5 CFR 850.301 - Electronic records; other acceptable records.
Code of Federal Regulations, 2012 CFR
2012-01-01
...; other acceptable records. (a) Acceptable electronic records for processing by the electronic retirement and insurance processing system include— (1) Electronic employee data submitted by an agency or other entity through EHRI and stored within the new retirement and insurance processing system; (2) Electronic...
5 CFR 850.301 - Electronic records; other acceptable records.
Code of Federal Regulations, 2013 CFR
2013-01-01
...; other acceptable records. (a) Acceptable electronic records for processing by the electronic retirement and insurance processing system include— (1) Electronic employee data submitted by an agency or other entity through EHRI and stored within the new retirement and insurance processing system; (2) Electronic...
5 CFR 850.301 - Electronic records; other acceptable records.
Code of Federal Regulations, 2011 CFR
2011-01-01
...; other acceptable records. (a) Acceptable electronic records for processing by the electronic retirement and insurance processing system include— (1) Electronic employee data submitted by an agency or other entity through EHRI and stored within the new retirement and insurance processing system; (2) Electronic...
5 CFR 850.301 - Electronic records; other acceptable records.
Code of Federal Regulations, 2010 CFR
2010-01-01
...; other acceptable records. (a) Acceptable electronic records for processing by the electronic retirement and insurance processing system include— (1) Electronic employee data submitted by an agency or other entity through EHRI and stored within the new retirement and insurance processing system; (2) Electronic...
Integrated control system for electron beam processes
NASA Astrophysics Data System (ADS)
Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.
2018-03-01
The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.
48 CFR 908.7116 - Electronic data processing tape.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Electronic data processing... Electronic data processing tape. (a) Acquisitions of electronic data processing tape by DOE offices shall be in accordance with FPMR 41 CFR 101-26.508. (b) Acquisitions of electronic data processing tape by...
48 CFR 908.7116 - Electronic data processing tape.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Electronic data processing... Electronic data processing tape. (a) Acquisitions of electronic data processing tape by DOE offices shall be in accordance with FPMR 41 CFR 101-26.508. (b) Acquisitions of electronic data processing tape by...
48 CFR 908.7116 - Electronic data processing tape.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 5 2013-10-01 2013-10-01 false Electronic data processing... Electronic data processing tape. (a) Acquisitions of electronic data processing tape by DOE offices shall be in accordance with FPMR 41 CFR 101-26.508. (b) Acquisitions of electronic data processing tape by...
48 CFR 908.7116 - Electronic data processing tape.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Electronic data processing... Electronic data processing tape. (a) Acquisitions of electronic data processing tape by DOE offices shall be in accordance with FPMR 41 CFR 101-26.508. (b) Acquisitions of electronic data processing tape by...
48 CFR 908.7116 - Electronic data processing tape.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 5 2012-10-01 2012-10-01 false Electronic data processing... Electronic data processing tape. (a) Acquisitions of electronic data processing tape by DOE offices shall be in accordance with FPMR 41 CFR 101-26.508. (b) Acquisitions of electronic data processing tape by...
Collective relaxation processes in atoms, molecules and clusters
NASA Astrophysics Data System (ADS)
Kolorenč, Přemysl; Averbukh, Vitali; Feifel, Raimund; Eland, John
2016-04-01
Electron correlation is an essential driver of a variety of relaxation processes in excited atomic and molecular systems. These are phenomena which often lead to autoionization typically involving two-electron transitions, such as the well-known Auger effect. However, electron correlation can give rise also to higher-order processes characterized by multi-electron transitions. Basic examples include simultaneous two-electron emission upon recombination of an inner-shell vacancy (double Auger decay) or collective decay of two holes with emission of a single electron. First reports of this class of processes date back to the 1960s, but their investigation intensified only recently with the advent of free-electron lasers. High fluxes of high-energy photons induce multiple excitation or ionization of a system on the femtosecond timescale and under such conditions the importance of multi-electron processes increases significantly. We present an overview of experimental and theoretical works on selected multi-electron relaxation phenomena in systems of different complexity, going from double Auger decay in atoms and small molecules to collective interatomic autoionization processes in nanoscale samples.
BPM System for Electron Cooling in the Fermilab Recycler Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joireman, Paul W.; Cai, Jerry; Chase, Brian E.
2004-11-10
We report a VXI based system used to acquire and process BPM data for the electron cooling system in the Fermilab Recycler ring. The BPM system supports acquisition of data from 19 BPM locations in five different sections of the electron cooling apparatus. Beam positions for both electrons and anti-protons can be detected simultaneously with a resolution of {+-}50 {mu}m. We calibrate the system independently for each beam type at each BPM location. We describe the system components, signal processing and modes of operation used in support of the electron-cooling project and present experimental results of system performance for themore » developmental electron cooling installation at Fermilab.« less
Sauer, Vernon B.
2002-01-01
Surface-water computation methods and procedures are described in this report to provide standards from which a completely automated electronic processing system can be developed. To the greatest extent possible, the traditional U. S. Geological Survey (USGS) methodology and standards for streamflow data collection and analysis have been incorporated into these standards. Although USGS methodology and standards are the basis for this report, the report is applicable to other organizations doing similar work. The proposed electronic processing system allows field measurement data, including data stored on automatic field recording devices and data recorded by the field hydrographer (a person who collects streamflow and other surface-water data) in electronic field notebooks, to be input easily and automatically. A user of the electronic processing system easily can monitor the incoming data and verify and edit the data, if necessary. Input of the computational procedures, rating curves, shift requirements, and other special methods are interactive processes between the user and the electronic processing system, with much of this processing being automatic. Special computation procedures are provided for complex stations such as velocity-index, slope, control structures, and unsteady-flow models, such as the Branch-Network Dynamic Flow Model (BRANCH). Navigation paths are designed to lead the user through the computational steps for each type of gaging station (stage-only, stagedischarge, velocity-index, slope, rate-of-change in stage, reservoir, tide, structure, and hydraulic model stations). The proposed electronic processing system emphasizes the use of interactive graphics to provide good visual tools for unit values editing, rating curve and shift analysis, hydrograph comparisons, data-estimation procedures, data review, and other needs. Documentation, review, finalization, and publication of records are provided for with the electronic processing system, as well as archiving, quality assurance, and quality control.
Modeling of outpatient prescribing process in iran: a gateway toward electronic prescribing system.
Ahmadi, Maryam; Samadbeik, Mahnaz; Sadoughi, Farahnaz
2014-01-01
Implementation of electronic prescribing system can overcome many problems of the paper prescribing system, and provide numerous opportunities of more effective and advantageous prescribing. Successful implementation of such a system requires complete and deep understanding of work content, human force, and workflow of paper prescribing. The current study was designed in order to model the current business process of outpatient prescribing in Iran and clarify different actions during this process. In order to describe the prescribing process and the system features in Iran, the methodology of business process modeling and analysis was used in the present study. The results of the process documentation were analyzed using a conceptual model of workflow elements and the technique of modeling "As-Is" business processes. Analysis of the current (as-is) prescribing process demonstrated that Iran stood at the first levels of sophistication in graduated levels of electronic prescribing, namely electronic prescription reference, and that there were problematic areas including bottlenecks, redundant and duplicated work, concentration of decision nodes, and communicative weaknesses among stakeholders of the process. Using information technology in some activities of medication prescription in Iran has not eliminated the dependence of the stakeholders on paper-based documents and prescriptions. Therefore, it is necessary to implement proper system programming in order to support change management and solve the problems in the existing prescribing process. To this end, a suitable basis should be provided for reorganization and improvement of the prescribing process for the future electronic systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strait, R.S.; Wagner, E.E.
1994-07-01
The US Department of Energy (DOE) Office of Safeguards and Security initiated the DOE Integrated Security System / Electronic Transfer (DISS/ET) for the purpose of reducing the time required to process security clearance requests. DISS/ET will be an integrated system using electronic commerce technologies for the collection and processing of personnel security clearance data, and its transfer between DOE local security clearance offices, DOE Operations Offices, and the Office of Personnel Management. The system will use electronic forms to collect clearance applicant data. The forms data will be combined with electronic fingerprint images and packaged in a secure encrypted electronicmore » mail envelope for transmission across the Internet. Information provided by the applicant will be authenticated using digital signatures. All processing will be done electronically.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-09
... With Image Processing Systems, Components Thereof, and Associated Software; Notice of Commission... importation of certain electronic devices with image processing systems, components thereof, and associated... direct infringement is asserted and the accused article does not meet every limitation of the asserted...
Fast and precise processing of material by means of an intensive electron beam
NASA Astrophysics Data System (ADS)
Beisswenger, S.
1984-07-01
For engraving a picture carrying screen of cells into the copper-surface of gravure cylinders, an electron beam system was developed. Numerical computations of the power density in the image planes of the electron beam determined the design of the electron optical assembly. A highly stable electron beam of high power density is generated by a ribbon-like cathode. A system of magnetic lenses is used for fast control of the engraving processes and for dynamic changing of the electron optical demagnification. The electron beam engraving system is capable of engraving up to 150,000 gravure cells per sec.
Nurses' Experiences of an Initial and Reimplemented Electronic Health Record Use.
Chang, Chi-Ping; Lee, Ting-Ting; Liu, Chia-Hui; Mills, Mary Etta
2016-04-01
The electronic health record is a key component of healthcare information systems. Currently, numerous hospitals have adopted electronic health records to replace paper-based records to document care processes and improve care quality. Integrating healthcare information system into traditional nursing daily operations requires time and effort for nurses to become familiarized with this new technology. In the stages of electronic health record implementation, smooth adoption can streamline clinical nursing activities. In order to explore the adoption process, a descriptive qualitative study design and focus group interviews were conducted 3 months after and 2 years after electronic health record system implementation (system aborted 1 year in between) in one hospital located in southern Taiwan. Content analysis was performed to analyze the interview data, and six main themes were derived, in the first stage: (1) liability, work stress, and anticipation for electronic health record; (2) slow network speed, user-unfriendly design for learning process; (3) insufficient information technology/organization support; on the second stage: (4) getting used to electronic health record and further system requirements, (5) benefits of electronic health record in time saving and documentation, (6) unrealistic information technology competence expectation and future use. It concluded that user-friendly design and support by informatics technology and manpower backup would facilitate this adoption process as well.
Computer-Aided Acquisition and Logistic Support Gateway Development
1989-09-01
The initial step integrates the current vendor interfaces (Paperless Order Processing System (POPS) and SAMXIMS Procurement by Electronic Data Exchange...Paperless Order Processing System POSIX = Portable Operating System for UNIX RFQ = Request for Quotation RS-232C = The Electronics Industries
NASA Technical Reports Server (NTRS)
Gan, L.; Cravens, T. E.
1992-01-01
Energy transfer between electrons and methane gas by collisional processes plays an important role in the thermal balance of electrons in the atmospheres and ionospheres of planets and satellites in the outer solar system. The literature is reviewed for electron impact cross-sections for methane in this paper. Energy transfer rates are calculated for elastic and inelastic processes using a Maxwellian electron distribution. Vibrational, rotational, and electronic excitation and ionization are included. Results are presented for a wide range of electron temperatures and neutral temperatures.
Advanced Electronic Systems. Curriculum Guide for Technology Education.
ERIC Educational Resources Information Center
Patrick, Dale R.
This curriculum for a 1-semester or 1-year course in electronics is designed to take students from basic through advanced electronic systems. It covers several electronic areas, such as digital electronics, communication electronics, industrial process control, instrumentation, programmable controllers, and robotics. The guide contains…
A Copmarative Review of Electronic Prescription Systems: Lessons Learned from Developed Countries
Samadbeik, Mahnaz; Ahmadi, Maryam; Sadoughi, Farahnaz; Garavand, Ali
2017-01-01
This review study aimed to compare the electronic prescription systems in five selected countries (Denmark, Finland, Sweden, England, and the United States). Compared developed countries were selected by the identified selection process from the countries that have electronic prescription systems. Required data were collected by searching the valid databases, most widely used search engines, and visiting websites related to the national electronic prescription system of each country and also sending E-mails to the related organizations using specifically designed data collection forms. The findings showed that the electronic prescription system was used at the national, state, local, and area levels in the studied countries and covered the whole prescription process or part of it. There were capabilities of creating electronic prescription, decision support, electronically transmitting prescriptions from prescriber systems to the pharmacies, retrieving the electronic prescription at the pharmacy, electronic refilling prescriptions in all studied countries. The patient, prescriber, and dispenser were main human actors, as well as the prescribing and dispensing providers were main system actors of the Electronic Prescription Service. The selected countries have accurate, regular, and systematic plans to use electronic prescription system, and health ministry of these countries was responsible for coordinating and leading the electronic health. It is suggested to use experiences and programs of the leading countries to design and develop the electronic prescription systems. PMID:28331859
Stiltner, G.J.
1990-01-01
In 1987, the Water Resources Division of the U.S. Geological Survey undertook three pilot projects to evaluate electronic report processing systems as a means to improve the quality and timeliness of reports pertaining to water resources investigations. The three projects selected for study included the use of the following configuration of software and hardware: Ventura Publisher software on an IBM model AT personal computer, PageMaker software on a Macintosh computer, and FrameMaker software on a Sun Microsystems workstation. The following assessment criteria were to be addressed in the pilot studies: The combined use of text, tables, and graphics; analysis of time; ease of learning; compatibility with the existing minicomputer system; and technical limitations. It was considered essential that the camera-ready copy produced be in a format suitable for publication. Visual improvement alone was not a consideration. This report consolidates and summarizes the findings of the electronic report processing pilot projects. Text and table files originating on the existing minicomputer system were successfully transformed to the electronic report processing systems in American Standard Code for Information Interchange (ASCII) format. Graphics prepared using a proprietary graphics software package were transferred to all the electronic report processing software through the use of Computer Graphic Metafiles. Graphics from other sources were entered into the systems by scanning paper images. Comparative analysis of time needed to process text and tables by the electronic report processing systems and by conventional methods indicated that, although more time is invested in creating the original page composition for an electronically processed report , substantial time is saved in producing subsequent reports because the format can be stored and re-used by electronic means as a template. Because of the more compact page layouts, costs of printing the reports were 15% to 25% less than costs of printing the reports prepared by conventional methods. Because the largest report workload in the offices conducting water resources investigations is preparation of Water-Resources Investigations Reports, Open-File Reports, and annual State Data Reports, the pilot studies only involved these projects. (USGS)
NASA Astrophysics Data System (ADS)
Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing
2013-10-01
In neuroscience, signal processing, memory and learning function are established in the brain by modifying ionic fluxes in neurons and synapses. Emulation of memory and learning behaviors of biological systems by nanoscale ionic/electronic devices is highly desirable for building neuromorphic systems or even artificial neural networks. Here, novel artificial synapses based on junctionless oxide-based protonic/electronic hybrid transistors gated by nanogranular phosphorus-doped SiO2-based proton-conducting films are fabricated on glass substrates by a room-temperature process. Short-term memory (STM) and long-term memory (LTM) are mimicked by tuning the pulse gate voltage amplitude. The LTM process in such an artificial synapse is due to the proton-related interfacial electrochemical reaction. Our results are highly desirable for building future neuromorphic systems or even artificial networks via electronic elements.In neuroscience, signal processing, memory and learning function are established in the brain by modifying ionic fluxes in neurons and synapses. Emulation of memory and learning behaviors of biological systems by nanoscale ionic/electronic devices is highly desirable for building neuromorphic systems or even artificial neural networks. Here, novel artificial synapses based on junctionless oxide-based protonic/electronic hybrid transistors gated by nanogranular phosphorus-doped SiO2-based proton-conducting films are fabricated on glass substrates by a room-temperature process. Short-term memory (STM) and long-term memory (LTM) are mimicked by tuning the pulse gate voltage amplitude. The LTM process in such an artificial synapse is due to the proton-related interfacial electrochemical reaction. Our results are highly desirable for building future neuromorphic systems or even artificial networks via electronic elements. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02987e
Development and fabrication of a solar cell junction processing system
NASA Technical Reports Server (NTRS)
Banker, S.
1982-01-01
Development of a pulsed electron beam subsystem, wafer transport system, and ion implanter are discussed. A junction processing system integration and cost analysis are reviewed. Maintenance of the electron beam processor and the experimental test unit of the non-mass analyzed ion implanter is reviewed.
Printed Carbon Nanotube Electronics and Sensor Systems.
Chen, Kevin; Gao, Wei; Emaminejad, Sam; Kiriya, Daisuke; Ota, Hiroki; Nyein, Hnin Yin Yin; Takei, Kuniharu; Javey, Ali
2016-06-01
Printing technologies offer large-area, high-throughput production capabilities for electronics and sensors on mechanically flexible substrates that can conformally cover different surfaces. These capabilities enable a wide range of new applications such as low-cost disposable electronics for health monitoring and wearables, extremely large format electronic displays, interactive wallpapers, and sensing arrays. Solution-processed carbon nanotubes have been shown to be a promising candidate for such printing processes, offering stable devices with high performance. Here, recent progress made in printed carbon nanotube electronics is discussed in terms of materials, processing, devices, and applications. Research challenges and opportunities moving forward from processing and system-level integration points of view are also discussed for enabling practical applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Allsop, Matthew J; Kite, Suzanne; McDermott, Sarah; Penn, Naomi; Millares-Martin, Pablo; Bennett, Michael I
2016-01-01
Background: The need to improve coordination of care at end of life has driven electronic palliative care coordination systems implementation across the United Kingdom and internationally. No approaches for evaluating electronic palliative care coordination systems use in practice have been developed. Aim: This study outlines and applies an evaluation framework for examining how and when electronic documentation of advance care planning is occurring in end of life care services. Design: A pragmatic, formative process evaluation approach was adopted. The evaluation drew on the Project Review and Objective Evaluation methodology to guide the evaluation framework design, focusing on clinical processes. Setting/participants: Data were extracted from electronic palliative care coordination systems for 82 of 108 general practices across a large UK city. All deaths (n = 1229) recorded on electronic palliative care coordination systems between April 2014 and March 2015 were included to determine the proportion of all deaths recorded, median number of days prior to death that key information was recorded and observations about routine data use. Results: The evaluation identified 26.8% of all deaths recorded on electronic palliative care coordination systems. The median number of days to death was calculated for initiation of an electronic palliative care coordination systems record (31 days), recording a patient’s preferred place of death (8 days) and entry of Do Not Attempt Cardiopulmonary Resuscitation decisions (34 days). Where preferred and actual place of death was documented, these were matching for 75% of patients. Anomalies were identified in coding used during data entry on electronic palliative care coordination systems. Conclusion: This study reports the first methodology for evaluating how and when electronic palliative care coordination systems documentation is occurring. It raises questions about what can be drawn from routine data collected through electronic palliative care coordination systems and outlines considerations for future evaluation. Future evaluations should consider work processes of health professionals using electronic palliative care coordination systems. PMID:27507636
Allsop, Matthew J; Kite, Suzanne; McDermott, Sarah; Penn, Naomi; Millares-Martin, Pablo; Bennett, Michael I
2017-05-01
The need to improve coordination of care at end of life has driven electronic palliative care coordination systems implementation across the United Kingdom and internationally. No approaches for evaluating electronic palliative care coordination systems use in practice have been developed. This study outlines and applies an evaluation framework for examining how and when electronic documentation of advance care planning is occurring in end of life care services. A pragmatic, formative process evaluation approach was adopted. The evaluation drew on the Project Review and Objective Evaluation methodology to guide the evaluation framework design, focusing on clinical processes. Data were extracted from electronic palliative care coordination systems for 82 of 108 general practices across a large UK city. All deaths ( n = 1229) recorded on electronic palliative care coordination systems between April 2014 and March 2015 were included to determine the proportion of all deaths recorded, median number of days prior to death that key information was recorded and observations about routine data use. The evaluation identified 26.8% of all deaths recorded on electronic palliative care coordination systems. The median number of days to death was calculated for initiation of an electronic palliative care coordination systems record (31 days), recording a patient's preferred place of death (8 days) and entry of Do Not Attempt Cardiopulmonary Resuscitation decisions (34 days). Where preferred and actual place of death was documented, these were matching for 75% of patients. Anomalies were identified in coding used during data entry on electronic palliative care coordination systems. This study reports the first methodology for evaluating how and when electronic palliative care coordination systems documentation is occurring. It raises questions about what can be drawn from routine data collected through electronic palliative care coordination systems and outlines considerations for future evaluation. Future evaluations should consider work processes of health professionals using electronic palliative care coordination systems.
Electron beam deflection control system of a welding and surface modification installation
NASA Astrophysics Data System (ADS)
Koleva, E.; Dzharov, V.; Gerasimov, V.; Tsvetkov, K.; Mladenov, G.
2018-03-01
In the present work, we examined the patterns of the electron beam motion when controlling the transverse with respect to the axis of the beam homogeneous magnetic field created by the coils of the deflection system the electron gun. During electron beam processes, the beam motion is determined the process type (welding, surface modification, etc.), the technological mode, the design dimensions of the electron gun and the shape of the processed samples. The electron beam motion is defined by the cumulative action of two cosine-like control signals generated by a functional generator. The signal control is related to changing the amplitudes, frequencies and phases (phase differences) of the generated voltages. We realized the motion control by applying a graphical user interface developed by us and an Arduino Uno programmable microcontroller. The signals generated were calibrated using experimental data from the available functional generator. The free and precise motion on arbitrary trajectories determines the possible applications of an electron beam process to carrying out various scientific research tasks in material processing.
Plasma parameters in a multidipole plasma system
NASA Astrophysics Data System (ADS)
Ruscanu, D.; Anita, V.; Popa, G.
Plasma potential and electron number densities and electron temperatures under bi-Maxwellian approximation for electron distribution function of the multidipole argon plasma source system were measured for a gas pressure ranging between 10-4 and 10-3 mbar and an anode-cathode voltage ranging between 40 and 120 V but a constant discharge current intensity. The first group, as ultimate or cold electrons and main electron plasma population, results by trapping of the slow electrons produced by ionisation process due to primary-neutral collisions. The trapping process is produced by potential well due to positive plasma potential with respect to the anode so that electron temperature of the ultimate electrons does not depend on both the gas pressure and discharge voltage. The second group, as secondary or hot electrons, results as degrading process of the primaries and their number density increases while their temperature decreases with the increase of both the gas pressure and discharge voltage.
Hediger, Hannele; Müller-Staub, Maria; Petry, Heidi
2016-01-01
Electronic nursing documentation systems, with standardized nursing terminology, are IT-based systems for recording the nursing processes. These systems have the potential to improve the documentation of the nursing process and to support nurses in care delivery. This article describes the development and initial validation of an instrument (known by its German acronym UEPD) to measure the subjectively-perceived benefits of an electronic nursing documentation system in care delivery. The validity of the UEPD was examined by means of an evaluation study carried out in an acute care hospital (n = 94 nurses) in German-speaking Switzerland. Construct validity was analyzed by principal components analysis. Initial references of validity of the UEPD could be verified. The analysis showed a stable four factor model (FS = 0.89) scoring in 25 items. All factors loaded ≥ 0.50 and the scales demonstrated high internal consistency (Cronbach's α = 0.73 – 0.90). Principal component analysis revealed four dimensions of support: establishing nursing diagnosis and goals; recording a case history/an assessment and documenting the nursing process; implementation and evaluation as well as information exchange. Further testing with larger control samples and with different electronic documentation systems are needed. Another potential direction would be to employ the UEPD in a comparison of various electronic documentation systems.
Electronic filters, hearing aids and methods
NASA Technical Reports Server (NTRS)
Engebretson, A. Maynard (Inventor)
1995-01-01
An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electrical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a first signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the first signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems and methods of operating them are also disclosed.
Electronic filters, hearing aids and methods
NASA Technical Reports Server (NTRS)
Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor); Zheng, Baohua (Inventor)
1991-01-01
An electronic filter for an electroacoustic system. The system has a microphone for generating an electrical output from external sounds and an electrically driven transducer for emitting sound. Some of the sound emitted by the transducer returns to the microphone means to add a feedback contribution to its electical output. The electronic filter includes a first circuit for electronic processing of the electrical output of the microphone to produce a filtered signal. An adaptive filter, interconnected with the first circuit, performs electronic processing of the filtered signal to produce an adaptive output to the first circuit to substantially offset the feedback contribution in the electrical output of the microphone, and the adaptive filter includes means for adapting only in response to polarities of signals supplied to and from the first circuit. Other electronic filters for hearing aids, public address systems and other electroacoustic systems, as well as such systems, and methods of operating them are also disclosed.
JSC earth resources data analysis capabilities available to EOD revision B
NASA Technical Reports Server (NTRS)
1974-01-01
A list and summary description of all Johnson Space Center electronic laboratory and photographic laboratory capabilities available to earth resources division personnel for processing earth resources data are provided. The electronic capabilities pertain to those facilities and systems that use electronic and/or photographic products as output. The photographic capabilities pertain to equipment that uses photographic images as input and electronic and/or table summarizes processing steps. A general hardware description is presented for each of the data processing systems, and the titles of computer programs are used to identify the capabilities and data flow.
Electronic circuitry development in a micropyrotechnic system for micropropulsion applications
NASA Astrophysics Data System (ADS)
Puig-Vidal, Manuel; Lopez, Jaime; Miribel, Pere; Montane, Enric; Lopez-Villegas, Jose M.; Samitier, Josep; Rossi, Carole; Camps, Thierry; Dumonteuil, Maxime
2003-04-01
An electronic circuitry is proposed and implemented to optimize the ignition process and the robustness of a microthruster. The principle is based on the integration of propellant material within a micromachined system. The operational concept is simply based on the combustion of an energetic propellant stored in a micromachined chamber. Each thruster contains three parts (heater, chamber, nozzle). Due to the one shot characteristic, microthrusters are fabricated in 2D array configuration. For the functioning of this kind of system, one critical point is the optimization of the ignition process as a function of the power schedule delivered by electronic devices. One particular attention has been paid on the design and implementation of an electronic chip to control and optimize the system ignition. Ignition process is triggered by electrical power delivered to a polysilicon resistance in contact with the propellant. The resistance is used to sense the temperature on the propellant which is in contact. Temperature of the microthruster node before the ignition is monitored via the electronic circuitry. A pre-heating process before ignition seems to be a good methodology to optimize the ignition process. Pre-heating temperature and pre-heating time are critical parameters to be adjusted. Simulation and experimental results will deeply contribute to improve the micropyrotechnic system. This paper will discuss all these point.
A study of increasing radical density and etch rate using remote plasma generator system
NASA Astrophysics Data System (ADS)
Lee, Jaewon; Kim, Kyunghyun; Cho, Sung-Won; Chung, Chin-Wook
2013-09-01
To improve radical density without changing electron temperature, remote plasma generator (RPG) is applied. Multistep dissociation of the polyatomic molecule was performed using RPG system. RPG is installed to inductively coupled type processing reactor; electrons, positive ions, radicals and polyatomic molecule generated in RPG and they diffused to processing reactor. The processing reactor dissociates the polyatomic molecules with inductively coupled power. The polyatomic molecules are dissociated by the processing reactor that is operated by inductively coupled power. Therefore, the multistep dissociation system generates more radicals than single-step system. The RPG was composed with two cylinder type inductively coupled plasma (ICP) using 400 kHz RF power and nitrogen gas. The processing reactor composed with two turn antenna with 13.56 MHz RF power. Plasma density, electron temperature and radical density were measured with electrical probe and optical methods.
Process margin enhancement for 0.25-μm metal etch process
NASA Astrophysics Data System (ADS)
Lee, Chung Y.; Ma, Wei Wen; Lim, Eng H.; Cheng, Alex T.; Joy, Raymond; Ross, Matthew F.; Wong, Selmer S.; Marlowe, Trey
2000-06-01
This study evaluates electron beam stabilization of UV6, a positive tone Deep-UV (DUV) resist from Shipley, for a 0.25 micrometer metal etch application. Results are compared between untreated resist and resist treated with different levels of electron beam stabilization. The electron beam processing was carried out in an ElectronCureTM flood electron beam exposure system from Honeywell International Inc., Electron Vision. The ElectronCureTM system utilizes a flood electron beam source which is larger in diameter than the substrate being processed, and is capable of variable energy so that the electron range is matched to the resist film thickness. Changes in the UV6 resist material as a result of the electron beam stabilization are monitored via spectroscopic ellipsometry for film thickness and index of refraction changes and FTIR for analysis of chemical changes. Thermal flow stability is evaluated by applying hot plate bakes of 150 degrees Celsius and 200 degrees Celsius, to patterned resist wafers with no treatment and with an electron beam dose level of 2000 (mu) C/cm2. A significant improvement in the thermal flow stability of the patterned UV6 resist features is achieved with the electron beam stabilization process. Etch process performance of the UV6 resist was evaluated by performing a metal pattern transfer process on wafers with untreated resist and comparing these with etch results on wafers with different levels of electron beam stabilization. The etch processing was carried out in an Applied Materials reactor with an etch chemistry including BCl3 and Cl2. All wafers were etched under the same conditions and the resist was treated after etch to prevent further erosion after etch but before SEM analysis. Post metal etch SEM cross-sections show the enhancement in etch resistance provided by the electron beam stabilization process. Enhanced process margin is achieved as a result of the improved etch resistance, and is observed in reduced resist side-wall angles after etch. Only a slight improvement is observed in the isolated to dense bias effects of the etch process. Improved CD control is also achieved by applying the electron beam process, as more consistent CDs are observed after etch.
A front-end readout Detector Board for the OpenPET electronics system
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Abu-Nimeh, F.; Moses, W. W.; Peng, Q.; Vu, C. Q.; Wu, J.-Y.
2015-08-01
We present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, which allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is ``time stamped'' by a time-to-digital converter (TDC) implemented inside the FPGA . This digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.
A front-end readout Detector Board for the OpenPET electronics system
Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.; ...
2015-08-12
Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less
Addressing Electronic Communications System Learning through a Radar-Based Active Learning Project
ERIC Educational Resources Information Center
Hernandez-Jayo, Unai; López-Garde, Juan-Manuel; Rodríguez-Seco, J. Emilio
2015-01-01
In the Master's of Telecommunication Engineering program at the University of Deusto, Spain, courses in communication circuit design, electronic instrumentation, advanced systems for signal processing and radiocommunication systems allow students to acquire concepts crucial to the fields of electronics and communication. During the educational…
77 FR 10621 - Changes to the In-Bond Process
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... submit in-bond applications electronically using a CBP-approved electronic data interchange (EDI) system... electronically submit the in-bond application to CBP via a CBP-approved EDI system. \\6\\ Due to the unique... as the CBP-approved EDI system for submitting the in-bond application and other information that is...
In-Process Thermal Imaging of the Electron Beam Freeform Fabrication Process
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Domack, Christopher S.; Zalameda, Joseph N.; Taminger, Brian L.; Hafley, Robert A.; Burke, Eric R.
2016-01-01
Researchers at NASA Langley Research Center have been developing the Electron Beam Freeform Fabrication (EBF3) metal additive manufacturing process for the past 15 years. In this process, an electron beam is used as a heat source to create a small molten pool on a substrate into which wire is fed. The electron beam and wire feed assembly are translated with respect to the substrate to follow a predetermined tool path. This process is repeated in a layer-wise fashion to fabricate metal structural components. In-process imaging has been integrated into the EBF3 system using a near-infrared (NIR) camera. The images are processed to provide thermal and spatial measurements that have been incorporated into a closed-loop control system to maintain consistent thermal conditions throughout the build. Other information in the thermal images is being used to assess quality in real time by detecting flaws in prior layers of the deposit. NIR camera incorporation into the system has improved the consistency of the deposited material and provides the potential for real-time flaw detection which, ultimately, could lead to the manufacture of better, more reliable components using this additive manufacturing process.
Impact excitation and electron-hole multiplication in graphene and carbon nanotubes.
Gabor, Nathaniel M
2013-06-18
In semiconductor photovoltaics, photoconversion efficiency is governed by a simple competition: the incident photon energy is either transferred to the crystal lattice (heat) or transferred to electrons. In conventional materials, energy loss to the lattice is more efficient than energy transferred to electrons, thus limiting the power conversion efficiency. Quantum electronic systems, such as quantum dots, nanowires, and two-dimensional electronic membranes, promise to tip the balance in this competition by simultaneously limiting energy transfer to the lattice and enhancing energy transfer to electrons. By exploring the optical, thermal, and electronic properties of quantum materials, we may perhaps find an ideal optoelectronic material that provides low cost fabrication, facile systems integration, and a means to surpass the standard limit for photoconversion efficiency. Nanoscale carbon materials, such as graphene and carbon nanotubes, provide ideal experimental quantum systems in which to explore optoelectronic behavior for applications in solar energy harvesting. Within essentially the same material, researchers can achieve a broad spectrum of energetic configurations, from a gapless semimetal to a large band-gap semiconducting nanowire. Owing to their nanoscale dimensions, graphene and carbon nanotubes exhibit electronic and optical properties that reflect strong electron-electron interactions. Such strong interactions may lead to exotic low-energy electron transport behavior and high-energy electron scattering processes such as impact excitation and the inverse process of Auger recombination. High-energy processes, which become very important under photoexcitation, may be particularly efficient in nanoscale carbon materials due to the relativistic-like, charged particle band structure and sensitivity to the dielectric environment. In addition, due to the covalently bonded carbon framework that makes up these materials, electron-phonon coupling is very weak. In carbon nanomaterials, strong electron-electron interactions combined with weak electron-phonon interactions results in excellent optical, thermal and electronic properties, the exploration of which promises to reveal fundamentally new physical processes and deliver advanced nanotechnologies. In this Account, we review the results of novel optoelectronic experiments that explore the intrinsic photoresponse of carbon nanomaterials integrated into nanoscale devices. By fabricating gate voltage-controlled photodetectors composed of atomically thin sheets of graphene and individual carbon nanotubes, we are able to fully explore electron transport in these systems under optical illumination. We find that strong electron-electron interactions play a key role in the intrinsic photoresponse of both materials, as evidenced by hot carrier transport in graphene and highly efficient multiple electron-hole pair generation in nanotubes. In both of these quantum systems, photoexcitation leads to high-energy electron-hole pairs that relax energy predominantly into the electronic system, rather than heating the lattice. Due to highly efficient energy transfer from photons into electrons, graphene and carbon nanotubes may be ideal materials for solar energy harvesting devices with efficiencies that could exceed the Shockley-Queisser limit.
Electronic Document Supply Systems.
ERIC Educational Resources Information Center
Cawkell, A. E.
1991-01-01
Describes electronic document delivery systems used by libraries and document image processing systems used for business purposes. Topics discussed include technical specifications; analogue read-only laser videodiscs; compact discs and CD-ROM; WORM; facsimile; ADONIS (Article Delivery over Network Information System); DOCDEL; and systems at the…
ERIC Educational Resources Information Center
Manke-Brady, Melanie
2012-01-01
The purpose of this study was to examine whether electronic response systems influence student metacognitions in large lecture settings, and how metacognitive processes are influenced. Moreover, this study compared electronic response systems with a low technology system and sought to establish whether differences exist in how the two response…
AI and workflow automation: The prototype electronic purchase request system
NASA Technical Reports Server (NTRS)
Compton, Michael M.; Wolfe, Shawn R.
