increase in the electronic correlations in the CeCoIn5 compound, as also, the work allows quantify this effect.

  20. An Electronic Pressure Profile Display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPI) unit which interfaces with a host computer. The host computer collects the pressure data from the DPI unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  1. An electronic pressure profile display system for aeronautic test facilities

    NASA Technical Reports Server (NTRS)

    Woike, Mark R.

    1990-01-01

    The NASA Lewis Research Center has installed an Electronic Pressure Profile Display system. This system provides for the real-time display of pressure readings on high resolution graphics monitors. The Electronic Pressure Profile Display system will replace manometer banks currently used in aeronautic test facilities. The Electronic Pressure Profile Display system consists of an industrial type Digital Pressure Transmitter (DPT) unit which interfaces with a host computer. The host computer collects the pressure data from the DPT unit, converts it into engineering units, and displays the readings on a high resolution graphics monitor in bar graph format. Software was developed to accomplish the above tasks and also draw facility diagrams as background information on the displays. Data transfer between host computer and DPT unit is done with serial communications. Up to 64 channels are displayed with one second update time. This paper describes the system configuration, its features, and its advantages over existing systems.

  2. Mechanical behavior, electronic and phonon properties of ZrB12 under pressure

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hong; Yong, Yong-Liang; Cui, Hong-Ling; Zhang, Rui-Zhou

    2018-06-01

    The mechanical, phonon and electronic properties of ZrB12 under pressure are investigated by first-principles calculations. The research shows that ZrB12 is mechanically and dynamically stable up to 100 GPa. The elastic constants, bulk modulus B, shear modulus G, hardness Hv, B/G ratio, Debye temperature under different pressures are systematically investigated. The calculation of electronic properties shows that ZrB12 has metallic character. The Zr-d states dominate the DOS at the Fermi level, and the total DOS and PDOS change slightly with the increasing pressure. DOS (Ef) first decreases, then increases with the increasing pressure. At 50 GPa, ZrB12 has less electron carriers. The analysis of electron localization function shows that the strong B-B and Zr-B covalent bonds may be responsible for the high hardness and stability.

  3. Role of 5f electrons in the structural stability of light actinide (Th-U) mononitrides under pressure.

    PubMed

    Modak, P; Verma, Ashok K

    2016-03-28

    Pressure induced structural sequences and their mechanism for light actinide (Th-U) mononitrides were studied as a function of 5f-electron number using first-principles total energy and electronic structure calculations. Zero pressure lattice constants, bulk module and C11 elastic module vary systematically with 5f-electron number implying its direct role on crystal binding. There is a critical 5f-electron number below which the system makes B1-B2 and above it B1-R3̄m-B2 structural sequence under pressure. Also, the B1-B2 transition pressure increases with increasing 5f-electron number whereas an opposite trend is obtained for the B1-R3̄m transition pressure. The ascending of N p anti-bonding states through the Fermi level at high pressure is responsible for the structural instability of the system. Above the critical 5f-electron number in the system a narrow 5f-band occurs very close to the Fermi level which allows the system to lower its symmetry via band Jahn-Teller type lattice distortion and the system undergoes a B1-R3̄m phase transition. However, below the critical 5f-electron number this mechanism is not favorable due to a lack of sufficient 5f-state occupancy and thus the system undergoes a B1-B2 phase transition like other ionic solids.

  4. Electronic and structural properties of Lu under pressure: Relation to structural phases of the rare-earth metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Min, B.I.; Oguchi, T.; Jansen, H.J.F.

    1986-07-15

    Ground-state electronic and structural properties of Lu under pressure are investigated with use of the self-consistent all-electron total-energy linear muffin-tin orbital band-structure method within a local-density-functional approximation. Pressure-induced structural transitions are found to occur in the following sequence: hcp--(Sm-type)--dhcp--fcc, which is the same as that observed in the crystal structures of the trivalent rare-earth metals with decreasing atomic number. This structural transition is correlated with the increase in the number of d-italic electrons under pressure.

  5. Comparison of the pressure dependences of Tc in the trivalent d -electron superconductors Sc, Y, La, and Lu up to megabar pressures

    NASA Astrophysics Data System (ADS)

    Debessai, M.; Hamlin, J. J.; Schilling, J. S.

    2008-08-01

    Whereas double hcp (dhcp) La superconducts at ambient pressure with Tc≃5K , the other trivalent d -electron metals Sc, Y, and Lu only superconduct if high pressures are applied. Earlier measurements of the pressure dependence of Tc for Sc and Lu metal are here extended to much higher pressures. Whereas Tc for Lu increases monotonically with pressure to 12.4 K at 174 GPa (1.74 Mbar), Tc for Sc reaches 19.6 K at 107 GPa, the second highest value observed for any elemental superconductor. At higher pressures a phase transition occurs whereupon Tc drops to 8.31 K at 111 GPa. The Tc(P) dependences for Sc and Lu are compared with those of Y and La. An interesting correlation is pointed out between the value of Tc and the fractional free volume available to the conduction electrons outside the ion cores, a quantity which is directly related to the number of d electrons in the conduction band.

  6. Mechanism of Runaway Electron Generation at Gas Pressures from a Few Atmospheres to Several Tens of Atmospheres

    NASA Astrophysics Data System (ADS)

    Zubarev, N. M.; Ivanov, S. N.

    2018-04-01

    The mechanism of runaway electron generation at gas pressures from a few atmospheres to several tens of atmospheres is proposed. According to this mechanism, the electrons pass into the runaway mode in the enhanced field zone that arises between a cathode micropoint—a source of field-emission electrons—and the region of the positive ion space charge accumulated near the cathode in the tails of the developing electron avalanches. As a result, volume gas ionization by runaway electrons begins with a time delay required for the formation of the enhanced field zone. This process determines the delay time of breakdown. The influence of the gas pressure on the formation dynamics of the space charge region is analyzed. At gas pressures of a few atmospheres, the space charge arises due to the avalanche multiplication of the very first field-emission electron, whereas at pressures of several tens of atmospheres, the space charge forms as a result of superposition of many electron avalanches with a relatively small number of charge carriers in each.

  7. Electronic and structural ground state of heavy alkali metals at high pressure

    NASA Astrophysics Data System (ADS)

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-01

    Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  8. [A design and study of a novel electronic device for cuff-pressure monitoring].

    PubMed

    Wang, Shupeng; Li, Wei; Li, Wen; Song, Dejing; Chen, Desheng; Duan, Jun; Li, Chen; Li, Gang

    2017-06-01

    To design a novel electronic device for measuring the pressure in the cuff of the artificial airway; and to study the advantage of this device on continuous and intermittent cuff pressure monitoring. (1) a portable electronic device for cuff pressure measurement was invented, which could turn pressure signal into electrical signal through a pressure transducer. Meantime, it was possible to avoid pressure leak from the joint and the inside of the apparatus by modified Luer taper and sophisticated design. If the cuff pressure was out of the normal range, the apparatus could release a sound and light alarm. (2) Six traditional mechanical manometers were used to determine the cuff pressure in 6 tracheal tubes. The cuff pressure was maintain at 30 cmH 2 O (1 cmH 2 O = 0.098 kPa) by the manometer first, and repeated every 30 seconds for 4 times. (3) Study of continuous cuff pressure monitoring: We used a random number generator to randomize 6 tracheal tubes, 6 mechanical manometers and 6 our products by number 1-6, which has the same number of a group. Every group was further randomized into two balanced groups, one group used the mechanical manometer first, and the other used our product first. The baseline pressure was 30 cmH 2 O, measurement was performed every 4 hours for 6 times. When traditional mechanical manometer was used for cuff pressure monitoring, cuff pressure was decreased by an average of 2.9 cmH 2 O for each measurement (F = 728.2, P = 0.000). In study of continually monitoring, at each monitoring point, the pressure measured by electronic manometer was higher than the mechanical manometer. All the pressures measured by mechanical manometer were dropped below 20 cmH 2 O at 8th hour, and there was no pressure decrease below 20 cmH 2 O measured by electronic manometer in 24 hours by contrast. In study of intermittent monitoring, the same result was found. The pressure was dropped significantly with time when measured by mechanical manometer (F = 61.795, P = 0.000), the drops below 20 cmH 2 O began at 8th hour; but when measured by electronic manometer, all the value stayed unchanged around the baseline in 24 hours (F = 0.511, P = 0.796). Compared with traditional mechanical manometer, cuff pressures monitored by our novel electronic manometer were steadier in both continuous and intermittent monitoring. The device is compact and convenient, and can provide a good solution for continuously monitor of the tracheal cuff pressure.

  9. Soft, Transparent, Electronic Skin for Distributed and Multiple Pressure Sensing

    PubMed Central

    Levi, Alessandro; Piovanelli, Matteo; Furlan, Silvano; Mazzolai, Barbara; Beccai, Lucia

    2013-01-01

    In this paper we present a new optical, flexible pressure sensor that can be applied as smart skin to a robot or to consumer electronic devices. We describe a mechano-optical transduction principle that can allow the encoding of information related to an externally applied mechanical stimulus, e.g., contact, pressure and shape of contact. The physical embodiment that we present in this work is an electronic skin consisting of eight infrared emitters and eight photo-detectors coupled together and embedded in a planar PDMS waveguide of 5.5 cm diameter. When a contact occurs on the sensing area, the optical signals reaching the peripheral detectors experience a loss because of the Frustrated Total Internal Reflection and deformation of the material. The light signal is converted to electrical signal through an electronic system and a reconstruction algorithm running on a computer reconstructs the pressure map. Pilot experiments are performed to validate the tactile sensing principle by applying external pressures up to 160 kPa. Moreover, the capabilities of the electronic skin to detect contact pressure at multiple subsequent positions, as well as its function on curved surfaces, are validated. A weight sensitivity of 0.193 gr−1 was recorded, thus making the electronic skin suitable to detect pressures in the order of few grams. PMID:23686140

  10. Experimental verification of the role of electron pressure in fast magnetic reconnection with a guide field

    DOE PAGES

    Fox, W.; Sciortino, F.; v. Stechow, A.; ...

    2017-03-21

    We report detailed laboratory observations of the structure of a reconnection current sheet in a two-fluid plasma regime with a guide magnetic field. We observe and quantitatively analyze the quadrupolar electron pressure variation in the ion-diffusion region, as originally predicted by extended magnetohydrodynamics simulations. The projection of the electron pressure gradient parallel to the magnetic field contributes significantly to balancing the parallel electric field, and the resulting cross-field electron jets in the reconnection layer are diamagnetic in origin. Furthermore, these results demonstrate how parallel and perpendicular force balance are coupled in guide field reconnection and confirm basic theoretical models ofmore » the importance of electron pressure gradients for obtaining fast magnetic reconnection.« less

  11. Invasive blood pressure recording comparing nursing charts with an electronic monitor: a technical report.

    PubMed

    Wong, Benjamin T; Glassford, Neil J; Bion, Victoria; Chai, Syn Y; Bellomo, Rinaldo

    2014-03-01

    Blood pressure management (assessed using nursing charts) in the early phase of septic shock may have an effect on renal outcomes. Assessment of mean arterial pressure (MAP) values as recorded on nursing charts may be inaccurate. To determine the difference between hourly blood pressure values as recorded on the nursing charts and hourly average blood pressure values over the corresponding period obtained electronically from the bedside monitor. We studied 20 patients with shock requiring vasopressor support and invasive blood pressure monitoring. Hourly blood pressure measurements were recorded on the nursing charts over a 12-hour period. Blood pressure values recorded every 10 minutes were downloaded from electronic patient monitors over the corresponding period. The hourly average of the 10-minute blood pressure values was compared with the measurements recorded on the nursing charts. We assessed 240 chart readings and 1440 electronic recordings. Average chart MAP was 72.54 mmHg and average electronic monitor MAP was 71.54 mmHg. MAP data from the two sources showed a strong correlation (ρ0.71, P < 0.005). Bland-Altman assessment revealed acceptable agreement, with a mean bias of 1mmHg and 95% limits of agreement of -11.76 mmHg and 13.76 mmHg. Using average data over 6 hours, 95% limits of agreement narrowed to -6.79mmHg and 8.79mmHg. With multiple measurements over time, mean blood pressure as recorded on nursing charts reasonably approximates mean blood pressure recorded on the monitor.

  12. Introduction of Electronic Pressure Scanning at the Royal Aerospace Establishment

    DTIC Science & Technology

    1991-09-01

    electronic pressure scanning system could offer an acciracy the same as or better than that of the mechanical pressure switch system it would replace and...described it as comparable with the kind of problem encountered with pressures in a rotating pressure switch system and suggested two ways around the...sufficient to reduce the system random noise to less than the systematic errors for data from the surface of a pressure plotted model A mechanical pressure

  13. Probing the electronic and local structural changes across the pressure-induced insulator-to-metal transition in VO2

    NASA Astrophysics Data System (ADS)

    Marini, C.; Bendele, M.; Joseph, B.; Kantor, I.; Mitrano, M.; Mathon, O.; Baldini, M.; Malavasi, L.; Pascarelli, S.; Postorino, P.

    2014-11-01

    Local and electronic structures of vanadium in \\text{VO}2 are studied across the high-pressure insulator-to-metal (IMT) transition using V K-edge x-ray absorption spectroscopy. Unlike the temperature-induced IMT, pressure-induced metallization leads to only subtle changes in the V K-edge prepeak structure, indicating a different mechanism involving smaller electronic spectral weight transfer close to the chemical potential. Intriguingly, upon application of the hydrostatic pressure, the electronic structure begins to show substantial changes well before the occurrence of the IMT and the associated structural transition to an anisotropic compression of the monoclinic metallic phase.

  14. Measuring the electronic transport properties of individual nano-objects under high pressures

    NASA Astrophysics Data System (ADS)

    Caillier, C.; Ayari, A.; Le Floch, S.; Féret, H.; Guiraud, G.; San-Miguel, A.

    2011-09-01

    We describe a setup to carry out electronic transport measurements under high pressures on individual nano-objects. It is based on a home-automated three-stage gas compressor working with argon or helium up to 1 GPa. The setup was successfully tested on contacted individual nanotubes, for which we evidence strong evolutions of the transport properties. These evolutions are related to fundamental issues such as the modification of the nano-object contact resistance, the pressure-induced modification of the nano-object geometry or pressure-induced changes in the intrinsic electronic properties of the nanosystem. A cryostat has also been adapted to the pressure cell, allowing combined pressure and temperature experiments down to 12 K.

  15. Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor.

    PubMed

    Zhou, Yuman; He, Jianxin; Wang, Hongbo; Qi, Kun; Nan, Nan; You, Xiaolu; Shao, Weili; Wang, Lidan; Ding, Bin; Cui, Shizhong

    2017-10-11

    The wearable electronic skin with high sensitivity and self-power has shown increasing prospects for applications such as human health monitoring, robotic skin, and intelligent electronic products. In this work, we introduced and demonstrated a design of highly sensitive, self-powered, and wearable electronic skin based on a pressure-sensitive nanofiber woven fabric sensor fabricated by weaving PVDF electrospun yarns of nanofibers coated with PEDOT. Particularly, the nanofiber woven fabric sensor with multi-leveled hierarchical structure, which significantly induced the change in contact area under ultra-low load, showed combined superiority of high sensitivity (18.376 kPa -1 , at ~100 Pa), wide pressure range (0.002-10 kPa), fast response time (15 ms) and better durability (7500 cycles). More importantly, an open-circuit voltage signal of the PPNWF pressure sensor was obtained through applying periodic pressure of 10 kPa, and the output open-circuit voltage exhibited a distinct switching behavior to the applied pressure, indicating the wearable nanofiber woven fabric sensor could be self-powered under an applied pressure. Furthermore, we demonstrated the potential application of this wearable nanofiber woven fabric sensor in electronic skin for health monitoring, human motion detection, and muscle tremor detection.

  16. [Fibromyalgia in men and women: comparison of the main clinical symptoms].

    PubMed

    Miró, Elena; Diener, Fabián N; Martínez, Ma Pilar; Sánchez, Ana I; Valenza, Marie Carmen

    2012-02-01

    The prevalence of fibromyalgia (FM) in males is much lower than in women. Thus, current knowledge about the syndrome has been developed from research with women. The aim of the present study is to analyze whether FM manifestations differ as a function of sex. Two clinical groups with FM (21 males and 21 women) and a control group of healthy men (n= 21) participated in the study. Several aspects of pain, sleep, fatigue, psychopathology, emotional distress and functional impact of FM were evaluated with an algometer and questionnaires. The clinical groups showed a significantly greater impairment than the control group in all the self-report measures. However, the FM patients only showed significant differences in the sensibility threshold to the pain, which was lower in the women. In addition, the best predictor of the experience of pain in males was sleep quality, and in the women, catastrofying pain. Our results suggest that the most effective therapeutic strategies to control pain may be different for men and women.

  17. Electronic simulation of a barometric pressure sensor for the meteorological monitor assembly

    NASA Technical Reports Server (NTRS)

    Guiar, C. N.; Duff, L. W.

    1982-01-01

    An analysis of the electronic simulation of barometric pressure used to self-test the counter electronics of the digital barometer is presented. The barometer is part of the Meteorological Monitor Assembly that supports navigation in deep space communication. The theory of operation of the digital barometer, the design details, and the verification procedure used with the barometric pressure simulator are presented.

  18. Effect of electron Monte Carlo collisions on a hybrid simulation of a low-pressure capacitively coupled plasma

    NASA Astrophysics Data System (ADS)

    Hwang, Seok Won; Lee, Ho-Jun; Lee, Hae June

    2014-12-01

    Fluid models have been widely used and conducted successfully in high pressure plasma simulations where the drift-diffusion and the local-field approximation are valid. However, fluid models are not able to demonstrate non-local effects related to large electron energy relaxation mean free path in low pressure plasmas. To overcome this weakness, a hybrid model coupling electron Monte Carlo collision (EMCC) method with the fluid model is introduced to obtain precise electron energy distribution functions using pseudo-particles. Steady state simulation results by a one-dimensional hybrid model which includes EMCC method for the collisional reactions but uses drift-diffusion approximation for electron transport in a fluid model are compared with those of a conventional particle-in-cell (PIC) and a fluid model for low pressure capacitively coupled plasmas. At a wide range of pressure, the hybrid model agrees well with the PIC simulation with a reduced calculation time while the fluid model shows discrepancy in the results of the plasma density and the electron temperature.

  19. End-boundary sheath potential, electron and ion energy distribution in the low-pressure non-ambipolar electron plasma

    NASA Astrophysics Data System (ADS)

    Chen, Lee; Chen, Zhiying; Funk, Merritt

    2013-12-01

    The end-boundary floating-surface sheath potential, electron and ion energy distribution functions (EEDf, IEDf) in the low-pressure non-ambipolar electron plasma (NEP) are investigated. The NEP is heated by an electron beam extracted from an inductively coupled electron-source plasma (ICP) through a dielectric injector by an accelerator located inside the NEP. This plasma's EEDf has a Maxwellian bulk followed by a broad energy continuum connecting to the most energetic group with energies around the beam energy. The NEP pressure is 1-3 mTorr of N2 and the ICP pressure is 5-15 mTorr of Ar. The accelerator is biased positively from 80 to 600 V and the ICP power range is 200-300 W. The NEP EEDf and IEDf are determined using a retarding field energy analyser. The EEDf and IEDf are measured at various NEP pressures, ICP pressures and powers as a function of accelerator voltage. The accelerator current and sheath potential are also measured. The IEDf reveals mono-energetic ions with adjustable energy and it is proportionally controlled by the sheath potential. The NEP end-boundary floating surface is bombarded by a mono-energetic, space-charge-neutral plasma beam. When the injected energetic electron beam is adequately damped by the NEP, the sheath potential is linearly controlled at almost a 1 : 1 ratio by the accelerator voltage. If the NEP parameters cannot damp the electron beam sufficiently, leaving an excess amount of electron-beam power deposited on the floating surface, the sheath potential will collapse and become unresponsive to the accelerator voltage.

  20. Miniature microwave plasmas generated in high pressure argon

    NASA Astrophysics Data System (ADS)

    Inoue, Kenichi; Stauss, Sven; Kim, Jaeho; Ito, Tsuyohito; Terashima, Kazuo

    2018-05-01

    Miniature microwave plasmas with diameters of approximately 1 mm were generated in high-pressure argon (0.1–5.0 MPa) using a microgap electrode. The microwave power required to sustain plasmas was 1–10 W, depending on the pressure. Strong electron-neutral bremsstrahlung emission, indicating an electron temperature of approximately 12000 K, was observed at high pressures (>1 MPa), and electron densities estimated from Stark broadening revealed high values on the order of 1023 m‑3. The analysis confirmed that the coefficient for the pressure shift of the Ar I line at 696.5 nm reported by Copley and Camm can be extended to 5 MPa.

  1. The Use of an Electron Microchannel as a Self-Extracting and Focusing Plasma Cathode Electron Gun

    NASA Astrophysics Data System (ADS)

    Cornish, S.; Khachan, J.

    2016-02-01

    A new and simple type of electron gun is presented. Unlike conventional electron guns, which require a heated filament or extractor, accelerator and focusing electrodes, this gun uses the collimated electron microchannels of an inertial electrostatic confinement (IEC) discharge to achieve the same outcome. A cylindrical cathode is placed coaxially within a cylindrical anode to create the discharge. Collimated beams of electrons and fast neutrals emerge along the axis of the cylindrical cathode. This geometry isolates one of the microchannels that emerge in a negatively biased IEC grid. The internal operating pressure range of the gun is 35-190 mTorr. A small aperture separates the gun from the main vacuum chamber in order to achieve a pressure differential. The chamber was operated at pressures of 4-12 mTorr. The measured current produced by the gun was 0.1-3 mA (0.2-14 mA corrected measurement) for discharge currents of 1-45 mA and discharge voltages of 0.5-12 kV. The collimated electron beam emerges from the aperture into the vacuum chamber. The performance of the gun is unaffected by the pressure differential between the vacuum chamber and the gun. This allows the aperture to be removed and the chamber pressure to be equal to the gun pressure if required.

  2. Electron temperatures within magnetic clouds between 2 and 4 AU: Voyager 2 observations

    NASA Astrophysics Data System (ADS)

    Sittler, E. C.; Burlaga, L. F.

    1998-08-01

    We have performed an analysis of Voyager 2 plasma electron observations within magnetic clouds between 2 and 4 AU identified by Burlaga and Behannon [1982]. The analysis has been confined to three of the magnetic clouds identified by Burlaga and Behannon that had high-quality data. The general properties of the plasma electrons within a magnetic cloud are that (1) the moment electron temperature anticorrelates with the electron density within the cloud, (2) the ratio Te/Tp tends to be >1, and (3) on average, Te/Tp~7.0. All three results are consistent with previous electron observations within magnetic clouds. Detailed analyses of the core and halo populations within the magnetic clouds show no evidence of either an anticorrelation between the core temperature TC and the electron density Ne or an anticorrelation between the halo temperature TH and the electron density. Within the magnetic clouds the halo component can contribute more than 50% of the electron pressure. The anticorrelation of Te relative to Ne can be traced to the density of the halo component relative to the density of the core component. The core electrons dominate the electron density. When the density goes up, the halo electrons contribute less to the electron pressure, so we get a lower Te. When the electron density goes down, the halo electrons contribute more to the electron pressure, and Te goes up. We find a relation between the electron pressure and density of the form Pe=αNeγ with γ~0.5.

  3. SENSITIVE PRESSURE GAUGE

    DOEpatents

    Ball, W.P.

    1961-01-01

    An electron multiplier device is described. It has a plurality of dynodes between an anode and cathode arranged to measure pressure, temperature, or other environmental physical conditions that proportionately iinfuences the quantity of gas molecules between the dynodes. The output current of the device is influenced by the reduction in electron multiplication at the dynodes due to energy reducing collisions of the electrons with the gas molecules between the dynodes. More particularly, the current is inversely proportional to the quantity of gas molecules, viz., the gas pressure. The device is, hence, extremely sensitive to low pressures.

  4. Gas pressure and electron density at the level of the active zone of hollow cathode arc discharges

    NASA Technical Reports Server (NTRS)

    Minoo, M. H.

    1984-01-01

    A model for the longitudinal variations of the partial pressures of electrons, ions, and neutral particles is proposed as a result of an experimental study of pressure variations at the level of the active zone as a function of the various discharge parameters of a hollow cathode arc. The cathode region where the temperature passes through its maximum is called active zone. The proposed model embodies the very important variations which the partial electron and neutral particles pressures undergo at the level of the active zone.

  5. Effect of high pressure on the photochemical reaction center from Rhodobacter sphaeroides R26.1.

    PubMed Central

    Gall, A; Ellervee, A; Bellissent-Funel, M C; Robert, B; Freiberg, A

    2001-01-01

    High-pressure studies on the photochemical reaction center from the photosynthetic bacterium Rhodobacter sphaeroides, strain R26.1, shows that, up to 0.6 GPa, this carotenoid-less membrane protein does not loose its three-dimensional structure at room temperature. However, as evidenced by Fourier-transform preresonance Raman and electronic absorption spectra, between the atmospheric pressure and 0.2 GPa, the structure of the bacterial reaction center experiences a number of local reorganizations in the binding site of the primary electron donor. Above that value, the apparent compressibility of this membrane protein is inhomogeneous, being most noticeable in proximity to the bacteriopheophytin molecules. In this elevated pressure range, no more structural reorganization of the primary electron donor binding site can be observed. However, its electronic structure becomes dramatically perturbed, and the oscillator strength of its Q(y) electronic transition drops by nearly one order of magnitude. This effect is likely due to very small, pressure-induced changes in its dimeric structure. PMID:11222309

  6. Density functional and theoretical study of the temperature and pressure dependency of the plasmon energy of solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Attarian Shandiz, M., E-mail: mohammad.attarianshandiz@mail.mcgill.ca; Gauvin, R.

    The temperature and pressure dependency of the volume plasmon energy of solids was investigated by density functional theory calculations. The volume change of crystal is the major factor responsible for the variation of valence electron density and plasmon energy in the free electron model. Hence, to introduce the effect of temperature and pressure for the density functional theory calculations of plasmon energy, the temperature and pressure dependency of lattice parameter was used. Also, by combination of the free electron model and the equation of state based on the pseudo-spinodal approach, the temperature and pressure dependency of the plasmon energy wasmore » modeled. The suggested model is in good agreement with the results of density functional theory calculations and available experimental data for elements with the free electron behavior.« less

  7. Plasma parameters in a multidipole plasma system

    NASA Astrophysics Data System (ADS)

    Ruscanu, D.; Anita, V.; Popa, G.

    Plasma potential and electron number densities and electron temperatures under bi-Maxwellian approximation for electron distribution function of the multidipole argon plasma source system were measured for a gas pressure ranging between 10-4 and 10-3 mbar and an anode-cathode voltage ranging between 40 and 120 V but a constant discharge current intensity. The first group, as ultimate or cold electrons and main electron plasma population, results by trapping of the slow electrons produced by ionisation process due to primary-neutral collisions. The trapping process is produced by potential well due to positive plasma potential with respect to the anode so that electron temperature of the ultimate electrons does not depend on both the gas pressure and discharge voltage. The second group, as secondary or hot electrons, results as degrading process of the primaries and their number density increases while their temperature decreases with the increase of both the gas pressure and discharge voltage.

  8. The refractive index and electronic gap of water and ice increase with increasing pressure

    PubMed Central

    Pan, Ding; Wan, Quan; Galli, Giulia

    2014-01-01

    Determining the electronic and dielectric properties of water at high pressure and temperature is an essential prerequisite to understand the physical and chemical properties of aqueous environments under supercritical conditions, for example, in the Earth interior. However, optical measurements of compressed ice and water remain challenging, and it has been common practice to assume that their band gap is inversely correlated with the measured refractive index, consistent with observations reported for hundreds of materials. Here we report ab initio molecular dynamics and electronic structure calculations showing that both the refractive index and the electronic gap of water and ice increase with increasing pressure, at least up to 30 GPa. Subtle electronic effects, related to the nature of interband transitions and band edge localization under pressure, are responsible for this apparently anomalous behaviour. PMID:24861665

  9. Pressure induced structural, electronic topological, and semiconductor to metal transition in AgBiSe2

    NASA Astrophysics Data System (ADS)

    Rajaji, V.; Malavi, Pallavi S.; Yamijala, Sharma S. R. K. C.; Sorb, Y. A.; Dutta, Utpal; Guin, Satya N.; Joseph, B.; Pati, Swapan K.; Karmakar, S.; Biswas, Kanishka; Narayana, Chandrabhas

    2016-10-01

    We report the effect of strong spin orbit coupling inducing electronic topological and semiconductor to metal transitions on the thermoelectric material AgBiSe2 at high pressures. The synchrotron X-ray diffraction and the Raman scattering measurement provide evidence for a pressure induced structural transition from hexagonal (α-AgBiSe2) to rhombohedral (β-AgBiSe2) at a relatively very low pressure of around 0.7 GPa. The sudden drop in the electrical resistivity and clear anomalous changes in the Raman line width of the A1g and Eg(1) modes around 2.8 GPa was observed suggesting a pressure induced electronic topological transition. On further increasing the pressure, anomalous pressure dependence of phonon (A1g and Eg(1)) frequencies and line widths along with the observed temperature dependent electrical resistivity show a pressure induced semiconductor to metal transition above 7.0 GPa in β-AgBiSe2. First principles theoretical calculations reveal that the metallic character of β-AgBiSe2 is induced mainly due to redistributions of the density of states (p orbitals of Bi and Se) near to the Fermi level. Based on its pressure induced multiple electronic transitions, we propose that AgBiSe2 is a potential candidate for the good thermoelectric performance and pressure switches at high pressure.

  10. Structural stability, electronic, magnetic and optical properties of zincblende Zn0.5V0.5Te under pressure

    NASA Astrophysics Data System (ADS)

    Yin, Zhu-Hua; Zhang, Jian-Min

    2016-10-01

    The structural stability, electronic, magnetic and optical properties of zincblende Zn0.5V0.5Te under pressures 0-5 GPa are investigated by the spin-polarized first-principles calculation. Under pressure, the Zn0.5V0.5Te is always half-metal with the total magnetic moment μtot of 3μB / cell mainly contributed by V2+ ion, but the spin-down channel opens a band gap. The Zn0.5V0.5Te also behaves in a ductile manner and is mechanical stable until 3.78 GPa pressure. The static dielectric function ε1 (0) and refractive index n (0) increase with pressure. The two absorption peaks located in energy regions 0-20 eV and 35-50 eV not only increase but also shift to the higher energy region (blue shift) with pressure. So the electronic and optical properties of Zn0.5V0.5Te could be tuned through external pressure, which is beneficial to the electronic and optical applications.

  11. A nanofiber based artificial electronic skin with high pressure sensitivity and 3D conformability

    NASA Astrophysics Data System (ADS)

    Zhong, Weibin; Liu, Qiongzhen; Wu, Yongzhi; Wang, Yuedan; Qing, Xing; Li, Mufang; Liu, Ke; Wang, Wenwen; Wang, Dong

    2016-06-01

    Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin.Pressure sensors with 3D conformability are highly desirable components for artificial electronic skin or e-textiles that can mimic natural skin, especially for application in real-time monitoring of human physiological signals. Here, a nanofiber based electronic skin with ultra-high pressure sensitivity and 3D conformability is designed and built by interlocking two elastic patterned nanofibrous membranes. The patterned membrane is facilely prepared by casting conductive nanofiber ink into a silicon mould to form an array of semi-spheroid-like protuberances. The protuberances composed of intertwined elastic POE nanofibers and PPy@PVA-co-PE nanofibers afford a tunable effective elastic modulus that is capable of capturing varied strains and stresses, thereby contributing to a high sensitivity for pressure sensing. This electronic skin-like sensor demonstrates an ultra-high sensitivity (1.24 kPa-1) below 150 Pa with a detection limit as low as about 1.3 Pa. The pixelated sensor array and a RGB-LED light are then assembled into a circuit and show a feasibility for visual detection of spatial pressure. Furthermore, a nanofiber based proof-of-concept wireless pressure sensor with a bluetooth module as a signal transmitter is proposed and has demonstrated great promise for wireless monitoring of human physiological signals, indicating a potential for large scale wearable electronic devices or e-skin. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02678h

  12. The transition mechanisms of the E to H mode and the H to E mode in an inductively coupled argon-mercury mixture discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao; Yu, Peng-Cheng; Liu, Yu

    2015-10-15

    In our experiment, the transition points between the two operational modes of capacitive coupling (E mode) and inductive coupling (H mode) were investigated at a wide range of mercury vapor pressures in an inductively coupled plasma, varying with the input radio-frequency powers and the total filling pressures (10 Pa–30 Pa). The electron temperatures were calculated versus with the mercury vapor pressures for different values of the total filling pressures. The transition power points and electron density also were measured in this study. It is shown that the transition powers, whether the E to H mode transition or the H to E modemore » transition, are lower than that of the argon discharge, and these powers almost increase with the mercury vapor pressure rising. However, the transition electron density follows an inverse relationship with the mercury vapor pressures compared with the transition powers. In addition, at the lower pressures and higher mercury vapor pressures, an inverse hysteresis was observed clearly, which did not appear in the argon gas plasma. We suggest that all these results are attributed to the electron-neutral collision frequency changed with the additional mercury vapor pressures.« less

  13. Electron Density Distribution Changes of Magnesiowüstite With Pressure

    NASA Astrophysics Data System (ADS)

    Diamond, M. R.; Popov, D.; Shen, G.; Jeanloz, R.

    2017-12-01

    Magnesiowüstite is one of the dominant minerals in the earth's lower mantle; its density and elasticity, substantially altered by its spin crossover, have direct consequence to interpreting deep-earth geophysical data. High-resolution single-crystal x-ray diffraction data can portray the 3-dimensional distribution of electron density through the Fourier transform of measured form factors. Here we present experimentally measured changes in electron density distribution of single-crystal (Mg.85,Fe.15)O as it goes through its iron(II) high-spin to low-spin electronic transition between about 40 and 60 GPa [Lin and Tsuchiya, 2008], in a diamond-anvil cell. As (Mg,Fe)O undergoes a pressure induced spin crossover (from high spin at low pressure to low spin at high pressure) due to overlap of its eg orbitals, the t2g orbitals become more pronounced to due a higher population of electrons, while the eg orbitals diminish. The spin splitting energy becomes increasingly unfavorable compared to the spin orbital pairing energy. By looking at the population of electrons at different directions in real space, we directly observe these changes in orbital occupation leading up to and during the spin crossover. Since high-Mg magnesiowüstite has a high symmetry structure at these pressure conditions, detecting relative changes in electron density distribution (comparing subsequent pressure steps) is feasible by collecting high resolution data offered by high-energy X rays and wide opening-angle diamond-anvil cells.

  14. High pressure induced crossover between metal and insulator conductivity type in low dimensionality electron systems

    NASA Astrophysics Data System (ADS)

    Dizhur, E.; Voronovskii, A.; Kostyleva, I.; Kotel'nikov, I.; Zaitsev-Zotov, S.

    2011-12-01

    We report the results of our recent experimental studies concerned with electron systems of lower dimensionality the conductivity of which may be toggled between metallic and insulating regime appliing high pressure. The objects under present study include: a) tunneling through Shottky barrier into two-dimension (2D) electron system formed in the δ-doped layer in GaAs under hydrostatic pressure up to 3 GPa in a cylinder-piston cell; b) quasi-one-dimension (1D) `insulator' crystals NbS3 which obtain metallic conductivity type at pressures above 5.5 GPa in `toroid' anvils.

  15. Pressure-induced structural and electronic transitions, metallization, and enhanced visible-light responsiveness in layered rhenium disulphide

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Wang, Yonggang; Qu, Jingyu; Zhu, Qiang; Yang, Wenge; Zhu, Jinlong; Wang, Liping; Zhang, Weiwei; He, Duanwei; Zhao, Yusheng

    2018-06-01

    Triclinic rhenium disulphide (Re S2 ) is a promising candidate for postsilicon electronics because of its unique optic-electronic properties. The electrical and optical properties of Re S2 under high pressure, however, remain unclear. Here we present a joint experimental and theoretical study on the structure, electronic, and vibrational properties, and visible-light responses of Re S2 up to 50 GPa. There is a direct-to-indirect band-gap transition in 1 T -Re S2 under low-pressure regime up to 5 GPa. Upon further compression, 1 T -Re S2 undergoes a structural transition to distorted-1 T' phase at 7.7 GPa, followed by the isostructural metallization at 38.5 GPa. Both in situ Raman spectrum and electronic structure analysis reveal that interlayer sulfur-sulfur interaction is greatly enhanced during compression, leading to the remarkable modifications on the electronic properties observed in our subsequent experimental measurements, such as band-gap closure and enhanced photoresponsiveness. This study demonstrates the critical role of pressure in tuning materials properties and the potential usage of layered Re S2 for pressure-responsive optoelectronic applications.

  16. Electron-excited energy dispersive x-ray spectrometry in the variable pressure scanning electron microscope (EDS/VPSEM): it's not microanalysis anymore!

    NASA Astrophysics Data System (ADS)

    Newbury, Dale E.; Ritchie, Nicholas W. M.

    2015-10-01

    X-ray spectra suffer significantly degraded spatial resolution when measured in the variable-pressure scanning electron microscope (VPSEM, chamber pressure 1 Pa to 2500 Pa) as compared to highvacuum SEM (operating pressure < 10 mPa). Depending on the gas path length, electrons that are scattered hundreds of micrometers outside the focused beam can contribute 90% or more of the measured spectrum. Monte Carlo electron trajectory simulation, available in NIST DTSA-II, models the gas scattering and simulates mixed composition targets, e.g., particle on substrate. The impact of gas scattering at the major (C > 0.1 mass fraction), minor (0.01 <= C <= 0.1), and trace (C < 0.01) constituent levels can be estimated. NIST DTSA-II for Java-platforms is available free at: http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html).

  17. A stable compound of helium and sodium at high pressure

    DOE PAGES

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; ...

    2017-02-06

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less

  18. A stable compound of helium and sodium at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. We also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less

  19. A stable compound of helium and sodium at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.

    Helium is generally understood to be chemically inert and this is due to its extremely stable closed-shell electronic configuration, zero electron affinity and an unsurpassed ionization potential. It is not known to form thermodynamically stable compounds, except a few inclusion compounds. Here, using the ab initio evolutionary algorithm USPEX and subsequent high-pressure synthesis in a diamond anvil cell, we report the discovery of a thermodynamically stable compound of helium and sodium, Na 2He, which has a fluorite-type structure and is stable at pressures >113 GPa. We show that the presence of He atoms causes strong electron localization and makes thismore » material insulating. This phase is an electride, with electron pairs localized in interstices, forming eight-centre two-electron bonds within empty Na 8 cubes. As a result, we also predict the existence of Na 2HeO with a similar structure at pressures above 15 GPa.« less

  20. Generation of runaway electron beams in high-pressure nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Burachenko, A. G.; Baksht, E. Kh

    2017-07-01

    In this paper the results of experimental studies of the amplitude-temporal characteristics of a runaway electron beam, as well as breakdown voltage in nitrogen are presented. The voltage pulses with the amplitude in incident wave ≈120 kV and the rise time of ≈0.3 ns was used. The supershort avalanche electron beam (SAEB) was detected by a collector behind the flat anode. The amplitude-time characteristics of the voltage and SAEB current were studied with subnanosecond time resolution. The maximum pressure at which a SAEB is detectable by collector was ∼1 MPa. This pressure increases with decreasing the voltage rise time. The waveforms of the discharge and runaway electron beam currents was synchronized with the voltage pulses. The mechanism of the runaway electron generation in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  1. A generalized electron energy probability function for inductively coupled plasmas under conditions of nonlocal electron kinetics

    NASA Astrophysics Data System (ADS)

    Mouchtouris, S.; Kokkoris, G.

    2018-01-01

    A generalized equation for the electron energy probability function (EEPF) of inductively coupled Ar plasmas is proposed under conditions of nonlocal electron kinetics and diffusive cooling. The proposed equation describes the local EEPF in a discharge and the independent variable is the kinetic energy of electrons. The EEPF consists of a bulk and a depleted tail part and incorporates the effect of the plasma potential, Vp, and pressure. Due to diffusive cooling, the break point of the EEPF is eVp. The pressure alters the shape of the bulk and the slope of the tail part. The parameters of the proposed EEPF are extracted by fitting to measure EEPFs (at one point in the reactor) at different pressures. By coupling the proposed EEPF with a hybrid plasma model, measurements in the gaseous electronics conference reference reactor concerning (a) the electron density and temperature and the plasma potential, either spatially resolved or at different pressure (10-50 mTorr) and power, and (b) the ion current density of the electrode, are well reproduced. The effect of the choice of the EEPF on the results is investigated by a comparison to an EEPF coming from the Boltzmann equation (local electron kinetics approach) and to a Maxwellian EEPF. The accuracy of the results and the fact that the proposed EEPF is predefined renders its use a reliable alternative with a low computational cost compared to stochastic electron kinetic models at low pressure conditions, which can be extended to other gases and/or different electron heating mechanisms.

  2. First-principles predictions of structural, mechanical and electronic properties of βTiNb under high pressure

    NASA Astrophysics Data System (ADS)

    Wang, Z. P.; Fang, Q. H.; Li, J.; Liu, B.

    2018-04-01

    Structural, mechanical and electronic properties of βTiNb alloy under high pressure have been investigated based on the density functional theory (DFT). The dependences of dimensionless volume ratio, elastic constants, bulk modulus, Young's modulus, shear modulus, ductile/brittle, anisotropy and Poisson's ratio on applied pressure are all calculated successfully. The results reveal that βTiNb alloy is mechanically stable under pressure below 23.45 GPa, and the pressure-induced phase transformation could occur beyond this critical value. Meanwhile, the applied pressure can effectively promote the mechanical properties of βTiNb alloy, including the resistances to volume change, elastic deformation and shear deformation, as well as the material ductility and metallicity. Furthermore, the calculated electronic structures testify that βTiNb alloy performs the metallicity and the higher pressure reduces the structural stability of unit cell.

  3. Experimenting With Baroreceptor Reflexes

    NASA Technical Reports Server (NTRS)

    Eckberg, Dwain L.; Goble, Ross L.

    1988-01-01

    Carotid arteries stimulated by pressure or suction on neck. Baro-Cuff is silicone-rubber chamber that fits on front of subject's neck. Electronic system, stepping motor, bellows, and umbilical tube furnish controlled pressure to chamber. Pressure sensor provides feedback to microprocessor in electronic system. Developed to study blood-pressure-reflex responses of astronauts in outer space. Useful for terrestrial studies of patients with congestive heart failure, chronic diabetes mellitus, and other conditions in which blood-pressure-reflex controls behave abnormally.

  4. An electronic circuit that detects left ventricular ejection events by processing the arterial pressure waveform

    NASA Technical Reports Server (NTRS)

    Gebben, V. D.; Webb, J. A., Jr.

    1972-01-01

    An electronic circuit for processing arterial blood pressure waveform signals is described. The circuit detects blood pressure as the heart pumps blood through the aortic valve and the pressure distribution caused by aortic valve closure. From these measurements, timing signals for use in measuring the left ventricular ejection time is determined, and signals are provided for computer monitoring of the cardiovascular system. Illustrations are given of the circuit and pressure waveforms.

  5. Innovative Pressure Sensor Platform and Its Integration with an End-User Application

    PubMed Central

    Flores-Caballero, Antonio; Copaci, Dorin; Blanco, María Dolores; Moreno, Luis; Herrán, Jaime; Fernández, Iván; Ochoteco, Estíbaliz; Cabañero, German; Grande, Hans

    2014-01-01

    This paper describes the fully integration of an innovative and low-cost pressure sensor sheet based on a bendable and printed electronics technology. All integration stages are covered, from most low-level functional system, like physical analog sensor data acquisition, followed by embedded data processing, to end user interactive visual application. Data acquisition embedded software and hardware was developed using a Rapid Control Prototyping (RCP). Finally, after first electronic prototype successful testing, a Taylor-made electronics was developed, reducing electronics volume to 3.5 cm × 6 cm × 2 cm with a maximum power consumption of 765 mW for both electronics and pressure sensor sheet. PMID:24922455

  6. Electron mass in dilute nitrides and its anomalous dependence on hydrostatic pressure.

    PubMed

    Pettinari, G; Polimeni, A; Masia, F; Trotta, R; Felici, M; Capizzi, M; Niebling, T; Stolz, W; Klar, P J

    2007-04-06

    The dependence of the electron mass on hydrostatic pressure P in N-diluted GaAs1-xNx (x=0.10% and 0.21%) is investigated by magnetophotoluminescence. Exceedingly large fluctuations (up to 60%/kbar) in the electron mass with increasing P are found. These originate from a pressure-driven tuning of the hybridization degree between the conduction band minimum and specific nitrogen-related states. Present results suggest a hierarchy between different nitrogen complexes as regards the extent of the perturbation these complexes exert on the electronic properties of the GaAs host.

  7. Pain Response after Maximal Aerobic Exercise in Adolescents across Weight Status

    PubMed Central

    Stolzman, Stacy; Danduran, Michael; Hunter, Sandra K; Bement, Marie Hoeger

    2015-01-01

    Introduction Pain reports are greater with increasing weight status, and exercise can reduce pain perception. It is unknown however, whether exercise can relieve pain in adolescents of varying weight status. The purpose of this study was to determine if adolescents across weight status report pain relief following high intensity aerobic exercise (exercise-induced hypoalgesia [EIH]). Methods 62 adolescents (15.1±1.8 years, 29 males) participated in three sessions: 1) Pressure pain thresholds (PPTs) before and after quiet rest, clinical pain (McGill Pain Questionnaire), and physical activity levels (self-report and ActiSleep Plus Monitors) were measured; 2) PPTs were measured with a computerized algometer at the 4th finger nailbed, middle deltoid muscle, and quadriceps muscle before and after maximal oxygen uptake test (VO2 max Bruce Treadmill Protocol); and 3) Body composition was measured with Dual-energy X-ray absorptiometry. Results All adolescents met criteria for VO2 max. Based on body mass index z-score, adolescents were categorized as normal weight (n=33) or overweight/obese (n=29). PPTs increased following exercise (EIH) and were unchanged with quiet rest (trial × session: p=0.02). EIH was similar across the 3 sites and between normal weight and overweight/obese adolescents. Physical activity and clinical pain were not correlated with EIH. Overweight/obese adolescents had similar absolute VO2 max (L·min-1) but lower relative VO2 max (ml·kg-1·min-1) compared with normal weight adolescents. When adolescents were categorized using FitnessGram standards as unfit (n=15) and fit (n=46), the EIH response was similar between fitness levels. Conclusion This study is the first to establish that adolescents experience EIH in both overweight and normal weight youth. EIH after high intensity aerobic exercise was robust in adolescents regardless of weight status and not influenced by physical fitness. PMID:25856681

  8. The effect of myofascial release and microwave diathermy combined with acupuncture versus acupuncture therapy in tension-type headache patients: A pragmatic randomized controlled trial.

    PubMed

    Georgoudis, George; Felah, Bledjana; Nikolaidis, Pantelis; Damigos, Dimitrios

    2018-04-01

    Nonpharmacological therapies for tension-type headache (TTH) and cervicogenic cephalalgia are often a treatment choice, despite the weak to moderate evidence. The aim of this study was to compare the effectiveness of an acupuncture/stretching protocol versus acupuncture/stretching plus physiotherapy techniques, in patients with TTH cephalalgia. A single-blind, prospective, multicentre, randomized controlled trial was designed considering the pragmatic situation of administering such protocols and treating the 44 headache patients participating in this study. The patients were randomly assigned in 2 treatment groups (control group, n = 20, acupuncture/stretching; experimental group, n = 24, acupuncture/stretching plus physiotherapy) and completed 10 treatment sessions within 4 weeks with measurements taking place before treatment, after the fifth treatment and after the 10th treatment. The mechanical pressure pain threshold (PPT) was considered as the main outcome measure, using a mechanical algometer to measure 7 bilateral somatic points. Acupuncture in both groups included 17-20 acupuncture points, whereas stretching was initially taught and subsequently self-administered (self-stretches), following a standardized set of movements of the cervical spine. Physiotherapy consisted of microwave diathermy and myofascial release with hands-on techniques. An improvement was noted in both groups/treatments regarding the main outcome measure PPT, all the way from the first to fifth and the 10th treatment, at all measuring sites and at all measurements in both groups (p < .001). When comparing the 2 groups, differences were noted after the 10th treatment (p < .05). In conclusion, patients with TTH headache were benefited from acupuncture and stretching but further PPT improvements were evidenced when physiotherapy hands-on techniques were added. In clinical terms, the combination of physiotherapy in the form of myofascial release and microwave diathermy with acupuncture and stretching in order to improve the analgesic effect (PPT) is strongly recommended. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Breaking The Ion Frozen-in Condition Via The Non-gyrotropic Pressure Effect In Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Dai, L.; Wang, C.; Angelopoulos, V.; Glassmeier, K. H.

    2016-12-01

    For magnetic reconnection to proceed, the frozen-in condition for both ion fluid and electron fluid in a localized diffusion region must be violated. In the framework of fluid, the frozen-in can be broken by inertial effects, thermal pressure effects, or inter-species collisions. An essential question in reconnection physics is what effect breaks the ion/electron frozen-in in the diffusion region. We present clear in-situ evidence that the off-diagonal pressure tensor, which corresponds to a non-gyrotropic pressure effect, is mainly responsible for breaking the ion frozen-in condition in reconnection. The non-gyrotropic pressure tensor is a fluid manifestation of ion demagnetization in reconnection. As our experiences indicate, we feel the need to clarify several conceptual points regarding the approach to studying diffusion region. 1) Conceptually, the ion/electron momentum equations ("ion/electron Ohm's law"), rather than the generalized Ohm's law (Rossi and Olbert,1970, equation [12.25] ), are appropriate for investigating the fronzen-in or decoupling of individual fluid species. 2) The reconnection electric field is equally explainable in terms of ion momentum or electron momentum equation.

  10. Pressure tuning the lattice and optical response of silver sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhao, E-mail: zhaozhao@stanford.edu; Wei, Hua; Mao, Wendy L.

    2016-06-27

    Binary transition metal chalcogenides have attracted increasing attention for their unique structural and electronic properties. High pressure is a powerful tool for tuning the lattice and electronic structure of transition metal chalcogenides away from their pristine states. In this work, we systematically studied the in situ structural and optical behavior of silver sulfide (Ag{sub 2}S) under pressure by synchrotron X-ray diffraction and infrared spectroscopy measurements in a diamond anvil cell. Upon compression, Ag{sub 2}S undergoes structural symmetrization accompanied by a series of structural transitions while the crystallographic inequivalence of the two Ag sites is maintained. Electronically, pressure effectively tunes themore » ambient semiconducting Ag{sub 2}S into a metal at ∼22 GPa. Drude model analysis shows that the optical conductivity evolves significantly, reaching the highest value of 100 Ω{sup −1} cm{sup −1} at ∼40 GPa. Our results highlight the structural and electronic tunability of silver chalcogenides as a function of pressure and suggest the potential of Ag{sub 2}S as a platform for developing optical and opto-electronic applications.« less

  11. Generation of runaway electrons beams during the breakdown of high-pressure gases

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Burachenko, A. G.; Baksht, E. Kh

    2017-11-01

    Generation of run-away electrons in SF6, CO2, argon and nitrogen at high and super high pressures is studied. Super-short avalanches electron beams (SAEB) was obtained and measured with a collector at pressures up to 0.3, 0.7, 1.0 and 1.2 MPa in SF6, CO2, argon and nitrogen, respectively. The SAEB duration was shown to be ∼60 ps (FWHM) and gas composition has only minor effect on the duration. It was found that in a gap of 4 mm in SF6, CO2, argon and nitrogen at pressure up to 0.3, 0.7, 1.0 и 1.2 MPa the voltage pulse duration (FWHM) and amplitude increase with pressure.

  12. Pressure-induced itinerant electron metamagnetism in UCo0.995Os0.005Al ferromagnet

    NASA Astrophysics Data System (ADS)

    Mushnikov, N. V.; Andreev, A. V.; Arnold, Z.