1994-01-01
Automating 'paper' workflow processes with electronic forms and email can dramatically improve the efficiency of those processes. However, applications that involve complex forms that are used for a variety of purposes or that require numerous and varied approvals often require additional software tools to ensure that (1) the electronic form is correctly and completely filled out, and (2) the form is routed to the proper individuals and organizations for approval. The prototype electronic purchase request (PEPR) system, which has been in pilot use at NASA Ames Research Center since December 1993, seamlessly links a commercial electronics forms package and a CLIPS-based knowledge system that first ensures that electronic forms are correct and complete, and then generates an 'electronic routing slip' that is used to route the form to the people who must sign it. The PEPR validation module is context-sensitive, and can apply different validation rules at each step in the approval process. The PEPR system is form-independent, and has been applied to several different types of forms. The system employs a version of CLIPS that has been extended to support AppleScript, a recently-released scripting language for the Macintosh. This 'scriptability' provides both a transparent, flexible interface between the two programs and a means by which a single copy of the knowledge base can be utilized by numerous remote users.
2009-01-01
Background Electronic guideline-based decision support systems have been suggested to successfully deliver the knowledge embedded in clinical practice guidelines. A number of studies have already shown positive findings for decision support systems such as drug-dosing systems and computer-generated reminder systems for preventive care services. Methods A systematic literature search (1990 to December 2008) of the English literature indexed in the Medline database, Embase, the Cochrane Central Register of Controlled Trials, and CRD (DARE, HTA and NHS EED databases) was conducted to identify evaluation studies of electronic multi-step guideline implementation systems in ambulatory care settings. Important inclusion criterions were the multidimensionality of the guideline (the guideline needed to consist of several aspects or steps) and real-time interaction with the system during consultation. Clinical decision support systems such as one-time reminders for preventive care for which positive findings were shown in earlier reviews were excluded. Two comparisons were considered: electronic multidimensional guidelines versus usual care (comparison one) and electronic multidimensional guidelines versus other guideline implementation methods (comparison two). Results Twenty-seven publications were selected for analysis in this systematic review. Most designs were cluster randomized controlled trials investigating process outcomes more than patient outcomes. With success defined as at least 50% of the outcome variables being significant, none of the studies were successful in improving patient outcomes. Only seven of seventeen studies that investigated process outcomes showed improvements in process of care variables compared with the usual care group (comparison one). No incremental effect of the electronic implementation over the distribution of paper versions of the guideline was found, neither for the patient outcomes nor for the process outcomes (comparison two). Conclusions There is little evidence at the moment for the effectiveness of an increasingly used and commercialised instrument such as electronic multidimensional guidelines. After more than a decade of development of numerous electronic systems, research on the most effective implementation strategy for this kind of guideline-based decision support systems is still lacking. This conclusion implies a considerable risk towards inappropriate investments in ineffective implementation interventions and in suboptimal care. PMID:20042070
Cartmill, Randi S; Walker, James M; Blosky, Mary Ann; Brown, Roger L; Djurkovic, Svetolik; Dunham, Deborah B; Gardill, Debra; Haupt, Marilyn T; Parry, Dean; Wetterneck, Tosha B; Wood, Kenneth E; Carayon, Pascale
2012-11-01
To examine the effect of implementing electronic order management on the timely administration of antibiotics to critical-care patients. We used a prospective pre-post design, collecting data on first-dose IV antibiotic orders before and after the implementation of an integrated electronic medication-management system, which included computerized provider order entry (CPOE), pharmacy order processing and an electronic medication administration record (eMAR). The research was performed in a 24-bed adult medical/surgical ICU in a large, rural, tertiary medical center. Data on the time of ordering, pharmacy processing and administration were prospectively collected and time intervals for each stage and the overall process were calculated. The overall turnaround time from ordering to administration significantly decreased from a median of 100 min before order management implementation to a median of 64 min after implementation. The first part of the medication use process, i.e., from order entry to pharmacy processing, improved significantly whereas no change was observed in the phase from pharmacy processing to medication administration. The implementation of an electronic order-management system improved the timeliness of antibiotic administration to critical-care patients. Additional system changes are required to further decrease the turnaround time. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael
2015-04-10
A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
...-02] RIN 0694-AE98 Simplified Network Application Processing System, On-Line Registration and Account...'') electronically via BIS's Simplified Network Application Processing (SNAP-R) system. Currently, parties must... Network Applications Processing System (SNAP-R) in October 2006. The SNAP-R system provides a Web based...
Improved Ion Resistance for III-V Photocathodes in High Current Guns
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulhollan, Gregory, A.
2012-11-16
The two photocathode test systems were modified, baked and recommissioned. The first system was dedicated to ion studies and the second to electron stimulated recovery (ESR) work. The demonstration system for the electron beam rejuvenation was set up, tested and demonstrated to one of the SSRL team (Dr. Kirby) during a site visit. The requisite subsystems were transferred to SSRL, installed and photoemission studies conducted on activated surfaces following electron beam exposure. Little surface chemistry change was detected in the photoemission spectra following the ESR process. The yield mapping system for the ion (and later, the electron beam rejuvenation) studiesmore » was implemented and use made routine. Ion species and flux measurements were performed for H, He, Ne, Ar, Kr and Xe ions at energies of 0.5, 1.0 and 2.0 kV. Gas induced photoyield measurements followed each ion exposure measurement. These data permit the extraction of photoyield induced change per ion (by species) at the measured energies. Electron beam induced rejuvenation was first demonstrated in the second chamber with primary electron beam energy and dependency investigations following. A Hiden quadrupole mass spectrometer for the electron stimulated desorption (ESD) measurements was procured. The UHV test systems needed for subsequent measurements were configured, baked, commissioned and utilized for their intended purposes. Measurements characterizing the desorption products from the ESD process and secondary electron (SE) yield at the surfaces of negative electron affinity GaAs photocathodes have been performed. One US Utility Patent was granted covering the ESR process.« less
Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC
NASA Astrophysics Data System (ADS)
Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group
2012-12-01
The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.
[Development of a medical equipment support information system based on PDF portable document].
Cheng, Jiangbo; Wang, Weidong
2010-07-01
According to the organizational structure and management system of the hospital medical engineering support, integrate medical engineering support workflow to ensure the medical engineering data effectively, accurately and comprehensively collected and kept in electronic archives. Analyse workflow of the medical, equipment support work and record all work processes by the portable electronic document. Using XML middleware technology and SQL Server database, complete process management, data calculation, submission, storage and other functions. The practical application shows that the medical equipment support information system optimizes the existing work process, standardized and digital, automatic and efficient orderly and controllable. The medical equipment support information system based on portable electronic document can effectively optimize and improve hospital medical engineering support work, improve performance, reduce costs, and provide full and accurate digital data
Low Voltage Electron Beam Processing Final Report CRADA No. TC-645-93-A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, H.; Wakalopulos, G.
This CRADA project was established to develop a small, inexpensive sealed-tube electron beam processing system having immediate applications in industrial, high speed manufacturing processes, and in the Department of Energy (DOE) waste treatment/cleanup operations. The technical work involved the development and demonstration of a compact, sealed, 50-75 kilovolt (kV) EB generator prototype, including controls and power supply. The specific goals of this project were to develop a low cost vacuum tube capable of shooting an electron beam several inches into the air, and to demonstrate that wide area materials processing is feasible by stacking the tubes to produce continuous beams.more » During the project, we successfully demonstrated the producibility of a low cost electron beam system and several material processing operations of interest to US industry, DOE and, since September 11, 2001, the Homeland Security.« less
Magnetic filter apparatus and method for generating cold plasma in semicoductor processing
Vella, Michael C.
1996-01-01
Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a "cold plasma" which is diffused in the region of the process surface while the ion implantation process takes place.
Magnetic filter apparatus and method for generating cold plasma in semiconductor processing
Vella, M.C.
1996-08-13
Disclosed herein is a system and method for providing a plasma flood having a low electron temperature to a semiconductor target region during an ion implantation process. The plasma generator providing the plasma is coupled to a magnetic filter which allows ions and low energy electrons to pass therethrough while retaining captive the primary or high energy electrons. The ions and low energy electrons form a ``cold plasma`` which is diffused in the region of the process surface while the ion implantation process takes place. 15 figs.
GET: A generic electronics system for TPCs and nuclear physics instrumentation
NASA Astrophysics Data System (ADS)
Pollacco, E. C.; Grinyer, G. F.; Abu-Nimeh, F.; Ahn, T.; Anvar, S.; Arokiaraj, A.; Ayyad, Y.; Baba, H.; Babo, M.; Baron, P.; Bazin, D.; Beceiro-Novo, S.; Belkhiria, C.; Blaizot, M.; Blank, B.; Bradt, J.; Cardella, G.; Carpenter, L.; Ceruti, S.; De Filippo, E.; Delagnes, E.; De Luca, S.; De Witte, H.; Druillole, F.; Duclos, B.; Favela, F.; Fritsch, A.; Giovinazzo, J.; Gueye, C.; Isobe, T.; Hellmuth, P.; Huss, C.; Lachacinski, B.; Laffoley, A. T.; Lebertre, G.; Legeard, L.; Lynch, W. G.; Marchi, T.; Martina, L.; Maugeais, C.; Mittig, W.; Nalpas, L.; Pagano, E. V.; Pancin, J.; Poleshchuk, O.; Pedroza, J. L.; Pibernat, J.; Primault, S.; Raabe, R.; Raine, B.; Rebii, A.; Renaud, M.; Roger, T.; Roussel-Chomaz, P.; Russotto, P.; Saccà, G.; Saillant, F.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Tizon, A.; Usher, N.; Wittwer, G.; Yang, J. C.
2018-04-01
General Electronics for TPCs (GET) is a generic, reconfigurable and comprehensive electronics and data-acquisition system for nuclear physics instrumentation of up to 33792 channels. The system consists of a custom-designed ASIC for signal processing, front-end cards that each house 4 ASIC chips and digitize the data in parallel through 12-bit ADCs, concentration boards to read and process the digital data from up to 16 ASICs, a 3-level trigger and master clock module to trigger the system and synchronize the data, as well as all of the associated firmware, communication and data-acquisition software. An overview of the system including its specifications and measured performances are presented.
5 MV 30 mA industrial electron processing system
NASA Astrophysics Data System (ADS)
Hoshi, Y.; Mizusawa, K.
1991-05-01
Industrial electron beam processing systems have been in use in various application fields such as: improving heat resistivity of wire insulation; controlling quality of automobile rubber tires and melt index characteristics of PE foams; and curing paintings or printing inks. Recently, there has come up a need for electron beam with an energy higher than 3 MV in order to disinfect salmonella in chicken meat, to kill bugs in fruits, and to sterilize medical disposables. To meet this need we developed a 5 MV 30 mA electron processing system with an X-ray conversion target. The machine was tested in NHV's plant in Kyoto at continuous operation of full voltage and full current. It proved to be very steady in operation with a high efficiency (as much as 72%). Also, the X-ray target was tested in a continuous run of 5 MV 30 mA (150 kW). It proved to be viable in industrial utilization. This paper introduces the process and the results of the development.
Medverd, Jonathan R; Cross, Nathan M; Font, Frank; Casertano, Andrew
2013-08-01
Radiologists routinely make decisions with only limited information when assigning protocol instructions for the performance of advanced medical imaging examinations. Opportunity exists to simultaneously improve the safety, quality and efficiency of this workflow through the application of an electronic solution leveraging health system resources to provide concise, tailored information and decision support in real-time. Such a system has been developed using an open source, open standards design for use within the Veterans Health Administration. The Radiology Protocol Tool Recorder (RAPTOR) project identified key process attributes as well as inherent weaknesses of paper processes and electronic emulators of paper processes to guide the development of its optimized electronic solution. The design provides a kernel that can be expanded to create an integrated radiology environment. RAPTOR has implications relevant to the greater health care community, and serves as a case model for modernization of legacy government health information systems.
Permanent magnet synchronous motor servo system control based on μC/OS
NASA Astrophysics Data System (ADS)
Shi, Chongyang; Chen, Kele; Chen, Xinglong
2015-10-01
When Opto-Electronic Tracking system operates in complex environments, every subsystem must operate efficiently and stably. As a important part of Opto-Electronic Tracking system, the performance of PMSM(Permanent Magnet Synchronous Motor) servo system affects the Opto-Electronic Tracking system's accuracy and speed greatly[1][2]. This paper applied embedded real-time operating system μC/OS to the control of PMSM servo system, implemented SVPWM(Space Vector Pulse Width Modulation) algorithm in PMSM servo system, optimized the stability of PMSM servo system. Pointing on the characteristics of the Opto-Electronic Tracking system, this paper expanded μC/OS with software redundancy processes, remote debugging and upgrading. As a result, the Opto- Electronic Tracking system performs efficiently and stably.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choong, W. -S.; Abu-Nimeh, F.; Moses, W. W.
Here, we present a 16-channel front-end readout board for the OpenPET electronics system. A major task in developing a nuclear medical imaging system, such as a positron emission computed tomograph (PET) or a single-photon emission computed tomograph (SPECT), is the electronics system. While there are a wide variety of detector and camera design concepts, the relatively simple nature of the acquired data allows for a common set of electronics requirements that can be met by a flexible, scalable, and high-performance OpenPET electronics system. The analog signals from the different types of detectors used in medical imaging share similar characteristics, whichmore » allows for a common analog signal processing. The OpenPET electronics processes the analog signals with Detector Boards. Here we report on the development of a 16-channel Detector Board. Each signal is digitized by a continuously sampled analog-to-digital converter (ADC), which is processed by a field programmable gate array (FPGA) to extract pulse height information. A leading edge discriminator creates a timing edge that is "time stamped" by a time-to-digital converter (TDC) implemented inside the FPGA. In conclusion, this digital information from each channel is sent to an FPGA that services 16 analog channels, and then information from multiple channels is processed by this FPGA to perform logic for crystal lookup, DOI calculation, calibration, etc.« less
Electron Transport Modeling of Molecular Nanoscale Bridges Used in Energy Conversion Schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunietz, Barry D
2016-08-09
The goal of the research program is to reliably describe electron transport and transfer processes at the molecular level. Such insight is essential for improving molecular applications of solar and thermal energy conversion. We develop electronic structure models to study (1) photoinduced electron transfer and transport processes in organic semiconducting materials, and (2) charge and heat transport through molecular bridges. We seek fundamental understanding of key processes, which lead to design new experiments and ultimately to achieve systems with improved properties.
Electron Beam-Cure Polymer Matrix Composites: Processing and Properties
NASA Technical Reports Server (NTRS)
Wrenn, G.; Frame, B.; Jensen, B.; Nettles, A.
2001-01-01
Researchers from NASA and Oak Ridge National Laboratory are evaluating a series of electron beam curable composites for application in reusable launch vehicle airframe and propulsion systems. Objectives are to develop electron beam curable composites that are useful at cryogenic to elevated temperatures (-217 C to 200 C), validate key mechanical properties of these composites, and demonstrate cost-saving fabrication methods at the subcomponent level. Electron beam curing of polymer matrix composites is an enabling capability for production of aerospace structures in a non-autoclave process. Payoffs of this technology will be fabrication of composite structures at room temperature, reduced tooling cost and cure time, and improvements in component durability. This presentation covers the results of material property evaluations for electron beam-cured composites made with either unidirectional tape or woven fabric architectures. Resin systems have been evaluated for performance in ambient, cryogenic, and elevated temperature conditions. Results for electron beam composites and similar composites cured in conventional processes are reviewed for comparison. Fabrication demonstrations were also performed for electron beam-cured composite airframe and propulsion piping subcomponents. These parts have been built to validate manufacturing methods with electron beam composite materials, to evaluate electron beam curing processing parameters, and to demonstrate lightweight, low-cost tooling options.
Advances in artificial olfaction: sensors and applications.
Gutiérrez, J; Horrillo, M C
2014-06-01
The artificial olfaction, based on electronic systems (electronic noses), includes three basic functions that operate on an odorant: a sample handler, an array of gas sensors, and a signal-processing method. The response of these artificial systems can be the identity of the odorant, an estimate concentration of the odorant, or characteristic properties of the odour as might be perceived by a human. These electronic noses are bio inspired instruments that mimic the sense of smell. The complexity of most odorants makes characterisation difficult with conventional analysis techniques, such as gas chromatography. Sensory analysis by a panel of experts is a costly process since it requires trained people who can work for only relatively short periods of time. The electronic noses are easy to build, provide short analysis times, in real time and on-line, and show high sensitivity and selectivity to the tested odorants. These systems are non-destructive techniques used to characterise odorants in diverse applications linked with the quality of life such as: control of foods, environmental quality, citizen security or clinical diagnostics. However, there is much research still to be done especially with regard to new materials and sensors technology, data processing, interpretation and validation of results. This work examines the main features of modern electronic noses and their most important applications in the environmental, and security fields. The above mentioned main components of an electronic nose (sample handling system, more advanced materials and methods for sensing, and data processing system) are described. Finally, some interesting remarks concerning the strengths and weaknesses of electronic noses in the different applications are also mentioned. Copyright © 2014 Elsevier B.V. All rights reserved.
Component-Level Electronic-Assembly Repair (CLEAR) System Architecture
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.
2011-01-01
This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.
Development and fabrication of a solar cell junction processing system
NASA Technical Reports Server (NTRS)
1984-01-01
A processing system capable of producing solar cell junctions by ion implantation followed by pulsed electron beam annealing was developed and constructed. The machine was to be capable of processing 4-inch diameter single-crystal wafers at a rate of 10(7) wafers per year. A microcomputer-controlled pulsed electron beam annealer with a vacuum interlocked wafer transport system was designed, built and demonstrated to produce solar cell junctions on 4-inch wafers with an AMI efficiency of 12%. Experiments showed that a non-mass-analyzed (NMA) ion beam could implant 10 keV phosphorous dopant to form solar cell junctions which were equivalent to mass-analyzed implants. A NMA ion implanter, compatible with the pulsed electron beam annealer and wafer transport system was designed in detail but was not built because of program termination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mechalakos, J.
The process of converting to an electronic chart for radiation therapy can be daunting. It requires a dedicated committee to first research and choose appropriate software, to review the entire documentation policy and flow of the clinic, to convert this system to electronic form or if necessary, redesign the system to more easily conform to the electronic process. Those making the conversion and those who already use electronic charting would benefit from the shared experience of those who have been through the process in the past. Therefore TG262 was convened to provide guidance on electronic charting for external beam radiationmore » therapy and brachytherapy. This course will present the results of an internal survey of task group members on EMR practices in External Beam Radiation Therapy as well as discuss important issues in EMR development and structure for both EBRT and brachytherapy. Learning Objectives: Be familiarized with common practices and pitfalls in development and maintenance of an electronic chart in Radiation Oncology Be familiarized with important issues related to electronic charting in External Beam Radiation Therapy Be familiarized with important issues related to electronic charting in Brachytherapy.« less
Electronic health information system at an opioid treatment programme: roadblocks to implementation
Louie, Ben; Kritz, Steven; Brown, Lawrence S.; Chu, Melissa; Madray, Charles; Zavala, Roberto
2012-01-01
Rationale Electronic health systems are commonly included in health care reform discussions. However, their embrace by the health care community has been slow. Methods At Addiction Research and Treatment Corporation, a methadone maintenance programme that also provides primary medical care, HIV medical care and case management, substance abuse counselling and vocational services, we describe our experience in implementing an electronic health information system that encompasses all of these areas. Results We describe the challenges and opportunities of this process in terms of change management, hierarchy of corporate objectives, process mastering, training issues, information technology governance, electronic security, and communication and collaboration. Conclusion This description may provide practical insights to other institutions seeking to pursue this technology. PMID:21414111
Electronic health information system at an opioid treatment programme: roadblocks to implementation.
Louie, Ben; Kritz, Steven; Brown, Lawrence S; Chu, Melissa; Madray, Charles; Zavala, Roberto
2012-08-01
Electronic health systems are commonly included in health care reform discussions. However, their embrace by the health care community has been slow. At Addiction Research and Treatment Corporation, a methadone maintenance programme that also provides primary medical care, HIV medical care and case management, substance abuse counselling and vocational services, we describe our experience in implementing an electronic health information system that encompasses all of these areas. We describe the challenges and opportunities of this process in terms of change management, hierarchy of corporate objectives, process mastering, training issues, information technology governance, electronic security, and communication and collaboration. This description may provide practical insights to other institutions seeking to pursue this technology. © 2011 Blackwell Publishing Ltd.
Single-chip microprocessor that communicates directly using light.
Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M
2015-12-24
Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.
A Survey of Electronics Obsolescence and Reliability
2010-07-01
properties but there are many minor and major variations (e.g. curing schedule) affecting their usage in packaging processes and in reworking. Curing...within them. Electronic obsolescence is increasingly associated with physical characteristics that reduce component and system reliability, both in usage ...semiconductor technologies and of electronic systems, both in usage and in storage. By design, electronics technologies include few reliability margins
Experimental approaches to well controlled studies of thin-film nucleation and growth.
NASA Technical Reports Server (NTRS)
Poppa, H.; Moorhead, R. D.; Heinemann, K.
1972-01-01
Particular features and the performance of two experimental systems are described for quantitative studies of thin-film nucleation and growth processes including epitaxial depositions. System I consists of a modified LEED-Auger instrument combined with high-resolution electron microscopy. System II is a UHV electron microscope adapted for in-situ deposition studies. The two systems complement each other ideally, and the combined use of both can result in a comprehensive investigation of vapor deposition processes not obtainable with any other known method.
Evaluation of electron beam stabilization for ion implant processing
NASA Astrophysics Data System (ADS)
Buffat, Stephen J.; Kickel, Bee; Philipps, B.; Adams, J.; Ross, Matthew F.; Minter, Jason P.; Marlowe, Trey; Wong, Selmer S.
1999-06-01
With the integration of high energy ion implant processes into volume CMOS manufacturing, the need for thick resist stabilization to achieve a stable ion implant process is critical. With new photoresist characteristics, new implant end station characteristics arise. The resist outgassing needs to be addressed as well as the implant profile to ensure that the dosage is correct and the implant angle does not interfere with other underlying features. This study compares conventional deep-UV/thermal with electron beam stabilization. The electron beam system used in this study utilizes a flood electron source and is a non-thermal process. These stabilization techniques are applied to a MeV ion implant process in a CMOS production process flow.
Electron quantum dynamics in atom-ion interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabzyan, H., E-mail: sabzyan@sci.ui.ac.ir; Jenabi, M. J.
2016-04-07
Electron transfer (ET) process and its dependence on the system parameters are investigated by solving two-dimensional time-dependent Schrödinger equation numerically using split operator technique. Evolution of the electron wavepacket occurs from the one-electron species hydrogen atom to another bare nucleus of charge Z > 1. This evolution is quantified by partitioning the simulation box and defining regional densities belonging to the two nuclei of the system. It is found that the functional form of the time-variations of these regional densities and the extent of ET process depend strongly on the inter-nuclear distance and relative values of the nuclear charges, whichmore » define the potential energy surface governing the electron wavepacket evolution. Also, the initial electronic state of the single-electron atom has critical effect on this evolution and its consequent (partial) electron transfer depending on its spreading extent and orientation with respect to the inter-nuclear axis.« less
Tape transfer printing of a liquid metal alloy for stretchable RF electronics.
Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang
2014-09-03
In order to make conductors with large cross sections for low impedance radio frequency (RF) electronics, while still retaining high stretchability, liquid-alloy-based microfluidic stretchable electronics offers stretchable electronic systems the unique opportunity to combine various sensors on our bodies or organs with high-quality wireless communication with the external world (devices/systems), without sacrificing enhanced user comfort. This microfluidic approach, based on printed circuit board technology, allows large area processing of large cross section conductors and robust contacts, which can handle a lot of stretching between the embedded rigid active components and the surrounding system. Although it provides such benefits, further development is needed to realize its potential as a high throughput, cost-effective process technology. In this paper, tape transfer printing is proposed to supply a rapid prototyping batch process at low cost, albeit at a low resolution of 150 μm. In particular, isolated patterns can be obtained in a simple one-step process. Finally, a stretchable radio frequency identification (RFID) tag is demonstrated. The measured results show the robustness of the hybrid integrated system when the tag is stretched at 50% for 3000 cycles.
Portable data collection terminal in the automated power consumption measurement system
NASA Astrophysics Data System (ADS)
Vologdin, S. V.; Shushkov, I. D.; Bysygin, E. K.
2018-01-01
Aim of efficiency increasing, automation process of electric energy data collection and processing is very important at present time. High cost of classic electric energy billing systems prevent from its mass application. Udmurtenergo Branch of IDGC of Center and Volga Region developed electronic automated system called “Mobile Energy Billing” based on data collection terminals. System joins electronic components based on service-oriented architecture, WCF services. At present time all parts of Udmurtenergo Branch electric network are connected to “Mobile Energy Billing” project. System capabilities are expanded due to flexible architecture.
In-situ electrochemical transmission electron microscopy for battery research.
Mehdi, B Layla; Gu, Meng; Parent, Lucas R; Xu, Wu; Nasybulin, Eduard N; Chen, Xilin; Unocic, Raymond R; Xu, Pinghong; Welch, David A; Abellan, Patricia; Zhang, Ji-Guang; Liu, Jun; Wang, Chong-Min; Arslan, Ilke; Evans, James; Browning, Nigel D
2014-04-01
The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.
Fully printable, strain-engineered electronic wrap for customizable soft electronics.
Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek
2017-03-24
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.
Fully printable, strain-engineered electronic wrap for customizable soft electronics
NASA Astrophysics Data System (ADS)
Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek
2017-03-01
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.
Fully printable, strain-engineered electronic wrap for customizable soft electronics
Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek
2017-01-01
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form. PMID:28338055
MO-A-BRB-03: Integration Issues in Electronic Charting for External Beam Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sutlief, S.
2015-06-15
The process of converting to an electronic chart for radiation therapy can be daunting. It requires a dedicated committee to first research and choose appropriate software, to review the entire documentation policy and flow of the clinic, to convert this system to electronic form or if necessary, redesign the system to more easily conform to the electronic process. Those making the conversion and those who already use electronic charting would benefit from the shared experience of those who have been through the process in the past. Therefore TG262 was convened to provide guidance on electronic charting for external beam radiationmore » therapy and brachytherapy. This course will present the results of an internal survey of task group members on EMR practices in External Beam Radiation Therapy as well as discuss important issues in EMR development and structure for both EBRT and brachytherapy. Learning Objectives: Be familiarized with common practices and pitfalls in development and maintenance of an electronic chart in Radiation Oncology Be familiarized with important issues related to electronic charting in External Beam Radiation Therapy Be familiarized with important issues related to electronic charting in Brachytherapy.« less
MO-A-BRB-02: Considerations and Issues in Electronic Charting for Brachytherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, S.
2015-06-15
The process of converting to an electronic chart for radiation therapy can be daunting. It requires a dedicated committee to first research and choose appropriate software, to review the entire documentation policy and flow of the clinic, to convert this system to electronic form or if necessary, redesign the system to more easily conform to the electronic process. Those making the conversion and those who already use electronic charting would benefit from the shared experience of those who have been through the process in the past. Therefore TG262 was convened to provide guidance on electronic charting for external beam radiationmore » therapy and brachytherapy. This course will present the results of an internal survey of task group members on EMR practices in External Beam Radiation Therapy as well as discuss important issues in EMR development and structure for both EBRT and brachytherapy. Learning Objectives: Be familiarized with common practices and pitfalls in development and maintenance of an electronic chart in Radiation Oncology Be familiarized with important issues related to electronic charting in External Beam Radiation Therapy Be familiarized with important issues related to electronic charting in Brachytherapy.« less
NASA Astrophysics Data System (ADS)
Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.
2015-12-01
Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 232.7003 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7003 Procedures. (a) The accepted electronic form for...
48 CFR 232.7001 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 232.7001 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7001 Definitions. Electronic form and payment request...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Section 232.7003 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7003 Procedures. (a) The accepted electronic form for...
48 CFR 232.7001 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 232.7001 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7001 Definitions. Electronic form and payment request...
48 CFR 232.7001 - Definitions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 232.7001 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7001 Definitions. Electronic form and payment request...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Section 232.7003 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7003 Procedures. (a) The accepted electronic form for...
48 CFR 232.7001 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 232.7001 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7001 Definitions. Electronic form and payment request...
48 CFR 232.7001 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-10-01
... Section 232.7001 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7001 Definitions. Electronic form and payment request...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Section 232.7003 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7003 Procedures. (a) The accepted electronic form for...
Code of Federal Regulations, 2011 CFR
2011-10-01
... Section 232.7003 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7003 Procedures. (a) The accepted electronic form for...
This procedure identifies the specific requirements, processes and supporting documents EPA uses to electronically manage rulemaking and other docketed records in the Federal Docket Management System (FDMS).
Electrically induced spontaneous emission in open electronic system
NASA Astrophysics Data System (ADS)
Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration
A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.
Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa
2017-04-01
A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electron Beam Cured Epoxy Resin Composites for High Temperature Applications
NASA Technical Reports Server (NTRS)
Janke, Christopher J.; Dorsey, George F.; Havens, Stephen J.; Lopata, Vincent J.; Meador, Michael A.
1997-01-01
Electron beam curing of Polymer Matrix Composites (PMC's) is a nonthermal, nonautoclave curing process that has been demonstrated to be a cost effective and advantageous alternative to conventional thermal curing. Advantages of electron beam curing include: reduced manufacturing costs; significantly reduced curing times; improvements in part quality and performance; reduced environmental and health concerns; and improvement in material handling. In 1994 a Cooperative Research and Development Agreement (CRADA), sponsored by the Department of Energy Defense Programs and 10 industrial partners, was established to advance the electron beam curing of PMC technology. Over the last several years a significant amount of effort within the CRADA has been devoted to the development and optimization of resin systems and PMCs that match the performance of thermal cured composites. This highly successful materials development effort has resulted in a board family of high performance, electron beam curable cationic epoxy resin systems possessing a wide range of excellent processing and property profiles. Hundreds of resin systems, both toughened and untoughened, offering unlimited formulation and processing flexibility have been developed and evaluated in the CRADA program.
NASA Astrophysics Data System (ADS)
Rosandi, Yudi; Grossi, Joás; Bringa, Eduardo M.; Urbassek, Herbert M.
2018-01-01
The incidence of energetic laser pulses on a metal foam may lead to foam ablation. The processes occurring in the foam may differ strongly from those in a bulk metal: The absorption of laser light, energy transfer to the atomic system, heat conduction, and finally, the atomistic processes—such as melting or evaporation—may be different. In addition, novel phenomena take place, such as a reorganization of the ligament network in the foam. We study all these processes in an Au foam of average porosity 79% and an average ligament diameter of 2.5 nm, using molecular dynamics simulation. The coupling of the electronic system to the atomic system is modeled by using the electron-phonon coupling, g, and the electronic heat diffusivity, κe, as model parameters, since their actual values for foams are unknown. We show that the foam coarsens under laser irradiation. While κe governs the homogeneity of the processes, g mainly determines their time scale. The final porosity reached is independent of the value of g.
Electronics of the data acquisition system of the DANSS detector based on silicon photomultipliers
NASA Astrophysics Data System (ADS)
Svirida, D.
2018-01-01
The electronics of the data acquisition system based on silicon photomultipliers is briefly described. The elements and modules of the system were designed and constructed at ITEP especially for the DANSS detector. Examples of digitized signals obtained with the presented electronic modules and selected results on processing of the DANSS engineering data-taking run in spring 2016 are given.
Electron-Nuclear Dynamics in a Quantum Dot under Nonunitary Electron Control
2011-07-20
relevant because inco - herent interactions are needed to initialize and read out the system. These experiments in quantum dots (QDs) ob- served dynamic...relaxation process is several orders of magnitude faster than what is used in Refs. [3,5]. The system we consider is a single electron trapped in a QD
Al-Jedai, Ahmed H; Algain, Roaa A; Alghamidi, Said A; Al-Jazairi, Abdulrazaq S; Amin, Rashid; Bin Hussain, Ibrahim Z
2017-10-01
In the last few decades, changes to formulary management processes have taken place in institutions with closed formulary systems. However, many P&T committees continued to operate using traditional paper-based systems. Paper-based systems have many limitations, including confidentiality, efficiency, open voting, and paper wastage. This becomes more challenging when dealing with a multisite P&T committee that handles formulary matters across the whole health care system. In this paper, we discuss the implementation of the first paperless, completely electronic, Web-based formulary management system across a large health care system in the Middle East. We describe the transitioning of a multisite P&T committee in a large tertiary care institution from a paper-based to an all-electronic system. The challenges and limitations of running a multisite P&T committee utilizing a paper system are discussed. The design and development of a Web-based committee floor management application that can be used from notebooks, tablets, and hand-held devices is described. Implementation of a flexible, interactive, easy-to-use, and efficient electronic formulary management system is explained in detail. The development of an electronic P&T committee meeting system that encompasses electronic document sharing, voting, and communication could help multisite health care systems unify their formularies across multiple sites. Our experience might not be generalizable to all institutions because this depends heavily on system features, existing processes and workflow, and implementation across different sites.
The application of intelligent process control to space based systems
NASA Technical Reports Server (NTRS)
Wakefield, G. Steve
1990-01-01
The application of Artificial Intelligence to electronic and process control can help attain the autonomy and safety requirements of manned space systems. An overview of documented applications within various industries is presented. The development process is discussed along with associated issues for implementing an intelligence process control system.
Design of an integrated sensor system for the detection of traces of different molecules in the air
NASA Astrophysics Data System (ADS)
Strle, D.; Muševič, I.
2015-04-01
This article presents the design of a miniature detection system and its associated signal processing electronics, which can detect and selectively recognize vapor traces of different materials in the air - including explosives. It is based on the array of surface-functionalized COMB capacitive sensors and extremely low noise, analog, integrated electronic circuit, hardwired digital signal processing hardware and additional software running on a PC. The instrument is sensitive and selective, consumes a minimum amount of energy, is very small (few mm3) and cheap to produce in large quantities, and is insensitive to mechanical influences. Using an electronic detection system built of low noise analog front-end and hard-wired digital signal processing, it is possible to detect less than 0.3ppt of TNT molecules in the atmosphere (3 TNT molecules in 1013 molecules of the air) at 25°C on a 1 Hz bandwidth using very small volume and approx. 10 mA current from a 5V supply voltage. The sensors are implemented in a modified MEMS process and analog electronics in 0.18 um CMOS technology.
Bogolon-mediated electron capture by impurities in hybrid Bose-Fermi systems
NASA Astrophysics Data System (ADS)
Boev, M. V.; Kovalev, V. M.; Savenko, I. G.
2018-04-01
We investigate the processes of electron capture by a Coulomb impurity center residing in a hybrid system consisting of spatially separated two-dimensional layers of electron and Bose-condensed dipolar exciton gases coupled via the Coulomb forces. We calculate the probability of the electron capture accompanied by the emission of a single Bogoliubov excitation (bogolon), similar to regular phonon-mediated scattering in solids. Furthermore, we study the electron capture mediated by the emission of a pair of bogolons in a single capture event and show that these processes not only should be treated in the same order of the perturbation theory, but also they give a more important contribution than single-bogolon-mediated capture, in contrast with regular phonon scattering.
Methods for fabrication of flexible hybrid electronics
NASA Astrophysics Data System (ADS)
Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos
2017-08-01
Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.
Open source cardiology electronic health record development for DIGICARDIAC implementation
NASA Astrophysics Data System (ADS)
Dugarte, Nelson; Medina, Rubén.; Huiracocha, Lourdes; Rojas, Rubén.
2015-12-01
This article presents the development of a Cardiology Electronic Health Record (CEHR) system. Software consists of a structured algorithm designed under Health Level-7 (HL7) international standards. Novelty of the system is the integration of high resolution ECG (HRECG) signal acquisition and processing tools, patient information management tools and telecardiology tools. Acquisition tools are for management and control of the DIGICARDIAC electrocardiograph functions. Processing tools allow management of HRECG signal analysis searching for indicative patterns of cardiovascular pathologies. Telecardiology tools incorporation allows system communication with other health care centers decreasing access time to the patient information. CEHR system was completely developed using open source software. Preliminary results of process validation showed the system efficiency.
The IBA Easy-E-Beam™ Integrated Processing System
NASA Astrophysics Data System (ADS)
Cleland, Marshall R.; Galloway, Richard A.; Lisanti, Thomas F.
2011-06-01
IBA Industrial Inc., (formerly known as Radiation Dynamics, Inc.) has been making high-energy and medium-energy, direct-current proton and electron accelerators for research and industrial applications for many years. Some industrial applications of high-power electron accelerators are the crosslinking of polymeric materials and products, such as the insulation on electrical wires, multi-conductor cable jackets, heat-shrinkable plastic tubing and film, plastic pipe, foam and pellets, the partial curing of rubber sheet for automobile tire components, and the sterilization of disposable medical devices. The curing (polymerization and crosslinking) of carbon and glass fiber-reinforced composite plastic parts, the preservation of foods and the treatment of waste materials are attractive possibilities for future applications. With electron energies above 1.0 MeV, the radiation protection for operating personnel is usually provided by surrounding the accelerator facility with thick concrete walls. With lower energies, steel and lead panels can be used, which are substantially thinner and more compact than the equivalent concrete walls. IBA has developed a series of electron processing systems called Easy-e-Beam™ for the medium energy range from 300 keV to 1000 keV. These systems include the shielding as an integral part of a complete radiation processing facility. The basic concepts of the electron accelerator, the product processing equipment, the programmable control system, the configuration of the radiation shielding and some performance characteristics are described in this paper.
Systems and methods for data quality control and cleansing
Wenzel, Michael; Boettcher, Andrew; Drees, Kirk; Kummer, James
2016-05-31
A method for detecting and cleansing suspect building automation system data is shown and described. The method includes using processing electronics to automatically determine which of a plurality of error detectors and which of a plurality of data cleansers to use with building automation system data. The method further includes using processing electronics to automatically detect errors in the data and cleanse the data using a subset of the error detectors and a subset of the cleansers.
Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh
2003-08-05
A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.
Malkin, Stephen; Gao, Robert; Guo, Changsheng; Varghese, Biju; Pathare, Sumukh
2006-01-10
A grinding wheel system includes a grinding wheel with at least one embedded sensor. The system also includes an adapter disk containing electronics that process signals produced by each embedded sensor and that transmits sensor information to a data processing platform for further processing of the transmitted information.
Coincidence electron/ion imaging with a fast frame camera
NASA Astrophysics Data System (ADS)
Li, Wen; Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander; Fan, Lin
2015-05-01
A new time- and position- sensitive particle detection system based on a fast frame CMOS camera is developed for coincidence electron/ion imaging. The system is composed of three major components: a conventional microchannel plate (MCP)/phosphor screen electron/ion imager, a fast frame CMOS camera and a high-speed digitizer. The system collects the positional information of ions/electrons from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of MCPs processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of electron/ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide. We further show that a time resolution of 30 ps can be achieved when measuring electron TOF spectrum and this enables the new system to achieve a good energy resolution along the TOF axis.
Al-Jedai, Ahmed H.; Algain, Roaa A.; Alghamidi, Said A.; Al-Jazairi, Abdulrazaq S.; Amin, Rashid; Bin Hussain, Ibrahim Z.
2017-01-01
Purpose In the last few decades, changes to formulary management processes have taken place in institutions with closed formulary systems. However, many P&T committees continued to operate using traditional paper-based systems. Paper-based systems have many limitations, including confidentiality, efficiency, open voting, and paper wastage. This becomes more challenging when dealing with a multisite P&T committee that handles formulary matters across the whole health care system. In this paper, we discuss the implementation of the first paperless, completely electronic, Web-based formulary management system across a large health care system in the Middle East. Summary We describe the transitioning of a multisite P&T committee in a large tertiary care institution from a paper-based to an all-electronic system. The challenges and limitations of running a multisite P&T committee utilizing a paper system are discussed. The design and development of a Web-based committee floor management application that can be used from notebooks, tablets, and hand-held devices is described. Implementation of a flexible, interactive, easy-to-use, and efficient electronic formulary management system is explained in detail. Conclusion The development of an electronic P&T committee meeting system that encompasses electronic document sharing, voting, and communication could help multisite health care systems unify their formularies across multiple sites. Our experience might not be generalizable to all institutions because this depends heavily on system features, existing processes and workflow, and implementation across different sites. PMID:29018301
Real-Time Digital Signal Processing Based on FPGAs for Electronic Skin Implementation †
Ibrahim, Ali; Gastaldo, Paolo; Chible, Hussein; Valle, Maurizio
2017-01-01
Enabling touch-sensing capability would help appliances understand interaction behaviors with their surroundings. Many recent studies are focusing on the development of electronic skin because of its necessity in various application domains, namely autonomous artificial intelligence (e.g., robots), biomedical instrumentation, and replacement prosthetic devices. An essential task of the electronic skin system is to locally process the tactile data and send structured information either to mimic human skin or to respond to the application demands. The electronic skin must be fabricated together with an embedded electronic system which has the role of acquiring the tactile data, processing, and extracting structured information. On the other hand, processing tactile data requires efficient methods to extract meaningful information from raw sensor data. Machine learning represents an effective method for data analysis in many domains: it has recently demonstrated its effectiveness in processing tactile sensor data. In this framework, this paper presents the implementation of digital signal processing based on FPGAs for tactile data processing. It provides the implementation of a tensorial kernel function for a machine learning approach. Implementation results are assessed by highlighting the FPGA resource utilization and power consumption. Results demonstrate the feasibility of the proposed implementation when real-time classification of input touch modalities are targeted. PMID:28287448
Real-Time Digital Signal Processing Based on FPGAs for Electronic Skin Implementation.
Ibrahim, Ali; Gastaldo, Paolo; Chible, Hussein; Valle, Maurizio
2017-03-10
Enabling touch-sensing capability would help appliances understand interaction behaviors with their surroundings. Many recent studies are focusing on the development of electronic skin because of its necessity in various application domains, namely autonomous artificial intelligence (e.g., robots), biomedical instrumentation, and replacement prosthetic devices. An essential task of the electronic skin system is to locally process the tactile data and send structured information either to mimic human skin or to respond to the application demands. The electronic skin must be fabricated together with an embedded electronic system which has the role of acquiring the tactile data, processing, and extracting structured information. On the other hand, processing tactile data requires efficient methods to extract meaningful information from raw sensor data. Machine learning represents an effective method for data analysis in many domains: it has recently demonstrated its effectiveness in processing tactile sensor data. In this framework, this paper presents the implementation of digital signal processing based on FPGAs for tactile data processing. It provides the implementation of a tensorial kernel function for a machine learning approach. Implementation results are assessed by highlighting the FPGA resource utilization and power consumption. Results demonstrate the feasibility of the proposed implementation when real-time classification of input touch modalities are targeted.
Single-chip microprocessor that communicates directly using light
NASA Astrophysics Data System (ADS)
Sun, Chen; Wade, Mark T.; Lee, Yunsup; Orcutt, Jason S.; Alloatti, Luca; Georgas, Michael S.; Waterman, Andrew S.; Shainline, Jeffrey M.; Avizienis, Rimas R.; Lin, Sen; Moss, Benjamin R.; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H.; Cook, Henry M.; Ou, Albert J.; Leu, Jonathan C.; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J.; Popović, Miloš A.; Stojanović, Vladimir M.
2015-12-01
Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.
A Normal Incidence X-ray Telescope (NIXT) sounding rocket payload
NASA Technical Reports Server (NTRS)
Golub, Leon
1989-01-01
Work on the High Resolution X-ray (HRX) Detector Program is described. In the laboratory and flight programs, multiple copies of a general purpose set of electronics which control the camera, signal processing and data acquisition, were constructed. A typical system consists of a phosphor convertor, image intensifier, a fiber optics coupler, a charge coupled device (CCD) readout, and a set of camera, signal processing and memory electronics. An initial rocket detector prototype camera was tested in flight and performed perfectly. An advanced prototype detector system was incorporated on another rocket flight, in which a high resolution heterojunction vidicon tube was used as the readout device for the H(alpha) telescope. The camera electronics for this tube were built in-house and included in the flight electronics. Performance of this detector system was 100 percent satisfactory. The laboratory X-ray system for operation on the ground is also described.
GEOSPATICAL INFORMATION TECHNOLOGY AND INFORMATION MANAGEMENT QUALITY ASSURANCE
Most of the geospatial data in use are originated electronically. As a result, these data are acquired, stored, transformed, processed, presented, and archived electronically. The organized system of computer hardware and software used in these processes is called an Informatio...
Fine Collimator Grids Using Silicon Metering Structure
NASA Technical Reports Server (NTRS)
Eberhard, Carol
1998-01-01
The project Fine Collimator Grids Using Silicon Metering Structure was managed by Dr. Carol Eberhard of the Electromagnetic Systems & Technology Department (Space & Technology Division) of TRW who also wrote this final report. The KOH chemical etching of the silicon wafers was primarily done by Dr. Simon Prussin of the Electrical Engineering Department of UCLA at the laboratory on campus. Moshe Sergant of the Superconductor Electronics Technology Department (Electronics Systems & Technology Division) of TRW and Dr. Prussin were instrumental in developing the low temperature silicon etching processes. Moshe Sergant and George G. Pinneo of the Microelectronics Production Department (Electronics Systems & Technology Division) of TRW were instrumental in developing the processes for filling the slots etched in the silicon wafers with metal-filled materials. Their work was carried out in the laboratories at the Space Park facility. Moshe Sergant is also responsible for the impressive array of Scanning Electron Microscope images with which the various processes were monitored. Many others also contributed their time and expertise to the project. I wish to thank them all.
Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone
NASA Astrophysics Data System (ADS)
Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru
2016-10-01
Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.
Closed loop control of penetration depth during CO₂ laser lap welding processes.
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis In 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth.
Closed Loop Control of Penetration Depth during CO2 Laser Lap Welding Processes
Sibillano, Teresa; Rizzi, Domenico; Mezzapesa, Francesco P.; Lugarà, Pietro Mario; Konuk, Ali Riza; Aarts, Ronald; Veld, Bert Huis in 't; Ancona, Antonio
2012-01-01
In this paper we describe a novel spectroscopic closed loop control system capable of stabilizing the penetration depth during laser welding processes by controlling the laser power. Our novel approach is to analyze the optical emission from the laser generated plasma plume above the keyhole, to calculate its electron temperature as a process-monitoring signal. Laser power has been controlled by using a quantitative relationship between the penetration depth and the plasma electron temperature. The sensor is able to correlate in real time the difference between the measured electron temperature and its reference value for the requested penetration depth. Accordingly the closed loop system adjusts the power, thus maintaining the penetration depth. PMID:23112646
Secure electronic commerce communication system based on CA
NASA Astrophysics Data System (ADS)
Chen, Deyun; Zhang, Junfeng; Pei, Shujun
2001-07-01
In this paper, we introduce the situation of electronic commercial security, then we analyze the working process and security for SSL protocol. At last, we propose a secure electronic commerce communication system based on CA. The system provide secure services such as encryption, integer, peer authentication and non-repudiation for application layer communication software of browser clients' and web server. The system can implement automatic allocation and united management of key through setting up the CA in the network.
Cross, Dori A; Boukus, Ellyn R; Cohen, Genna R
2011-01-01
Objective A core feature of e-prescribing is the electronic exchange of prescription data between physician practices and pharmacies, which can potentially improve the efficiency of the prescribing process and reduce medication errors. Barriers to implementing this feature exist, but they are not well understood. This study's objectives were to explore recent physician practice and pharmacy experiences with electronic transmission of new prescriptions and renewals, and identify facilitators of and barriers to effective electronic transmission and pharmacy e-prescription processing. Design Qualitative analysis of 114 telephone interviews conducted with representatives from 97 organizations between February and September 2010, including 24 physician practices, 48 community pharmacies, and three mail-order pharmacies actively transmitting or receiving e-prescriptions via Surescripts. Results Practices and pharmacies generally were satisfied with electronic transmission of new prescriptions but reported that the electronic renewal process was used inconsistently, resulting in inefficient workarounds for both parties. Practice communications with mail-order pharmacies were less likely to be electronic than with community pharmacies because of underlying transmission network and computer system limitations. While e-prescribing reduced manual prescription entry, pharmacy staff frequently had to complete or edit certain fields, particularly drug name and patient instructions. Conclusions Electronic transmission of new prescriptions has matured. Changes in technical standards and system design and more targeted physician and pharmacy training may be needed to address barriers to e-renewals, mail-order pharmacy connectivity, and pharmacy processing of e-prescriptions. PMID:22101907
Electron-Nuclear Quantum Information Processing
2008-11-13
quantum information processing that exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin...exploits the anisotropic hyperfine coupling. This scheme enables universal control over a 1-electron, N-nuclear spin system, addressing only a...sample of irradiated malonic acid. (a) Papers published in peer-reviewed journals (N/A for none) Universal control of nuclear spins via anisotropic
Zhou, Lei; Xu, Zhenming
2012-05-01
Over the past 30 years, China has been suffering from negative environmental impacts from distempered waste electrical and electronic equipments (WEEE) recycling activities. For the purpose of environmental protection and resource reusing, China made a great effort to improve WEEE recycling. This article reviews progresses of three major fields in the development of China's WEEE recycling industry: legal system, formal recycling system, and advanced integrated process. Related laws concerning electronic waste (e-waste) management and renewable resource recycling are analyzed from aspects of improvements and loopholes. The outcomes and challenges for existing formal recycling systems are also discussed. The advantage and deficiency related to advanced integrated recycling processes for typical e-wastes are evaluated respectively. Finally, in order to achieve high disposal rates of WEEE, high-quantify separation of different materials in WEEE and high added value final products produced by separated materials from WEEE, an idea of integrated WEEE recycling system is proposed to point future development of WEEE recycling industry. © 2012 American Chemical Society
Thermodynamic responses of electronic systems.
Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto
2017-09-07
We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.
Thermodynamic responses of electronic systems
NASA Astrophysics Data System (ADS)
Franco-Pérez, Marco; Ayers, Paul W.; Gázquez, José L.; Vela, Alberto
2017-09-01
We present how the framework of the temperature-dependent chemical reactivity theory can describe the panorama of different types of interactions between an electronic system and external reagents. The key reactivity indicators are responses of an appropriate state function (like the energy or grand potential) to the variables that determine the state of the system (like the number of electrons/chemical potential, external potential, and temperature). We also consider the response of the average electron density to appropriate perturbations. We present computable formulas for these reactivity indicators and discuss their chemical utility for describing electronic, electrostatic, and thermal changes associated with chemical processes.
Read-out electronics for DC squid magnetic measurements
Ganther, Jr., Kenneth R.; Snapp, Lowell D.
2002-01-01
Read-out electronics for DC SQUID sensor systems, the read-out electronics incorporating low Johnson noise radio-frequency flux-locked loop circuitry and digital signal processing algorithms in order to improve upon the prior art by a factor of at least ten, thereby alleviating problems caused by magnetic interference when operating DC SQUID sensor systems in magnetically unshielded environments.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ASSISTANCE PROGRAMS UTILIZATION CONTROL Drug Use Review (DUR) Program and Electronic Claims Management System... outpatient DUR program that includes prospective drug review, retrospective drug use review, and an... optional point-of-sale electronic claims management system for processing claims for covered outpatient...
NOAO observing proposal processing system
NASA Astrophysics Data System (ADS)
Bell, David J.; Gasson, David; Hartman, Mia
2002-12-01
Since going electronic in 1994, NOAO has continued to refine and enhance its observing proposal handling system. Virtually all related processes are now handled electronically. Members of the astronomical community can submit proposals through email, web form or via Gemini's downloadable Phase-I Tool. NOAO staff can use online interfaces for administrative tasks, technical reviews, telescope scheduling, and compilation of various statistics. In addition, all information relevant to the TAC process is made available online. The system, now known as ANDES, is designed as a thin-client architecture (web pages are now used for almost all database functions) built using open source tools (FreeBSD, Apache, MySQL, Perl, PHP) to process descriptively-marked (LaTeX, XML) proposal documents.
NASA Astrophysics Data System (ADS)
Gudmundsson, Vidar; Abdulla, Nzar Rauf; Sitek, Anna; Goan, Hsi-Sheng; Tang, Chi-Shung; Manolescu, Andrei
2018-02-01
We show that a Rabi-splitting of the states of strongly interacting electrons in parallel quantum dots embedded in a short quantum wire placed in a photon cavity can be produced by either the para- or the dia-magnetic electron-photon interactions when the geometry of the system is properly accounted for and the photon field is tuned close to a resonance with the electron system. We use these two resonances to explore the electroluminescence caused by the transport of electrons through the one- and two-electron ground states of the system and their corresponding conventional and vacuum electroluminescense as the central system is opened up by coupling it to external leads acting as electron reservoirs. Our analysis indicates that high-order electron-photon processes are necessary to adequately construct the cavity-photon dressed electron states needed to describe both types of electroluminescence.
Rossi, Megan; Campbell, Katrina Louise; Ferguson, Maree
2014-01-01
There is little doubt surrounding the benefits of the Nutrition Care Process and International Dietetics and Nutrition Terminology (IDNT) to dietetics practice; however, evidence to support the most efficient method of incorporating these into practice is lacking. The main objective of our study was to compare the efficiency and effectiveness of an electronic and a manual paper-based system for capturing the Nutrition Care Process and IDNT in a single in-center hemodialysis unit. A cohort of 56 adult patients receiving maintenance hemodialysis were followed for 12 months. During the first 6 months, patients received the usual standard care, with documentation via a manual paper-based system. During the following 6-month period (Months 7 to 12), nutrition care was documented by an electronic system. Workload efficiency, number of IDNT codes used related to nutrition-related diagnoses, interventions, monitoring and evaluation using IDNT, nutritional status using the scored Patient-Generated Subjective Global Assessment Tool of Quality of Life were the main outcome measures. Compared with paper-based documentation of nutrition care, our study demonstrated that an electronic system improved the efficiency of total time spent by the dietitian by 13 minutes per consultation. There were also a greater number of nutrition-related diagnoses resolved using the electronic system compared with the paper-based documentation (P<0.001). In conclusion, the implementation of an electronic system compared with a paper-based system in a population receiving hemodialysis resulted in significant improvements in the efficiency of nutrition care and effectiveness related to patient outcomes. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Introduction to electronic warfare
NASA Astrophysics Data System (ADS)
Schleher, D. C.
A broad overview of electronic warfare (EW) is given, emphasizing radar-related EW applications. A broad perspective of the EW field is first given, defining EW terms and giving methods of EW threat analysis and simulation. Electronic support measures and electronic countermeasures (ECM) systems are described, stressing their application to radar EW. Radars are comprehensively discussed from a system viewpoint with emphasis on their application in weapon systems and their electronic counter-countermeasures capabilities. Some general topics in C3 systems are described, stressing communication systems, C3I systems, and air defense systems. Performance calculations for EW and radar systems are covered, and modern EW signal processing is described from an airborne ECM perspective. Future trends and technology in the EW world are considered, discussing such topics as millimeter-wave EW, low-observable EW technology, GaAs monolithic circuits, VHSIC, and AI.
High-end clinical domain information systems for effective healthcare delivery.
Mangalampalli, Ashish; Rama, Chakravarthy; Muthiyalian, Raja; Jain, Ajeet K
2007-01-01
The Electronic Health Record (EHR) provides doctors with a quick, reliable, secure, real-time and user-friendly source of all relevant patient data. The latest information system technologies, such as Clinical Data Warehouses (CDW), Clinical Decision-Support (CDS) systems and data-mining techniques (Online Analytical Processing (OLAP) and Online Transactional Processing (OLTP)), are used to maintain and utilise patient data intelligently, based on the users' requirements. Moreover, clinical trial reports for new drug approvals are now being submitted electronically for faster and easier processing. Also, information systems are used in educating patients about the latest developments in medical science through the internet and specially configured kiosks in hospitals and clinics.
Chapelle, Francis H.; McMahon, Peter B.; Dubrovsky, Neil M.; Fujii, Roger F.; Oaksford, Edward T.; Vroblesky, Don A.
1995-01-01
The distribution of microbially mediated terminal electron-accepting processes (TEAPs( was investigated in four hydrologically diverse groundwater systems by considering patterns of electron acceptor (nitrate, sulfate) consumption, intermediate product (hydrogen (H2)) concentrations, and final product (ferrous iron, sulfide, and methane) production. In each hydrologic system a determination of predominant TEAPs could be arrived at, but the level of confidence appropriate for each determination differed. In a portion of the lacustrine aquifer of the San Joaquin Valley, for example, all three indicators (sulfate concentrations decreasing, H2concentrations in the 1–2 nmol range, and sulfide concentrations increasing along flow paths identified sulfate reduction as the predominant TEAP, leading to a high degree of confidence in the determination. In portions of the Floridan aquifer and a petroleum hydrocarbon-contaminated aquifer, sulfate reduction and methanogenesis are indicated by production of sulfide and methane, and hydrogen oncentrations in the 1–4 nmol and 5–14 nmol range, respectively. However, because electron acceptor consumption could not be documented in these systems, less confidence is warranted in the TEAP determination. In the Black Creek aquifer, no pattern of sulfate consumption and sulfide production were observed, but H2 concentrations indicated sulfate reduction as the predominant TEAP. In this case, where just a single line of evidence is available, the least confidence in the TEAP diagnosis is justified. Because this methodology is based on measurable water chemistry parameters and upon the physiology of microbial electron transfer processes, it provides a better description of predominant redox processes in groundwater systems than more traditional Eh-based methods.
NASA Astrophysics Data System (ADS)
Lyo, S. K.; Huang, Danhong
2006-05-01
Electron-electron scattering conserves total momentum and does not dissipate momentum directly in a low-density system where the umklapp process is forbidden. However, it can still affect the conductance through the energy relaxation of the electrons. We show here that this effect can be studied with arbitrary accuracy in a multisublevel one-dimensional (1D) single quantum wire system in the presence of roughness and phonon scattering using a formally exact solution of the Boltzmann transport equation. The intrasubband electron-electron scattering is found to yield no net effect on the transport of electrons in 1D with only one sublevel occupied. For a system with a multilevel occupation, however, we find a significant effect of intersublevel electron-electron scattering on the temperature and density dependence of the resistance at low temperatures.
LaForge, A. C.; Drabbels, M.; Brauer, N. B.; Coreno, M.; Devetta, M.; Di Fraia, M.; Finetti, P.; Grazioli, C.; Katzy, R.; Lyamayev, V.; Mazza, T.; Mudrich, M.; O'Keeffe, P.; Ovcharenko, Y.; Piseri, P.; Plekan, O.; Prince, K. C.; Richter, R.; Stranges, S.; Callegari, C.; Möller, T.; Stienkemeier, F.
2014-01-01
Free electron lasers (FELs) offer the unprecedented capability to study reaction dynamics and image the structure of complex systems. When multiple photons are absorbed in complex systems, a plasma-like state is formed where many atoms are ionized on a femtosecond timescale. If multiphoton absorption is resonantly-enhanced, the system becomes electronically-excited prior to plasma formation, with subsequent decay paths which have been scarcely investigated to date. Here, we show using helium nanodroplets as an example that these systems can decay by a new type of process, named collective autoionization. In addition, we show that this process is surprisingly efficient, leading to ion abundances much greater than that of direct single-photon ionization. This novel collective ionization process is expected to be important in many other complex systems, e.g. macromolecules and nanoparticles, exposed to high intensity radiation fields. PMID:24406316
Advanced Electronic Technology
1977-11-15
Electronics 15 III. Materials Research 15 TV. Microelectronics 16 V. Surface- Wave Technology 16 DATA SYSTEMS DIVISION 2 INTRODUCTION This...Processing Digital Voice Processing Packet Speech Wideband Integrated Voice/Data Technology Radar Signal Processing Technology Nuclear Safety Designs...facilities make it possible to track the status of these jobs, retrieve their job control language listings, and direct a copy of printed or punched
Hao, Yan; Yang, Wenxing; Zhang, Lei; Jiang, Roger; Mijangos, Edgar; Saygili, Yasemin; Hammarström, Leif; Hagfeldt, Anders; Boschloo, Gerrit
2016-01-01
Photoelectrochemical approach to solar energy conversion demands a kinetic optimization of various light-induced electron transfer processes. Of great importance are the redox mediator systems accomplishing the electron transfer processes at the semiconductor/electrolyte interface, therefore affecting profoundly the performance of various photoelectrochemical cells. Here, we develop a strategy—by addition of a small organic electron donor, tris(4-methoxyphenyl)amine, into state-of-art cobalt tris(bipyridine) redox electrolyte—to significantly improve the efficiency of dye-sensitized solar cells. The developed solar cells exhibit efficiency of 11.7 and 10.5%, at 0.46 and one-sun illumination, respectively, corresponding to a 26% efficiency improvement compared with the standard electrolyte. Preliminary stability tests showed the solar cell retained 90% of its initial efficiency after 250 h continuous one-sun light soaking. Detailed mechanistic studies reveal the crucial role of the electron transfer cascade processes within the new redox system. PMID:28000672
Hardwiring microbes via direct interspecies electron transfer: mechanisms and applications.
Cheng, Qiwen; Call, Douglas F
2016-08-10
Multicellular microbial communities are important catalysts in engineered systems designed to treat wastewater, remediate contaminated sediments, and produce energy from biomass. Understanding the interspecies interactions within them is therefore essential to design effective processes. The flow of electrons within these communities is especially important in the determination of reaction possibilities (thermodynamics) and rates (kinetics). Conventional models of electron transfer incorporate the diffusion of metabolites generated by one organism and consumed by a second, frequently referred to as mediated interspecies electron transfer (MIET). Evidence has emerged in the last decade that another method, called direct interspecies electron transfer (DIET), may occur between organisms or in conjunction with electrically conductive materials. Recent research has suggested that DIET can be stimulated in engineered systems to improve desired treatment goals and energy recovery in systems such as anaerobic digesters and microbial electrochemical technologies. In this review, we summarize the latest understanding of DIET mechanisms, the associated microorganisms, and the underlying thermodynamics. We also critically examine approaches to stimulate DIET in engineered systems and assess their effectiveness. We find that in most cases attempts to promote DIET in mixed culture systems do not yield the improvements expected based on defined culture studies. Uncertainties of other processes that may be co-occurring in real systems, such as contaminant sorption and biofilm promotion, need to be further investigated. We conclude by identifying areas of future research related to DIET and its application in biological treatment processes.
Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O
2018-01-01
More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Classical molecular dynamics simulation of electronically non-adiabatic processes.
Miller, William H; Cotton, Stephen J
2016-12-22
Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).
NASA Astrophysics Data System (ADS)
Aiken, John Charles
The development of a colour Spatial Light Modulator (SLM) and its application to optical information processing is described. Whilst monochrome technology has been established for many years, this is not the case for colour where commercial systems are unavailable. A main aspect of this study is therefore, how the use of colour can add an additional dimension to optical information processing. A well established route to monochrome system development has been the use of (black and white) liquid crystal televisions (LCTV) as SLM, providing useful performance at a low-cost. This study is based on the unique use of a colour display removed from a LCTV and operated as a colour SLM. A significant development has been the replacement of the original TV electronics operating the display with enhanced drive electronics specially developed for this application. Through a computer interface colour images from a drawing package or video camera can now be readily displayed on the LCD as input to an optical system. A detailed evaluation of the colour LCD optical properties, indicates that the new drive electronics have considerably improved the operation of the display for use as a colour SLM. Applications are described employing the use of colour in Fourier plane filtering, image correlation and speckle metrology. The SLM (and optical system) developed demonstrates, how the addition of colour has greatly enhanced its capabilities to implement principles of optical data processing, conventionally performed monochromatically. The hybrid combination employed, combining colour optical data processing with electronic techniques has resulted in a capable development system. Further development of the system using current colour LCDs and the move towards a portable system, is considered in the study conclusion.
Atomic precision etch using a low-electron temperature plasma
NASA Astrophysics Data System (ADS)
Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.
2016-03-01
Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.
Müller-Staub, Maria; de Graaf-Waar, Helen; Paans, Wolter
2016-11-01
Nurses are accountable to apply the nursing process, which is key for patient care: It is a problem-solving process providing the structure for care plans and documentation. The state-of-the art nursing process is based on classifications that contain standardized concepts, and therefore, it is named Advanced Nursing Process. It contains valid assessments, nursing diagnoses, interventions, and nursing-sensitive patient outcomes. Electronic decision support systems can assist nurses to apply the Advanced Nursing Process. However, nursing decision support systems are missing, and no "gold standard" is available. The study aim is to develop a valid Nursing Process-Clinical Decision Support System Standard to guide future developments of clinical decision support systems. In a multistep approach, a Nursing Process-Clinical Decision Support System Standard with 28 criteria was developed. After pilot testing (N = 29 nurses), the criteria were reduced to 25. The Nursing Process-Clinical Decision Support System Standard was then presented to eight internationally known experts, who performed qualitative interviews according to Mayring. Fourteen categories demonstrate expert consensus on the Nursing Process-Clinical Decision Support System Standard and its content validity. All experts agreed the Advanced Nursing Process should be the centerpiece for the Nursing Process-Clinical Decision Support System and should suggest research-based, predefined nursing diagnoses and correct linkages between diagnoses, evidence-based interventions, and patient outcomes.
Electron beam irradiation processing for industrial and medical applications
NASA Astrophysics Data System (ADS)
Ozer, Zehra Nur
2017-09-01
In recent years, electron beam processing has been widely used for medical and industrial applications. Electron beam accelerators are reliable and durable equipments that can produce ionizing radiation when it is needed for a particular commercial use. On the industrial scale, accelerators are used to generate electrons in between 0.1-100 MeV energy range. These accelerators are used mainly in plastics, automotive, wire and electric cables, semiconductors, health care, aerospace and environmental industries, as well as numerous researches. This study presents the current applications of electron beam processing in medicine and industry. Also planned study of a design for such a system in the energy range of 200-300 keV is introduced.
Towards a Chemiresistive Sensor-Integrated Electronic Nose: A Review
Chiu, Shih-Wen; Tang, Kea-Tiong
2013-01-01
Electronic noses have potential applications in daily life, but are restricted by their bulky size and high price. This review focuses on the use of chemiresistive gas sensors, metal-oxide semiconductor gas sensors and conductive polymer gas sensors in an electronic nose for system integration to reduce size and cost. The review covers the system design considerations and the complementary metal-oxide-semiconductor integrated technology for a chemiresistive gas sensor electronic nose, including the integrated sensor array, its readout interface, and pattern recognition hardware. In addition, the state-of-the-art technology integrated in the electronic nose is also presented, such as the sensing front-end chip, electronic nose signal processing chip, and the electronic nose system-on-chip. PMID:24152879
Electronic health records in an occupational health setting-Part II. Global deployment.
Bey, Jean M; de Magalhães, Josiane S; Bojórquez, Lorena; Lin, Karen
2013-03-01
Electronic medical record systems are being used by more multi-national corporations. This article describes one corporation's considerations and process in successfully deploying a global electronic medical record system to international facilities in Brazil, Mexico, Singapore, and Taiwan. This article summarizes feedback from the experiences of occupational health nurse superusers in these countries. Copyright 2013, SLACK Incorporated.
NASA Technical Reports Server (NTRS)
Tuey, Richard C.; Collins, Mary; Caswell, Pamela; Haynes, Bob; Nelson, Michael L.; Holm, Jeanne; Buquo, Lynn; Tingle, Annette; Cooper, Bill; Stiltner, Roy
1996-01-01
This evaluation report contains an introduction, seven chapters, and five appendices. The Introduction describes the purpose, conceptual frame work, functional description, and technical report server of the STI Electronic Document Distribution (EDD) project. Chapter 1 documents the results of the prototype STI EDD in actual operation. Chapter 2 documents each NASA center's post processing publication processes. Chapter 3 documents each center's STI software, hardware, and communications configurations. Chapter 7 documents STI EDD policy, practices, and procedures. The appendices, which arc contained in Part 2 of this document, consist of (1) STI EDD Project Plan, (2) Team members, (3) Phasing Schedules, (4) Accessing On-line Reports, and (5) Creating an HTML File and Setting Up an xTRS. In summary, Stage 4 of the NASAwide Electronic Publishing System is the final phase of its implementation through the prototyping and gradual integration of each NASA center's electronic printing systems, desktop publishing systems, and technical report servers to be able to provide to NASA's engineers, researchers, scientists, and external users the widest practicable and appropriate dissemination of information concerning its activities and the result thereof to their work stations.
NASA Technical Reports Server (NTRS)
Tuey, Richard C.; Collins, Mary; Caswell, Pamela; Haynes, Bob; Nelson, Michael L.; Holm, Jeanne; Buquo, Lynn; Tingle, Annette; Cooper, Bill; Stiltner, Roy
1996-01-01
This evaluation report contains an introduction, seven chapters, and five appendices. The Introduction describes the purpose, conceptual framework, functional description, and technical report server of the Scientific and Technical Information (STI) Electronic Document Distribution (EDD) project. Chapter 1 documents the results of the prototype STI EDD in actual operation. Chapter 2 documents each NASA center's post processing publication processes. Chapter 3 documents each center's STI software, hardware. and communications configurations. Chapter 7 documents STI EDD policy, practices, and procedures. The appendices consist of (A) the STI EDD Project Plan, (B) Team members, (C) Phasing Schedules, (D) Accessing On-line Reports, and (E) Creating an HTML File and Setting Up an xTRS. In summary, Stage 4 of the NASAwide Electronic Publishing System is the final phase of its implementation through the prototyping and gradual integration of each NASA center's electronic printing systems, desk top publishing systems, and technical report servers, to be able to provide to NASA's engineers, researchers, scientists, and external users, the widest practicable and appropriate dissemination of information concerning its activities and the result thereof to their work stations.
NASA Astrophysics Data System (ADS)
Druzhinina, A. A.; Laptenok, V. D.; Murygin, A. V.; Laptenok, P. V.
2016-11-01
Positioning along the joint during the electron beam welding is a difficult scientific and technical problem to achieve the high quality of welds. The final solution of this problem is not found. This is caused by weak interference protection of sensors of the joint position directly in the welding process. Frequently during the electron beam welding magnetic fields deflect the electron beam from the optical axis of the electron beam gun. The collimated X-ray sensor is used to monitor the beam deflection caused by the action of magnetic fields. Signal of X-ray sensor is processed by the method of synchronous detection. Analysis of spectral characteristics of the X-ray sensor showed that the displacement of the joint from the optical axis of the gun affects on the output signal of sensor. The authors propose dual-circuit system for automatic positioning of the electron beam on the joint during the electron beam welding in conditions of action of magnetic interference. This system includes a contour of joint tracking and contour of compensation of magnetic fields. The proposed system is stable. Calculation of dynamic error of system showed that error of positioning does not exceed permissible deviation of the electron beam from the joint plane.