    2018-05-01

    The effect of external hydrostatic pressure on magnetic properties is studied for the UCo0.995Os0.005Al single crystal. At ambient pressure, the ground state is ferromagnetic. Even lowest applied pressure 0.11 GPa is sufficient to suppress ferromagnetism. A sharp metamagnetic transition is observed only in magnetic fields along the c axis of the crystal, similar to previously studied itinerant electron metamagnet UCoAl. Temperature dependence of the susceptibility for various pressures shows a broad maximum at Tmax 20 K. The experimental data are analyzed with the theory of itinerant electron metamagnetism, which considers anisotropic thermal fluctuations of the uranium magnetic moment. The observed pressure dependence of the susceptibility at Tmax and the temperature for the disappearance of the first-order metamagnetic transition are explained with the theory.

  13. System Measures Pressures Aboard A Compressor Rotor

    NASA Technical Reports Server (NTRS)

    Freedman, Robert J.; Senyitko, Richard G.; Blumenthal, Philip Z.

    1994-01-01

    Rotating pressure-measuring instrumentation includes on-board calibration standard. Computer-controlled, multichannel instrumentation system acquires pressure measurements from sensors mounted in 1.52-m-diameter rotor of compressor. Includes 5 miniature, electronically scanned pressure (ESP) modules, each containing 48 piezoresistive pressure sensors, pneumatic calibration valve, and electronic circuits for addressing and amplifying output of each sensor. Modules mounted on centerline of rotor, on instrumentation tower located inside nose cone of rotor. Subsystem designed to convert analog signal to distinct frequency without significantly affecting accuracy.

  14. Equation of state and electron localisation in fcc lithium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, Mungo; Levitan, Abraham L.; Sun, Peihao

    We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.

  15. Equation of state and electron localisation in fcc lithium

    DOE PAGES

    Frost, Mungo; Levitan, Abraham L.; Sun, Peihao; ...

    2018-02-14

    We present an improved equation of state for the high-pressure fcc phase of lithium with ambient temperature experimental data, extending the pressure range of previous studies to 36 GPa. Accompanying density functional theory calculations, which reproduce the experimental equation of state, show that with increasing density the phase diverges from a nearly free electron metal. At the high pressure limit of its stability fcc lithium exhibits enhanced electron density on the octahedral interstices with a high degree of localisation.

  16. Investigation of the expansion rate scaling of plasmas in the Electron Diffusion Gauge experiment

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle A.; Davidson, Ronald C.; Paul, Stephen F.; Jenkins, Thomas G.

    2002-01-01

    The expansion of the Electron Diffusion Gauge (EDG) pure electron plasma due to collisions with background neutral gas atoms is characterized by the pressure and magnetic field scaling of the profile expansion rate (d/dt). Data obtained at higher background gas pressures [1] than previously studied [2] is presented. The measured expansion rate in the higher pressure regime is found to be in good agreement with the classical estimate of the expansion rate [3].

  17. Langmuir Probe Measurements in an Inductively Coupled Ar/CF4 Plasmas

    NASA Technical Reports Server (NTRS)

    Rao, M. V. V. S.; Meyyappan, M.; Sharma, S. P.; Arnold, James O. (Technical Monitor)

    2000-01-01

    Technological advancement in the microelectronics industry requires an understanding of the physical and chemical processes occurring in plasmas of fluorocarbon gases, such as carbon tetrafluoride (CF4) which is commonly used as an etchant, and their mixtures to optimize various operating parameters. In this paper we report data on electron number density (ne), electron temperature'(Te), electron energy distribution function (EEDF), mean electron energy, ion number density (ni), and plasma potential (Vp) measured by using Langmuir probe in an inductively coupled 13.56 MHz radio frequency plasmas generated in 50%Ar:50%CF4 mixture in the GEC cell. The probe data were recorded at various radial positions providing radial profiles of these plasma parameters at 10-50 mTorr pressures and 200 W and 300 W of RF power. Present measurements indicate that the electron and ion number densities increase with increase in pressure and power. Whereas the plasma potential and electron temperature decrease with increase in pressure, and they weakly depend on RF power. The radial profiles exhibit that the electron and ion number densities and the plasma potential peak at the center of the plasma with an exponential fall away from it, while the electron temperature has a minimum at the center and it increases steadily towards the electrode edge. The EEDFs have a characteristic drop near the low energy end at all pressures and pressures and their shapes represent non-Maxwellian plasma and exhibit more like Druyvesteyn energy distribution.v

  18. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  19. Nanowire growth kinetics in aberration corrected environmental transmission electron microscopy

    DOE PAGES

    Chou, Yi -Chia; Panciera, Federico; Reuter, Mark C.; ...

    2016-03-15

    Here, we visualize atomic level dynamics during Si nanowire growth using aberration corrected environmental transmission electron microscopy, and compare with lower pressure results from ultra-high vacuum microscopy. We discuss the importance of higher pressure observations for understanding growth mechanisms and describe protocols to minimize effects of the higher pressure background gas.

  20. New structural phase obtained by exerting high pressure on (Br2)n@AFI composite material

    NASA Astrophysics Data System (ADS)

    Yao, Zhen; Lv, Jia-Yin; Liu, Bo; Liu, Bing-Bing; Yang, Bai

    2018-06-01

    In this paper, we present a theoretical study on the high-pressure behaviors of a (Br2)n@AlPO4-5 (AFI) peapod structure. The influence of the encapsulated Br2 molecule on the structural deformation of AFI crystal is analyzed using the volume-pressure function. The bonding process of the linearly arrayed Br2 molecule transferring to the bromine atomic chain is analyzed by the electron density distribution. A new high-pressure phase with P2 point group symmetry is obtained as the pressure increases to 34 GPa. In addition, electron density difference calculations are used to study the systematic charge transformation. Further analysis indicates that the encapsulated Br2 molecules can significantly modify the electronic structure of the AFI crystal. The band gap of the (Br2)n@AFI decreases with pressure and closes at 9 GPa. Moreover, the calculated bulk modulus and electronic properties indicate that the new structural phase is metallic with a high hardness, providing a new strategy for exploring novel nanomaterials.

  1. The Effect of Background Pressure on Electron Acceleration from Ultra-Intense Laser-Matter Interactions

    NASA Astrophysics Data System (ADS)

    Le, Manh; Ngirmang, Gregory; Orban, Chris; Morrison, John; Chowdhury, Enam; Roquemore, William

    2017-10-01

    We present two-dimensional particle-in-cell (PIC) simulations that investigate the role of background pressure on the acceleration of electrons from ultra intense laser interaction at normal incidence with liquid density ethylene glycol targets. The interaction was simulated at ten different pressures varying from 7.8 mTorr to 26 Torr. We calculated conversion efficiencies from the simulation results and plotted the efficiencies with respect to the background pressure. The results revealed that the laser to > 100 keV electron conversion efficiency remained flat around 0.35% from 7.8 mTorr to 1.2 Torr and increased exponentially from 1.2 Torr onward to about 1.47% at 26 Torr. Increasing the background pressure clearly has a dramatic effect on the acceleration of electrons from the target. We explain how electrostatic effects, in particular the neutralization of the target by the background plasma, allows electrons to escape more easily and that this effect is strengthened with higher densities. This work could facilitate the design of future experiments in increasing laser to electron conversion efficiency and generating substantial bursts of electrons with relativistic energies. This research is supported by the Air Force Office of Scientific Research under LRIR Project 17RQCOR504 under the management of Dr. Riq Parra and Dr. Jean-Luc Cambier. Support was also provided by the DOD HPCMP Internship Program.

  2. The role of electron heat flux in guide-field magnetic reconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hesse, Michael; Kuznetsova, Masha; Birn, Joachim

    2004-12-01

    A combination of analytical theory and particle-in-cell simulations are employed in order to investigate the electron dynamics near and at the site of guide field magnetic reconnection. A detailed analysis of the contributions to the reconnection electric field shows that both bulk inertia and pressure-based quasiviscous processes are important for the electrons. Analytic scaling demonstrates that conventional approximations for the electron pressure tensor behavior in the dissipation region fail, and that heat flux contributions need to be accounted for. Based on the evolution equation of the heat flux three tensor, which is derived in this paper, an approximate form ofmore » the relevant heat flux contributions to the pressure tensor is developed, which reproduces the numerical modeling result reasonably well. Based on this approximation, it is possible to develop a scaling of the electron current layer in the central dissipation region. It is shown that the pressure tensor contributions become important at the scale length defined by the electron Larmor radius in the guide magnetic field.« less

  3. Role of electron physics in 3D two-fluid 10-moment simulations of the Ganymede's magnetosphere

    NASA Astrophysics Data System (ADS)

    Wang, L.; Germaschewski, K.; Hakim, A.; Dong, C.; Bhattacharjee, A.

    2017-12-01

    We studied the role of electron physics in 3D two-fluid 10-moment simulations of the Ganymede's magnetosphere. The model captures non-ideal physics like the Hall effect, the electron inertia, and anisotropic, non-gyrotropic pressure effects. A series of analyses were carried out: 1) The resulting magnetic field topology and electron and ion convection patterns were investigated. The magnetic fields were shown to be agree reasonably well with in-situ measurements by the Galileo satellite. 2) The physics of collisionless magnetic reconnection were carefully examined in terms of the current sheet formation and decomposition of generalized Ohm's law. The importance of pressure anisotropy and non-gyrotropy in supporting the reconnection electric field is confirmed. 3) We compared surface "brightness" morphology, represented by surface electron and ion pressure contours, with oxygen emission observed by the Hubble Space Telescope (HST). The correlation between the observed emission morphology and spatial variability in electron/ion pressure was demonstrated. We also briefly discussed relevance of this work to the future JUICE mission (http://sci.esa.int/juice/).

  4. Modeling of Microplasmas with Nano-Engineered Electrodes

    NASA Astrophysics Data System (ADS)

    Macheret, Sergey; Tholeti, Siva Shashank; Alexeenko, Alina

    2015-09-01

    Microplasmas can potentially be used as unique tunable dielectrics for reconfigurable radio-frequency systems, if electron densities of 1010-1012 cm-3 can be sustained in cavities smaller than 100 micron. However, for low loss tangent, gas pressures below 10 mTorr would be required, whereas the physics of electron impact ionization dictates the pd scaling so that microplasmas must operate at high gas pressures, hundreds of Torr, and also high voltages. We analyze a new principle of plasma generation that goes well beyond the pd scaling by eliminating electron impact ionization. In the new concept, electrons are generated at the cathode by field emission from nanotubes, and ions are independently produced in field ionization at atomically-sharp tips on the anode. The electrons and ions then move in the opposite directions, mix, and create a plasma. The low pressure results in collisionless motion with no electron-impact ionization. One-dimensional PIC/MCC calculations show that emitters such as carbon nanotubes placed sparsely on the cathode, combined with field ionization nanorods at the anode, can indeed ensure steady-state electron densities of up to 1012 cm-3 at gas pressure lower than 10 mTorr with only 50-100 Volts applied cross a 40-50 μm gap.

  5. Compton interaction of free electrons with intense low frequency radiation

    NASA Technical Reports Server (NTRS)

    Illarionov, A. F.; Kompaneyets, D. A.

    1978-01-01

    Electron behavior in an intense low frequency radiation field, with induced Compton scattering as the primary mechanism of interaction, is investigated. Evolution of the electron energy spectrum is studied, and the equilibrium spectrum of relativistic electrons in a radiation field with high brightness temperature is found. The induced radiation pressure and heating rate of an electron gas are calculated. The direction of the induced pressure depends on the radiation spectrum. The form of spectrum, under the induced force can accelerate electrons to superrelativistic energies is found.

  6. High-pressure studies on electronic and mechanical properties of FeBO3 (B = Ti, Mn, Cr) ceramics - a first-principles study

    NASA Astrophysics Data System (ADS)

    Kishore, N.; Nagarajan, V.; Chandiramouli, R.

    2018-04-01

    Using the density functional theory (DFT) method, the electronic and mechanical properties of perovskites FeBO3 (B = Ti, Mn, Cr) nanostructures were studied in the pressure range of 0-100 GPa. The band structure studies show the change in the band structure upon substitution of different B cation in FeBO3 perovskite structure. The density of states spectrum gives the perception of change in the electronic properties of FeBO3 with the substitution of B cation. The bulk, shear and Young's moduli were calculated and an increase in the moduli is noticed. Moreover, the hardness increases under high pressure. The high-pressure studies of FeBO3 perovskite nanostructures are explored at atomistic level. The findings show that ductility and hardness of FeBO3 get increased upon an increase in the applied pressure. The substitution of Ti, Mn and Cr on FeBO3 shows a significant change in the electronic and mechanical properties.

  7. Effects of electron pressure anisotropy on current sheet configuration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artemyev, A. V., E-mail: aartemyev@igpp.ucla.edu; Angelopoulos, V.; Runov, A.

    2016-09-15

    Recent spacecraft observations in the Earth's magnetosphere have demonstrated that the magnetotail current sheet can be supported by currents of anisotropic electron population. Strong electron currents are responsible for the formation of very thin (intense) current sheets playing the crucial role in stability of the Earth's magnetotail. We explore the properties of such thin current sheets with hot isotropic ions and cold anisotropic electrons. Decoupling of the motions of ions and electrons results in the generation of a polarization electric field. The distribution of the corresponding scalar potential is derived from the electron pressure balance and the quasi-neutrality condition. Wemore » find that electron pressure anisotropy is partially balanced by a field-aligned component of this polarization electric field. We propose a 2D model that describes a thin current sheet supported by currents of anisotropic electrons embedded in an ion-dominated current sheet. Current density profiles in our model agree well with THEMIS observations in the Earth's magnetotail.« less

  8. On the role of metastable states in low pressure oxygen discharges

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Hannesdóttir, H.

    2017-03-01

    We use the one-dimensional object-oriented particle-in-cell Monte Carlo collision code oopd1 to explore the spatio-temporal evolution of the electron heating mechanism in a capacitively coupled oxygen discharge in the pressure range 10 - 200 mTorr. The electron heating is most significant in the sheath vicinity during the sheath expansion phase. We explore how including and excluding detachment by the singlet metastable states O2(a1 Δg) and O2(b1Σ+g) influences the heating mechanism, the effective electron temperature and electronegativity, in the oxygen discharge. We demonstrate that the detachment processes have a significant influence on the discharge properties, in particular for the higher pressures. At 10 mTorr the time averaged electron heating shows mainly ohmic heating in the plasma bulk (the electronegative core) and at higher pressures there is no ohmic heating in the plasma bulk, that is electron heating in the sheath regions dominates.

  9. Overview of LDX Results

    NASA Astrophysics Data System (ADS)

    Kesner, J.; Boxer, A. C.; Ellsworth, J. L.; Karim, I.; Garnier, D. T.; Hansen, A. K.; Mauel, M. E.; Ortiz, E. E.

    2006-10-01

    The levitated dipole experiment (LDX) is a new research facility that is investigating plasma confinement and stability in a dipole magnetic field configuration as a possible catalyzed DD fusion power source that would avoid the burning of tritium. We report the production of high beta plasma confined by a laboratory superconducting dipole using neutral gas fueling and electron cyclotron resonance heating (ECRH). The pressure results from a population of anisotropic energetic trapped electrons that is sustained by microwave heating provided sufficient neutral gas is supplied to the plasma. The trapped electron beta was observed to be limited by the hot electron interchange (HEI) instability, but when the neutral gas was programmed so as to maintain the deuterium gas pressure near 0.2 mPa, the fast electron pressure increased by more than a factor of ten and the resulting stable high beta plasma was maintained quasi-continuously for up to 14 seconds. Low frequency (<10 kHz) fluctuations are sometimes observed at low neutral base pressure.

  10. Pressure-induced enhancement in the thermoelectric properties of monolayer and bilayer SnSe2

    NASA Astrophysics Data System (ADS)

    Zou, Daifeng; Yu, Chuanbin; Li, Yuhao; Ou, Yun; Gao, Yongyi

    2018-03-01

    The electronic structures of monolayer and bilayer SnSe2 under pressure were investigated by using first-principles calculations including van der Waals interactions. For monolayer SnSe2, the variation of electronic structure under pressure is controlled by pressure-dependent lattice parameters. For bilayer SnSe2, the changes in electronic structure under pressure are dominated by intralayer and interlayer atomic interactions. The n-type thermoelectric properties of monolayer and bilayer SnSe2 under pressure were calculated on the basis of the semi-classical Boltzmann transport theory. It was found that the electrical conductivity of monolayer and bilayer SnSe2 can be enhanced under pressure, and such dependence can be attributed to the pressure-induced changes of the Se-Sn antibonding states in conduction band. Finally, the doping dependence of power factors of n-type monolayer and bilayer SnSe2 at three different pressures were estimated, and the results unveiled that thermoelectric performance of n-type monolayer and bilayer SnSe2 can be improved by applying external pressure. This study benefits to understand the nature of the transport properties for monolayer and bilayer SnSe2 under pressure, and it offers valuable insight for designing high-performance thermoelectric few-layered SnSe2 through strain engineering induced by external pressure.

  11. Pressure-induced enhancement in the thermoelectric properties of monolayer and bilayer SnSe2.

    PubMed

    Zou, Daifeng; Yu, Chuanbin; Li, Yuhao; Ou, Yun; Gao, Yongyi

    2018-03-01

    The electronic structures of monolayer and bilayer SnSe 2 under pressure were investigated by using first-principles calculations including van der Waals interactions. For monolayer SnSe 2 , the variation of electronic structure under pressure is controlled by pressure-dependent lattice parameters. For bilayer SnSe 2 , the changes in electronic structure under pressure are dominated by intralayer and interlayer atomic interactions. The n -type thermoelectric properties of monolayer and bilayer SnSe 2 under pressure were calculated on the basis of the semi-classical Boltzmann transport theory. It was found that the electrical conductivity of monolayer and bilayer SnSe 2 can be enhanced under pressure, and such dependence can be attributed to the pressure-induced changes of the Se-Sn antibonding states in conduction band. Finally, the doping dependence of power factors of n -type monolayer and bilayer SnSe 2 at three different pressures were estimated, and the results unveiled that thermoelectric performance of n -type monolayer and bilayer SnSe 2 can be improved by applying external pressure. This study benefits to understand the nature of the transport properties for monolayer and bilayer SnSe 2 under pressure, and it offers valuable insight for designing high-performance thermoelectric few-layered SnSe 2 through strain engineering induced by external pressure.

  12. Thermal, electronic and ductile properties of lead-chalcogenides under pressure.

    PubMed

    Gupta, Dinesh C; Bhat, Idris Hamid

    2013-09-01

    Fully relativistic pseudo-potential ab-initio calculations have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. PbS, PbSe, PbTe and PbPo undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa, respectively. The elastic properties have also been calculated. The calculations successfully predicted the location of the band gap at L-point of Brillouin zone and the band gap for each material at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalize under pressure. The electronic structures of these materials have been computed in parent as well as in high pressure B2 phase.

  13. Pressure-induced elastic, electronic and optical properties of Ba(Mg1/3Nb2/3)O3 using first principles calculations

    NASA Astrophysics Data System (ADS)

    Islam, A. K. M. Farid Ul; Liton, M. N. H.; Anowar, M. G. M.

    2018-06-01

    The pressure dependent mechanical stability, electronic structure and optical properties of Ba(Mg1/3Nb2/3)O3 (BMN) perovskite have been investigated in the framework of the density functional theory. Geometry optimization shows that the BMN possesses more compressibility along c-axis. The dependency of the elastic constants, the aggregated elastic moduli (B, G) and the elastic anisotropy on pressure has also been studied. BMN shows brittle character at ambient pressure but it becomes ductile, and also stiffer and anisotropic nature due to external pressure. Electronic structure indicates the conversion of indirect to direct band gap with increasing pressure. Dominated ionic character of BMN is confirmed from the bond population analysis. By analyzing the optical spectra, a red shift at the band edge is observed in the visible range indicating the band gap tuning. It is seen that the static dielectric constant increases with pressure.

  14. Electronic structure and thermoelectric transport properties of the golden Th{sub 2}S{sub 3}-type Ti{sub 2}O{sub 3} under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Bin, E-mail: hnsqxubin@163.com; Gao, Changzheng; Zhang, Jing

    2016-05-15

    A lot of physical properties of Th{sub 2}S{sub 3}-type Ti{sub 2}O{sub 3} have investigated experimentally, hence, we calculated electronic structure and thermoelectric transport properties by the first-principles calculation under pressure. The increase of the band gaps is very fast from 30 GPa to 35 GPa, which is mainly because of the rapid change of the lattice constants. The total density of states becomes smaller with increasing pressure, which shows that Seebeck coefficient gradually decreases. Two main peaks of Seebeck coefficients always decrease and shift to the high doping area with increasing temperature under pressure. The electrical conductivities always decrease withmore » increasing temperature under pressure. The electrical conductivity can be improved by increasing pressure. Electronic thermal conductivity increases with increasing pressure. It is noted that the thermoelectric properties is reduced with increasing temperature.« less

  15. Electronic and structural transitions in dense liquid sodium.

    PubMed

    Raty, Jean-Yves; Schwegler, Eric; Bonev, Stanimir A

    2007-09-27

    At ambient conditions, the light alkali metals are free-electron-like crystals with a highly symmetric structure. However, they were found recently to exhibit unexpected complexity under pressure. It was predicted from theory--and later confirmed by experiment--that lithium and sodium undergo a sequence of symmetry-breaking transitions, driven by a Peierls mechanism, at high pressures. Measurements of the sodium melting curve have subsequently revealed an unprecedented (and still unexplained) pressure-induced drop in melting temperature from 1,000 K at 30 GPa down to room temperature at 120 GPa. Here we report results from ab initio calculations that explain the unusual melting behaviour in dense sodium. We show that molten sodium undergoes a series of pressure-induced structural and electronic transitions, analogous to those observed in solid sodium but commencing at much lower pressure in the presence of liquid disorder. As pressure is increased, liquid sodium initially evolves by assuming a more compact local structure. However, a transition to a lower-coordinated liquid takes place at a pressure of around 65 GPa, accompanied by a threefold drop in electrical conductivity. This transition is driven by the opening of a pseudogap, at the Fermi level, in the electronic density of states--an effect that has not hitherto been observed in a liquid metal. The lower-coordinated liquid emerges at high temperatures and above the stability region of a close-packed free-electron-like metal. We predict that similar exotic behaviour is possible in other materials as well.

  16. High-pressure studies with x-rays using diamond anvil cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Guoyin; Mao, Ho Kwang

    2016-11-22

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. Thesemore » HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.« less

  17. High-pressure studies with x-rays using diamond anvil cells

    NASA Astrophysics Data System (ADS)

    Shen, Guoyin; Mao, Ho Kwang

    2017-01-01

    Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.

  18. Payload and Components Real-Time Automated Test System (PACRATS), Data Acquisition of Leak Rate and Pressure Data Test Procedure

    NASA Technical Reports Server (NTRS)

    Rinehart, Maegan L.

    2011-01-01

    The purpose of this activity is to provide the Mechanical Components Test Facility (MCTF) with the capability to obtain electronic leak test and proof pressure data, Payload and Components Real-time Automated Test System (PACRATS) data acquisition software will be utilized to display real-time data. It will record leak rates and pressure/vacuum level(s) simultaneously. This added functionality will provide electronic leak test and pressure data at specified sampling frequencies. Electronically stored data will provide ES61 with increased data security, analysis, and accuracy. The tasks performed in this procedure are to verify PACRATS only, and are not intended to provide verifications for MCTF equipment.

  19. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    PubMed Central

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  20. A harsh environment wireless pressure sensing solution utilizing high temperature electronics.

    PubMed

    Yang, Jie

    2013-02-27

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.

  1. Physical Kinetics of Electrons in a High-Voltage Pulsed High-Pressure Discharge with Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Kozhevnikov, V. Yu.; Kozyrev, A. V.; Semeniuk, N. S.

    2017-12-01

    Results of theoretical modeling of the phenomenon of a high-voltage discharge in nitrogen at atmospheric pressure are presented, based on a consistent kinetic theory of the electrons. A mathematical model of a nonstationary high-pressure discharge has been constructed for the first time, based on a description of the electron component from first principles. The physical kinetics of the electrons are described with the help of the Boltzmann kinematic equation for the electron distribution function over momenta with only ionization and elastic collisions taken into account. A detailed spatiotemporal picture of a nonstationary discharge with runaway electrons under conditions of coaxial geometry of the gas diode is presented. The model describes in a self-consistent way both the process of formation of the runaway electron flux in the discharge and the influence of this flux on the rate of ionization processes in the gas. Total energy spectra of the electron flux incident on the anode are calculated. The obtained parameters of the current pulse of the beam of fast electrons correlate well with the known experimental data.

  2. Experimental and numerical investigations of air plasmas induced by multi-MeV pulsed X-ray from low to atmospheric pressures

    NASA Astrophysics Data System (ADS)

    Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno

    2016-09-01

    This research work is devoted to the experimental and theoretical analysis of air plasmas induced by multi-MeV pulsed X-ray for a large pressure range of humid air background gas varying from 20 mbar to atmospheric pressure. The time evolution of the electron density of the air plasma is determined by electromagnetic wave absorption measurements. The measurements have uncertainties of about ±30%, taking into account the precision of the dose measurement and also the shot to shot fluctuations of the generator. The experimental electron density is obtained by comparing the measurements of the transmitted microwave signals to the calculated ones. The calculations need the knowledge of the time evolution of the electron mean energy, which is determined by a chemical kinetic model based on a reaction scheme involving 39 species interacting following 265 reactions. During the X-ray pulse, a good agreement is obtained between time evolution of the electron density obtained from absorption measurements and calculations based on the kinetic model. The relative deviation on the maximum electron density and the corresponding plasma frequency is always lower than 10%. The maximum electron density varies from 4 × 1011 to 3.5 × 1013 cm-3 between 30 mbar to atmospheric pressure, while the peak of the electron mean energy decreases from 5.64 eV to 4.27 eV in the same pressure range.

  3. Quality improvement of environmental secondary electron detector signal using helium gas in variable pressure scanning electron microscopy.

    PubMed

    Oho, Eisaku; Suzuki, Kazuhiko; Yamazaki, Sadao

    2007-01-01

    The quality of the image signal obtained from the environmental secondary electron detector (ESED) employed in a variable pressure (VP) SEM can be dramatically improved by using helium gas. The signal-to-noise ratio (SNR) increases gradually in the range of the pressures that can be used in our modified SEM. This method is especially useful in low-voltage VP SEM as well as in a variety of SEM operating conditions, because helium gas can more or less maintain the amount of unscattered primary electrons. In order to measure the SNR precisely, a digital scan generator system for obtaining two images with identical views is employed as a precondition.

  4. Electronically scanned pressure sensor module with in SITU calibration capability

    NASA Technical Reports Server (NTRS)

    Gross, C. (Inventor)

    1978-01-01

    This high data rate pressure sensor module helps reduce energy consumption in wind tunnel facilities without loss of measurement accuracy. The sensor module allows for nearly a two order of magnitude increase in data rates over conventional electromechanically scanned pressure sampling techniques. The module consists of 16 solid state pressure sensor chips and signal multiplexing electronics integrally mounted to a four position pressure selector switch. One of the four positions of the pressure selector switch allows the in situ calibration of the 16 pressure sensors; the three other positions allow 48 channels (three sets of 16) pressure inputs to be measured by the sensors. The small size of the sensor module will allow mounting within many wind tunnel models, thus eliminating long tube lengths and their corresponding slow pressure response.

  5. Electronic scanning pressure measuring system and transducer package

    NASA Technical Reports Server (NTRS)

    Coe, C. F. (Inventor); Parra, G. T.

    1984-01-01

    An electronic scanning pressure system that includes a plurality of pressure transducers is examined. A means obtains an electrical signal indicative of a pressure measurement from each of the plurality of pressure transducers. A multiplexing means is connected for selectivity supplying inputs from the plurality of pressure transducers to the signal obtaining means. A data bus connects the plurality of pressure transducers to the multiplexing means. A latch circuit is connected to supply control inputs to the multiplexing means. An address bus is connected to supply an address signal of a selected one of the plurality of pressure transducers to the latch circuit. In operation, each of the pressure transducers is successively scanned by the multiplexing means in response to address signals supplied on the address bus to the latch circuit.

  6. Multi-channel electronically scanned cryogenic pressure sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Kruse, Nancy M. H. (Inventor)

    1995-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multielement array. These dies are bonded at specific sites on a glass, prepatterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  7. High-pressure studies on electronic transport properties of Te-substituted Bi2Se3–xTex topological insulators

    NASA Astrophysics Data System (ADS)

    Devidas, T. R.; Abhirami, S.; Sharma, Shilpam; Amaladas, E. P.; Mani, Awadhesh

    2018-03-01

    Studies on the electrical transport properties of the 3D topological insulators Bi2Se3 under iso-electronic substitution of Te at Se sites and the application of external pressure have been performed to understand the evolution of its ground-state properties and to explore possible electronic phase transitions in Bi2Se3‑x Te x (x=0\\text{--}3 ) systems. While the external pressure suppresses the metallic behaviour of Bi2Se3 arising from defect charge carriers leading ultimately to non-metal behaviour, the effect of pressure on Te-doped samples x=1\\text{--}2 seems to be more striking, and causes multiple electronic phase transitions such as an insulator-to-metal transition (MIT) followed by pressure-induced superconducting transition at higher pressures. All the critical parameters such as critical pressure for the occurrence of MIT (PMIT}) , superconductivity (PSC}) and maximum pressure induced superconducting transition temperature (Tc,max}) for given compositions are seen to exhibit maxima at x=1.6 which is the composition that exhibits the most insulating behaviour with least concentration of defect charge carriers among the samples of Bi2Se3‑x Te x (x=0\\text{--}3 ) series. The superconducting transition temperature (Tc}) decreases with increasing pressure in x=1\\text{--}2 samples, while it remains nearly constant for Bi2Te3. Based on the analysis of the experimental data it is surmised that the pressure-induced superconductivity seen in these systems is of conventional (BCS) type.

  8. Effect of working power and pressure on plasma properties during the deposition of TiN films in reactive magnetron sputtering plasma measured using Langmuir probe measurement

    NASA Astrophysics Data System (ADS)

    How, Soo Ren; Nayan, Nafarizal; Khairul Ahmad, Mohd; Fhong Soon, Chin; Zainizan Sahdan, Mohd; Lias, Jais; Shuhaimi Abu Bakar, Ahmad; Arshad, Mohd Khairuddin Md; Hashim, Uda; Yazid Ahmad, Mohd

    2018-04-01

    The ion, electron density and electron temperature during formation of TiN films in reactive magnetron sputtering system have been investigated for various settings of radio frequency (RF) power and working pressure by using Langmuir probe measurements. The RF power and working pressure able to affect the densities and plasma properties during the deposition process. In this work, a working pressure (100 and 20 mTorr) and RF power (100, 150 and 200 W) have been used for data acquisition of probe measurement. Fundamental of studied on sputter deposition is very important for improvement of film quality and deposition rate. Higher working pressure and RF power able to produce a higher ion density and reduction of electron temperature.

  9. Pressure scanning choices - Rotary vs electronic

    NASA Astrophysics Data System (ADS)

    Pemberton, Addison

    The choices available for present-day pressure scanning applications are described. Typical pressure scanning applications include wind tunnels, flight testing, turbine engine testing, process control, and laboratory/bench testing. The Scanivalve concept is discussed and it is noted that their use eliminates the cost of multiple individual pressure transducers and their signal conditioners as well as associated wiring for each pressure to be measured. However, they are limited to a maximum acquisition speed of 20 ports/sec/scanner. The advantages of electronic pressure scanners include in-situ calibration on demand, fast data acquisition speed, and high reliability. On the other hand, they are three times more expensive than rotary Scanivalves.

  10. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  11. Packaging Technologies for 500C SiC Electronics and Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu

    2013-01-01

    Various SiC electronics and sensors are currently under development for applications in 500C high temperature environments such as hot sections of aerospace engines and the surface of Venus. In order to conduct long-term test and eventually commercialize these SiC devices, compatible packaging technologies for the SiC electronics and sensors are required. This presentation reviews packaging technologies developed for 500C SiC electronics and sensors to address both component and subsystem level packaging needs for high temperature environments. The packaging system for high temperature SiC electronics includes ceramic chip-level packages, ceramic printed circuit boards (PCBs), and edge-connectors. High temperature durable die-attach and precious metal wire-bonding are used in the chip-level packaging process. A high temperature sensor package is specifically designed to address high temperature micro-fabricated capacitive pressure sensors for high differential pressure environments. This presentation describes development of these electronics and sensor packaging technologies, including some testing results of SiC electronics and capacitive pressure sensors using these packaging technologies.

  12. Pulsed electron beam propagation in gases under pressure of 6.6 kPa in drift tube

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Poloskov, A. V.

    2017-02-01

    This paper presents the results of an investigation of pulsed electron beam transport propagated in a drift tube filled with different gases (He, H2, N2, Ar, SF6, and CO2). The total pressure in the drift tube was 6.6 kPa. The experiments were carried out using a TEA-500 pulsed electron accelerator. The electron beam was propagated in the drift tube composed of two sections equipped with reverse current shunts. Under a pressure of 6.6 kPa, the maximum value of the electron beam charge closed on the walls of the drift tube was recorded when the beam was propagated in hydrogen and carbon dioxide. The minimum value of the electron beam charge closed on the walls of the drift tube was recorded for sulfur hexafluoride. The visualization of the pulsed electron beam energy losses onto the walls of the drift chamber was carried out using radiation-sensitive film.

  13. Experimental evaluation of environmental scanning electron microscopes at high chamber pressure.

    PubMed

    Fitzek, H; Schroettner, H; Wagner, J; Hofer, F; Rattenberger, J

    2015-11-01

    In environmental scanning electron microscopy (ESEM) high pressure applications have become increasingly important. Wet or biological samples can be investigated without time-consuming sample preparation and potential artefacts from this preparation can be neglected. Unfortunately, the signal-to-noise ratio strongly decreases with increasing chamber pressure. To evaluate the high pressure performance of ESEM and to compare different electron microscopes, information about spatial resolution and detector type is not enough. On the one hand, the scattering of the primary electron beam increases, which vanishes the contrast in images; and on the other hand, the secondary electrons (SE) signal amplification decreases. The stagnation gas thickness (effective distance the beam has to travel through the imaging gas) as well as the SE detection system depend on the microscope and for a complete and serious evaluation of an ESEM or low vacuum SEM it is necessary to specify these two parameters. A method is presented to determine the fraction of scattered and unscattered electrons and to calculate the stagnation gas thickness (θ). To evaluate the high pressure performance of the SE detection system, a method is presented that allows for an analysis of a single image and the calculation of the signal-to-noise ratio of this image. All investigations are performed on an FEI ESEM Quanta 600 (field emission gun) and an FEI ESEM Quanta 200 (thermionic gun). These methods and measurements should represent opportunities for evaluating the high pressure performance of an ESEM. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  14. X-ray Emission Spectroscopy in Magnetic 3d-Transition Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iota, V; Park, J; Baer, B

    2003-11-18

    The application of high pressure affects the band structure and magnetic interactions in solids by modifying nearest-neighbor distances and interatomic potentials. While all materials experience electronic changes with increasing pressure, spin polarized, strongly electron correlated materials are expected to undergo the most dramatic transformations. In such materials, (d and f-electron metals and compounds), applied pressure reduces the strength of on-site correlations, leading to increased electron delocalization and, eventually, to loss of its magnetism. In this ongoing project, we study the electronic and magnetic properties of Group VIII, 3d (Fe, Co and Ni) magnetic transition metals and their compounds at highmore » pressures. The high-pressure properties of magnetic 3d-transition metals and compounds have been studied extensively over the years, because of iron being a major constituent of the Earth's core and its relevance to the planetary modeling to understand the chemical composition, internal structure, and geomagnetism. However, the fundamental scientific interest in the high-pressure properties of magnetic 3d-electron systems extends well beyond the geophysical applications to include the electron correlation-driven physics. The role of magnetic interactions in the stabilization of the ''non-standard'' ambient pressure structures of Fe, Co and Ni is still incompletely understood. Theoretical studies have predicted (and high pressure experiments are beginning to show) strong correlations between the electronic structure and phase stability in these materials. The phase diagrams of magnetic 3d systems reflect a delicate balance between spin interactions and structural configuration. At ambient conditions, the crystal structures of {alpha}-Fe(bcc) and {var_epsilon}-Co(hcp) phases depart from the standard sequence (hcp {yields} bcc{yields} hcp {yields} fcc), as observed in all other non-magnetic transition metals with increasing the d-band occupancy, and are different from those of their 4d- and 5d-counter parts. This anomalous behavior has been interpreted in terms of the spin-polarized d-band altering the d-band occupancy [1]. At high pressures, however, the d-valence band is expected to broaden resulting in a suppression or even a complete loss of magnetism. Experimentally, ferromagnetic {alpha}(bcc)-Fe has been confirmed to transform to non-magnetic {var_epsilon}-Fe (hcp) at 10 GPa [2,3]. Recently, we have also observed a similar transition in Co from ferromagnetic {alpha}(hcp)-Co to likely nonmagnetic {beta}(fcc)-Co at 105 GPa[4]. A similar structural phase transition is expected in Ni, probably in the second-order fcc-fcc transition. However, there has been no directly measured change in magnetism associated with the structural phase transition in Co, nor has yet been confirmed such an iso-structural phase transition in Ni. Similar electronic transitions have been proposed in these 3d-transition metal oxides (FeO, CoO and NiO) from high spin (magnetic) to low spin (nonmagnetic) states [5]. In each of these systems, the magnetic transition is accompanied by a first-order structural transition involving large volume collapse (10% in FeO, for example). So far, there have been no electronic measurements under pressure confirming these significant theoretical predictions, although the predicted pressures for the volume collapse transitions are within the experimental pressure range (80-200GPa).« less

  15. Electronic-structure calculations of praseodymium metal by means of modified density-functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svane, A.; Trygg, J.; Johansson, B.

    1997-09-01

    Electronic-structure calculations of elemental praseodymium are presented. Several approximations are used to describe the Pr f electrons. It is found that the low-pressure, trivalent phase is well described using either the self-interaction corrected (SIC) local-spin-density (LSD) approximation or the generalized-gradient approximation (GGA) with spin and orbital polarization (OP). In the SIC-LSD approach the Pr f electrons are treated explicitly as localized with a localization energy given by the self-interaction of the f orbital. In the GGA+OP scheme the f-electron localization is described by the onset of spin and orbital polarization, the energetics of which is described by spin-moment formation energymore » and a term proportional to the total orbital moment, L{sub z}{sup 2}. The high-pressure phase is well described with the f electrons treated as band electrons, in either the LSD or the GGA approximations, of which the latter describes more accurately the experimental equation of state. The calculated pressure of the transition from localized to delocalized behavior is 280 kbar in the SIC-LSD approximation and 156 kbar in the GGA+OP approach, both comparing favorably with the experimentally observed transition pressure of 210 kbar. {copyright} {ital 1997} {ital The American Physical Society}« less

  16. Tunneling spectroscopy of Al/AlO{sub x}/Pb subjected to hydrostatic pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Jun; Hou, Xing-Yuan; Guan, Tong

    2015-05-18

    We develop an experimental tool to investigate high-pressure electronic density of state by combining electron tunneling spectroscopy measurements with high-pressure technique. It is demonstrated that tunneling spectroscopy measurement on Al/AlO{sub x}/Pb junction is systematically subjected to hydrostatic pressure up to 2.2 GPa. Under such high pressure, the normal state junction resistance is sensitive to the applied pressure, reflecting the variation of band structure of the barrier material upon pressures. In superconducting state, the pressure dependence of the energy gap Δ{sub 0}, the gap ratio 2Δ{sub 0}/k{sub B}T{sub c}, and the phonon spectral energy is extracted and compared with those obtained inmore » the limited pressure range. Our experimental results show the accessibility and validity of high pressure tunneling spectroscopy, offering wealthy information about high pressure superconductivity.« less

  17. Compression-Driven Enhancement of Electronic Correlations in Simple Alkali Metals

    NASA Astrophysics Data System (ADS)

    Fabbris, Gilberto; Lim, Jinhyuk; Veiga, Larissa; Haskel, Daniel; Schilling, James

    2015-03-01

    Alkali metals are the best realization of the nearly free electron model. This scenario appears to change dramatically as the alkalis are subjected to extreme pressure, leading to unexpected properties such as the departure from metallic behavior in Li and Na, and the occurrence of remarkable low-symmetry crystal structures in all alkalis. Although the mechanism behind these phase transitions is currently under debate, these are believed to be electronically driven. In this study the high-pressure electronic and structural ground state of Rb and Cs was investigated through low temperature XANES and XRD measurements combined with ab initio calculations. The results indicate that the pressure-induced localization of the conduction band triggers a Peierls-like mechanism, inducing the low symmetry phases. This localization process is evident by the pressure-driven increase in the number of d electrons, which takes place through strong spd hybridization. These experimental results indicate that compression turns the heavy alkali metals into strongly correlated electron systems. Work at Argonne was supported by DOE No. DE-AC02-06CH11357. Research at Washington University was supported by NSF DMR-1104742 and CDAC/DOE/NNSA DE-FC52-08NA28554.

  18. Water without windows: Evaluating the performance of open cell transmission electron microscopy under saturated water vapor conditions, and assessing its potential for microscopy of hydrated biological specimens.

    PubMed

    Cassidy, Cathal; Yamashita, Masao; Cheung, Martin; Kalale, Chola; Adaniya, Hidehito; Kuwahara, Ryusuke; Shintake, Tsumoru

    2017-01-01

    We have performed open cell transmission electron microscopy experiments through pure water vapor in the saturation pressure regime (>0.6 kPa), in a modern microscope capable of sub-Å resolution. We have systematically studied achievable pressure levels, stability and gas purity, effective thickness of the water vapor column and associated electron scattering processes, and the effect of gas pressure on electron optical resolution and image contrast. For example, for 1.3 kPa pure water vapor and 300kV electrons, we report pressure stability of ± 20 Pa over tens of minutes, effective thickness of 0.57 inelastic mean free paths, lattice resolution of 0.14 nm on a reference Au specimen, and no significant degradation in contrast or stability of a biological specimen (M13 virus, with 6 nm body diameter). We have also done some brief experiments to confirm feasibility of loading specimens into an in situ water vapor ambient without exposure to intermediate desiccating conditions. Finally, we have also checked if water experiments had any discernible impact on the microscope performance, and report pertinent vacuum and electron optical data, for reference purposes.

  19. Dynamics of the spatial electron density distribution of EUV-induced plasmas

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Banine, V. Y.

    2015-11-01

    We studied the temporal evolution of the electron density distribution in a low pressure pulsed plasma induced by high energy extreme ultraviolet (EUV) photons using microwave cavity resonance spectroscopy (MCRS). In principle, MCRS only provides space averaged information about the electron density. However, we demonstrate here the possibility to obtain spatial information by combining multiple resonant modes. It is shown that EUV-induced plasmas, albeit being a rather exotic plasma, can be explained by known plasma physical laws and processes. Two stages of plasma behaviour are observed: first the electron density distribution contracts, after which it expands. It is shown that the contraction is due to cooling of the electrons. The moment when the density distribution starts to expand is related to the inertia of the ions. After tens of microseconds, the electrons reached the wall of the cavity. The speed of this expansion is dependent on the gas pressure and can be divided into two regimes. It is shown that the acoustic dominated regime the expansion speed is independent of the gas pressure and that in the diffusion dominated regime the expansion depends reciprocal on the gas pressure.

  20. The frequency dependence of the discharge properties in a capacitively coupled oxygen discharge

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Snorrason, D. I.; Hannesdottir, H.

    2018-02-01

    We use the one-dimensional object-oriented particle-in-cell Monte Carlo collision code oopd1 to explore the evolution of the charged particle density profiles, electron heating mechanism, the electron energy probability function (EEPF), and the ion energy distribution in a single frequency capacitively coupled oxygen discharge, with driving frequency in the range 12-100 MHz. At a low driving frequency and low pressure (5 and 10 mTorr), a combination of stochastic (α-mode) and drift ambipolar (DA) heating in the bulk plasma (the electronegative core) is observed and the DA-mode dominates the time averaged electron heating. As the driving frequency or pressure are increased, the heating mode transitions into a pure α-mode, where electron heating in the sheath region dominates. At low pressure (5 and 10 mTorr), this transition coincides with a sharp decrease in electronegativity. At low pressure and low driving frequency, the EEPF is concave. As the driving frequency is increased, the number of low energy electrons increases and the relative number of higher energy electrons (>10 eV) increases. At high driving frequency, the EEPF develops a convex shape or becomes bi-Maxwellian.

  1. User-interactive electronic skin for instantaneous pressure visualization

    NASA Astrophysics Data System (ADS)

    Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Park, Junwoo; Chen, Teresa; Ma, Biwu; Javey, Ali

    2013-10-01

    Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components—thin-film transistor, pressure sensor and OLED arrays—are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.

  2. Quantum phase transition and destruction of Kondo effect in pressurized SmB 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yazhou; Wu, Qi; Rosa, Priscila Ferrari Silveira

    SmB 6 has been a well-known Kondo insulator for decades, but recently attracts extensive new attention as a candidate topological system. Studying SmB 6 under pressure provides an opportunity to acquire the much-needed understanding about the effect of electron correlations on both the metallic surface state and bulk insulating state. Here we do so by studying the evolution of two transport gaps (low temperature gap E l and high temperature gap E h) associated with the Kondo effect by measuring the electrical resistivity under high pressure and low temperature (0.3 K) conditions. We associate the gaps with the bulk Kondomore » hybridization, and from their evolution with pressure we demonstrate an insulator-to-metal transition at ~4 GPa. At the transition pressure, a large change in the Hall number and a divergence tendency of the electron-electron scattering coefficient provide evidence for a destruction of the Kondo entanglement in the ground state. In conclusion, our results raise the new prospect for studying topological electronic states in quantum critical materials settings.« less

  3. Quantum phase transition and destruction of Kondo effect in pressurized SmB 6

    DOE PAGES

    Zhou, Yazhou; Wu, Qi; Rosa, Priscila Ferrari Silveira; ...

    2017-10-24

    SmB 6 has been a well-known Kondo insulator for decades, but recently attracts extensive new attention as a candidate topological system. Studying SmB 6 under pressure provides an opportunity to acquire the much-needed understanding about the effect of electron correlations on both the metallic surface state and bulk insulating state. Here we do so by studying the evolution of two transport gaps (low temperature gap E l and high temperature gap E h) associated with the Kondo effect by measuring the electrical resistivity under high pressure and low temperature (0.3 K) conditions. We associate the gaps with the bulk Kondomore » hybridization, and from their evolution with pressure we demonstrate an insulator-to-metal transition at ~4 GPa. At the transition pressure, a large change in the Hall number and a divergence tendency of the electron-electron scattering coefficient provide evidence for a destruction of the Kondo entanglement in the ground state. In conclusion, our results raise the new prospect for studying topological electronic states in quantum critical materials settings.« less

  4. User-interactive electronic skin for instantaneous pressure visualization.

    PubMed

    Wang, Chuan; Hwang, David; Yu, Zhibin; Takei, Kuniharu; Park, Junwoo; Chen, Teresa; Ma, Biwu; Javey, Ali

    2013-10-01

    Electronic skin (e-skin) presents a network of mechanically flexible sensors that can conformally wrap irregular surfaces and spatially map and quantify various stimuli. Previous works on e-skin have focused on the optimization of pressure sensors interfaced with an electronic readout, whereas user interfaces based on a human-readable output were not explored. Here, we report the first user-interactive e-skin that not only spatially maps the applied pressure but also provides an instantaneous visual response through a built-in active-matrix organic light-emitting diode display with red, green and blue pixels. In this system, organic light-emitting diodes (OLEDs) are turned on locally where the surface is touched, and the intensity of the emitted light quantifies the magnitude of the applied pressure. This work represents a system-on-plastic demonstration where three distinct electronic components--thin-film transistor, pressure sensor and OLED arrays--are monolithically integrated over large areas on a single plastic substrate. The reported e-skin may find a wide range of applications in interactive input/control devices, smart wallpapers, robotics and medical/health monitoring devices.

  5. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  6. Automated electronic monitoring of circuit pressures during continuous renal replacement therapy: a technical report.

    PubMed

    Zhang, Ling; Baldwin, Ian; Zhu, Guijun; Tanaka, Aiko; Bellomo, Rinaldo

    2015-03-01

    Automated electronic monitoring and analysis of circuit pressures during continuous renal replacement therapy (CRRT) has the potential to predict failure and allow intervention to optimise function. Current CRRT machines can measure and store pressure readings for downloading into databases and for analysis. We developed a procedure to obtain such data at intervals of 1 minute and analyse them using the Prismaflex CRRT machine, and we present an example of such analysis. We obtained data on pressures obtained at intervals of 1 minute in a patient with acute kidney injury and sepsis treated with continuous haemofiltration at 2 L/hour of ultrafiltration and a blood flow of 200 mL/minute. Data analysis identified progressive increases in transmembrane pressure (TMP) and prefilter pressure (PFP) from time 0 until 33 hours or clotting. TMP increased from 104 mmHg to 313 mmHg and PFP increased from from 131 mmHg to 185 mmHg. Effluent pressure showed a progressive increase in the negative pressure applied to achieve ultrafiltration from 0 mmHg to -168 mmHg. The inflection point for such changes was also identified. Blood pathway pressures for access and return remained unchanged throughout. Automated electronic monitoring of circuit pressure during CRRT is possible and provides useful information on the evolution of circuit clotting.

  7. Generation of a pulsed low-energy electron beam using the channel spark device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elgarhy, M. A. I., E-mail: elgarhy@azhar.edu.eg; Hassaballa, S. E.; Rashed, U. M.

    2015-12-15

    For the generation of low-energy electron beam, the design and characteristics of channel spark discharge (CSD) operating at a low voltage are presented in this paper. The discharge voltage, discharge current, X-ray emissions, and electron beam current were experimentally determined. The effects of the applied voltage, working gas pressure, and external capacitance on the CSD and beam parameters were measured. At an applied voltage of 11 kV, an oxygen gas pressure of 25 mTorr, and an external capacitance of 16.45 nF, the maximum measured current was 900 A. The discharge current increased with the increase in the pressure and capacitance,more » while its periodic time decreased with the increase in the pressure. Two types of the discharge were identified and recorded: the hollow cathode discharge and the conduction discharge. A Faraday cup was used to measure the beam current. The maximum measured beam current was 120 A, and the beam signal exhibited two peaks. The increase in both the external capacitance and the applied discharge voltage increased the maximum electron beam current. The electron-beam pulse time decreased with the increase in the gas pressure at a constant voltage and increased with the decrease in the applied discharge voltage. At an applied voltage of 11 kV and an oxygen gas pressure of 15 mTorr, the maximum beam energy was 2.8 keV. The X-ray signal intensity decreased with the increase in the gas pressure and increased with the increase in the capacitance.« less

  8. Multi-Channel Electronically Scanned Cryogenic Pressure Sensor And Method For Making Same

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Hopson, Purnell, Jr. (Inventor); Holloway, Nancy M. (Inventor)

    2001-01-01

    A miniature, multi-channel, electronically scanned pressure measuring device uses electrostatically bonded silicon dies in a multi-element array. These dies are bonded at specific sites on a glass, pre-patterned substrate. Thermal data is multiplexed and recorded on each individual pressure measuring diaphragm. The device functions in a cryogenic environment without the need of heaters to keep the sensor at constant temperatures.

  9. Maintaining stable radiation pressure acceleration of ion beams via cascaded electron replenishment

    NASA Astrophysics Data System (ADS)

    Shen, X. F.; Qiao, B.; Chang, H. X.; Zhang, W. L.; Zhang, H.; Zhou, C. T.; He, X. T.

    2017-03-01

    A method to maintain ion stable radiation pressure acceleration (RPA) from laser-irradiated thin foils is proposed, where a series of high-Z nanofilms are placed behind to successively replenish co-moving electrons into the accelerating foil as electron charging stations (ECSs). Such replenishment of co-moving electrons, on the one hand, helps to keep a dynamic balance between the electrostatic pressure in the accelerating slab and the increasing laser radiation pressure with a Gaussian temporal profile at the rising front, i.e. dynamically matching the optimal condition of RPA; on the other hand, it aids in suppressing the foil Coulomb explosion due to loss of electrons induced by transverse instabilities during RPA. Two-dimensional and three-dimensional particle-in-cell simulations show that a monoenergetic Si14+ beam with a peak energy of 3.7 GeV and particle number 4.8× {10}9 (charge 11 nC) can be obtained at an intensity of 7 × 1021 W cm-2 and the conversion efficiency from laser to high energy ions is improved significantly by using the ECSs in our scheme.