The NPG 7120.5A Electronic Review Process
NASA Technical Reports Server (NTRS)
McBrayer, Robert; Ives, Mark
1998-01-01
The use of electronics to review a document is well within the technical realm of today's state-of-the-art workplace. File servers and web site interaction are common tools for many NASA employees. The electronic comment processing described here was developed for the NPG 7120.5A review to augment the existing NASA Online Directives Information System (NODIS). The NODIS system is NASA's official system for formal review, approval and storage of NASA Directives. The electronic review process worked so well that NASA and other agencies may want to consider it as one of our "best practices." It was participatory decision making at its very best, a process that attracted dozens of very good ideas to improve the document as well as the way we can be managing projects far more effectively. The revision of NPG 7120.5A has significant implications for the way all elements of the Agency accomplish program and project management. Therefore, the review of NPG 7120.5A was an Agencywide effort with high visibility, heavy participation and a short schedule. The level of involvement created interest in supplementing the formal NODIS system with a system to collect comments efficiently and to allow the Centers and Codes to review and consolidate their comments into the official system in a short period of time. In addition, the Program Management Council Working Group (PMCWG), responsible for the revision of the document and the disposition of official comments, needed an electronic system to manage the disposition of comments, obtain PMCWG consensus on each disposition, and coordinate the disposition with the appropriate Headquarters Code that had submitted the official comment. The combined NASA and contractor talents and resources provided a system that supplemented the NODIS system and its operating personnel to produce a thorough review and approval of NPG 7120.5A on April 3, 1998, 7.5 months from the start of the process. The original six-month schedule is indicated. All milestones occurred on time, except for completion of comment disposition, which required an additional 30 days. Approval of the document occurred sixteen days after completion of the "Purple Package."
Code of Federal Regulations, 2013 CFR
2013-10-01
... classified information or national security; (b) Where a contract otherwise requires the electronic... process electronic payment submissions through the Treasury Internet Payment Platform or successor system...
ERIC Educational Resources Information Center
Bayram, Servet
2005-01-01
The concept of Electronic Performance Support Systems (EPSS) is containing multimedia or computer based instruction components that improves human performance by providing process simplification, performance information and decision support system. EPSS has become a hot topic for organizational development, human resources, performance technology,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cave, R.J.; Newton, M.D.; Kumar, K.
1995-12-07
The recently developed generalized Mulliken-Hush approach for the calculation of the electronic coupling matrix element for electron-transfer processes is applied to two rigidly linked donor-bridge-acceptor systems having dimethoxyanthracene as the donor and a dicarbomethoxycyclobutene unit as the acceptor. The dependence of the electronic coupling matrix element as a function of bridge type is examined with and without solvent molecules present. For clamp-shaped bridge structures solvent can have a dramatic effect on the electronic coupling matrix element. The behavior with variation of solvent is in good agreement with that observed experimentally for these systems. 23 refs., 2 tabs.
Microtechnology management considering test and cost aspects for stacked 3D ICs with MEMS
NASA Astrophysics Data System (ADS)
Hahn, K.; Wahl, M.; Busch, R.; Grünewald, A.; Brück, R.
2018-01-01
Innovative automotive systems require complex semiconductor devices currently only available in consumer grade quality. The European project TRACE will develop and demonstrate methods, processes, and tools to facilitate usage of Consumer Electronics (CE) components to be deployable more rapidly in the life-critical automotive domain. Consumer electronics increasingly use heterogeneous system integration methods and "More than Moore" technologies, which are capable to combine different circuit domains (Analog, Digital, RF, MEMS) and which are integrated within SiP or 3D stacks. Making these technologies or at least some of the process steps available under automotive electronics requirements is an important goal to keep pace with the growing demand for information processing within cars. The approach presented in this paper aims at a technology management and recommendation system that covers technology data, functional and non-functional constraints, and application scenarios, and that will comprehend test planning and cost consideration capabilities.
NASA Technical Reports Server (NTRS)
2001-01-01
REI Systems, Inc. developed a software solution that uses the Internet to eliminate the paperwork typically required to document and manage complex business processes. The data management solution, called Electronic Handbooks (EHBs), is presently used for the entire SBIR program processes at NASA. The EHB-based system is ideal for programs and projects whose users are geographically distributed and are involved in complex management processes and procedures. EHBs provide flexible access control and increased communications while maintaining security for systems of all sizes. Through Internet Protocol- based access, user authentication and user-based access restrictions, role-based access control, and encryption/decryption, EHBs provide the level of security required for confidential data transfer. EHBs contain electronic forms and menus, which can be used in real time to execute the described processes. EHBs use standard word processors that generate ASCII HTML code to set up electronic forms that are viewed within a web browser. EHBs require no end-user software distribution, significantly reducing operating costs. Each interactive handbook simulates a hard-copy version containing chapters with descriptions of participants' roles in the online process.
49 CFR Appendix C to Part 236 - Safety Assurance Criteria and Processes
Code of Federal Regulations, 2011 CFR
2011-10-01
.../Programmable/Electronic Safety (E/E/P/ES) Related Systems, Parts 1-7 as follows: (A) IEC 61508-1 (1998-12) Part.... (B) IEC 61508-2 (2000-05) Part 2: Requirements for electrical/electronic/programmable electronic...
49 CFR Appendix C to Part 236 - Safety Assurance Criteria and Processes
Code of Federal Regulations, 2012 CFR
2012-10-01
.../Programmable/Electronic Safety (E/E/P/ES) Related Systems, Parts 1-7 as follows: (A) IEC 61508-1 (1998-12) Part.... (B) IEC 61508-2 (2000-05) Part 2: Requirements for electrical/electronic/programmable electronic...
49 CFR Appendix C to Part 236 - Safety Assurance Criteria and Processes
Code of Federal Regulations, 2014 CFR
2014-10-01
.../Programmable/Electronic Safety (E/E/P/ES) Related Systems, Parts 1-7 as follows: (A) IEC 61508-1 (1998-12) Part.... (B) IEC 61508-2 (2000-05) Part 2: Requirements for electrical/electronic/programmable electronic...
49 CFR Appendix C to Part 236 - Safety Assurance Criteria and Processes
Code of Federal Regulations, 2013 CFR
2013-10-01
.../Programmable/Electronic Safety (E/E/P/ES) Related Systems, Parts 1-7 as follows: (A) IEC 61508-1 (1998-12) Part.... (B) IEC 61508-2 (2000-05) Part 2: Requirements for electrical/electronic/programmable electronic...
Yamaji, Minoru; Hakoda, Yuma; Okamoto, Hideki; Tani, Fumito
2017-04-12
We prepared a variety of coumarin derivatives having expanded π-electron systems along the direction crossing the C 3 -C 4 bond of the coumarin skeleton via a photochemical cyclization process and investigated their photophysical features as a function of the number (n) of the added benzene rings based on emission and transient absorption measurements. Upon increasing n, the fluorescence quantum yields of the π-extended coumarins increased. Expanding the π-electron system on the C 3 -C 4 bond of the coumarin skeleton was found to be efficient for increasing the fluorescence ability more than that on the C 7 -C 8 bond. Introducing the methoxy group at the 7-position was also efficient for enhancing the fluorescence quantum yield and rate of the expanded coumarins. The non-radiative process from the fluorescence state was not substantially influenced by the expanded π-electron system. The competitive process with the fluorescence was found to be intersystem crossing to the triplet state based on the observations of the triplet-triplet absorption. The effects of the expanded π-electron systems on the fluorescence ability were investigated with the aid of TD-DFT calculations.
Paperless Work Package Application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilgore, Jr., William R.; Morrell, Jr., Otto K.; Morrison, Dan
2014-07-31
Paperless Work Package (PWP) System is a computer program process that takes information from Asset Suite, provides a platform for other electronic inputs, Processes the inputs into an electronic package that can be downloaded onto an electronic work tablet or laptop computer, provides a platform for electronic inputs into the work tablet, and then transposes those inputs back into Asset Suite and to permanent SRS records. The PWP System will basically eliminate paper requirements from the maintenance work control system. The program electronically relays the instructions given by the planner to work on a piece of equipment which is currentlymore » relayed via a printed work package. The program does not control/approve what is done. The planner will continue to plan the work package, the package will continue to be routed, approved, and scheduled. The supervisor reviews and approves the work to be performed and assigns work to individuals or to a work group. (The supervisor conducts pre job briefings with the workers involved in the job) The Operations Manager (Work Controlling Entity) approves the work package electronically for the work that will be done in his facility prior to work starting. The PWP System will provide the package in an electronic form. All the reviews, approvals, and safety measures taken by people outside the electronic package does not change from the paper driven work packages.« less
Zbrozek, Arthur; Hebert, Joy; Gogates, Gregory; Thorell, Rod; Dell, Christopher; Molsen, Elizabeth; Craig, Gretchen; Grice, Kenneth; Kern, Scottie; Hines, Sheldon
2013-06-01
Outcomes research literature has many examples of high-quality, reliable patient-reported outcome (PRO) data entered directly by electronic means, ePRO, compared to data entered from original results on paper. Clinical trial managers are increasingly using ePRO data collection for PRO-based end points. Regulatory review dictates the rules to follow with ePRO data collection for medical label claims. A critical component for regulatory compliance is evidence of the validation of these electronic data collection systems. Validation of electronic systems is a process versus a focused activity that finishes at a single point in time. Eight steps need to be described and undertaken to qualify the validation of the data collection software in its target environment: requirements definition, design, coding, testing, tracing, user acceptance testing, installation and configuration, and decommissioning. These elements are consistent with recent regulatory guidance for systems validation. This report was written to explain how the validation process works for sponsors, trial teams, and other users of electronic data collection devices responsible for verifying the quality of the data entered into relational databases from such devices. It is a guide on the requirements and documentation needed from a data collection systems provider to demonstrate systems validation. It is a practical source of information for study teams to ensure that ePRO providers are using system validation and implementation processes that will ensure the systems and services: operate reliably when in practical use; produce accurate and complete data and data files; support management control and comply with any existing regulations. Furthermore, this short report will increase user understanding of the requirements for a technology review leading to more informed and balanced recommendations or decisions on electronic data collection methods. Copyright © 2013 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
Time lens assisted photonic sampling extraction
NASA Astrophysics Data System (ADS)
Petrillo, Keith Gordon
Telecommunication bandwidth demands have dramatically increased in recent years due to Internet based services like cloud computing and storage, large file sharing, and video streaming. Additionally, sensing systems such as wideband radar, magnetic imaging resonance systems, and complex modulation formats to handle large data transfer in telecommunications require high speed, high resolution analog-to-digital converters (ADCs) to interpret the data. Accurately processing and acquiring the information at next generation data rates from these systems has become challenging for electronic systems. The largest contributors to the electronic bottleneck are bandwidth and timing jitter which limit speed and reduce accuracy. Optical systems have shown to have at least three orders of magnitude increase in bandwidth capabilities and state of the art mode locked lasers have reduced timing jitters into thousands of attoseconds. Such features have encouraged processing signals without the use of electronics or using photonics to assist electronics. All optical signal processing has allowed the processing of telecommunication line rates up to 1.28 Tb/s and high resolution analog-to-digital converters in the 10s of gigahertz. The major drawback to these optical systems is the high cost of the components. The application of all optical processing techniques such as a time lens and chirped processing can greatly reduce bandwidth and cost requirements of optical serial to parallel converters and push photonically assisted ADCs into the 100s of gigahertz. In this dissertation, the building blocks to a high speed photonically assisted ADC are demonstrated, each providing benefits to its own respective application. A serial to parallel converter using a continuously operating time lens as an optical Fourier processor is demonstrated to fully convert a 160-Gb/s optical time division multiplexed signal to 16 10-Gb/s channels with error free operation. Using chirped processing, an optical sample and hold concept is demonstrated and analyzed as a resolution improvement to existing photonically assisted ADCs. Simulations indicate that the application of a continuously operating time lens to a photonically assisted sampling system can increase photonically sampled systems by an order of magnitude while acquiring properties similar to an optical sample and hold system.
NASA Astrophysics Data System (ADS)
Okazaki, Yuji; Uno, Takanori; Asai, Hideki
In this paper, we propose an optimization system with parallel processing for reducing electromagnetic interference (EMI) on electronic control unit (ECU). We adopt simulated annealing (SA), genetic algorithm (GA) and taboo search (TS) to seek optimal solutions, and a Spice-like circuit simulator to analyze common-mode current. Therefore, the proposed system can determine the adequate combinations of the parasitic inductance and capacitance values on printed circuit board (PCB) efficiently and practically, to reduce EMI caused by the common-mode current. Finally, we apply the proposed system to an example circuit to verify the validity and efficiency of the system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... ASSISTANCE PROGRAMS UTILIZATION CONTROL Drug Use Review (DUR) Program and Electronic Claims Management System... optional point-of-sale electronic claims management system for processing claims for covered outpatient... 42 Public Health 4 2014-10-01 2014-10-01 false Scope. 456.700 Section 456.700 Public Health...
The precision-processing subsystem for the Earth Resources Technology Satellite.
NASA Technical Reports Server (NTRS)
Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.
1972-01-01
Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.
ERIC Educational Resources Information Center
Marcum, Deanna; Boss, Richard
1983-01-01
Relates office automation to its application in libraries, discussing computer software packages for microcomputers performing tasks involved in word processing, accounting, statistical analysis, electronic filing cabinets, and electronic mail systems. (EJS)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... With Image Processing Systems, Components Thereof, and Associated Software; Notice of Investigation..., and associated software by reason of infringement of certain claims of U.S. Patent Nos. 7,043,087... processing systems, components thereof, and associated software that infringe one or more of claims 1, 6, and...
Extended write combining using a write continuation hint flag
Chen, Dong; Gara, Alan; Heidelberger, Philip; Ohmacht, Martin; Vranas, Pavlos
2013-06-04
A computing apparatus for reducing the amount of processing in a network computing system which includes a network system device of a receiving node for receiving electronic messages comprising data. The electronic messages are transmitted from a sending node. The network system device determines when more data of a specific electronic message is being transmitted. A memory device stores the electronic message data and communicating with the network system device. A memory subsystem communicates with the memory device. The memory subsystem stores a portion of the electronic message when more data of the specific message will be received, and the buffer combines the portion with later received data and moves the data to the memory device for accessible storage.
An ANFIS-based on B2C electronic commerce transaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Juan, E-mail: linjuanliucaihong@qq.com; Liu, Chenlian, E-mail: chenglian.liu@gmail.com; Guo, Yongning, E-mail: guoyn@163.com
2014-10-06
The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.
An ANFIS-based on B2C electronic commerce transaction
NASA Astrophysics Data System (ADS)
Lin, Juan; Liu, Chenlian; Guo, Yongning
2014-10-01
The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.
76 FR 74753 - Authority To Manufacture and Distribute Postage Evidencing Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-01
... revision of the rules governing the inventory control processes of Postage Evidencing Systems (PES... destruction or disposal of all Postage Evidencing Systems and their components to enable accurate accounting...) Postage Evidencing System repair process--any physical or electronic access to the internal components of...
Mutic, Sasa; Brame, R Scott; Oddiraju, Swetha; Parikh, Parag; Westfall, Melisa A; Hopkins, Merilee L; Medina, Angel D; Danieley, Jonathan C; Michalski, Jeff M; El Naqa, Issam M; Low, Daniel A; Wu, Bin
2010-09-01
The value of near-miss and error reporting processes in many industries is well appreciated and typically can be supported with data that have been collected over time. While it is generally accepted that such processes are important in the radiation therapy (RT) setting, studies analyzing the effects of organized reporting and process improvement systems on operation and patient safety in individual clinics remain scarce. The purpose of this work is to report on the design and long-term use of an electronic reporting system in a RT department and compare it to the paper-based reporting system it replaced. A specifically designed web-based system was designed for reporting of individual events in RT and clinically implemented in 2007. An event was defined as any occurrence that could have, or had, resulted in a deviation in the delivery of patient care. The aim of the system was to support process improvement in patient care and safety. The reporting tool was designed so individual events could be quickly and easily reported without disrupting clinical work. This was very important because the system use was voluntary. The spectrum of reported deviations extended from minor workflow issues (e.g., scheduling) to errors in treatment delivery. Reports were categorized based on functional area, type, and severity of an event. The events were processed and analyzed by a formal process improvement group that used the data and the statistics collected through the web-based tool for guidance in reengineering clinical processes. The reporting trends for the first 24 months with the electronic system were compared to the events that were reported in the same clinic with a paper-based system over a seven-year period. The reporting system and the process improvement structure resulted in increased event reporting, improved event communication, and improved identification of clinical areas which needed process and safety improvements. The reported data were also useful for the evaluation of corrective measures and recognition of ineffective measures and efforts. The electronic system was relatively well accepted by personnel and resulted in minimal disruption of clinical work. Event reporting in the quarters with the fewest number of reported events, though voluntary, was almost four times greater than the most events reported in any one quarter with the paper-based system and remained consistent from the inception of the process through the date of this report. However, the acceptance was not universal, validating the need for improved education regarding reporting processes and systematic approaches to reporting culture development. Specially designed electronic event reporting systems in a radiotherapy setting can provide valuable data for process and patient safety improvement and are more effective reporting mechanisms than paper-based systems. Additional work is needed to develop methods that can more effectively utilize reported data for process improvement, including the development of standardized event taxonomy and a classification system for RT.
ELECTRON TRANSFER MECHANISM AT THE SOLID-LIQUID INTERFACE OF PHYLLOSILICATES
Interfacial electron transfer processes on clay minerals have significant impact in natural environments and geochemical systems. Nitrobenzene was used as molecular probes to study the electron transfer mechanism at the solid-water interfaces of Fe-containing phyllosicates. For...
A study of information management in the patient surgical pathway in NHSScotland.
Bouamrane, Matt-Mouley; Mair, Frances S
2013-01-01
We conducted a study of information management processes across the patient surgical pathway in NHSScotland. While the majority of general practitioners (GPs) consider electronic medical records systems as an essential and integral part of their work during the patient consultation, many were not fully satisfied with the functionalities of these systems. A majority of GPs considered that the national eReferral system streamlined referral processes. Almost all GPs reported marked variability in the quality of discharge information. Preoperative processes vary significantly across Scotland, with most services using paper-based systems. Insufficient use is made of information provided through the patient electronic referral leading to a considerable duplication of tasks already performed in primary care. Three health-boards have implemented electronic preoperative information systems. These have transformed clinical practices and facilitated communication and information-sharing among the multi-disciplinary team and within the health-boards. Substantial progress has been made towards improving information transfer and sharing within the surgical pathway in recent years. However, there remains scope for further improvements at the interface between services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Nam Lyong; Lee, Sang-Seok; Graduate School of Engineering, Tottori University, 4-101 Koyama-Minami, Tottori
2013-07-15
The projection-reduction method introduced by the present authors is known to give a validated theory for optical transitions in the systems of electrons interacting with phonons. In this work, using this method, we derive the linear and first order nonlinear optical conductivites for an electron-impurity system and examine whether the expressions faithfully satisfy the quantum mechanical philosophy, in the same way as for the electron-phonon systems. The result shows that the Fermi distribution function for electrons, energy denominators, and electron-impurity coupling factors are contained properly in organized manners along with absorption of photons for each electron transition process in themore » final expressions. Furthermore, the result is shown to be represented properly by schematic diagrams, as in the formulation of electron-phonon interaction. Therefore, in conclusion, we claim that this method can be applied in modeling optical transitions of electrons interacting with both impurities and phonons.« less
Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weathersby, S. P.; Brown, G.; Chase, T. F.
Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition ratemore » with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.« less
Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory.
Weathersby, S P; Brown, G; Centurion, M; Chase, T F; Coffee, R; Corbett, J; Eichner, J P; Frisch, J C; Fry, A R; Gühr, M; Hartmann, N; Hast, C; Hettel, R; Jobe, R K; Jongewaard, E N; Lewandowski, J R; Li, R K; Lindenberg, A M; Makasyuk, I; May, J E; McCormick, D; Nguyen, M N; Reid, A H; Shen, X; Sokolowski-Tinten, K; Vecchione, T; Vetter, S L; Wu, J; Yang, J; Dürr, H A; Wang, X J
2015-07-01
Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.
Materials for high-density electronic packaging and interconnection
NASA Technical Reports Server (NTRS)
1990-01-01
Electronic packaging and interconnections are the elements that today limit the ultimate performance of advanced electronic systems. Materials in use today and those becoming available are critically examined to ascertain what actions are needed for U.S. industry to compete favorably in the world market for advanced electronics. Materials and processes are discussed in terms of the final properties achievable and systems design compatibility. Weak points in the domestic industrial capability, including technical, industrial philosophy, and political, are identified. Recommendations are presented for actions that could help U.S. industry regain its former leadership position in advanced semiconductor systems production.
ERIC Educational Resources Information Center
Downey, Kay
2012-01-01
Kent State University has developed a centralized system that manages the communication and work related to the review and selection of commercially available electronic resources. It is an automated system that tracks the review process, provides selectors with price and trial information, and compiles reviewers' feedback about the resource. It…
Development of a Wireless Brain Implant: The Telemetric Electrode Array System (TEAS) Project
2001-10-25
8 array connected to an electronic system through a special polyimide flexible cable. The neuronal signals recorded by the electrode array at 1 mm...deposition prior to applying an insulation coating of glass using electron-beam deposition or a biocompatible epoxy through a dipping process. In the case...layer can be made relatively easily, by melting and cooling glass powder or curing biocompatible epoxy, it was desirable to simplify the process and
Electronic circuit detects left ventricular ejection events in cardiovascular system
NASA Technical Reports Server (NTRS)
Gebben, V. D.; Webb, J. A., Jr.
1972-01-01
Electronic circuit processes arterial blood pressure waveform to produce discrete signals that coincide with beginning and end of left ventricular ejection. Output signals provide timing signals for computers that monitor cardiovascular systems. Circuit operates reliably for heart rates between 50 and 200 beats per minute.
Evaluation of stabilization techniques for ion implant processing
NASA Astrophysics Data System (ADS)
Ross, Matthew F.; Wong, Selmer S.; Minter, Jason P.; Marlowe, Trey; Narcy, Mark E.; Livesay, William R.
1999-06-01
With the integration of high current ion implant processing into volume CMOS manufacturing, the need for photoresist stabilization to achieve a stable ion implant process is critical. This study compares electron beam stabilization, a non-thermal process, with more traditional thermal stabilization techniques such as hot plate baking and vacuum oven processing. The electron beam processing is carried out in a flood exposure system with no active heating of the wafer. These stabilization techniques are applied to typical ion implant processes that might be found in a CMOS production process flow. The stabilization processes are applied to a 1.1 micrometers thick PFI-38A i-line photoresist film prior to ion implant processing. Post stabilization CD variation is detailed with respect to wall slope and feature integrity. SEM photographs detail the effects of the stabilization technique on photoresist features. The thermal stability of the photoresist is shown for different levels of stabilization and post stabilization thermal cycling. Thermal flow stability of the photoresist is detailed via SEM photographs. A significant improvement in thermal stability is achieved with the electron beam process, such that photoresist features are stable to temperatures in excess of 200 degrees C. Ion implant processing parameters are evaluated and compared for the different stabilization methods. Ion implant system end-station chamber pressure is detailed as a function of ion implant process and stabilization condition. The ion implant process conditions are detailed for varying factors such as ion current, energy, and total dose. A reduction in the ion implant systems end-station chamber pressure is achieved with the electron beam stabilization process over the other techniques considered. This reduction in end-station chamber pressure is shown to provide a reduction in total process time for a given ion implant dose. Improvements in the ion implant process are detailed across several combinations of current and energy.
Ultrafast Electron Dynamics in Solar Energy Conversion.
Ponseca, Carlito S; Chábera, Pavel; Uhlig, Jens; Persson, Petter; Sundström, Villy
2017-08-23
Electrons are the workhorses of solar energy conversion. Conversion of the energy of light to electricity in photovoltaics, or to energy-rich molecules (solar fuel) through photocatalytic processes, invariably starts with photoinduced generation of energy-rich electrons. The harvesting of these electrons in practical devices rests on a series of electron transfer processes whose dynamics and efficiencies determine the function of materials and devices. To capture the energy of a photogenerated electron-hole pair in a solar cell material, charges of opposite sign have to be separated against electrostatic attractions, prevented from recombining and being transported through the active material to electrodes where they can be extracted. In photocatalytic solar fuel production, these electron processes are coupled to chemical reactions leading to storage of the energy of light in chemical bonds. With the focus on the ultrafast time scale, we here discuss the light-induced electron processes underlying the function of several molecular and hybrid materials currently under development for solar energy applications in dye or quantum dot-sensitized solar cells, polymer-fullerene polymer solar cells, organometal halide perovskite solar cells, and finally some photocatalytic systems.
Wellmann, Peter J
2017-11-17
Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies.
2017-01-01
Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies. PMID:29200530
Liang, Jiajie; Chen, Yongsheng; Xu, Yanfei; Liu, Zhibo; Zhang, Long; Zhao, Xin; Zhang, Xiaoliang; Tian, Jianguo; Huang, Yi; Ma, Yanfeng; Li, Feifei
2010-11-01
Owing to its extraordinary electronic property, chemical stability, and unique two-dimensional nanostructure, graphene is being considered as an ideal material for the highly expected all-carbon-based micro/nanoscale electronics. Herein, we present a simple yet versatile approach to constructing all-carbon micro/nanoelectronics using solution-processing graphene films directly. From these graphene films, various graphene-based microcosmic patterns and structures have been fabricated using maskless computer-controlled laser cutting. Furthermore, a complete system involving a prototype of a flexible write-once-read-many-times memory card and a fast data-reading system has been demonstrated, with infinite data retention time and high reliability. These results indicate that graphene could be the ideal material for fabricating the highly demanded all-carbon and flexible devices and electronics using the simple and efficient roll-to-roll printing process when combined with maskless direct data writing.
Single-molecule interfacial electron transfer dynamics in solar energy conversion
NASA Astrophysics Data System (ADS)
Dhital, Bharat
This dissertation work investigated the parameters affecting the interfacial electron transfer (ET) dynamics in dye-semiconductor nanoparticles (NPs) system by using single-molecule fluorescence spectroscopy and imaging combined with electrochemistry. The influence of the molecule-substrate electronic coupling, the molecular structure, binding geometry on the surface and the molecule-attachment surface chemistry on interfacial charge transfer processes was studied on zinc porphyrin-TiO2 NP systems. The fluorescence blinking measurement on TiO2 NP demonstrated that electronic coupling regulates dynamics of charge transfer processes at the interface depending on the conformation of molecule on the surface. Moreover, semiconductor surface charge induced electronic coupling of molecule which is electrostatically adsorbed on the semiconductor surface also predominantly alters the ET dynamics. Furthermore, interfacial electric field and electron accepting state density dependent ET dynamics has been dissected in zinc porphyrin-TiO2 NP system by observing the single-molecule fluorescence blinking dynamics and fluorescence lifetime with and without applied bias. The significant difference in fluorescence fluctuation and lifetime suggested the modulation of charge transfer dynamics at the interface with external electric field perturbation. Quasi-continuous distribution of fluorescence intensity with applied negative potential was attributed to the faster charge recombination due to reduced density of electron accepting states. The driving force and electron accepting state density ET dependent dynamics has also been probed in zinc porphyrin-TiO2 NP and zinc porphyrin-indium tin oxide (ITO) systems. Study of a molecule adsorbed on two different semiconductors (ITO and TiO2), with large difference in electron densities and distinct driving forces, allows us to observe the changes in rates of back electron transfer process reflected by the suppressed fluorescence blinking of molecule on ITO surface. Finally, the electric field effect on the interface properties has been probed by using surface-enhanced Raman spectroscopy and supported by density functional theory calculations in alizarin-TiO2 system. The perturbation, created by the external potential, has been observed to cause a shift and/or splitting interfacial bond vibrational mode, typical indicator of the coupling energy changes between alizarin and TiO2. Such splitting provides evidence for electric field-dependent electronic coupling changes that have a significant impact on the interfacial electron transfer dynamics.
Electronic Chemotherapy Order Entry: A Major Cancer Center's Implementation
Sklarin, Nancy T.; Granovsky, Svetlana; O'Reilly, Eileen M.; Zelenetz, Andrew D.
2011-01-01
Implementation of a computerized provider order entry system for complex chemotherapy regimens at a large cancer center required intense effort from a multidisciplinary team of clinical and systems experts with experience in all facets of the chemotherapy process. The online tools had to resemble the paper forms used at the time and parallel the successful established process as well as add new functionality. Close collaboration between the institution and the vendor was necessary. This article summarizes the institutional efforts, challenges, and collaborative processes that facilitated universal chemotherapy computerized electronic order entry across multiple sites during a period of several years. PMID:22043182
Electronic Chemotherapy Order Entry: A Major Cancer Center's Implementation.
Sklarin, Nancy T; Granovsky, Svetlana; O'Reilly, Eileen M; Zelenetz, Andrew D
2011-07-01
Implementation of a computerized provider order entry system for complex chemotherapy regimens at a large cancer center required intense effort from a multidisciplinary team of clinical and systems experts with experience in all facets of the chemotherapy process. The online tools had to resemble the paper forms used at the time and parallel the successful established process as well as add new functionality. Close collaboration between the institution and the vendor was necessary. This article summarizes the institutional efforts, challenges, and collaborative processes that facilitated universal chemotherapy computerized electronic order entry across multiple sites during a period of several years.
Megaw, R; Rane-Malcolm, T; Brannan, S; Smith, R; Sanders, R
2011-11-01
To determine current knowledge and opinion on revalidation, and methods of cataract surgery audit in Scotland and to outline the current and future possibilities for electronic cataract surgery audit. In 2010 we conducted a prospective, cross-sectional, Scottish-wide survey on revalidation knowledge and opinion, and cataract audit practice among all senior NHS ophthalmologists. Results were anonymised and recorded manually for analysis. In all, 61% of the ophthalmologists surveyed took part. Only 33% felt ready to take part in revalidation, whereas 76% felt they did not have adequate information about the process. Also, 71% did not feel revalidation would improve patient care, but 85% agreed that cataract surgery audit is essential for ophthalmic practice. In addition, 91% audit their cataract outcomes; 52% do so continuously. Further, 63% audit their subspecialist surgical results. Only 25% audit their cataract surgery practice electronically, and only 12% collect clinical data using a hospital PAS system. Funding and system incompatibility were the main reasons cited for the lack of electronic audit setup. Currently, eight separate hospital IT patient administration systems are used across 14 health boards in Scotland. Revalidation is set to commence in 2012. The Royal College of Ophthalmologists will use cataract outcome audit as a tool to ensure surgical competency for the process. Retrospective manual auditing of cataract outcome is time consuming, and can be avoided with an electronic system. Scottish ophthalmologists view revalidation with scepticism and appear to have inadequate knowledge of the process. However, they strongly agree with the concept of cataract surgery audit. The existing and future electronic applications that may support surgical audit are commercial electronic records, web-based applications, centrally funded software applications, and robust NHS connections between community and hospital.
ERIC Educational Resources Information Center
Abildinova, Gulmira M.; Alzhanov, Aitugan K.; Ospanova, Nazira N.; Taybaldieva, Zhymatay; Baigojanova, Dametken S.; Pashovkin, Nikita O.
2016-01-01
Nowadays, when there is a need to introduce various innovations into the educational process, most efforts are aimed at simplifying the learning process. To that end, electronic textbooks, testing systems and other software is being developed. Most of them are intended to run on personal computers with limited mobility. Smart education is…
The significance of microbial processes in hydrogeology and geochemistry
Chapelle, F.H.
2000-01-01
Microbial processes affect the chemical composition of groundwater and the hydraulic properties of aquifers in both contaminated and pristine groundwater systems. The patterns of water-chemistry changes that occur depend upon the relative abundance of electron donors and electron acceptors. In many pristine aquifers, where microbial metabolism is limited by the availability of electron donors (usually organic matter), dissolved inorganic carbon (DIC) accumulates slowly along aquifer flow paths and available electron acceptors are consumed sequentially in the order dissolved oxygen > nitrate > Fe(III) > sulfate > CO2 (methanogenesis). In aquifers contaminated by anthropogenic contaminants, an excess of available organic carbon often exists, and microbial metabolism is limited by the availability of electron acceptors. In addition to changes in groundwater chemistry, the solid matrix of the aquifer is affected by microbial processes. The production of carbon dioxide and organic acids can lead to increased mineral solubility, which can lead to the development of secondary porosity and permeability. Conversely, microbial production of carbonate, ferrous iron, and sulfide can result in the precipitation of secondary calcite or pyrite cements that reduce primary porosity and permeability in groundwater systems.
NASA Astrophysics Data System (ADS)
Kim, Jung Rae
Bioelectrochemical system such as microbial fuel cells (MFCs) and microbial electrolysis cell are an emerging technology which converts biodegradable organic matter to electrical energy or hydrogen using a biofilm on the electrode as the biocatalyst. It has recently been shown that waste-to-energy technology based on MFC can treat organic contaminant in domestic or industrial wastewater and simultaneously produce electricity. The maximum power density increased up to 1kW/m3 based on reactor volume. Bioelectrochemical systems may reduce the energy consumption for wastewater treatment by replacing energy intensive aeration of present treatment systems, while generate electrical energy from waste. In addition, the biomass production in MFCs has been reported to be 10-50% of conventional wastewater treatment, leading to reduce environmental impact and disposal costs. Various electrochemically active bacteria metabolize biodegradable organic compounds then discharge electrons to an extracellular electron acceptor for bacterial respiration. These bacteria also transfer electrons to electrodes by direct electron transfer, electron mediators or shuttles, and electrically conductive nanowires. Investigation of bacterial electron transport mechanisms may improve understanding of the biomaterial involved and metabolic pathways as well as improving power from MFCs. Biofuel cell systems require interdisciplinary research ranging from electrochemistry, microbiology, material science and surface chemistry to engineering such as reactor design, operation and modelling. Collaboration within each study and integration of systems might increase the performance and feasibility of BES process for sustainable energy.
Biological applications of phase-contrast electron microscopy.
Nagayama, Kuniaki
2014-01-01
Here, I review the principles and applications of phase-contrast electron microscopy using phase plates. First, I develop the principle of phase contrast based on a minimal model of microscopy, introducing a double Fourier-transform process to mathematically formulate the image formation. Next, I explain four phase-contrast (PC) schemes, defocus PC, Zernike PC, Hilbert differential contrast, and schlieren optics, as image-filtering processes in the context of the minimal model, with particular emphases on the Zernike PC and corresponding Zernike phase plates. Finally, I review applications of Zernike PC cryo-electron microscopy to biological systems such as protein molecules, virus particles, and cells, including single-particle analysis to delineate three-dimensional (3D) structures of protein and virus particles and cryo-electron tomography to reconstruct 3D images of complex protein systems and cells.
Ghany, Ahmad; Vassanji, Karim; Kuziemsky, Craig; Keshavjee, Karim
2013-01-01
Electronic prescribing (e-prescribing) is expected to bring many benefits to Canadian healthcare, such as a reduction in errors and adverse drug reactions. As there currently is no functioning e-prescribing system in Canada that is completely electronic, we are unable to evaluate the performance of a live system. An alternative approach is to use simulation modeling for evaluation. We developed two discrete-event simulation models, one of the current handwritten prescribing system and one of a proposed e-prescribing system, to compare the performance of these two systems. We were able to compare the number of processes in each model, workflow efficiency, and the distribution of patients or prescriptions. Although we were able to compare these models to each other, using discrete-event simulation software was challenging. We were limited in the number of variables we could measure. We discovered non-linear processes and feedback loops in both models that could not be adequately represented using discrete-event simulation software. Finally, interactions between entities in both models could not be modeled using this type of software. We have come to the conclusion that a more appropriate approach to modeling both the handwritten and electronic prescribing systems would be to use a complex adaptive systems approach using agent-based modeling or systems-based modeling.