  10. Anomalously large effects of pressure on electron transfer kinetics in solution: The aqueous manganate(VI)-permanganate(VII) system

    NASA Astrophysics Data System (ADS)

    Swaddle, T. W.; Spiccia, L.

    1986-05-01

    The classical Stranks-Hush-Marcus theory of pressure effects on the rates of outer-sphere electron transfer reaction rates in solution underestimates |ΔV ∗| specifically, for the MnO 4/MnO 42- (aq) exchange, ΔV ∗=-21.2 (observed) vs. -6.6 cm3mol-1 (calculated). This discrepancy can best be resolved by conceding that the Mn-Mn separation σ in the transition state is variable and pressure-sensitive in the context of non-adiabatic electron transfer within an ellipsoidal cavity with σ ∼ 550 pm.

  11. Electronic-type vacuum gauges with replaceable elements

    DOEpatents

    Edwards, Jr., David

    1984-01-01

    In electronic devices for measuring pressures in vacuum systems, the metal elements which undergo thermal deterioration are made readily replaceable by making them parts of a simple plug-in unit. Thus, in ionization gauges, the filament and grid or electron collector are mounted on the novel plug-in unit. In thermocouple pressure gauges, the heater and attached thermocouple are mounted on the plug-in unit. Plug-in units have been designed to function, alternatively, as ionization gauge and as thermocouple gauge, thus providing new gauges capable of measuring broader pressure ranges than is possible with either an ionization gauge or a thermocouple gauge.

  12. Causes of High-temperature Superconductivity in the Hydrogen Sulfide Electron-phonon System

    NASA Astrophysics Data System (ADS)

    Degtyarenko, N. N.; Mazur, E. A.

    The electron and phonon spectra, as well as the density of electron and phonon states of the stable orthorhombic structure of hydrogen sulfide (SH2) at pressures 100-180 GPa have been calculated. It is found that the set of parallel planes of hydrogen atoms is formed at pressure ∼175 GPa as a result of structural changes in the unit cell of the crystal under pressure. There should be complete concentration of hydrogen atoms in these planes. As a result the electron properties of the system acquire a quasi-two-dimensional character. The features of in phase and antiphase oscillations of hydrogen atoms in these planes leading to two narrow high-energy peaks in the phonon density of states are investigated.

  13. Reasons for high-temperature superconductivity in the electron-phonon system of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Degtyarenko, N. N.; Mazur, E. A.

    2015-08-01

    We have calculated the electron and phonon spectra, as well as the densities of the electron and phonon states, of the stable orthorhombic structure of hydrogen sulfide SH2 in the pressure interval 100-180 GPa. It is found that at a pressure of 175 GPa, a set of parallel planes of hydrogen atoms is formed due to a structural modification of the unit cell under pressure with complete accumulation of all hydrogen atoms in these planes. As a result, the electronic properties of the system become quasi-two-dimensional. We have also analyzed the collective synphase and antiphase vibrations of hydrogen atoms in these planes, leading to the occurrence of two high-energy peaks in the phonon density of states.

  14. New Mixed Conductivity Mechanisms in the Cold Plasma Device Based on Silver-Modified Zeolite Microporous Electronic Materials

    NASA Astrophysics Data System (ADS)

    Koç, Sevgul Ozturk; Galioglu, Sezin; Ozturk, Seckin; Kurç, Burcu Akata; Koç, Emrah; Salamov, Bahtiyar G.

    2018-02-01

    We have analyzed the interaction between microdischarge and microporous zeolite electronic materials modified by silver (Ag0) nanoparticles (resistivity 1011 to 106 Ω cm) on the atmospheric pressure cold plasma generation in air. The generation and maintenance of stable cold plasma is studied according to the effect of the Ag0 nanoparticles. The role of charge carriers in mixed conductivity processes and electrical features of zeolite from low pressure to atmospheric pressure is analyzed in air microplasmas for both before and after breakdown regimes. The results obtained from the experiments indicate that Ag0 nanoparticles play a significant role in considerably reducing the breakdown voltage in plasma electronic devices with microporous zeolite electronic materials.

  15. Tests of a low-pressure switch protected by a saturating inductor

    NASA Astrophysics Data System (ADS)

    Lauer, E. J.; Birx, D. L.

    Low pressure switches and magnetic switches were tested as possible replacements for the high pressure switches currently used on Experimental Test Accelerator and Advanced Test Accelerator. When the low pressure switch is used with a low impedance transmission line, runaway electrons form a pinched electron beam which damages the anode. The use of the low pressure switch as the first switch in the pulsed power chain was tested; i.e., the switch would be used to connect a charged capacitor across the primary winding of a step up transformer. An inductor with a saturating core is connected in series so that, initially, there is a large inductive voltage drop. As a result, there is small voltage across the switch. By the time the inductor core saturates, the switch has developed sufficient ionization so that the switch voltage remains small, even with peak current, and an electron beam is not produced.

  16. Effects of Temperature and Pressure of Hot Isostatic Pressing on the Grain Structure of Powder Metallurgy Superalloy

    PubMed Central

    Tan, Liming; He, Guoai; Liu, Feng; Li, Yunping; Jiang, Liang

    2018-01-01

    The microstructure with homogeneously distributed grains and less prior particle boundary (PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing (HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain coarsening under high temperature could be inhibited by increasing HIPping pressure which facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and homogeneously refined grains. PMID:29495312

  17. Effects of Temperature and Pressure of Hot Isostatic Pressing on the Grain Structure of Powder Metallurgy Superalloy.

    PubMed

    Tan, Liming; He, Guoai; Liu, Feng; Li, Yunping; Jiang, Liang

    2018-02-24

    The microstructure with homogeneously distributed grains and less prior particle boundary (PPB) precipitates is always desired for powder metallurgy superalloys after hot isostatic pressing (HIPping). In this work, we studied the effects of HIPping parameters, temperature and pressure on the grain structure in PM superalloy FGH96, by means of scanning electron microscope (SEM), electron backscatter diffraction (EBSD), transmission electron microscope (TEM) and Time-of-flight secondary ion spectrometry (ToF-SIMS). It was found that temperature and pressure played different roles in controlling PPB precipitation and grain structure during HIPping, the tendency of grain coarsening under high temperature could be inhibited by increasing HIPping pressure which facilitates the recrystallization. In general, relatively high temperature and pressure of HIPping were preferred to obtain an as-HIPped superalloy FGH96 with diminished PPB precipitation and homogeneously refined grains.

  18. High Temperature Capacitive Pressure Sensor Employing a SiC Based Ring Oscillator

    NASA Technical Reports Server (NTRS)

    Meredith, Roger D.; Neudeck, Philip G.; Ponchak, George E.; Beheim, Glenn M.; Scardelletti, Maximilian; Jordan, Jennifer L.; Chen, Liang-Yu; Spry, David J.; Krawowski, Michael J.; Hunter, Gary W.

    2011-01-01

    In an effort to develop harsh environment electronic and sensor technologies for aircraft engine safety and monitoring, we have used capacitive-based pressure sensors to shift the frequency of a SiC-electronics-based oscillator to produce a pressure-indicating signal that can be readily transmitted, e.g. wirelessly, to a receiver located in a more benign environment. Our efforts target 500 C, a temperature well above normal operating conditions of commercial circuits but within areas of interest in aerospace engines, deep mining applications and for future missions to the Venus atmosphere. This paper reports for the first time a ring oscillator circuit integrated with a capacitive pressure sensor, both operating at 500 C. This demonstration represents a significant step towards a wireless pressure sensor that can operate at 500 C and confirms the viability of 500 C electronic sensor systems.

  19. Excited level populations and excitation kinetics of nonequilibrium ionizing argon discharge plasma of atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akatsuka, Hiroshi

    2009-04-15

    Population densities of excited states of argon atoms are theoretically examined for ionizing argon plasma in a state of nonequilibrium under atmospheric pressure from the viewpoint of elementary processes with collisional radiative model. The dependence of excited state populations on the electron and gas temperatures is discussed. Two electron density regimes are found, which are distinguished by the population and depopulation mechanisms for the excited states in problem. When the electron impact excitation frequency for the population or depopulation is lower than the atomic impact one, the electron density of the plasma is considered as low to estimate the populationmore » and depopulation processes. Some remarkable characteristics of population and depopulation mechanisms are found for the low electron density atmospheric plasma, where thermal relaxation by atomic collisions becomes the predominant process within the group of close-energy states in the ionizing plasma of atmospheric pressure, and the excitation temperature is almost the same as the gas temperature. In addition to the collisional relaxation by argon atoms, electron impact excitation from the ground state is also an essential population mechanism. The ratios of population density of the levels pairs, between which exists a large energy gap, include information on the electron collisional kinetics. For high electron density, the effect of atomic collisional relaxation becomes weak. For this case, the excitation mechanism is explained as electron impact ladderlike excitation similar to low-pressure ionizing plasma, since the electron collision becomes the dominant process for the population and depopulation kinetics.« less

  20. Study of pressure variation effect on structural, opto-electronic, elastic, mechanical, and thermodynamic properties of SrLiF3

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Iqbal, Muhammad Azhar

    2017-11-01

    The structural, electronic, elastic, optical and thermodynamic properties of cubic fluoroperovskite SrLiF3 at ambient and high-pressure are investigated by using first-principles total energy calculations within the framework of Generalized Gradient Approximation (GGA), combined with Quasi-harmonic Debye model in which the phonon effects are considered. The pressure effects are determined in the range of 0-50 GPa, in which cubic stability of SrLiF3 fluoroperovskite remains valid. The computed lattice parameters agree well with experimental and previous theoretical results. Decrease in lattice constant and bonds length is observed with the increase in pressure from 0 to 50 GPa. The effect of increase in pressure on electronic band structure calculations with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential reveals a predominant characteristic associated with widening of bandgap. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. All the calculated optical properties such as the complex dielectric function Ԑ(ω), optical conductivity σ(ω), energy loss function L(ω), absorption coefficient α(w), refractive index n (ω), reflectivity R (ω), and effective number of electrons neff, via sum rules shift towards the higher energies under the application of pressure. Moreover, important thermodynamic properties heat capacities (Cp and Cv), volume expansion coefficient (α), and Debye temperature (θD) are predicted successfully in the wide temperature and pressure ranges.

  1. Origin of the pressure-dependent Tc valley in superconducting simple cubic phosphorus

    NASA Astrophysics Data System (ADS)

    Wu, Xianxin; Jeschke, Harald O.; Di Sante, Domenico; von Rohr, Fabian O.; Cava, Robert J.; Thomale, Ronny

    2018-03-01

    Motivated by recent experiments, we investigate the pressure-dependent electronic structure and electron-phonon (e-ph) coupling for simple cubic phosphorus by performing first-principles calculations within the full potential linearized augmented plane-wave method. As a function of increasing pressure, our calculations show a valley feature in Tc, followed by an eventual decrease for higher pressures. We demonstrate that this Tc valley at low pressures is due to two nearby Lifshitz transitions, as we analyze the band-resolved contributions to the e-ph coupling. Below the first Lifshitz transition, the phonon hardening and shrinking of the γ Fermi surface with s -orbital character results in a decreased Tc with increasing pressure. After the second Lifshitz transition, the appearance of δ Fermi surfaces with 3 d -orbital character generate strong e-ph interband couplings in α δ and β δ channels, and hence lead to an increase of Tc. For higher pressures, the phonon hardening finally dominates, and Tc decreases again. Our study reveals that the intriguing Tc valley discovered in experiment can be attributed to Lifshitz transitions, while the plateau of Tc detected at intermediate pressures appears to be beyond the scope of our analysis. This strongly suggests that aside from e-ph coupling, electronic correlations along with plasmonic contributions may be relevant for simple cubic phosphorus. Our findings hint at the notion that increasing pressure can shift the low-energy orbital weight towards d character, and as such even trigger an enhanced importance of orbital-selective electronic correlations despite an increase of the overall bandwidth.

  2. Publisher's Note: High-temperature superconductivity stabilized by electron-hole interband coupling in collapsed tetragonal phase of KFe 2 As 2 under high pressure [Phys. Rev. B 91 , 060508(R) (2015)

    DOE PAGES

    Nakajima, Yasuyuki; Wang, Renxiong; Metz, Tristin; ...

    2015-03-09

    Here, we report a high-pressure study of simultaneous low-temperature electrical resistivity and Hall effect measurements on high quality single-crystalline KFe 2As 2 using designer diamond anvil cell techniques with applied pressures up to 33 GPa. In the low pressure regime, we show that the superconducting transition temperature T c finds a maximum onset value of 7 K near 2 GPa, in contrast to previous reports that find a minimum T c and reversal of pressure dependence at this pressure. Upon applying higher pressures, this T c is diminished until a sudden drastic enhancement occurs coincident with a first-order structural phasemore » transition into a collapsed tetragonal phase. The appearance of a distinct superconducting phase above 13 GPa is also accompanied by a sudden reversal of dominant charge carrier sign, from hole- to electron-like, which agrees with our band calculations predicting the emergence of an electron pocket and diminishment of hole pockets upon Fermi surface reconstruction. Our results suggest the high-temperature superconducting phase in KFe 2As 2 is substantially enhanced by the presence of nested electron and hole pockets, providing the key ingredient of high-T c superconductivity in iron pnictide superconductors.« less

  3. Effect of Hydrostatic Pressure on the Structural, Electronic and Optical Properties of SnS2 with a Cubic Structure: The DFT Approach

    NASA Astrophysics Data System (ADS)

    Bakhshayeshi, A.; Taghavi Mendi, R.; Majidiyan Sarmazdeh, M.

    2018-02-01

    Recently, a cubic structure of polymorphic SnS2 has been synthesized experimentally, which is stable at room temperature. In this paper, we calculated some structural, electronic and optical properties of the cubic SnS2 structure based on the full potential-linearized augmented plane waves method. We also studied the effect of hydrostatic pressure on the physical properties of the cubic SnS2 structure. Structural results show that the compressibility of the cubic SnS2 phase is greater than its trigonal phase and the compressibility decreases with increasing pressure. Investigations of the electronic properties indicate that pressure changes the density of states and the energy band gap increases with increasing pressure. The variation of energy band gap versus pressure is almost linear. We concluded that cubic SnS2 is a semiconductor with an indirect energy band gap, like its trigonal phase. The optical calculations revealed that the dielectric constant decreases with increasing pressure, and the width of the forbidden energy interval increases for electromagnetic wave propagation. Moreover, plasmonic energy and refractive index are changed with increasing pressure.

  4. A new electronic scanner of pressure designed for installation in wind-tunnel models

    NASA Technical Reports Server (NTRS)

    Coe, C. T.; Parra, G. T.; Kauffman, R. C.

    1981-01-01

    A new electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind-tunnel models. An ESOP system includes up to 20 pressure modules, each with 48 pressure transducers, an A/D converter, a microprocessor, a data controller, a monitor unit, and a heater controller. The system is sized so that the pressure modules and A/D converter module can be installed within an average-size model tested in the Ames Aerodynamics Division wind tunnels. This paper describes the ESOP system, emphasizing the main element of the system - the pressure module. The measured performance of the overall system is also presented.

  5. Shuttle Orbiter Atmospheric Revitalization Pressure Control Subsystem

    NASA Technical Reports Server (NTRS)

    Walleshauser, J. J.; Ord, G. R.; Prince, R. N.

    1982-01-01

    The Atmospheric Revitalization Pressure Control Subsystem (ARPCS) provides oxygen partial pressure and total pressure control for the habitable atmosphere of the Shuttle for either a one atmosphere environment or an emergency 8 PSIA mode. It consists of a Supply Panel, Control Panel, Cabin Pressure Relief Valves and Electronic Controllers. The panels control and monitor the oxygen and nitrogen supplies. The cabin pressure relief valves protect the habitable environment from overpressurization. Electronic controllers provide proper mixing of the two gases. This paper describes the ARPCS, addresses the changes in hardware that have occurred since the inception of the program; the performance of this subsystem during STS-1 and STS-2; and discusses future operation modes.

  6. Low-pressure hydrogen plasmas explored using a global model

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2016-02-01

    Low-pressure hydrogen plasmas have found applications in a variety of technology areas including fusion, neutral beam injection and material processing applications. To better understand these discharges, a global model is developed to predict the behaviour of electrons, ground-state atomic and molecular hydrogen, three positive ion species (H+, \\text{H}2+ , and \\text{H}3+ ), a single negative ion species (H-), and fourteen vibrationally excited states of molecular hydrogen ({{\\text{H}}2}≤ft(\\upsilon =1\\right. -14)). The model is validated by comparison with experimental results from a planar inductively coupled GEC reference cell and subsequently applied to the MAGPIE linear helicon reactor. The MAGPIE reactor is investigated for a range of pressures from 1 to 100 mTorr and powers up to 5 kW. With increasing power between 50 W and 5 kW at 10 mTorr the density of all charged species increases as well as the dissociative fraction while the electron temperature remains almost constant at around 3 eV. For gas pressures from 1-100 mTorr at an input power of 1 kW, the electron density remains almost constant, the electron temperature and dissociative fraction decreases, while \\text{H}3+ density increases in density and also dominates amongst ion species. Across these power and pressure scans, electronegativity remains approximately constant at around 2.5%. The power and pressure determines the dominant ion species in the plasma with \\text{H}3+ observed to dominate at high pressures and low powers whereas H+ tends to be dominant at low pressures and high powers. A sensitivity analysis is used to demonstrate how experimental parameters (power, pressure, reactor wall material, geometry etc) influence individual species’ density as well as the electron temperature. Physical reactor changes including the length, radius and wall recombination coefficient are found to have the largest influence on outputs obtained from the model.

  7. Conductance enhancement due to interface magnons in electron-beam evaporated MgO magnetic tunnel junctions with CoFeB free layer deposited at different pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, P.; Yu, G. Q.; Wei, H. X.

    Electron-beam evaporated MgO-based magnetic tunnel junctions have been fabricated with the CoFeB free layer deposited at Ar pressure from 1 to 4 mTorr, and their tunneling process has been studied as a function of temperature and bias voltage. By changing the growth pressure, the junction dynamic conductance dI/dV, inelastic electron tunneling spectrum d²I/dV², and tunneling magnetoresistance vary with temperature. Moreover, the low-energy magnon cutoff energy E {sub C} derived from the conductance versus temperature curve agrees with interface magnon energy obtained directly from the inelastic electron tunneling spectrum, which demonstrates that interface magnons are involved in the electron tunneling process,more » opening an additional conductance channel and thus enhancing the total conductance.« less

  8. The pressure coefficient of the Curie temperature of ferromagnetic superconductors

    NASA Astrophysics Data System (ADS)

    Konno, R.; Hatayama, N.

    2012-12-01

    The pressure coefficient of the Curie temperature of ferromagnetic superconductors is studied numerically. In our previous study the pressure coefficient of the Curie temperature and that of the superconducting transition temperature were shown based on the Hamiltonian derived by Linder et al. within the mean field approximation about the electron-electron interaction analytically. There have been no numerical results of the pressure coefficient of the Curie temperature derived from the microscopic model. In this study the numerical results are reported. These results are qualitatively consistent with the experimental data in UGe2.

  9. Electronic and optical properties of Fe2SiO4 under pressure effect: ab initio study

    NASA Astrophysics Data System (ADS)

    Xiao, Lingping; Li, Xiaobin; Yang, Xue

    2018-05-01

    We report first-principles studies the structural, electronic, and optical properties of the Fe2SiO4 fayalite in orthorhombic structure, including pressure dependence of structural parameters, band structures, density of states, and optical constants up to 30 GPa. The calculated results indicate that the linear compressibility along b axis is significantly higher than a and c axes, which is in agreement with earlier work. Meanwhile, the pressure dependence of the electronic band structure, density of states and partial density of states of Fe2SiO4 fayalite up to 30 GPa were presented. Moreover, the evolution of the dielectric function, absorption coefficient (α(ω)), reflectivity (R(ω)), and the real part of the refractive index (n(ω)) at high pressure are also presented.

  10. High-pressure studies on heavy fermion systems

    NASA Astrophysics Data System (ADS)

    Ye, Chen; Zongfa, Weng; Smidman, Michael; Xin, Lu; Huiqiu, Yuan

    2016-07-01

    In this review article, we give a brief overview of heavy fermions, which are prototype examples of strongly correlated electron systems. We introduce the application of physical pressure in heavy fermion systems to construct their pressure phase diagrams and to study the close relationship between superconductivity (SC) and other electronic instabilities, such as antiferromagnetism (AFM), ferromagnetism (FM), and valence transitions. Field-angle dependent heat capacity and point-contact spectroscopic measurements under pressure are taken as examples to illustrate their ability to investigate novel physical properties of the emergent electronic states. Project supported by the National Basic Research Program of China (Grant No. 2011CBA00103), the National Natural Science Foundation of China (Grant Nos. 11174245 and 11374257), the Science Challenge Program of China, and the Fundamental Research Funds for the Central Universities of China.

  11. High pressure study of Pu(0.92)Am(0.08) binary alloy.

    PubMed

    Klosek, V; Griveau, J C; Faure, P; Genestier, C; Baclet, N; Wastin, F

    2008-07-09

    The phase transitions (by means of x-ray diffraction) and electrical resistivity of a Pu(0.92)Am(0.08) binary alloy were determined under pressure (up to 2 GPa). The evolution of atomic volume with pressure gives detailed information concerning the degree of localization of 5f electronic states and their delocalization process. A quasi-linear V = f(P) dependence reflects subtle modifications of the electronic structure when P increases. The electrical resistivity measurements reveal the very high stability of the δ phase for pressures less than 0.7 GPa, since no martensitic-like transformation occurs at low temperature. Remarkable electronic behaviours have also been observed. Finally, resistivity curves have shown the temperature dependence of the phase transformations together with unexpected kinetic effects.

  12. Observation of Live Ticks (Haemaphysalis flava) by Scanning Electron Microscopy under High Vacuum Pressure

    PubMed Central

    Ishigaki, Yasuhito; Nakamura, Yuka; Oikawa, Yosaburo; Yano, Yasuhiro; Kuwabata, Susumu; Nakagawa, Hideaki; Tomosugi, Naohisa; Takegami, Tsutomu

    2012-01-01

    Scanning electron microscopes (SEM), which image sample surfaces by scanning with an electron beam, are widely used for steric observations of resting samples in basic and applied biology. Various conventional methods exist for SEM sample preparation. However, conventional SEM is not a good tool to observe living organisms because of the associated exposure to high vacuum pressure and electron beam radiation. Here we attempted SEM observations of live ticks. During 1.5×10−3 Pa vacuum pressure and electron beam irradiation with accelerated voltages (2–5 kV), many ticks remained alive and moved their legs. After 30-min observation, we removed the ticks from the SEM stage; they could walk actively under atmospheric pressure. When we tested 20 ticks (8 female adults and 12 nymphs), they survived for two days after SEM observation. These results indicate the resistance of ticks against SEM observation. Our second survival test showed that the electron beam, not vacuum conditions, results in tick death. Moreover, we describe the reaction of their legs to electron beam exposure. These findings open the new possibility of SEM observation of living organisms and showed the resistance of living ticks to vacuum condition in SEM. These data also indicate, for the first time, the usefulness of tick as a model system for biology under extreme condition. PMID:22431980

  13. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics.

    PubMed

    Wang, Fuliang; Mao, Peng; He, Hu

    2016-02-17

    Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10(-8) (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10(-8) to 5.08 × 10(-8) (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved.

  14. Capacitance pressure sensor

    DOEpatents

    Eaton, William P.; Staple, Bevan D.; Smith, James H.

    2000-01-01

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  15. Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity

    NASA Astrophysics Data System (ADS)

    Phuong Pham, Viet; Triet Nguyen, Minh; Park, Jin Woo; Kwak, Sung Soo; Nguyen, Dieu Hien Thi; Kyeom Mun, Mu; Danh Phan, Hoang; San Kim, Doo; Kim, Ki Hyun; Lee, Nae-Eung; Yeom, Geun Young

    2017-06-01

    Pressure sensing is one of the key functions for smart electronics. Considerably more effort is required to achieve the fabrication of pressure sensors that can imitate and overcome the sophisticated pressure sensing characteristics in nature and industry, especially in the innovation of materials and structures. Almost all of the pressure sensors reported until now have a high sensitivity at a low-pressure detection limit (<10 kPa). While the exploration of a pressure sensor with a high sensitivity and a high responsivity at a high-pressure is challenging, it is required for next generation smart electronics. Here, we report an exotic heterostructure pressure sensor based on ZnO/chlorine radical-trap doped bilayer graphene (ZGClG) as an ideal channel for pressure sensors. Using this ZGClG as the channel, this study shows the possibility of forming a pressure sensor with a high sensitivity (0.19 kPa-1) and a high responsivity (0.575 s) at V  =  1 V on glass substrate. Further, the pressure detection limit of this device was as high as 98 kPa. The investigation of the sensing mechanism under pressure has revealed that the significant improved sensing effect is related to the heavy p-type chlorine trap doping in the channel graphene with chlorine radicals without damaging the graphene. This work indicates that the ZGClG channel used for the pressure sensing device could also provide a simple and essential sensing platform for chemical-, medical-, and biological-sensing for future smart electronics.

  16. Structural and vibrational properties of solid nitromethane under high pressure by density functional theory.

    PubMed

    Liu, Hong; Zhao, Jijun; Wei, Dongqing; Gong, Zizheng

    2006-03-28

    The structural, vibrational, and electronic properties of solid nitromethane under hydrostatic pressure of up to 20 GPa have been studied using density functional theory. The changes of cell volume, the lattice constants, and the molecular geometry of solid nitromethane under hydrostatic loading are examined, and the bulk modulus B0 and its pressure derivative B0' are fitted from the volume-pressure relation. Our theoretical results are compared with available experiments. The change of electron band gap of nitromethane under high pressure is also discussed. Based on the optimized crystal structures, the vibrational frequencies for the internal and lattice modes of the nitromethane crystal at ambient and high pressures are computed, and the pressure-induced frequency shifts of these modes are discussed.

  17. Pressure effect on the superconducting and the normal state of β -B i2Pd

    NASA Astrophysics Data System (ADS)

    Pristáš, G.; Orendáč, Mat.; Gabáni, S.; Kačmarčík, J.; Gažo, E.; Pribulová, Z.; Correa-Orellana, A.; Herrera, E.; Suderow, H.; Samuely, P.

    2018-04-01

    The pressure effect up to 24.0 kbar on superconducting and normal-state properties of β -B i2Pd single crystal (Tc≈4.98 K at ambient pressure) has been investigated by measurements of the electrical resistivity. In addition, we have performed the heat capacity measurements in the temperature range 0.7-300 K at ambient pressure. The recent calculations of electronic density of states, electron-phonon interaction spectral function, and phonon density of states of β -B i2Pd [Zheng and Margine, Phys. Rev. B 95, 014512 (2017), 10.1103/PhysRevB.95.014512], are used to fit the resistivity and the heat capacity data. In the superconducting state we have focused on the influence of pressure on the superconducting transition temperature Tc and upper critical field Hc 2 and a negative effect with d Tc/d p =-0.025 K /kbar and d Hc 2/d p =-8 mT /kbar is found. A simplified Bloch-Grüneisen model was used to analyze the pressure effect on the temperature dependence of the normal-state resistivity. The obtained results point to a decrease of the electron-phonon coupling parameter λ and to a shift of phonon frequencies to higher values with pressure. Moreover, the temperature dependence of the normal-state resistivity follows a T2 dependence above Tc up to about 25 K. Together with the enhanced value of Sommerfeld coefficient γ =13.23 mJ mo l-1K-2 these results point to a certain role of the electron-electron interaction in the superconducting pairing mechanism in β -B i2Pd .

  18. Specific features of electron scattering in uniaxially deformed n-Ge single crystals in the presence of radiation defects

    NASA Astrophysics Data System (ADS)

    Luniov, S. V.; Zimych, A. I.; Nazarchuk, P. F.; Maslyuk, V. T.; Megela, I. G.

    2016-12-01

    Temperature dependencies for concentration of electrons and the Hall mobility for unirradiated and irradiated by the flow of electrons ? single crystals ?, with the energy of ?, for different values of uniaxial pressures along the crystallographic directions ?, ? and ? are obtained on the basis of piezo-Hall effect measurements. Non-typical growth of the Hall mobility of electrons for irradiated single crystals ? in comparison with unirradiated with the increasing of value of uniaxial pressures along the crystallographic directions ? (for the entire range of the investigated temperatures) and ? (to temperatures ?) has been revealed. Such an effect of the Hall mobility increase for uniaxially deformed single crystals ? is explained by the reduction of gradients of a resistance as a result of reduction in the amplitude of a large-scale potential with deformation and concentration of charged A-centers in the process of their recharge by the increasing of uniaxial pressure and consequently the probability of scattering on these centers. Theoretical calculations for temperature dependencies of the Hall mobility for uniaxially deformed single crystals ? in terms of the electrons scattering on the ions of shallow donors, acoustic, optical and intervalley phonons, regions of disordering and large-scale potential is good conformed to the corresponding experimental results at temperatures T<220 K for the case of uniaxial pressures along the crystallographic directions ? and ? and for temperatures ? when the uniaxial pressure is directed along the crystallographic directions ?. The mechanism of electron scattering on a charged radiation defects (which correspond to the deep energy levels of A-centers) 'is turned off' for the given temperatures due to the uniaxial pressure. Reduction of the Hall mobility in transition through a maximum of dependence ? with the increasing temperature for cases of the uniaxial deformation of the irradiated single crystals ? along the crystallographic directions ? and ? is explained by the deforming redistribution of electrons between the minima of conduction band of germanium with different mobility.

  19. Water without windows: Evaluating the performance of open cell transmission electron microscopy under saturated water vapor conditions, and assessing its potential for microscopy of hydrated biological specimens

    PubMed Central

    Yamashita, Masao; Cheung, Martin; Kalale, Chola; Adaniya, Hidehito; Kuwahara, Ryusuke; Shintake, Tsumoru

    2017-01-01

    We have performed open cell transmission electron microscopy experiments through pure water vapor in the saturation pressure regime (>0.6 kPa), in a modern microscope capable of sub-Å resolution. We have systematically studied achievable pressure levels, stability and gas purity, effective thickness of the water vapor column and associated electron scattering processes, and the effect of gas pressure on electron optical resolution and image contrast. For example, for 1.3 kPa pure water vapor and 300kV electrons, we report pressure stability of ± 20 Pa over tens of minutes, effective thickness of 0.57 inelastic mean free paths, lattice resolution of 0.14 nm on a reference Au specimen, and no significant degradation in contrast or stability of a biological specimen (M13 virus, with 6 nm body diameter). We have also done some brief experiments to confirm feasibility of loading specimens into an in situ water vapor ambient without exposure to intermediate desiccating conditions. Finally, we have also checked if water experiments had any discernible impact on the microscope performance, and report pertinent vacuum and electron optical data, for reference purposes. PMID:29099843

  20. Mass Spectrometric and Langmuir Probe Measurements in Inductively Coupled Plasmas in Ar, CHF3/Ar and CHF3/Ar/O2 Mixtures

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Rao, M. V. V. S.; Cappelli, M. A.; Sharma, S. P.; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2000-01-01

    Absolute fluxes and energy distributions of ions in inductively coupled plasmas of Ar, CHF3/Ar, and CHF3/Ar/O2 have been measured. These plasmas were generated in a Gaseous Electronics Conference (GEC) cell modified for inductive coupling at pressures 10-50 mTorr and 100-300 W of 13.56 MHz radio frequency (RF) power in various feedgas mixtures. In pure Ar plasmas, the Ar(+) flux increases linearly with pressure as well as RF-power. Total ion flux in CHF3 mixtures decreases with increase in pressure and also CHF3 concentration. Relative ion fluxes observed in the present studies are analyzed with the help of available cross sections for electron impact ionization and charge-exchange ion-molecule reactions. Measurements of plasma potential, electron and ion number densities, electron energy distribution function, and mean electron energy have also been made in the center of the plasma with a RF compensated Langmuir probe. Plasma potential values are compared with the mean ion energies determined from the measured ion energy distributions and are consistent. Electron temperature, plasma potential, and mean ion energy vary inversely with pressure, but increase with CHF3 content in the mixture.

  1. Simulation of propagation of the HPM in the low-pressure argon plasma

    NASA Astrophysics Data System (ADS)

    Zhigang, LI; Zhongcai, YUAN; Jiachun, WANG; Jiaming, SHI

    2018-02-01

    The propagation of the high-power microwave (HPM) with a frequency of 6 GHz in the low-pressure argon plasma was studied by the method of fluid approximation. The two-dimensional transmission model was built based on the wave equation, the electron drift-diffusion equations and the heavy species transport equations, which were solved by means of COMSOL Multiphysics software. The simulation results showed that the propagation characteristic of the HPM was closely related to the average electron density of the plasma. The attenuation of the transmitted wave increased nonlinearly with the electron density. Specifically, the growth of the attenuation slowed down as the electron density increased uniformly. In addition, the concrete transmission process of the HPM wave in the low-pressure argon plasma was given.

  2. Electronic-type vacuum gauges with replaceable elements

    DOEpatents

    Edwards, D. Jr.

    1984-09-18

    In electronic devices for measuring pressures in vacuum systems, the metal elements which undergo thermal deterioration are made readily replaceable by making them parts of a simple plug-in unit. Thus, in ionization gauges, the filament and grid or electron collector are mounted on the novel plug-in unit. In thermocouple pressure gauges, the heater and attached thermocouple are mounted on the plug-in unit. Plug-in units have been designed to function, alternatively, as ionization gauge and as thermocouple gauge, thus providing new gauges capable of measuring broader pressure ranges than is possible with either an ionization gauge or a thermocouple gauge. 5 figs.

  3. [Spectroscopic diagnostics of DC argon plasma at atmospheric pressure].

    PubMed

    Tu, Xin; Lu, Sheng-yong; Yan, Jian-hua; Ma, Zeng-yi; Pan, Xin-chao; Cen, Ke-fa; Cheron, Bruno

    2006-10-01

    The optical emission spectra of DC argon plasma at atmospheric pressure were measured inside and outside the arc chamber. The electron temperature was determined from the Boltzmann plot, and the electron density was derived from Stark broadening of Ar I lines. The criteria for the existence of local thermodynamic equilibrium (LTE)in the plasma was discussed. The results indicate that the DC argon plasma at atmospheric pressure under our experimental conditions is in LTE.

  4. Cryogenic Multichannel Pressure Sensor With Electronic Scanning

    NASA Technical Reports Server (NTRS)

    Hopson, Purnell, Jr.; Chapman, John J.; Kruse, Nancy M. H.

    1994-01-01

    Array of pressure sensors operates reliably and repeatably over wide temperature range, extending from normal boiling point of water down to boiling point of nitrogen. Sensors accurate and repeat to within 0.1 percent. Operate for 12 months without need for recalibration. Array scanned electronically, sensor readings multiplexed and sent to desktop computer for processing and storage. Used to measure distributions of pressure in research on boundary layers at high Reynolds numbers, achieved by low temperatures.

  5. First-principle study of pressure-induced phase transitions and electronic properties of electride Y2C

    NASA Astrophysics Data System (ADS)

    Feng, Caihui; Shan, Jingfeng; Xu, Aoshu; Xu, Yang; Zhang, Meiguang; Lin, Tingting

    2017-10-01

    Trigonal yttrium hypocarbide (Y2C), crystallizing in a layered hR3 structure, is an intriguing quasi-two-dimensional electride metal with potential application for the next generation of electronics. By using an efficient structure search method in combination with first-principles calculations, we have extensively explored the phase transitions and electronic properties of Y2C in a wide pressure range of 0-200 GPa. Three structural transformations were predicted, as hR3 → oP12 → tI12 → mC12. Calculated pressures of phase transition are 20, 118, and 126 GPa, respectively. The high-pressure oP12 phase exhibits a three-dimensional extended C-Y network built up from face- and edge-sharing CY8 hendecahedrons, whereas both the tI12 and mC12 phases are featured by the presence of C2 units. No anionic electrons confined to interstitial spaces have been found in the three predicted high-pressure phases, indicating that they are not electrides. Moreover, Y2C is dynamically stable and also energetically stable relative to the decomposition into its elemental solids.

  6. Pressure effect on the electronic transport properties of Fe1+yTe1-xSex

    NASA Astrophysics Data System (ADS)

    Arsenijević, Stevan; Gaál, Richard; Rønnow, Henrik; Viennois, Romain; Giannini, Enrico; van der Marel, Dirk; Forró, László

    2012-02-01

    We present a systematic study of electronic transport as function of pressure up to 25 kbar of Fe+yTe1-xSex single crystalline samples (with y=0.02, 0.05, and x=0, 0.2, and 0.3). Pressure is demonstrated to be a clean control parameter to drive the system with high Fe-excess through the metal-insulator (MIT) transition, in analogy with increasing the Se-doping or reducing the Fe-excess. The scaling of resistivity ρ(T, p) below 50 K identified a critical pressure of pc=8 kbar which separates non-metallic and metallic temperature dependences. At the pc the low-temperature sheet resistance is in the 6.5 kφ/square range. The Seebeck coefficient (S) at pc changes sign from negative to positive indicating a change in the electronic structure and in the balance between the electron and hole carriers. The S at the highest pressure exhibits low positive values similar to the metallic, superconducting cuprates. The critical MIT behavior, related to a quantum phase transition, indicates a universality of the Fe- and Cu-based high-Tc superconductors.

  7. The energy balance and pressure in the solar transition zone for network and active region features

    NASA Technical Reports Server (NTRS)

    Nicolas, K. R.; Bartoe, J.-D. F.; Brueckner, G. E.; Vanhoosier, M. E.

    1979-01-01

    The electron pressure and energy balance in the solar transition zone are determined for about 125 network and active region features on the basis of high spectral and spatial resolution extreme ultraviolet spectra. Si III line intensity ratios obtained from the Naval Research Laboratory high-resolution telescope and spectrograph during a rocket flight are used as diagnostics of electron density and pressure for solar features near 3.5 x 10 to the 4th K. Observed ratios are compared with the calculated dependence of the 1301 A/1312 A and 1301 A/1296 A line intensity ratios on electron density, temperature and pressure. Electron densities ranging from 2 x 10 to the 10th/cu cm to 10 to the 12th/cu cm and active region pressures from 3 x 10 to the 15th to 10 to the 16th/cu cm K are obtained. Energy balance calculations reveal the balance of the divergence of the conductive flux and turbulent energy dissipation by radiative energy losses in a plane-parallel homogeneous transition zone (fill factor of 1), and an energy source requirement for a cylindrical zone geometry (fill factor less than 0.04).

  8. Pressure-Dependent Electronic and Transport Properties of Bulk Platinum Oxide by Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.

    2018-02-01

    The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.

  9. Electron Heating by the Ion Cyclotron Instability in Collisionless Accretion Flows. I. Compression-driven Instabilities and the Electron Heating Mechanism

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Narayan, Ramesh

    2015-02-01

    In systems accreting well below the Eddington rate, such as the central black hole in the Milky Way (Sgr A*), the plasma in the innermost regions of the disk is believed to be collisionless and have two temperatures, with the ions substantially hotter than the electrons. However, whether a collisionless faster-than-Coulomb energy transfer mechanism exists in two-temperature accretion flows is still an open question. We study the physics of electron heating during the growth of ion velocity-space instabilities by means of multidimensional, fully kinetic, particle-in-cell (PIC) simulations. A background large-scale compression—embedded in a novel form of the PIC equations—continuously amplifies the field. This constantly drives a pressure anisotropy P > P ∥ because of the adiabatic invariance of the particle magnetic moments. We find that, for ion plasma beta values β0i ~ 5-30 appropriate for the midplane of low-luminosity accretion flows (here, β0i is the ratio of ion thermal pressure to magnetic pressure), mirror modes dominate if the electron-to-proton temperature ratio is T 0e /T 0i >~ 0.2, whereas for T 0e /T 0i <~ 0.2 the ion cyclotron instability triggers the growth of strong Alfvén-like waves, which pitch-angle scatter the ions to maintain marginal stability. We develop an analytical model of electron heating during the growth of the ion cyclotron instability, which we validate with PIC simulations. We find that for cold electrons (β0e <~ 2 me /mi , where β0e is the ratio of electron thermal pressure to magnetic pressure), the electron energy gain is controlled by the magnitude of the E-cross-B velocity induced by the ion cyclotron waves. This term is independent of the initial electron temperature, so it provides a solid energy floor even for electrons starting with extremely low temperatures. On the other hand, the electron energy gain for β0e >~ 2 me /mi —governed by the conservation of the particle magnetic moment in the growing fields of the instability—is proportional to the initial electron temperature, and it scales with the magnetic energy of ion cyclotron waves. Our results have implications for two-temperature accretion flows as well as for solar wind and intracluster plasmas.

  10. Pressure effect on the mechanical and electronic properties of B3N3: A first-principle study

    NASA Astrophysics Data System (ADS)

    Bagheri, Mohammad; Faez, Rahim

    2018-05-01

    In this paper, we perform Self-Consistent Field (SCF) energy calculation of Tetragonal B3N3 in the homogenous pressure range of -30 GPa to +160 GPa. Also, we study mechanical and electronic properties of this compound as a potential candidate for a conventional phonon-mediated superconductor with a high transition temperature. To do this, the volume changes of B3N3, and its bulk modulus, due to applying pressure in the range of -30 GPa to +160 GPa are calculated and analyzed. The calculated Bulk modulus of B3N3 at 230 GPa in the relaxed condition indicates the strength of bonds and its low compressibility. We calculated and analyzed the electronic effective mass in both XM and MA directions and anisotropy parameter in these two directions in the relaxed condition and under pressure in the range of -30 GPa to +160 GPa. It is shown that in overall, the direction in which the transport of electrons is parallel to the two perpendicular honeycomb planes has less effective mass and better conductivity than the other direction, in which the electronic transport is perpendicular to at least one of the hexagonal structure planes.

  11. A Diamond Electron Tunneling Micro-Electromechanical Sensor

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia

    2000-01-01

    A new pressure sensing device using field emission from diamond coated silicon tips has been developed. A high electric field applied between a nano-tip array and a diaphragm configured as electrodes produces electron emission governed by the Fowler Nordheim equation. The electron emission is very sensitive to the separation between the diaphragm and the tips, which is fixed at an initial spacing and bonded such that a cavity is created between them. Pressure applied to the diaphragm decreases the spacing between the electrodes, thereby increasing the number of electrons emitted. Silicon has been used as a substrate on which arrays of diamond coated sharp tips have been fabricated for electron emission. Also, a diaphragm has been made using wet orientation dependent etching. These two structures were bonded together using epoxy and tested. Current - voltage measurements were made at varying pressures for 1-5 V biasing conditions. The sensitivity was found to be 2.13 mV/V/psi for a 20 x 20 array, which is comparable to that of silicon piezoresistive transducers. Thinner diaphragms as well as alternative methods of bonding are expected to improve the electrical characteristics of the device. This transducer will find applications in many engineering fields for pressure measurement.

  12. Electrical resistivity of CeNiSn under uniaxial and hydrostatic pressures

    NASA Astrophysics Data System (ADS)

    Echizen, Y.; Umeo, K.; Igaue, T.; Takabatake, T.

    2002-05-01

    We present measurements of the electrical resistivity ρ(T) on high-quality single-crystalline CeNiSn under both hydrostatic pressure up to 1 GPa and uniaxial pressure up to 0.25 GPa. At ambient pressure, ρ(T) along the orthorhombic a-axis (b-axis) shows two maxima at TL = 12 K (14 K) and TH = 74 K (40 K), respectively, which arise from the Kondo scattering of conduction electrons by the crystal-field ground state and excited states. With increasing hydrostatic pressure, both TL and TH increase linearly, and for P≥0.8 GPa, the anisotropy in ρ(T) for I∥a and I∥b almost vanishes as a result of increased hybridization between the 4f electrons and the conduction electrons. Under P∥a, both TL and TH in ρ(I∥b) increase similarly to under hydrostatic pressure. Under P∥c, however, the depression of TL in ρ(I∥a) and ρ(I∥b) suggests that the c-f hybridization in the crystal-field ground state is weakened in the a-b plane of CeNiSn.

  13. Adiabatic and nonadiabatic responses of the radiation belt relativistic electrons to the external changes in solar wind dynamic pressure and interplanetary magnetic field

    NASA Astrophysics Data System (ADS)

    Li, L.

    2013-12-01

    By removing the influences of 'magnetopause shadowing' (r0>6.6RE) and geomagnetic activities, we investigated statistically the responses of magnetic field and relativistic (>0.5MeV) electrons at geosynchronous orbit to 201 interplanetary perturbations during 6 years from 2003 (solar maximum) to 2008 (solar minimum). The statistical results indicate that during geomagnetically quiet times (HSYM ≥-30nT, and AE<200nT), ~47.3% changes in the geosynchronous magnetic field and relativistic electron fluxes are caused by the combined actions of the enhancement of solar wind dynamic pressure (Pd) and the southward turning of interplanetary magnetic field (IMF) (ΔPd>0.4 nPa, and IMF Bz<0 nT), and only ~18.4% changes are due to single dynamic pressure increase (ΔPd >0.4 nPa, but IMF Bz>0 nT), and ~34.3% changes are due to single southward turning of IMF (IMF Bz<0 nT, but |ΔPd|<0.4 nPa). Although the responses of magnetic field and relativistic electrons to the southward turning of IMF are weaker than their responses to the dynamic pressure increase, the southward turning of IMF can cause the dawn-dusk asymmetric perturbations that the magnetic field and the relativistic electrons tend to increase on the dawnside (LT~00:00-12:00) but decrease on the duskside (LT~13:00-23:00). Furthermore, the variation of relativistic electron fluxes is adiabatically controlled by the magnitude and elevation angle changes of magnetic field during the single IMF southward turnings. However, the variation of relativistic electron fluxes is independent of the change in magnetic field in some compression regions during the enhancement of solar wind dynamic pressure (including the single pressure increases and the combined external perturbations), indicating that nonadiabatic dynamic processes of relativistic electrons occur there. Acknowledgments. This work is supported by NSFC (grants 41074119 and 40604018). Liuyuan Li is grateful to the staffs working for the data from GOES 8-12 satellites and OMNI database in CDAWeb.

  14. High Pressure Optical Studies of the Thallous Halides and of Charge-Transfer Complexes

    NASA Astrophysics Data System (ADS)

    Jurgensen, Charles Willard

    High pressure was used to study the insulator -to-metal transition in sulfur and the thallous halides and to study the intermolecular interactions in charge -transfer complexes. The approach to the band overlap insulator -to-metal transition was studied in three thallous halides and sulfur by optical absorption measurements of the band gap as a function of pressure. The band gap of sulfur continuously decreases with pressure up to the insulator -to-metal transition which occurs between 450 and 485 kbars. The results on the thallous halides indicate that the indirect gap decreases more rapidly than the direct gap; the closing of the indirect gap is responsible for the observed insulator -to-metal transitions. High pressure electronic and vibrational spectroscopic measurements on the solid-state complexes of HMB-TCNE were used to study the intermolecular interactions of charge -transfer complexes. The vibrational frequency shifts indicate that the degree of charge transfer increases with pressure which is independently confirmed by an increase in the molar absorptivity of the electronic charge-transfer peak. Induction and dispersion forces contribute towards a red shift of the charge-transfer peak; however, charge-transfer resonance contributes toward a blue shift and this effect is dominant for the HMB-TCNE complexes. High pressure electronic spectra were used to study the effect of intermolecular interactions on the electronic states of TCNQ and its complexes. The red shifts with pressure of the electronic spectra of TCNQ and (TCNQ)(' -) in polymer media and of crystalline TCNQ can be understood in terms of Van der Waals interactions. None of the calculations which considered intradimer distance obtained the proper behavior for either the charge-transfer of the locally excited states of the complexes. The qualitative behavior of both states can be interpreted as the effect of increased mixing of the locally excited and charge transfer states.

  15. High-quality imaging in environmental scanning electron microscopy--optimizing the pressure limiting system and the secondary electron detection of a commercially available ESEM.

    PubMed

    Fitzek, H; Schroettner, H; Wagner, J; Hofer, F; Rattenberger, J

    2016-04-01

    In environmental scanning electron microscopy applications in the kPa regime are of increasing interest for the investigation of wet and biological samples, because neither sample preparation nor extensive cooling are necessary. Unfortunately, the applications are limited by poor image quality. In this work the image quality at high pressures of a FEI Quanta 600 (field emission gun) and a FEI Quanta 200 (thermionic gun) is greatly improved by optimizing the pressure limiting system and the secondary electron (SE) detection system. The scattering of the primary electron beam strongly increases with pressure and thus the image quality vanishes. The key to high-image quality at high pressures is to reduce scattering as far as possible while maintaining ideal operation conditions for the SE-detector. The amount of scattering is reduced by reducing both the additional stagnation gas thickness (aSGT) and the environmental distance (ED). A new aperture holder is presented that significantly reduces the aSGT while maintaining the same field-of-view (FOV) as the original design. With this aperture holder it is also possible to make the aSGT even smaller at the expense of a smaller FOV. A new blade-shaped SE-detector is presented yielding better image quality than usual flat SE-detectors. The electrode of the new SE detector is positioned on the sample table, which allows the SE-detector to operate at ideal conditions regardless of pressure and ED. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  16. Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions

    NASA Astrophysics Data System (ADS)

    Lillis, Robert J.; Brain, David A.

    2013-06-01

    Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric densities, chemistry, electrodynamics, communications, and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 A.M. local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar wind (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: (1) "stable" regions where fluxes increase mildly with SW pressure, (2) "high-flux" regions where accelerated (peaked) spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, (3) permanent plasma voids, and (4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes, and absence/existence of these plasma voids vary significantly with solar wind pressure proxy and moderately with IMF proxy direction; average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for approximately southwest proxy directions compared with approximately northeast directions. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar wind.

  17. Pressure-assisted low-temperature sintering for paper-based writing electronics.

    PubMed

    Xu, L Y; Yang, G Y; Jing, H Y; Wei, J; Han, Y D

    2013-09-06

    With the aim of preparing paper-based writing electronics, a kind of conductive pen was made with nano-silver ink as the conductive component and a rollerball pen as the writing implement. This was used to direct-write conductive patterns on Epson photo paper. In order to decrease the sintering temperature, pressure was introduced to enhance the driving forces for sintering. Compared with hot sintering without pressure, hot-pressure can effectively improve the conductivity of silver coatings, reduce the sintering time and thus improve productivity. Importantly, pressure can achieve a more uniform and denser microstructure, which increases the connection strength of the silver coating. At the optimum hot-pressure condition (sintering temperature 120 ° C/sintering pressure 25 MPa/sintering time 15 min), a typical measured resistivity value was 1.43 × 10⁻⁷ Ω m, nine greater than that of bulk silver. This heat treatment process is compatible with paper and does not cause any damage to the paper substrates. Even after several thousand bending cycles, the resistivity values of writing tracks by hot-pressure sintering stay almost the same (from 1.43 × 10⁻⁷ to 1.57 × 10⁻⁷ Ω m). The stability and flexibility of the writing circuits are good, which demonstrates the promising future of writing electronics.

  18. Effect of pressure and magnetic field on the electrical resistivity of TbB6

    NASA Astrophysics Data System (ADS)

    Sakai, Takeshi; Oomi, Gendo; Kunii, Satoru

    2009-06-01

    Electrical resistivity of a single crystal of TbB6 was studied under hydrostatic pressures up to 2.1 GPa and magnetic fields up to 9 T. The Néel temperature, rN, decreases linearly with increasing pressure: \\ddiff lnTN/\\ddiff P = 3.14×10-2 GPa-1 at zero external field. This pressure dependence of TN weakens as external fields increase. At ambient pressure, the magnetoresistance at 4.2 K is positive up to 4.8 T and becomes negative above 4.8 T. The positive magnetoresistance observed at ambient pressure is suppressed by applying pressure, which enhances the negative magnetoresistance. These results are interpreted in terms of the reduction of the scattering of conduction electrons, due to disordered magnetic moment being suppressed by derealization of 4f electrons at high pressure, and the magnetic field variation of the large transition probability between the ground state and the excited levels.