SEDHI: a new generation of detection electronics for earth observation satellites
NASA Astrophysics Data System (ADS)
Dantes, Didier; Neveu, Claude; Biffi, Jean-Marc; Devilliers, Christophe; Andre, Serge
2017-11-01
Future earth observation optical systems will be more and more demanding in terms of ground sampling distance, swath width, number of spectral bands, duty cycle. Existing architectures of focal planes and video processing electronics are hardly compatible with these new requirements: electronic functions are split in several units, and video processing is limited to frequencies around 5 MHz in order to fulfil the radiometric requirements expected for high performance image quality systems. This frequency limitation induces a high number of video chains operated in parallel to process the huge amount of pixels at focal plane output, and leads to unacceptable mass and power consumption budgets. Furthermore, splitting the detection electronics functions into several units (at least one for the focal plane and proximity electronics, and one for the video processing functions) does not optimise the production costs : specific development efforts must be performed on critical analogue electronics at each equipment level and operations of assembly, integration and tests are duplicated at equipment and subsystem levels. Alcatel Space Industries has proposed to CNES a new concept of highly integrated detection electronics (SEDHI), and is developing for CNES a breadboard which will allow to confirm its potentialities. This paper presents the trade-off study which have been performed before selection of this new concept and summarises the main advantages and drawbacks of each possible architecture. The electrical, mechanical and thermal aspects of the SEDHI concept are described, including the basic technologies : ASIC for phase shift of detector clocks, ASIC for video processing, hybrids, microchip module... The adaptability to a large amount of missions and optical instruments is also discussed.
42 CFR 456.709 - Retrospective drug use review.
Code of Federal Regulations, 2010 CFR
2010-10-01
... through the State's mechanized drug claims processing and information retrieval systems approved by CMS (that is, the Medicaid Management Information System (MMIS)) or an electronic drug claims processing... Claims Management System for Outpatient Drug Claims § 456.709 Retrospective drug use review. (a) General...
Molecular alignment effect on the photoassociation process via a pump-dump scheme.
Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin
2015-09-07
The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X(1)Σ(+)) is associated into the molecule in the bound states of the excited state (A(1)Σ(+)) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.
Molecular alignment effect on the photoassociation process via a pump-dump scheme
NASA Astrophysics Data System (ADS)
Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin
2015-09-01
The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X1Σ+) is associated into the molecule in the bound states of the excited state (A1Σ+) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j> on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.
Electron beams in research and technology
NASA Astrophysics Data System (ADS)
Mehnert, R.
1995-11-01
Fast electrons lose their energy by inelastic collisions with electrons of target molecules forming secondary electrons and excited molecules. Coulomb interaction of secondary electrons with valence electrons of neighboring molecules leads to the formation of radical cations, thermalized electrons, excited molecular states and radicals. The primary reactive species initiate chemical reactions in the materials irradiated. Polymer modifications using accelerated electrons such as cross-linking of cable insulation, tubes, pipes and moldings, vulcanization of elastomers, grafting of polymer surfaces, processing of foamed plastics and heat shrinkable materials have gained wide industrial acceptance. A steadily growing electron beam technology is curing of paints, lacquers, printing inks and functional coatings. Electron beam processing offers high productivity, the possibility to treat the materials at normal temperature and pressure, excellent process control and clean production conditions. On an industrial scale the most important application of fast electrons is curing of 100% reactive monomer/prepolymer systems. Mainly acrylates and epoxides are used to formulate functional coatings on substrates such as paper, foil, wood, fibre board and high pressure laminates. A survey is given about the reaction mechanism of curing, the characterization of cured coatings, and of some industrial application.
Wang, Fang; Zhang, Yonglai; Liu, Yang; Wang, Xuefeng; Shen, Mingrong; Lee, Shuit-Tong; Kang, Zhenhui
2013-03-07
Here we show a bias-mediated electron/energy transfer process at the CQDs-TiO(2) interface for the dynamic modulation of opto-electronic properties. Different energy and electron transfer states have been observed in the CQDs-TNTs system due to the up-conversion photoluminescence and the electron donation/acceptance properties of the CQDs decorated on TNTs.
Sparse sampling and reconstruction for electron and scanning probe microscope imaging
Anderson, Hyrum; Helms, Jovana; Wheeler, Jason W.; Larson, Kurt W.; Rohrer, Brandon R.
2015-07-28
Systems and methods for conducting electron or scanning probe microscopy are provided herein. In a general embodiment, the systems and methods for conducting electron or scanning probe microscopy with an undersampled data set include: driving an electron beam or probe to scan across a sample and visit a subset of pixel locations of the sample that are randomly or pseudo-randomly designated; determining actual pixel locations on the sample that are visited by the electron beam or probe; and processing data collected by detectors from the visits of the electron beam or probe at the actual pixel locations and recovering a reconstructed image of the sample.
Knight, Vickie; Guy, Rebecca J; Handan, Wand; Lu, Heng; McNulty, Anna
2014-06-01
In 2010, we introduced an express sexually transmitted infection/HIV testing service at a large metropolitan sexual health clinic, which significantly increased clinical service capacity. However, it also increased reception staff workload and caused backlogs of patients waiting to register or check in for appointments. We therefore implemented a new electronic self-registration and appointment self-arrival system in March 2012 to increase administrative efficiency and reduce waiting time for patients. We compared the median processing time overall and for each step of the registration and arrival process as well as the completeness of patient contact information recorded, in a 1-week period before and after the redesign of the registration system. χ2 Test and rank sum tests were used. Before the redesign, the median processing time was 8.33 minutes (interquartile range [IQR], 6.82-15.43), decreasing by 30% to 5.83 minutes (IQR, 4.75-7.42) when the new electronic self-registration and appointment self-arrival system was introduced (P < 0.001). The largest gain in efficiency was in the time taken to prepare the medical record for the clinician, reducing from a median of 5.31 minutes (IQR, 4.02-8.29) to 0.57 minutes (IQR, 0.38-1) in the 2 periods. Before implementation, 20% of patients provided a postal address and 31% an e-mail address, increasing to 60% and 70% post redesign, respectively (P < 0.001). Our evaluation shows that an electronic patient self-registration and appointment self-arrival system can improve clinic efficiency and save patient time. Systems like this one could be used by any outpatient service with large patient volumes as an integrated part of the electronic patient management system or as a standalone feature.
Use of electronic information systems in nursing management.
Lammintakanen, Johanna; Saranto, Kaija; Kivinen, Tuula
2010-05-01
The purpose of this study is to describe nurse managers' perceptions of the use of electronic information systems in their daily work. Several kinds of software are used for administrative and information management purposes in health care organizations, but the issue has been studied less from nurse managers' perspective. The material for this qualitative study was acquired according to the principles of focus group interview. Altogether eight focus groups were held with 48 nurse managers from both primary and specialized health care organizations. The nurse managers were asked in focus groups to describe the use of information systems in their daily work in addition to some other themes. The material was analyzed by inductive content analysis using ATLAS.ti computer program. The main category "pros and cons of using information systems in nursing management" summarized the nurse managers' perceptions of using electronic information systems. The main category consisted of three sub-categories: (1) nurse managers' perceptions of the use of information technology; (2) usability of management information systems; (3) development of personnel competencies and work processes. The nurse managers made several comments on the implementation of immature electronic information systems which caused inefficiencies in working processes. However, they considered electronic information systems to be essential elements of their daily work. Furthermore, the nurse managers' descriptions of the pros and cons of using information systems reflected partly the shortcomings of strategic management and lack of coordination in health care organizations. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.
Evaluation of a System of Electronic Documentation for the Nursing Process
de Oliveira, Neurilene Batista; Peres, Heloisa Helena Ciqueto
2012-01-01
The objective of this study is to evaluate the functional performance and the technical quality of an electronic documentation system designed to document the data of the Nursing Process. The Model of Quality will be the one established by the ISO/IEC 25010. Such research will allow the spreading of the knowledge of an emerging area, thus adding a further initiative to the growing efforts made in the information technology area for health and nursing. PMID:24199110
NASA Astrophysics Data System (ADS)
Yang, Yu-Xiang; Chen, Fei-Yang; Tong, Tong
According to the characteristic of e-waste reverse logistics, environmental performance evaluation system of electronic waste reverse logistics enterprise is proposed. We use fuzzy analytic hierarchy process method to evaluate the system. In addition, this paper analyzes the enterprise X, as an example, to discuss the evaluation method. It's important to point out attributes and indexes which should be strengthen during the process of ewaste reverse logistics and provide guidance suggestions to domestic e-waste reverse logistics enterprises.
ERIC Educational Resources Information Center
Rizvi, Rubina Fatima
2017-01-01
Despite high Electronic Health Record (EHR) system adoption rates by hospital and office-based practices, many users remain highly dissatisfied with the current state of EHRs. Sub-optimal EHR usability as a result of insufficient incorporation of User-Centered Design (UCD) approach during System Development Life Cycle process (SDLC) is considered…
Complexity in electronic negotiation support systems.
Griessmair, Michele; Strunk, Guido; Vetschera, Rudolf; Koeszegi, Sabine T
2011-10-01
It is generally acknowledged that the medium influences the way we communicate and negotiation research directs considerable attention to the impact of different electronic communication modes on the negotiation process and outcomes. Complexity theories offer models and methods that allow the investigation of how pattern and temporal sequences unfold over time in negotiation interactions. By focusing on the dynamic and interactive quality of negotiations as well as the information, choice, and uncertainty contained in the negotiation process, the complexity perspective addresses several issues of central interest in classical negotiation research. In the present study we compare the complexity of the negotiation communication process among synchronous and asynchronous negotiations (IM vs. e-mail) as well as an electronic negotiation support system including a decision support system (DSS). For this purpose, transcripts of 145 negotiations have been coded and analyzed with the Shannon entropy and the grammar complexity. Our results show that negotiating asynchronically via e-mail as well as including a DSS significantly reduces the complexity of the negotiation process. Furthermore, a reduction of the complexity increases the probability of reaching an agreement.
NASA Astrophysics Data System (ADS)
1995-05-01
English abstracts contained are from papers authored by the research staff of the Research Institute of Electrical Communication and the departments of Electrical Engineering, Electrical Communications, Electronic Engineering, and Information Engineering, Tohoku University, which originally appeared in scientific journals in 1994. The abstracts are organized under the following disciplines: electromagnetic theory; physics; fundamental theory of information; communication theory and systems; signal and image processing; systems control; computers; artificial intelligence; recording; acoustics and speech; ultrasonic electronics; antenna, propagation, and transmission; optoelectronics and optical communications; quantum electronics; superconducting materials and applications; magnetic materials and magnetics; semiconductors; electronic materials and parts; electronic devices and integrated circuits; electronic circuits; medical electronics and bionics; measurements and applied electronics; electric power; and miscellaneous.
Laborda, Eduardo; Gómez-Gil, José María; Molina, Angela
2017-06-28
A very general and simple theoretical solution is presented for the current-potential-time response of reversible multi-electron transfer processes complicated by homogeneous chemical equilibria (the so-called extended square scheme). The expressions presented here are applicable regardless of the number of electrons transferred and coupled chemical processes, and they are particularized for a wide variety of microelectrode geometries. The voltammetric response of very different systems presenting multi-electron transfers is considered for the most widely-used techniques (namely, cyclic voltammetry, square wave voltammetry, differential pulse voltammetry and steady state voltammetry), studying the influence of the microelectrode geometry and the number and thermodynamics of the (electro)chemical steps. Most appropriate techniques and procedures for the determination of the 'interaction' between successive transfers are discussed. Special attention is paid to those situations where homogeneous chemical processes, such as protonation, complexation or ion association, affect the electrochemical behaviour of the system by different stabilization of the oxidation states.
Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems
NASA Astrophysics Data System (ADS)
Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram
2014-12-01
Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.
Electronic-To-Optical-To-Electronic Packet-Data Conversion
NASA Technical Reports Server (NTRS)
Monacos, Steve
1996-01-01
Space-time multiplexer (STM) cell-based communication system designed to take advantage of both high throughput attainable in optical transmission links and flexibility and functionality of electronic processing, storage, and switching. Long packets segmented and transmitted optically by wavelength-division multiplexing. Performs optoelectronic and protocol conversion between electronic "store-and-forward" protocols and optical "hot-potato" protocols.
ERIC Educational Resources Information Center
Tsai, Bor-sheng
1991-01-01
Examines the information communication process and proposes a fuzzy commonality model for improving communication systems. Topics discussed include components of an electronic information programing and processing system and the flow of the formation and transfer of information, including DOS (disk operating system) commands, computer programing…
2010-01-01
Background The health care sector is an area of social and economic interest in several countries; therefore, there have been lots of efforts in the use of electronic health records. Nevertheless, there is evidence suggesting that these systems have not been adopted as it was expected, and although there are some proposals to support their adoption, the proposed support is not by means of information and communication technology which can provide automatic tools of support. The aim of this study is to identify the critical adoption factors for electronic health records by physicians and to use them as a guide to support their adoption process automatically. Methods This paper presents, based on the PRISMA statement, a systematic literature review in electronic databases with adoption studies of electronic health records published in English. Software applications that manage and process the data in the electronic health record have been considered, i.e.: computerized physician prescription, electronic medical records, and electronic capture of clinical data. Our review was conducted with the purpose of obtaining a taxonomy of the physicians main barriers for adopting electronic health records, that can be addressed by means of information and communication technology; in particular with the information technology roles of the knowledge management processes. Which take us to the question that we want to address in this work: "What are the critical adoption factors of electronic health records that can be supported by information and communication technology?". Reports from eight databases covering electronic health records adoption studies in the medical domain, in particular those focused on physicians, were analyzed. Results The review identifies two main issues: 1) a knowledge-based classification of critical factors for adopting electronic health records by physicians; and 2) the definition of a base for the design of a conceptual framework for supporting the design of knowledge-based systems, to assist the adoption process of electronic health records in an automatic fashion. From our review, six critical adoption factors have been identified: user attitude towards information systems, workflow impact, interoperability, technical support, communication among users, and expert support. The main limitation of the taxonomy is the different impact of the adoption factors of electronic health records reported by some studies depending on the type of practice, setting, or attention level; however, these features are a determinant aspect with regard to the adoption rate for the latter rather than the presence of a specific critical adoption factor. Conclusions The critical adoption factors established here provide a sound theoretical basis for research to understand, support, and facilitate the adoption of electronic health records to physicians in benefit of patients. PMID:20950458
Auger electron spectroscopy at high spatial resolution and nA primary beam currents
NASA Technical Reports Server (NTRS)
Todd, G.; Poppa, H.; Moorhead, D.; Bales, M.
1975-01-01
An experimental Auger microprobe system is described which incorporates a field-emission electron gun and total beam currents in the nanoampere range. The distinguishing characteristics of this system include a large multistation UHV specimen chamber, pulse counting and fully digital Auger signal-processing techniques, and digital referencing methods to eliminate the effects of beam instabilities. Some preliminary results obtained with this system are described, and it is concluded that field-emission electron sources can be used for high-resolution Auger electron spectroscopy with primary-beam spots of less than 100 nm and beam currents of the order of 1 nA.
Electronic labelling in recycling of manufactured articles.
Olejnik, Lech; Krammer, Alfred
2002-12-01
The concept of a recycling system aiming at the recovery of resources from manufactured articles is proposed. The system integrates electronic labels for product identification and internet for global data exchange. A prototype for the recycling of electric motors has been developed, which implements a condition-based recycling decision system to automatically select the environmentally and economically appropriate recycling strategy, thereby opening a potential market for second-hand motors and creating a profitable recycling process itself. The project has been designed to evaluate the feasibility of electronic identification applied on a large number of motors and to validate the system in real field conditions.
Electronic Noise and Fluctuations in Solids
NASA Astrophysics Data System (ADS)
Kogan, Sh.
2008-07-01
Preface; Part I. Introduction. Some Basic Concepts of the Theory of Random Processes: 1. Probability density functions. Moments. Stationary processes; 2. Correlation function; 3. Spectral density of noise; 4. Ergodicity and nonergodicity of random processes; 5. Random pulses and shot noise; 6. Markov processes. General theory; 7. Discrete Markov processes. Random telegraph noise; 8. Quasicontinuous (Diffusion-like) Markov processes; 9. Brownian motion; 10. Langevin approach to the kinetics of fluctuations; Part II. Fluctuation-Dissipation Relations in Equilibrium Systems: 11. Derivation of fluctuation-dissipation relations; 12. Equilibrium noise in quasistationary circuits. Nyquist theorem; 13. Fluctuations of electromagnetic fields in continuous media; Part III. Fluctuations in Nonequilibrium Gases: 14. Some basic concepts of hot-electrons' physics; 15. Simple model of current fluctuations in a semiconductor with hot electrons; 16. General kinetic theory of quasiclassical fluctuations in a gas of particles. The Boltzmann-Langevin equation; 17. Current fluctuations and noise temperature; 18. Current fluctuations and diffusion in a gas of hot electrons; 19. One-time correlation in nonequilibrium gases; 20. Intervalley noise in multivalley semiconductors; 21. Noise of hot electrons emitting optical phonons in the streaming regime; 22. Noise in a semiconductor with a postbreakdown stable current filament; Part IV. Generation-recombination noise: 23. G-R noise in uniform unipolar semiconductors; 24. Noise produced by recombination and diffusion; Part V. Noise in quantum ballistic systems: 25. Introduction; 26. Equilibrium noise and shot noise in quantum conductors; 27. Modulation noise in quantum point contacts; 28. Transition from a ballistic conductor to a macroscopic one; 29. Noise in tunnel junctions; Part VI. Resistance noise in metals: 30. Incoherent scattering of electrons by mobile defects; 31. Effect of mobile scattering centers on the electron interference pattern; 32. Fluctuations of the number of diffusing scattering centers; 33. Temperature fluctuations and the corresponding noise; Part VII. Noise in strongly disordered conductors: 34. Basic ideas of the percolation theory; 35. Resistance fluctuations in percolation systems. 36. Experiments; Part VIII. Low-frequency noise with an 1/f-type spectrum and random telegraph noise: 37. Introduction; 38. Some general properties of 1/f noise; 39. Basic models of 1/f noise; 40./f noise in metals; 41. Low-frequency noise in semiconductors; 42. Magnetic noise in spin glasses and some other magnetic systems; 43. Temperature fluctuations as a possible source of 1/f noise; 44. Random telegraph noise; 45. Fluctuations with 1/f spectrum in other systems; 46. General conclusions on 1/f noise; Part IX. Noise in Superconductors and Superconducting Structures: 47. Noise in Josephson junctions; 48. Noise in type II superconductors; References; Subject index.
Zedler, Linda; Kupfer, Stephan; de Moraes, Inês Rabelo; Wächtler, Maria; Beckert, Rainer; Schmitt, Michael; Popp, Jürgen; Rau, Sven; Dietzek, Benjamin
2014-03-24
Ruthenium dyes incorporating a 4H-imidazole chromophore as a ligand exhibit a spectrally broad absorption in the UV/Vis region. Furthermore, they show the ability to store two electrons within the 4H-imidazole ligand. These features render them promising molecular systems, for example, as inter- or intramolecular electron relays. To optimize the structures with respect to their electron-storage capability, it is crucial to understand the impact of structural changes accompanying photoinduced charge transfer in the electronic intermediates of multistep electron-transfer processes. The photophysical properties of these (reactive) intermediates might impact the function of the molecular systems quite substantially. However, the spectroscopic study of short-lived intermediates in stepwise multielectron-transfer processes is experimentally challenging. To this end, this contribution reports on the electrochemical generation of anions identical to intermediate structures and their spectroscopic characterization by in situ resonance Raman and UV/Vis spectroelectrochemistry and computational methods. Thereby, an efficient two-electron pathway to the 4H-imidazole electron-accepting ligand is identified. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hybrid codes with finite electron mass
NASA Astrophysics Data System (ADS)
Lipatov, A. S.
This report is devoted to the current status of the hybrid multiscale simulation technique. The different aspects of modeling are discussed. In particular, we consider the different level for description of the plasma model, however, the main attention will be paid to conventional hybrid models. We discuss the main steps of time integration the Vlasov/Maxwell system of equations. The main attention will be paid to the models with finite electron mass. Such model may allow us to explore the plasma system with multiscale phenomena ranging from ion to electron scales. As an application of hybrid modeling technique we consider the simulation of the plasma processes at the collisionless shocks and very shortly ther magnetic field reconnection processes.
Development of optical-electronic system for the separation of cullet
NASA Astrophysics Data System (ADS)
Solovey, Alexey A.; Alekhin, Artem A.
2017-06-01
Broken glass being the waste in many fields of production is usually used as a raw material in the production of construction materials. The purity level of collected and processed glass cullet, as a rule, is quite low. Direct usage of these materials without preliminary processing leads to the emergence of defects in the end product or sometimes even to technological downtime. That's why purity control of cullet should be strictly verified. The study shows the method of construction and requirements for an optical-electronic system designed for cullet separation. Moreover, the author proposes a registration channel scheme and shows a scheme of control exposure area. Also the issues of image processing for the implementation of a typical system are examined.
Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard
2010-02-21
Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings.
An Evaluation of Authentic Learning in an Electronic Medical Records System
ERIC Educational Resources Information Center
Stuart, Sandra L.
2013-01-01
This study examined participants' perceptions of the effectiveness of a new job-training program designed to enhance the authentic learning in adult learners using an electronic medical records system at a naval health clinic. This job-training program lacked data about participants' perceptions of this learning process by which to gauge its…
Factors Influencing the Quality of EHR Performance: An Exploratory Qualitative Study
ERIC Educational Resources Information Center
Rhodes, Harry B.
2016-01-01
A significant amount of evidence existed in support of the positive effect on the quality of healthcare that resulted from transitioning to electronic health information systems, equally compelling evidence suggests that the development process for electronic health information systems falls short of achieving its potential. The objective of this…
Impact of CALS on Electronic Publishing Systems and Users.
ERIC Educational Resources Information Center
Beazley, William G.
1990-01-01
The U.S. Department of Defense has begun using its buying power to enforce standards on the vendors and contractors of automatic data processing hardware and software. An example of this, the Computer-Aided Acquisition and Logistic Support (CALS) program, is described, and how it will affect electronic publishing systems is discussed. (five…
76 FR 53763 - Immigration Benefits Business Transformation, Increment I
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-29
...The Department of Homeland Security (DHS) is amending its regulations to enable U.S. Citizenship and Immigration Services (USCIS) to migrate from a paper file-based, non-integrated systems environment to an electronic customer-focused, centralized case management environment for benefit processing. This transformation process will allow USCIS to streamline benefit processing, eliminate the capture and processing of redundant data, and reduce the number of and automate its forms. This transformation process will be a phased multi-year initiative to restructure USCIS business processes and related information technology systems. DHS is removing references to form numbers, form titles, expired regulatory provisions, and descriptions of internal procedures, many of which will change during transformation. DHS is also finalizing interim rules that permitted submission of benefit requests with an electronic signature when such requests are submitted in an electronic format rather than on a paper form and that removed references to filing locations for immigration benefits. In addition, in this rule DHS is publishing the final rule for six other interim rules published during the past several years, most of which received no public comments.
Electron correlation in real time.
Sansone, Giuseppe; Pfeifer, Thomas; Simeonidis, Konstantinos; Kuleff, Alexander I
2012-02-01
Electron correlation, caused by the interaction among electrons in a multielectron system, manifests itself in all states of matter. A complete theoretical description of interacting electrons is challenging; different approximations have been developed to describe the fundamental aspects of the correlation that drives the evolution of simple (few-electron systems in atoms/molecules) as well as complex (multielectron wave functions in atoms, molecules, and solids) systems. Electron correlation plays a key role in the relaxation mechanisms that characterize excited states of neutral or ionized atoms and molecules populated by absorption of extreme ultraviolet (XUV) or X-ray radiation. The dynamics of these states can lead to different processes such as Fano resonance and Auger decay in atoms or interatomic Coulombic decay or charge migration in molecules and clusters. Many of these relaxation mechanisms are ubiquitous in nature and characterize the interaction of complex systems, such as biomolecules, adsorbates on surfaces, and hydrogen-bonded clusters, with XUV light. These mechanisms evolve typically on the femtosecond (1 fs=10(-15) s) or sub-femtosecond timescale. The experimental availability of few-femtosecond and attosecond (1 as=10(-18) s) XUV pulses achieved in the last 10 years offers, for the first time, the opportunity to excite and probe in time these dynamics giving the possibility to trace and control multielectron processes. The generation of ultrashort XUV radiation has triggered the development and application of spectroscopy techniques that can achieve time resolution well into the attosecond domain, thereby offering information on the correlated electronic motion and on the correlation between electron and nuclear motion. A deeper understanding of how electron correlation works could have a large impact in several research fields, such as biochemistry and biology, and trigger important developments in the design and optimization of electronic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Almunawar, Mohammad Nabil; Anshari, Muhammad; Younis, Mustafa Z.; Kisa, Adnan
2015-01-01
Electronic health records (EHRs) store health-related patient information in an electronic format, improving the quality of health care management and increasing efficiency of health care processes. However, in existing information systems, health-related records are generated, managed, and controlled by health care organizations. Patients are perceived as recipients of care and normally cannot directly interact with the system that stores their health-related records; their participation in enriching this information is not possible. Many businesses now allow customers to participate in generating information for their systems, strengthening customer relationships. This trend is supported by Web 2.0, which enables interactivity through various means, including social networks. Health care systems should be able to take advantage of this development. This article proposes a novel framework in addressing the emerging need for interactivity while preserving and extending existing electronic medical data. The framework has 3 dimensions of patient health record: personal, social, and medical dimensions. The framework is designed to empower patients, changing their roles from static recipient of health care services to dynamic and active partners in health care processes. PMID:26660486
ERIC Educational Resources Information Center
Galloway, Edward A.; Michalek, Gabrielle V.
1995-01-01
Discusses the conversion project of the congressional papers of Senator John Heinz into digital format and the provision of electronic access to these papers by Carnegie Mellon University. Topics include collection background, project team structure, document processing, scanning, use of optical character recognition software, verification…
EDExpress Pell Training, 2000-2001.
ERIC Educational Resources Information Center
Department of Education, Washington, DC. Student Financial Assistance.
This training manual is intended for higher education institutions that process Federal Pell Grants under a new system called the recipient financial management system (RFMS). The RFMS system is part of the electronic data exchange process which allows schools to send and receive Title IV student financial aid application data to and from the…
Quality Assurance By Laser Scanning And Imaging Techniques
NASA Astrophysics Data System (ADS)
SchmalfuB, Harald J.; Schinner, Karl Ludwig
1989-03-01
Laser scanning systems are well established in the world of fast industrial in-process quality inspection systems. The materials inspected by laser scanning systems are e.g. "endless" sheets of steel, paper, textile, film or foils. The web width varies from 50 mm up to 5000 mm or more. The web speed depends strongly on the production process and can reach several hundred meters per minute. The continuous data flow in one of different channels of the optical receiving system exceeds ten Megapixels/sec. Therefore it is clear that the electronic evaluation system has to process these data streams in real time and no image storage is possible. But sometimes (e.g. first installation of the system, change of the defect classification) it would be very helpful to have the possibility for a visual look on the original, i.e. not processed sensor data. At first we show the principle set up of a standard laser scanning system. Then we will introduce a large image memory especially designed for the needs of high-speed inspection sensors. This image memory co-operates with the standard on-line evaluation electronics and provides therefore an easy comparison between processed and non-processed data. We will discuss the basic system structure and we will show the first industrial results.
Single-Molecule Interfacial Electron Transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H. Peter
This project is focused on the use of single-molecule high spatial and temporal resolved techniques to study molecular dynamics in condensed phase and at interfaces, especially, the complex reaction dynamics associated with electron and energy transfer rate processes. The complexity and inhomogeneity of the interfacial ET dynamics often present a major challenge for a molecular level comprehension of the intrinsically complex systems, which calls for both higher spatial and temporal resolutions at ultimate single-molecule and single-particle sensitivities. Combined single-molecule spectroscopy and electrochemical atomic force microscopy approaches are unique for heterogeneous and complex interfacial electron transfer systems because the static andmore » dynamic inhomogeneities can be identified and characterized by studying one molecule at a specific nanoscale surface site at a time. The goal of our project is to integrate and apply these spectroscopic imaging and topographic scanning techniques to measure the energy flow and electron flow between molecules and substrate surfaces as a function of surface site geometry and molecular structure. We have been primarily focusing on studying interfacial electron transfer under ambient condition and electrolyte solution involving both single crystal and colloidal TiO 2 and related substrates. The resulting molecular level understanding of the fundamental interfacial electron transfer processes will be important for developing efficient light harvesting systems and broadly applicable to problems in fundamental chemistry and physics. We have made significant advancement on deciphering the underlying mechanism of the complex and inhomogeneous interfacial electron transfer dynamics in dyesensitized TiO 2 nanoparticle systems that strongly involves with and regulated by molecule-surface interactions. We have studied interfacial electron transfer on TiO 2 nanoparticle surfaces by using ultrafast single-molecule spectroscopy and electrochemical AFM metal tip scanning microscopy, focusing on understanding the interfacial electron transfer dynamics at specific nanoscale electron transfer sites with high-spatially and temporally resolved topographic-and-spectroscopic characterization at individual molecule basis, characterizing single-molecule rate processes, reaction driving force, and molecule-substrate electronic coupling. One of the most significant characteristics of our new approach is that we are able to interrogate the complex interfacial electron transfer dynamics by actively pin-point energetic manipulation of the surface interaction and electronic couplings, beyond the conventional excitation and observation.« less
Study on the E-commerce platform based on the agent
NASA Astrophysics Data System (ADS)
Fu, Ruixue; Qin, Lishuan; Gao, Yinmin
2011-10-01
To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.
Theoretical Discussion of Electron Transport Rate Constant at TCNQ / Ge and TiO2 System
NASA Astrophysics Data System (ADS)
Al-agealy, Hadi J. M.; Alshafaay, B.; Hassooni, Mohsin A.; Ashwiekh, Ahmed M.; Sadoon, Abbas K.; Majeed, Raad H.; Ghadhban, Rawnaq Q.; Mahdi, Shatha H.
2018-05-01
We have been studying and estimation the electronic transport constant at TCNQ / Ge and Tio2 interface by means of tunneling potential (TP), transport energy reorientation (TER), driving transition energy DTE and coupling coefficient constant. A simple quantum model for the transition processes was adapted to estimation and analysis depending on the quantum state for donor state |α D > and acceptor stated |α A > and assuming continuum levels of the system. Evaluation results were performed for the surfaces of Ge and Tio2 as best as for multilayer TCNQ. The results show an electronic transfer feature for electronic TCNQ density of states and a semiconductor behavior. The electronic rate constant result for both systems shows a good tool to election system in applied devices. All these results indicate the
Prucker, V; Bockstedte, M; Thoss, M; Coto, P B
2018-03-28
A single-particle density matrix approach is introduced to simulate the dynamics of heterogeneous electron transfer (ET) processes at interfaces. The characterization of the systems is based on a model Hamiltonian parametrized by electronic structure calculations and a partitioning method. The method is applied to investigate ET in a series of nitrile-substituted (poly)(p-phenylene)thiolate self-assembled monolayers adsorbed at the Au(111) surface. The results show a significant dependence of the ET on the orbital symmetry of the donor state and on the molecular and electronic structure of the spacer.
Development of inorganic resists for electron beam lithography: Novel materials and simulations
NASA Astrophysics Data System (ADS)
Jeyakumar, Augustin
Electron beam lithography is gaining widespread utilization as the semiconductor industry progresses towards both advanced optical and non-optical lithographic technologies for high resolution patterning. The current resist technologies are based on organic systems that are imaged most commonly through chain scission, networking, or a chemically amplified polarity change in the material. Alternative resists based on inorganic systems were developed and characterized in this research for high resolution electron beam lithography and their interactions with incident electrons were investigated using Monte Carlo simulations. A novel inorganic resist imaging scheme was developed using metal-organic precursors which decompose to form metal oxides upon electron beam irradiation that can serve as inorganic hard masks for hybrid bilayer inorganic-organic imaging systems and also as directly patternable high resolution metal oxide structures. The electron beam imaging properties of these metal-organic materials were correlated to the precursor structure by studying effects such as interactions between high atomic number species and the incident electrons. Optimal single and multicomponent precursors were designed for utilization as viable inorganic resist materials for sub-50nm patterning in electron beam lithography. The electron beam imaging characteristics of the most widely used inorganic resist material, hydrogen silsesquioxane (HSQ), was also enhanced using a dual processing imaging approach with thermal curing as well as a sensitizer catalyzed imaging approach. The interaction between incident electrons and the high atomic number species contained in these inorganic resists was also studied using Monte Carlo simulations. The resolution attainable using inorganic systems as compared to organic systems can be greater for accelerating voltages greater than 50 keV due to minimized lateral scattering in the high density inorganic systems. The effects of loading nanoparticles in an electron beam resist was also investigated using a newly developed hybrid Monte Carlo approach that accounts for multiple components in a solid film. The resolution of the nanocomposite resist process was found to degrade with increasing nanoparticle loading. Finally, the electron beam patterning of self-assembled monolayers, which were found to primarily utilize backscattered electrons from the high atomic number substrate materials to form images, was also investigated and characterized. It was found that backscattered electrons limit the resolution attainable at low incident electron energies.
NASA Astrophysics Data System (ADS)
Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen
2014-12-01
Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.
Wagler, Patrick F; Tangen, Uwe; Maeke, Thomas; McCaskill, John S
2012-07-01
The topic addressed is that of combining self-constructing chemical systems with electronic computation to form unconventional embedded computation systems performing complex nano-scale chemical tasks autonomously. The hybrid route to complex programmable chemistry, and ultimately to artificial cells based on novel chemistry, requires a solution of the two-way massively parallel coupling problem between digital electronics and chemical systems. We present a chemical microprocessor technology and show how it can provide a generic programmable platform for complex molecular processing tasks in Field Programmable Chemistry, including steps towards the grand challenge of constructing the first electronic chemical cells. Field programmable chemistry employs a massively parallel field of electrodes, under the control of latched voltages, which are used to modulate chemical activity. We implement such a field programmable chemistry which links to chemistry in rather generic, two-phase microfluidic channel networks that are separated into weakly coupled domains. Electric fields, produced by the high-density array of electrodes embedded in the channel floors, are used to control the transport of chemicals across the hydrodynamic barriers separating domains. In the absence of electric fields, separate microfluidic domains are essentially independent with only slow diffusional interchange of chemicals. Electronic chemical cells, based on chemical microprocessors, exploit a spatially resolved sandwich structure in which the electronic and chemical systems are locally coupled through homogeneous fine-grained actuation and sensor networks and play symmetric and complementary roles. We describe how these systems are fabricated, experimentally test their basic functionality, simulate their potential (e.g. for feed forward digital electrophoretic (FFDE) separation) and outline the application to building electronic chemical cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Yao, Yao; Sun, Ke-Wei; Luo, Zhen; Ma, Haibo
2018-01-18
The accurate theoretical interpretation of ultrafast time-resolved spectroscopy experiments relies on full quantum dynamics simulations for the investigated system, which is nevertheless computationally prohibitive for realistic molecular systems with a large number of electronic and/or vibrational degrees of freedom. In this work, we propose a unitary transformation approach for realistic vibronic Hamiltonians, which can be coped with using the adaptive time-dependent density matrix renormalization group (t-DMRG) method to efficiently evolve the nonadiabatic dynamics of a large molecular system. We demonstrate the accuracy and efficiency of this approach with an example of simulating the exciton dissociation process within an oligothiophene/fullerene heterojunction, indicating that t-DMRG can be a promising method for full quantum dynamics simulation in large chemical systems. Moreover, it is also shown that the proper vibronic features in the ultrafast electronic process can be obtained by simulating the two-dimensional (2D) electronic spectrum by virtue of the high computational efficiency of the t-DMRG method.