  19. Electric Propulsion Test and Evaluation Methodologies for Plasma in the Environments of Space and Testing (EP TEMPEST)

    DTIC Science & Technology

    2016-04-14

    Swanson AEDC Path 1: Magnetized electron transport impeded across magnetic field lines; transport via electron-particle collisions Path 2*: Electron...T&E (higher pressure, metallic walls) → Impacts stability, performance, plume properties, thruster lifetime Magnetic Field Lines Plasma Plume...Development of T&E Methodologies • Current-Voltage- Magnetic Field (I-V-B) Mapping • Facility Interaction Studies • Background Pressure • Plasma Wall

  20. Spinoff from Wind Tunnel Technology

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Douglas Juanarena, a former NASA Langley instrument design engineer, found a solution to the problem of long, repetitive tunnel runs needed to measure airflow pressures. Electronically scanned pressure (ESP) replaced mechanical systems with electronic sensors. Juanarena licensed the NASA-patented technology and now manufactures ESP modules for research centers, aerospace companies, etc.

  1. The strength of electron electron correlation in Cs3C60

    NASA Astrophysics Data System (ADS)

    Baldassarre, L.; Perucchi, A.; Mitrano, M.; Nicoletti, D.; Marini, C.; Pontiroli, D.; Mazzani, M.; Aramini, M.; Riccó, M.; Giovannetti, G.; Capone, M.; Lupi, S.

    2015-10-01

    Cs3C60 is an antiferromagnetic insulator that under pressure (P) becomes metallic and superconducting below Tc = 38 K. The superconducting dome present in the T - P phase diagram close to a magnetic state reminds what found in superconducting cuprates and pnictides, strongly suggesting that superconductivity is not of the conventional Bardeen-Cooper-Schrieffer (BCS) type We investigate the insulator to metal transition induced by pressure in Cs3C60 by means of infrared spectroscopy supplemented by Dynamical Mean-Field Theory calculations. The insulating compound is driven towards a metallic-like behaviour, while strong correlations survive in the investigated pressure range. The metallization process is accompanied by an enhancement of the Jahn-Teller effect. This shows that electronic correlations are crucial in determining the insulating behaviour at ambient pressure and the bad metallic nature for increasing pressure. On the other hand, the relevance of the Jahn-Teller coupling in the metallic state confirms that phonon coupling survives in the presence of strong correlations.

  2. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    PubMed Central

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; Wang, Shibing; Lin, Yu; Zeng, Qiaoshi; Xu, Gang; Liu, Zhenxian; Solanki, G. K.; Patel, K. D.; Cui, Yi; Hwang, Harold Y.; Mao, Wendy L.

    2015-01-01

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe2 up to ∼60 GPa using multiple experimental techniques and ab-initio calculations. MoSe2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSe2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides. PMID:26088416

  3. Pressure-induced multiband superconductivity in pyrite PtB i2 with perfect electron-hole compensation

    NASA Astrophysics Data System (ADS)

    Chen, Xuliang; Shao, Dexi; Gu, Chuanchuan; Zhou, Yonghui; An, Chao; Zhou, Ying; Zhu, Xiangde; Chen, Tong; Tian, Mingliang; Sun, Jian; Yang, Zhaorong

    2018-05-01

    We report on the discovery of pressure-induced superconductivity in the compensated semimetal pyrite PtB i2 , which exhibits extreme magnetoresistance (XMR) and nontrivial band structure at ambient pressure. The appearance of superconductivity, first observed at PC˜13 GPa with an onset critical temperature TC of ˜2.2 K , is accompanied by a pronounced enhancement of the density of electrons and holes based on Hall-effect measurements. Upon further compression, TC remains almost unchanged up to 50.0 GPa; remarkably, the perfect electron-hole compensation still holds, while the carrier mobility greatly reduces. No evident trace of structural phase transitions is detected through synchrotron x-ray diffraction over the measured pressure range of 1.5-51.2 GPa. These results highlight a multiband characteristic of the observed superconductivity, making pyrite PtB i2 unique among the compensated XMR materials where the pressure-induced superconductivity usually links to structural transitions and carrier imbalance.

  4. Pressure induced metallization with absence of structural transition in layered molybdenum diselenide

    DOE PAGES

    Zhao, Zhao; Zhang, Haijun; Yuan, Hongtao; ...

    2015-06-19

    Layered transition-metal dichalcogenides have emerged as exciting material systems with atomically thin geometries and unique electronic properties. Pressure is a powerful tool for continuously tuning their crystal and electronic structures away from the pristine states. Here, we systematically investigated the pressurized behavior of MoSe 2 up to ~60 GPa using multiple experimental techniques and ab-initio calculations. MoSe 2 evolves from an anisotropic two-dimensional layered network to a three-dimensional structure without a structural transition, which is a complete contrast to MoS 2. The role of the chalcogenide anions in stabilizing different layered patterns is underscored by our layer sliding calculations. MoSemore » 2 possesses highly tunable transport properties under pressure, determined by the gradual narrowing of its band-gap followed by metallization. The continuous tuning of its electronic structure and band-gap in the range of visible light to infrared suggest possible energy-variable optoelectronics applications in pressurized transition-metal dichalcogenides.« less

  5. Calibration improvements to electronically scanned pressure systems and preliminary statistical assessment

    NASA Technical Reports Server (NTRS)

    Everhart, Joel L.

    1996-01-01

    Orifice-to-orifice inconsistencies in data acquired with an electronically-scanned pressure system at the beginning of a wind tunnel experiment forced modifications to the standard, instrument calibration procedures. These modifications included a large increase in the number of calibration points which would allow a critical examination of the calibration curve-fit process, and a subsequent post-test reduction of the pressure data. Evaluation of these data has resulted in an improved functional representation of the pressure-voltage signature for electronically-scanned pressures sensors, which can reduce the errors due to calibration curve fit to under 0.10 percent of reading compared to the manufacturer specified 0.10 percent of full scale. Application of the improved calibration function allows a more rational selection of the calibration set-point pressures. These pressures should be adjusted to achieve a voltage output which matches the physical shape of the pressure-voltage signature of the sensor. This process is conducted in lieu of the more traditional approach where a calibration pressure is specified and the resulting sensor voltage is recorded. The fifteen calibrations acquired over the two-week duration of the wind tunnel test were further used to perform a preliminary, statistical assessment of the variation in the calibration process. The results allowed the estimation of the bias uncertainty for a single instrument calibration; and, they form the precursor for more extensive and more controlled studies in the laboratory.

  6. Metallic hydrogen with a strong electron-phonon interaction at a pressure of 300-500 GPa

    NASA Astrophysics Data System (ADS)

    Degtyarenko, N. N.; Mazur, E. A.; Grishakov, K. S.

    2017-08-01

    Atomic metallic hydrogen with a lattice with FDDD symmetry is shown to have a stable phase under hydrostatic compression pressure in the range of 350-500 GPа. The resulting structure has a stable spectrum regarding the collapse of the phonons. Ab-unitio simulation method has been used to calculate the structural, electronic, phononic and other characteristics of the normal metallic phase of the hydrogen at a pressure of 350-500 GPA.

  7. Stretchable energy-harvesting tactile electronic skin capable of differentiating multiple mechanical stimuli modes.

    PubMed

    Park, Steve; Kim, Hyunjin; Vosgueritchian, Michael; Cheon, Sangmo; Kim, Hyeok; Koo, Ja Hoon; Kim, Taeho Roy; Lee, Sanghyo; Schwartz, Gregory; Chang, Hyuk; Bao, Zhenan

    2014-11-19

    The first stretchable energy-harvesting electronic-skin device capable of differentiating and generating energy from various mechanical stimuli, such as normal pressure, lateral strain, bending, and vibration, is presented. A pressure sensitivity of 0.7 kPa(-1) is achieved in the pressure region <1 kPa with power generation of tens of μW cm(-2) from a gentle finger touch. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawood, Mahmoud S.; Hamdan, Ahmad, E-mail: ahmad.ba.hamdan@gmail.com, E-mail: Joelle.margot@umontreal.ca; Margot, Joëlle, E-mail: ahmad.ba.hamdan@gmail.com, E-mail: Joelle.margot@umontreal.ca

    2015-11-15

    The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure) and compositions (argon, nitrogen and helium) on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center tomore » its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.« less

  9. Structures, mechanical properties, equations of state, and electronic properties of β-HMX under hydrostatic pressures: a DFT-D2 study.

    PubMed

    Peng, Qing; Rahul; Wang, Guangyu; Liu, Gui-Rong; De, Suvranu

    2014-10-07

    We report the hydrostatic compression studies of the β-polymorph of a cyclotetramethylene tetranitramine (HMX) energetic molecular crystal using DFT-D2, a first-principles calculation based on density functional theory (DFT) with van der Waals (vdW) corrections. The molecular structure, mechanical properties, electronic properties, and equations of state of β-HMX are investigated. For the first time, we predict the elastic constants of β-HMX using DFT-D2 studies. The equations of state under hydrostatic compression are studied for pressures up to 100 GPa. We found that the N-N bonds along the minor axis are responsible for the sensitivity of β-HMX. The analysis of the charge distribution shows that the electronic charge is transferred from hydrogen atoms to nitro groups with the amount of 0.131 and 0.064e for the nitro groups along the minor axis and major axis, respectively, when pressure changes from 0 GPa to 100 GPa. The electronic energy band gap changes from direct at a pressure of 0 GPa to indirect at a pressure of 50 GPa and higher. The band gap decreases with respect to an increase in pressure, implying that the impact sensitivity increases with compression. Our study suggests that the van der Waals interactions are critically important in modeling the mechanical properties of this molecular crystal.

  10. High-pressure freezing for scanning transmission electron tomography analysis of cellular organelles.

    PubMed

    Walther, Paul; Schmid, Eberhard; Höhn, Katharina

    2013-01-01

    Using an electron microscope's scanning transmission mode (STEM) for collection of tomographic datasets is advantageous compared to bright field transmission electron microscopic (TEM). For image formation, inelastic scattering does not cause chromatic aberration, since in STEM mode no image forming lenses are used after the beam has passed the sample, in contrast to regular TEM. Therefore, thicker samples can be imaged. It has been experimentally demonstrated that STEM is superior to TEM and energy filtered TEM for tomography of samples as thick as 1 μm. Even when using the best electron microscope, adequate sample preparation is the key for interpretable results. We adapted protocols for high-pressure freezing of cultivated cells from a physiological state. In this chapter, we describe optimized high-pressure freezing and freeze substitution protocols for STEM tomography in order to obtain high membrane contrast.

  11. Dispensing of high concentration Ag nano-particles ink for ultra-low resistivity paper-based writing electronics

    PubMed Central

    Wang, Fuliang; Mao, Peng; He, Hu

    2016-01-01

    Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10−8 (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10−8 to 5.08 × 10−8 (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved. PMID:26883558

  12. Cell surface and cell outline imaging in plant tissues using the backscattered electron detector in a variable pressure scanning electron microscope

    PubMed Central

    2013-01-01

    Background Scanning electron microscopy (SEM) has been used for high-resolution imaging of plant cell surfaces for many decades. Most SEM imaging employs the secondary electron detector under high vacuum to provide pseudo-3D images of plant organs and especially of surface structures such as trichomes and stomatal guard cells; these samples generally have to be metal-coated to avoid charging artefacts. Variable pressure-SEM allows examination of uncoated tissues, and provides a flexible range of options for imaging, either with a secondary electron detector or backscattered electron detector. In one application, we used the backscattered electron detector under low vacuum conditions to collect images of uncoated barley leaf tissue followed by simple quantification of cell areas. Results Here, we outline methods for backscattered electron imaging of a variety of plant tissues with particular focus on collecting images for quantification of cell size and shape. We demonstrate the advantages of this technique over other methods to obtain high contrast cell outlines, and define a set of parameters for imaging Arabidopsis thaliana leaf epidermal cells together with a simple image analysis protocol. We also show how to vary parameters such as accelerating voltage and chamber pressure to optimise imaging in a range of other plant tissues. Conclusions Backscattered electron imaging of uncoated plant tissue allows acquisition of images showing details of plant morphology together with images of high contrast cell outlines suitable for semi-automated image analysis. The method is easily adaptable to many types of tissue and suitable for any laboratory with standard SEM preparation equipment and a variable-pressure-SEM or tabletop SEM. PMID:24135233

  13. Simulation of a runaway electron avalanche developing in an atmospheric pressure air discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oreshkin, E. V., E-mail: oreshkinev@scalpnet.ru; Barengolts, S. A.; A. M. Prokhorov General Physics Institute, RAS, 119991 Moscow

    2015-12-15

    To gain a better understanding of the operation of atmospheric pressure air discharges, the formation of a runaway electron beam at an individual emission site on the cathode has been numerically simulated. The model provides a description of the dynamics of the fast electrons emitted into an air gap from the surface of the emission zone by solving numerically two-dimensional equations for the electrons. It is supposed that the electric field at the surface of the emission zone is enhanced, providing conditions for continuous acceleration of the emitted electrons. It is shown that the formation of a runaway electron beammore » in a highly overvolted discharge is largely associated with avalanche-type processes and that the number of electrons in the avalanche reaches 50% of the total number of runaway electrons.« less

  14. Electron kinetics in atmospheric-pressure argon and nitrogen microwave microdischarges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-28

    Electron kinetics in atmospheric-pressure argon and nitrogen microwave (4 GHz) microdischarges is studied using a self-consistent one-dimensional Particle-in-Cell Monte Carlo Collisions model. The reversal of electric field (i.e., inverted sheath formation) is obtained in nitrogen and is not obtained in argon. This is explained by the different energy dependencies of electron-neutral collision cross sections in atomic and molecular gases and, as a consequence, different drag force acting on electrons. A non-local behavior of electron energy distribution function is obtained in both gases owing to electrons are generated in the plasma sheath. In both gases, electron energy relaxation length is comparable withmore » the interelectrode gap, and therefore, they penetrate the plasma bulk with large energies.« less

  15. Hydrogen gas storage in fluorinated ultramicroporous tunnel crystal

    NASA Astrophysics Data System (ADS)

    Kataoka, Keisuke; Katagiri, Toshimasa

    2012-07-01

    We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder.We report hydrogen storage at an ordinary pressure due to a bottle-neck effect of an ultramicroporous crystal. Stored hydrogen was kept at an ordinary pressure below -110 °C. The amounts of stored hydrogen gas linearly correlated with the initial pressures. These phenomena suggested the ultramicroporous tunnels worked as a molecular gas cylinder. Electronic supplementary information (ESI) available. CCDC 246922. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c2nr30940h

  16. Probing matter at extreme Gbar pressures at the NIF

    DOE PAGES

    Kritcher, A. L.; Doeppner, T.; Swift, D.; ...

    2013-12-04

    Here we describe a platform to measure the material properties, specifically the equation of state and electron temperature, at pressures of 100 Mbar to a Gbar at the National Ignition Facility (NIF). In our experiments we launch spherically convergent shock waves into solid CH, CD, or diamond samples using a hohlraum radiation drive, in an indirect drive laser geometry. X-ray radiography is applied to measure the shock speed and infer the mass density profile, enabling determination of the material pressure and Hugoniot equation of state. X-ray scattering is applied to measure the electron temperature through probing of the electron velocitymore » distribution via Doppler broadening.« less

  17. Application of diffuse discharges of atmospheric pressure formed by runaway electrons for modification of copper and stainless steel surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasenko, V. F., E-mail: VFT@loi.hcei.tsc.ru; Shulepov, M. A.; Erofeev, M. V.

    The results of studies devoted to the influence of a runaway electron pre-ionized diffuse discharge (REP DD) formed in air and nitrogen at atmospheric pressure on the surface of copper and stainless steel are presented. Nanosecond high-voltage pulses were used to obtain REP DD in different gases at high pressures in a chamber with a flat anode and a cathode possessing a small radius of curvature. This mode of discharge was implemented owing to the generation of runaway electrons and X-rays. The conditions under which the surface of copper and stainless steel was cleaned from carbon and oxidized are described.

  18. Automated processing of dynamic properties of intraventricular pressure by computer program and electronic circuit.

    PubMed

    Adler, D; Mahler, Y

    1980-04-01

    A procedure for automatic detection and digital processing of the maximum first derivative of the intraventricular pressure (dp/dtmax), time to dp/dtmax(t - dp/dt) and beat-to-beat intervals have been developed. The procedure integrates simple electronic circuits with a short program using a simple algorithm for the detection of the points of interest. The tasks of differentiating the pressure signal and detecting the onset of contraction were done by electronics, while the tasks of finding the values of dp/dtmax, t - dp/dt, beat-to-beat intervals and all computations needed were done by software. Software/hardware 'trade off' considerations and the accuracy and reliability of the system are discussed.

  19. Atmospheric pressure scanning transmission electron microscopy.

    PubMed

    de Jonge, Niels; Bigelow, Wilbur C; Veith, Gabriel M

    2010-03-10

    Scanning transmission electron microscope (STEM) images of gold nanoparticles at atmospheric pressure have been recorded through a 0.36 mm thick mixture of CO, O2, and He. This was accomplished using a reaction cell consisting of two electron-transparent silicon nitride membranes. Gold nanoparticles of a full width at half-maximum diameter of 1.0 nm were visible above the background noise, and the achieved edge resolution was 0.4 nm in accordance with calculations of the beam broadening.

  20. Parameters of an avalanche of runaway electrons in air under atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Oreshkin, E. V.

    2018-01-01

    The features of runaway-electron avalanches developing in air under atmospheric pressures are investigated in the framework of a three-dimensional numerical simulation. The simulation results indicate that an avalanche of this type can be characterized, besides the time and length of its exponential growth, by the propagation velocity and by the average kinetic energy of the runaway electrons. It is shown that these parameters obey the similarity laws applied to gas discharges.

  1. Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu

    2015-04-14

    The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequencymore » further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.« less

  2. A Miniaturized Variable Pressure Scanning Electron Microscope (MVP-SEM) for the Surface of Mars: An Instrument for the Planetary Science Community

    NASA Technical Reports Server (NTRS)

    Edmunson, J.; Gaskin, J. A.; Danilatos, G.; Doloboff, I. J.; Effinger, M. R.; Harvey, R. P.; Jerman, G. A.; Klein-Schoder, R.; Mackie, W.; Magera, B.; hide

    2016-01-01

    The Miniaturized Variable Pressure Scanning Electron Microscope(MVP-SEM) project, funded by the NASA Planetary Instrument Concepts for the Advancement of Solar System Observations (PICASSO) Research Opportunities in Space and Earth Science (ROSES), will build upon previous miniaturized SEM designs for lunar and International Space Station (ISS) applications and recent advancements in variable pressure SEM's to design and build a SEM to complete analyses of samples on the surface of Mars using the atmosphere as an imaging medium. By the end of the PICASSO work, a prototype of the primary proof-of-concept components (i.e., the electron gun, focusing optics and scanning system)will be assembled and preliminary testing in a Mars analog chamber at the Jet Propulsion Laboratory will be completed to partially fulfill Technology Readiness Level to 5 requirements for those components. The team plans to have Secondary Electron Imaging(SEI), Backscattered Electron (BSE) detection, and Energy Dispersive Spectroscopy (EDS) capabilities through the MVP-SEM.

  3. Preliminary Study of a Hybrid Helicon-ECR Plasma Source

    NASA Astrophysics Data System (ADS)

    M. Hala, A.; Oksuz, L.; Ximing, Zhu

    2016-08-01

    A new type of hybrid discharge is experimentally investigated in this work. A helicon source and an electron cyclotron resonance (ECR) source were combined to produce plasma. As a preliminary study of this type of plasma, the optical emission spectroscopy (OES) method was used to obtain values of electron temperature and density under a series of typical conditions. Generally, it was observed that the electron temperature decreases and the electron density increases as the pressure increased. When increasing the applied power at a certain pressure, the average electron density at certain positions in the discharge does not increase significantly possibly due to the high degree of neutral depletion. Electron temperature increased with power in the hybrid mode. Possible mechanisms of these preliminary observations are discussed.

  4. A study of the possible characteristics of a low-altitude electron layer in the Martian atmosphere

    NASA Technical Reports Server (NTRS)

    Wallio, H. A.

    1974-01-01

    The apparent diurnal Martian surface pressure variations, as deduced from radio occultation experiments, is discussed and explained as possibly arising from the effect of a low-altitude electron layer. Possible source and loss mechanisms for the low altitude electron layer are presented and discussed. Time dependent differential equations describing the electron layer are derived, and then integrated to investigate the electron distribution resulting from several processes that might occur in the atmosphere. It is concluded that the source mechanism is the sublimation of alkali atoms from a permanent dust layer, and that the dominant loss process must involve CO2 clustering about the alkali atoms. An electron layer is developed which explains the apparent diurnal surface pressure variation.

  5. Pressurized rf cavities in ionizing beams

    DOE PAGES

    Freemire, B.; Tollestrup, A.  V.; Yonehara, K.; ...

    2016-06-20

    A muon collider or Higgs factory requires significant reduction of the six dimensional emittance of the beam prior to acceleration. One method to accomplish this involves building a cooling channel using high pressure gas filled radio frequency cavities. The performance of such a cavity when subjected to an intense particle beam must be investigated before this technology can be validated. To this end, a high pressure gas filled radio frequency (rf) test cell was built and placed in a 400 MeV beam line from the Fermilab linac to study the plasma evolution and its effect on the cavity. Hydrogen, deuterium, helium and nitrogen gases were studied. Additionally, sulfur hexafluoride and dry air were used as dopants to aid in the removal of plasma electrons. Measurements were made using a variety of beam intensities, gas pressures, dopant concentrations, and cavity rf electric fields, both with and without a 3 T external solenoidal magnetic field. In conclusion, energy dissipation per electron-ion pair, electron-ion recombination rates, ion-ion recombination rates, and electron attachment times to SFmore » $$_6$$ and O$$_2$$ were measured.« less

  6. Breakdown of Hooke's law of elasticity at the Mott critical endpoint in an organic conductor.

    PubMed

    Gati, Elena; Garst, Markus; Manna, Rudra S; Tutsch, Ulrich; Wolf, Bernd; Bartosch, Lorenz; Schubert, Harald; Sasaki, Takahiko; Schlueter, John A; Lang, Michael

    2016-12-01

    The Mott metal-insulator transition, a paradigm of strong electron-electron correlations, has been considered as a source of intriguing phenomena. Despite its importance for a wide range of materials, fundamental aspects of the transition, such as its universal properties, are still under debate. We report detailed measurements of relative length changes Δ L / L as a function of continuously controlled helium-gas pressure P for the organic conductor κ-(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl across the pressure-induced Mott transition. We observe strongly nonlinear variations of Δ L / L with pressure around the Mott critical endpoint, highlighting a breakdown of Hooke's law of elasticity. We assign these nonlinear strain-stress relations to an intimate, nonperturbative coupling of the critical electronic system to the lattice degrees of freedom. Our results are fully consistent with mean-field criticality, predicted for electrons in a compressible lattice with finite shear moduli. We argue that the Mott transition for all systems that are amenable to pressure tuning shows the universal properties of an isostructural solid-solid transition.

  7. Breakdown of Hooke’s law of elasticity at the Mott critical endpoint in an organic conductor

    PubMed Central

    Gati, Elena; Garst, Markus; Manna, Rudra S.; Tutsch, Ulrich; Wolf, Bernd; Bartosch, Lorenz; Schubert, Harald; Sasaki, Takahiko; Schlueter, John A.; Lang, Michael

    2016-01-01

    The Mott metal-insulator transition, a paradigm of strong electron-electron correlations, has been considered as a source of intriguing phenomena. Despite its importance for a wide range of materials, fundamental aspects of the transition, such as its universal properties, are still under debate. We report detailed measurements of relative length changes ΔL/L as a function of continuously controlled helium-gas pressure P for the organic conductor κ-(BEDT-TTF)2Cu[N(CN)2]Cl across the pressure-induced Mott transition. We observe strongly nonlinear variations of ΔL/L with pressure around the Mott critical endpoint, highlighting a breakdown of Hooke’s law of elasticity. We assign these nonlinear strain-stress relations to an intimate, nonperturbative coupling of the critical electronic system to the lattice degrees of freedom. Our results are fully consistent with mean-field criticality, predicted for electrons in a compressible lattice with finite shear moduli. We argue that the Mott transition for all systems that are amenable to pressure tuning shows the universal properties of an isostructural solid-solid transition. PMID:27957540

  8. Self-regenerating Nanotips: Indestructable Field-emission Cathodes for Low-power Electric Propulsion

    DTIC Science & Technology

    2010-09-27

    Field Emission Scanning Electron Microscope. The chamber was evacuated using a series of three ion pumps and vacuum pressure of 10-7 Torr was...backed by a 110-L/min dry scroll pump . The chamber is also equipped with a 300-L/s combination ion/sublimation pump that can maintain pressure of...Torr for 2 to 24 hours and then the ion pump was turned off to let the vacuum pressure slowly increase while observing the electron emission

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.

  10. Importance of correlation effects in hcp iron revealed by a pressure-induced electronic topological transition.

    PubMed

    Glazyrin, K; Pourovskii, L V; Dubrovinsky, L; Narygina, O; McCammon, C; Hewener, B; Schünemann, V; Wolny, J; Muffler, K; Chumakov, A I; Crichton, W; Hanfland, M; Prakapenka, V B; Tasnádi, F; Ekholm, M; Aichhorn, M; Vildosola, V; Ruban, A V; Katsnelson, M I; Abrikosov, I A

    2013-03-15

    We discover that hcp phases of Fe and Fe(0.9)Ni(0.1) undergo an electronic topological transition at pressures of about 40 GPa. This topological change of the Fermi surface manifests itself through anomalous behavior of the Debye sound velocity, c/a lattice parameter ratio, and Mössbauer center shift observed in our experiments. First-principles simulations within the dynamic mean field approach demonstrate that the transition is induced by many-electron effects. It is absent in one-electron calculations and represents a clear signature of correlation effects in hcp Fe.

  11. Adiabatic electron thermal pressure fluctuations in tokamak plasmas.

    PubMed

    Meier, M A; Bengtson, R D; Hallock, G A; Wootton, A J

    2001-08-20

    Electron thermal pressure fluctuations measured in the edge plasma of the Texas Experimental Tokamak Upgrade are a fundamental component of plasma turbulence on both sides of the velocity shear layer. The ratio of specific heats, estimated from fluctuations in electron temperature and electron number density measured simultaneously at the same electrode, indicates that observed fluctuations are adiabatic. The observations are made by means of a novel Langmuir probe technique, the time domain triple-probe method, which concurrently measures multiple plasma properties at each of two electrodes with the temporal and the spatial resolution required to estimate thermodynamic properties in a turbulent plasma.

  12. Combining state-of-the-art experiment and ab initio calculations for a better understanding of the interplay between valence, magnetism and structure in Eu compounds at high pressure

    DOE PAGES

    Souza-Neto, N. M.; Haskel, D.; dos Reis, R. D.; ...

    2016-07-26

    Here, we describe how first principle calculations can play a key role in the interpretation of X-ray absorption near-edge structure (XANES) and X-ray magnetic circular dichroism (XMCD) spectra for a better understanding of emergent phenomena in condensed matter physics at high applied pressure. Eu compounds are used as case study to illustrate the advantages of this methodology, ranging from studies of electronic charge transfer probed by quadrupolar and dipolar contributions, to accurately determining electronic valence, and to inform about the influence of pressure on RKKY interactions and magnetism. This description should help advance studies where the pressure dependence of XANESmore » and XMCD data must be tackled with the support of theoretical calculations for a proper understanding of the electronic properties of materials.« less

  13. The Pressure Dependence of Structural, Electronic, Mechanical, Vibrational, and Thermodynamic Properties of Palladium-Based Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Çoban, Cansu

    2017-08-01

    The pressure dependent behaviour of the structural, electronic, mechanical, vibrational, and thermodynamic properties of Pd2TiX (X=Ga, In) Heusler alloys was investigated by ab initio calculations. The lattice constant, the bulk modulus and its first pressure derivative, the electronic band structure and the density of states (DOS), mechanical properties such as elastic constants, anisotropy factor, Young's modulus, etc., the phonon dispersion curves and phonon DOS, entropy, heat capacity, and free energy were obtained under pressure. It was determined that the calculated lattice parameters are in good agreement with the literature, the elastic constants obey the stability criterion, and the phonon dispersion curves have no negative frequency which shows that the compounds are stable. The band structures at 0, 50, and 70 GPa showed valence instability at the L point which explains the superconductivity in Pd2TiX (X=Ga, In).

  14. Piezoelectrically-induced trap-depth reduction model of elastico-mechanoluminescent materials

    NASA Astrophysics Data System (ADS)

    Chandra, B. P.; Chandra, V. K.; Jha, Piyush

    2015-03-01

    Considering the detrapping of charge carriers due to reduction in trap-depth caused by piezoelectric field produced by applied pressure, an expression is derived for the detrapping rate of electrons. Then, an expression is obtained for the rate of generation of excited ions produced during capture of detrapped electrons by Eu3+ ions in persistent luminescent materials or by the energy released during electron-hole recombination in ZnS:Mn crystals. Finally, an expression is explored for the elastico-mechanoluminescence (EML) intensity, which is able to explain satisfactorily the characteristics of EML for the application of static pressure as well as for impact pressure. The total number of detrapped electrons and the total EML intensity are found to increase linearly with the electrostatic energy of the crystals in piezoelectric field. It is shown that the EML intensity should increase with the EML efficiency, number of crystallites (volume of sample), concentration of local piezoelectric regions in crystallites, piezoelectric constant of local piezoelectric regions, average length of the local piezoelectric regions, total number of electron traps, pressing rate, and applied pressure, and it should be higher for the materials having low value of threshold pressure and low value of trap-depth in unstressed condition. On the basis of the piezoelectrically-induced trap-depth reduction model of EML reported in the present investigation novel intense elastico mechanoluminescent materials having repetitive EML with undiminished intensity for successive loadings can be tailored which may find applications in sensing, imaging, lighting, colored displays, and other mechano-optical devices.

  15. Investigation of the electronic, magnetic and optical properties of {\\sf Co}_{\\sf 2}{\\sf CrZ} (Z = Si, Ge) under pressure—a density functional theory study

    NASA Astrophysics Data System (ADS)

    Seema, K.; Kumar, Ranjan

    2014-01-01

    The structural, electronic, magnetic and optical properties of Co-based Heusler compounds, Co2CrZ (Z = Si, Ge), are studied using first-principle density functional theory. The calculations are performed within the generalized gradient approximation. Our calculated structural parameters at 0 GPa agree well with previous available results. The calculated magnetic moment agrees well with the Slater-Pauling (SP) rule. We have studied the effect of pressure on the electronic and magnetic properties of Co2CrSi and Co2CrGe. With an increase in applied pressure, a decrease in cell volume is observed. Under application of external pressure, the valence band and conduction band are shifted downward which leads to a modification of electronic structure. There exists an indirect band gap along Γ-X for both the alloys. Co2CrSi and Co2CrGe retain 100% spin polarization up to 60 and 50 GPa, respectively. The local magnetic moments of the Co and Si (Ge) atoms increase with an increase in pressure whereas the local magnetic moment of the Cr atom decreases. In addition, the optical properties such as dielectric function, absorption spectra, optical conductivity and energy loss function of these alloys have also been investigated. To our knowledge this is the first theoretical prediction of the pressure dependence of the structural, electronic, magnetic and optical properties of Co2CrSi and Co2CrGe.

  16. Pressure-induced superconductivity in the giant Rashba system BiTeI

    DOE PAGES

    VanGennep, D.; Linscheid, A.; Jackson, D. E.; ...

    2017-01-27

    We present that at ambient pressure, BiTeI exhibits a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to occur. We have carried out a series of electrical resistivity and AC magnetic susceptibility measurements on BiTeI at pressure up to ~40 GPa in an effort to characterize the properties of the high-pressure phases. A previous calculation found that the high-pressure orthorhombic P4/nmm structure BiTeI is a metal. We find that this structure is superconducting with T c values asmore » high as 6 K. AC magnetic susceptibility measurements support the bulk nature of the superconductivity. Using electronic structure and phonon calculations, we compute T c and find that our data is consistent with phonon-mediated superconductivity.« less

  17. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures.

    PubMed

    Chen, Zefeng; Wang, Zhao; Li, Xinming; Lin, Yuxuan; Luo, Ningqi; Long, Mingzhu; Zhao, Ni; Xu, Jian-Bin

    2017-05-23

    The piezoelectric effect is widely applied in pressure sensors for the detection of dynamic signals. However, these piezoelectric-induced pressure sensors have challenges in measuring static signals that are based on the transient flow of electrons in an external load as driven by the piezopotential arisen from dynamic stress. Here, we present a pressure sensor with nanowires/graphene heterostructures for static measurements based on the synergistic mechanisms between strain-induced polarization charges in piezoelectric nanowires and the caused change of carrier scattering in graphene. Compared to the conventional piezoelectric nanowire or graphene pressure sensors, this sensor is capable of measuring static pressures with a sensitivity of up to 9.4 × 10 -3 kPa -1 and a fast response time down to 5-7 ms. This demonstration of pressure sensors shows great potential in the applications of electronic skin and wearable devices.

  18. Pressure-induced Lifshitz transition in NbP: Raman, x-ray diffraction, electrical transport, and density functional theory

    NASA Astrophysics Data System (ADS)

    Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Qi, Yanpeng; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.

    2018-02-01

    We report high-pressure Raman, synchrotron x-ray diffraction, and electrical transport studies on Weyl semimetals NbP and TaP along with first-principles density functional theoretical (DFT) analysis. The frequencies of first-order Raman modes of NbP harden with increasing pressure and exhibit a slope change at Pc˜9 GPa. The pressure-dependent resistivity exhibits a minimum at Pc. The temperature coefficient of resistivity below Pc is positive as expected for semimetals but changes significantly in the high-pressure phase. Using DFT calculations, we show that these anomalies are associated with a pressure-induced Lifshitz transition, which involves the appearance of electron and hole pockets in its electronic structure. In contrast, the results of Raman and synchrotron x-ray diffraction experiments on TaP and DFT calculations show that TaP is quite robust under pressure and does not undergo any phase transition.

  19. Pressure-induced superconductivity in the giant Rashba system BiTeI.

    PubMed

    VanGennep, D; Linscheid, A; Jackson, D E; Weir, S T; Vohra, Y K; Berger, H; Stewart, G R; Hennig, R G; Hirschfeld, P J; Hamlin, J J

    2017-03-08

    At ambient pressure, BiTeI exhibits a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to occur. We have carried out a series of electrical resistivity and AC magnetic susceptibility measurements on BiTeI at pressure up to  ∼40 GPa in an effort to characterize the properties of the high-pressure phases. A previous calculation found that the high-pressure orthorhombic P4/nmm structure BiTeI is a metal. We find that this structure is superconducting with T c values as high as 6 K. AC magnetic susceptibility measurements support the bulk nature of the superconductivity. Using electronic structure and phonon calculations, we compute T c and find that our data is consistent with phonon-mediated superconductivity.

  20. Fast pulsed operation of a small non-radioactive electron source with continuous emission current control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochems, P.; Kirk, A. T.; Bunert, E.

    Non-radioactive electron sources are of great interest in any application requiring the emission of electrons at atmospheric pressure, as they offer better control over emission parameters than radioactive electron sources and are not subject to legal restrictions. Recently, we published a simple electron source consisting only of a vacuum housing, a filament, and a single control grid. In this paper, we present improved control electronics that utilize this control grid in order to focus and defocus the electron beam, thus pulsing the electron emission at atmospheric pressure. This allows short emission pulses and excellent stability of the emitted electron currentmore » due to continuous control, both during pulsed and continuous operations. As an application example, this electron source is coupled to an ion mobility spectrometer. Here, the pulsed electron source allows experiments on gas phase ion chemistry (e.g., ion generation and recombination kinetics) and can even remove the need for a traditional ion shutter.« less

  1. ECR plasma source for heavy ion beam charge neutralization

    NASA Astrophysics Data System (ADS)

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Kolchin, Pavel; Davidson, Ronald C.; Yu, Simon; Logan, B. Grant

    2003-01-01

    Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 100 times the ion beam density and at a length [similar]0.1 2 m would be suitable for achieving a high level of charge neutralization. An Electron Cyclotron Resonance (ECR) source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1 10 gauss. The goal is to operate the source at pressures [similar]10[minus sign]6 Torr at full ionization. The initial operation of the source has been at pressures of 10[minus sign]4 10[minus sign]1 Torr. Electron densities in the range of 108 to 1011 cm[minus sign]3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source. This article also describes the wave damping mechanisms. At moderate pressures (> 1 mTorr), the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance.

  2. Electron distribution function in a plasma generated by fission fragments

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.; Deese, J. E.

    1976-01-01

    A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material shows that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux.

  3. Dynamic nightside electron precipitation at Mars: ggeographical and solar wind dependence

    NASA Astrophysics Data System (ADS)

    Lillis, R. J.; Brain, D. A.

    2012-12-01

    Electron precipitation is usually the dominant source of energy input to the nightside Martian atmosphere, with consequences for ionospheric densities, chemistry, electrodynamics, communications and navigation. We examine downward-traveling superthermal electron flux on the Martian nightside from May 1999 to November 2006 at 400 km altitude and 2 AM local time. Electron precipitation is geographically organized by crustal magnetic field strength and elevation angle, with higher fluxes occurring in regions of weak and/or primarily vertical crustal fields, while stronger and more horizontal fields retard electron access to the atmosphere. We investigate how these crustal field-organized precipitation patterns vary with proxies for solar wind (SW) pressure and interplanetary magnetic field (IMF) direction. Generally, higher precipitating fluxes accompany higher SW pressures. Specifically, we identify four characteristic spectral behaviors: 1) 'stable' regions where fluxes increase mildly with SW pressure, 2) 'high flux' regions where accelerated spectra are more common and where fluxes below ~500 eV are largely independent of SW pressure, 3) permanent plasma voids and 4) intermittent plasma voids where fluxes depend strongly on SW pressure. The locations, sizes, shapes and absence/existence of these plasma voids vary significantly with solar wind pressure proxy and appreciably with IMF direction proxy. Overall, average precipitating fluxes are 40% lower in strong crustal field regions and 15% lower globally for one primary IMF direction proxy compared with the other. This variation of the strength and geographic pattern of the shielding effect of Mars' crustal fields exemplifies the complex interaction between those fields and the solar wind.; Stereographic maps of nightside downward electron flux between 96 and 148 eV, measured at 2 AM local time, averaged over the period 05/1999-11/2006. The top, middle and bottom rows are for solar wind pressure proxy ranges of 0-30 nT, 30-50 nT and >50 nT. The left and right columns are for IMF direction proxy ranges of 320-140° and 140-320°. Contour lines are represented on the vertical color bars by horizontal lines.

  4. A method for measuring the local gas pressure within a gas-flow stage in situ in the transmission electron microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colby, Robert J.; Alsem, Daan H.; Liyu, Andrey V.

    2015-06-01

    The development of environmental transmission electron microscopy (TEM) has enabled in situ experiments in a gaseous environment with high resolution imaging and spectroscopy. Addressing scientific challenges in areas such as catalysis, corrosion, and geochemistry can require pressures much higher than the ~20 mbar achievable with a differentially pumped, dedicated environmental TEM. Gas flow stages, in which the environment is contained between two semi-transparent thin membrane windows, have been demonstrated at pressures of several atmospheres. While this constitutes significant progress towards operando measurements, the design of many current gas flow stages is such that the pressure at the sample cannot necessarilymore » be directly inferred from the pressure differential across the system. Small differences in the setup and design of the gas flow stage can lead to very different sample pressures. We demonstrate a method for measuring the gas pressure directly, using a combination of electron energy loss spectroscopy and TEM imaging. This method requires only two energy filtered TEM images, limiting the measurement time to a few seconds and can be performed during an ongoing experiment at the region of interest. This approach provides a means to ensure reproducibility between different experiments, and even between very differently designed gas flow stages.« less

  5. Combined single crystal polarized XAFS and XRD at high pressure: probing the interplay between lattice distortions and electronic order at multiple length scales in high T c cuprates

    DOE PAGES

    Fabbris, G.; Hücker, M.; Gu, G. D.; ...

    2016-07-14

    Some of the most exotic material properties derive from electronic states with short correlation length (~10-500 Å), suggesting that the local structural symmetry may play a relevant role in their behavior. In this study, we discuss the combined use of polarized x-ray absorption fine structure and x-ray diffraction at high pressure as a powerful method to tune and probe structural and electronic orders at multiple length scales. Besides addressing some of the technical challenges associated with such experiments, we illustrate this approach with results obtained in the cuprate La 1.875Ba 0.125CuO 4, in which the response of electronic order tomore » pressure can only be understood by probing the structure at the relevant length scales.« less

  6. Effect of anisotropic dust pressure and superthermal electrons on propagation and stability of dust acoustic solitary waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bashir, M. F., E-mail: frazbashir@yahoo.com; Behery, E. E., E-mail: eebehery@gmail.com; Department of Physics, Faculty of Science, Damietta University, P.O. 34517, New Damietta

    2015-06-15

    Employing the reductive perturbation technique, Zakharov–Kuznetzov (ZK) equation is derived for dust acoustic (DA) solitary waves in a magnetized plasma which consists the effects of dust anisotropic pressure, arbitrary charged dust particles, Boltzmann distributed ions, and Kappa distributed superthermal electrons. The ZK solitary wave solution is obtained. Using the small-k expansion method, the stability analysis for DA solitary waves is also discussed. The effects of the dust pressure anisotropy and the electron superthermality on the basic characteristics of DA waves as well as on the three-dimensional instability criterion are highlighted. It is found that the DA solitary wave is rarefactivemore » (compressive) for negative (positive) dust. In addition, the growth rate of instability increases rapidly as the superthermal spectral index of electrons increases with either positive or negative dust grains. A brief discussion for possible applications is included.« less

  7. Defect control of conventional and anomalous electron transport at complex oxide interfaces

    DOE PAGES

    Gunkel, F.; Bell, Chris; Inoue, Hisashi; ...

    2016-08-30

    Using low-temperature electrical measurements, the interrelation between electron transport, magnetic properties, and ionic defect structure in complex oxide interface systems is investigated, focusing on NdGaO 3/SrTiO 3 (100) interfaces. Field-dependent Hall characteristics (2–300 K) are obtained for samples grown at various growth pressures. In addition to multiple electron transport, interfacial magnetism is tracked exploiting the anomalous Hall effect (AHE). These two properties both contribute to a nonlinearity in the field dependence of the Hall resistance, with multiple carrier conduction evident below 30 K and AHE at temperatures ≲10 K. Considering these two sources of nonlinearity, we suggest a phenomenological modelmore » capturing the complex field dependence of the Hall characteristics in the low-temperature regime. Our model allows the extraction of the conventional transport parameters and a qualitative analysis of the magnetization. The electron mobility is found to decrease systematically with increasing growth pressure. This suggests dominant electron scattering by acceptor-type strontium vacancies incorporated during growth. The AHE scales with growth pressure. In conclusion, the most pronounced AHE is found at increased growth pressure and, thus, in the most defective, low-mobility samples, indicating a correlation between transport, magnetism, and cation defect concentration.« less

  8. Pressure dependence of electron density distribution and d-p-π hybridization in titanate perovskite ferroelectrics

    NASA Astrophysics Data System (ADS)

    Yamanaka, Takamitsu; Nakamoto, Yuki; Ahart, Muhtar; Mao, Ho-kwang

    2018-04-01

    Electron density distributions of PbTi O3 , BaTi O3 , and SrTi O3 were determined by synchrotron x-ray powder diffraction up to 55 GPa at 300 K and ab initio quantum chemical molecular orbital (MO) calculations, together with a combination of maximum entropy method calculations. The intensity profiles of Bragg peaks reveal split atoms in both ferroelectric PbTi O3 and BaTi O3 , reflecting the two possible positions occupied by the Ti atom. The experimentally obtained atomic structure factor was used for the determination of the deformation in electron density and the d-p-π hybridization between dx z (and dy z) of Ti and px (and py) of O in the Ti-O bond. Ab initio MO calculations proved the change of the molecular orbital coupling and of Mulliken charges with a structure transformation. The Mulliken charge of Ti in the Ti O6 octahedron increased in the ionicity with increasing pressure in the cubic phase. The bonding nature is changed with a decrease in the hybridization of the Ti-O bond and the localization of the electron density with increasing pressure. The hybridization decreases with pressure and disappears in the cubic paraelectric phase, which has a much more localized electron density distribution.

  9. Effect of hydrostatic pressure on the structural and electronic properties of Cd{sub 0.75}Cr{sub 0.25}S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Anita; Kaur, Kulwinder; Kumar, Ranjan

    In this paper we present the results obtained from first principle calculations of the effect of hydrostatic pressure on the structural and electronic properties of Cd{sub 1-x}Cr{sub x}S diluted magnetic semiconductor in Zinc Blende (B3) phase at x=0.25. High pressure behavior of Cd{sub 1-x}Cr{sub x}S has been investigated between 0 GPa to 100 GPa The calculations have been performed using Density functional theory as implemented in the Spanish Initiative for Electronic Simulations with Thousands of Atoms code using local density approximation as exchange-correlation (XC) potential. Calculated electronic band structures of Cd{sub 1-x}Cr{sub x}S are discussed in terms of contribution ofmore » Cr 3d{sup 5} 4s{sup 1}, Cd 4d{sup 10} 5s{sup 2}, S 3s{sup 2} 3p{sup 4} orbital’s. Study of band structures shows half-metallic ferromagnetic nature of Cd{sub 0.75}Cr{sub 0.25}S with 100% spin polarization. Under application of external pressure, the valence band and conduction band are shifted upward which leads to modification of electronic structure.« less

  10. Verifying Data Integrity of Electronically Scanned Pressure Systems at the NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.

    2001-01-01

    The proper operation of the Electronically Scanned Pressure (ESP) System critical to accomplish the following goals: acquisition of highly accurate pressure data for the development of aerospace and commercial aviation systems and continuous confirmation of data quality to avoid costly, unplanned, repeat wind tunnel or turbine testing. Standard automated setup and checkout routines are necessary to accomplish these goals. Data verification and integrity checks occur at three distinct stages, pretest pressure tubing and system checkouts, daily system validation and in-test confirmation of critical system parameters. This paper will give an overview of the existing hardware, software and methods used to validate data integrity.

  11. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins.

    PubMed

    Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen

    2018-03-16

    Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O 3 ) microengineering technique. The UV/O 3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ∼ -0.101 ± 0.005 kPa -1 (<1 kPa), a fast response/relaxation speed of ∼10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O 3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.

  12. Theoretical studies of optical gain tuning by hydrostatic pressure in GaInNAs/GaAs quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gladysiewicz, M.; Wartak, M. S.; Department of Physics and Computer Science, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5

    In order to describe theoretically the tuning of the optical gain by hydrostatic pressure in GaInNAs/GaAs quantum wells (QWs), the optical gain calculations within kp approach were developed and applied for N-containing and N-free QWs. The electronic band structure and the optical gain for GaInNAs/GaAs QW were calculated within the 10-band kp model which takes into account the interaction of electron levels in the QW with the nitrogen resonant level in GaInNAs. It has been shown that this interaction increases with the hydrostatic pressure and as a result the optical gain for GaInNAs/GaAs QW decreases by about 40% and 80%more » for transverse electric and transverse magnetic modes, respectively, for the hydrostatic pressure change from 0 to 40 kilobars. Such an effect is not observed for N-free QWs where the dispersion of electron and hole energies remains unchanged with the hydrostatic pressure. This is due to the fact that the conduction and valence band potentials in GaInAs/GaAs QW scale linearly with the hydrostatic pressure.« less

  13. High pressure and temperature equation of state and spectroscopic study of CeO 2

    DOE PAGES

    Jacobsen, Matthew K.; Velisavljevic, Nenad; Dattelbaum, Dana Mcgraw; ...

    2016-03-17

    One of the most widely used x-ray standards and a highly applied component of catalysis systems, CeO 2 has been studied for the purpose of better understanding its equation of state and electronic properties. Diamond anvil cells have been used to extend the equation of state for this material to 130 GPa and explore the electronic behavior with applied load. From the x-ray diffraction studies, it has been determined that the high pressure phase transition extends from approximately 35–75 GPa at ambient temperature. Elevation of temperature is found to decrease the initiation pressure for this transition, with multiple distinct temperaturemore » regions which indicate structural related anomalies. In addition, hydrostatic and non-hydrostatic effects are compared and exhibit a drastic difference in bulk moduli. Furthermore, the electronic results indicate a change in the scattering environment of the cerium atom, associated with the high pressure phase transition. Overall, these results present the first megabar pressure study and the first high pressure and temperature study of ceria. Additionally, this shows the first combined study of the K and L III edges of this material to 33 GPa.« less

  14. A wearable pressure sensor based on ultra-violet/ozone microstructured carbon nanotube/polydimethylsiloxane arrays for electronic skins

    NASA Astrophysics Data System (ADS)

    Yu, Guohui; Hu, Jingdong; Tan, Jianping; Gao, Yang; Lu, Yongfeng; Xuan, Fuzhen

    2018-03-01

    Pressure sensors with high performance (e.g., a broad pressure sensing range, high sensitivities, rapid response/relaxation speeds, temperature-stable sensing), as well as a cost-effective and highly efficient fabrication method are highly desired for electronic skins. In this research, a high-performance pressure sensor based on microstructured carbon nanotube/polydimethylsiloxane arrays was fabricated using an ultra-violet/ozone (UV/O3) microengineering technique. The UV/O3 microengineering technique is controllable, cost-effective, and highly efficient since it is conducted at room temperature in an ambient environment. The pressure sensor offers a broad pressure sensing range (7 Pa-50 kPa), a sensitivity of ˜ -0.101 ± 0.005 kPa-1 (<1 kPa), a fast response/relaxation speed of ˜10 ms, a small dependence on temperature variation, and a good cycling stability (>5000 cycles), which is attributed to the UV/O3 engineered microstructures that amplify and transfer external applied forces and rapidly store/release the energy during the PDMS deformation. The sensors developed show the capability to detect external forces and monitor human health conditions, promising for the potential applications in electronic skin.

  15. Effects of Crossed Brassiere Straps on Pain, Range of Motion, and Electromyographic Activity of Scapular Upward Rotators in Women With Scapular Downward Rotation Syndrome.

    PubMed

    Kang, Min-Hyeok; Choi, Ji-Young; Oh, Jae-seop

    2015-12-01

    Scapular downward rotation syndrome manifests as an abnormally downward-rotated scapula at rest or with arm motion and typically results in neck and shoulder pain. The brassiere strap has been suggested as a possible contributing factor to scapula downward rotation and pain in the upper trapezius because of increased downward rotational force on the lateral aspect of the scapula. No study, however, has examined the influences of a modified brassiere strap on pain in and the function of the scapular muscles. To examine the effects of crossed brassiere straps on the pressure pain threshold (PPT) of the upper trapezius, neck rotation range of motion (ROM), and electromyographic activity of the scapular upward rotators in females with scapular downward rotation syndrome. Cross-over design. Laboratory. In total, 15 female subjects with scapular downward rotation syndrome were recruited at hospitals and a local university. All participants performed neck rotation and humeral elevation under 2 different conditions: parallel and crossed brassiere straps. The PPT of the upper trapezius was measured using an analog algometer, whereas neck rotation ROM was quantified with a 3-dimensional ultrasonic motion analysis system. The electromyographic activities of the upper trapezius, serratus anterior, and lower trapezius during humeral elevation were assessed with a surface electromyography system. Outcome measures were assessed under parallel and crossed brassiere strap conditions, and differences in outcomes between the conditions were analyzed using a paired t-test. The PPT and neck rotation ROM were increased when the subject was wearing the brassiere with crossed versus parallel straps (P < .001). Greater electromyographic activities of the serratus anterior, lower trapezius, and lesser upper trapezius muscles during humeral elevation were found under the crossed strap condition than the parallel strap condition (P < .05). These findings provide useful information for clinicians when designing management programs to decrease pain and improve biomechanical function for females with scapular downward rotation syndrome. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  16. Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure.

    PubMed

    Liu, Shanbiao; Wu, Xing; Zhang, Dongdong; Guo, Congwei; Wang, Peng; Hu, Weida; Li, Xinming; Zhou, Xiaofeng; Xu, Hejun; Luo, Chen; Zhang, Jian; Chu, Junhao

    2017-07-19

    Mechanical flexible electronic skin has been focused on sensing various physical parameters, such as pressure and temperature. The studies of material design and array-accessible devices are the building blocks of strain sensors for subtle pressure sensing. Here, we report a new and facile preparation of a graphene hybrid structure with an ultrafast dynamic pressure response. Graphene oxide nanosheets are used as a surfactant to prevent graphene restacking in aqueous solution. This graphene hybrid structure exhibits a frequency-independent pressure resistive sensing property. Exceeding natural skin, such pressure sensors, can provide transient responses from static up to 10 000 Hz dynamic frequencies. Integrated by the controlling system, the array-accessible sensors can manipulate a robot arm and self-rectify the temperature of a heating blanket. This may pave a path toward the future application of graphene-based wearable electronics.

  17. Masticatory and cervical muscle tenderness and pain sensitivity in a remote area in subjects with a temporomandibular disorder and neck disability.

    PubMed

    Silveira, Anelise; Armijo-Olivo, Susan; Gadotti, Inae C; Magee, David

    2014-01-01

    To compare the masticatory and cervical muscle tenderness and pain sensitivity in the hand (remote region) between patients with temporomandibular disorders (TMD) and healthy controls. Twenty female subjects were diagnosed with chronic TMD, and 20 were considered healthy. Subjects completed the Neck Disability Index and Limitations of Daily Functions in a TMD questionnaire. Tenderness of the masticatory and cervical muscles and pain sensitivity in the hand were measured using an algometer. Three-way mixed analysis of variance (ANOVA) evaluated differences in muscle tenderness between groups. One-way ANOVA compared pain sensitivity in the hand between groups. Effect sizes were assessed using Cohen guidelines. Significantly increased masticatory and cervical muscle tenderness and pain sensitivity in the hand were found in subjects with TMD when compared with healthy subjects. Moderate to high effect sizes showed the clinical relevance of the findings. The results of this study have highlighted the importance of assessing TMD patients not only in the craniofacial region but also in the neck and other parts of the body. Future studies should focus on testing the effectiveness of treatments addressing the neck and the pain sensitivity in the hand in patients with TMD.

  18. All that glisters is not gold: a comparison of electronic monitoring versus filled prescriptions--an observational study.

    PubMed

    Wetzels, Gwenn E C; Nelemans, Patricia J; Schouten, Jan S A G; van Wijk, Boris L G; Prins, Martin H

    2006-02-10

    Poor compliance with antihypertensive medication is assumed to be an important reason for unsatisfactory control of blood pressure. Poor compliance is difficult to detect. Each method of measuring compliance has its own strengths and weaknesses. The aim of the present study was to compare patient compliance with antihypertensive drugs as measured by two methods, electronic monitoring versus refill compliance. 161 patients with a diagnosis of hypertension for at least a year prior to inclusion, and inadequate blood pressure control (systolic blood pressure > or = 160 mmHg and/or diastolic blood pressure > or = 95 mmHg) despite the use of antihypertensive drugs, were included. Patients' pharmacy records from 12 months prior to inclusion were obtained. Refill compliance was calculated as the number of days for which the pills were prescribed divided by the total number of days in this period. After inclusion compliance was measured with an electronic monitor that records time and date of each opening of the pillbox. Agreement between both compliance measures was calculated using Spearman's correlation coefficient and Cohen's kappa coefficient. There was very little agreement between the two measures. Whereas refill compliance showed a large range of values, compliance as measured by electronic monitoring was high in almost all patients with estimates between 90% and 100%. Cohen's kappa coefficient was 0.005. While electronic monitoring is often considered to be the gold standard for compliance measurements, our results suggest that a short-term electronic monitoring period with the patient being aware of electronic monitoring is probably insufficient to obtain valid compliance data. We conclude that there is a strong need for more studies that explore the effect of electronic monitoring on patient's compliance.

  19. Micropatterned Pyramidal Ionic Gels for Sensing Broad-Range Pressures with High Sensitivity.

    PubMed

    Cho, Sung Hwan; Lee, Seung Won; Yu, Seunggun; Kim, Hyeohn; Chang, Sooho; Kang, Donyoung; Hwang, Ihn; Kang, Han Sol; Jeong, Beomjin; Kim, Eui Hyuk; Cho, Suk Man; Kim, Kang Lib; Lee, Hyungsuk; Shim, Wooyoung; Park, Cheolmin

    2017-03-22

    The development of pressure sensors that are effective over a broad range of pressures is crucial for the future development of electronic skin applicable to the detection of a wide pressure range from acoustic wave to dynamic human motion. Here, we present flexible capacitive pressure sensors that incorporate micropatterned pyramidal ionic gels to enable ultrasensitive pressure detection. Our devices show superior pressure-sensing performance, with a broad sensing range from a few pascals up to 50 kPa, with fast response times of <20 ms and a low operating voltage of 0.25 V. Since high-dielectric-constant ionic gels were employed as constituent sensing materials, an unprecedented sensitivity of 41 kPa -1 in the low-pressure regime of <400 Pa could be realized in the context of a metal-insulator-metal platform. This broad-range capacitive pressure sensor allows for the efficient detection of pressure from a variety of sources, including sound waves, a lightweight object, jugular venous pulses, radial artery pulses, and human finger touch. This platform offers a simple, robust approach to low-cost, scalable device design, enabling practical applications of electronic skin.

  20. Advanced Sensor and Packaging Technologies for Intelligent Adaptive Engine Controls (Preprint)

    DTIC Science & Technology

    2013-05-01

    combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high - temperature electronics, and advanced harsh...with simultaneous pressure measurements up to 1,000 psi. The combination of a high - temperature , high -pressure-ratio compressor system, and adaptive...combination of micro-electromechanical systems (MEMS) sensor technology, novel ceramic materials, high temperature electronics, and advanced harsh

  1. Strongly coupled electronic, magnetic, and lattice degrees of freedom in LaCo 5 under pressure

    DOE PAGES

    Stillwell, Ryan L.; Jeffries, Jason R.; McCall, Scott K.; ...

    2015-11-25

    In this study, we have performed high-pressure magnetotransport and x-ray diffraction measurements on ferromagnetic LaCo 5, confirming the theoretically predicted electronic topological transition driving the magnetoelastic collapse seen in the related compound YCo 5. Our x-ray diffraction results show an anisotropic lattice collapse of the c axis near 10 GPa that is also commensurate with a change in the majority charge carriers evident from high-pressure Hall effect measurements. The coupling of the electronic, magnetic, and lattice degrees of freedom is further substantiated by the evolution of the anomalous Hall effect, which couples to the magnetization of the ordered state ofmore » LaCo 5.« less

  2. A feasible method to eliminate nanoleakage in dentin hybrid layers.

    PubMed

    Chen, Ji-Hua; Liu, Yan; Niu, Li-Na; Lu, Shuai; Tay, Franklin R; Gao, Yu

    2014-10-01

    To determine whether high-pressure air blowing during adhesive application affects the infiltration of resin comonomers and nanoleakage manifestation in the resin/dentin interface under simulated pulpal pressure. Thirty mid-coronal dentin surfaces were bonded with an etch-and-rinse adhesive (Adper Single Bond 2) under simulated pulpal pressure. In the control group, the adhesive was thinned by ordinary air blowing with a pressure of 0.2 MPa, while in the experimental group, a high-pressure air blowing technique (pressure: 0.4 MPa) was used. All other procedures followed the manufacturer's instructions. Resin tag formation and nanoleakage in the bonding interface were evaluated with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). When adhesive was thinned with high pressure air blowing, longer and more homogeneous resin tags were formed. The bonding interface demonstrated good overall morphology and integrity. Almost perfect infiltration of resin and no obvious nanoleakage were observed. Thinning of adhesive with high-pressure air blowing provides a clinically feasible adjunctive procedure for better resin infiltration.

  3. Blood-Pressure Measuring System Gives Accurate Graphic Output

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The problem: To develop an instrument that will provide an external (indirect) measurement of arterial blood pressure in the form of an easily interpreted graphic trace that can be correlated with standard clinical blood-pressure measurements. From sphygmograms produced by conventional sphygmographs, it is very difficult to differentiate the systolic and diastolic blood-pressure pulses and to correlate these indices with the standard clinical values. It is nearly impossible to determine these indices when the subject is under physical or emotional stress. The solution: An electronic blood-pressure system, basically similar to conventional ausculatory sphygmomanometers, employing a standard occluding cuff, a gas-pressure source, and a gas-pressure regulator and valve. An electrical output transducer senses cuff pressure, and a microphone positioned on the brachial artery under the occluding cuff monitors the Korotkoff sounds from this artery. The output signals present the conventional systolic and diastolic indices in a clear, graphical display. The complete system also includes an electronic timer and cycle-control circuit.

  4. Effects of discharge chamber length on the negative ion generation in volume-produced negative hydrogen ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Kyoung-Jae; Jung, Bong-Ki; An, YoungHwa

    2014-02-15

    In a volume-produced negative hydrogen ion source, control of electron temperature is essential due to its close correlation with the generation of highly vibrationally excited hydrogen molecules in the heating region as well as the generation of negative hydrogen ions by dissociative attachment in the extraction region. In this study, geometric effects of the cylindrical discharge chamber on negative ion generation via electron temperature changes are investigated in two discharge chambers with different lengths of 7.5 cm and 11 cm. Measurements with a radio-frequency-compensated Langmuir probe show that the electron temperature in the heating region is significantly increased by reducingmore » the length of the discharge chamber due to the reduced effective plasma size. A particle balance model which is modified to consider the effects of discharge chamber configuration on the plasma parameters explains the variation of the electron temperature with the chamber geometry and gas pressure quite well. Accordingly, H{sup −} ion density measurement with laser photo-detachment in the short chamber shows a few times increase compared to the longer one at the same heating power depending on gas pressure. However, the increase drops significantly as operating gas pressure decreases, indicating increased electron temperatures in the extraction region degrade dissociative attachment significantly especially in the low pressure regime. It is concluded that the increase of electron temperature by adjusting the discharge chamber geometry is efficient to increase H{sup −} ion production as long as low electron temperatures are maintained in the extraction region in volume-produced negative hydrogen ion sources.« less

  5. High-Sensitivity Nuclear Magnetic Resonance at Giga-Pascal Pressures: A New Tool for Probing Electronic and Chemical Properties of Condensed Matter under Extreme Conditions

    PubMed Central

    Meier, Thomas; Haase, Jürgen

    2014-01-01

    Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe. PMID:25350694

  6. High-sensitivity nuclear magnetic resonance at Giga-Pascal pressures: a new tool for probing electronic and chemical properties of condensed matter under extreme conditions.

    PubMed

    Meier, Thomas; Haase, Jürgen

    2014-10-10

    Nuclear Magnetic Resonance (NMR) is one of the most important techniques for the study of condensed matter systems, their chemical structure, and their electronic properties. The application of high pressure enables one to synthesize new materials, but the response of known materials to high pressure is a very useful tool for studying their electronic structure and developing theories. For example, high-pressure synthesis might be at the origin of life; and understanding the behavior of small molecules under extreme pressure will tell us more about fundamental processes in our universe. It is no wonder that there has always been great interest in having NMR available at high pressures. Unfortunately, the desired pressures are often well into the Giga-Pascal (GPa) range and require special anvil cell devices where only very small, secluded volumes are available. This has restricted the use of NMR almost entirely in the past, and only recently, a new approach to high-sensitivity GPa NMR, which has a resonating micro-coil inside the sample chamber, was put forward. This approach enables us to achieve high sensitivity with experiments that bring the power of NMR to Giga-Pascal pressure condensed matter research. First applications, the detection of a topological electronic transition in ordinary aluminum metal and the closing of the pseudo-gap in high-temperature superconductivity, show the power of such an approach. Meanwhile, the range of achievable pressures was increased tremendously with a new generation of anvil cells (up to 10.1 GPa), that fit standard-bore NMR magnets. This approach might become a new, important tool for the investigation of many condensed matter systems, in chemistry, geochemistry, and in physics, since we can now watch structural changes with the eyes of a very versatile probe.

  7. Through the Eye of the Needle: The Separator and its Environs

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Mozer, F. S.; Maynard, N. C.; Russell, C. T.

    2001-05-01

    The observed properties of the electromagnetic field and the plasma at and around a magnetic separator observed on May 29, 1996 with the ISTP GGS Polar satellite will be discussed. The electron pressure ridge will be illustrated astride the current layer, and the ion flow will be shown to impinge on the separator with MA ~= 0.1 and leave along the pressure ridge with MA ~= 1.1 33 traversals of rotational shear layers have been documented in this interval using the electron form of the Walen test. The electron fluid velocity is shown to have strong parallel Mach number enhancements along the separatrices, with peak parallel Alfven mach numbers of 4.5 that are probably limited by plasma time resolution (4.3s). These are similar in location to those in two fluid, hybrid, and particle - particle simulations of collisionless reconnection. The direct detection of the parallel electric field in the vicinity of the separator is shown in all cases to be limited by the so called Vasyliunas limit, $ E∥ <= O(1)√ {{{kTe}/{2m_ic2}}}| B|, that corresponds to the scale length of the pressure gradient being limited by the scale \\rho_s = \\beta_e^{1\\over2}{c\\over {\\omegapi}} seen to be important in the multi-species analysis of collisionless reconnection. In turn, the electron gas is shown at times not to drift at the E \\times B drift speed, but have substantial drifts perpendicular to B of a sense implied by the pressure divergences that cause the parallel electric field. Two techniques have been introduced to demonstrate the spectacular enhancement of the departures from cylindrical symmetry exhibited by the electrons as the separator null field region is traversed. Using totally separate arguments, the thermal electrons are shown to be clearly unmagnetized within the {c\\over{\\omegape}}$ scales about the separator, with the thermal gyroradius 10-30 times the scale length of B in this vicinity. At the moment level this demagnetization shows up as the loss of gyrotropy, or increase of ``agyrotropy''. In these regimes the thermal electrons can move onto different field lines and affect a loss of identity of field lines. Said differently, this agyrotropy requires the retention of the full tensorial electron pressure tensor to convey its effects in the multi-fluid treatments. Superposed epoch pictures of the spatial environment of the separator will be illustrated in different diagnostic "wavelengths" such as magnetic intensity, electron pressure, beta and gyroradius of electrons relative to scale lengths of B. In this way we provide the first in situ empirical definition of a site of collisionless magnetic reconnection and verify the demagnetization of electrons outlined by Vasyliunas 25 years ago as the likely mechanism for violation of the frozen flux theorem.

  8. Formation and electronic properties of palladium hydrides and palladium-rhodium dihydride alloys under pressure.

    PubMed

    Yang, Xiao; Li, Huijian; Ahuja, Rajeev; Kang, Taewon; Luo, Wei

    2017-06-14

    We present the formation possibility for Pd-hydrides and Pd-Rh hydrides system by density functional theory (DFT) in high pressure upto 50 GPa. Calculation confirmed that PdH 2 in face-centered cubic (fcc) structure is not stable under compression that will decomposition to fcc-PdH and H 2 . But it can be formed under high pressure while the palladium is involved in the reaction. We also indicate a probably reason why PdH 2 can not be synthesised in experiment due to PdH is most favourite to be formed in Pd and H 2 environment from ambient to higher pressure. With Rh doped, the Pd-Rh dihydrides are stabilized in fcc structure for 25% and 75% doping and in tetragonal structure for 50% doping, and can be formed from Pd, Rh and H 2 at high pressure. The electronic structural study on fcc type Pd x Rh 1-x H 2 indicates the electronic and structural transition from metallic to semi-metallic as Pd increased from x = 0 to 1.

  9. Break the electron- hole balance and pressure induced superconductivity in Tungsten Ditelluride

    NASA Astrophysics Data System (ADS)

    Song, Fengqi; Pan, Xing-Chen

    Tungsten ditelluride has garnered immense interest due to the recent discovery of titanic unsaturated magnetoresistance up to 60 Tesla and its possible topological metal nature. The titanic unsaturated magnetoresistance is attributed to the perfect compensation between the opposite carriers in this material. Motivated by the small and sensitive Fermi surface of 5d electronic orbitals, we break the electron-hole balance by the application of high pressure. Superconductivity sharply appears at the pressure of 2.5 GPa, quickly reaching a maximum critical temperature of 7 K at around 16.8 GPa, and followed by a monotonic decrease in Tc with increasing pressure exhibiting the typical dome-shaped superconducting phase. What's more, linear magnetoresistance dominates the transport behavior under high pressure instead of semi-classical parabolic magnetoresistance, like in other topological metals. Refence: Nature Commun. 6, 7805 (2015), arXiv 1505, 07968. The authors would like to thank the National Key Projects for Basic Research in China, the National Natural Science Foundation of China , the NSF of Jiangsu Province, the PAPD project, and the Fundamental Research Funds for the Central Universities.

  10. Hollow cathodes for arcjet thrusters

    NASA Technical Reports Server (NTRS)

    Luebben, Craig R.; Wilbur, Paul J.

    1987-01-01

    In an attempt to prevent exterior spot emission, hollow cathode bodies and orifice plates were constructed from boron nitride which is an electrical insulator, but the orifice plates melted and/or eroded at high interelectrode pressures. The most suitable hollow cathodes tested included a refractory metal orifice plate in a boron nitride body, with the insert insulated electrically from the orifice plate. In addition, the hollow cathode interior was evacuated to assure a low pressure at the insert surface, thus promoting diffuse electron emission. At high interelectrode pressures, the electrons tended to flow through the orifice plate rather than through the orifice, which could result in overheating of the orifice plate. Using a carefully aligned centerline anode, electron flow through the orifice could be sustained at interelectrode pressures up to 500 torr - but the current flow path still occasionally jumped from the orifice to the orifice plate. Based on these tests, it appears that a hollow cathode would operate most effectively at pressures in the arcjet regime with a refractory, chemically stable, and electrically insulating cathode body and orifice plate.

  11. Electron-phonon coupling and superconductivity in MgB2 under hydrostatic pressure.

    NASA Astrophysics Data System (ADS)

    Quijano, Ramiro; Aguayo, Aaron

    2005-03-01

    We have studied the dynamics and coupling of the E2g phonon mode with the σ-band in MgB2 under pressure using the Frozen Phonon Approximation. The results were obtained by means of first-principles total-energy calculations using the full potential Linearized Augmented Plane Wave (LAPW) method and the Generalized Gradient Approximation (GGA) for the exchange-correlation potential. We present results for the evolution of the anharmonicity and phonon frequency of the E2g mode, the electron-phonon coupling constant, and Tc as a function of hydrostatic pressure in the range 0-40 GPa. We find that the phonon frequency increases monotonically with pressure, but the the anharmonicity, the electron-phonon coupling and Tc decreases with pressure. We have obtained a very good agreement between the calculated Tc(P) and the experimental data available in the literature, in particular with the experimental data corresponding to monocystalline samples. This work was supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant No. 43830-F.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, Masayuki, E-mail: m.takahashi@al.t.u-tokyo.ac.jp; Ohnishi, Naofumi

    A filamentary plasma is reproduced based on a fully kinetic model of electron and ion transports coupled with electromagnetic wave propagation. The discharge plasma transits from discrete to diffusive patterns at a 110-GHz breakdown, with decrease in the ambient pressure, because of the rapid electron diffusion that occurs during an increase in the propagation speed of the ionization front. A discrete plasma is obtained at low pressures when a low-frequency microwave is irradiated because the ionization process becomes more dominant than the electron diffusion, when the electrons are effectively heated by the low-frequency microwave. The propagation speed of the plasmamore » increases with decrease in the incident microwave frequency because of the higher ionization frequency and faster plasma diffusion resulting from the increase in the energy-absorption rate. An external magnetic field is applied to the breakdown volume, which induces plasma filamentation at lower pressures because the electron diffusion is suppressed by the magnetic field. The thrust performance of a microwave rocket is improved by the magnetic fields corresponding to the electron cyclotron resonance (ECR) and its higher-harmonic heating, because slower propagation of the ionization front and larger energy-absorption rates are obtained at lower pressures. It would be advantageous if the fundamental mode of ECR heating is coupled with a lower frequency microwave instead of combining the higher-harmonic ECR heating with the higher frequency microwave. This can improve the thrust performance with smaller magnetic fields even if the propagation speed increases because of the decrease in the incident microwave frequency.« less

  13. Launcher Dynamic Data Acquisition

    DTIC Science & Technology

    2012-07-31

    K PR Pressure PR Pressure PR Accelerometer PR Accelerometer PR Accelerometer PR Pressure PR Pressure IEPE Microphone IEPE ...transducers, displacement potentiometers, or Integrated Electronics Piezoelectric ( IEPE ) microphones and accelerometers. The characteristics of these...Engineering Units HCl hydrogen chloride HVAC heating ventilation and cooling Hz hertz IEC International Electrotechnical Commission IEPE

  14. Note: measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air.

    PubMed

    Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V

    2012-08-01

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.

  15. Observation of a brine layer on an ice surface with an environmental scanning electron microscope at higher pressures and temperatures.

    PubMed

    Krausko, Ján; Runštuk, Jiří; Neděla, Vilém; Klán, Petr; Heger, Dominik

    2014-05-20

    Observation of a uranyl-salt brine layer on an ice surface using backscattered electron detection and ice surface morphology using secondary-electron detection under equilibrium conditions was facilitated using an environmental scanning electron microscope (ESEM) at temperatures above 250 K and pressures of hundreds of Pa. The micrographs of a brine layer over ice grains prepared by either slow or shock freezing provided a complementary picture of the contaminated ice grain boundaries. Fluorescence spectroscopy of the uranyl ions in the brine layer confirmed that the species exists predominately in the solvated state under experimental conditions of ESEM.

  16. Dynamic evolutions of electron properties: A theoretical study for condensed-phase β-HMX under shock loading

    NASA Astrophysics Data System (ADS)

    He, Zheng-Hua; Chen, Jun; Wu, Qiang; Ji, Guang-Fu

    2017-11-01

    We present the density functional theory (DFT) calculations for microscopic electron properties of β-HMX under shock loading. The metallization pressure is determined to be within 30-55 GPa. The frontier molecular orbitals mainly localize on N-NO2 groups initially and disperse with pressure increase, while HOMO and LUMO orbitals trend to aggregate with each other. The deformation of N-NO2 groups and enhanced hydrogen-bonding interactions cause the electron delocalization and lower the band gap, inducing the reaction initiation finally. Our results show that using the electron properties can reliably predict the initial decomposition of energetic materials under shock loading.

  17. Normal state of metallic hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A.

    2017-02-01

    A generalized theory of the normal properties of metals in the case of electron-phonon (EP) systems with a nonconstant density of electron states has been used to study the normal state of the SH3 and SH2 phases of hydrogen sulfide at different pressures. The frequency dependence of the real Re Σ (ω) and imaginary ImΣ (ω) parts of the self-energy Σ (ω) part (SEP) of the Green's function of the electron Σ (ω), real part Re Z (ω), and imaginary part Im Z (ω) of the complex renormalization of the mass of the electron; the real part Re χ (ω) and the imaginary part Imχ (ω) of the complex renormalization of the chemical potential; and the density of electron states N (ɛ) renormalized by strong electron-phonon interaction have been calculated. Calculations have been carried out for the stable orthorhombic structure (space group Im3¯ m) of the hydrogen sulfide SH3 for three values of the pressure P = 170, 180, and 225 GPa; and for an SH2 structure with a symmetry of I4/ mmm ( D4 h1¯7) for three values of pressure P = 150, 180, and 225 GP at temperature T = 200 K.

  18. Critical temperature of metallic hydrogen sulfide at 225-GPa pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudryashov, N. A.; Kutukov, A. A.; Mazur, E. A., E-mail: EAMazur@mephi.ru

    2017-01-15

    The Eliashberg theory generalized for electron—phonon systems with a nonconstant density of electron states and with allowance made for the frequency behavior of the electron mass and chemical potential renormalizations is used to study T{sub c} in the SH{sub 3} phase of hydrogen sulfide under pressure. The phonon contribution to the anomalous electron Green’s function is considered. The pairing within the total width of the electron band and not only in a narrow layer near the Fermi surface is taken into account. The frequency and temperature dependences of the complex mass renormalization ReZ(ω), the density of states N(ε) renormalized bymore » the electron—phonon interactions, and the electron—phonon spectral function obtained computationally are used to calculate the anomalous electron Green’s function. A generalized Eliashberg equation with a variable density of electron states has been solved. The frequency dependence of the real and imaginary parts of the order parameter in the SH{sub 3} phase has been obtained. The value of T{sub c} ≈ 177 K in the SH{sub 3} phase of hydrogen sulfide at pressure P = 225 GPa has been determined by solving the system of Eliashberg equations.« less

  19. Development of Simple Designs of Multitip Probe Diagnostic Systems for RF Plasma Characterization

    PubMed Central

    Naz, M. Y.; Shukrullah, S.; Ghaffar, A.; Rehman, N. U.

    2014-01-01

    Multitip probes are very useful diagnostics for analyzing and controlling the physical phenomena occurring in low temperature discharge plasmas. However, DC biased probes often fail to perform well in processing plasmas. The objective of the work was to deduce simple designs of DC biased multitip probes for parametric study of radio frequency plasmas. For this purpose, symmetric double probe, asymmetric double probe, and symmetric triple probe diagnostic systems and their driving circuits were designed and tested in an inductively coupled plasma (ICP) generated by a 13.56 MHz radio frequency (RF) source. Using I-V characteristics of these probes, electron temperature, electron number density, and ion saturation current was measured as a function of input power and filling gas pressure. An increasing trend was noticed in electron temperature and electron number density for increasing input RF power whilst a decreasing trend was evident in these parameters when measured against filling gas pressure. In addition, the electron energy probability function (EEPF) was also studied by using an asymmetric double probe. These studies confirmed the non-Maxwellian nature of the EEPF and the presence of two groups of the energetic electrons at low filling gas pressures. PMID:24683326

  20. Band structure and phonon properties of lithium fluoride at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchal, J. M., E-mail: amitjignesh@yahoo.co.in; Department of Physics, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat; Joshi, Mitesh

    2016-05-23

    High pressure structural and electronic properties of Lithium Fluoride (LiF) have been studied by employing an ab-initio pseudopotential method and a linear response scheme within the density functional theory (DFT) in conjunction with quasi harmonic Debye model. The band structure and electronic density of states conforms that the LiF is stable and is having insulator behavior at ambient as well as at high pressure up to 1 Mbar. Conclusions based on Band structure, phonon dispersion and phonon density of states are outlined.

  1. Spatial nonuniformity of electron energy in a microwave atmospheric-pressure microplasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Liguo; Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900; Zhang Zhibo

    The characteristics of the electron energy in a microwave atmospheric-pressure argon microplasma are investigated by a spatially resolved optical emission spectroscopy. By adding tiny amount of xenon (<1 ppm) as tracer gas into the argon discharge, it is found that the spatial distribution of the electrons with energy >8.3 eV is quite different from that of the electrons with energy >11.5 eV. Spatial distribution of the population ratio between 4p and 5p levels of Ar atom is also determined. Furthermore, with a collisional-radiative model, it is found that the spatial variation of this population ratio is mainly attributed to themore » spatial nonuniformity of the effective electron temperature.« less

  2. Observation of warm, higher energy electrons transiting a double layer in a helicon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sung, Yung-Ta, E-mail: ysung2@wisc.edu; Li, Yan; Scharer, John E.

    2015-03-15

    Measurements of an inductive RF helicon argon plasma double layer with two temperature electron distributions including a fast (>80 eV) tail are observed at 0.17 mTorr Ar pressure. The fast, untrapped electrons observed downstream of the double layer have a higher temperature (13 eV) than the trapped (T{sub e} = 4 eV) electrons. The reduction of plasma potential and density observed in the double layer region would require an upstream temperature ten times the measured 4 eV if occurring via Boltzmann ambipolar expansion. The experimental observation in Madison helicon experiment indicates that fast electrons with substantial density fractions can be created at low helicon operating pressures.

  3. The electron Boltzmann equation in a plasma generated by fission fragments

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.; Deese, J. E.

    1976-01-01

    A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material show that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux but increases sharply in the presence of a sustainer electric field.

  4. A cryogenic multichannel electronically scanned pressure module

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Fox, Robert L.; Adcock, Edward E.; Kahng, Seun K.

    1992-01-01

    Consideration is given to a cryogenic multichannel electronically scanned pressure (ESP) module developed and tested over an extended temperature span from -184 to +50 C and a pressure range of 0 to 5 psig. The ESP module consists of 32 pressure sensor dice, four analog 8 differential-input multiplexers, and an amplifier circuit, all of which are packaged in a physical volume of 2 x 1 x 5/8 in with 32 pressure and two reference ports. Maximum nonrepeatability is measured at 0.21 percent of full-scale output. The ESP modules have performed consistently well over 15 times over the above temperature range and continue to work without any sign of degradation. These sensors are also immune to repeated thermal shock tests over a temperature change of 220 C/sec.

  5. Ab-initio study of (Ga,Cr)N and (Ga,Mn)N DMSs: under hydrostatic pressure

    NASA Astrophysics Data System (ADS)

    Rani, Anita; Kumar, Ranjan

    2018-03-01

    The influence of hydrostatic pressure between 0-100 GPa on structural, electronic and magnetic properties of CrxGa1-xN and MnxGa1-xN (x = 0.25) diluted magnetic semiconductors has been studied. The calculations have been performed using DFT as implemented in code SIESTA. LDA + U as exchange-correlation (XC) potential have been used to study the parameters. Under external pressure, shifting in both valence band and conduction band energy levels from their actual positions has been observed, which lead to modification of electronic properties. Also, N0 α, s-d exchange constant and p-d exchange constants, N0 β have been calculated at different pressures. Both the compounds show half metallic nature at studied pressure range.

  6. Outgassing rate analysis of a velvet cathode and a carbon fiber cathode

    NASA Astrophysics Data System (ADS)

    Li, An-Kun; Fan, Yu-Wei; Qian, Bao-Liang; Zhang, Zi-cheng; Xun, Tao

    2017-11-01

    In this paper, the outgassing-rates of a carbon fiber array cathode and a polymer velvet cathode are tested and discussed. Two different methods of measurements are used in the experiments. In one scheme, a method based on dynamic equilibrium of pressure is used. Namely, the cathode works in the repetitive mode in a vacuum diode, a dynamic equilibrium pressure would be reached when the outgassing capacity in the chamber equals the pumping capacity of the pump, and the outgassing rate could be figured out according to this equilibrium pressure. In another scheme, a method based on static equilibrium of pressure is used. Namely, the cathode works in a closed vacuum chamber (a hard tube), and the outgassing rate could be calculated from the pressure difference between the pressure in the chamber before and after the work of the cathode. The outgassing rate is analyzed from the real time pressure evolution data which are measured using a magnetron gauge in both schemes. The outgassing rates of the carbon fiber array cathode and the velvet cathode are 7.3 ± 0.4 neutrals/electron and 85 ± 5 neutrals/electron in the first scheme and 9 ± 0.5 neutrals/electron and 98 ± 7 neutrals/electron in the second scheme. Both the results of two schemes show that the outgassing rate of the carbon fiber array cathode is an order smaller than that of the velvet cathode under similar conditions, which shows that this carbon fiber array cathode is a promising replacement of the velvet cathode in the application of magnetically insulated transmission line oscillators and relativistic magnetrons.

  7. Circadian blood pressure variability in type 1 diabetes subjects and their nondiabetic siblings - influence of erythrocyte electron transfer.

    PubMed

    Matteucci, Elena; Consani, Cristina; Masoni, Maria Chiara; Giampietro, Ottavio

    2010-10-05

    Normotensive non-diabetic relatives of type 1 diabetes (T1D) patients have an abnormal blood pressure response to exercise testing that is associated with indices of metabolic syndrome and increased oxidative stress. The primary aim of this study was to investigate the circadian variability of blood pressure and the ambulatory arterial stiffness index (AASI) in healthy siblings of T1D patients vs healthy control subjects who had no first-degree relative with T1D. Secondary aims of the study were to explore the influence of both cardiovascular autonomic function and erythrocyte electron transfer activity as oxidative marker on the ambulatory blood pressure profile. Twenty-four hour ambulatory blood pressure monitoring (ABPM) was undertaken in 25 controls, 20 T1D patients and 20 siblings. In addition to laboratory examination (including homeostasis model assessment of insulin sensitivity) and clinical testing of autonomic function, we measured the rate of oxidant-induced erythrocyte electron transfer to extracellular ferricyanide (RBC vfcy). Systolic blood pressure (SBP) midline-estimating statistic of rhythm and pulse pressure were higher in T1D patients and correlated positively with diabetes duration and RBC vfcy; autonomic dysfunction was associated with diastolic BP ecphasia and increased AASI. Siblings had higher BMI, lower insulin sensitivity, larger SBP amplitude, and higher AASI than controls. Daytime SBP was positively, independently associated with BMI and RBC vfcy. Among non-diabetic people, there was a significant correlation between AASI and fasting plasma glucose. Siblings of T1D patients exhibited a cluster of sub-clinical metabolic abnormalities associated with consensual perturbations in BP variability. Moreover, our findings support, in a clinical setting, the proposed role of transplasma membrane electron transport systems in vascular pathobiology.

  8. Experimental and Theoretical Investigations on d and f Electron Systems under High Pressure

    NASA Astrophysics Data System (ADS)

    Gupta, Satish C.; Joshi, K. D.; Banerjee, S.

    2008-07-01

    The pressure-induced electron transfer from sp to d band in transition elements, and spd to f band in the light actinides significantly influences the stability of crystal structures in these metals. Although α → ω → β phase transition with increasing pressure in group IV transition elements is well documented, the β → ω transition under pressure has not been reported until recently. Our experimental study on the β-stabilized Zr-20Nb alloy reveals that it transforms to ω phase on shock compression, whereas this transition is not seen in a hydrostatic pressure condition. The platelike morphology of ω formed under shock compression is in contrast to the fine particle morphology seen in this system under thermal treatment, which clearly indicates that the mechanism of the β → ω transformation under shock treatment involves a large shear component. In this article, we have analyzed why the ω → β transition pressures in Ti, Zr, and Hf do not follow the trend implied by the principle of corresponding states. Our analysis shows that the ω → β transition depends on how the increased d population caused by the sp → d transfer of electron is distributed among various d substates. In Th, we have analyzed the role of 5f electrons in determining the mechanical stability of fcc and bct structures under hydrostatic compressions. Our analysis shows that the fcc to bct transition in this metal, which has been reported by high-pressure experiments, occurs because of softening of the tetragonal shear modulus C' = ( C 11 - C 12)/2 under compression. From the total energy calculated as a function of specific volume, we have determined the 0 K isotherm, which is then used to deduce the shock Hugoniot. The theoretical Hugoniot compares well with the experimental data.

  9. Development of an electronic manometer for intrapleural pressure monitoring.

    PubMed

    Krenke, Rafał; Guć, Maciej; Grabczak, Elżbieta Magdalena; Michnikowski, Marcin; Pałko, Krzysztof Jakub; Chazan, Ryszarda; Gólczewski, Tomasz

    2011-01-01

    Measurement of intrapleural pressure is useful during various pleural procedures. However, a pleural manometer is rarely available. The aim of this study was to (1) construct an electronic pleural manometer, (2) assess the accuracy of the measurements done with the new device, (3) calculate the costs of the manometer construction and (4) perform an initial evaluation of the device in a clinical setting. Only widely accessible elements were used to construct the device. A vascular pressure transducer was used to transform pressure into an electronic signal. Reliability of the measurements was evaluated in a laboratory setting in a prospective, single-blind manner by comparing the results with those measured by a water manometer. Functionality of the device was assessed during therapeutic thoracentesis. The cost of the new pleural manometer was calculated. We built a small, portable device which can precisely measure intrapleural pressure. The measurement results showed very high agreement with those registered with a water manometer (r = 0.999; p < 0.001). The initial evaluation of the electronic manometer during therapeutic thoracentesis showed it was easy to use. The total time needed for 6 measurements after withdrawal of different volumes of pleural fluid in 1 patient did not exceed 6 min. The total cost of the device was calculated to be <2,000 EUR. In the face of very limited offer of commercially available pleural manometers, it is possible to successfully construct a self-made, reliable, electronic pleural manometer at modest costs. The device is easy to use and enables data display and storage in the personal computer. Copyright © 2011 S. Karger AG, Basel.

  10. Electron dynamics in high energy density plasma bunch generation driven by intense picosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Li, M.; Yuan, T.; Xu, Y. X.; Luo, S. N.

    2018-05-01

    When an intense picosecond laser pulse is loaded upon a dense plasma, a high energy density plasma bunch, including electron bunch and ion bunch, can be generated in the target. We simulate this process through one-dimensional particle-in-cell simulation and find that the electron bunch generation is mainly due to a local high energy density electron sphere originated in the plasma skin layer. Once generated the sphere rapidly expands to compress the surrounding electrons and induce high density electron layer, coupled with that, hot electrons are efficiently triggered in the local sphere and traveling in the whole target. Under the compressions of light pressure, forward-running and backward-running hot electrons, a high energy density electron bunch generates. The bunch energy density is as high as TJ/m3 order of magnitude in our conditions, which is significant in laser driven dynamic high pressure generation and may find applications in high energy density physics.

  11. Experimental Investigation of Magnetic Superconducting and other Phase Transitions in Novel f-Electron Materials at Ultra-high Pressures using Designer Diamond Anvils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maple, M. Brian; Jeffries, Jason R.; Ho, Pei-Chun

    Pressure is often used as a controlled parameter for the investigation of condensed matter systems. In particular, pressure experiments can provide valuable information into the nature of superconductivity, magnetism, and the coexistence of these two phenomena. Some f-electron, heavy-fermion materials display interesting and novel behavior at moderately low pressures achievable with conventional experimental techniques; however, a growing number of condensed matter systems require ultrahigh pressure techniques, techniques that generate significantly higher pressures than conventional methods, to sufficiently explore their important properties. To that end, we have been funded to develop an ultrahigh pressure diamond anvil cell facility at the Universitymore » of California, San Diego (UCSD) in order to investigate superconductivity, magnetism, non-Fermi liquid behavior, and other phenomena. Our goals for the first year of this grant were as follows: (a) set up and test a suitable refrigerator; (b) set up a laser and spectrometer fluorescence system to determine the pressure within the diamond anvil cell; (c) perform initial resistivity measurements at moderate pressures from room temperature to liquid helium temperatures ({approx}1K); (d) investigate f-electron materials within our current pressure capabilities to find candidate materials for high-pressure studies. During the past year, we have ordered almost all the components required to set up a diamond anvil cell facility at UCSD, we have received and implemented many of the components that have been ordered, we have performed low pressure research on several materials, and we have engaged in a collaborative effort with Sam Weir at Lawrence Livermore National Lab (LLNL) to investigate Au4V under ultrahigh pressure in a designer diamond anvil cell (dDAC). This report serves to highlight the progress we have made towards developing an ultrahigh pressure research facility at UCSD, the research performed in the past year, as well as future directions we plan to pursue.« less

  12. Methane chemistry involved in a low-pressure electron cyclotron wave resonant plasma discharge

    NASA Astrophysics Data System (ADS)

    Morrison, N. A.; William, C.; Milne, W. I.

    2003-12-01

    Radio frequency (rf) generated methane plasmas are commonly employed in the deposition of hydrogenated amorphous carbon (a-C:H) thin films. However, very little is known about the rf discharge chemistry and how it relates to the deposition process. Consequently, we have characterized a low-pressure methane plasma and compared the results with those obtained theoretically by considering the steady-state kinetics of the chemical processes present in a low-pressure plasma reactor, in order to elucidate the dominant reaction channels responsible for the generation of the active precursors required for film growth. Mass spectrometry measurements of the gas phase indicated little variation in the plasma chemistry with increasing electron temperature. This was later attributed to the partial saturation of the electron-impact dissociation and ionization rate constants at electron temperatures in excess of ˜4 eV. The ion densities in the plasma were also found to be strongly dependent upon the parent neutral concentration in the gas phase, indicating that direct electron-impact reactions exerted greater influence on the plasma chemistry than secondary ion-neutral reactions.

  13. 76 FR 16446 - Delphi Corporation Electronics And Safety Division Including On-Site Leased Workers From Acro...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ...: Heating, ventilating, air-conditioning systems (HVAC), amplifiers, mainboards, gas control modules, hybrid airmeter electronics, hybrid ignition electronics, pressure sensors, transmission control modules, crash...

  14. Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory

    NASA Astrophysics Data System (ADS)

    Nath Gupta, Satyendra; Singh, Anjali; Pal, Koushik; Muthu, D. V. S.; Shekhar, C.; Elghazali, Moaz A.; Naumov, Pavel G.; Medvedev, Sergey A.; Felser, C.; Waghmare, U. V.; Sood, A. K.

    2018-05-01

    High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at GPa for NbAs and GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.

  15. Statistical Characterization of Environmental Error Sources Affecting Electronically Scanned Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Green, Del L.; Walker, Eric L.; Everhart, Joel L.

    2006-01-01

    Minimization of uncertainty is essential to extend the usable range of the 15-psid Electronically Scanned Pressure [ESP) transducer measurements to the low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources inducing much of this uncertainty requires a well defined and controlled calibration method. Employing such a controlled calibration system, several studies were conducted that provide quantitative information detailing the required controls needed to minimize environmental and human induced error sources. Results of temperature, environmental pressure, over-pressurization, and set point randomization studies for the 15-psid transducers are presented along with a comparison of two regression methods using data acquired with both 0.36-psid and 15-psid transducers. Together these results provide insight into procedural and environmental controls required for long term high-accuracy pressure measurements near 0.01 psia in the hypersonic testing environment using 15-psid ESP transducers.

  16. Statistical Characterization of Environmental Error Sources Affecting Electronically Scanned Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Green, Del L.; Walker, Eric L.; Everhart, Joel L.

    2006-01-01

    Minimization of uncertainty is essential to extend the usable range of the 15-psid Electronically Scanned Pressure (ESP) transducer measurements to the low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources inducing much of this uncertainty requires a well defined and controlled calibration method. Employing such a controlled calibration system, several studies were conducted that provide quantitative information detailing the required controls needed to minimize environmental and human induced error sources. Results of temperature, environmental pressure, over-pressurization, and set point randomization studies for the 15-psid transducers are presented along with a comparison of two regression methods using data acquired with both 0.36-psid and 15-psid transducers. Together these results provide insight into procedural and environmental controls required for long term high-accuracy pressure measurements near 0.01 psia in the hypersonic testing environment using 15-psid ESP transducers.

  17. Prompt Disappearance and Emergence of Radiation Belt Magnetosonic Waves Induced by Solar Wind Dynamic Pressure Variations

    NASA Astrophysics Data System (ADS)

    Liu, Nigang; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Wang, Shui

    2018-01-01

    Magnetosonic waves are highly oblique whistler mode emissions transferring energy from the ring current protons to the radiation belt electrons in the inner magnetosphere. Here we present the first report of prompt disappearance and emergence of magnetosonic waves induced by the solar wind dynamic pressure variations. The solar wind dynamic pressure reduction caused the magnetosphere expansion, adiabatically decelerated the ring current protons for the Bernstein mode instability, and produced the prompt disappearance of magnetosonic waves. On the contrary, because of the adiabatic acceleration of the ring current protons by the solar wind dynamic pressure enhancement, magnetosonic waves emerged suddenly. In the absence of impulsive injections of hot protons, magnetosonic waves were observable even only during the time period with the enhanced solar wind dynamic pressure. Our results demonstrate that the solar wind dynamic pressure is an essential parameter for modeling of magnetosonic waves and their effect on the radiation belt electrons.

  18. First-principles investigations on structural, elastic, electronic properties and Debye temperature of orthorhombic Ni3Ta under pressure

    NASA Astrophysics Data System (ADS)

    Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang

    2018-06-01

    The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.

  19. Pressure dependence of the refractive index in wurtzite and rocksalt indium nitride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliva, R.; MALTA-Consolider Team, Departament de Física Aplicada, ICMUV, Universitat de València, c/Dr. Moliner 50, 46100 Burjassot, València; Segura, A.

    2014-12-08

    We have performed high-pressure Fourier transform infrared reflectance measurements on a freestanding InN thin film to determine the refractive index of wurtzite InN and its high-pressure rocksalt phase as a function of hydrostatic pressure. From a fit to the experimental refractive-index curves including the effect of the high-energy optical gaps, phonons, free carriers, and the direct (fundamental) band-gap in the case of wurtzite InN, we obtain pressure coefficients for the low-frequency (electronic) dielectric constant ε{sub ∞}. Negative pressure coefficients of −8.8 × 10{sup −2 }GPa{sup −1} and −14.8 × 10{sup −2 }GPa{sup −1} are obtained for the wurtzite and rocksalt phases, respectively. The results are discussedmore » in terms of the electronic band structure and the compressibility of both phases.« less

  20. Influence of Atmospheric Pressure and Composition on LIBS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hatch, Jeremy J.; Scott, Jill R.; Effenberger, A. J. Jr.

    2014-03-01

    Most LIBS experiments are conducted at standard atmospheric pressure in air. However, there are LIBS studies that vary the pressure and composition of the gas. These studies have provided insights into fundamentals of the mechanisms that lead to the emission and methods for improving the quality of LIBS spectra. These atmospheric studies are difficult because the effects of pressure and gas composition and interconnected, making interpretation of the results difficult. The influence of pressures below and above 760 Torr have been explored. Performing LIBS on a surface at reduced pressures (<760 Torr) can result in enhanced spectra due to highermore » resolution, increased intensity, improved signal-to-noise (S/N), and increased ablation. Lower pressures produce increased resolution because the line width in LIBS spectra is predominantly due to Stark and Doppler broadening. Stark broadening is primarily caused from collisions between electrons and atoms, while Doppler broadening is proportional to the plasma temperature. Close examination using a high resolution spectrometer reveals that spectra show significant peak broadening and self-absorption as pressures increase, especially for pressures >760 Torr. During LIBS plasma expansion, energy is lost to the surrounding atmosphere, which reduces the lifetime of the laser plasma. Therefore, reducing the pressure increases the lifetime of the plasma, allowing more light from the laser plasma to be collected; thus, increasing the observed signal intensity. However, if pressures are too low (<10 Torr), then there is a steep drop in LIBS spectral intensity. This loss in intensity is mostly due to a disordered plasma that results from the lack of sufficient atmosphere to provide adequate confinement. At reduced pressures, the plasma expands into a less dense atmosphere, which results in a less dense shock wave. The reduced density in the shock wave results in reduced plasma shielding, allowing more photons to reach the sample. Increasing the number of photons interacting with the sample surface results in increased ablation, which can lead to increased intensity. The composition of the background gas has been shown to greatly influence the observed LIBS spectra by altering the plasma temperature, electron density, mass removal, and plasma shielding that impact the emission intensity and peak resolution. It has been reported that atmospheric Ar results in the highest plasma temperature and electron density, while a He atmosphere results in the lowest plasma temperatures and electron density. Studying temporal data, it was also found that Ar had the slowest decay of both electron density and plasma temperature, while He had the fastest decay in both parameters. The higher plasma temperature and electron density results in an increase in line broadenin, or poor resolution, for Ar compared to He. A rapidly developing LIBS plasma with a sufficient amount of electrons can absorb a significant portion of the laser pulse through inverse Bremsstahlung. Ar (15.8 eV ) is more easily ionized than He (24.4 eV). The breakdown threshold for He at 760 Torr is approximately 3 times greater than Ar and approximately 5 times greater at 100 Torr. The lower breakdown threshold in Ar, compared to He, creates an environment favorable for plasma shielding, which reduces sample vaporization and leads to a weaker LIBS signal.« less

  1. Nanocomposite vacuum-Arc TiC/a-C:H coatings prepared using an additional ionization of acetylene

    NASA Astrophysics Data System (ADS)

    Trakhtenberg, I. Sh.; Gavrilov, N. V.; Emlin, D. R.; Plotnikov, S. A.; Vladimirov, A. B.; Volkova, E. G.; Rubshtein, A. P.

    2014-07-01

    The composition, structure, and properties of TiC/a-C:H coatings obtained by simultaneous vacuum-arc deposition of titanium and carbon in a low-pressure argon-acetylene medium additionally activated by a low-energy (a few hundreds of electron-volts) electron beam. The creation of conditions under which the decomposition of acetylene is provided by the ionization and dissociation of molecules due to electron impacts and by the recharging of molecules through titanium and argon ions with subsequent dissociation should favor the most complete decomposition of acetylene in a wide range of pressures. With increasing acetylene pressure, the structure of the nanocomposite coating changes: the size of TiC crystallites decreases, and the fraction of interfaces (or the fraction of regions with a disordered (amorphous) structure) increases. The application of a bias voltage leads to an increase in the sizes of TiC nanocrystallites. The coatings with a maximum microhardness (˜40 GPa) have been obtained without the action of an electron beam under an acetylene pressure of ˜0.05-0.08 Pa and the atomic ratio Ti: C ˜ 0.9: 1.1 in the coating.

  2. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wen-Yao; Xu, Yong, E-mail: yongxu@dlut.edu.cn; Peng, Fei

    2015-01-14

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*({sup 3}P{sub 2}) and Ar*({sup 3}P{sub 0}) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze themore » main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF{sub 4} was found to significantly increase the metastable destruction rate by the CF{sub 4} quenching, especially for large CF{sub 4} content and high pressure, it becomes the dominant depopulation process.« less

  3. A Transmission Electron Microscope Study of Experimentally Shocked Pregraphitic Carbon

    NASA Technical Reports Server (NTRS)

    Rietmeijer, Frans J. M.

    1995-01-01

    A transmission electron microscope study of experimental shock metamorphism in natural pre-graphitic carbon simulates the response of the most common natural carbons to increased shock pressure. The d-spacings of this carbon are insensitive to the shock pressure and have no apparent diagnostic value, but progressive comminution occurs in response to increased shock pressure up to 59.6 GPa. The function, P = 869.1 x (size(sub minimum )(exp -0.83), describes the relationship between the minimum root-mean-square subgrain size (nm) and shock pressure (GPa). While a subgrain texture of natural pregraphitic carbons carries little information when pre-shock textures are unknown, this texture may go unnoticed as a shock metamorphic feature.

  4. Cryogenic Pressure Calibrator for Wide Temperature Electronically Scanned (ESP) Pressure Modules

    NASA Technical Reports Server (NTRS)

    Faulcon, Nettie D.

    2001-01-01

    Electronically scanned pressure (ESP) modules have been developed that can operate in ambient and in cryogenic environments, particularly Langley's National Transonic Facility (NTF). Because they can operate directly in a cryogenic environment, their use eliminates many of the operational problems associated with using conventional modules at low temperatures. To ensure the accuracy of these new instruments, calibration was conducted in a laboratory simulating the environmental conditions of NTF. This paper discusses the calibration process by means of the simulation laboratory, the system inputs and outputs and the analysis of the calibration data. Calibration results of module M4, a wide temperature ESP module with 16 ports and a pressure range of +/- 4 psid are given.

  5. Electron beams in research and technology

    NASA Astrophysics Data System (ADS)

    Mehnert, R.

    1995-11-01

    Fast electrons lose their energy by inelastic collisions with electrons of target molecules forming secondary electrons and excited molecules. Coulomb interaction of secondary electrons with valence electrons of neighboring molecules leads to the formation of radical cations, thermalized electrons, excited molecular states and radicals. The primary reactive species initiate chemical reactions in the materials irradiated. Polymer modifications using accelerated electrons such as cross-linking of cable insulation, tubes, pipes and moldings, vulcanization of elastomers, grafting of polymer surfaces, processing of foamed plastics and heat shrinkable materials have gained wide industrial acceptance. A steadily growing electron beam technology is curing of paints, lacquers, printing inks and functional coatings. Electron beam processing offers high productivity, the possibility to treat the materials at normal temperature and pressure, excellent process control and clean production conditions. On an industrial scale the most important application of fast electrons is curing of 100% reactive monomer/prepolymer systems. Mainly acrylates and epoxides are used to formulate functional coatings on substrates such as paper, foil, wood, fibre board and high pressure laminates. A survey is given about the reaction mechanism of curing, the characterization of cured coatings, and of some industrial application.