NASA Astrophysics Data System (ADS)
Tamulis, Arvydas; Majauskaite, Kristina; Kairys, Visvaldas; Zborowski, Krzysztof; Adhikari, Kapil; Krisciukaitis, Sarunas
2016-09-01
Implementation of liquid state quantum information processing based on spatially localized electronic spin in the neurotransmitter stable acetylcholine (ACh) neutral molecular radical is discussed. Using DFT quantum calculations we proved that this molecule possesses stable localized electron spin, which may represent a qubit in quantum information processing. The necessary operating conditions for ACh molecule are formulated in self-assembled dimer and more complex systems. The main quantum mechanical research result of this paper is that the neurotransmitter ACh systems, which were proposed, include the use of quantum molecular spintronics arrays to control the neurotransmission in neural networks.
Development of critical dimension measurement scanning electron microscope for ULSI (S-8000 series)
NASA Astrophysics Data System (ADS)
Ezumi, Makoto; Otaka, Tadashi; Mori, Hiroyoshi; Todokoro, Hideo; Ose, Yoichi
1996-05-01
The semiconductor industry is moving from half-micron to quarter-micron design rules. To support this evolution, Hitachi has developed a new critical dimension measurement scanning electron microscope (CD-SEM), the model S-8800 series, for quality control of quarter- micron process lines. The new CD-SEM provides detailed examination of process conditions with 5 nm resolution and 5 nm repeatability (3 sigma) at accelerating voltage 800 V using secondary electron imaging. In addition, a newly developed load-lock system has a capability of achieving a high sample throughput of 20 wafers/hour (5 point measurements per wafer) under continuous operation. To support user friendliness, the system incorporates a graphical user interface (GUI), an automated pattern recognition system which helps locating measurement points, both manual and semi-automated operation, and user-programmable operating parameters.
Rapid Implementation of Inpatient Electronic Physician Documentation at an Academic Hospital
Hahn, J.S.; Bernstein, J.A.; McKenzie, R.B.; King, B.J.; Longhurst, C.A.
2012-01-01
Electronic physician documentation is an essential element of a complete electronic medical record (EMR). At Lucile Packard Children’s Hospital, a teaching hospital affiliated with Stanford University, we implemented an inpatient electronic documentation system for physicians over a 12-month period. Using an EMR-based free-text editor coupled with automated import of system data elements, we were able to achieve voluntary, widespread adoption of the electronic documentation process. When given the choice between electronic versus dictated report creation, the vast majority of users preferred the electronic method. In addition to increasing the legibility and accessibility of clinical notes, we also decreased the volume of dictated notes and scanning of handwritten notes, which provides the opportunity for cost savings to the institution. PMID:23620718
A study of general practitioners' perspectives on electronic medical records systems in NHSScotland.
Bouamrane, Matt-Mouley; Mair, Frances S
2013-05-21
Primary care doctors in NHSScotland have been using electronic medical records within their practices routinely for many years. The Scottish Health Executive eHealth strategy (2008-2011) has recently brought radical changes to the primary care computing landscape in Scotland: an information system (GPASS) which was provided free-of-charge by NHSScotland to a majority of GP practices has now been replaced by systems provided by two approved commercial providers. The transition to new electronic medical records had to be completed nationally across all health-boards by March 2012. We carried out 25 in-depth semi-structured interviews with primary care doctors to elucidate GPs' perspectives on their practice information systems and collect more general information on management processes in the patient surgical pathway in NHSScotland. We undertook a thematic analysis of interviewees' responses, using Normalisation Process Theory as the underpinning conceptual framework. The majority of GPs' interviewed considered that electronic medical records are an integral and essential element of their work during the consultation, playing a key role in facilitating integrated and continuity of care for patients and making clinical information more accessible. However, GPs expressed a number of reservations about various system functionalities - for example: in relation to usability, system navigation and information visualisation. Our study highlights that while electronic information systems are perceived as having important benefits, there remains substantial scope to improve GPs' interaction and overall satisfaction with these systems. Iterative user-centred improvements combined with additional training in the use of technology would promote an increased understanding, familiarity and command of the range of functionalities of electronic medical records among primary care doctors.
A study of general practitioners’ perspectives on electronic medical records systems in NHSScotland
2013-01-01
Background Primary care doctors in NHSScotland have been using electronic medical records within their practices routinely for many years. The Scottish Health Executive eHealth strategy (2008-2011) has recently brought radical changes to the primary care computing landscape in Scotland: an information system (GPASS) which was provided free-of-charge by NHSScotland to a majority of GP practices has now been replaced by systems provided by two approved commercial providers. The transition to new electronic medical records had to be completed nationally across all health-boards by March 2012. Methods We carried out 25 in-depth semi-structured interviews with primary care doctors to elucidate GPs’ perspectives on their practice information systems and collect more general information on management processes in the patient surgical pathway in NHSScotland. We undertook a thematic analysis of interviewees’ responses, using Normalisation Process Theory as the underpinning conceptual framework. Results The majority of GPs’ interviewed considered that electronic medical records are an integral and essential element of their work during the consultation, playing a key role in facilitating integrated and continuity of care for patients and making clinical information more accessible. However, GPs expressed a number of reservations about various system functionalities – for example: in relation to usability, system navigation and information visualisation. Conclusion Our study highlights that while electronic information systems are perceived as having important benefits, there remains substantial scope to improve GPs’ interaction and overall satisfaction with these systems. Iterative user-centred improvements combined with additional training in the use of technology would promote an increased understanding, familiarity and command of the range of functionalities of electronic medical records among primary care doctors. PMID:23688255
47 CFR 1.10009 - What are the steps for electronic filing?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false What are the steps for electronic filing? 1... International Bureau Filing System § 1.10009 What are the steps for electronic filing? (a) Step 1: Register for... an FRN, go to Step 2. (2) In order to process your electronic application, you must have an FRN. You...
NASA Astrophysics Data System (ADS)
Arseev, Petr I.; Maslova, N. S.
2011-02-01
It is shown how effective Hamiltonians are constructed in the framework of the adiabatic approach to the electron-vibration interaction in electron tunneling through single molecules. Methods for calculating tunneling characteristics are discussed and possible features resulting from the electron-vibration coupling are described. The intensity of vibrations excited by a tunneling current in various systems is examined.
Smart signal processing for an evolving electric grid
NASA Astrophysics Data System (ADS)
Silva, Leandro Rodrigues Manso; Duque, Calos Augusto; Ribeiro, Paulo F.
2015-12-01
Electric grids are interconnected complex systems consisting of generation, transmission, distribution, and active loads, recently called prosumers as they produce and consume electric energy. Additionally, these encompass a vast array of equipment such as machines, power transformers, capacitor banks, power electronic devices, motors, etc. that are continuously evolving in their demand characteristics. Given these conditions, signal processing is becoming an essential assessment tool to enable the engineer and researcher to understand, plan, design, and operate the complex and smart electronic grid of the future. This paper focuses on recent developments associated with signal processing applied to power system analysis in terms of characterization and diagnostics. The following techniques are reviewed and their characteristics and applications discussed: active power system monitoring, sparse representation of power system signal, real-time resampling, and time-frequency (i.e., wavelets) applied to power fluctuations.
NASA Astrophysics Data System (ADS)
Mentink-Vigier, Frédéric; Binet, Laurent; Vignoles, Gerard; Gourier, Didier; Vezin, Hervé
2010-11-01
The hyperfine interactions of the unpaired electron with eight surrounding G69a and G71a nuclei in Ti-doped β-Ga2O3 were analyzed by electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopies. They are dominated by strong isotropic hyperfine couplings due to a direct Fermi contact interaction with Ga nuclei in octahedral sites of rutile-type chains oriented along b axis, revealing a large anisotropic spatial extension of the electron wave function. Titanium in β-Ga2O3 is thus best described as a diffuse (Ti4+-e-) pair rather than as a localized Ti3+ . Both electron and G69a nuclear spin Rabi oscillations could be observed by pulsed EPR and pulsed ENDOR, respectively. The electron spin decoherence time is about 1μs (at 4 K) and an upper bound of 520μs (at 8 K) is estimated for the nuclear decoherence time. Thus, β-Ga2O3:Ti appears to be a potential spin-bus system for quantum information processing with a large nuclear spin quantum register.
Electronic Procedures for Medical Operations
NASA Technical Reports Server (NTRS)
2015-01-01
Electronic procedures are replacing text-based documents for recording the steps in performing medical operations aboard the International Space Station. S&K Aerospace, LLC, has developed a content-based electronic system-based on the Extensible Markup Language (XML) standard-that separates text from formatting standards and tags items contained in procedures so they can be recognized by other electronic systems. For example, to change a standard format, electronic procedures are changed in a single batch process, and the entire body of procedures will have the new format. Procedures can be quickly searched to determine which are affected by software and hardware changes. Similarly, procedures are easily shared with other electronic systems. The system also enables real-time data capture and automatic bookmarking of current procedure steps. In Phase II of the project, S&K Aerospace developed a Procedure Representation Language (PRL) and tools to support the creation and maintenance of electronic procedures for medical operations. The goal is to develop these tools in such a way that new advances can be inserted easily, leading to an eventual medical decision support system.
Reeves, Kelly W; Taylor, Yhenneko; Tapp, Hazel; Ludden, Thomas; Shade, Lindsay E; Burton, Beth; Courtlandt, Cheryl; Dulin, Michael
2016-10-19
Asthma is a common childhood chronic lung disease affecting greater than 10% of children in the United States. School nurses are in a unique position to close gaps in care. Indeed, effective asthma management is more likely to result when providers, family, and schools work together to optimize the patient's treatment plan. Currently, effective communication between schools and healthcare systems through electronic medical record (EMR) systems remains a challenge. The goal of this feasibility pilot was to link the school-based care team with primary care providers in the healthcare system network via electronic communication through the EMR, on behalf of pediatric asthma patients who had been hospitalized for an asthma exacerbation. The implementation process and the potential impact of the communication with providers on the reoccurrence of asthma exacerbations with the linked patients were evaluated. By engaging stakeholders from the school system and the healthcare system, we were able to collaboratively design a communication process and implement a pilot which demonstrated the feasibility of electronic communication between school nurses and primary care providers. Outcomes data was collected from the electronic medical record to examine the frequency of asthma exacerbations among patients with a message from their school nurse. The percent of exacerbations in the 12 months before and after electronic communication was compared using McNemar's test. The pilot system successfully established communication between the school nurse and primary care provider for 33 students who had been hospitalized for asthma and a decrease in hospital admissions was observed with students whose school nurse communicated through the EMR with the primary care provider. Findings suggest a collaborative model of care that is enhanced through electronic communication via the EMR could positively impact the health of children with asthma or other chronic illnesses.
Integrated information systems for electronic chemotherapy medication administration.
Levy, Mia A; Giuse, Dario A; Eck, Carol; Holder, Gwen; Lippard, Giles; Cartwright, Julia; Rudge, Nancy K
2011-07-01
Chemotherapy administration is a highly complex and distributed task in both the inpatient and outpatient infusion center settings. The American Society of Clinical Oncology and the Oncology Nursing Society (ASCO/ONS) have developed standards that specify procedures and documentation requirements for safe chemotherapy administration. Yet paper-based approaches to medication administration have several disadvantages and do not provide any decision support for patient safety checks. Electronic medication administration that includes bar coding technology may provide additional safety checks, enable consistent documentation structure, and have additional downstream benefits. We describe the specialized configuration of clinical informatics systems for electronic chemotherapy medication administration. The system integrates the patient registration system, the inpatient order entry system, the pharmacy information system, the nursing documentation system, and the electronic health record. We describe the process of deploying this infrastructure in the adult and pediatric inpatient oncology, hematology, and bone marrow transplant wards at Vanderbilt University Medical Center. We have successfully adapted the system for the oncology-specific documentation requirements detailed in the ASCO/ONS guidelines for chemotherapy administration. However, several limitations remain with regard to recording the day of treatment and dose number. Overall, the configured systems facilitate compliance with the ASCO/ONS guidelines and improve the consistency of documentation and multidisciplinary team communication. Our success has prompted us to deploy this infrastructure in our outpatient chemotherapy infusion centers, a process that is currently underway and that will require a few unique considerations.
Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields
Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A.I.; Vrakking, M.J.J.; Rouzée, A.
2015-01-01
When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light. PMID:26469997
Hakala, John L; Hung, Joseph C; Mosman, Elton A
2012-09-01
The objective of this project was to ensure correct radiopharmaceutical administration through the use of a bar code system that links patient and drug profiles with on-site information management systems. This new combined system would minimize the amount of manual human manipulation, which has proven to be a primary source of error. The most common reason for dosing errors is improper patient identification when a dose is obtained from the nuclear pharmacy or when a dose is administered. A standardized electronic transfer of information from radiopharmaceutical preparation to injection will further reduce the risk of misadministration. Value stream maps showing the flow of the patient dose information, as well as potential points of human error, were developed. Next, a future-state map was created that included proposed corrections for the most common critical sites of error. Transitioning the current process to the future state will require solutions that address these sites. To optimize the future-state process, a bar code system that links the on-site radiology management system with the nuclear pharmacy management system was proposed. A bar-coded wristband connects the patient directly to the electronic information systems. The bar code-enhanced process linking the patient dose with the electronic information reduces the number of crucial points for human error and provides a framework to ensure that the prepared dose reaches the correct patient. Although the proposed flowchart is designed for a site with an in-house central nuclear pharmacy, much of the framework could be applied by nuclear medicine facilities using unit doses. An electronic connection between information management systems to allow the tracking of a radiopharmaceutical from preparation to administration can be a useful tool in preventing the mistakes that are an unfortunate reality for any facility.
Hao, Tian
2017-02-22
The Hall effects, especially the integer, fractional and anomalous quantum Hall effects, have been addressed using Eyring's rate process theory and free volume concept. The basic assumptions are that the conduction process is a common rate controlled "reaction" process that can be described with Eyring's absolute rate process theory; the mobility of electrons should be dependent on the free volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as with prefactors related to both the magnetic flux quantum number and the magnetic quantum number via the azimuthal quantum number, with and without an externally applied magnetic field. This article focuses on two dimensional (2D) systems, but the approaches developed in this article can be extended to 3D systems.
Metallurgical recovery of metals from electronic waste: a review.
Cui, Jirang; Zhang, Lifeng
2008-10-30
Waste electric and electronic equipment, or electronic waste, has been taken into consideration not only by the government but also by the public due to their hazardous material contents. In the detailed literature survey, value distributions for different electronic waste samples were calculated. It is showed that the major economic driver for recycling of electronic waste is from the recovery of precious metals. The state of the art in recovery of precious metals from electronic waste by pyrometallurgical processing, hydrometallurgical processing, and biometallurgical processing are highlighted in the paper. Pyrometallurgical processing has been a traditional technology for recovery of precious metals from waste electronic equipment. However, state-of-the-art smelters are highly depended on investments. Recent research on recovery of energy from PC waste gives an example for using plastics in this waste stream. It indicates that thermal processing provides a feasible approach for recovery of energy from electronic waste if a comprehensive emission control system is installed. In the last decade, attentions have been removed from pyrometallurgical process to hydrometallurgical process for recovery of metals from electronic waste. In the paper, hydrometallurgical processing techniques including cyanide leaching, halide leaching, thiourea leaching, and thiosulfate leaching of precious metals are detailed. In order to develop an environmentally friendly technique for recovery of precious metals from electronic scrap, a critical comparison of main leaching methods is analyzed for both economic feasibility and environmental impact. It is believed that biotechnology has been one of the most promising technologies in metallurgical processing. Bioleaching has been used for recovery of precious metals and copper from ores for many years. However, limited research was carried out on the bioleaching of metals from electronic waste. In the review, initial researches on the topic are presented. In addition, mechanisms and models of biosorption of precious metal ions from solutions are discussed.
Power control electronics for cryogenic instrumentation
NASA Technical Reports Server (NTRS)
Ray, Biswajit; Gerber, Scott S.; Patterson, Richard L.; Myers, Ira T.
1995-01-01
In order to achieve a high-efficiency high-density cryogenic instrumentation system, the power processing electronics should be placed in the cold environment along with the sensors and signal-processing electronics. The typical instrumentation system requires low voltage dc usually obtained from processing line frequency ac power. Switch-mode power conversion topologies such as forward, flyback, push-pull, and half-bridge are used for high-efficiency power processing using pulse-width modulation (PWM) or resonant control. This paper presents several PWM and multiresonant power control circuits, implemented using commercially available CMOS and BiCMOS integrated circuits, and their performance at liquid-nitrogen temperature (77 K) as compared to their room temperature (300 K) performance. The operation of integrated circuits at cryogenic temperatures results in an improved performance in terms of increased speed, reduced latch-up susceptibility, reduced leakage current, and reduced thermal noise. However, the switching noise increased at 77 K compared to 300 K. The power control circuits tested in the laboratory did successfully restart at 77 K.
NASA Technical Reports Server (NTRS)
Brand, J.
1972-01-01
The fabrication, test, and delivery of an optical modulator system which will operate with a mode-locked Nd:YAG laser indicating at either 1.06 or 0.53 micrometers is discussed. The delivered hardware operates at data rates up to 400 Mbps and includes a 0.53 micrometer electrooptic modulator, a 1.06 micrometer electrooptic modulator with power supply and signal processing electronics with power supply. The modulators contain solid state drivers which accept digital signals with MECL logic levels, temperature controllers to maintain a stable thermal environment for the modulator crystals, and automatic electronic compensation to maximize the extinction ratio. The modulators use two lithium tantalate crystals cascaded in a double pass configuration. The signal processing electronics include encoding electronics which are capable of digitizing analog signals between the limit of + or - 0.75 volts at a maximum rate of 80 megasamples per second with 5 bit resolution. The digital samples are serialized and made available as a 400 Mbps serial NRZ data source for the modulators. A pseudorandom (PN) generator is also included in the signal processing electronics. This data source generates PN sequences with lengths between 31 bits and 32,767 bits in a serial NRZ format at rates up to 400 Mbps.
Python based integration of GEM detector electronics with JET data acquisition system
NASA Astrophysics Data System (ADS)
Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dalley, Simon; Hogben, Colin; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek; Shumack, Amy
2014-11-01
This paper presents the system integrating the dedicated measurement and control electronic systems for Gas Electron Multiplier (GEM) detectors with the Control and Data Acquisition system (CODAS) in the JET facility in Culham, England. The presented system performs the high level procedures necessary to calibrate the GEM detector and to protect it against possible malfunctions or dangerous changes in operating conditions. The system also allows control of the GEM detectors from CODAS, setting of their parameters, checking their state, starting the plasma measurement and to reading the results. The system has been implemented using the Python language, using the advanced libraries for implementation of network communication protocols, for object based hardware management and for data processing.
Research and technology, fiscal year 1982
NASA Technical Reports Server (NTRS)
1982-01-01
Advanced studies are reviewed. Atmospheric sciences, magnetospheric physics, solar physics, gravitational physics, astronomy, and materials processing in space comprise the research programs. Large space systems, propulsion technology, materials and processes, electrical/electronic systems, data bases/design criteria, and facilities development comprise the technology development activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris; ...
2017-04-26
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Electrochemically active biofilms: facts and fiction. A review
Babauta, Jerome; Renslow, Ryan; Lewandowski, Zbigniew; Beyenal, Haluk
2014-01-01
This review examines the electrochemical techniques used to study extracellular electron transfer in the electrochemically active biofilms that are used in microbial fuel cells and other bioelectrochemical systems. Electrochemically active biofilms are defined as biofilms that exchange electrons with conductive surfaces: electrodes. Following the electrochemical conventions, and recognizing that electrodes can be considered reactants in these bioelectrochemical processes, biofilms that deliver electrons to the biofilm electrode are called anodic, ie electrode-reducing, biofilms, while biofilms that accept electrons from the biofilm electrode are called cathodic, ie electrode-oxidizing, biofilms. How to grow these electrochemically active biofilms in bioelec-trochemical systems is discussed and also the critical choices made in the experimental setup that affect the experimental results. The reactor configurations used in bioelectrochemical systems research are also described and the authors demonstrate how to use selected voltammetric techniques to study extracellular electron transfer in bioelectrochemical systems. Finally, some critical concerns with the proposed electron transfer mechanisms in bioelectrochemical systems are addressed together with the prospects of bioelectrochemical systems as energy-converting and energy-harvesting devices. PMID:22856464
Molecular engineering of phosphole-based conjugated materials
NASA Astrophysics Data System (ADS)
Ren, Yi
The work in this thesis focuses on the molecular engineering of phosphorus-based conjugated materials. In the first part (Chapters Two and Three), new phosphorus-based conjugated systems were designed and synthesized to study the effect of the heteroelement on the electronic properties of the π-conjugated systems. The second part (Chapters Four and Five) deals with the self-assembly features of specifically designed phosphorus-based conjugated systems. In Chapter Two, electron-poor and electron-rich aromatic substituents were introduced to the dithienophosphole core in order to balance the electron-accepting and electron-donating character of the systems. Furthermore, an intriguing intramolecular charge transfer process could be observed between two dithienophosphole cores in a bridged bisphosphole-system. In Chapter Three, a secondary heteroelement (Si, P, S) was incorporated in the phosphorus-based conjugated systems. Extensive structure-property studies revealed that the secondary heteroelement can effectively manipulate the communication in phosphinine-based systems. The study of a heterotetracene system allowed for selectively applying distinct heteroatom (S/P) chemistries, which offers a powerful tool for the modification of the electronic structure of the system. More importantly, the heteroatom-specific electronic nature (S/P) can be utilized to selectively control different photophysical aspects (energy gap and fluorescence quantum yield). Furthermore, additional molecular engineering of the heterotetracene provided access to well-defined 1D microstructures, which opened the door for designing multi-functional self-assembled phosphorus-based materials. In Chapter Four, the self-organizing phosphole-lipid system is introduced, which combines the features of phospholipids with the electronics of phospholes. Its amphiphilic nature induces intriguing self-assembly features - liquid crystal and soft crystal architectures, both exhibiting well-organized lamellar structure at a wide range of temperatures. Importantly, its dynamic structure endows the phosphole-lipid system with intriguing external stimuli-responsive features allowing for the modification of the emission of the system without further chemical modification. Chapter Five describes how further molecular engineering allowed for access to a series of new highly fluorescent phosphole-lipid organogels. Remarkably, the external-stimuli responsive features of the system can be amplified in a donor-acceptor system accessible through changes in long distance fluorescence resonance energy transfer processes. In addition, the first fluorescent liquid phospholes could also be accessed in the context of the work on the new phosphole-lipid system.
Flifla, M J; Garreau, M; Rolland, J P; Coatrieux, J L; Thomas, D
1992-12-01
'IBIS' is a set of computer programs concerned with the processing of electron micrographs, with particular emphasis on the requirements for structural analyses of biological macromolecules. The software is written in FORTRAN 77 and runs on Unix workstations. A description of the various functions and the implementation mode is given. Some examples illustrate the user interface.
ERIC Educational Resources Information Center
Kert, Serhat Bahadir; Uz, Cigdem; Gecu, Zeynep
2014-01-01
This study examined the effectiveness of an electronic performance support system (EPSS) on computer ethics education and the ethical decision-making processes. There were five different phases to this ten month study: (1) Writing computer ethics scenarios, (2) Designing a decision-making framework (3) Developing EPSS software (4) Using EPSS in a…
Molecular alignment effect on the photoassociation process via a pump-dump scheme
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bin-Bin; Han, Yong-Chang, E-mail: ychan@dlut.edu.cn; Cong, Shu-Lin
The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na{sub 2}) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X{sup 1}Σ{sup +}) is associated into the molecule in the bound states of the excited state (A{sup 1}Σ{sup +}) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found thatmore » the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.« less
The Goddard Space Flight Center Program to develop parallel image processing systems
NASA Technical Reports Server (NTRS)
Schaefer, D. H.
1972-01-01
Parallel image processing which is defined as image processing where all points of an image are operated upon simultaneously is discussed. Coherent optical, noncoherent optical, and electronic methods are considered parallel image processing techniques.
Mukherjee, Tamal; Ito, Naoki; Gould, Ian R
2011-03-17
The Mulliken-Hush (M-H) relationship provides the critical link between optical and thermal electron transfer processes, and yet very little direct experimental support for its applicability has been provided. Dicyanovinylazaadamantane (DCVA) represents a simple two-state (neutral/charge-transfer) intramolecular electron transfer system that exhibits charge-transfer absorption and emission spectra that are readily measurable in solvents with a wide range of polarities. In this regard it represents an ideal model system for studying the factors that control both optical charge separation (absorption) and recombination (emission) processes in solution. Here we explore the applicability of the M-H relation to quantitative descriptions of the optical charge-transfer processes in DCVA. For DCVA, the measured radiative rate constants exhibit a linear dependence on transition energy, and transition dipole moments exhibit an inverse dependence on transition energy, consistent with the M-H relationship.
Colloquium: Strong-field phenomena in periodic systems
NASA Astrophysics Data System (ADS)
Kruchinin, Stanislav Yu.; Krausz, Ferenc; Yakovlev, Vladislav S.
2018-04-01
The advent of visible-infrared laser pulses carrying a substantial fraction of their energy in a single field oscillation cycle has opened a new era in the experimental investigation of ultrafast processes in semiconductors and dielectrics (bulk as well as nanostructured), motivated by the quest for the ultimate frontiers of electron-based signal metrology and processing. Exploring ways to approach those frontiers requires insight into the physics underlying the interaction of strong high-frequency (optical) fields with electrons moving in periodic potentials. This Colloquium aims at providing this insight. Introduction to the foundations of strong-field phenomena defines and compares regimes of field-matter interaction in periodic systems, including (perfect) crystals as well as optical and semiconductor superlattices, followed by a review of recent experimental advances in the study of strong-field dynamics in crystals and nanostructures. Avenues toward measuring and controlling electronic processes up to petahertz frequencies are discussed.
Drop casting of stiffness gradients for chip integration into stretchable substrates
NASA Astrophysics Data System (ADS)
Naserifar, Naser; LeDuc, Philip R.; Fedder, Gary K.
2017-04-01
Stretchable electronics have demonstrated promise within unobtrusive wearable systems in areas such as health monitoring and medical therapy. One significant question is whether it is more advantageous to develop holistic stretchable electronics or to integrate mature CMOS into stretchable electronic substrates where the CMOS process is separated from the mechanical processing steps. A major limitation with integrating CMOS is the dissimilar interface between the soft stretchable and hard CMOS materials. To address this, we developed an approach to pattern an elastomeric polymer layer with spatially varying mechanical properties around CMOS electronics to create a controllable material stiffness gradient. Our experimental approach reveals that modifying the interfaces can increase the strain failure threshold up to 30% and subsequently decreases delamination. The stiffness gradient in the polymer layer provides a safe region for electronic chips to function under a substrate tensile strain up to 150%. These results will have impacts in diverse applications including skin sensors and wearable health monitoring systems.
Sensitivity Analysis of Algan/GAN High Electron Mobility Transistors to Process Variation
2008-02-01
delivery system gas panel including both hydride and alkyl delivery modules and the vent/valve configurations [14...Reactor Gas Delivery Systems A basic schematic diagram of an MOCVD reactor delivery gas panel is shown in Figure 13. The reactor gas delivery...system, or gas panel , consists of a network of stainless steel tubing, automatic valves and electronic mass flow controllers (MFC). There are separate
Hong, Deokhwa; Lee, Hyunki; Kim, Min Young; Cho, Hyungsuck; Moon, Jeon Il
2009-07-20
Automatic optical inspection (AOI) for printed circuit board (PCB) assembly plays a very important role in modern electronics manufacturing industries. Well-developed inspection machines in each assembly process are required to ensure the manufacturing quality of the electronics products. However, generally almost all AOI machines are based on 2D image-analysis technology. In this paper, a 3D-measurement-method-based AOI system is proposed consisting of a phase shifting profilometer and a stereo vision system for assembled electronic components on a PCB after component mounting and the reflow process. In this system information from two visual systems is fused to extend the shape measurement range limited by 2pi phase ambiguity of the phase shifting profilometer, and finally to maintain fine measurement resolution and high accuracy of the phase shifting profilometer with the measurement range extended by the stereo vision. The main purpose is to overcome the low inspection reliability problem of 2D-based inspection machines by using 3D information of components. The 3D shape measurement results on PCB-mounted electronic components are shown and compared with results from contact and noncontact 3D measuring machines. Based on a series of experiments, the usefulness of the proposed sensor system and its fusion technique are discussed and analyzed in detail.
Saronga, Happiness Pius; Duysburgh, Els; Massawe, Siriel; Dalaba, Maxwell Ayindenaba; Wangwe, Peter; Sukums, Felix; Leshabari, Melkizedeck; Blank, Antje; Sauerborn, Rainer; Loukanova, Svetla
2017-08-07
QUALMAT project aimed at improving quality of maternal and newborn care in selected health care facilities in three African countries. An electronic clinical decision support system was implemented to support providers comply with established standards in antenatal and childbirth care. Given that health care resources are limited and interventions differ in their potential impact on health and costs (efficiency), this study aimed at assessing cost-effectiveness of the system in Tanzania. This was a quantitative pre- and post- intervention study involving 6 health centres in rural Tanzania. Cost information was collected from health provider's perspective. Outcome information was collected through observation of the process of maternal care. Incremental cost-effectiveness ratios for antenatal and childbirth care were calculated with testing of four models where the system was compared to the conventional paper-based approach to care. One-way sensitivity analysis was conducted to determine whether changes in process quality score and cost would impact on cost-effectiveness ratios. Economic cost of implementation was 167,318 USD, equivalent to 27,886 USD per health center and 43 USD per contact. The system improved antenatal process quality by 4.5% and childbirth care process quality by 23.3% however these improvements were not statistically significant. Base-case incremental cost-effectiveness ratios of the system were 2469 USD and 338 USD per 1% change in process quality for antenatal and childbirth care respectively. Cost-effectiveness of the system was sensitive to assumptions made on costs and outcomes. Although the system managed to marginally improve individual process quality variables, it did not have significant improvement effect on the overall process quality of care in the short-term. A longer duration of usage of the electronic clinical decision support system and retention of staff are critical to the efficiency of the system and can reduce the invested resources. Realization of gains from the system requires effective implementation and an enabling healthcare system. Registered clinical trial at www.clinicaltrials.gov ( NCT01409824 ). Registered May 2009.
The derivative discontinuity of the exchange-correlation functional.
Mori-Sánchez, Paula; Cohen, Aron J
2014-07-28
The derivative discontinuity is a key concept in electronic structure theory in general and density functional theory in particular. The electronic energy of a quantum system exhibits derivative discontinuities with respect to different degrees of freedom that are a consequence of the integer nature of electrons. The classical understanding refers to the derivative discontinuity of the total energy as a function of the total number of electrons (N), but it can also manifest at constant N. Examples are shown in models including several hydrogen systems with varying numbers of electrons or nuclear charge (Z), as well as the 1-dimensional Hubbard model (1DHM). Two sides of the problem are investigated: first, the failure of currently used approximate exchange-correlation functionals in DFT and, second, the importance of the derivative discontinuity in the exact electronic structure of molecules, as revealed by full configuration interaction (FCI). Currently, all approximate functionals, including hybrids, miss the derivative discontinuity, leading to basic errors that can be seen in many ways: from the complete failure to give the total energy of H2 and H2(+), to the missing gap in Mott insulators such as stretched H2 and the thermodynamic limit of the 1DHM, or a qualitatively incorrect density in the HZ molecule with two electrons and incorrect electron transfer processes. Description of the exact particle behaviour of electrons is emphasised, which is key to many important physical processes in real systems, especially those involving electron transfer, and offers a challenge for the development of new exchange-correlation functionals.
Effect of chemical compounds on electronic tongue response to citrus juices
USDA-ARS?s Scientific Manuscript database
The electronic tongue system mimics the process of taste detection by human taste buds and recognition by the brain, hence helping in prediction of taste. With this unique capability, the electronic tongue has been used for taste detection of a wide range of food products. As a preliminary step in p...
Janhsen, B.; Daniliuc, C. G.
2017-01-01
In this paper, the application of the double radical nucleophilic aromatic substitution (SRN1) in various dihalogenated, mostly diiodinated, π-conjugated systems as a tool for qualitatively estimating their π-conjugation is described. This approach uses electron delocalisation as a measure of π-conjugation. Electron injection into the π-system is achieved via reaction of an intermediate aryl radical, itself generated from a dihalogenated π-system via SET-reduction of the C–I bond and subsequent reaction with a thiolate anion. The generated arene radical anion can then further react with the second aryl-halogen moiety within the π-system via an intramolecular electron transfer process. The efficiency of this intramolecular electron transfer is related to the π-conjugation of the radical anion. If the π-conjugation within the aromatic unit is weak, the arene radical anion reacts via an intermolecular ET with the starting dihalide. The intramolecular ET process delivers a product of a double SRN1 substitution whereas the intermolecular ET pathway provides a product of a mono- SRN1 substitution. By simple product analysis of mono- versus double substitution, π-conjugation can be qualitatively evaluated. This mechanistic tool is applied to various dihalogenated π-conjugated systems and the results are discussed within the context of π-conjugation. The conjugation mode within the π-system and the length of the aromatic system are varied, and the effect of relative positioning of the two halides within small π-systems is also addressed. PMID:28580099
Excitation energy transfer in photosynthetic protein-pigment complexes
NASA Astrophysics Data System (ADS)
Yeh, Shu-Hao
Quantum biology is a relatively new research area which investigates the rules that quantum mechanics plays in biology. One of the most intriguing systems in this field is the coherent excitation energy transport (EET) in photosynthesis. In this document I will discuss the theories that are suitable for describing the photosynthetic EET process and the corresponding numerical results on several photosynthetic protein-pigment complexes (PPCs). In some photosynthetic EET processes, because of the electronic coupling between the chromophores within the system is about the same order of magnitude as system-bath coupling (electron-phonon coupling), a non-perturbative method called hierarchy equation of motion (HEOM) is applied to study the EET dynamics. The first part of this thesis includes brief introduction and derivation to the HEOM approach. The second part of this thesis the HEOM method will be applied to investigate the EET process within the B850 ring of the light harvesting complex 2 (LH2) from purple bacteria, Rhodopseudomonas acidophila. The dynamics of the exciton population and coherence will be analyzed under different initial excitation configurations and temperatures. Finally, how HEOM can be implemented to simulate the two-dimensional electronic spectra of photosynthetic PPCs will be discussed. Two-dimensional electronic spectroscopy is a crucial experimental technique to probe EET dynamics in multi-chromophoric systems. The system we are interested in is the 7-chromophore Fenna-Matthews-Olson (FMO) complex from green sulfur bacteria, Prosthecochloris aestuarii. Recent crystallographic studies report the existence of an additional (eighth) chromophore in some of the FMO monomers. By applying HEOM we are able to calculate the two-dimensional electronic spectra of the 7-site and 8-site FMO complexes and investigate the functionality of the eighth chromophore.