  6. Design of a 0-50 mbar pressure measurement channel compatible with the LHC tunnel radiation environment

    NASA Astrophysics Data System (ADS)

    Casas, Juan; Jelen, Dorota; Trikoupis, Nikolaos

    2017-02-01

    The monitoring of cryogenic facilities often require the measurement of pressure in the sub 5’000 Pa range that are used for flow metering applications, for saturated superfluid helium, etc. The pressure measurement is based on the minute displacement of a sensing diaphragm often through contactless techniques by using capacitive or inductive methods. The LHC radiation environment forbid the use of standard commercial sensors because of the embedded electronics that are affected both by radiation induced drift and transient Single Event Effects (SEE). Passive pressure sensors from two manufacturers were investigated and a CERN designed radiation-tolerant electronics has been developed for measuring variable-reluctance sensors. During the last maintenance stop of the LHC accelerator, four absolute pressure sensors were installed in some of the low pressure bayonet heat exchangers and four differential pressure sensors on the venturi flowmeters that monitor the cooling flow of the 20.5 kA current leads of the ATLAS end-cap superconducting toroids. The pressure sensors operating range is about 1000 to 5000 Pa and the targeted uncertainty is +/- 50 Pa which would permit to measure the equivalent saturation temperature at 1.8 K within better than 0.01 K. This paper describes the radiation hard measuring head that is based on an inductive bridge, its associated radiation-tolerant electronics that is installed under the LHC superconducting magnets or the ATLAS detector cavern; and the first operational experience.

  7. First-principles study of the structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure

    NASA Astrophysics Data System (ADS)

    Escamilla, R.; Carvajal, E.; Cruz-Irisson, M.; Romero, M.; Gómez, R.; Marquina, V.; Galván, D. H.; Durán, A.

    2016-12-01

    The structural, elastic, vibrational, thermodynamic and electronic properties of the Mo2B intermetallic under pressure are assessed using first-principles calculations based on the generalized gradient approximation (GGA) proposed by Perdew-Wang (PW91). Our results show that the calculated structural parameters at a pressure of zero GPa are in good agreement with the available experimental data. The effect of high pressures on the lattice constants shows that the compression along the c-axis and along the a-axis are similar. The elastic constants were calculated using the static finite strain technique, and the bulk shear moduli are derived from the ideal polycrystalline aggregate. We find that the elastic constants, elastic modulus and hardness monotonically increase as a function of pressure; consequently, the structure is dynamically stable and tends from brittle to ductile behavior under pressure. The Debye temperature θD increases and the so-called Gru¨ neisen constant γ decreases due to stiffening of the crystal structure. The phonon dispersion curves were obtained using the direct method. Additionally, the internal energy (ΔE), the Helmholtz free energy (ΔF), the entropy (S) and the lattice contribution to the heat capacity Cv were calculated and analyzed with the help of the phonon dispersion curves. The N(EF) and the electron transfer between the B and Mo atoms increase as a function of pressure.

  8. K 3 Fe(CN) 6 under External Pressure: Dimerization of CN – Coupled with Electron Transfer to Fe(III)

    DOE PAGES

    Li, Kuo; Zheng, Haiyan; Wang, Lijuan; ...

    2015-09-14

    The addition polymerization of charged monomers like C≡C 2– and C≡N– is scarcely seen at ambient conditions but can progress under external pressure with their conductivity significantly enhanced, which expands the research field of polymer science to inorganic salts. Moreover, the reaction pressures of transition metal cyanides like Prussian blue and K 3Fe(CN) 6 are much lower than that of alkali cyanides. To figure out the effect of the transition metal on the reaction, the crystal structure and electronic structure of K 3Fe(CN) 6 under external pressure are investigated by in situ neutron diffraction, in situ X-ray absorption fine structuremore » (XAFS), and neutron pair distribution functions (PDF) up to ~15 GPa. The cyanide anions react following a sequence of approaching–bonding–stabilizing. The Fe(III) brings the cyanides closer which makes the bonding progress at a low pressure (2–4 GPa). At ~8 GPa, an electron transfers from the CN to Fe(III), reduces the charge density on cyanide ions, and stabilizes the reaction product of cyanide. Finally, from this study we can conclude that bringing the monomers closer and reducing their charge density are two effective routes to decrease the reaction pressure, which is important for designing novel pressure induced conductor and excellent electrode materials.« less

  9. The TELEC - A plasma type of direct energy converter. [Thermo-Electronic Laser Energy Converter for electric power generation

    NASA Technical Reports Server (NTRS)

    Britt, E. J.

    1978-01-01

    The Thermo-Electronic Laser Energy Converter (TELEC) is a high-power density plasma device designed to convert a 10.6-micron CO2 laser beam into electric power. Electromagnetic radiation is absorbed in plasma electrons, creating a high-electron temperature. Energetic electrons diffuse from the plasma and strike two electrodes having different areas. The larger electrode collects more electrons and there is a net transport of current. An electromagnetic field is generated in the external circuit. A computer program has been designed to analyze TELEC performance allowing parametric variation for optimization. Values are presented for TELEC performance as a function of cesium pressure and for current density and efficiency as a function of output voltage. Efficiency is shown to increase with pressure, reaching a maximum over 45%.

  10. Procesos físicos en mezclas gaseosas

    NASA Astrophysics Data System (ADS)

    Milone, L. A.; Merlo, D. C.

    In gaseous mixtures of different compositions (solar, metal poor, Helium-rich and Helium metal poor), we analyze chemical abundances (free electrons, neutral atoms, ions, negative ions and moleculae) as function of temperature and electronic pressures. At relative lower temperatures and higher electronic pressures, we obtain unreachable physical conditions if molecular formation of H2 and C2 are not included (the relations log (Pg) vs log (Pe) tend to infinite); this divergence disappears if molecular formation is taken into account. Finally, we analyze and explain the causes of this phenomena using accuracy numerical calculations.

  11. On the use of electrokinetic phenomena of the second kind for probing electrode kinetic properties of modified electron-conducting surfaces.

    PubMed

    Duval, Jérôme F L; Sorrenti, Estelle; Waldvogel, Yves; Görner, Tatiana; De Donato, Philippe

    2007-04-14

    The electrokinetic features of electron-conducting substrates, as measured in a conventional thin-layer electrokinetic cell, strongly depend on the extent of bipolar faradaic depolarisation of the interface formed with the adjacent electrolytic solution. Streaming potential versus applied pressure data obtained for metallic substrates must generally be interpreted on the basis of a modified Helmholtz-Smoluchowski equation corrected by an electronic conduction term-non linear with respect to the lateral potential and applied pressure gradient-that stems from the bipolar electrodic behavior of the metallic surface. In the current study, streaming potential measurements have been performed in KNO(3) solutions on porous plugs made of electron-conducting grains of pyrite (FeS(2)) covered by humic acids. For zero coverage, the extensive bipolar electronic conduction taking place in the plug-depolarized by concomitant and spatially distributed oxidation and reduction reactions of Fe(2+) and Fe(3+) species-leads to the complete extinction of the streaming potential over the entire range of applied pressure examined. For low to intermediate coverage, the local electron-transfer kinetics on the covered regions of the plug becomes more sluggish. The overall bipolar electronic conduction is then diminished which leads to an increase in the streaming potential with a non-linear dependence on the pressure. For significant coverage, a linear response is observed which basically reflects the interfacial double layer properties of the humics surface layer. A tractable, semi-analytical model is presented that reproduces the electrokinetic peculiarities of the complex and composite system FeS(2)/humics investigated. The study demonstrates that the streaming potential technique is a fast and valuable tool for establishing how well the electron transfer kinetics at a partially or completely depolarised bare electron-conducting substrate/electrolyte solution interface is either promoted (catalysis) or blocked (passivation) by the presence of a discontinuous surface layer.

  12. High pressure generation by hot electrons driven ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piriz, A. R.; Piriz, S. A.; Tahir, N. A.

    2013-11-15

    A previous model [Piriz et al. Phys. Plasmas 19, 122705 (2012)] for the ablation driven by the hot electrons generated in collisionless laser-plasma interactions in the framework of shock ignition is revisited. The impact of recent results indicating that for a laser wavelength λ = 0.35 μm the hot electron temperature θ{sub H} would be independent of the laser intensity I, on the resulting ablation pressure is considered. In comparison with the case when the scaling law θ{sub H}∼(Iλ{sup 2}){sup 1/3} is assumed, the generation of the high pressures needed for driving the ignitor shock may be more demanding. Intensitiesmore » above 10{sup 17} W/cm{sup 2} would be required for θ{sub H}=25−30 keV.« less

  13. Reasons for high-temperature superconductivity in the electron–phonon system of hydrogen sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degtyarenko, N. N.; Mazur, E. A., E-mail: eugen-masur@mail.ru

    We have calculated the electron and phonon spectra, as well as the densities of the electron and phonon states, of the stable orthorhombic structure of hydrogen sulfide SH{sub 2} in the pressure interval 100–180 GPa. It is found that at a pressure of 175 GPa, a set of parallel planes of hydrogen atoms is formed due to a structural modification of the unit cell under pressure with complete accumulation of all hydrogen atoms in these planes. As a result, the electronic properties of the system become quasi-two-dimensional. We have also analyzed the collective synphase and antiphase vibrations of hydrogen atomsmore » in these planes, leading to the occurrence of two high-energy peaks in the phonon density of states.« less

  14. Numerical study on characteristics of radio-frequency discharge at atmospheric pressure in argon with small admixtures of oxygen

    NASA Astrophysics Data System (ADS)

    Wang, Yinan; Liu, Yue

    2017-07-01

    In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to-argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karabourniotis, D.; Couris, S.; Damelincourt, J.J.

    The partial pressure of thallium in high-pressure Hg-TlI discharges with different mercury, thallium, and electron pressures has been measured by using the optically thin line Tl 655 nm and the self-reversed line Tl 535 nm. The partial pressure of the arc axis has been measured from the line Tl 655nm. The effective partial pressure has been measured from the self-reversed line Tl 535 nm on the basis of the multiparameter method, and it has been calculated from the known axis pressure of thallium and the calculation of its radial variation by taking into account the chemical reactions. The experimental resultsmore » confirm the dispersion character of the blue wing of the line Tl 535 nm. The systematic difference obtained between the measured and calculated effective pressure, particularly at the moment of minimum electron density, may be interpreted by deviations from the local thermodynamic equilibrium (LTE) caused by overpopulation of the upper level of the line Tl 535 nm.« less

  16. Pressure-enhanced superconductivity in Eu 3 Bi 2 S 4 F 4

    DOE PAGES

    Luo, Yongkang; Zhai, Hui -Fei; Zhang, Pan; ...

    2014-12-17

    The pressure effect on the newly discovered charge-transferred BiS 2-based superconductor, Eu 3Bi 2S 4F 4, with a T c of 1.5 K at ambient pressure, is investigated by transport and magnetic measurements. Accompanied with the enhancement of metallicity under pressures, the onset superconducting transition temperature increases abruptly around 1.0 GPa, reaching ~10.0 K at 2.26 GPa. Alternating current magnetic susceptibility measurements indicate that a new superconducting phase with a higher T c emerges and dominates at high pressures. In the broad pressure window of 0.68GPa≤p≤2.00 GPa, the high-T c phase coexists with the low-T c phase. Hall effect measurementsmore » reveal a significant difference in electronic structures between the two superconducting phases. As a result, our work devotes the effort to establish the commonality of pressure effect on the BiS 2-based superconductors, and also uncovers the importance of electron carrier density in the high-T c phase.« less

  17. Large-Area High-Performance Flexible Pressure Sensor with Carbon Nanotube Active Matrix for Electronic Skin.

    PubMed

    Nela, Luca; Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen

    2018-03-14

    Artificial "electronic skin" is of great interest for mimicking the functionality of human skin, such as tactile pressure sensing. Several important performance metrics include mechanical flexibility, operation voltage, sensitivity, and accuracy, as well as response speed. In this Letter, we demonstrate a large-area high-performance flexible pressure sensor built on an active matrix of 16 × 16 carbon nanotube thin-film transistors (CNT TFTs). Made from highly purified solution tubes, the active matrix exhibits superior flexible TFT performance with high mobility and large current density, along with a high device yield of nearly 99% over 4 inch sample area. The fully integrated flexible pressure sensor operates within a small voltage range of 3 V and shows superb performance featuring high spatial resolution of 4 mm, faster response than human skin (<30 ms), and excellent accuracy in sensing complex objects on both flat and curved surfaces. This work may pave the road for future integration of high-performance electronic skin in smart robotics and prosthetic solutions.

  18. Structural transition and amorphization in compressed α - Sb 2 O 3

    DOE PAGES

    Zhao, Zhao; Zeng, Qiaoshi; Zhang, Haijun; ...

    2015-05-27

    Sb₂O₃-based materials are of broad interest in materials science and industry. High-pressure study using diamond anvil cells shows promise in obtaining new crystal and electronic structures different from their pristine states. Here, we conducted in situ angle dispersive synchrotron x-ray-diffraction and Raman spectroscopy experiments on α-Sb₂O₃ up to 50 GPa with neon as the pressure transmitting medium. A first-order structural transition was observed in between 15 and 20 GPa, where the cubic phase I gradually transformed into a layered tetragonal phase II through structural distortion and symmetry breaking. To explain the dramatic changes in sample color and transparency, we performedmore » first-principles calculations to track the evolution of its density of states and electronic structure under pressure. At higher pressure, a sluggish amorphization was observed. Our results highlight the structural connections among the sesquioxides, where the lone electron pair plays an important role in determining the local structures.« less

  19. Magnetic properties and effect of pressure on the electronic state of EuCo2Ge2

    NASA Astrophysics Data System (ADS)

    Ashitomi, Y.; Kakihana, M.; Honda, F.; Nakamura, A.; Aoki, D.; Uwatoko, Y.; Nakashima, M.; Amako, Y.; Takeuchi, T.; Kida, T.; Tahara, T.; Hagiwara, M.; Haga, Y.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    EuCo2Ge2 with the tetragonal structure is a Eu-divalent antiferromagnet with the Néel temperature TN = 23 K. The magnetic easy-axis corresponds to the [100] direction (a-axis), while the [001] direction (c-axis) is a hard-axis. The magnetization for H∥ [ 100 ] indicates a metamagnetic transition at 25 kOe and saturates above 75 kOe. On the other hand, the hard-axis magnetization increases approximately linearly and saturates above 110 kOe. The magnetic phase diagram was constructed. A characteristic feature in EuCo2Ge2 is known as a valence transition under pressure, from Eu 2+δ to Eu 3 - δ ‧(δ, δ ‧ < 1). We also clarified the valence transition by measuring the electrical resistivity under pressure. The valence transition occurs at 3 GPa, with a hysteresis, and terminates at about 4.5 GPa. Further increasing pressure, the electronic state is changed into a moderate heavy fermion state and approaches the nearly trivalent electronic state.

  20. Structural properties of Sb 2S 3 under pressure: Evidence of an electronic topological transition

    DOE PAGES

    Efthimiopoulos, Ilias; Buchan, Cienna; Wang, Yuejian

    2016-04-06

    High-pressure Raman spectroscopy and x-ray diffraction of Sb 2S 3 up to 53 GPa reveals two phase transitions at 5 GPa and 15 GPa. The first transition is evidenced by noticeable compressibility changes in distinct Raman-active modes, in the lattice parameter axial ratios, the unit cell volume, as well as in specific interatomic bond lengths and bond angles. By taking into account relevant results from the literature, we assign these effects to a second-order isostructural transition arising from an electronic topological transition in Sb 2S 3 near 5 GPa. Close comparison between Sb 2S 3 and Sb 2S 3 upmore » to 10 GPa reveals a slightly diverse structural behavior for these two compounds after the isostructural transition pressure. This structural diversity appears to account for the different pressure-induced electronic behavior of Sb 2S 3 and Sb 2S 3 up to 10 GPa, i.e. the absence of an insulator-metal transition in Sb 2S 3 up to that pressure. Lastly, the second high-pressure modification appearing above 15 GPa appears to trigger a structural disorder at ~20 GPa; full decompression from 53 GPa leads to the recovery of an amorphous state.« less

  1. Pressure-induced electronic topological transitions in the charge-density-wave material In 4 Se 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yuhang; Song, Liyan; Shao, Xuecheng

    2017-08-01

    High-pressure in situ angle dispersive X-ray diffraction (ADXRD) measurements were performed on the charge-density-wave (CDW) material In4Se3 up to 48.8 GPa. Pressure-induced structural changes were observed at 7.0 and 34.2 GPa, respectively. Using the CALYPSO methodology, the first high-pressure phase was solved as an exotic Pca21 structure. The compressional behaviors of the initial Pnnm and the Pca21 phases were all determined. Combined with first-principle calculations, we find that, unexpectedly, the Pnnm phase probably experiences twice electronic topological transitions (ETTs), from the initial possible CDW state to a semimetallic state at about 2.3 GPa and then back to a possible CDWmore » state at around 3.5 GPa, which was uncovered for the first time in CDW systems. In the both possible CDW states, pressure provokes a decrease of band-gap. The observation of a bulk metallic state was ascribed to structural transition to the Pca21 phase. Besides, based on electronic band structure calculations, the thermoelectric property of the Pnnm phase under compression was discussed. Our results show that pressure play a dramatic role in tuning In4Se3's structure and transport properties.« less

  2. Direct Observation of Pressure-Driven Valence Electron Transfer in Ba 3 BiRu 2 O 9 , Ba 3 BiIr 2 O 9 , and Ba 4 BiIr 3 O 12

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, Peter E. R.; Chapman, Karena W.; Heald, Steve M.

    The hexagonal perovskites Ba3BiIr2O9, Ba3BiRu2O9 and Ba4BiIr3O12 all undergo pressure-induced 1% volume collapses above 5 GPa. These first-order transitions have been ascribed to internal transfer of valence electrons between bismuth and iridium/ruthenium, which is driven by external applied pressure because the reduction in volume achieved by emptying the 6s shell of bismuth upon oxidation to Bi5+ is greater in magnitude than the increase in volume by reducing iridium or ruthenium. Here, we report direct observation of these valence transfers for the first time, using high-pressure X-ray absorption near-edge spectroscopy (XANES) measurements. Our data also support the highly unusual “4+” nominalmore » oxidation state of bismuth in these compounds, although the possibility of local disproportionation into Bi3+/Bi5+ cannot be definitively ruled out. Ab initio calculations reproduce the transition, support its interpretation as a valence electron transfer from Bi to Ir/Ru, and suggest that the high-pressure phase may show metallic behavior (in contrast to the insulating ambient-pressure phase).« less

  3. The under-pressure behaviour of mechanical, electronic and optical properties of calcium titanate and its ground state thermoelectric response

    NASA Astrophysics Data System (ADS)

    Noor, N. A.; Alay-e-Abbas, S. M.; Hassan, M.; Mahmood, I.; Alahmed, Z. A.; Reshak, A. H.

    2017-08-01

    In this study, the elastic, electronic, optical and thermoelectric properties of CaTiO3 perovskite oxide have been investigated using first-principles calculations. The generalised gradient approximation (GGA) has been employed for evaluating structural and elastic properties, while the modified Becke Johnson functional is used for studying the optical response of this compound. In addition to ground state physical properties, we also investigate the effects of pressure (0, 30, 60, 90 and 120 GPa) on the electronic structure of CaTiO3. The application of pressure from 0 to 90 GPa shows that the indirect band gap (Γ-M) of CaTiO3 increases with increasing pressure and at 120 GPa it spontaneously decreases transforming cubic CaTiO3 to a direct (Γ-Γ) band gap material. The complex dielectric function and some optical parameters are also investigated under the application of pressures. All the calculated optical properties have been found to exhibit a shift to the higher energies with the increase of applied pressure suggesting potential optoelectronic device applications of CaTiO3. The thermoelectric properties of CaTiO3 have been computed at 0 GPa in terms of electrical conductivity, thermal conductivity and Seebeck coefficient.

  4. First principles and Debye model study of the thermodynamic, electronic and optical properties of MgO under high-temperature and pressure

    NASA Astrophysics Data System (ADS)

    Miao, Yurun; Li, Huayang; Wang, Hongjuan; He, Kaihua; Wang, Qingbo

    2018-02-01

    First principles and quasi-harmonic Debye model have been used to study the thermodynamic properties, enthalpies, electronic and optical properties of MgO up to the core-mantle boundary (CMB) condition (137 GPa and 3700 K). Thermodynamic properties calculation includes thermal expansion coefficient and capacity, which have been studied up to the CMB pressure (137 GPa) and temperature (3700 K) by the Debye model with generalized gradient approximation (GGA) and local-density approximation (LDA). First principles with hybrid functional method (PBE0) has been used to calculate the electronic and optical properties under pressure up to 137 GPa and 0 K. Our results show the Debye model with LDA and first principles with PBE0 can provide accurate thermodynamic properties, enthalpies, electronic and optical properties. Calculated enthalpies show that MgO keep NaCl (B1) structure up to 137 GPa. And MgO is a direct bandgap insulator with a 7.23 eV calculated bandgap. The bandgap increased with increasing pressure, which will induce a blue shift of optical properties. We also calculated the density of states (DOS) and discussed the relation between DOS and band, optical properties. Equations were used to fit the relations between pressure and bandgaps, absorption coefficient (α(ω)) of MgO. The equations can be used to evaluate pressure after careful calibration. Our calculations can not only be used to identify some geological processes, but also offer a reference to the applications of MgO in the future.

  5. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    DOE PAGES

    Yu, J.; Li, L. Y.; Cao, J. B.; ...

    2016-07-28

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (B z-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainlymore » pancake distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.« less

  6. The influences of solar wind pressure and interplanetary magnetic field on global magnetic field and outer radiation belt electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.; Li, L. Y.; Cao, J. B.

    Using the Van Allen Probe in situ measured magnetic field and electron data, we examine the solar wind dynamic pressure and interplanetary magnetic field (IMF) effects on global magnetic field and outer radiation belt relativistic electrons (≥1.8 MeV). The dynamic pressure enhancements (>2 nPa) cause the dayside magnetic field increase and the nightside magnetic field reduction, whereas the large southward IMFs (B z-IMF < –2nT) mainly lead to the decrease of the nightside magnetic field. In the dayside increased magnetic field region (magnetic local time (MLT) ~ 06:00–18:00, and L > 4), the pitch angles of relativistic electrons are mainlymore » pancake distributions with a flux peak around 90° (corresponding anisotropic index A > 0.1), and the higher-energy electrons have stronger pancake distributions (the larger A), suggesting that the compression-induced betatron accelerations enhance the dayside pancake distributions. However, in the nighttime decreased magnetic field region (MLT ~ 18:00–06:00, and L ≥ 5), the pitch angles of relativistic electrons become butterfly distributions with two flux peaks around 45° and 135° (A < 0). The spatial range of the nighttime butterfly distributions is almost independent of the relativistic electron energy, but it depends on the magnetic field day-night asymmetry and the interplanetary conditions. The dynamic pressure enhancements can make the nighttime butterfly distribution extend inward. The large southward IMFs can also lead to the azimuthal expansion of the nighttime butterfly distributions. As a result, these variations are consistent with the drift shell splitting and/or magnetopause shadowing effect.« less

  7. Parallel electron force balance and the L-H transition

    DOE PAGES

    Stoltzfus-Dueck, T.

    2016-05-23

    In one popular paradigm for the L-H transition, energy transfer to the mean flows directly depletes turbulence fluctuation energy, resulting in suppression of the turbulence and a corresponding transport bifurcation. To quantitatively evaluate this mechanism, one must remember that electron parallel force balance couples nonzonal velocity fluctuations with electron pressure fluctuations on rapid timescales, comparable with the electron transit time. For this reason, energy in the nonzonal velocity stays in a fairly fixed ratio to the free energy in electron density fluctuations, at least for frequency scales much slower than electron transit. Furthermore, in order for direct depletion of themore » energy in turbulent fluctuations to cause the L-H transition, energy transfer via Reynolds stress must therefore drain enough energy to significantly reduce the sum of the free energy in nonzonal velocities and electron pressure fluctuations. At low k⊥, the electron thermal free energy is much larger than the energy in nonzonal velocities, posing a stark challenge for this model of the L-H transition.« less

  8. Quantitative measurement of electron number in nanosecond and picosecond laser-induced air breakdown

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yue; Sawyer, Jordan C.; Su, Liu

    2016-05-07

    Here we present quantitative measurements of total electron numbers in laser-induced air breakdown at pressures ranging from atmospheric to 40 bar{sub g} by 10 ns and 100 ps laser pulses. A quantifiable definition for the laser-induced breakdown threshold is identified by a sharp increase in the measurable total electron numbers via dielectric-calibrated coherent microwave scattering. For the 10 ns laser pulse, the threshold of laser-induced breakdown in atmospheric air is defined as the total electron number of ∼10{sup 6}. This breakdown threshold decreases with an increase of pressure and laser photon energy (shorter wavelength), which is consistent with the theory of initialmore » multiphoton ionization and subsequent avalanche processes. For the 100 ps laser pulse cases, a clear threshold is not present and only marginal pressure effects can be observed, which is due to the short pulse duration leading to stronger multiphoton ionization and minimal collisional avalanche ionization.« less

  9. Electron density measurement of non-equilibrium atmospheric pressure plasma using dispersion interferometer

    NASA Astrophysics Data System (ADS)

    Yoshimura, Shinji; Kasahara, Hiroshi; Akiyama, Tsuyoshi

    2017-10-01

    Medical applications of non-equilibrium atmospheric plasmas have recently been attracting a great deal of attention, where many types of plasma sources have been developed to meet the purposes. For example, plasma-activated medium (PAM), which is now being studied for cancer treatment, has been produced by irradiating non-equilibrium atmospheric pressure plasma with ultrahigh electron density to a culture medium. Meanwhile, in order to measure electron density in magnetic confinement plasmas, a CO2 laser dispersion interferometer has been developed and installed on the Large Helical Device (LHD) at the National Institute for Fusion Science, Japan. The dispersion interferometer has advantages that the measurement is insensitive to mechanical vibrations and changes in neutral gas density. Taking advantage of these properties, we applied the dispersion interferometer to electron density diagnostics of atmospheric pressure plasmas produced by the NU-Global HUMAP-WSAP-50 device, which is used for producing PAM. This study was supported by the Grant of Joint Research by the National Institutes of Natural Sciences (NINS).

  10. Electron attachment to toluene in n-hexane and 2,2-dimethylbutane at high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Itoh, Kengo; Nishikawa, Masaru; Holroyd, R.

    The effect of dilute concentration of toluene on the electron mobility in two isometric hexanes was studied as a function of pressure from 1 bar to 3 kbar and at selected temperatures between 9 and 60[degrees]C. The effect of toluene on the mobility is small at 1 bar but quite large at the higher pressures. The results are interpreted in terms of reversible electron attachment to a toluene species which is the monomer in n-hexane. For this reaction [triangle]H[sub r] is - 12.0 kcal /mol in n-hexane at 2.5 kbar. In 2,2-dimethylbutane attachment to a dimeric species is indicated. Themore » volume changes for these attachment reactions are large, between [minus]80 and [minus]100 cm[sup 3]/mol. In hexane the volume changes are attributed in part to the electrostriction of the solvent by the toluene anion and in part to a positive molar volume of the electron. 19 refs., 8 figs., 3 tabs.« less

  11. Rarefied flow diagnostics using pulsed high-current electron beams

    NASA Technical Reports Server (NTRS)

    Wojcik, Radoslaw M.; Schilling, John H.; Erwin, Daniel A.

    1990-01-01

    The use of high-current short-pulse electron beams in low-density gas flow diagnostics is introduced. Efficient beam propagation is demonstrated for pressure up to 300 microns. The beams, generated by low-pressure pseudospark discharges in helium, provide extremely high fluorescence levels, allowing time-resolved visualization in high-background environments. The fluorescence signal frequency is species-dependent, allowing instantaneous visualization of mixing flowfields.

  12. Pressure-driven insulator-metal transition in cubic phase UO 2

    DOE PAGES

    Huang, Li; Wang, Yilin; Werner, Philipp

    2017-09-21

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ~45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure.more » Simultaneously, the so-called "Zhang-Rice state", which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.« less

  13. Pressure-driven insulator-metal transition in cubic phase UO2

    NASA Astrophysics Data System (ADS)

    Huang, Li; Wang, Yilin; Werner, Philipp

    2017-09-01

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ∼45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure. Simultaneously, the so-called “Zhang-Rice state”, which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.

  14. Mineralogy and Microstructures of Shock-Induced Melt Veins in Chondrites

    NASA Technical Reports Server (NTRS)

    Sharp, Thomas G.

    2000-01-01

    The applicability of phase equilibrium data to the interpretation of shock-induced melt veins can only be tested by a detailed study of melt- vein mineralogy to see how high-pressure assemblages vary as a function of shock conditions inferred from other indicators. We have used transmission electron microscopy (TEM), analytical electron microscopy (AEM), scanning electron microscopy (SEM), electron microprobe analysis (EMA) and optical petrography to characterize the mineralogy, microstructures, and compositions of melt veins and associated high-pressure minerals in shocked chondrites and SNC meteorites. In the processes, we have gained a better understanding of what melt veining can tell us about shock conditions and we have discovered new mineral phases in chondritic and SNC meteorites.

  15. Pseudopotential calculations of AlSb under pressure

    NASA Astrophysics Data System (ADS)

    Algarni, H.; Al-Hagan, O. A.; Bouarissa, N.; Khan, M. A.; Alhuwaymel, T. F.

    2018-02-01

    The dependence on hydrostatic pressure of the electronic and optical properties of zinc-blende AlSb semiconducting material in the pressure range of 0-20 kbar has been reported using a pseudopotential approach. At zero pressure, our findings showed that the electron and heavy hole effective masses are 0.11 and 0.38 m0, respectively. Moreover, our results yielded values of 3.3289 and 11.08 for refractive index and high frequency dielectric constant, respectively. These results are found to be in good accord with experiment. Upon compression, all physical parameters of interest showed a monotonic behavior. The pressure-induced energy shifts for the optical transition related to band-gaps indicated that AlSb remains an indirect (D-X) band-gap semiconductor at pressures from 0 to 20 kbar. The trend in all features of interest versus pressure has been presented and discussed. It is found that the lattice parameter is reduced from 0.61355 to 0.60705 nm when pressure is raised from 0 to 20 kbar. The present investigation may be useful for mid-infrared lasers applications, detectors and communication devices.

  16. Anisotropic physical properties and pressure dependent magnetic ordering of CrAuTe 4

    DOE PAGES

    Jo, Na Hyun; Kaluarachchi, Udhara S.; Wu, Yun; ...

    2016-11-11

    Systematic measurements of temperature-dependent magnetization, resistivity, and angle-resolved photoemission spectroscopy (ARPES) at ambient pressure as well as resistivity under pressures up to 5.25 GPa were conducted on single crystals of CrAuTe 4. Magnetization data suggest that magnetic moments are aligned antiferromagnetically along the crystallographic c axis below T N = 255 K. ARPES measurements show band reconstruction due to the magnetic ordering. Magnetoresistance data show clear anisotropy, and, at high fields, quantum oscillations. The Néel temperature decreases monotonically under pressure, decreasing to T N = 236 K at 5.22 GPa. The pressure dependencies of (i) T N, (ii) the residualmore » resistivity ratio, and (iii) the size and power-law behavior of the low-temperature magnetoresistance all show anomalies near 2 GPa suggesting that there may be a phase transition (structural, magnetic, and/or electronic) induced by pressure. Lastly, for pressures higher than 2 GPa a significantly different quantum oscillation frequency emerges, consistent with a pressure induced change in the electronic states.« less

  17. Pressure dependence of the electron-phonon interaction and the normal-state resistivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, O.; Sundqvist, B.

    1981-07-01

    Accurate measurements of the electrical resistance as a function of temperature and pressure are reported for Sn, Zr, dhcp La, and V. These measurements cover a temperature region around room temperature and pressures up to 1.3 GPa. From these data, including also our previous measurements for Al and published results for Pb, the pressure dependence of drho/dT (the resistivity-temperature derivative) is obtained. This quantity is found to be a significant factor in the pressure dependence of the electron-phonon interaction parameter lambda. For the nontransition metals the relative pressure dependence of drho/dT is much larger than the compressibility. Therefore the pressuremore » dependence of the superconducting T/sub c/ is quantitatively well accounted for by the resistance data for these metals. For the transition metals the pressure dependence of drho/dT is relatively smaller and T/sub c/(p) calculated from the resistance data is, at the best, only qualitatively correct. These differences are discussed. Estimates for the pressure dependence of the plasma frequency are obtained.« less

  18. Electronic, ductile, phase transition and mechanical properties of Lu-monopnictides under high pressures.

    PubMed

    Gupta, Dinesh C; Bhat, Idris Hamid

    2013-12-01

    The structural, elastic and electronic properties of lutatium-pnictides (LuN, LuP, LuAs, LuSb, and LuBi) were analyzed by using full-potential linearized augmented plane wave within generalized gradient approximation in the stable rock-salt structure (B1 phase) with space group Fm-3m and high-pressure CsCl structure (B2 phase) with space group Pm-3m. Hubbard-U and spin-orbit coupling were included to predict correctly the semiconducting band gap of LuN. Under compression, these materials undergo first-order structural transitions from B1 to B2 phases at 241, 98, 56.82, 25.2 and 32.3 GPa, respectively. The computed elastic properties show that LuBi is ductile by nature. The electronic structure calculations show that LuN is semiconductor at ambient conditions with an indirect band gap of 1.55 eV while other Lu-pnictides are metallic. It was observed that LuN shows metallization at high pressures. The structural properties, viz, equilibrium lattice constant, bulk modulus and its pressure derivative, transition pressure, equation of state, volume collapse, band gap and elastic moduli, show good agreement with available data.

  19. Enhanced superconductivity in SnSb under pressure: a first principles study

    NASA Astrophysics Data System (ADS)

    Sreenivasa Reddy, P. V.; Kanchana, V.

    2017-10-01

    First principles electronic structure calculations reveal both SnP and SnSb to be stable in the NaCl structure. In SnSb, a first order phase transition from NaCl to CsCl type structure is observed at around 13 GPa, which is also confirmed from enthalpy calculations and agrees well with experimental and other theoretical reports. Calculations of the phonon spectra, and hence the electron-phonon coupling λep and superconducting transition temperature T c, were performed at zero pressure for both the compounds, and at high pressure for SnSb. These calculations report Tc of 0.614 K and 3.083 K for SnP and SnSb respectively, in the NaCl structure—in good agreement with experiment—whilst at the transition pressure, in the CsCl structure, a drastically increased value of T c around 9.18 K (9.74 K at 20 GPa) is found for SnSb, together with a dramatic increase in the electronic density of states at this pressure. The lowest energy acoustic phonon branches in each structure also demonstrate some softening effects, which are well addressed in this work.

  20. Effects of chemical and hydrostatic pressures on structural, magnetic, and electronic properties of R2NiMn O6 (R =rare -earth ion ) double perovskites

    NASA Astrophysics Data System (ADS)

    Zhao, Hong Jian; Liu, Xiao Qiang; Chen, Xiang Ming; Bellaiche, L.

    2014-11-01

    The effects of chemical and hydrostatic pressures on structural, magnetic, and electronic properties of R2NiMn O6 double perovskites, with R being a rare-earth ion, have been systematically studied by using specific first-principles calculations. These latter reproduce well the correlation between several properties (e.g., lattice parameters, Ni-O-Mn bond angles, magnetic Curie temperature, and electronic band gap) and the rare-earth ionic radius (i.e., the chemical pressure). They also provide novel predictions awaiting experimental confirmation, such as (i) that many physical quantities respond in dramatically different manners to chemical versus hydrostatic pressure, unlike as commonly thought for perovskites containing rare-earth ions, and (ii) a dependence of antipolar displacements on chemical and hydrostatic pressures, which would further explain why the recently predicted electrical polarization of L a2NiMn O6/R2NiMn O6 superlattices [H. J. Zhao, W. Ren, Y. Yang, J. Íñiguez, X. M. Chen, and L. Bellaiche, Nat. Commun. 5, 4021 (2014), 10.1038/ncomms5021] can be created and controlled by playing with the rare-earth element.

  1. Lattice vibrations and electronic transitions in the rare-earth metals: yttrium, gadolinium and lutetium.

    PubMed

    Olijnyk, Helmut

    2005-01-12

    Lattice vibrations in high-pressure phases of Y, Gd and Lu were studied by Raman spectroscopy. The observed phonon frequencies decrease towards the transitions to the dhcp and fcc phases. There is evidence that the entire structural sequence [Formula: see text] under pressure for the individual regular rare-earth metals and along the lanthanide series at ambient pressure involve softening of certain acoustic and optical phonon modes and of the elastic shear modulus C(44). Comparison is made to transitions between close-packed lattices in other metals, and possible correlations to s-d electron transfer are discussed.

  2. Characterization of Dust-Plasma Interactions In Non-Thermal Plasmas Under Low Pressure and the Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Bilik, Narula

    This dissertation research focuses on the experimental characterization of dust-plasma interactions at both low and atmospheric pressure. Its goal is to fill the knowledge gaps in (1) the fundamental research of low pressure dusty plasma electrons, which mainly relied on models with few experimental results; and (2) the nanoparticle synthesis process in atmospheric pressure uniform glow plasmas (APGDs), which is largely unexplored in spite of the economical advantage of APGDs in nanotechnology. The low pressure part of the dissertation research involves the development of a complete diagnostic process for an argon-siline capacitively-coupled RF plasma. The central part of the diagnostic process is the Langmuir probe measurement of the electron energy probability function (EEPF) in a dusty plasma, which has never been measured before. This is because the dust particles in the plasma cause severe probe surface contamination and consequently distort the measurement. This problem is solved by adding a solenoid-actuated shield structure to the Langmuir probe, which physically protects the Langmuir probe from the dust particle deposition to ensure reliable EEPF measurements. The dusty plasma EEPFs are characterized by lower electron density and higher electron temperature accompanied by a drop in the low energy electron population. The Langmuir probe measurement is complemented with other characterizations including the capacitive probe measurement, power measurement, and dust particle collection. The complete diagnostic process then gives a set of local plasma parameters as well as the details of the dust-electron interactions reflected in the EEPFs. This set of data serves as input for an analytical model of nanoparticle charging to yield the time evolution of nanoparticle size and charge in the dusty plasma. The atmospheric pressure part of the dissertation focuses on the design and development of an APGD for zinc oxide nanocrystal synthesis. One of the main difficulties in maintaining an APGD is ensuring its uniformity over large discharge volume. By examining past atmospheric pressure plasma reactor designs and looking into the details of the atmospheric pressure gas breakdown mechanism, three design features are proposed to ensure the APGD uniformity. These include the use of a dielectric barrier and the RF driving frequency, as well as a pre-ionization technique achieved by having a non-uniform gap spacing in a capacitively-coupled concentric cylinder reactor. The resulting APGD reactor operates stably in the abnormal glow regime using either helium or argon as the carrier gas. Diethylzinc (DEZ) and oxygen precursors are injected into the APGD to form zinc oxide nanocrystals. The physical and optical properties of these nanocrystals are characterized, and the system parameters that impact the nanoparticle size and deposition rate are identified.

  3. Structural, vibrational, and electrical properties of 1 T -TiT e2 under hydrostatic pressure: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Rajaji, V.; Dutta, Utpal; Sreeparvathy, P. C.; Sarma, Saurav Ch.; Sorb, Y. A.; Joseph, B.; Sahoo, Subodha; Peter, Sebastian C.; Kanchana, V.; Narayana, Chandrabhas

    2018-02-01

    We report the structural, vibrational, and electrical transport properties up to ˜16 GPa of 1 T -TiT e2 , a prominent layered 2D system. We clearly show signatures of two isostructural transitions at ˜2 GPa and ˜4 GPa obtained from the minima in c /a ratio concomitant with the phonon linewidth anomalies of Eg and A1 g modes around the same pressures, providing a strong indication of unusual electron-phonon coupling associated with these transitions. Resistance measurements present nonlinear behavior over similar pressure ranges shedding light on the electronic origin of these pressure-driven isostructural transitions. These multiple indirect signatures of an electronic transition at ˜2 GPa and ˜4 GPa are discussed in connection with the recent theoretical proposal for 1 T -TiT e2 and also the possibility of an electronic topological transition from our electronic Fermi surface calculations. Between 4 GPa and ˜8 GPa , the c /a ratio shows a plateau suggesting a transformation from an anisotropic 2D layer to a quasi-3D crystal network. First-principles calculations suggest that the 2D to quasi-3D evolution without any structural phase transitions is mainly due to the increased interlayer Te-Te interactions (bridging) via the charge density overlap. In addition, we observed a first-order structural phase transition from the trigonal (P 3 ¯m 1 ) to monoclinic (C 2 /m ) phase at higher pressure regions. We estimate the start of this structural phase transition to be ˜8 GPa and also the coexistence of two phases [trigonal (P 3 ¯m 1 ) and monoclinic (C 2 /m )] was observed from ˜8 GPa to ˜16 GPa .

  4. Rapid acceleration of outer radiation belt electrons associated with solar wind pressure pulse: Simulation study with Arase and Van Allen Probe observations

    NASA Astrophysics Data System (ADS)

    Hayashi, M.; Yoshizumi, M.; Saito, S.; Matsumoto, Y.; Kurita, S.; Teramoto, M.; Hori, T.; Matsuda, S.; Shoji, M.; Machida, S.; Amano, T.; Seki, K.; Higashio, N.; Mitani, T.; Takashima, T.; Kasahara, Y.; Kasaba, Y.; Yagitani, S.; Ishisaka, K.; Tsuchiya, F.; Kumamoto, A.; Matsuoka, A.; Shinohara, I.; Blake, J. B.; Fennell, J. F.; Claudepierre, S. G.

    2017-12-01

    Relativistic electron fluxes of the outer radiation belt rapidly change in response to solar wind variations. One of the shortest acceleration processes of electrons in the outer radiation belt is wave-particle interactions between drifting electrons and fast-mode waves induced by compression of the dayside magnetopause caused by interplanetary shocks. In order to investigate this process by a solar wind pressure pulse, we perform a code-coupling simulation using the GEMSIS-RB test particle simulation (Saito et al., 2010) and the GEMSIS-GM global MHD magnetosphere simulation (Matsumoto et al., 2010). As a case study, an interplanetary pressure pulse with the enhancement of 5 nPa is used as the up-stream condition. In the magnetosphere, the fast mode waves with the azimuthal electric field ( negative 𝐸𝜙 : |𝐸&;#120601;| 10 mV/m, azimuthal mode number : m ≤ 2) propagates from the dayside to nightside, interacting with electrons. From the simulation results, we derived effective acceleration model and condition : The electrons whose drift velocities vd ≥ (π/2)Vfast are accelerated efficiently. On December 20, 2016, the Arase (ERG) satellite was launched , allowing more accurate multi-point simultaneous observation with other satellites. We will compare our simulation results with observations from Arase and Van Allen Probes, and investigate the acceleration condition of relativistic electrons associated with storm sudden commencement (SSC).

  5. Oxygen partial pressure sensor

    DOEpatents

    Dees, D.W.

    1994-09-06

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  6. Oxygen partial pressure sensor

    DOEpatents

    Dees, Dennis W.

    1994-01-01

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured.

  7. The characteristics of a possible low altitude electron layer in the Martian atmosphere. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Wallio, H. A.

    1973-01-01

    The apparent diurnal Martian surface pressure variation, as deduced from radio occultation experiments, is discussed and explained as possibly arising from the effect of a low altitude electron layer. Possible source and loss mechanisms for the low altitude electron layer are presented and discussed. Time-dependent differential equations describing the electron layer are derived and then integrated to investigate the electron distribution resulting from the several processes that might occur in the atmosphere. It is concluded that the source mechanism is the sublimation of alkali atoms from a permanent dust layer (a dust layer of 0.2 micron particles of density 9/cu cm is sufficient), and that the dominant loss process must involve CO2 clustering to the alkali atoms. Using these processes, an electron layer is developed which would explain the apparent diurnal surface pressure.

  8. Computational studies of suppression of microwave gas breakdown by crossed dc magnetic field using electron fluid model

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Guo, Lixin; Shu, Panpan

    2016-08-01

    The gas breakdown induced by a square microwave pulse with a crossed dc magnetic field is investigated using the electron fluid model, in which the accurate electron energy distribution functions are adopted. Simulation results show that at low gas pressures the dc magnetic field of a few tenths of a tesla can prolong the breakdown formation time by reducing the mean electron energy. With the gas pressure increasing, the higher dc magnetic field is required to suppress the microwave breakdown. The electric field along the microwave propagation direction generated due to the motion of electrons obviously increases with the dc magnetic field, but it is much less than the incident electric field. The breakdown predictions of the electron fluid model agree very well with the particle-in-cell-Monte Carlo collision simulations as well as the scaling law for the microwave gas breakdown.

  9. Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Yatom, Shurik; Krasik, Yakov E.

    2018-02-01

    The high-voltage field-emission driven nanosecond discharge in pressurized hydrogen is studied using the one-dimensional Particle-in-Cell Monte Carlo collision model. It is obtained that the main part of the field-emitted electrons becomes runaway in the thin cathode sheath. These runaway electrons propagate the entire cathode-anode gap, creating rather dense (˜1012 cm-3) seeding plasma electrons. In addition, these electrons initiate a streamer propagating through this background plasma with a speed ˜30% of the speed of light. Such a high streamer speed allows the self-acceleration mechanism of runaway electrons present between the streamer head and the anode to be realized. As a consequence, the energy of runaway electrons exceeds the cathode-anode gap voltage. In addition, the influence of the field emission switching-off time is analyzed. It is obtained that this time significantly influences the discharge dynamics.

  10. Electronic structure and electron-phonon interaction in hexagonal yttrium by density functional calculations

    NASA Astrophysics Data System (ADS)

    Singh, Prabhakar P.

    2007-03-01

    To understand the pressure-induced changes in the electronic structure and the electron-phonon interaction in yttrium, we have studied hexagonal-close-packed (hcp) yttrium, stable at ambient pressure, and double hexagonal-close-packed (dhcp) yttrium, stable up to around 44GPa , using density-functional-based methods. Our results show that as one goes from hcp yttrium to dhcp yttrium, there are (i) a substantial charge transfer from s→d with extensive modifications of the d band and a sizable reduction in the density of states at the Fermi energy, (ii) a substantial stiffening of phonon modes with the electron-phonon coupling covering the entire frequency range, and (iii) an increase in the electron-phonon coupling constant λ from 0.55 to 1.24, leading to a change in the superconducting transition temperature Tc from 0.3to15.3K for μ*=0.2 .

  11. Two-Dimensional Electron Density Measurement of Positive Streamer Discharge in Atmospheric-Pressure Air

    NASA Astrophysics Data System (ADS)

    Inada, Yuki; Ono, Ryo; Kumada, Akiko; Hidaka, Kunihiko; Maeyama, Mitsuaki

    2016-09-01

    The electron density of streamer discharges propagating in atmospheric-pressure air is crucially important for systematic understanding of the production mechanisms of reactive species utilized in wide ranging applications such as medical treatment, plasma-assisted ignition and combustion, ozone production and environmental pollutant processing. However, electron density measurement during the propagation of the atmospheric-pressure streamers is extremely difficult by using the conventional localized type measurement systems due to the streamer initiation jitters and the irreproducibility in the discharge paths. In order to overcome the difficulties, single-shot two-dimensional electron density measurement was conducted by using a Shack-Hartmann type laser wavefront sensor. The Shack-Hartmann sensor with a temporal resolution of 2 ns was applied to pulsed positive streamer discharges generated in an air gap between pin-to-plate electrodes. The electron density a few ns after the streamer initiation was 7*1021m-3 and uniformly distributed along the streamer channel. The electron density and its distribution profile were compared with a previous study simulating similar streamers, demonstrating good agreement. This work was supported in part by JKA and its promotion funds from KEIRIN RACE. The authors like to thank Mr. Kazuaki Ogura and Mr. Kaiho Aono of The University of Tokyo for their support during this work.

  12. Structural stability, electronic structure and mechanical properties of alkali gallium hydrides AGaH{sub 4} (A = Li, Na)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santhosh, M.; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Manikandan, M.

    2016-05-06

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of alkali gallium hydrides AGaH{sub 4} (A = Li, Na) for three different crystal structures, namely tetragonal (P42{sub 1}c), tetragonal (P4{sub 2}/nmc) and monoclinic (P2{sub 1}/c). Among the considered structures, tetragonal (P42{sub 1}c) phase is found to be the most stable phase for these hydrides at normal pressure. A pressure induced structural phase transition from tetragonal (P42{sub 1}c) to tetragonal (P4{sub 2}/nmc) is observed. The electronic structure reveals that these hydrides are insulators. The calculated elastic constants indicate that these ternary imides are mechanically stablemore » at normal pressure.« less

  13. Synthesis of Large-grain, Single-crystalline Monolayer and AB-stacking Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Zhang, Luyao; Lin, Yung-Chen; Zhang, Yi; Chang, Han-Wen; Yeh, Wen-Cheng; Zhou, Chongwu; USC Nanotechnology Research Laboratory Team

    2013-03-01

    We report the growth of large-grain, single-crystalline monolayer and AB-stacking bilayer graphene by the combination of ambient pressure chemical vapor deposition and low pressure chemical vapor deposition. The shape of the monolayer graphene was modified to be either hexagons or flowers under different growth conditions. The size of the bilayer graphene region was enlarged under ambient pressure growth conditions with low methane concentration. Raman spectra and selected area electron diffraction of individual graphene grain indicated that the each graphene grain is single-crystalline. With electron beam lithography patterned PMMA seeds, graphene nucleation can be controlled and graphene monolayer and bilayer arrays were synthesized on copper foil. Electron backscatter diffraction study revealed that the graphene morphology had little correlation with the crystalline orientation of underlying copper substrate. Mork Family Department of Chemical Engineering and Materials Science

  14. Role of electron temperature on charging of dust grains

    NASA Astrophysics Data System (ADS)

    Kausik, S. S.; Chakraborty, M.; Saikia, B. K.

    2007-02-01

    Dust grains are produced by evaporation of silver in an experimental setup consisting of a dust chamber, a plasma chamber, and a deflection chamber. Due to differential pressure between the dust and plasma chambers, the dust grains move upward and after passing through plasma they become negatively charged. These charged dust grains are then deflected by a dc field applied across a pair of deflector plates in the deflection chamber. Both from the amount of deflection and also from the floating potential, the number of charges collected on the dust grains is calculated. As the gas pressure is changed, the plasma density and the electron temperature changes. Dust charge is then calculated at each value of pressure from the deflection and floating potential. It is found that the electron temperature has a profound effect in the accumulation of charge on dust grains.

  15. High-pressure phases of Mg2Si from first principles

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Tuoc, Vu Ngoc; Le, Nam Ba; Minh, Nguyen Viet; Woods, Lilia M.

    2016-03-01

    First-principles calculations are presented to resolve the possible pressure-dependent phases of Mg2Si . Although previous reports show that Mg2Si is characterized by the cubic antifluorite F m 3 ¯m structure at low pressures, the situation at higher pressures is less clear with many contradicting results. Here we utilize several methods to examine the stability, electron, phonon, and transport properties of this material as a function of pressure and temperature. We find that Mg2Si is thermodynamically stable at low and high pressures. Between 6 and 24 GPa, Mg2Si can transform into Mg9Si5 , a defected compound, and vice versa, without energy cost. Perhaps this result is related to the aforementioned inconsistency in the structures reported for Mg2Si within this pressure range. Focusing solely on Mg2Si , we find a new monoclinic C 2 /m structure of Mg2Si , which is stable at high pressures within thermodynamical considerations. The calculated electrical conductivity and Seebeck coefficient taking into account results from the electronic structure calculations help us understand better how transport can be affected in this material by modulating pressure and temperature.

  16. Pressure-induced phase transition and fracture in α-MoO3 nanoribbons

    NASA Astrophysics Data System (ADS)

    Silveira, Jose V.; Vieira, Luciana L.; Aguiar, Acrisio L.; Freire, Paulo T. C.; Mendes Filho, Josue; Alves, Oswaldo L.; Souza Filho, Antonio G.