El.Mahalli, Azza; El-Khafif, Sahar H.; Yamani, Wid
2016-01-01
The pharmacy information system is one of the central pillars of a hospital information system. This research evaluated a pharmacy information system according to six aspects of the medication process in three hospitals in Eastern Province, Saudi Arabia. System administrators were interviewed to determine availability of functionalities. Then, system users within the hospital were targeted to evaluate their level of usage of these functionalities. The study was cross-sectional. Two structured surveys were designed. The overall response rate of hospital users was 31.7 percent. In all three hospitals studied, the electronic health record is hybrid, implementation has been completed and the system is running, and the systems have computerized provider order entry and clinical decision support. Also, the pharmacy information systems are integrated with the electronic health record, and computerized provider order entry and almost all prescribing and transcription functionalities are available; however, drug dispensing is a mostly manual process. However, the study hospitals do not use barcode-assisted medication administration systems to verify patient identity and electronically check dose administration, and none of them have computerized adverse drug event monitoring that uses the electronic health record. The numbers of users who used different functionalities most or all of the time was generally low. The highest frequency of utilization was for patient administration records (56.8 percent), and the lowest was for linkage of the pharmacy information system to pharmacy stock (9.1 percent). Encouraging users to use different functionalities was highly recommended. PMID:26903780
El Mahalli, Azza; El-Khafif, Sahar H; Yamani, Wid
2016-01-01
The pharmacy information system is one of the central pillars of a hospital information system. This research evaluated a pharmacy information system according to six aspects of the medication process in three hospitals in Eastern Province, Saudi Arabia. System administrators were interviewed to determine availability of functionalities. Then, system users within the hospital were targeted to evaluate their level of usage of these functionalities. The study was cross-sectional. Two structured surveys were designed. The overall response rate of hospital users was 31.7 percent. In all three hospitals studied, the electronic health record is hybrid, implementation has been completed and the system is running, and the systems have computerized provider order entry and clinical decision support. Also, the pharmacy information systems are integrated with the electronic health record, and computerized provider order entry and almost all prescribing and transcription functionalities are available; however, drug dispensing is a mostly manual process. However, the study hospitals do not use barcode-assisted medication administration systems to verify patient identity and electronically check dose administration, and none of them have computerized adverse drug event monitoring that uses the electronic health record. The numbers of users who used different functionalities most or all of the time was generally low. The highest frequency of utilization was for patient administration records (56.8 percent), and the lowest was for linkage of the pharmacy information system to pharmacy stock (9.1 percent). Encouraging users to use different functionalities was highly recommended.
Architecture of COOPTO Remote Voting Solution
NASA Astrophysics Data System (ADS)
Silhavy, Radek; Silhavy, Petr; Prokopova, Zdenka
This contribution focuses on investigation of remote electronic voting system, named COOPTO. Researching of suitability of electronic voting solution is forced by necessity of the improvement election process. The COOPTO is based on topical investigation of voting process and their implementation of using modern information and communication technology. The COOPTO allows voters, who are not in their election district, to participate in the democracy process. The aim of this contribution is to describe results of the development of the COOPTO solutions.
NASA Astrophysics Data System (ADS)
Penetrante, B. M.
1993-08-01
The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.
Mechanisms important to later stages of streamer system development
NASA Astrophysics Data System (ADS)
Lehtinen, N. G.; Carlson, B.; Kochkin, P.; Østgaard, N.
2017-12-01
Typical streamer modeling focuses on the propagation of the streamer head and thus neglects processes such as electron detachment, electron energy relaxation, and thermalization of the electron energy distribution. These mechanisms, however, may become important at later stages of streamer system development, in particular following streamer collisions. We present a model of a later-stage streamer system development which includes these processes. A linear analysis suggests that these processes under some conditions can lead to new effects, such as excitation of waves similar to striations in the positive column of a glow discharge. Such instabilities do not occur if these mechanisms are neglected under the same conditions, although previous modeling suggested existence of wave-like phenomena during the streamer propagation [Luque et al, 2016, doi:10.1002/2015JA022234]. In the sea-level pressure air, the obtained striation-like waves may manifest as very high frequency range (>10 MHz) oscillations in plasma parameters and may have been detected in the electrode current and electromagnetic radiation measurements during laboratory spark experiments. We discuss whether the longitudinal electric field in such waves can efficiently transfer energy to charged particles, because such a process may play a role in production of x-rays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romanov, Denis A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Sosnin, Kirill V., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru; Budovskikh, Evgenij A., E-mail: romanov-da@physics.sibsiu.ru, E-mail: kos2906@mail.ru, E-mail: budovskih-ea@physics.sibsiu.ru, E-mail: gromov@physics.sibsiu.ru, E-mail: da-rom@live.ru
2014-11-14
For the first time, the high intensity electron beam modification of electroexplosion composite coatings of MoCu, MoCCu, WCu, WCCu and TiB{sub 2}Cu systems was done. The studies of phase and elemental composition, defective structure conditions of these coatings were carried out. The regimes of electron-beam processing making possible to form the dense, specular luster surface layers having a submicrocrystalline structure were revealed. It was established that electron-beam processing of elecroexplosion spraying of layer of elecroexplosion spraying carried out in the regime of melting results in the formation of structurally and contrationally homogeneous surface layer. Investigation of the effect of electron-beammore » processing of electroexplosion electroerosion resistant coatings on their tribological properties (wear resistanse and coefficient of friction) and electroerosion resistance was done. It was shown that all the examined costings demonstrate the increase of electroerosion resistance in spark erosion up to 10 times.« less
Use of Symmetrical Number Systems in Electronic Warfare
2013-12-01
National Aerospace and Electronics Conf., pp. 78–84, 2000. [76] C. J. Tarran, “Operational HF DF systems employing real time superresolution process- ing... superresolution algorithms for radio direction finding,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-22, pp. 432–442, Apr. 1986. [78] A. Ferreol and M...S Int. Microwave Symp. Dig., vol. 3, pp. 885–888, 1999. [82] H. L. Levitt, E. M. Alexander, A. Y. Tse, and A. E. Spezio, “ Superresolution precision
Polymer Waveguide Fabrication Techniques
NASA Astrophysics Data System (ADS)
Ramey, Delvan A.
1985-01-01
The ability of integrated optic systems to compete in signal processing aplications with more traditional analog and digital electronic systems is discussed. The Acousto-Optic Spectrum Analyzer is an example which motivated the particular work discussed herein. Provided real time processing is more critical than absolute accuracy, such integrated optic systems fulfill a design need. Fan-out waveguide arrays allow crosstalk in system detector arrays to be controlled without directly limiting system resolution. A polyurethane pattern definition process was developed in order to demonstrate fan-out arrays. This novel process is discussed, along with further research needs. Integrated optic system market penetration would be enhanced by development of commercial processes of this type.
Systems Architecture for a Nationwide Healthcare System.
Abin, Jorge; Nemeth, Horacio; Friedmann, Ignacio
2015-01-01
From a national level to give Internet technology support, the Nationwide Integrated Healthcare System in Uruguay requires a model of Information Systems Architecture. This system has multiple healthcare providers (public and private), and a strong component of supplementary services. Thus, the data processing system should have an architecture that considers this fact, while integrating the central services provided by the Ministry of Public Health. The national electronic health record, as well as other related data processing systems, should be based on this architecture. The architecture model described here conceptualizes a federated framework of electronic health record systems, according to the IHE affinity model, HL7 standards, local standards on interoperability and security, as well as technical advice provided by AGESIC. It is the outcome of the research done by AGESIC and Systems Integration Laboratory (LINS) on the development and use of the e-Government Platform since 2008, as well as the research done by the team Salud.uy since 2013.
Study on processing immiscible materials in zero gravity
NASA Technical Reports Server (NTRS)
Reger, J. L.; Mendelson, R. A.
1975-01-01
An experimental investigation was conducted to evaluate mixing immiscible metal combinations under several process conditions. Under one-gravity, these included thermal processing, thermal plus electromagnetic mixing, and thermal plus acoustic mixing. The same process methods were applied during free fall on the MSFC drop tower facility. The design is included of drop tower apparatus to provide the electromagnetic and acoustic mixing equipment, and a thermal model was prepared to design the specimen and cooling procedure. Materials systems studied were Ca-La, Cd-Ga and Al-Bi; evaluation of the processed samples included the morphology and electronic property measurements. The morphology was developed using optical and scanning electron microscopy and microprobe analyses. Electronic property characterization of the superconducting transition temperatures were made using an impedance change-tuned coil method.
Wang, Yulin; Tian, Xuelong
2014-08-01
In order to improve the speech quality and auditory perceptiveness of electronic cochlear implant under strong noise background, a speech enhancement system used for electronic cochlear implant front-end was constructed. Taking digital signal processing (DSP) as the core, the system combines its multi-channel buffered serial port (McBSP) data transmission channel with extended audio interface chip TLV320AIC10, so speech signal acquisition and output with high speed are realized. Meanwhile, due to the traditional speech enhancement method which has the problems as bad adaptability, slow convergence speed and big steady-state error, versiera function and de-correlation principle were used to improve the existing adaptive filtering algorithm, which effectively enhanced the quality of voice communications. Test results verified the stability of the system and the de-noising performance of the algorithm, and it also proved that they could provide clearer speech signals for the deaf or tinnitus patients.
NASA Technical Reports Server (NTRS)
Tuey, Richard C.; Moore, Fred W.; Ryan, Christine A.
1995-01-01
The report is presented in four sections: The Introduction describes the duplicating configuration under evaluation and the Background contains a chronological description of the evaluation segmented by phases 1 and 2. This section includes the evaluation schedule, printing and duplicating requirements, storage and communication requirements, electronic publishing system configuration, existing processes and proposed processes, billing rates, costs and productivity analysis, and the return on investment based upon the data gathered to date. The third section contains the phase 1 comparative cost and productivity analysis. This analysis demonstrated that LaRC should proceed with a 90-day evaluation of the DocuTech and follow with a phase 2 cycle to actually demonstrate that the proposed system would meet the needs of LaRC's printing and duplicating requirements, benchmark results, cost comparisons, benchmark observations, and recommendations. These are documented after the recommendations.
Quality of nursing documentation: Paper-based health records versus electronic-based health records.
Akhu-Zaheya, Laila; Al-Maaitah, Rowaida; Bany Hani, Salam
2018-02-01
To assess and compare the quality of paper-based and electronic-based health records. The comparison examined three criteria: content, documentation process and structure. Nursing documentation is a significant indicator of the quality of patient care delivery. It can be either paper-based or organised within the system known as the electronic health records. Nursing documentation must be completed at the highest standards, to ensure the safety and quality of healthcare services. However, the evidence is not clear on which one of the two forms of documentation (paper-based versus electronic health records is more qualified. A retrospective, descriptive, comparative design was used to address the study's purposes. A convenient number of patients' records, from two public hospitals, were audited using the Cat-ch-Ing audit instrument. The sample size consisted of 434 records for both paper-based health records and electronic health records from medical and surgical wards. Electronic health records were better than paper-based health records in terms of process and structure. In terms of quantity and quality content, paper-based records were better than electronic health records. The study affirmed the poor quality of nursing documentation and lack of nurses' knowledge and skills in the nursing process and its application in both paper-based and electronic-based systems. Both forms of documentation revealed drawbacks in terms of content, process and structure. This study provided important information, which can guide policymakers and administrators in identifying effective strategies aimed at enhancing the quality of nursing documentation. Policies and actions to ensure quality nursing documentation at the national level should focus on improving nursing knowledge, competencies, practice in nursing process, enhancing the work environment and nursing workload, as well as strengthening the capacity building of nursing practice to improve the quality of nursing care and patients' outcomes. © 2017 John Wiley & Sons Ltd.
[New electronic data carriers in Bosnia-Herzegovina].
Masić, I; Pandza, H; Knezević, Z; Toromanović, S
1999-01-01
Bosnia and Herzegovina has been developing new Health Care System based on Electronic Registration Card. Developing countries proceeded from the manual and semiautomatic method of medical data processing to the new method of entering, storage, transfer, searching and protection of data using electronic equipment. Currently, many European countries have developed a Medical Card Based Electronic Information System. Both technologies offer the advantages and disadvantages. Three types of electronic card are currently in use: Hybrid Card, Smart Card and Laser Card. Hybrid Card offers characteristics of both Smart Card and Laser Card. The differences among these cards, such as a capacity, total price, price per byte, security system are discussed here. The dilemma is, which card should be used as a data carrier. The Electronic Family Registration Card is a question of strategic interest for B&H, but also a big investment. We should avoid the errors of other countries that have been developing card-based system. In this article we present all mentioned cards and compare advantages and disadvantages of different technologies.
Liu, Dengyong; Li, Shengjie; Wang, Nan; Deng, Yajun; Sha, Lei; Gai, Shengmei; Liu, Huan; Xu, Xinglian
2017-05-01
This paper aimed to study the time course changes in taste compounds of Dezhou-braised chicken during the entire cooking process mainly consisting of deep-frying, high-temperature boiling, and low-temperature braising steps. For this purpose, meat samples at different processing stages were analyzed for 5'-nucleotides and free amino acids, and were also subjected to electronic tongue measurements. Results showed that IMP, Glu, Lys, and sodium chloride were the main compounds contributing to the taste attributes of the final product. IMP and Glu increased in the boiling step and remained unchanged in the following braising steps. Meanwhile, decrease in Lys content and increase in sodium chloride content were observed over time in both boiling and braising steps. Intensities for bitterness, saltiness, and Aftertaste-B obtained from the electronic tongue analysis were correlated with the concentrations of these above chemical compounds. Therefore, the electronic tongue system could be applied to evaluate the taste development of Dezhou-braised chicken during processing. © 2017 Institute of Food Technologists®.
Hot-electron transfer in quantum-dot heterojunction films.
Grimaldi, Gianluca; Crisp, Ryan W; Ten Brinck, Stephanie; Zapata, Felipe; van Ouwendorp, Michiko; Renaud, Nicolas; Kirkwood, Nicholas; Evers, Wiel H; Kinge, Sachin; Infante, Ivan; Siebbeles, Laurens D A; Houtepen, Arjan J
2018-06-13
Thermalization losses limit the photon-to-power conversion of solar cells at the high-energy side of the solar spectrum, as electrons quickly lose their energy relaxing to the band edge. Hot-electron transfer could reduce these losses. Here, we demonstrate fast and efficient hot-electron transfer between lead selenide and cadmium selenide quantum dots assembled in a quantum-dot heterojunction solid. In this system, the energy structure of the absorber material and of the electron extracting material can be easily tuned via a variation of quantum-dot size, allowing us to tailor the energetics of the transfer process for device applications. The efficiency of the transfer process increases with excitation energy as a result of the more favorable competition between hot-electron transfer and electron cooling. The experimental picture is supported by time-domain density functional theory calculations, showing that electron density is transferred from lead selenide to cadmium selenide quantum dots on the sub-picosecond timescale.
Bridge-mediated hopping or superexchange electron-transfer processes in bis(triarylamine) systems
NASA Astrophysics Data System (ADS)
Lambert, Christoph; Nöll, Gilbert; Schelter, Jürgen
2002-09-01
Hopping and superexchange are generally considered to be alternative electron-transfer mechanisms in molecular systems. In this work we used mixed-valence radical cations as model systems for the investigation of electron-transfer pathways. We show that substituents attached to a conjugated bridge connecting two triarylamine redox centres have a marked influence on the near-infrared absorption spectra of the corresponding cations. Spectral analysis, followed by evaluation of the electron-transfer parameters using the Generalized Mulliken-Hush theory and simulation of the potential energy surfaces, indicate that hopping and superexchange are not alternatives, but are both present in the radical cation with a dimethoxybenzene bridge. We found that the type of electron-transfer mechanism depends on the bridge-reorganization energy as well as on the bridge-state energy. Because superexchange and hopping follow different distance laws, our findings have implications for the design of new molecular and polymeric electron-transfer materials.
NASA Astrophysics Data System (ADS)
Lin, Chundan; Xia, Qide; Li, Kuan; Li, Juan; Yang, Zhenqing
2018-06-01
The ultrafast injection of excited electrons in dye/TiO2 system plays a critical role, which determines the device's efficiency in large part. In this work, we studied the geometrical structures and electronic properties of a dye/TiO2 composite system for dye-sensitized solar cells (DSSCs) by using density functional theory, and we analyzed the mechanism of ultrafast electron injection with emphasis on the power conversion efficiency. The results show that the dye SPL103/TiO2 (101) surface is more stable than dye SPL101. The electron injection driving force of SPL103/TiO2 (101) is 3.55 times that of SPL101, indicating that SPL103/TiO2 (101) has a strong ability to transfer electrons. SPL103 and SPL101/TiO2 (101) both have fast electron transfer processes, and especially the electron injection time of SPL103/TiO2 (101) is only 1.875 fs. The results of this work are expected to provide a new understanding of the mechanism of electron injection in dyes/TiO2 systems for use in highly effective DSSCs.
Managing complex research datasets using electronic tools: A meta-analysis exemplar
Brown, Sharon A.; Martin, Ellen E.; Garcia, Theresa J.; Winter, Mary A.; García, Alexandra A.; Brown, Adama; Cuevas, Heather E.; Sumlin, Lisa L.
2013-01-01
Meta-analyses of broad scope and complexity require investigators to organize many study documents and manage communication among several research staff. Commercially available electronic tools, e.g., EndNote, Adobe Acrobat Pro, Blackboard, Excel, and IBM SPSS Statistics (SPSS), are useful for organizing and tracking the meta-analytic process, as well as enhancing communication among research team members. The purpose of this paper is to describe the electronic processes we designed, using commercially available software, for an extensive quantitative model-testing meta-analysis we are conducting. Specific electronic tools improved the efficiency of (a) locating and screening studies, (b) screening and organizing studies and other project documents, (c) extracting data from primary studies, (d) checking data accuracy and analyses, and (e) communication among team members. The major limitation in designing and implementing a fully electronic system for meta-analysis was the requisite upfront time to: decide on which electronic tools to use, determine how these tools would be employed, develop clear guidelines for their use, and train members of the research team. The electronic process described here has been useful in streamlining the process of conducting this complex meta-analysis and enhancing communication and sharing documents among research team members. PMID:23681256
Managing complex research datasets using electronic tools: a meta-analysis exemplar.
Brown, Sharon A; Martin, Ellen E; Garcia, Theresa J; Winter, Mary A; García, Alexandra A; Brown, Adama; Cuevas, Heather E; Sumlin, Lisa L
2013-06-01
Meta-analyses of broad scope and complexity require investigators to organize many study documents and manage communication among several research staff. Commercially available electronic tools, for example, EndNote, Adobe Acrobat Pro, Blackboard, Excel, and IBM SPSS Statistics (SPSS), are useful for organizing and tracking the meta-analytic process as well as enhancing communication among research team members. The purpose of this article is to describe the electronic processes designed, using commercially available software, for an extensive, quantitative model-testing meta-analysis. Specific electronic tools improved the efficiency of (a) locating and screening studies, (b) screening and organizing studies and other project documents, (c) extracting data from primary studies, (d) checking data accuracy and analyses, and (e) communication among team members. The major limitation in designing and implementing a fully electronic system for meta-analysis was the requisite upfront time to decide on which electronic tools to use, determine how these tools would be used, develop clear guidelines for their use, and train members of the research team. The electronic process described here has been useful in streamlining the process of conducting this complex meta-analysis and enhancing communication and sharing documents among research team members.
Recent advances in electronic nose techniques for monitoring of fermentation process.
Jiang, Hui; Zhang, Hang; Chen, Quansheng; Mei, Congli; Liu, Guohai
2015-12-01
Microbial fermentation process is often sensitive to even slight changes of conditions that may result in unacceptable end-product quality. Thus, the monitoring of the process is critical for discovering unfavorable deviations as early as possible and taking the appropriate measures. However, the use of traditional analytical techniques is often time-consuming and labor-intensive. In this sense, the most effective way of developing rapid, accurate and relatively economical method for quality assurance in microbial fermentation process is the use of novel chemical sensor systems. Electronic nose techniques have particular advantages in non-invasive monitoring of microbial fermentation process. Therefore, in this review, we present an overview of the most important contributions dealing with the quality control in microbial fermentation process using the electronic nose techniques. After a brief description of the fundamentals of the sensor techniques, some examples of potential applications of electronic nose techniques monitoring are provided, including the implementation of control strategies and the combination with other monitoring tools (i.e. sensor fusion). Finally, on the basis of the review, the electronic nose techniques are critically commented, and its strengths and weaknesses being highlighted. In addition, on the basis of the observed trends, we also propose the technical challenges and future outlook for the electronic nose techniques.
Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...
2015-03-17
There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less
Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...
2015-03-17
There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less
Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Lyubimov, Artem Y; Hattne, Johan; Brewster, Aaron S; Sauter, Nicholas K; Brunger, Axel T; Weis, William I
2015-01-01
There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited. DOI: http://dx.doi.org/10.7554/eLife.05421.001 PMID:25781634
Optical information processing at NASA Ames Research Center
NASA Technical Reports Server (NTRS)
Reid, Max B.; Bualat, Maria G.; Cho, Young C.; Downie, John D.; Gary, Charles K.; Ma, Paul W.; Ozcan, Meric; Pryor, Anna H.; Spirkovska, Lilly
1993-01-01
The combination of analog optical processors with digital electronic systems offers the potential of tera-OPS computational performance, while often requiring less power and weight relative to all-digital systems. NASA is working to develop and demonstrate optical processing techniques for on-board, real time science and mission applications. Current research areas and applications under investigation include optical matrix processing for space structure vibration control and the analysis of Space Shuttle Main Engine plume spectra, optical correlation-based autonomous vision for robotic vehicles, analog computation for robotic path planning, free-space optical interconnections for information transfer within digital electronic computers, and multiplexed arrays of fiber optic interferometric sensors for acoustic and vibration measurements.
NASA Technical Reports Server (NTRS)
Bogomolov, E. A.; Yevstafev, Y. Y.; Karakadko, V. K.; Lubyanaya, N. D.; Romanov, V. A.; Totubalina, M. G.; Yamshchikov, M. A.
1975-01-01
A system for the recording and processing of telescope data is considered for measurements of EW asymmetry. The information is recorded by 45 channels on a continuously moving 35-mm film. The dead time of the recorder is about 0.1 sec. A sorting electronic circuit is used to reduce the errors when the statistical time distribution of the pulses is recorded. The recorded information is read out by means of photoresistors. The phototransmitter signals are fed either to the mechanical recorder unit for preliminary processing, or to a logical circuit which controls the operation of the punching device. The punched tape is processed by an electronic computer.
Wang, Ning; Yu, Ping; Hailey, David
2015-08-01
The nursing care plan plays an essential role in supporting care provision in Australian aged care. The implementation of electronic systems in aged care homes was anticipated to improve documentation quality. Standardized nursing terminologies, developed to improve communication and advance the nursing profession, are not required in aged care practice. The language used by nurses in the nursing care plan and the effect of the electronic system on documentation quality in residential aged care need to be investigated. To describe documentation practice for the nursing care plan in Australian residential aged care homes and to compare the quantity and quality of documentation in paper-based and electronic nursing care plans. A nursing documentation audit was conducted in seven residential aged care homes in Australia. One hundred and eleven paper-based and 194 electronic nursing care plans, conveniently selected, were reviewed. The quantity of documentation in a care plan was determined by the number of phrases describing a resident problem and the number of goals and interventions. The quality of documentation was measured using 16 relevant questions in an instrument developed for the study. There was a tendency to omit 'nursing problem' or 'nursing diagnosis' in the nursing process by changing these terms (used in the paper-based care plan) to 'observation' in the electronic version. The electronic nursing care plan documented more signs and symptoms of resident problems and evaluation of care than the paper-based format (48.30 vs. 47.34 out of 60, P<0.01), but had a lower total mean quality score. The electronic care plan contained fewer problem or diagnosis statements, contributing factors and resident outcomes than the paper-based system (P<0.01). Both types of nursing care plan were weak in documenting measurable and concrete resident outcomes. The overall quality of documentation content for the nursing process was no better in the electronic system than in the paper-based system. Omission of the nursing problem or diagnosis from the nursing process may reflect a range of factors behind the practice that need to be understood. Further work is also needed on qualitative aspects of the nurse care plan, nurses' attitudes towards standardized terminologies and the effect of different documentation practice on care quality and resident outcomes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Scantlebury, Arabella; Sheard, Laura; Watt, Ian; Cairns, Paul; Wright, John; Adamson, Joy
2017-01-07
To explore the benefits, barriers and disadvantages of implementing an electronic record system (ERS). The extent that the system has become 'normalised' into routine practice was also explored. Qualitative semi-structured interviews were conducted with 19 members of NHS staff who represented a variety of staff groups (doctors, midwives of different grades, health care assistants) and wards within a maternity unit at a NHS teaching hospital. Interviews were conducted during the first year of the phased implementation of ERS and were analysed thematically. The four mechanisms of Normalisation Process Theory (NPT) (coherence, cognitive participation, collective action and reflexive monitoring) were adapted for use within the study and provided a theoretical framework to interpret the study's findings. Coherence (participants' understanding of why the ERS has been implemented) was mixed - whilst those involved in ERS implementation anticipated advantages such as improved access to information; the majority were unclear why the ERS was introduced. Participants' willingness to engage with and invest time into the ERS (cognitive participation) depended on the amount of training and support they received and their willingness to change from paper to electronic records. Collective action (the extent the ERS was used) may be influenced by whether participants perceived there to be benefits associated with the system. Whilst some individuals reported benefits such as improved legibility of records, others felt benefits were yet to emerge. The parallel use of paper and the lack of integration of electronic systems within and between the trust and other healthcare organisations hindered ERS use. When appraising the ERS (reflexive monitoring) participants perceived the system to negatively impact the patient-clinician relationship, time and patient safety. Despite expectations that the ERS would have a number of advantages, its implementation was perceived to have a range of disadvantages and only a limited number of 'clinical benefits'. The study highlights the complexity of implementing electronic systems and the associated longevity before they can become 'embedded' into routine practice. Through the identification of barriers to the employment of electronic systems this process could be streamlined with the avoidance of any potential detriment to clinical services.
Practical colloidal processing of multication ceramics
Bell, Nelson S.; Monson, Todd C.; Diantonio, Christopher; ...
2015-09-07
The use of colloidal processing principles in the formation of ceramic materials is well appreciated for developing homogeneous material properties in sintered products, enabling novel forming techniques for porous ceramics or 3D printing, and controlling microstructure to enable optimized material properties. The solution processing of electronic ceramic materials often involves multiple cationic elements or dopants to affect microstructure and properties. Material stability must be considered through the steps of colloidal processing to optimize desired component properties. This review provides strategies for preventing material degradation in particle synthesis, milling processes, and dispersion, with case studies of consolidation using spark plasma sinteringmore » of these systems. The prevention of multication corrosion in colloidal dispersions can be achieved by utilizing conditions similar to the synthesis environment or by the development of surface passivation layers. The choice of dispersing surfactants can be related to these surface states, which are of special importance for nanoparticle systems. A survey of dispersant chemistries related to some common synthesis conditions is provided for perovskite systems as an example. Furthermore, these principles can be applied to many colloidal systems related to electronic and optical applications.« less
Environmental Response Laboratory Network (ERLN) WebEDR Quick Reference Guide
The Web Electronic Data Review is a web-based system that performs automated data processing on laboratory-submitted Electronic Data Deliverables (EDDs). Enables users to perform technical audits on data, and against Measurement Quality Objectives (MQOs).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husler, R.O.; Weir, T.J.
1991-01-01
An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified tomore » include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Husler, R.O.; Weir, T.J.
1991-12-31
An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to includemore » process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.« less
ERIC Educational Resources Information Center
National Center for Education Statistics, 2010
2010-01-01
The growth of electronic student data in America's education system has focused attention on the ways these data are collected, processed, stored, and used. The use of records in Statewide Longitudinal Data Systems to follow the progress of individual students over time requires maintaining student education records that include information that…
Processing Satellite Data for Slant Total Electron Content Measurements
NASA Technical Reports Server (NTRS)
Stephens, Philip John (Inventor); Komjathy, Attila (Inventor); Wilson, Brian D. (Inventor); Mannucci, Anthony J. (Inventor)
2016-01-01
A method, system, and apparatus provide the ability to estimate ionospheric observables using space-borne observations. Space-borne global positioning system (GPS) data of ionospheric delay are obtained from a satellite. The space-borne GPS data are combined with ground-based GPS observations. The combination is utilized in a model to estimate a global three-dimensional (3D) electron density field.
ERIC Educational Resources Information Center
General Accounting Office, Washington, DC.
Written in response to a request to review the implementation of the Department of Agriculture's Electronic Dissemination of Information (EDI) system, this fact sheet discusses the performance of the contractor operating the system and the role of EDI in the Department of Agriculture's overall public dissemination activities. A letter from the…
ERIC Educational Resources Information Center
Kim, Paul; Olaciregui, Claudia
2008-01-01
An electronic portfolio system, designed to serve as a resource-based learning space, was tested in a fifth-grade science class. The control-group students accessed a traditional folder-based information display in the system and the experimental-group students accessed a concept map-based information display to review a science portfolio. The…
Contract Monitoring in Agent-Based Systems: Case Study
NASA Astrophysics Data System (ADS)
Hodík, Jiří; Vokřínek, Jiří; Jakob, Michal
Monitoring of fulfilment of obligations defined by electronic contracts in distributed domains is presented in this paper. A two-level model of contract-based systems and the types of observations needed for contract monitoring are introduced. The observations (inter-agent communication and agents’ actions) are collected and processed by the contract observation and analysis pipeline. The presented approach has been utilized in a multi-agent system for electronic contracting in a modular certification testing domain.
Conceptual Design of Electron-Beam Generated Plasma Tools
NASA Astrophysics Data System (ADS)
Agarwal, Ankur; Rauf, Shahid; Dorf, Leonid; Collins, Ken; Boris, David; Walton, Scott
2015-09-01
Realization of the next generation of high-density nanostructured devices is predicated on etching features with atomic layer resolution, no damage and high selectivity. High energy electron beams generate plasmas with unique features that make them attractive for applications requiring monolayer precision. In these plasmas, high energy beam electrons ionize the background gas and the resultant daughter electrons cool to low temperatures via collisions with gas molecules and lack of any accelerating fields. For example, an electron temperature of <0.6 eV with densities comparable to conventional plasma sources can be obtained in molecular gases. The chemistry in such plasmas can significantly differ from RF plasmas as the ions/radicals are produced primarily by beam electrons rather than those in the tail of a low energy distribution. In this work, we will discuss the conceptual design of an electron beam based plasma processing system. Plasma properties will be discussed for Ar, Ar/N2, and O2 plasmas using a computational plasma model, and comparisons made to experiments. The fluid plasma model is coupled to a Monte Carlo kinetic model for beam electrons which considers gas phase collisions and the effect of electric and magnetic fields on electron motion. The impact of critical operating parameters such as magnetic field, beam energy, and gas pressure on plasma characteristics in electron-beam plasma processing systems will be discussed. Partially supported by the NRL base program.
Systems and Methods for Radar Data Communication
NASA Technical Reports Server (NTRS)
Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)
2013-01-01
A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.
Advanced Data Acquisition Systems
NASA Technical Reports Server (NTRS)
Perotti, J.
2003-01-01
Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6,462,684. Furthermore, NASA KSC commercialization office has issued licensing rights to Circuit Avenue Netrepreneurs, LLC , a minority-owned business founded in 1999 located in Camden, NJ.
Spaceborne electronic imaging systems
NASA Technical Reports Server (NTRS)
1971-01-01
Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.
Commercialization of an S-band standing-wave electron accelerator for industrial applications
NASA Astrophysics Data System (ADS)
Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju
2016-09-01
An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.
Intermolecular Coulombic Decay (ICD) Occuring in Triatomic Molecular Dimer
NASA Astrophysics Data System (ADS)
Iskandar, Wael; Gatton, Averell; Gaire, Bishwanath; Champenois, Elio; Larsen, Kirk; Shivaram, Niranjan; Moradmand, Ali; Severt, Travis; Williams, Joshua; Slaughter, Daniel; Weber, Thorsten
2017-04-01
For over two decades, the production of ICD process has been extensively investigated theoretically and experimentally in different systems bounded by a week force (ex. van-der-Waals or Hydrogen force). Furthermore, the ICD process has been demonstrated a strong implication in biological system (DNA damage and DNA repair mechanism) because of the production of genotoxic low energy electrons during the decay cascade. Studying large complex system such as triatomic molecular dimer may be helpful for further exploration of ``Auger electron driven cancer therapy''. The present experiment investigates the dissociation dynamics happened in collision between a photons and CO2 dimer. We will focus more specifically on the CO2++CO2+ fragmentation channel and the detection in coincidence of the two ionic fragments and the two electrons will be done using a COld Target Recoil Ion Momentum Spectroscopy (COLTRIMS). The measurements of the Kinetic Energy Release of the two fragments and the relative angular distribution of the electrons in the molecular frame reveal that the ICD is the only mechanism responsible for the production of this fragmentation channel.
Integrated Information Systems for Electronic Chemotherapy Medication Administration
Levy, Mia A.; Giuse, Dario A.; Eck, Carol; Holder, Gwen; Lippard, Giles; Cartwright, Julia; Rudge, Nancy K.
2011-01-01
Introduction: Chemotherapy administration is a highly complex and distributed task in both the inpatient and outpatient infusion center settings. The American Society of Clinical Oncology and the Oncology Nursing Society (ASCO/ONS) have developed standards that specify procedures and documentation requirements for safe chemotherapy administration. Yet paper-based approaches to medication administration have several disadvantages and do not provide any decision support for patient safety checks. Electronic medication administration that includes bar coding technology may provide additional safety checks, enable consistent documentation structure, and have additional downstream benefits. Methods: We describe the specialized configuration of clinical informatics systems for electronic chemotherapy medication administration. The system integrates the patient registration system, the inpatient order entry system, the pharmacy information system, the nursing documentation system, and the electronic health record. Results: We describe the process of deploying this infrastructure in the adult and pediatric inpatient oncology, hematology, and bone marrow transplant wards at Vanderbilt University Medical Center. We have successfully adapted the system for the oncology-specific documentation requirements detailed in the ASCO/ONS guidelines for chemotherapy administration. However, several limitations remain with regard to recording the day of treatment and dose number. Conclusion: Overall, the configured systems facilitate compliance with the ASCO/ONS guidelines and improve the consistency of documentation and multidisciplinary team communication. Our success has prompted us to deploy this infrastructure in our outpatient chemotherapy infusion centers, a process that is currently underway and that will require a few unique considerations. PMID:22043185
Photochromic molecules as building blocks for molecular electronics.