    2018-03-01

    MoO3 nanoribbons were studied under different pressure conditions ranging from 0 to 21 GPa at room temperature. The effect of the applied pressure on the spectroscopic and morphologic properties of the MoO3 nanoribbons was investigated by means of Raman spectroscopy and scanning electron microscopy techniques. The pressure dependent Raman spectra of the MoO3 nanoribbons indicate that a structural phase transition occurs at 5 GPa from the orthorhombic α-MoO3 phase (Pbnm) to the monoclinic MoO3-II phase (P21/m), which remains stable up to 21 GPa. Such phase transformation occurs at considerably lower pressure than the critical pressure for α-MoO3 microcrystals (12 GPa). We suggested that the applanate morphology combined with the presence of crystalline defects in the sample play an important role in the phase transition of the MoO3 nanoribbons. Frequencies and linewidths of the Raman bands as a function of pressure also suggest a pressure-induced morphological change and the decreasing of the nanocrystal size. The observed spectroscopic changes are supported by electron microscopy images, which clearly show a pressure-induced morphologic change in MoO3 nanoribbons.

  17. Structural Engineering for High Sensitivity, Ultrathin Pressure Sensors Based on Wrinkled Graphene and Anodic Aluminum Oxide Membrane.

    PubMed

    Chen, Wenjun; Gui, Xuchun; Liang, Binghao; Yang, Rongliang; Zheng, Yongjia; Zhao, Chengchun; Li, Xinming; Zhu, Hai; Tang, Zikang

    2017-07-19

    Nature-motivated pressure sensors have been greatly important components integrated into flexible electronics and applied in artificial intelligence. Here, we report a high sensitivity, ultrathin, and transparent pressure sensor based on wrinkled graphene prepared by a facile liquid-phase shrink method. Two pieces of wrinkled graphene are face to face assembled into a pressure sensor, in which a porous anodic aluminum oxide (AAO) membrane with the thickness of only 200 nm was used to insulate the two layers of graphene. The pressure sensor exhibits ultrahigh operating sensitivity (6.92 kPa -1 ), resulting from the insulation in its inactive state and conduction under compression. Formation of current pathways is attributed to the contact of graphene wrinkles through the pores of AAO membrane. In addition, the pressure sensor is also an on/off and energy saving device, due to the complete isolation between the two graphene layers when the sensor is not subjected to any pressure. We believe that our high-performance pressure sensor is an ideal candidate for integration in flexible electronics, but also paves the way for other 2D materials to be involved in the fabrication of pressure sensors.

  18. Dynamic characteristic investigation on the fuel pressure of diesel engines electronic in-line pump system

    NASA Astrophysics Data System (ADS)

    Liu, You; Yuan, Zhi-Guo; Fan, Li-Yun; Tian, Bin-Qi

    2010-12-01

    The electronic in-line pump (EIP) is a complex system consisting of mechanical, hydraulic, and electromagnetic parts. Experimental study showed that the fuel pressure of the plunger and the fuel drainage of the pressure system after fuel injection could result in fuel pressure fluctuation in the low pressure system. Such fluctuation exhibited pulsating cycle fluctuation as the amplitude rose with the increase of the injection pulse width. The time domain analysis found that the pressure time history curve and injection cylinders corresponded with a one-to-one relationship. By frequency domain analysis, the result was that with the increase of the working cylinder number, the high frequency amplitude gradually increased and the basic frequency amplitude gradually decreased. The conclusion was that through wavelet transformation, the low pressure signal simultaneously moved towards low frequency as the high frequency of the wavelet transformation signal with the working cylinder number increased. Lastly, by using the numerical model, the study investigated the simulation research concerning the relationship of the fluctuation dynamic characteristic in the low pressure system and the fuel injection characteristic of the high pressure system, completing the conclusions obtained by the experimental study.

  19. Pressure induced band inversion, electronic and structural phase transitions in InTe: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Rajaji, V.; Pal, Koushik; Sarma, Saurav Ch.; Joseph, B.; Peter, Sebastian C.; Waghmare, Umesh V.; Narayana, Chandrabhas

    2018-04-01

    We report high-pressure Raman scattering measurements on the tetragonal phase of InTe corroborated with the first-principles density functional theory and synchrotron x-ray diffraction measurements. Anomalous pressure-dependent linewidths of the A1 g and Eg phonon modes provide evidence of an isostructural electronic transition at ˜3.6 GPa . The first-principles theoretical analysis reveals that it is associated with a semiconductor-to-metal transition due to increased density of states near the Fermi level. Further, this pressure induced metallization acts as a precursor for structural phase transition to a face centered cubic phase (F m 3 ¯m ) at ˜6.0 GPa . Interestingly, theoretical results reveal a pressure induced band inversion at the Z and M points of the Brillouin zone corresponding to pressures ˜1.0 and ˜1.4 GPa , respectively. As the parity of bands undergoing inversions is the same, the topology of the electronic state remains unchanged, and hence InTe retains its trivial band topology (Z2=0 ) . The pressure dependent behavior of the A1 g and Eg modes can be understood based on the results from the synchrotron x-ray diffraction, which shows anisotropic compressibility of the lattice in the a and c directions. Our Raman measurements up to ˜19 GPa further confirms the pressure induced structural phase transition from a face-centered to primitive cubic (F m 3 ¯m to P m 3 ¯m ) at P ˜15 GPa .

  20. Measurement of Electron Density Using the Multipole Resonance Probe, Langmuir Probe and Optical Emission Spectroscopy in Low Pressure Plasmas with Different Electron Energy Distribution Functions

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Bibinov, Nikita; Ries, Stefan; Awakowicz, Peter; Institute of Electrical Engineering; Plasma Technology Team

    2016-09-01

    In recently publication, the young diagnostic tool Multipole Resonance Probe (MRP) for electron density measurements was introduced. It is based on active plasma resonance spectroscopy (APRS). The probe was simulated und evaluated for different devices. The geometrical and electrical symmetry simplifies the APRS model, so that the electron density can be easily calculated from the measured resonance. In this work, low pressure nitrogen mixture plasmas with different electron energy distribution functions (EEDF) are investigated. The results of the MRP measurement are compared with measurements of a Langmuir Probe (LP) and Optical Emission Spectroscopy (OES). Probes and OES measure in different regimes of kinetic electron energy. Both probes measure electrons with low kinetic energy (<10 eV), whereas the OES is influenced by electrons with high kinetic energy which are needed for transitions of molecule bands. By the determination of the absolute intensity of N2(C-B) and N2+(B-X)electron temperature and density can be calculated. In a non-maxwellian plasma, all plasma diagnostics need to be combined.

  1. Influence of pressure and volume on superconductivity in Mg1-xAlxB2 and Mg(B1-yCy)2

    NASA Astrophysics Data System (ADS)

    Sharma, Roopam; Singh, Namita; Khenata, R.; Varshney, Dinesh

    2018-05-01

    A quantitative analysis of observed parameters is studied that influences superconducting state in Al (C) doped MgB2. The three square well model with three interactions namely, the Coulomb the electron-phonon and the electron- charge fluctuations is based on indirect-exchange Cooper pairing of electrons (quasiparticles) via adhoc attractive charge fluctuations apart from phonons. The relevant energy gap expressions are solved. The indirect-exchange formalism provides a unique set of electronic parameters [electron-phonon (λσσph), electron-charge fluctuations (λσσpl), electron-electron (μσσ) and Coulomb screening parameter (μσσ*)] which, in particular, reproduce the dependence of Tc on Al (C) doping concentration and pressure P. Also, the variation in slope dTc/dP with increased Al (C) substitution (0 ≤ x ≤ 0.5)(0 ≤ y ≤ 0.125) is studied. Moreover, variation of dlnTc/dV Å-3 as a function of electron-phonon coupling strength and as a function of Coulomb screening parameter is studied.

  2. Optimization of plasma parameters with magnetic filter field and pressure to maximize H{sup −} ion density in a negative hydrogen ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Won-Hwi; Dang, Jeong-Jeung; Kim, June Young

    2016-02-15

    Transverse magnetic filter field as well as operating pressure is considered to be an important control knob to enhance negative hydrogen ion production via plasma parameter optimization in volume-produced negative hydrogen ion sources. Stronger filter field to reduce electron temperature sufficiently in the extraction region is favorable, but generally known to be limited by electron density drop near the extraction region. In this study, unexpected electron density increase instead of density drop is observed in front of the extraction region when the applied transverse filter field increases monotonically toward the extraction aperture. Measurements of plasma parameters with a movable Langmuirmore » probe indicate that the increased electron density may be caused by low energy electron accumulation in the filter region decreasing perpendicular diffusion coefficients across the increasing filter field. Negative hydrogen ion populations are estimated from the measured profiles of electron temperatures and densities and confirmed to be consistent with laser photo-detachment measurements of the H{sup −} populations for various filter field strengths and pressures. Enhanced H{sup −} population near the extraction region due to the increased low energy electrons in the filter region may be utilized to increase negative hydrogen beam currents by moving the extraction position accordingly. This new finding can be used to design efficient H{sup −} sources with an optimal filtering system by maximizing high energy electron filtering while keeping low energy electrons available in the extraction region.« less

  3. Exploding and Imaging of Electron Bubbles in Liquid Helium

    NASA Astrophysics Data System (ADS)

    Yadav, Neha; Vadakkumbatt, Vaisakh; Maris, Humphrey J.; Ghosh, Ambarish

    2017-06-01

    An electron bubble in liquid helium-4 under the saturated vapor pressure becomes unstable and explodes if the pressure becomes more negative than -1.9 bars. In this paper, we use focused ultrasound to explode electron bubbles. We then image at 30,000 frames per second the growth and subsequent collapse of the bubbles. We find that bubbles can grow to as large as 1 mm in diameter within 2 ms after the cavitation event. We examine the relation between the maximum size of the bubble and the lifetime and find good agreement with the experimental results.

  4. Optical investigation of BaFe2(As0.77P0.23)2 : Spin-fluctuation-mediated superconductivity under pressure

    NASA Astrophysics Data System (ADS)

    Uykur, E.; Kobayashi, T.; Hirata, W.; Miyasaka, S.; Tajima, S.; Kuntscher, C. A.

    2017-06-01

    Temperature-dependent reflectivity measurements in the frequency range 75-8000 cm-1 were performed on BaFe2(As0.77P0.23)2 single crystals under pressure up to ˜5 GPa . The obtained optical conductivity spectra have been analyzed to extract the electron-boson spectral density α2F (Ω ) . A sharp resonance peak was observed in α2F (Ω ) upon the superconducting transition, persisting throughout the applied pressure range. The energy and temperature dependences of this peak are consistent with the superconducting gap opening. Furthermore, several similarities with other experimental probes such as inelastic neutron scattering (INS) [D. S. Inosov et al., Nat. Lett. 6, 178 (2010), 10.1038/nphys1483] give evidence for the coupling to a bosonic mode, possibly due to spin fluctuations. Moreover, electronic correlations have been calculated via spectral weight analysis, which revealed that the system stays in the strongly correlated regime throughout the applied pressure range. However, a comparison to the parent compound showed that the electronic correlations are slightly decreased with P doping. The investigation of the phase diagram obtained by our optical study under pressure also revealed the coexistence of the spin-density wave and the superconducting regions, where the coexistence region shifts to the lower pressure range with increasing P content. Moreover, the optimum pressure range, where the highest superconducting transition temperature has been obtained, shows a nonlinear decrease with increasing P content.

  5. Ab initio study of the structural, electronic, elastic and thermal conductivity properties of SrClF with pressure effects

    NASA Astrophysics Data System (ADS)

    Lv, Zhen-Long; Cui, Hong-Ling; Wang, Hui; Li, Xiao-Hong; Ji, Guang-Fu

    2017-04-01

    SrClF is an important optical crystal and can be used as pressure gauge in diamond anvil cell at high pressure. In this work, we performed a systematic study on the structural, electronic and elastic properties of SrClF under pressure, as well as its thermal conductivity, by first-principles calculation. Different exchange-correlation functionals were tested and PBESOL was finally chosen to study these properties of SrClF. Studies reveal that SrClF has a bulk modulus of about 56.2 GPa (by fitting equation of states) or 54.3 GPa (derived from elastic constants), which agree well with the experimental result. SrClF is mechanically and dynamically stable up to 50 GPa. Its elastic constants increase with the applied pressure, but its mechanical anisotropy deteriorates as the pressure increases. Investigation of its electronic properties reveals that SrClF is a direct band-gap insulator with a gap value of 5.73 eV at 0 GPa, which decreases with the increasing pressure and the reason is found by analysing the partial density of states. Based on the calculated phonon dispersion curves, thermal conductivity of SrClF is predicated. At ambient conditions, the predicted thermal conductivity is about 3.74 Wm-1 K-1, while that obtained using the simplified Slack model give a slightly larger value of 4.62 Wm-1 K-1.

  6. On the characteristics of obliquely propagating electrostatic structures in non-Maxwellian plasmas in the presence of ion pressure anisotropy

    NASA Astrophysics Data System (ADS)

    Adnan, Muhammad; Qamar, Anisa; Mahmood, Shahzad; Kourakis, Ioannis

    2017-03-01

    The dynamical characteristics of large amplitude ion-acoustic waves are investigated in a magnetized plasma comprising ions presenting space asymmetry in the equation of state and non-Maxwellian electrons. The anisotropic ion pressure is defined using the double adiabatic Chew-Golberger-Low theory. An excess in the superthermal component of the electron population is assumed, in agreement with long-tailed (energetic electron) distribution observations in space plasmas; this is modeled via a kappa-type distribution function. Large electrostatic excitations are assumed to propagate in a direction oblique to the external magnetic field. In the linear (small amplitude) regime, two electrostatic modes are shown to exist. The properties of arbitrary amplitude (nonlinear) obliquely propagating ion-acoustic solitary excitations are thus investigated via a pseudomechanical energy balance analogy, by adopting a Sagdeev potential approach. The combined effect of the ion pressure anisotropy and excess superthermal electrons is shown to alter the parameter region where solitary waves can exist. An excess in the suprathermal particles is thus shown to be associated with solitary waves, which are narrower, faster, and of larger amplitude. Ion pressure anisotropy, on the other hand, affects the amplitude of the solitary waves, which become weaker (in strength), wider (in spatial extension), and thus slower in comparison with the cold ion case.

  7. Enhanced superconductivity in the high pressure phase of SnAs studied from first principles

    NASA Astrophysics Data System (ADS)

    Sreenivasa Reddy, P. V.; Kanchana, V.; Millichamp, T. E.; Vaitheeswaran, G.; Dugdale, S. B.

    2017-01-01

    First principles calculations are performed using density functional theory and density functional perturbation theory for SnAs. Total energy calculations show the first order phase transition from an NaCl structure to a CsCl one at around 37 GPa, which is also confirmed from enthalpy calculations and agrees well with experimental work. Calculations of the phonon structure and hence the electron-phonon coupling, λep, and superconducting transition temperature, Tc, across the phase diagram are performed. These calculations give an ambient pressure Tc, in the NaCl structure, of 3.08 K, in good agreement with experiment whilst at the transition pressure, in the CsCl structure, a drastically increased value of Tc = 12.2 K is found. Calculations also show a dramatic increase in the electronic density of states at this pressure. The lowest energy acoustic phonon branch in each structure also demonstrates some softening effects. Electronic structure calculations of the Fermi surface in both phases are presented for the first time as well as further calculations of the generalised susceptibility with the inclusion of matrix elements. These calculations indicate that the softening is not derived from Fermi surface nesting and it is concluded to be due to a wavevector-dependent enhancement of the electron-phonon coupling.

  8. One-dimensional Ar-SF{sub 6} hydromodel at low-pressure in e-beam generated plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrov, George M., E-mail: george.petrov@nrl.navy.mil; Boris, David R.; Petrova, Tzvetelina B.

    2016-03-15

    A one-dimensional steady-state hydrodynamic model of electron beam generated plasmas produced in Ar-SF{sub 6} mixtures at low pressure in a constant magnetic field was developed. Simulations were performed for a range of SF{sub 6} partial pressures at constant 30 mTorr total gas pressure to determine the spatial distribution of species densities and fluxes. With the addition of small amount of SF{sub 6} (∼1%), the confining electrostatic field sharply decreases with respect to the pure argon case. This effect is due to the applied magnetic field inhibiting electron diffusion. The hallmark of electronegative discharge plasmas, positive ion—negative ion core and positivemore » ion—electron edge, was not observed. Instead, a plasma with large electronegativity (∼100) is formed throughout the volume, and only a small fraction (≈30%) of the parent SF{sub 6} molecules were dissociated to F{sub 2}, SF{sub 2}, and SF{sub 4}. Importantly, F radical densities were found to be very low, on the order of the ion density. Model predictions for the electron density, ion density, and plasma electronegativity are in good agreement with experimental data over the entire range of SF{sub 6} concentrations investigated.« less

  9. Electronic and optical properties of GaN under pressure: DFT calculations

    NASA Astrophysics Data System (ADS)

    Javaheri, Sahar; Boochani, Arash; Babaeipour, Manuchehr; Naderi, Sirvan

    2017-12-01

    Optical and electronic properties of ZB, RS and WZ structures of gallium nitride (GaN) are studied in equilibrium and under pressure using the first-principles calculation in the density functional theory (DFT) framework to obtain quantities like dielectric function, loss function, reflectance and absorption spectra, refractive index and their relation parameters. The electronic properties are studied using EV-GGA and GGA approximations and the results calculated by EV-GGA approximation were found to be much closer to the experimental results. The interband electron transitions are studied using the band structure and electron transition peaks in the imaginary part of the dielectric function; these transitions occur in three structures from N-2p orbital to Ga-4s and Ga-4p orbitals in the conduction band. Different optical properties of WZ structure were calculated in two polarization directions of (100) and (001) and the results were close to each other. Plasmon energy corresponding to the main peak of the energy-loss function in RS with the value of 26 eV was the highest one, which increased under pressure. In general, RS shows more different properties than WZ and ZB.

  10. Experimental investigations of electron density and ion energy distributions in dual-frequency capacitively coupled plasmas for Ar/CF{sub 4} and Ar/O{sub 2}/CF{sub 4} discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jia; Liu, Yong-Xin; Gao, Fei

    2014-01-07

    The electron density and ion energy distribution (IED) are investigated in low-pressure dual-frequency capacitively coupled Ar/CF{sub 4} (90%/10%) and Ar/O{sub 2}/CF{sub 4} (80%/10%/10%) plasmas. The relations between controllable parameters, such as high-frequency (HF) power, low-frequency (LF) power and gas pressure, and plasma parameters, such as electron density and IEDs, are studied in detail by utilizing a floating hairpin probe and an energy resolved quadrupole mass spectrometer, respectively. In our experiment, the electron density is mainly determined by the HF power and slightly influenced by the LF power. With increasing gas pressure, the electron density first goes up rapidly to amore » maximum value and then decreases at various HF and LF powers. The HF power also plays a considerable role in affecting the IEDs under certain conditions and the ion energy independently controlled by the LF source is discussed here. For clarity, some numerical results obtained from a two-dimensional fluid model are presented.« less

  11. Probing lattice dynamics and electron-phonon coupling in the topological nodal-line semimetal ZrSiS

    NASA Astrophysics Data System (ADS)

    Singha, Ratnadwip; Samanta, Sudeshna; Chatterjee, Swastika; Pariari, Arnab; Majumdar, Dipanwita; Satpati, Biswarup; Wang, Lin; Singha, Achintya; Mandal, Prabhat

    2018-03-01

    Topological materials provide an exclusive platform to study the dynamics of relativistic particles in table-top experiments and offer the possibility of wide-scale technological applications. ZrSiS is a newly discovered topological nodal-line semimetal and has drawn enormous interests. In this paper, we have investigated the lattice dynamics and electron-phonon interaction in single-crystalline ZrSiS using Raman spectroscopy. Polarization and angle-resolved Raman data have been analyzed using crystal symmetries and theoretically calculated atomic vibrational patterns along with phonon dispersion spectra. Wavelength- and temperature-dependent measurements show the complex interplay of electron and phonon degrees of freedom, resulting in resonant phonon and quasielastic electron scattering through interband transition. Our high-pressure Raman studies reveal vibrational anomalies, which are the signature of structural phase transitions. Further investigations through high-pressure synchrotron x-ray diffraction clearly show pressure-induced structural transitions and coexistence of multiple phases, which also indicate possible electronic topological transitions in ZrSiS. This study not only provides the fundamental information on the phonon subsystem, but also sheds some light in understanding the topological nodal-line phase in ZrSiS and other isostructural systems.

  12. Structural and electronic properties of the alkali metal incommensurate phases

    NASA Astrophysics Data System (ADS)

    Woolman, Gavin; Naden Robinson, Victor; Marqués, Miriam; Loa, Ingo; Ackland, Graeme J.; Hermann, Andreas

    2018-05-01

    Under pressure, the alkali elements sodium, potassium, and rubidium adopt nonperiodic structures based on two incommensurate interpenetrating lattices. While all elements form the same "host" lattice, their "guest" lattices are all distinct. The physical mechanism that stabilizes these phases is not known, and detailed calculations are challenging due to the incommensurability of the lattices. Using a series of commensurate approximant structures, we tackle this issue using density functional theory calculations. In Na and K, the calculations prove accurate enough to reproduce not only the stability of the host-guest phases, but also the complicated pressure dependence of the host-guest ratio and the two guest-lattice transitions. We find Rb-IV to be metastable at all pressures, and suggest it is a high-temperature phase. The electronic structure of these materials is unique: they exhibit two distinct, coexisting types of electride behavior, with both fully localized pseudoanions and electrons localized in 1D wells in the host lattice, leading to low conductivity. While all phases feature pseudogaps in the electronic density of states, the perturbative free-electron picture applies to Na, but not to K and Rb, due to significant d -orbital population in the latter.

  13. Implications of electron heating and non-uniformities in a VHF-CCP for sterilization of medical instruments

    NASA Astrophysics Data System (ADS)

    Stapelmann, Katharina; Fiebrandt, Marcel; Styrnoll, Tim; Baldus, Sabrina; Bibinov, Nikita; Awakowicz, Peter

    2015-06-01

    A capacitively coupled plasma driven at a frequency of 81.36 MHz from the VHF-band is investigated by means of optical emission spectroscopy (OES) and multipole resonance probe (MRP). The discharge is operated with hydrogen, yielding an electropositive discharge, as well as oxygen, yielding an electronegative discharge, and mixtures of both. Pressure is varied from p=5 Pa to p=25 Pa. Homogeneity of the discharge is investigated by CCD camera recordings as well as spatially resolved multipole resonance probe measurements. The results indicate the presence of electromagnetic edge effects as well as standing wave effects. Furthermore, a largely homogeneous discharge can be achieved with hydrogen as process gas at a pressure of p=5 -10 Pa. With increasing pressure as well as with increasing oxygen content, the discharge appears less homogeneously. The transition from an electropositive to an electronegative discharge leads to a change in electron heating mechanisms, with pronounced local maxima of electron density at the sheath edges. A comparison of OES and MRP results reveal a significant difference in electron density, which can be explained by a non-Maxwellian distribution function of electrons.

  14. Ponderomotive force on solitary structures created during radiation pressure acceleration of thin foils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tripathi, Vipin K.; Sharma, Anamika

    2013-05-15

    We estimate the ponderomotive force on an expanded inhomogeneous electron density profile, created in the later phase of laser irradiated diamond like ultrathin foil. When ions are uniformly distributed along the plasma slab and electron density obeys the Poisson's equation with space charge potential equal to negative of ponderomotive potential, φ=−φ{sub p}=−(mc{sup 2}/e)(γ−1), where γ=(1+|a|{sup 2}){sup 1/2}, and |a| is the normalized local laser amplitude inside the slab; the net ponderomotive force on the slab per unit area is demonstrated analytically to be equal to radiation pressure force for both overdense and underdense plasmas. In case electron density is takenmore » to be frozen as a Gaussian profile with peak density close to relativistic critical density, the ponderomotive force has non-monotonic spatial variation and sums up on all electrons per unit area to equal radiation pressure force at all laser intensities. The same result is obtained for the case of Gaussian ion density profile and self consistent electron density profile, obeying Poisson's equation with φ=−φ{sub p}.« less

  15. Accelerator Development for the NRL (Naval Research Laboratory) Free Electron Laser Program

    DTIC Science & Technology

    1988-06-01

    reset CHARGE light 24 grey reset CHARGE light 26 purple reset gap pressure ON light . 27 blue RESET GAP PRESSURE switch 0 (bottom left) 28 red RESET...GAP PRESSURE switch (bottom middle) and chassis wire # 13 (red) 29 blue reset trigger FIRED light 30 orange reset gap pressure OFF light 31, orange ALL

  16. Influence of total beam current on HRTEM image resolution in differentially pumped ETEM with nitrogen gas.

    PubMed

    Bright, A N; Yoshida, K; Tanaka, N

    2013-01-01

    Environmental transmission electron microscopy (ETEM) enables the study of catalytic and other reaction processes as they occur with Angstrom-level resolution. The microscope used is a dedicated ETEM (Titan ETEM, FEI Company) with a differential pumping vacuum system and apertures, allowing aberration corrected high-resolution transmission electron microscopy (HRTEM) imaging to be performed with gas pressures up to 20 mbar in the sample area and with significant advantages over membrane-type E-cell holders. The effect on image resolution of varying the nitrogen gas pressure, electron beam current density and total beam current were measured using information limit (Young's fringes) on a standard cross grating sample and from silicon crystal lattice imaging. As expected, increasing gas pressure causes a decrease in HRTEM image resolution. However, the total electron beam current also causes big changes in the image resolution (lower beam current giving better resolution), whereas varying the beam current density has almost no effect on resolution, a result that has not been reported previously. This behavior is seen even with zero-loss filtered imaging, which we believe shows that the drop in resolution is caused by elastic scattering at gas ions created by the incident electron beam. Suitable conditions for acquiring high resolution images in a gas environment are discussed. Lattice images at nitrogen pressures up to 16 mbar are shown, with 0.12 nm information transfer at 4 mbar. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Experimental plasma studies

    NASA Technical Reports Server (NTRS)

    Dunn, M. G.

    1972-01-01

    The rate coefficients for the reactions C(+) + e(-) + e(-) yields C + e(-) and CO(+) + e(-) yields C + O were measured over the electron temperature range of approximately 1500 deg K to 7000 deg K. The measurements were performed in CO that had expanded from equilibrium reservoir conditions of 7060 deg K at 17.3 atm pressure and from 6260 deg K at 10.0 atm pressure. Two RAM flight probes were used to measure electron density and electron temperature in the expanding flow of a shock tunnel. Experiments were performed in the inviscid flow with both probes and in the nozzle-wall boundary layer with the constant bias-voltage probe. The distributions of electron density and electron temperature were independently measured using voltage-swept thin-wire probes. Thin-wire Langmuir probes were also used to measure the electron-density and electron-temperature distributions in the boundary layer of a sharp flat plate located on the nozzle centerline. Admittance measurements were performed with the RAM C and RAM C-C S-band antennas in the presence of an ionized boundary layer.

  18. The effects of oxygen pressure on disordering and magneto-transport properties of Ba{sub 2}FeMoO{sub 6} thin films grown via pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Kyeong-Won; Mhin, Sungwook; Jones, Jacob L.

    2015-07-21

    Epitaxial Ba{sub 2}FeMoO{sub 6} thin films were grown via pulsed laser deposition under low oxygen pressure and their structural, chemical, and magnetic properties were examined, focusing on the effects of oxygen pressure. The chemical disorder, off-stoichiometry in B site cations (Fe and Mo) increased with increasing oxygen pressure and thus magnetic properties were degraded. Interestingly, in contrast, negative magneto-resistance, which is the characteristics of this double perovskite material, was enhanced with increasing oxygen pressure. It is believed that phase segregation of highly disordered thin films is responsible for the increased magneto-resistance of thin films grown at high oxygen pressure. Themore » anomalous Hall effect, which behaves hole-like, was also observed due to spin-polarized itinerant electrons under low magnetic field below 1 T and the ordinary electron-like Hall effect was dominant at higher magnetic fields.« less

  19. Pressure-induced Lifshitz and structural transitions in NbAs and TaAs: experiments and theory.

    PubMed

    Gupta, Satyendra Nath; Singh, Anjali; Pal, Koushik; Muthu, D V S; Shekhar, C; Elghazali, Moaz A; Naumov, Pavel G; Medvedev, Sergey A; Felser, C; Waghmare, U V; Sood, A K

    2018-05-10

    High pressure Raman, resistivity and synchrotron x-ray diffraction studies on Weyl semimetals NbAs and TaAs have been carried out along with density functional theoretical (DFT) analysis to explain pressure induced structural and electronic topological phase transitions. The frequencies of first order Raman modes harden with increasing pressure, exhibiting a slope change at [Formula: see text] GPa for NbAs and [Formula: see text] GPa for TaAs. The resistivities of NbAs and TaAs exhibit a minimum at pressures close to these transition pressures and also a change in the bulk modulus is observed. Our first-principles calculations reveal that the transition is associated with an electronic Lifshitz transition at [Formula: see text] for NbAs while it is a structural phase transition from body centered tetragonal to hexagonal phase at [Formula: see text] for TaAs. Further, our DFT calculations show a structural phase transition at 24 GPa from body centered tetragonal phase to hexagonal phase.

  20. An electronic scanner of pressure for wind tunnel models

    NASA Technical Reports Server (NTRS)

    Kauffman, Ronald C.; Coe, Charles F.

    1986-01-01

    An electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind tunnel models. An ESOP system consists of up to 20 pressure modules (PMs), each with 48 pressure transducers and a heater, an analog-to-digital (A/D) converter module, a microprocessor, a data controller, a monitor unit, a control and processing unit, and a heater controller. The PMs and the A/D converter module are sized to be installed in the models tested in the Ames Aerodynamics Division wind tunnels. A unique feature of the pressure module is the lack of moving parts such as a pneumatic switch used in other systems for in situ calibrations. This paper describes the ESOP system and the results of the initial testing of the system. The initial results indicate the system meets the original design goal of 0.15 percent accuracy.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellicer-Porres, J., E-mail: Julio.Pellicer@uv.es; Segura, A.; Santamaría-Pérez, D.

    We have measured high pressure α-quartz reflectance spectra in the mid infrared. We used single crystals, taking full profit of polarization. The quality of the spectra allows fitting the reflectance spectra. We have characterized the pressure evolution of E and A{sub 2} modes with increased precision, even in the spectral regions where they overlap. In addition, we have determined the TO-LO splitting of each mode. Some of the A{sub 2} modes show dramatic pressure variations of the LO-TO splitting, which cannot be explained only by changes in length and ionicity of individual bonds, requiring a new mechanism. We suggest thatmore » rotation of the SiO{sub 4} tetrahedra plays a fundamental role. We have also determined the evolution of the electronic dielectric constant under high pressure. We find that its pressure increment is mainly a volume effect, although the small increase in birefringence points to secondary changes associated to the electronic resonances.« less

  2. Pressure-dependent ground states and fermiology in β- ( BDA-TTP ) 2 M Cl4 ( M=Fe,Ga )

    NASA Astrophysics Data System (ADS)

    Choi, E. S.; Graf, D.; Brooks, J. S.; Yamada, J.; Akutsu, H.; Kikuchi, K.; Tokumoto, M.

    2004-07-01

    We have investigated pressure- and magnetic-field-dependent electrical transport properties in the charge transfer salts β-(BDA-TTP)2MCl4(M=Fe,Ga) , both of which show a metal-insulator (MI) transition around 120K at ambient pressure. The zero field temperature-pressure phase diagrams of the two compounds are quite similar; the MI transition temperature decreases with pressure, and superconductivity is observed in both the magnetic and non-magnetic compounds above ˜4.5kbar . Likewise, Shubnikov-de Haas effect measurements show nearly identical Fermi surfaces. These similarities suggest that the magnetic interaction J between the conduction electrons and the magnetic moments in β-(BDA-TTP)2FeCl4 is small. Nevertheless, magnetoresistance measurements show remarkable differences and reveal that magnetic interactions with the conduction electrons are still effective in M=Fe compounds.

  3. Evidence for strong enhancement of the magnetic ordering temperature of trivalent Nd metal under extreme pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, J.; Bi, W.; Haskel, D.

    Four-point electrical resistivity measurements were carried out on Nd metal and dilute magnetic alloys containing up to 1 at.% Nd in superconducting Y for temperatures 1.5-295 K under pressures to 210 GPa. The magnetic ordering temperature To of Nd appears to rise steeply under pressure, increasing ninefold to 180 K at 70 GPa before falling rapidly. Y( Nd) alloys display both a resistivity minimum and superconducting pair breaking Delta T-c as large as 38 K/at.% Nd. The present results give evidence that for pressures above 30-40 GPa, the exchange coupling J between Nd ions and conduction electrons becomes negative, thusmore » activating Kondo physics in this highly correlated electron system. The rise and fall of T-o and Delta T-c with pressure can be accounted for in terms of an increase in the Kondo temperature.« less

  4. Innovative Technology Transfer Partnerships

    NASA Technical Reports Server (NTRS)

    Kohler, Jeff

    2004-01-01

    The National Aeronautics and Space Administration (NASA) seeks to license its Advanced Tire and Strut Pressure Monitor (TSPM) technology. The TSPM is a handheld system to accurately measure tire and strut pressure and temperature over a wide temperature range (20 to 120 OF), as well as improve personnel safety. Sensor accuracy, electronics design, and a simple user interface allow operators quick, easy access to required measurements. The handheld electronics, powered by 12-VAC or by 9-VDC batteries, provide the user with an easy-to-read visual display of pressure/temperature or the streaming of pressure/temperature data via an RS-232 interface. When connected to a laptop computer, this new measurement system can provide users with automated data recording and trending, eliminating the chance for data hand-recording errors. In addition, calibration software allows for calibration data to be automatically utilized for the generation of new data conversion equations, simplifying the calibration processes that are so critical to reliable measurements. The design places a high-accuracy pressure sensor (also used as a temperature sensor) as close to the tire or strut measurement location as possible, allowing the user to make accurate measurements rapidly, minimizing the amount of high-pressure volumes, and allowing reasonable distance between the tire or strut and the operator. The pressure sensor attaches directly to the pressure supply/relief valve on the tire and/or strut, with necessary electronics contained in the handheld enclosure. A software algorithm ensures high accuracy of the device over the wide temperature range. Using the pressure sensor as a temperature sensor permits measurement of the actual temperature of the pressurized gas. This device can be adapted to create a portable calibration standard that does not require thermal conditioning. This allows accurate pressure measurements without disturbing the gas temperature. In-place calibration can save considerable time and money and is suitable in many process applications throughout industry.

  5. An All-Silk-Derived Dual-Mode E-skin for Simultaneous Temperature-Pressure Detection.

    PubMed

    Wang, Chunya; Xia, Kailun; Zhang, Mingchao; Jian, Muqiang; Zhang, Yingying

    2017-11-15

    Flexible skin-mimicking electronics are highly desired for development of smart human-machine interfaces and wearable human-health monitors. Human skins are able to simultaneously detect different information, such as touch, friction, temperature, and humidity. However, due to the mutual interferences of sensors with different functions, it is still a big challenge to fabricate multifunctional electronic skins (E-skins). Herein, a combo temperature-pressure E-skin is reported through assembling a temperature sensor and a strain sensor in both of which flexible and transparent silk-nanofiber-derived carbon fiber membranes (SilkCFM) are used as the active material. The temperature sensor presents high temperature sensitivity of 0.81% per centigrade. The strain sensor shows an extremely high sensitivity with a gauge factor of ∼8350 at 50% strain, enabling the detection of subtle pressure stimuli that induce local strain. Importantly, the structure of the SilkCFM in each sensor is designed to be passive to other stimuli, enabling the integrated E-skin to precisely detect temperature and pressure at the same time. It is demonstrated that the E-skin can detect and distinguish exhaling, finger pressing, and spatial distribution of temperature and pressure, which cannot be realized using single mode sensors. The remarkable performance of the silk-based combo temperature-pressure sensor, together with its green and large-scalable fabrication process, promising its applications in human-machine interfaces and soft electronics.

  6. Optical and electronic properties of 2 H -Mo S2 under pressure: Revealing the spin-polarized nature of bulk electronic bands

    NASA Astrophysics Data System (ADS)

    Brotons-Gisbert, Mauro; Segura, Alfredo; Robles, Roberto; Canadell, Enric; Ordejón, Pablo; Sánchez-Royo, Juan F.

    2018-05-01

    Monolayers of transition-metal dichalcogenide semiconductors present spin-valley locked electronic bands, a property with applications in valleytronics and spintronics that is usually believed to be absent in their centrosymmetric (as the bilayer or bulk) counterparts. Here we show that bulk 2 H -Mo S2 hides a spin-polarized nature of states determining its direct band gap, with the spin sequence of valence and conduction bands expected for its single layer. This relevant finding is attained by investigating the behavior of the binding energy of A and B excitons under high pressure, by means of absorption measurements and density-functional-theory calculations. These results raise an unusual situation in which bright and dark exciton degeneracy is naturally broken in a centrosymmetric material. Additionally, the phonon-assisted scattering process of excitons has been studied by analyzing the pressure dependence of the linewidth of discrete excitons observed at the absorption coefficient edge of 2 H -Mo S2 . Also, the pressure dependence of the indirect optical transitions of bulk 2 H -Mo S2 has been analyzed by absorption measurements and density-functional-theory calculations. These results reflect a progressive closure of the indirect band gap as pressure increases, indicating that metallization of bulk Mo S2 may occur at pressures higher than 26 GPa.

  7. Development of a new, completely implantable intraventricular pressure meter and preliminary report of its clinical experience

    NASA Technical Reports Server (NTRS)

    Osaka, K.; Murata, T.; Okamoto, S.; Ohta, T.; Ozaki, T.; Maeda, T.; Mori, K.; Handa, H.; Matsumoto, S.; Sakaguchi, I.

    1982-01-01

    A completely implantable intracranial pressure sensor designed for long-term measurement of intraventricular pressure in hydrocephalic patients is described. The measurement principal of the device is discussed along with the electronic and component structure and sources of instrument error. Clinical tests of this implanted pressure device involving both humans and animals showed it to be comparable to other methods of intracranial pressure measurement.

  8. A novel pressure variation study on electronic structure, mechanical stability and thermodynamic properties of potassium based fluoroperovskite

    NASA Astrophysics Data System (ADS)

    Erum, Nazia; Azhar Iqbal, Muhammad

    2017-09-01

    The effect of pressure variation on stability, structural parameters, elastic constants, mechanical, electronic and thermodynamic properties of cubic SrKF3 fluoroperovskite have been investigated by using the full-potential linearized augmented plane wave (FP-LAPW) method combined with Quasi-harmonic Debye model in which the phonon effects are considered. The calculated lattice parameters show a prominent decrease in lattice constant and bonds length with the increase in pressure. The application of pressure from 0 to 25 GPa reveals a predominant characteristic associated with widening of bandgap with GGA and GGA plus Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The influence of pressure on elastic constants and their related mechanical parameters have been discussed in detail. Apart of linear dependence of elastic coefficients, transition from brittle to ductile behavior is also observed at elevated pressure ranges. We have successfully computed variation of lattice constant, volume expansion, bulk modulus, Debye temperature and specific heat capacities at pressure and temperature in the range of 0-25 GPa and 0-600 K.

  9. Mechanical, lattice dynamical and electronic properties of CeO2 at high pressure: First-principles studies

    NASA Astrophysics Data System (ADS)

    Li, Mei; Jia, Huiling; Li, Xueyan; Liu, Xuejie

    2016-01-01

    The elastic constants (Cij), bulk modulus (B), shear modulus (G) and elastic modulus (E) of cubic fluorite CeO2 under high pressure have been studied using the plane-wave pseudopotential method based on density functional theory. The calculated results show that the mechanical properties (Cij, B, G and E) of CeO2 increase with increasing pressure, and the phase transition of CeO2 occurs beyond the pressure of 130 GPa. From the calculated phonon spectrum using Parlinsk-Li-Kawasoe method, we found that CeO2 appears imaginary frequency at 140 GPa, which indicates phase transition. The energy band, density of states and charge density of CeO2 under high pressure are calculated using GGA+U method. It is found that the high pressure makes the electron delocalization and Ce-O covalent bonding enhanced. As pressure increases, the band gap between O2p and Ce4f states near the Fermi level increases, and CeO2 nonmetallic nature promotes. The present research results in a better understanding of how CeO2 responds to compression.

  10. MD studies of electron transfer at ambient and elevated pressures

    NASA Astrophysics Data System (ADS)

    Giles, Alex; Spooner, Jacob; Weinberg, Noham

    2013-06-01

    The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).

  11. Breakdown Characteristics of a Radio-Frequency Atmospheric Glow Discharge

    NASA Astrophysics Data System (ADS)

    Shi, Jianjun; Kong, Michael

    2004-09-01

    Radio-frequency (rf) atmospheric pressure glow discharges (APGD) are a capacitive nonthermal plasma with distinct advantage of low gas temperature and long-term stability. In practice their ignition is challenging particularly when they are generated at large electrode gaps. To this end, this contribution reports a one-dimensional fluid simulation of gas breakdown over a large pressure range of 100 - 760 Torr so that key physical processes can be understood in the ignition phase of rf APGD. Our model is an electron-hybrid model in which electrons are treated kinetically and all other plasma species are treated hydrodynamically. Computational results suggest that as the pressure-distance product increases from 25 Torr cm upwards the breakdown voltage increases in a way that resembles the right-hand-side branch of a Pachen curve. Importance of secondary electron emission is shown as well as its dependence on gas pressure even though identical electrode material is assumed. With these factors considered, excellent agreement with experimental data is achieved. Finally frequency dependence of the breakdown voltage is calculated and again found to agree with experimental data.

  12. Production of high-density highly-ionized helicon plasmas in the ProtoMPEX

    NASA Astrophysics Data System (ADS)

    Caneses, J. F.; Kafle, N.; Showers, M.; Goulding, R. H.; Biewer, T. M.; Caughman, J. B. O.; Bigelow, T.; Rapp, J.

    2017-10-01

    High-density (2-6e19 m-3) Deuterium helicon plasmas in the ProtoMPEX have been produced that successfully use differential pumping to produce neutral gas pressures suitable for testing the RF electron and ion heating concepts. To minimize collisional losses when heating electrons and ions, plasmas with very low neutral gas content (<< 0.1 Pa) in the heating sections are required. This requirement is typically not compatible with the neutral gas pressures (1-2 Pa) commonly used in high-density light-ion helicon sources. By using skimmers, a suitable gas injection scheme and long duration discharges (>0.3 s), high-density plasmas with very low neutral gas pressures (<< 0.1 Pa) in the RF heating sections have been produced. Measurements indicate the presence of a highly-ionized plasma column and that discharges lasting at least 0.3 s are required to significantly reduce the neutral gas pressure in the RF heating sections to levels suitable for investigating electron/ion RF heating concepts in this linear configuration. This work was supported by the US. D.O.E. contract DE-AC05-00OR22725.

  13. Structural phase transitions in yttrium under ultrahigh pressures

    NASA Astrophysics Data System (ADS)

    Samudrala, Gopi K.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2012-09-01

    X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.

  14. Structural phase transitions in yttrium under ultrahigh pressures.

    PubMed

    Samudrala, Gopi K; Tsoi, Georgiy M; Vohra, Yogesh K

    2012-09-12

    X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.

  15. An ionization gauge for ultrahigh vacuum measurement based on a carbon nanotube cathode

    NASA Astrophysics Data System (ADS)

    Zhang, Huzhong; Cheng, Yongjun; Sun, Jian; Wang, Yongjun; Xi, Zhenhua; Dong, Meng; Li, Detian

    2017-10-01

    This work reports on the complete design and the properties of an ionization gauge based on a carbon nanotube cathode, which can measure ultrahigh vacuum without thermal effects. The gauge is composed of a pressure sensor and an electronic controller. This pressure sensor is constructed based on a hot-cathode ionization gauge, where the traditional hot filament is replaced by an electron source prepared with multi-wall nanotubes. Besides, an electronic controller was developed for bias voltage supply, low current detection, and pressure indication. The gauge was calibrated in the pressure range of 10-8 to 10-4 Pa in a XHV/UHV calibration apparatus. The gauge shows good linear characteristics in different gases. The calibrated sensitivity is 0.035 Pa-1 in N2, and the standard deviation of the sensitivity is about 1.1%. In addition, the stability of the sensitivity was learned in a long period. The standard deviation of the sensitivity factor "S" during one year is 2.0% for Ar and 1.6% for N2.

  16. β -B i2O3 under compression: Optical and elastic properties and electron density topology analysis

    NASA Astrophysics Data System (ADS)

    Pereira, A. L. J.; Gomis, O.; Sans, J. A.; Contreras-García, J.; Manjón, F. J.; Rodríguez-Hernández, P.; Muñoz, A.; Beltrán, A.

    2016-06-01

    We report a joint experimental and theoretical study of the optical properties of tetragonal bismuth oxide (β -B i2O3 ) at high pressure by means of optical absorption measurements combined with ab initio electronic band structure calculations. Our results are consistent with previous results that show the presence of a second-order isostructural phase transition in B i2O3 (from β to β') around 2 GPa and a phase transition above 15 GPa combined with a pressure-induced amorphization above 17-20 GPa. In order to further understand the pressure-induced phase transitions and amorphization occurring in β -B i2O3 , we theoretically studied the mechanical and dynamical stability of the tetragonal structures of β - and β'-B i2O3 at high pressure through calculations of their elastic constants, elastic stiffness coefficients, and phonon dispersion curves. The pressure dependence of the elastic stiffness coefficients and phonon dispersion curves confirms that the isostructural phase transition near 2 GPa is of ferroelastic nature. Furthermore, a topological study of the electron density shows that the ferroelastic transition is not caused by a change in number of critical points (cusp catastrophe), but by the equalization of the electron densities of both independent O atoms in the unit cell due to a local rise in symmetry. Finally, from theoretical simulations, β'-B i2O3 is found to be mechanically and dynamically stable at least up to 26.7 GPa under hydrostatic conditions; thus, the pressure-induced amorphization reported above 17-20 GPa in powder β'-B i2O3 using methanol-ethanol-water as pressure-transmitting medium could be related to the frustration of a reconstructive phase transition at room temperature and the presence of mechanical or dynamical instabilities under nonhydrostatic conditions.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Li; Wang, Yilin; Werner, Philipp

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ~45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure.more » Simultaneously, the so-called "Zhang-Rice state", which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.« less

  18. Elevated hydrostatic pressure triggers release of OPA1 and cytochrome C, and induces apoptotic cell death in differentiated RGC-5 cells

    PubMed Central

    Kim, Keun-Young; Lindsey, James D.; Angert, Mila; Patel, Ankur; Scott, Ray T.; Liu, Quan; Crowston, Jonathan G.; Ellisman, Mark H.; Perkins, Guy A.; Weinreb, Robert N.

    2009-01-01

    Purpose This study was conducted to determine whether elevated hydrostatic pressure alters mitochondrial structure, triggers release of the dynamin-related guanosine triphosphatase (GTPase) optic atrophy type 1 (OPA1) or cytochrome C from mitochondria, alters OPA1 gene expression, and can directly induce apoptotic cell death in cultured retinal ganglion cell (RGC)-5 cells. Methods Differentiated RGC-5 cells were exposed to 30 mmHg for three days in a pressurized incubator. As a control, differentiated RGC-5 cell cultures were incubated simultaneously in a conventional incubator. Live RGC-5 cells were then labeled with MitoTracker Red and mitochondrial morphology was assessed by fluorescence microscopy. Mitochondrial structural changes were also assessed by electron microscopy and three-dimenstional (3D) electron microscope tomography. OPA1 mRNA was measured by Taqman quantitative PCR. The cellular distribution of OPA1 protein and cytochrome C was assessed by immunocytochemistry and western blot. Caspase-3 activation was examined by western blot. Apoptotic cell death was evaluated by the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method. Results Mitochondrial fission, characterized by the conversion of tubular fused mitochondria into isolated small organelles, was triggered after three days exposure to elevated hydrostatic pressure. Electron microscopy confirmed the fission and noted no changes to mitochondrial architecture, nor outer membrane rupture. Electron microscope tomography showed that elevated pressure depleted mitochondrial cristae content by fourfold. Elevated hydrostatic pressure increased OPA1 gene expression by 35±14% on day 2, but reduced expression by 36±4% on day 3. Total OPA1 protein content was not changed on day 2 or 3. However, pressure treatment induced release of OPA1 and cytochrome C from mitochondria to the cytoplasm. Elevated pressure also activated caspase-3 and induced apoptotic cell death. Conclusions Elevated hydrostatic pressure triggered mitochondrial changes including mitochondrial fission and abnormal cristae depletion, alteration of OPA1 gene expression, and release of OPA1 and cytochrome C into the cytoplasm before the onset of apoptotic cell death in differentiated RGC-5 cells. These results suggest that sustained moderate pressure elevation may directly damage RGC integrity by injuring mitochondria. PMID:19169378

  19. Piston cylinder cell for high pressure ultrasonic pulse echo measurements.

    PubMed

    Kepa, M W; Ridley, C J; Kamenev, K V; Huxley, A D

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  20. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    NASA Astrophysics Data System (ADS)

    Kepa, M. W.; Ridley, C. J.; Kamenev, K. V.; Huxley, A. D.

    2016-08-01

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe2.

  1. [Electronic urethro-cystometry before and after reconstructive surgery using the Zoedler method].

    PubMed

    Methfessel, H D; Röpke, F; Methfessel, G

    1976-01-01

    Electronical measurement of pressure in the bladder and urethra of 9 incontinent women treated by the Zoedler-plastic. A comparison of pre- and postoperative levels yielded the following results: 1. The functional length and the closing-pressure of the urethra show uncharacteristic changes of the levels only. The expected postoperative rise of the levels have not come true. 2. The vesico-urethral quotient at strain (pV max/pU max) is (with the exception of one case) corresponding to the result of the operation. 3. The clinical recovery from incontinence after the Zoedler-plastic is combined with small changes in the pressure-graphs only.

  2. Assessment of Corona/Arcing Hazard for Electron Beam Welding in Space Shuttle Bay at LEO for ISWE: Test Results

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Russell, C.; Vaughn, J.; Stocks, C.; ODell, D.; Bhat, B.

    1996-01-01

    Test welds were made in argon over a range of pressures from 10-5 to 10-3 torr (the latter pressure an order of magnitude above pressures anticipated in the space shuttle bay during welding) with and without plasma on 304 stainless steel, 6Al-4V titanium, and 5456 aluminum in search of any possible unwanted electrical discharges. Only a faint steady glow of beam-excited atoms around the electron beam and sometimes extending out into the vacuum chamber was observed. No signs of current spiking or of any potentially dangerous electrical discharge were found.

  3. Pressure-induced phase transition of KTa1/2Nb1/2O3 solid solutions: A first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Huadi; Liu, Bing; Zhang, Cong; Qiu, Chengcheng; Wang, Xuping; Zhang, Yuanyuan; Lv, Xianshun; Wei, Lei; Li, Qinggang

    2018-05-01

    The structures and electronic properties of KTa1/2Nb1/2O3 under high pressures have been investigated using the first-principles calculations. Three candidates with B site cation ordered along the [1 0 0], [1 1 0] and [1 1 1] directions are found stable under different pressures by thermodynamics, mechanics and dynamics stability criteria. Further electronic analysis indicates that three structures are semiconductors with different band-gap characteristics. The peculiar chemical bonds of Nb-O and Ta-O are expected to be related to the different electronegativity of the corresponding cations.

  4. Lattice vibrations and electronic transitions in the rare-earth metals: yttrium, gadolinium and lutetium

    NASA Astrophysics Data System (ADS)

    Olijnyk, Helmut

    2005-01-01

    Lattice vibrations in high-pressure phases of Y, Gd and Lu were studied by Raman spectroscopy. The observed phonon frequencies decrease towards the transitions to the dhcp and fcc phases. There is evidence that the entire structural sequence {\\mathrm {hcp \\to Sm\\mbox {-}type \\to dhcp \\to fcc}} under pressure for the individual regular rare-earth metals and along the lanthanide series at ambient pressure involve softening of certain acoustic and optical phonon modes and of the elastic shear modulus C44. Comparison is made to transitions between close-packed lattices in other metals, and possible correlations to s-d electron transfer are discussed.

  5. Simulation of plasma loading of high-pressure RF cavities

    NASA Astrophysics Data System (ADS)

    Yu, K.; Samulyak, R.; Yonehara, K.; Freemire, B.

    2018-01-01

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have been performed in the range of parameters typical for practical muon cooling channels.

  6. Electron capture decay in Jovian planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zito, R.R.; Schiferl, D.

    1987-12-01

    Following the commonly acknowledged fact that the decay of K-40 substantially contributes to the heating of planetary interiors, an examination is made of the possibility that interior heat in the Jovian planets and stars, where interior pressures may exceed 45 Mbar, may be generated by the pressure-accelerated electron capture decay of a variety of isotopes. The isotopes considered encompass K-40, V-50, Te-123, La-138, Al-26, and Cl-36. 19 references.

  7. Spatial distribution of the electron component parameters in the nitrogen plasma of a low-pressure electrode microwave Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedev, Yu. A., E-mail: lebedev@ips.ac.ru; Krashevskaya, G. V., E-mail: krashevskaya-gv@mail.ru; Gogoleva, M. A., E-mail: masha-g@list.ru

    2016-01-15

    Spatial distributions of charged particle concentration, electron temperature, and DC potential in an electrode microwave discharge in nitrogen at a pressure of 1 Torr have been measured using the double electric probe method. It has been shown that, near the electrode/antenna, the charged particle concentration exceeds a critical value. The concentration and heterogeneity of the discharge increase with increasing microwave power.

  8. First-principles study of structural stability, electronic, optical and elastic properties of binary intermetallic: PtZr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in; Jain, Ekta, E-mail: jainekta05@gmail.com; Sanyal, S. P., E-mail: sps.physicsbu@gmail.com

    2016-05-06

    Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time.more » Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.« less

  9. First principles electronic and thermal properties of some AlRE intermetallics

    NASA Astrophysics Data System (ADS)

    Srivastava, Vipul; Sanyal, Sankar P.; Rajagopalan, M.

    2008-10-01

    A study on structural and electronic properties of non-magnetic cubic B 2-type AlRE (RE=Sc, Y, La, Ce, Pr and Lu) intermetallics has been done theoretically. The self-consistent tight binding linear muffin tin orbital method is used to describe the electronic properties of these intermetallics at ambient and at high pressure. These compounds show metallic behavior under ambient conditions. The variation of density of states under compression indicates some possibility of structural phase transformation in AlLa, AlCe and AlPr. Thermal properties like Debye temperature and Grüneisen constant are calculated at T=0 K and at ambient pressure within the Debye-Grüneisen model and compared with the others’ theoretical results. Our results are in good agreement. We have also performed a pressure-induced variation of Debye temperature and have found a decrease in Debye temperature around 40 kbar in AlRE (RE=La, Ce, Pr) intermetallics.

  10. Behavior of magnesium at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Cynn, H.; Evans, W.; Yoo, C. S.; Ohishi, Y.; Sata, N.; Shimomura, O.

    2004-03-01

    Structural stability relationship manifested by 3-, 4-, 5d-electron transition metals also appears in so-called nearly free electron metal, magnesium as exampled by HCP to BCC structure change at high pressures. This transition has been examined by theory and confirmed by experiment. Recently, HCP to DHCP crystal structure change has been reported at high temperatures below 20 GPa. However, this type of structure change is rather common in 4f-electron lanthanides. In this study, we used synchrotron x-ray diffraction to find out the relationship between BCC and DHCP employing a diamond anvil cell technique coupled with external and laser heating methods. We also examined pressure gradient effects in relation with the existence of DHCP. This work has been supported by PDRP program at the Lawrence Livermore National Laboratory, University of California under the auspices of the U.S. Department of Energy under Contract No. W-7405-ENG-48

  11. Mobile health platform for pressure ulcer monitoring with electronic health record integration.

    PubMed

    Rodrigues, Joel J P C; Pedro, Luís M C C; Vardasca, Tomé; de la Torre-Díez, Isabel; Martins, Henrique M G

    2013-12-01

    Pressure ulcers frequently occur in patients with limited mobility, for example, people with advanced age and patients wearing casts or prostheses. Mobile information communication technologies can help implement ulcer care protocols and the monitoring of patients with high risk, thus preventing or improving these conditions. This article presents a mobile pressure ulcer monitoring platform (mULCER), which helps control a patient's ulcer status during all stages of treatment. Beside its stand-alone version, it can be integrated with electronic health record systems as mULCER synchronizes ulcer data with any electronic health record system using HL7 standards. It serves as a tool to integrate nursing care among hospital departments and institutions. mULCER was experimented with in different mobile devices such as LG Optimus One P500, Samsung Galaxy Tab, HTC Magic, Samsung Galaxy S, and Samsung Galaxy i5700, taking into account the user's experience of different screen sizes and processing characteristics.

  12. Electronic monitoring of patient adherence to oral antihypertensive medical treatment: a systematic review.

    PubMed

    Christensen, Arne; Osterberg, Lars G; Hansen, Ebba Holme

    2009-08-01

    Poor patient adherence is often the reason for suboptimal blood pressure control. Electronic monitoring is one method of assessing adherence. The aim was to systematically review the literature on electronic monitoring of patient adherence to self-administered oral antihypertensive medications. We searched the Pubmed, Embase, Cinahl and Psychinfo databases and websites of suppliers of electronic monitoring devices. The quality of the studies was assessed according to the quality criteria proposed by Haynes et al. Sixty-two articles were included; three met the criteria proposed by Haynes et al. and nine reported the use of electronic adherence monitoring for feedback interventions. Adherence rates were generally high, whereas average study quality was low with a recent tendency towards improved quality. One study detected investigator fraud based on electronic monitoring data. Use of electronic monitoring of patient adherence according to the quality criteria proposed by Haynes et al. has been rather limited during the past two decades. Electronic monitoring has mainly been used as a measurement tool, but it seems to have the potential to significantly improve blood pressure control as well and should be used more widely.

  13. Biofeedback With Implanted Blood-Pressure Device

    NASA Technical Reports Server (NTRS)

    Rischell, Robert E.

    1988-01-01

    Additional uses found for equipment described in "Implanted Blood-Pressure-Measuring Device" (GSC-13042). Implanted with device electronic circuitry that measures, interprets, and transmits data via inductive link through patient's skin to external receiver. Receiver includes audible alarm generator activated when patient's blood pressure exceeds predetermined threshold. Also included in receiver a blood-pressure display, recorder, or both, for use by patient or physician.

  14. The structural, electronic and magnetic properties of CoS2 under pressure

    NASA Astrophysics Data System (ADS)

    Feng, Zhong-Ying; Yang, Yan; Zhang, Jian-Min

    2018-05-01

    The structural, electronic and magnetic properties of CoS2 under pressure have been investigated by the first-principles calculations. The lattice constant and volume decrease with increasing pressure. The CoS2 is stable and behaves a brittle characteristic under the pressures of 0-5 GPa. The CoS2 presents metallic characteristic under the pressures of 1-5 GPa although it is nearly half-metal (HM) under the pressure of 0 GPa. The lowest conduction bands for spin-up and spin-down channels shift towards higher and lower energy region, respectively, with the pressure increasing from 0 to 5 GPa. In spin-up channel the conduction band minimum (CBM) is mainly contributed by Co-3d(eg) orbitals at R point but the valence band maximum (VBM) is contributed by Co-3d(t2g) orbitals near M point. While in spin-down channel the CBM is contributed by S-3p orbitals at Γ point but the VBM is contributed by Co-3d(t2g) orbitals near X point. The CoS2 is still suitable to be used in the supercapacitor under the environmental pressures of 0-5 GPa due to the high conductivity.

  15. Analysis of hydrogen plasma in MPCVD reactor

    NASA Astrophysics Data System (ADS)

    Shivkumar, Gayathri

    The aim of this work is to build a numerical model that can predict the plasma properties of hydrogen plasmas inside a Seki Technotron Corp. AX5200S MPCVD system so that it may be used to understand and optimize the conditions for the growth of carbon nanostructures. A 2D model of the system is used in the finite element high frequency Maxwell solver and heat trasfer solver in COMSOL Multiphysics, where the solvers are coupled with user defined functions to analyze the plasma. A simplified chemistry model is formulated in order to determine the electron temperature in the plasma. This is used in the UDFs which calculate the electron number density as well as electron temperature. A Boltzmann equation solver for electrons in weakly ionized gases under uniform electric fields, called BOLSIG+, is used to obtain certain input parameters required for these UDFs. The system is modeled for several reactor geometries at pressures of 10 Torr and 30 Torr and powers ranging from 300 W to 700 W. The variation of plasma characteristics with changes in input conditions is studied and the electric field, electron number density, electron temperature and gas temperature are seen to increase with increasing power. Electric field, electron number density and electron temperature decrease and gas temperature increases with increasing pressure. The modeling results are compared with experimental measurements and a good agreement is found after calibrating the parameter gamma in Funer's model to match experimental electron number densities. The gas temperature is seen to have a weak dependence on power and a strong dependence on gas pressure. On an average, the gas temperature at a point 5 mm above the center of the puck increases from about 1000 K at a pressure of 10 Torr to about 1500 K at 30 Torr. The inclusion of the pillar produces an increase in the maximum electron number density of approximately 50%; it is higher under some conditions. It increases the maximum electron temperature by about 70% and at 500 W and 30 Torr, the maximum gas temperature is seen to increase by 50%. The effect of susceptor position is studied and it is seen that the only condition favorable to growth would be to raise it by less than 25 mm from the initial reference position or to maintain it at the same level.

  16. Non-ideal energy conversion during asymmetric magnetic reconnection with a moderate guide field

    NASA Astrophysics Data System (ADS)

    Genestreti, K. J.; Varsani, A.; Hesse, M.; Torbert, R. B.; Burch, J.; Cassak, P.; Ergun, R.; Phan, T.; Nakamura, R.; Giles, B. L.; Schwartz, S. J.; Wang, S.; Toledo Redondo, S.; Hwang, K. J.; Laignel, B.; Escoubet, C. P.; Fear, R. C.; Khotyaintsev, Y. V.

    2017-12-01

    Using data from NASA's Magnetospheric Multiscale (MMS) mission, we investigate the local (in time and space) rate of work done by the non-ideal electric field on the plasma during a crossing through the magnetopause reconnection region. The four MMS spacecraft were in a tight tetrahedral formation ( 7 km separation) and observed several ion and electron-scale signatures of asymmetric reconnection, one of which was J.E' (=J.(E+vexB))>0. The data indicate that the magnetic field was expending energy both (1) near the magnetosphere-side separator, where the current was carried by counter-streaming electrons with crescent-shaped velocity distribution functions, and (2) near the magnetic X-point, where the current was carried by accelerated inflowing magnetosheath electrons moving against the guide field. Near the X-point, the current-aligned portion of the non-ideal electric field is largely a result of electron pressure divergence. We further investigate the pressure tensor divergence, separating the components from in and out-of-the-plane gradients as well as gyrotropic and non-gyrotropic pressures.

  17. Electrical transport properties and giant baroresistance effect at martensitic transformation of Ni43.7Fe5.3Mn35.4In15.6 Heusler alloy

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanlei; He, Xijia; Li, Zhe; Xu, Kun; Liu, Changqin; Huang, Yinsheng; Jing, Chao

    2018-04-01

    The electrical transport properties at martensitic transformation (MT) in polycrystalline Ni43.7Fe5.3Mn35.4In15.6 have been intensively investigated under different hydrostatic pressures. For this alloy, the experimental results show that applying a higher hydrostatic pressure can convert its MT from the metamagnetic type into the paramagnetic type. It provides a unique opportunity to separate the relative contributions of electron-spin and electron-lattice scatterings across the metamagnetic MT based on the dynamical Clausius-Clapeyron equation, which delivers a deeper insight into the resistivity change of metamagnetic MT for the Mn-rich Ni-Mn based Heusler alloys. In addition, the studied alloy also reveals a giant positive baroresistance (BR) effect with a saturated value of 115% at 242 K. This performance originates from the combined effect of electron-spin and electron-lattice scatterings associated with a prominent hydrostatic pressure-induced MT, which contribute 46% and 69% to the overall BR ratio, respectively.

  18. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baksht, E Kh; Burachenko, A G; Lomaev, M I

    2015-04-30

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ∼4 ns and a rise time of ∼2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 – 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of themore » plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr. (laser applications and other topics in quantum electronics)« less

  19. Study of the Emission Characteristics of Single-Walled CNT and Carbon Nano-Fiber Pyrograf III

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Al-Akhras, M.-Ali H.; Daradkeh, Samer

    2018-02-01

    Field emission microscopy measurements from Single-Walled Carbon Nanotubes (SWCNTs) and Carbon Nano-Fibers Pyrograf III PR-1 (CNF) were performed. Details of the materials employed in the experiments are as follows: (a) Carbon Nano-Fibers Pyrograf III PR-1 (CNF), having an average fiber diameter that is ranging between (100-200) nm with a length of (30-100) μm. (b) Single walled Carbon Nanotubes were produced by high-pressure CO over Fe particle (HiPCO: High-Pressure Carbon Monoxide process), having an average diameter ranging between (1-4) nm with a length of (1-3) μm. The experiments were performed under vacuum pressure value of (10-7 mbar). The research work reported here includes the field electron emission current-voltage (I-V) characteristics and presented as Fowler-Nordheim (FN) plots and the spatial emission current distributions (electron emission images) obtained and analyzed in terms of electron source features. For both the SWCNT and the CNF a single spot pattern for the electron spatial; distributions were observed.

  20. Role of target thickness in proton acceleration from near-critical mass-limited plasmas

    NASA Astrophysics Data System (ADS)

    Kuri, Deep Kumar; Das, Nilakshi; Patel, Kartik

    2017-07-01

    The role played by the target thickness in generating high energetic protons by a circularly polarized laser from near-critical mass-limited targets (MLT) has been investigated with the help of three-dimensional (3D) particle-in-cell (PIC) simulations. The radiation pressure accelerates protons from the front side of the target. Due to hole boring, the target front side gets deformed resulting in a change in the effective angle of incidence which causes vacuum heating and hence generates hot electrons. These hot electrons travel through the target at an angle with the laser axis and hence get more diverged along transverse directions for large target thickness. The hot electrons form sheath fields on the target rear side which accelerates protons via target normal sheath acceleration (TNSA). It is observed that the collimation of radiation pressure accelerated protons gets degraded on reaching the target rear side due to TNSA. The effect of transverse hot electron recirculations gets suppressed and the energetic protons get highly collimated on decreasing target thickness as the radiation pressure acceleration (RPA) starts dominating the acceleration process.

  1. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    NASA Astrophysics Data System (ADS)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  2. High pressure and synchrotron radiation studies of solid state electronic instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pifer, J.H.; Croft, M.C.

    This report discusses Eu and General Valence Instabilities; Ce Problem: L{sub 3} Spectroscopy Emphasis; Bulk Property Emphasis; Transition Metal Compound Electronic Structure; Electronic Structure-Phonon Coupling Studies; High Temperature Superconductivity and Oxide Materials; and Novel Materials Collaboration with Chemistry.

  3. Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage

    NASA Astrophysics Data System (ADS)

    Rongxiao, ZHAI; Mengtong, QIU; Weixi, LUO; Peitian, CONG; Tao, HUANG; Jiahui, YIN; Tianyang, ZHANG

    2018-04-01

    As one of the most important elements in linear transformer driver (LTD) based systems, the gas pressurized closing switches are required to operate with a very low prefire probability during the DC-charging process to ensure reliable operation and stable output of the whole pulsed power system. The most direct and effective way to control the prefire probability is to select a suitable working coefficient. The study of the development characteristics of the initially generated electrons is useful for optimizing the working coefficient and improving the prefire characteristic of the switches. In this paper an ultraviolet pulsed laser is used to generate initial electrons inside the gap volume. A current measuring system is used to measure the time-dependent current generated by the growth of the initial electrons so as to study the development characteristics of the electrons under different working coefficients. Experimental results show that the development characteristics of the initial electrons are influenced obviously by the working coefficient. With the increase of the working coefficient, the development degree of the electrons increases consequently. At the same times, there is a threshold of working coefficient which produces the effect of ionization on electrons. The range of the threshold has a slow growth but remains close to 65% with the gas pressure increase. When the working coefficient increases further, γ processes are starting to be generated inside the gap volume. In addition, an optimal working coefficient beneficial for improving the prefire characteristic is indicated and further tested.

  4. A thermodynamic model to predict electron mobility in superfluid helium.

    PubMed

    Aitken, Frédéric; Volino, Ferdinand; Mendoza-Luna, Luis Guillermo; Haeften, Klaus von; Eloranta, Jussi

    2017-06-21

    Electron mobility in superfluid helium is modeled between 0.1 and 2.2 K by a van der Waals-type thermodynamic equation of state, which relates the free volume of solvated electrons to temperature, density, and phase dependent internal pressure. The model is first calibrated against known electron mobility reference data along the saturated vapor pressure line and then validated to reproduce the existing mobility literature values as a function of pressure and temperature with at least 10% accuracy. Four different electron mobility regimes are identified: (1) Landau critical velocity limit (T ≈ 0), (2) mobility limited by thermal phonons (T < 0.6 K), (3) thermal phonon and discrete roton scattering ("roton gas") limited mobility (0.6 K < T < 1.2 K), and (4) the viscous liquid ("roton continuum") limit (T > 1.2 K) where the ion solvation structure directly determines the mobility. In the latter regime, the Stokes equation can be used to estimate the hydrodynamic radius of the solvated electron based on its mobility and fluid viscosity. To account for the non-continuum behavior appearing below 1.2 K, the temperature and density dependent Millikan-Cunningham factor is introduced. The hydrodynamic electron bubble radii predicted by the present model appear generally larger than the solvation cavity interface barycenter values obtained from density functional theory (DFT) calculations. Based on the classical Stokes law, this difference can arise from the variation of viscosity and flow characteristics around the electron. The calculated DFT liquid density profiles show distinct oscillations at the vacuum/liquid interface, which increase the interface rigidity.

  5. Monitoring Welding-Gas Quality

    NASA Technical Reports Server (NTRS)

    Huddleston, Kevin L.

    1988-01-01

    System monitors welding gas to ensure characteristics within predetermined values. Responds to changes that might go unnoticed by human operator and acts quickly to prevent weld defects. Electronic pressure controller employs various amounts of gain, equalization, and compensation to respond to changes in gas-supply pressure. Works in conjuction with pressure/oxygen/moisture monitor.

  6. Small-Portion Water Dispenser

    NASA Technical Reports Server (NTRS)

    Joerns, J. C.

    1986-01-01

    Pressure regulated and flow timed to control amount dispensed. Dispenser provides measured amount of water for reconstituting dehydrated foods and beverages. Dispenser holds food or beverage package while being filled with either cold or room-temperature water. Other uses might include dispensing of fluids or medicine. Pressure regulator in dispenser reduces varying pressure of water supply to constant pressure. Electronic timer stops flow after predetermined length of time. Timed flow at regulated pressure ensures controlled volume of water dispensed.

  7. Effectiveness of a tai-chi training and detraining on functional capacity, symptomatology and psychological outcomes in women with fibromyalgia.

    PubMed

    Romero-Zurita, Alejandro; Carbonell-Baeza, Ana; Aparicio, Virginia A; Ruiz, Jonatan R; Tercedor, Pablo; Delgado-Fernández, Manuel

    2012-01-01

    Background. The purpose was to analyze the effects of Tai-Chi training in women with fibromyalgia (FM). Methods. Thirty-two women with FM (mean age, 51.4 ± 6.8 years) attended to Tai-Chi intervention 3 sessions weekly for 28 weeks. The outcome measures were: tenderness, body composition, functional capacity and psychological outcomes (Fibromyalgia impact questionnaire (FIQ), Short Form Health Survey 36 (SF-36)). Results. Patients showed improvements on pain threshold, total number of tender points and algometer score (all P < 0.001). The intervention was effective on 6-min walk (P = 0.006), back scratch (P = 0.002), handgrip strength (P = 0.006), chair stand, chair sit & reach, 8 feet up & go and blind flamingo tests (all P < 0.001). Tai-Chi group improved the FIQ total score (P < 0.001) and six subscales: stiffness (P = 0.005), pain, fatigue, morning tiredness, anxiety, and depression (all P < 0.001). The intervention was also effective in six SF-36 subscales: bodily pain (P = 0.003), vitality (P = 0.018), physical functioning, physical role, general health, and mental health (all P < 0.001). Conclusions. A 28-week Tai-Chi intervention showed improvements on pain, functional capacity, symptomatology and psychological outcomes in female FM patients.

  8. Effectiveness of a Tai-Chi Training and Detraining on Functional Capacity, Symptomatology and Psychological Outcomes in Women with Fibromyalgia

    PubMed Central

    Romero-Zurita, Alejandro; Carbonell-Baeza, Ana; Aparicio, Virginia A.; Ruiz, Jonatan R.; Tercedor, Pablo; Delgado-Fernández, Manuel

    2012-01-01

    Background. The purpose was to analyze the effects of Tai-Chi training in women with fibromyalgia (FM). Methods. Thirty-two women with FM (mean age, 51.4 ± 6.8 years) attended to Tai-Chi intervention 3 sessions weekly for 28 weeks. The outcome measures were: tenderness, body composition, functional capacity and psychological outcomes (Fibromyalgia impact questionnaire (FIQ), Short Form Health Survey 36 (SF-36)). Results. Patients showed improvements on pain threshold, total number of tender points and algometer score (all P < 0.001). The intervention was effective on 6-min walk (P = 0.006), back scratch (P = 0.002), handgrip strength (P = 0.006), chair stand, chair sit & reach, 8 feet up & go and blind flamingo tests (all P < 0.001). Tai-Chi group improved the FIQ total score (P < 0.001) and six subscales: stiffness (P = 0.005), pain, fatigue, morning tiredness, anxiety, and depression (all P < 0.001). The intervention was also effective in six SF-36 subscales: bodily pain (P = 0.003), vitality (P = 0.018), physical functioning, physical role, general health, and mental health (all P < 0.001). Conclusions. A 28-week Tai-Chi intervention showed improvements on pain, functional capacity, symptomatology and psychological outcomes in female FM patients. PMID:22649476

  9. Jaw Dysfunction Is Associated with Neck Disability and Muscle Tenderness in Subjects with and without Chronic Temporomandibular Disorders

    PubMed Central

    Silveira, A.; Gadotti, I. C.; Armijo-Olivo, S.; Biasotto-Gonzalez, D. A.; Magee, D.

    2015-01-01

    Purpose. Tender points in the neck are common in patients with temporomandibular disorders (TMD). However, the correlation among neck disability, jaw dysfunction, and muscle tenderness in subjects with TMD still needs further investigation. This study investigated the correlation among neck disability, jaw dysfunction, and muscle tenderness in subjects with and without chronic TMD. Participants. Forty females between 19 and 49 years old were included in this study. There were 20 healthy controls and 20 subjects who had chronic TMD and neck disability. Methods. Subjects completed the neck disability index and the limitations of daily functions in TMD questionnaires. Tenderness of the masticatory and cervical muscles was measured using an algometer. Results. The correlation between jaw disability and neck disability was significantly high (r = 0.915, P < 0.05). The correlation between level of muscle tenderness in the masticatory and cervical muscles with jaw dysfunction and neck disability showed fair to moderate correlations (r = 0.32–0.65). Conclusion. High levels of muscle tenderness in upper trapezius and temporalis muscles correlated with high levels of jaw and neck dysfunction. Moreover, high levels of neck disability correlated with high levels of jaw disability. These findings emphasize the importance of considering the neck and its structures when evaluating and treating patients with TMD. PMID:25883963

  10. Jaw dysfunction is associated with neck disability and muscle tenderness in subjects with and without chronic temporomandibular disorders.

    PubMed

    Silveira, A; Gadotti, I C; Armijo-Olivo, S; Biasotto-Gonzalez, D A; Magee, D

    2015-01-01

    Tender points in the neck are common in patients with temporomandibular disorders (TMD). However, the correlation among neck disability, jaw dysfunction, and muscle tenderness in subjects with TMD still needs further investigation. This study investigated the correlation among neck disability, jaw dysfunction, and muscle tenderness in subjects with and without chronic TMD. Participants. Forty females between 19 and 49 years old were included in this study. There were 20 healthy controls and 20 subjects who had chronic TMD and neck disability. Subjects completed the neck disability index and the limitations of daily functions in TMD questionnaires. Tenderness of the masticatory and cervical muscles was measured using an algometer. The correlation between jaw disability and neck disability was significantly high (r = 0.915, P < 0.05). The correlation between level of muscle tenderness in the masticatory and cervical muscles with jaw dysfunction and neck disability showed fair to moderate correlations (r = 0.32-0.65). High levels of muscle tenderness in upper trapezius and temporalis muscles correlated with high levels of jaw and neck dysfunction. Moreover, high levels of neck disability correlated with high levels of jaw disability. These findings emphasize the importance of considering the neck and its structures when evaluating and treating patients with TMD.

  11. Observer influences on pain: an experimental series examining same-sex and opposite-sex friends, strangers, and romantic partners.

    PubMed

    Edwards, Rhiannon; Eccleston, Christopher; Keogh, Edmund

    2017-05-01

    Despite the well-documented sex and gender differences, little is known about the relative impact of male-female social interactions on pain. Three experiments were conducted to investigate whether the type of interpersonal relationship men and women have with an observer affects how they respond to experimental pain. Study 1 recruited friends and strangers, study 2 examined the effects of same- and opposite-sex friends, whereas study 3 investigated the differences between opposite-sex friends and opposite-sex romantic partners. One hundred forty-four dyads were recruited (48 in each study). One person from each dyad completed 2 pain tasks, whereas the other person observed in silence. Overall, the presence of another person resulted in an increase in pain threshold and tolerance on the cold-pressor task and algometer. The sex status of the dyads also had a role, but only within the friendship groups. In particular, male friends had the most pronounced effect on men's pain, increasing pain tolerance. We suggest that the presence of an observer, their sex, and the nature of the participant-observer relationship all influence how pain is reported. Further research should focus on dyadic relationships, and their influence on how men and women report and communicate pain in specific contexts.

  12. Comparison of the high-pressure behavior of the cerium oxides C e 2 O 3 and Ce O 2

    DOE PAGES

    Lipp, M. J.; Jeffries, J. R.; Cynn, H.; ...

    2016-02-09

    We studied the high-pressure behavior of Ce 2O 3 using angle-dispersive x-ray diffraction to 70 GPa and compared with that of CeO 2. Up to the highest pressure Ce 2O 3 remains in the hexagonal phase (space group 164, P ¯32/m1) typical for the lanthanide sesquioxides. We did not observe a theoretically predicted phase instability for 30 GPa. The isothermal bulk modulus and its pressure derivative for the quasihydrostatic case are B 0 = 111 ± 2 GPa, B' 0 = 4.7 ± 0.3, and for the case without pressure-transmitting medium B 0 = 104 ±4 GPa, B' 0 =more » 6.5 ± 0.4. Starting from ambient-pressure magnetic susceptibility measurements for both oxides in highly purified form,we find that the Ce atom in Ce 2O 3 behaves like a trivalent Ce 3+ ion (2.57μB per Ce atom) in contrast to previously published data. Since x-ray emission spectroscopy of the Lγ (4d 3/2 → 2p 1/2) transition is sensitive to the 4f -electron occupancy, we also followed the high-pressure dependence of this line for both oxides up to 50 GPa. We observed no change of the respective line shape, indicating that the 4f -electron configuration is stable for both materials. We posit from this data that the 4f electrons do not drive the volume collapse of CeO 2 from the high-symmetry, low-pressure fluorite structure to the lower-symmetry orthorhombic phase.« less

  13. Bonding Transition in SiO2 Glass at High Pressures: Applications to SiO2 Liquid in Earth's Interior

    NASA Astrophysics Data System (ADS)

    Yoo, C.; Lin, J.; Fukui, H.; Prendergast, D.; Okuchi, T.; Cai, Y.; Hiraoka, N.; Trave, A.; Eng, P.; Hu, M. Y.; Chow, P.

    2006-12-01

    SiO2 and MgSiO3 liquids are two major components in the magma deep inside the Earth. Knowledge of their electronic bonding characters at high pressures is essential to understanding the complex properties of the materials in the melts. The nature of pressure-induced bonding change in amorphous SiO2 has been an intriguing and long-standing problem that remains to be further understood. For example, previous infrared and X-ray diffraction studies suggested that a continuous transformation from the four- to six-fold coordinated silicon occurred in amorphous SiO2 at high pressures, whereas separate optical Raman studies attributed to a pressure-induced shift in the local ring statistics and a breakdown in the intermediate-range order. Here we have studied the oxygen near K-edge spectra of SiO2 glass to 51 GPa obtained using X-ray Raman scattering in a diamond-anvil cell, which directly probes the electronic bonding character of the sample. Our results provide conclusive evidence for a pressure-induced electronic bonding transition in SiO2 glass at high pressures. Although a progressive decrease in the mean Si-O-Si angle in the SiO4 tetrahedra is believed to be responsible for the irreversible densification in SiO2 glass at high pressures, our observed transition is reversible upon decompression. A similar transformation is also expected to occur in silicate glasses and melts, which will most definitely alter their physical, mechanical and transport properties in the magma chamber deep in the Earth's interior. This work was performed under the auspices of the U.S. DOE by UC/LLNL under Contract W-7405-Eng-48.

  14. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Cheng; Shao, Tao, E-mail: st@mail.iee.ac.cn; Wang, Ruixue

    2015-03-15

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulsesmore » such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.« less

  15. Collapse of ferromagnetism in itinerant-electron system: A magnetic, transport properties, and high pressure study of (Hf,Ta)Fe2 compounds

    NASA Astrophysics Data System (ADS)

    Diop, L. V. B.; Kastil, J.; Isnard, O.; Arnold, Z.; Kamarad, J.

    2014-10-01

    The magnetism and transport properties were studied for Laves (Hf,Ta)Fe2 itinerant-electron compounds, which exhibit a temperature-induced first-order transition from the ferromagnetic (FM) to the antiferromagnetic (AFM) state upon heating. At finite temperatures, the field-induced metamagnetic phase transition between the AFM and FM has considerable effects on the transport properties of these model metamagnetic compounds. A large negative magnetoresistance of about 14% is observed in accordance with the metamagnetic transition. The magnetic phase diagram is determined for the Laves Hf1-xTaxFe2 series and its Ta concentration dependence discussed. An unusual behavior is revealed in the paramagnetic state of intermediate compositions, it gives rise to the rapid increase and saturation of the local spin fluctuations of the 3d electrons. This new result is analysed in the frame of the theory of Moriya. For a chosen composition Hf0.825Ta0.175Fe2, exhibiting such remarkable features, a detailed investigation is carried out under hydrostatic pressure up to 1 GPa in order to investigate the volume effect on the magnetic properties. With increasing pressure, the magnetic transition temperature TFM-AFM from ferromagnetic to antiferromagnetic order decreases strongly non-linearly and disappears at a critical pressure of 0.75 GPa. In the pressure-induced AFM state, the field-induced first-order AFM-FM transition appears and the complex temperature dependence of the AFM-FM transition field is explained by the contribution from both the magnetic and elastic energies caused by the significant temperature variation of the amplitude of the local Fe magnetic moment. The application of an external pressure leads also to the progressive decrease of the Néel temperature TN. In addition, a large pressure effect on the spontaneous magnetization MS for pressures below 0.45 GPa, dln(Ms)/dP = -6.3 × 10-2 GPa-1 was discovered. The presented results are consistent with Moriya's theoretical predictions and can significantly help to better understand the underlying physics of itinerant electron magnetic systems nowadays widely investigated for both fundamental and applications purposes.

  16. Structural phase transition, electronic structure and optical properties of half Heusler alloys LiBeZ (Z = As, Sb)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amudhavalli, A.; Rajeswarapalanichamy, R., E-mail: rajeswarapalanichamy@gmail.com

    2016-05-23

    Ab initio calculations are performed to investigate the structural stability, electronic structure, mechanical properties and optical properties of half Heusler alloys (LiBeAs and LiBeSb) for three different phases of zinc blende crystal structure. Among the considered phases, α- phase is found to be the most stable phase for these alloys at normal pressure. A pressure induced structural phase transition from α-phase to β- phase is observed for LiBeAs. The electronic structure reveals that these alloys are semiconductors. The optical properties confirm that these alloys are semiconductor in nature.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, M.-L., E-mail: marie-laure.david@univ-poitiers.fr; Pailloux, F.; Canadian Centre for Electron Microscopy, Mc Master University, 1280 Main Street West, Hamilton, Ontario L8S 4M1

    We demonstrate that the helium density and corresponding pressure can be modified in single nano-scale bubbles embedded in semiconductors by using the electron beam of a scanning transmission electron microscope as a multifunctional probe: the measurement probe for imaging and chemical analysis and the irradiation source to modify concomitantly the pressure in a controllable way by fine tuning of the electron beam parameters. The control of the detrapping rate is achieved by varying the experimental conditions. The underlying physical mechanisms are discussed; our experimental observations suggest that the helium detrapping from bubbles could be interpreted in terms of direct ballisticmore » collisions, leading to the ejection of the helium atoms from the bubble.« less

  18. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    PubMed

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  19. The role of hot electrons in the dynamics of a laser-driven strong converging shock

    DOE PAGES

    Llor Aisa, E.; Ribeyre, X.; Duchateau, G.; ...

    2017-11-30

    Experiments on strong shock excitation in spherical plastic targets conducted at the Omega Laser Facility are interpreted with the radiation–hydrodynamics code CHIC to account for parametric instabilities excitation and hot-electron generation. The effects of hot electrons on the shock-pressure amplification and upstream preheat are analyzed. In this study, it is demonstrated that both effects contribute to an increase in shock velocity. Comparison of the measured laser reflectivity and shock flash time with numerical simulations make it possible to reconstitute the time history of the ablation and shock pressures. Finally, consequences of this analysis for the shock-ignition target design are discussed.

  20. The role of hot electrons in the dynamics of a laser-driven strong converging shock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llor Aisa, E.; Ribeyre, X.; Duchateau, G.

    Experiments on strong shock excitation in spherical plastic targets conducted at the Omega Laser Facility are interpreted with the radiation–hydrodynamics code CHIC to account for parametric instabilities excitation and hot-electron generation. The effects of hot electrons on the shock-pressure amplification and upstream preheat are analyzed. In this study, it is demonstrated that both effects contribute to an increase in shock velocity. Comparison of the measured laser reflectivity and shock flash time with numerical simulations make it possible to reconstitute the time history of the ablation and shock pressures. Finally, consequences of this analysis for the shock-ignition target design are discussed.

  1. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    PubMed Central

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  2. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  3. The Effects of Solar Wind Dynamic Pressure Changes on the Substorm Auroras and Energetic Electron Injections on 24 August 2005

    NASA Astrophysics Data System (ADS)

    Li, L. Y.; Wang, Z. Q.

    2018-01-01

    After the passage of an interplanetary (IP) shock at 06:13 UT on 24 August 2005, the enhancement (>6 nPa) of solar wind dynamic pressure and the southward turning of interplanetary magnetic field (IMF) cause the earthward movement of dayside magnetopause and the drift loss of energetic particles near geosynchronous orbit. The persistent electron drift loss makes the geosynchronous satellites cannot observe the substorm electron injection phenomenon during the two substorm expansion phases (06:57-07:39 UT) on that day. Behind the IP shock, the fluctuations ( 0.5-3 nPa) of solar wind dynamic pressure not only alter the dayside auroral brightness but also cause the entire auroral oval to swing in the day-night direction. However, there is no Pi2 pulsation in the nightside auroral oval during the substorm growth phase from 06:13 to 06:57 UT. During the subsequent two substorm expansion phases, the substorm expansion activities cause the nightside aurora oval brightening from substorm onset site to higher latitudes, and meanwhile, the enhancement (decline) of solar wind dynamic pressure makes the nightside auroral oval move toward the magnetic equator (the magnetic pole). These observations demonstrate that solar wind dynamic pressure changes and substorm expansion activities can jointly control the luminosity and location of the nightside auroral oval when the internal and external disturbances occur simultaneously. During the impact of a strong IP shock, the earthward movement of dayside magnetopause probably causes the disappearance of the substorm electron injections near geosynchronous orbit.

  4. PREFACE: Correlated Electrons (Japan)

    NASA Astrophysics Data System (ADS)

    Miyake, Kazumasa

    2007-03-01

    This issue of Journal of Physics: Condensed Matter is dedicated to results in the field of strongly correlated electron systems under multiple-environment. The physics of strongly correlated electron systems (SCES) has attracted much attention since the discovery of superconductivity in CeCu_2 Si_2 by Steglich and his co-workers a quater-century ago. Its interest has been intensified by the discovery of high-Tc superconductivity in a series of cuprates with layered perovskite structure which are still under active debate. The present issue of Journal of Physics: Condensed Matter present some aspects of SCES physics on the basis of activities of a late project "Centre-Of-Excellence" supported by MEXT (Ministry of Education, Sports, Science, Culture and Technology of the Japanese Government). This project has been performed by a condensed matter physics group in the faculties of science and engineering science of Osaka University. Although this project also covers correlated phenomena in optics and nano-scale systems, we focus here on the issues of SCES related to superconductivity, mainly unconventional. The present issue covers the discussions on a new mechanism of superconductivity with electronic origin (critical valence fluctuation mechanism), interplay and unification of magnetism and superconductivity in SCES based on a systematic study of NQR under pressure, varieties of Fermi surface of Ce- and U-based SCES probed by the de Haas-van Alphen effect, electronic states probed by a bulk sensitive photoemission spectroscopy with soft X-ray, pressure induced superconductivity of heavy electron materials, pressure dependence of superconducting transition temperature based on a first-principle calculation, and new superconductors under very high-pressure. Some papers offer readers' reviews of the relevant fields and/or include new developments of this intriguing research field of SCES. Altogether, the papers within this issue outline some aspects of electronic states and superconductivity of SCES and related research fields, and the prospects of SCES physics. I hope that it will give an insight into the fascination of SCES research and a feeling for the advances made in the past years.

  5. Determination of electron temperature in a penning discharge by the helium line ratio method

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1975-01-01

    The helium line ratio technique was used to determine electron temperatures in a toroidal steady-state Penning discharge operating in helium. Due to the low background pressure, less than .0001 torr, and the low electron density, the corona model is expected to provide a good description of the excitation processes in this discharge. In addition, by varying the Penning discharge anode voltage and background pressure, it is possible to vary the electron temperature as measured by the line ratio technique over a wide range (10 to 100+ eV). These discharge characteristics allow a detailed comparison of electron temperatures measured from different possible line ratios over a wide range of temperatures and under reproducible steady-state conditions. Good agreement is found between temperatures determined from different neutral line ratios, but use of the helium ion line results in a temperature systematically 10 eV high compared to that from the neutral lines.

  6. Mathematical Modelling of Drying Kinetics of Wheat in Electron Fired Fluidized Bed Drying System

    NASA Astrophysics Data System (ADS)

    Deomore, Dayanand N.; Yarasu, Ravindra B.

    2018-02-01

    The conventional method of electrical heating is replaced by electron firing system. The drying kinetics of wheat is studied using electron fired fluidized bed dryer. The results are simulated by using ANSYS. It was observed that the graphs are in agreement with each other. Therefore, the new proposed electronic firing system can be employed instead of electrical firing. It was observed that the drop in Relative Humidity in case of Electrical heating is 68.75% for temp reaching up to 70° C in 67 sec for pressure drop of 13 psi while for the electronic Firing system it is 67.6 % temp reaches to 70° C in 70 sec for pressure drop of 12.67 psi. As the results are in agreement with each other it was concluded that for the grains like wheat which has low initial moisture content both systems can be used.

  7. Achieving blood pressure control among renal transplant recipients by integrating electronic health technology and clinical pharmacy services.

    PubMed

    Migliozzi, Daniel R; Zullo, Andrew R; Collins, Christine; Elsaid, Khaled A

    2015-11-15

    The implementation and outcomes of a program combining electronic home blood pressure monitoring (HBPM) and pharmacist-provided medication therapy management (MTM) services in a renal transplantation clinic are described. Patients enrolled in the program were provided with a computer-enabled blood pressure monitor. A dedicated renal transplantation pharmacist was integrated into the renal transplantation team under a collaborative care practice agreement. The collaborative care agreement allowed the pharmacist to authorize medication additions, deletions, and dosage changes. Comprehensive disease and blood pressure education was provided by a clinical pharmacist. In the pretransplantation setting, the pharmacist interviewed the renal transplant candidate and documents allergies, verified the patient's medication profile, and identified and assessed barriers to medication adherence. A total of 50 renal transplant recipients with at least one recorded home blood pressure reading and at least one year of follow-up were included in our analysis. A significant reduction in mean systolic and diastolic blood pressure values were observed at 30, 90, 180, and 360 days after enrollment in the program (p < 0.05). Pharmacist interventions were documented for 37 patients. Medication-related problems accounted for 46% of these interventions and included dosage modifications, regimen changes, and mitigation of barriers to medication access and adherence. Implementation of electronic HBPM and pharmacist-provided MTM services implemented in a renal transplant clinic was associated with sustained improvements in blood pressure control. Incorporation of a pharmacist in the renal transplant clinic resulted in the detection and resolution of medication-related problems. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.

  8. Pleural manometry-historical background, rationale for use and methods of measurement.

    PubMed

    Zielinska-Krawczyk, Monika; Krenke, Rafal; Grabczak, Elzbieta M; Light, Richard W

    2018-03-01

    Subatmospheric pleural pressure (Ppl), which is approximately -3 to -5 cmH 2 O at functional residual capacity (FRC) makes pleura a unique organ in the human body. The negative Ppl is critical for maintaining the lungs in a properly inflated state and for proper blood circulation within the thorax. Significant and sudden pleural pressure changes associated with major pleural pathologies, as well as therapeutic interventions may be associated with life-threatening complications. The pleural pressure may show two different values depending on the measurement method applied. These are called pleural liquid pressure and pleural surface pressure. It should also be realized that there are significant differences in pleural pressure distribution in pneumothorax and pleural effusion. In pneumothorax, the pressure is the same throughout the pleural space, while in pleural effusion there is a vertical gradient of approximately 1 cm H 2 O/cm in the pleural pressure associated with the hydrostatic pressure of the fluid column. Currently, two main methods of pleural pressure measurement are used: simple water manometers and electronic systems. The water manometers are conceptually simple, cheap and user-friendly but they only allow the estimation of the mean values of pleural pressure. The electronic systems for pleural pressure measurement are based on pressure transducers. Their major advantages include precise measurements of instantaneous pleural pressure and the ability to display and to store a large amount of data. The paper presents principles and details of pleural pressure measurement as well as the rationale for its use. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Method To Display Data On A Face Mask

    NASA Technical Reports Server (NTRS)

    Moore, Kevin-Duron

    1995-01-01

    Proposed electronic instrument displays information on diver's or firefighter's face mask. Includes mask, prism, electronic readouts, transceiver and control electronics. Mounted at periphery of diver's field of view to provide data on elapsed time, depth, pressure, and temperature. Provides greater safety and convenience to user.

  10. Electron core ionization in compressed alkali metal cesium

    NASA Astrophysics Data System (ADS)

    Degtyareva, V. F.

    2018-01-01

    Elements of groups I and II in the periodic table have valence electrons of s-type and are usually considered as simple metals. Crystal structures of these elements at ambient pressure are close-packed and high-symmetry of bcc and fcc-types, defined by electrostatic (Madelung) energy. Diverse structures were found under high pressure with decrease of the coordination number, packing fraction and symmetry. Formation of complex structures can be understood within the model of Fermi sphere-Brillouin zone interactions and supported by Hume-Rothery arguments. With the volume decrease there is a gain of band structure energy accompanied by a formation of many-faced Brillouin zone polyhedra. Under compression to less than a half of the initial volume the interatomic distances become close to or smaller than the ionic radius which should lead to the electron core ionization. At strong compression it is necessary to assume that for alkali metals the valence electron band overlaps with the upper core electrons, which increases the valence electron count under compression.

  11. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helm, T.; Bachmann, M.; Moll, P.J.W.

    2017-03-23

    Electronic nematicity appears in proximity to unconventional high-temperature superconductivity in the cuprates and iron-arsenides, yet whether they cooperate or compete is widely discussed. While many parallels are drawn between high-T c and heavy fermion superconductors, electronic nematicity was not believed to be an important aspect in their superconductivity. We have found evidence for a field-induced strong electronic in-plane symmetry breaking in the tetragonal heavy fermion superconductor CeRhIn 5. At ambient pressure and zero field, it hosts an anti-ferromagnetic order (AFM) of nominally localized 4f electrons at TN=3.8K(1). Moderate pressure of 17kBar suppresses the AFM order and a dome of superconductivitymore » appears around the quantum critical point. Similarly, a density-wave-like correlated phase appears centered around the field-induced AFM quantum critical point. In this phase, we have now observed electronic nematic behavior.« less

  12. Study of the dielectric breakdown properties of CO2-O2 mixtures by considering electron detachments from negative ions

    NASA Astrophysics Data System (ADS)

    Zhao, Hu; Tian, Zengyao; Deng, Yunkun; Li, Xingwen; Lin, Hui

    2017-12-01

    The dielectric breakdown properties of CO2-O2 mixtures at different O2 concentrations and gas pressures were studied in this paper, with electron detachments from negative ions taken into consideration. The influences of the electron detachment on the reduced effective ionization coefficients αeff/N, the critical reduced electric fields (E/N)cr, the critical electron temperature Tcr, the breakdown reduced electric fields (E/N)breakdown, and the breakdown electron temperature Tbreakdown were analyzed for the CO2-O2 mixture. Based on the results, it was found that an enhancement in αeff/N and a decrease in (E/N)cr and Tcr were caused by the electron detachment, which appeared to be more significant at relatively low E/N and low gas pressures. With the increase in the pd product, both (E/N)breakdown and Tbreakdown in the CO2-O2 mixture decreased first and then tended to be a constant at relatively high pd products.

  13. Pulsed Electron Source with Grid Plasma Cathode and Longitudinal Magnetic Field for Modification of Material and Product Surfaces

    NASA Astrophysics Data System (ADS)

    Devyatkov, V. N.; Koval, N. N.

    2018-01-01

    The description and the main characteristics of the pulsed electron source "SOLO" developed on the basis of the plasma cathode with grid stabilization of the emission plasma boundary are presented. The emission plasma is generated by a low-pressure arc discharge, and that allows to form the dense low-energy electron beam with a wide range of independently adjustable parameters of beam current pulses (pulse duration of 20-250 μs, pulse repetition rate of 1-10 s-1, amplitude of beam current pulses of 20-300 A, and energy of beam electrons of 5-25 keV). The special features of generation of emission plasma by constricted low-pressure arc discharge in the grid plasma cathode partially dipped into a non-uniform magnetic field and of formation and transportation of the electron beam in a longitudinal magnetic field are considered. The application area of the electron source and technologies realized with its help are specified.

  14. Millimeter-Wave Time Resolved Studies of the Formation and Decay of CO^+

    NASA Astrophysics Data System (ADS)

    Oesterling, Lee; Herbst, Eric; de Lucia, Frank

    1998-04-01

    Since the rate constants for ion-molecule interactions are typically much larger than neutral-neutral interactions, understanding ion-molecule interactions is essential to interpreting radio astronomical spectra from interstellar clouds and modeling the processes which lead to the formation of stars in these regions. We have developed a cell which allows us to study ion-molecule interactions in gases at low temperatures and pressures by using an electron gun technique to create ions. By centering our millimeter-wave source on a rotational resonance and gating the electron beam on and off, we are able to study the time-dependent rotational state distribution of the ion during its formation and decay, and so learn about excitation and relaxation processes as functions of temperature, pressure, electron beam energy, and electron beam current.

  15. Simulation of plasma loading of high-pressure RF cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K.; Samulyak, R.; Yonehara, K.

    2018-01-11

    Muon beam-induced plasma loading of radio-frequency (RF) cavities filled with high pressure hydrogen gas with 1% dry air dopant has been studied via numerical simulations. The electromagnetic code SPACE, that resolves relevant atomic physics processes, including ionization by the muon beam, electron attachment to dopant molecules, and electron-ion and ion-ion recombination, has been used. Simulations studies have also been performed in the range of parameters typical for practical muon cooling channels.

  16. ELECTRON CLOUD OBSERVATIONS AND CURES IN RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FISCHER,W.; BLASKIEWICZ, M.; HUANG, H.

    Since 2001 RHIC has experienced electron cloud effects, which have limited the beam intensity. These include dynamic pressure rises - including pressure instabilities, tune shifts, a reduction of the stability threshold for bunches crossing the transition energy, and possibly incoherent emittance growth. We summarize the main observations in operation and dedicated experiments, as well as countermeasures including baking, NEG coated warm beam pipes, solenoids, bunch patterns, anti-grazing rings, pre-pumped cold beam pipes, scrubbing, and operation with long bunches.

  17. Electron density and gas density measurements in a millimeter-wave discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaub, S. C., E-mail: sschaub@mit.edu; Hummelt, J. S.; Guss, W. C.

    2016-08-15

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal tomore » the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.« less

  18. Electron Information in Single- and Dual-Frequency Capacitive Discharges at Atmospheric Pressure.

    PubMed

    Park, Sanghoo; Choe, Wonho; Moon, Se Youn; Shi, Jian Jun

    2018-05-14

    Determining the electron properties of weakly ionized gases, particularly in a high electron-neutral collisional condition, is a nontrivial task; thus, the mechanisms underlying the electron characteristics and electron heating structure in radio-frequency (rf) collisional discharges remain unclear. Here, we report the electrical characteristics and electron information in single-frequency (4.52 MHz and 13.56 MHz) and dual-frequency (a combination of 4.52 MHz and 13.56 MHz) capacitive discharges within the abnormal α-mode regime at atmospheric pressure. A continuum radiation-based electron diagnostic method is employed to estimate the electron density (n e ) and temperature (T e ). Our experimental observations reveal that time-averaged n e (7.7-14 × 10 11  cm -3 ) and T e (1.75-2.5 eV) can be independently controlled in dual-frequency discharge, whereas such control is nontrivial in single-frequency discharge, which shows a linear increase in n e and little to no change in T e with increases in the rf input power. Furthermore, the two-dimensional spatiotemporal evolution of neutral bremsstrahlung and associated electron heating structures is demonstrated. These results reveal that a symmetric structure in electron heating becomes asymmetric (via a local suppression of electron temperature) as two-frequency power is simultaneously introduced.

  19. Automated measurement of pressure injury through image processing.

    PubMed

    Li, Dan; Mathews, Carol

    2017-11-01

    To develop an image processing algorithm to automatically measure pressure injuries using electronic pressure injury images stored in nursing documentation. Photographing pressure injuries and storing the images in the electronic health record is standard practice in many hospitals. However, the manual measurement of pressure injury is time-consuming, challenging and subject to intra/inter-reader variability with complexities of the pressure injury and the clinical environment. A cross-sectional algorithm development study. A set of 32 pressure injury images were obtained from a western Pennsylvania hospital. First, we transformed the images from an RGB (i.e. red, green and blue) colour space to a YC b C r colour space to eliminate inferences from varying light conditions and skin colours. Second, a probability map, generated by a skin colour Gaussian model, guided the pressure injury segmentation process using the Support Vector Machine classifier. Third, after segmentation, the reference ruler - included in each of the images - enabled perspective transformation and determination of pressure injury size. Finally, two nurses independently measured those 32 pressure injury images, and intraclass correlation coefficient was calculated. An image processing algorithm was developed to automatically measure the size of pressure injuries. Both inter- and intra-rater analysis achieved good level reliability. Validation of the size measurement of the pressure injury (1) demonstrates that our image processing algorithm is a reliable approach to monitoring pressure injury progress through clinical pressure injury images and (2) offers new insight to pressure injury evaluation and documentation. Once our algorithm is further developed, clinicians can be provided with an objective, reliable and efficient computational tool for segmentation and measurement of pressure injuries. With this, clinicians will be able to more effectively monitor the healing process of pressure injuries. © 2017 John Wiley & Sons Ltd.

  20. Electron Field Emission Properties of Textured Platinum Surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, James S.

    2002-01-01

    During ground tests of electric microthrusters and space tests of electrodynamic tethers the electron emitters must successfully operate at environmental pressures possibly as high as 1x10(exp -4) Pa. High partial pressures of oxygen, nitrogen, and water vapor are expected in such environments. A textured platinum surface was used in this work for field emission cathode assessments because platinum does not form oxide films at low temperatures. Although a reproducible cathode conditioning process did not evolve from this work, some short term tests for periods of 1 to 4 hours showed no degradation of emission current at an electric field of 8 V/mm and background pressures of about 1x10(exp -6) Pa. Increases of background pressure by air flow to about 3x10(exp -4) Pa yield a hostile environment for the textured platinum field emission cathode.

Top