Peter, Belser
2010-01-01
Energy and electron transfer processes can be easily induced by a photonic excitation of a donor metal complex ([Ru(bpy)3]2), which is connected via a wire-type molecular fragment to an acceptor metal complex ([Os(bpy)3]2+). The rate constant for the transfer process can be determined by emission measurements of the two connected metal complexes. The system can be modified by incorporation of a switching unit or an interrupter into the wire, influencing the transfer process. Such a molecular device corresponds to an interrupter, mimic the same function applied in molecular electronics. We have used organic switches, which show photochromic properties. By irradiation with light of different wavelengths, the switch changes its functionality by a photochemical reaction from an OFF- to an ON-state and vice versa. The ON- respectively OFF-state is manifested by a color change but also in different conductivity properties for energy and electron transfer processes. Therefore, the mentioned molecular device can work as a simple interrupter, controlling the rate of the transfer processes.
Whittenburg, Luann; Meetim, Aunchisa
2016-01-01
An innovative nursing documentation project conducted at Bumrungrad International Hospital in Bangkok, Thailand demonstrated patient care continuity between nursing patient assessments and nursing Plans of Care using the Clinical Care Classification System (CCC). The project developed a new generation of interactive nursing Plans of Care using the six steps of the American Nurses Association (ANA) Nursing process and the MEDCIN® clinical knowledgebase to present CCC coded concepts as a natural by-product of a nurse's documentation process. The MEDCIN® clinical knowledgebase is a standardized point-of-care terminology intended for use in electronic health record systems. The CCC is an ANA recognized nursing terminology.
Kazior, Thomas E.
2014-01-01
Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III–V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III–V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III–V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications. PMID:24567473
Kazior, Thomas E
2014-03-28
Advances in silicon technology continue to revolutionize micro-/nano-electronics. However, Si cannot do everything, and devices/components based on other materials systems are required. What is the best way to integrate these dissimilar materials and to enhance the capabilities of Si, thereby continuing the micro-/nano-electronics revolution? In this paper, I review different approaches to heterogeneously integrate dissimilar materials with Si complementary metal oxide semiconductor (CMOS) technology. In particular, I summarize results on the successful integration of III-V electronic devices (InP heterojunction bipolar transistors (HBTs) and GaN high-electron-mobility transistors (HEMTs)) with Si CMOS on a common silicon-based wafer using an integration/fabrication process similar to a SiGe BiCMOS process (BiCMOS integrates bipolar junction and CMOS transistors). Our III-V BiCMOS process has been scaled to 200 mm diameter wafers for integration with scaled CMOS and used to fabricate radio-frequency (RF) and mixed signals circuits with on-chip digital control/calibration. I also show that RF microelectromechanical systems (MEMS) can be integrated onto this platform to create tunable or reconfigurable circuits. Thus, heterogeneous integration of III-V devices, MEMS and other dissimilar materials with Si CMOS enables a new class of high-performance integrated circuits that enhance the capabilities of existing systems, enable new circuit architectures and facilitate the continued proliferation of low-cost micro-/nano-electronics for a wide range of applications.
Method for modeling social care processes for national information exchange.
Miettinen, Aki; Mykkänen, Juha; Laaksonen, Maarit
2012-01-01
Finnish social services include 21 service commissions of social welfare including Adoption counselling, Income support, Child welfare, Services for immigrants and Substance abuse care. This paper describes the method used for process modeling in the National project for IT in Social Services in Finland (Tikesos). The process modeling in the project aimed to support common national target state processes from the perspective of national electronic archive, increased interoperability between systems and electronic client documents. The process steps and other aspects of the method are presented. The method was developed, used and refined during the three years of process modeling in the national project.
Baez-Cazull, S. E.; McGuire, J.T.; Cozzarelli, I.M.; Voytek, M.A.
2008-01-01
Determining the processes governing aqueous biogeochemistry in a wetland hydrologically linked to an underlying contaminated aquifer is challenging due to the complex exchange between the systems and their distinct responses to changes in precipitation, recharge, and biological activities. To evaluate temporal and spatial processes in the wetland-aquifer system, water samples were collected using cm-scale multichambered passive diffusion samplers (peepers) to span the wetland-aquifer interface over a period of 3 yr. Samples were analyzed for major cations and anions, methane, and a suite of organic acids resulting in a large dataset of over 8000 points, which was evaluated using multivariate statistics. Principal component analysis (PCA) was chosen with the purpose of exploring the sources of variation in the dataset to expose related variables and provide insight into the biogeochemical processes that control the water chemistry of the system. Factor scores computed from PCA were mapped by date and depth. Patterns observed suggest that (i) fermentation is the process controlling the greatest variability in the dataset and it peaks in May; (ii) iron and sulfate reduction were the dominant terminal electron-accepting processes in the system and were associated with fermentation but had more complex seasonal variability than fermentation; (iii) methanogenesis was also important and associated with bacterial utilization of minerals as a source of electron acceptors (e.g., barite BaSO4); and (iv) seasonal hydrological patterns (wet and dry periods) control the availability of electron acceptors through the reoxidation of reduced iron-sulfur species enhancing iron and sulfate reduction. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Achieving meaningful use: a health system perspective.
Bero, Cynthia L; Lee, Thomas H
2010-12-01
In 2002, Partners HealthCare (Partners) launched a strategy to accelerate the use of ambulatory electronic medical records across its network of 6000 physicians. Through focus on quality software products, creation of a system of financial incentives, and active engagement of health system leadership, Partners reached high levels of physician adoption by late 2006. Partners eventually introduced a mandate that made ambulatory electronic medical record use a requirement for all of its physicians. During this multi-year initiative, Partners also focused on the effective use of electronic medical records and introduced a series of tactics designed to optimize the use of these systems. With introduction of the meaningful-use concepts in the Health Information Technology for Economic and Clinical Health (HITECH) Act, Partners will transition its efforts toward this important national priority. Partners' experience offers some unique insights into the process of electronic medical record adoption across a large, diverse health system.
A quality-based cost model for new electronic systems and products
NASA Astrophysics Data System (ADS)
Shina, Sammy G.; Saigal, Anil
1998-04-01
This article outlines a method for developing a quality-based cost model for the design of new electronic systems and products. The model incorporates a methodology for determining a cost-effective design margin allocation for electronic products and systems and its impact on manufacturing quality and cost. A spreadsheet-based cost estimating tool was developed to help implement this methodology in order for the system design engineers to quickly estimate the effect of design decisions and tradeoffs on the quality and cost of new products. The tool was developed with automatic spreadsheet connectivity to current process capability and with provisions to consider the impact of capital equipment and tooling purchases to reduce the product cost.
Radiation-Hardened Electronics for Advanced Communications Systems
NASA Technical Reports Server (NTRS)
Whitaker, Sterling
2015-01-01
Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.
Collective acceleration of ions in a system with an insulated anode
NASA Astrophysics Data System (ADS)
Bystritskii, V. M.; Didenko, A. N.; Krasik, Ya. E.; Lopatin, V. S.; Podkatov, V. I.
1980-11-01
An investigation was made of the processes of collective acceleration of protons in vacuum in a system with an insulated anode and trans-anode electrodes, which were insulated or grounded, in high-current Tonus and Vera electron accelerators. The influence of external conditions and parameters of the electron beam on the efficiency of acceleration processes was investigated. Experiments were carried out in which protons were accelerated in a system with trans-anode electrodes. A study was made of the influence of a charge prepulse and of the number of trans-anode electrodes on the energy of the accelerated electrons. A system with a single anode produced Np=1014 protons of 2Ee < Ep < 3Ee energy. Suppression of a charge prepulse increased the proton energy to (6 8)Ee and the yield was then 1013. The maximum proton energy of 14Ee was obtained in a system with three trans-anode electrodes. A possible mechanism of proton acceleration was analyzed. The results obtained were compared with those of other investigations. Ways of increasing the efficiency of this acceleration method were considered.
Fruit Sorting Using Fuzzy Logic Techniques
NASA Astrophysics Data System (ADS)
Elamvazuthi, Irraivan; Sinnadurai, Rajendran; Aftab Ahmed Khan, Mohamed Khan; Vasant, Pandian
2009-08-01
Fruit and vegetables market is getting highly selective, requiring their suppliers to distribute the goods according to very strict standards of quality and presentation. In the last years, a number of fruit sorting and grading systems have appeared to fulfill the needs of the fruit processing industry. However, most of them are overly complex and too costly for the small and medium scale industry (SMIs) in Malaysia. In order to address these shortcomings, a prototype machine was developed by integrating the fruit sorting, labeling and packing processes. To realise the prototype, many design issues were dealt with. Special attention is paid to the electronic weighing sub-system for measuring weight, and the opto-electronic sub-system for determining the height and width of the fruits. Specifically, this paper discusses the application of fuzzy logic techniques in the sorting process.
ESM of ionic and electrochemical phenomena on the nanoscale
Kalinin, Sergei V.; Kumar, Amit; Balke, Nina; ...
2011-01-01
Operation of energy storage and conversion devices is ultimately controlled by series of intertwined ionic and electronic transport processes and electrochemical reactions at surfaces and interfaces, strongly mediated by strain and mechanical processes. In a typical fuel cell, these include chemical species transport in porous cathode and anode materials, gas-solid electrochemical reactions at grains and triple-phase boundaries (TPBs), ionic and electronic flows in multicomponent electrodes, and chemical and electronic potential drops at internal interfaces in electrodes and electrolytes. Furthermore, all these phenomena are sensitively affected by the microstructure of materials from device level to the atomic scales. Similar spectrum ofmore » length scales and phenomena underpin operation of other energy systems including primary and secondary batteries, as well as hybrid systems such flow and metal-air/water batteries.« less
Public Speaking Pedagogy in the Media Age.
ERIC Educational Resources Information Center
Haynes, W. Lance
1990-01-01
Asserts that media systems and pedagogy affect each other, that electronic media increasingly dominate the society, and that pedagogy must respond. Outlines a heuristic model for talking and thinking pedagogically about the process of speech in the electronic media environment. (MG)
Stitch-bond parallel-gap welding for IC circuits
NASA Technical Reports Server (NTRS)
Chvostal, P.; Tuttle, J.; Vanderpool, R.
1980-01-01
Stitch-bonded flatpacks are superior to soldered dual-in-lines where size, weight, and reliability are important. Results should interest designers of packaging for complex high-reliability electronics, such as that used in security systems, industrial process control, and vehicle electronics.
Gakh, Andrei A.; Sachleben, Richard A.; Bryan, Jeff C.
1997-11-01
The race to create smaller devices is fueling much of the research in electronics. The competition has intensified with the advent of microelectromechanical systems (MEMS), in which miniaturization is already reaching the dimensional limits imposed by physics of current lithographic techniques. Also, in the realm of biochemistry, evidence is accumulating that certain enzyme complexes are capable of very sophisticated modes of motion. Complex synergistic biochemical complexes driven by sophisticated biomechanical processes are quite common. Their biochemical functions are based on the interplay of mechanical and chemical processes, including allosteric effects. In addition, the complexity of this interplay far exceeds thatmore » of typical chemical reactions. Understanding the behavior of artificial molecular devices as well as complex natural molecular biomechanical systems is difficult. Fortunately, the problem can be successfully resolved by direct molecular engineering of simple molecular systems that can mimic desired mechanical or electronic devices. These molecular systems are called technomimetics (the name is derived, by analogy, from biomimetics). Several classes of molecular systems that can mimic mechanical, electronic, or other features of macroscopic devices have been successfully synthesized by conventional chemical methods during the past two decades. In this article we discuss only one class of such model devices: molecular gearing systems.« less
A secured e-tendering modeling using misuse case approach
NASA Astrophysics Data System (ADS)
Mohd, Haslina; Robie, Muhammad Afdhal Muhammad; Baharom, Fauziah; Darus, Norida Muhd; Saip, Mohamed Ali; Yasin, Azman
2016-08-01
Major risk factors relating to electronic transactions may lead to destructive impacts on trust and transparency in the process of tendering. Currently, electronic tendering (e-tendering) systems still remain uncertain in issues relating to legal and security compliance and most importantly it has an unclear security framework. Particularly, the available systems are lacking in addressing integrity, confidentiality, authentication, and non-repudiation in e-tendering requirements. Thus, one of the challenges in developing an e-tendering system is to ensure the system requirements include the function for secured and trusted environment. Therefore, this paper aims to model a secured e-tendering system using misuse case approach. The modeling process begins with identifying the e-tendering process, which is based on the Australian Standard Code of Tendering (AS 4120-1994). It is followed by identifying security threats and their countermeasure. Then, the e-tendering was modelled using misuse case approach. The model can contribute to e-tendering developers and also to other researchers or experts in the e-tendering domain.
NASA Technical Reports Server (NTRS)
Schwarz, F. C.
1971-01-01
Processing of electric power has been presented as a discipline that draws on almost every field of electrical engineering, including system and control theory, communications theory, electronic network design, and power component technology. The cost of power processing equipment, which often equals that of expensive, sophisticated, and unconventional sources of electrical energy, such as solar batteries, is a significant consideration in the choice of electric power systems.
Displays, memories, and signal processing: A compilation
NASA Technical Reports Server (NTRS)
1975-01-01
Articles on electronics systems and techniques were presented. The first section is on displays and other electro-optical systems; the second section is devoted to signal processing. The third section presented several new memory devices for digital equipment, including articles on holographic memories. The latest patent information available is also given.
Surface Alloying of SUS 321 Chromium-Nickel Steel by an Electron-Plasma Process
NASA Astrophysics Data System (ADS)
Ivanov, Yu. F.; Teresov, A. D.; Petrikova, E. A.; Krysina, O. V.; Ivanova, O. V.; Shugurov, V. V.; Moskvin, P. V.
2017-07-01
The mechanisms of forming nanostructured, nanophase layers are revealed and analyzed in austenitic steel subjected to surface alloying using an electron-plasma process. Nanostructured, nanophase layers up to 30 μm in thickness were formed by melting of the film/substrate system with an electron beam generated by a SOLO facility (Institute of High Current Electronics, SB RAS), Tomsk), which ensured crystallization and subsequent quenching at the cooling rates within the range 105-108 K/s. The surface was modified with structural stainless steel specimens (SUS 321 steel). The film/substrate system (film thickness 0.5 μm) was formed by a plasma-assisted vacuum-arc process by evaporating a cathode made from a sintered pseudoalloy of the following composition: Zr - 6 at.% Ti - 6 at.% Cu. The film deposition was performed in a QUINTA facility equipped with a PINK hot-cathode plasma source and DI-100 arc evaporators with accelerated cooling of the process cathode, which allowed reducing the size and fraction of the droplet phase in the deposited film. It is found that melting of the film/substrate system (Zr-Ti-Cu)/(SUS 321 steel) using a high-intensity pulsed electron beam followed by the high-rate crystallization is accompanied by the formation of α-iron cellular crystallization structure and precipitation of Cr2Zr, Cr3C2 and TiC particles on the cell boundaries, which as a whole allowed increasing microhardness by a factor of 1.3, Young's modulus - by a factor of 1.2, wear resistance - by a factor of 2.7, while achieving a three-fold reduction in the friction coefficient.
Carrell, David S.; Halgrim, Scott; Tran, Diem-Thy; Buist, Diana S. M.; Chubak, Jessica; Chapman, Wendy W.; Savova, Guergana
2014-01-01
The increasing availability of electronic health records (EHRs) creates opportunities for automated extraction of information from clinical text. We hypothesized that natural language processing (NLP) could substantially reduce the burden of manual abstraction in studies examining outcomes, like cancer recurrence, that are documented in unstructured clinical text, such as progress notes, radiology reports, and pathology reports. We developed an NLP-based system using open-source software to process electronic clinical notes from 1995 to 2012 for women with early-stage incident breast cancers to identify whether and when recurrences were diagnosed. We developed and evaluated the system using clinical notes from 1,472 patients receiving EHR-documented care in an integrated health care system in the Pacific Northwest. A separate study provided the patient-level reference standard for recurrence status and date. The NLP-based system correctly identified 92% of recurrences and estimated diagnosis dates within 30 days for 88% of these. Specificity was 96%. The NLP-based system overlooked 5 of 65 recurrences, 4 because electronic documents were unavailable. The NLP-based system identified 5 other recurrences incorrectly classified as nonrecurrent in the reference standard. If used in similar cohorts, NLP could reduce by 90% the number of EHR charts abstracted to identify confirmed breast cancer recurrence cases at a rate comparable to traditional abstraction. PMID:24488511
Evaluation of DNA damage induced by Auger electrons from 137Cs.
Watanabe, Ritsuko; Hattori, Yuya; Kai, Takeshi
2016-11-01
To understand the biological effect of external and internal exposure from 137 Cs, DNA damage spectrum induced by directly emitted electrons (γ-rays, internal conversion electrons, Auger electrons) from 137 Cs was compared with that induced by 137 Cs γ-rays. Monte Carlo track simulation method was used to calculate the microscopic energy deposition pattern in liquid water. Simulation was performed for the two simple target systems in microscale. Radiation sources were placed inside for one system and outside for another system. To simulate the energy deposition by directly emitted electrons from 137 Cs placed inside the system, the multiple ejections of electrons after internal conversion were considered. In the target systems, induction process of DNA damage was modeled and simulated for both direct energy deposition and the water radical reaction on the DNA. The yield and spatial distribution of simple and complex DNA damage including strand breaks and base lesions were calculated for irradiation by electrons and γ-rays from 137 Cs. The simulation showed that the significant difference in DNA damage spectrum was not caused by directly ejected electrons and γ-rays from 137 Cs. The result supports the existing perception that the biological effects by internal and external exposure by 137 Cs are equivalent.
NASA Astrophysics Data System (ADS)
Fuochi, P. G.; Onori, S.; Casali, F.; Chirco, P.
1993-10-01
A 12 MeV linear accelerator is currently used for electron beam processing of power semiconductor devices for lifetime control and, on an experimental basis, for food irradiation, sludge treatment etc. In order to control the irradiation process a simple, quick and reliable method for a direct evaluation of dose and fluence in a broad electron beam has been developed. This paper presents the results obtained using a "charge collector" which measures the charge absorbed in a graphite target exposed in air. Calibration of the system with super-Fricke dosimeter and comparison of absorbed dose results obtained with plastic dosimeters and alanine pellets are discussed.
Implementing an electronic hand hygiene monitoring system: Lessons learned from community hospitals.
Edmisten, Catherine; Hall, Charles; Kernizan, Lorna; Korwek, Kimberly; Preston, Aaron; Rhoades, Evan; Shah, Shalin; Spight, Lori; Stradi, Silvia; Wellman, Sonia; Zygadlo, Scott
2017-08-01
Measuring and providing feedback about hand hygiene (HH) compliance is a complicated process. Electronic HH monitoring systems have been proposed as a possible solution; however, there is little information available about how to successfully implement and maintain these systems for maximum benefit in community hospitals. An electronic HH monitoring system was implemented in 3 community hospitals by teams at each facility with support from the system vendor. Compliance rates were measured by the electronic monitoring system. The implementation challenges, solutions, and drivers of success were monitored within each facility. The electronic HH monitoring systems tracked on average more than 220,000 compliant HH events per facility per month, with an average monthly compliance rate >85%. The sharing of best practices between facilities was valuable in addressing challenges encountered during implementation and maintaining a high rate of use. Drivers of success included a collaborative environment, leadership commitment, using data to drive improvement, consistent and constant messaging, staff empowerment, and patient involvement. Realizing the full benefit of investments in electronic HH monitoring systems requires careful consideration of implementation strategies, planning for ongoing support and maintenance, and presenting data in a meaningful way to empower and inspire staff. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ye, Yuancai; Marcus, R. Kenneth
1997-12-01
A computer-controlled, impedance-tuned Langmuir probe data acquisition system and processing software package have been designed for the diagnostic study of low pressure plasmas. The combination of impedance-tuning and a wide range of applied potentials (± 100 V) provides a versatile system, applicable to a variety of analytical plasmas without significant modification. The automated probe system can be used to produce complete and undistorted current-voltage (i-V) curves with extremely low noise over the wide potential range. Based on these hardware and software systems, it is possible to determine all of the important charged particle parameters in a plasma; electron number density ( ne), ion number density ( ni), electron temperature ( Te), electron energy distribution function (EEDF), and average electron energy (<ɛ>). The complete data acquisition system and evaluation software are described in detail. A LabView (National Instruments Corporation, Austin, TX) application program has been developed for the Apple Macintosh line of microcomputers to control all of the operational aspects of the Langmuir probe experiments. The description here is mainly focused on the design aspects of the acquisition system with the targets of extremely low noise and reduction of the influence of measurement noise in the calculation procedures. This is particularly important in the case of electron energy distribution functions where multiple derivatives are calculated from the obtained i-V curves. A separate C-language data processing program has been developed and is included here to allow the reader to evaluate data obtained with the described hardware, or any i-V data imported in tab separated variable format. Both of the software systems are included on a Macintosh formatted disk for their use in other laboratories desiring these capabilities.
Test results: Halon 1301 versus water sprinkler fire protection for essential electronic equipment
NASA Astrophysics Data System (ADS)
Reichelt, E. F.; Walker, J. L.; Vickers, R. N.; Kwan, A. J.
1982-07-01
This report describes results of testing two contending extinguishants, Halon 1301 and water, for fire protection of essential electronic equipment. A series of controlled fires in a facility housing an operational electronic data processing system sought to establish immediate and long term effects of exposure of sensitive electronic equipment and stored data to fire extinguishment atmospheres. Test results lead to the conclusion that Halon 1301 is superior to water as an extinguishant for fires occurring in essential electronic equipment installations.
Future Directions in Navy Electronic System Reliability and Survivability.
1981-06-01
CENTERSAN DIEGO, CA 92152 AN ACTIVITY OF THE NAVAL MATERIAL COMMAND SL GUILLE, CAPT, USN HLBLOOD Commander Technical Director ADMINISTRATIVE INFORMATION...maintenancepoiys proposed as one remedy to these problems. To implement this policy, electronic systems which are very reliable and which include health ...distribute vital data, data-processing capability, and communication capability through the use of intraship and intership networks. The capability to
Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System.
Xie, Ruihong; Zhang, Tao; Li, Jiaquan; Dai, Ming
2017-05-09
This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight) motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration) control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square) error is 1.253 mrad when tracking 10° 0.2 Hz signal.
Development and installation of an advanced beam guidance system on Viking`s 2.4 megawatt EB furnace
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motchenbacher, C.A.; Grosse, I.A.
1994-12-31
Viking Metallurgical is a manufacturer of titanium alloy and superalloy seamless ring forgings for the aerospace industry. For more than 20 years Viking has used electron beam cold hearth melting to recover titanium alloy scrap and to produce commercially pure titanium ingot for direct forging. In the 1970`s Viking pioneered electron beam cold hearth melting and in 1983 added a two-gun, 2.4 MW furnace. As part of Vikings efforts to improve process control we have commissioned and installed a new electron beam guidance system. The system is capable of generating virtually unlimited EB patterns resulting in improved melt control.
Ban, Seok-Gyu; Kim, Kyung-Tae; Choi, Byung Doo; Jo, Jeong-Wan; Kim, Yong-Hoon; Facchetti, Antonio; Kim, Myung-Gil; Park, Sung Kyu
2017-08-09
Although transparent conducting oxides (TCOs) have played a key role in a wide range of solid-state electronics from conventional optoelectronics to emerging electronic systems, the processing temperature and conductivity of solution-processed materials seem to be far exceeding the thermal limitations of soft materials and insufficient for high-perfomance large-area systems, respectively. Here, we report a strategy to form highly conductive and scalable solution-processed oxide materials and their successful translation into large-area electronic applications, which is enabled by photoassisted postfunctionalization at low temperature. The low-temperature fabrication of indium-tin-oxide (ITO) thin films was achieved by using photoignited combustion synthesis combined with photoassisted reduction process under hydrogen atmosphere. It was noteworthy that the photochemically activated hydrogens on ITO surface could be triggered to facilitate highly crystalline oxygen deficient structure allowing significant increase of carrier concentration and mobility through film microstructure modifications. The low-temperature postfunctionalized ITO films demonstrated conductivity of >1607 S/cm and sheet resistance of <104 Ω/□ under the process temperature of less than 300 °C, which are comparable to those of vacuum-deposited and high-temperature annealed ITO films. Based on the photoassisted postfunctionalization route, all-solution-processed transparent metal-oxide thin-film-transistors and large-area integrated circuits with the ITO bus lines were demonstrated, showing field-effect mobilities of >6.5 cm 2 V -1 s -1 with relatively good operational stability and oscillation frequency of more than 1 MHz in 7-stage ring oscillators, respectively.
The snow system: A decentralized medical data processing system.
Bellika, Johan Gustav; Henriksen, Torje Starbo; Yigzaw, Kassaye Yitbarek
2015-01-01
Systems for large-scale reuse of electronic health record data is claimed to have the potential to transform the current health care delivery system. In principle three alternative solutions for reuse exist: centralized, data warehouse, and decentralized solutions. This chapter focuses on the decentralized system alternative. Decentralized systems may be categorized into approaches that move data to enable computations or move computations to the where data is located to enable computations. We describe a system that moves computations to where the data is located. Only this kind of decentralized solution has the capabilities to become ideal systems for reuse as the decentralized alternative enables computation and reuse of electronic health record data without moving or exposing the information to outsiders. This chapter describes the Snow system, which is a decentralized medical data processing system, its components and how it has been used. It also describes the requirements this kind of systems need to support to become sustainable and successful in recruiting voluntary participation from health institutions.
Infrared readout electronics; Proceedings of the Meeting, Orlando, FL, Apr. 21, 22, 1992
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Editor)
1992-01-01
The present volume on IR readout electronics discusses cryogenic readout using silicon devices, cryogenic readout using III-V and LTS devices, multiplexers for higher temperatures, and focal-plane signal processing electronics. Attention is given to the optimization of cryogenic CMOS processes for sub-10-K applications, cryogenic measurements of aerojet GaAs n-JFETs, inP-based heterostructure device technology for ultracold readout applications, and a three-terminal semiconductor-superconductor transimpedance amplifier. Topics addressed include unfulfilled needs in IR astronomy focal-plane readout electronics, IR readout integrated circuit technology for tactical missile systems, and radiation-hardened 10-bit A/D for FPA signal processing. Also discussed are the implementation of a noise reduction circuit for spaceflight IR spectrometers, a real-time processor for staring receivers, and a fiber-optic link design for INMOS transputers.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-29
... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-724] Investigations: Terminations, Modifications and Rulings: Certain Electronic Devices With Image Processing Systems, Components Thereof, and Associated Software AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby...
Scanning-electron-microscope used in real-time study of friction and wear
NASA Technical Reports Server (NTRS)
Brainard, W. A.; Buckley, D. H.
1975-01-01
Small friction and wear apparatus built directly into scanning-electron-microscope provides both dynamic observation and microscopic view of wear process. Friction and wear tests conducted using this system have indicated that considerable information can readily be gained.
NASA Technical Reports Server (NTRS)
Thakoor, Anil
1990-01-01
Viewgraphs on electronic neural networks for space station are presented. Topics covered include: electronic neural networks; electronic implementations; VLSI/thin film hybrid hardware for neurocomputing; computations with analog parallel processing; features of neuroprocessors; applications of neuroprocessors; neural network hardware for terrain trafficability determination; a dedicated processor for path planning; neural network system interface; neural network for robotic control; error backpropagation algorithm for learning; resource allocation matrix; global optimization neuroprocessor; and electrically programmable read only thin-film synaptic array.
On Convergence of Development Costs and Cost Models for Complex Spaceflight Instrument Electronics
NASA Technical Reports Server (NTRS)
Kizhner, Semion; Patel, Umeshkumar D.; Kasa, Robert L.; Hestnes, Phyllis; Brown, Tammy; Vootukuru, Madhavi
2008-01-01
Development costs of a few recent spaceflight instrument electrical and electronics subsystems have diverged from respective heritage cost model predictions. The cost models used are Grass Roots, Price-H and Parametric Model. These cost models originated in the military and industry around 1970 and were successfully adopted and patched by NASA on a mission-by-mission basis for years. However, the complexity of new instruments recently changed rapidly by orders of magnitude. This is most obvious in the complexity of representative spaceflight instrument electronics' data system. It is now required to perform intermediate processing of digitized data apart from conventional processing of science phenomenon signals from multiple detectors. This involves on-board instrument formatting of computational operands from row data for example, images), multi-million operations per second on large volumes of data in reconfigurable hardware (in addition to processing on a general purpose imbedded or standalone instrument flight computer), as well as making decisions for on-board system adaptation and resource reconfiguration. The instrument data system is now tasked to perform more functions, such as forming packets and instrument-level data compression of more than one data stream, which are traditionally performed by the spacecraft command and data handling system. It is furthermore required that the electronics box for new complex instruments is developed for one-digit watt power consumption, small size and that it is light-weight, and delivers super-computing capabilities. The conflict between the actual development cost of newer complex instruments and its electronics components' heritage cost model predictions seems to be irreconcilable. This conflict and an approach to its resolution are addressed in this paper by determining the complexity parameters, complexity index, and their use in enhanced cost model.
Georgiou, Andrew; McCaughey, Euan J; Tariq, Amina; Walter, Scott R; Li, Julie; Callen, Joanne; Paoloni, Richard; Runciman, William B; Westbrook, Johanna I
2017-03-01
To examine the impact of an electronic Results Acknowledgement (eRA) system on emergency physicians' test result management work processes and the time taken to acknowledge microbiology and radiology test results for patients discharged from an Emergency Department (ED). The impact of the eRA system was assessed in an Australian ED using: a) semi-structured interviews with senior emergency physicians; and b) a time and motion direct observational study of senior emergency physicians completing test acknowledgment pre and post the implementation of the eRA system. The eRA system led to changes in the way results and actions were collated, stored, documented and communicated. Although there was a non-significant increase in the average time taken to acknowledge results in the post period, most types of acknowledgements (other than simple acknowledgements) took less time to complete. The number of acknowledgements where physicians sought additional information from the Electronic Medical Record (EMR) rose from 12% pre to 20% post implementation of eRA. Given that the type of results are unlikely to have changed significantly across the pre and post implementation periods, the increase in the time physicians spent accessing additional clinical information in the post period likely reflects the greater access to clinical information provided by the integrated electronic system. Easier access to clinical information may improve clinical decision making and enhance the quality of patient care. For instance, in situations where a senior clinician, not initially involved in the care process, is required to deal with the follow-up of non-normal results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chubov, S. V.; Soldatov, A. I.
2017-02-01
This article provides the advantages and technical solutions for the use of electronic loads as part of a testing complex of power and management systems of electric and plasma propulsion of three types. The paper shows the parameters that were applied to select the electronic loads and describes their functionality.
Materials and processing approaches for foundry-compatible transient electronics.
Chang, Jan-Kai; Fang, Hui; Bower, Christopher A; Song, Enming; Yu, Xinge; Rogers, John A
2017-07-11
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are ( i ) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, ( ii ) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and ( iii ) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.
Materials and processing approaches for foundry-compatible transient electronics
NASA Astrophysics Data System (ADS)
Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.
2017-07-01
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.
NASA Astrophysics Data System (ADS)
Rongxiao, ZHAI; Mengtong, QIU; Weixi, LUO; Peitian, CONG; Tao, HUANG; Jiahui, YIN; Tianyang, ZHANG
2018-04-01
As one of the most important elements in linear transformer driver (LTD) based systems, the gas pressurized closing switches are required to operate with a very low prefire probability during the DC-charging process to ensure reliable operation and stable output of the whole pulsed power system. The most direct and effective way to control the prefire probability is to select a suitable working coefficient. The study of the development characteristics of the initially generated electrons is useful for optimizing the working coefficient and improving the prefire characteristic of the switches. In this paper an ultraviolet pulsed laser is used to generate initial electrons inside the gap volume. A current measuring system is used to measure the time-dependent current generated by the growth of the initial electrons so as to study the development characteristics of the electrons under different working coefficients. Experimental results show that the development characteristics of the initial electrons are influenced obviously by the working coefficient. With the increase of the working coefficient, the development degree of the electrons increases consequently. At the same times, there is a threshold of working coefficient which produces the effect of ionization on electrons. The range of the threshold has a slow growth but remains close to 65% with the gas pressure increase. When the working coefficient increases further, γ processes are starting to be generated inside the gap volume. In addition, an optimal working coefficient beneficial for improving the prefire characteristic is indicated and further tested.
NASA Technical Reports Server (NTRS)
Fournelle, John; Carpenter, Paul
2006-01-01
Modem electron microprobe systems have become increasingly sophisticated. These systems utilize either UNIX or PC computer systems for measurement, automation, and data reduction. These systems have undergone major improvements in processing, storage, display, and communications, due to increased capabilities of hardware and software. Instrument specifications are typically utilized at the time of purchase and concentrate on hardware performance. The microanalysis community includes analysts, researchers, software developers, and manufacturers, who could benefit from exchange of ideas and the ultimate development of core community specifications (CCS) for hardware and software components of microprobe instrumentation and operating systems.
Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.
Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong
2015-10-01
Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.
Dykes, Patricia C; Spurr, Cindy; Gallagher, Joan; Li, Qi; Ives Erickson, Jeanette
2006-01-01
An important challenge associated with making the transition from paper to electronic documentation systems is achieving consensus regarding priorities for electronic conversion across diverse groups. In our work we focus on applying a systematic approach to evaluating the baseline state of nursing documentation across a large healthcare system and establishing a unified vision for electronic conversion. A review of the current state of nursing documentation across PHS was conducted using structured tools. Data from this assessment was employed to facilitate an evidence-based approach to decision-making regarding conversion to electronic documentation at local and PHS levels. In this paper we present highlights of the assessment process and the outcomes of this multi-site collaboration.
NASA Astrophysics Data System (ADS)
Oberberg, Moritz; Styrnoll, Tim; Ries, Stefan; Bienholz, Stefan; Awakowicz, Peter
2015-09-01
Reactive sputter processes are used for the deposition of hard, wear-resistant and non-corrosive ceramic layers such as aluminum oxide (Al2O3) . A well known problem is target poisoning at high reactive gas flows, which results from the reaction of the reactive gas with the metal target. Consequently, the sputter rate decreases and secondary electron emission increases. Both parameters show a non-linear hysteresis behavior as a function of the reactive gas flow and this leads to process instabilities. This work presents a new control method of Al2O3 deposition in a multiple frequency CCP (MFCCP) based on plasma parameters. Until today, process controls use parameters such as spectral line intensities of sputtered metal as an indicator for the sputter rate. A coupling between plasma and substrate is not considered. The control system in this work uses a new plasma diagnostic method: The multipole resonance probe (MRP) measures plasma parameters such as electron density by analyzing a typical resonance frequency of the system response. This concept combines target processes and plasma effects and directly controls the sputter source instead of the resulting target parameters.
Analysis And Control System For Automated Welding
NASA Technical Reports Server (NTRS)
Powell, Bradley W.; Burroughs, Ivan A.; Kennedy, Larry Z.; Rodgers, Michael H.; Goode, K. Wayne
1994-01-01
Automated variable-polarity plasma arc (VPPA) welding apparatus operates under electronic supervision by welding analysis and control system. System performs all major monitoring and controlling functions. It acquires, analyzes, and displays weld-quality data in real time and adjusts process parameters accordingly. Also records pertinent data for use in post-weld analysis and documentation of quality. System includes optoelectronic sensors and data processors that provide feedback control of welding process.
Ben-Assuli, Ofir; Leshno, Moshe
2016-09-01
In the last decade, health providers have implemented information systems to improve accuracy in medical diagnosis and decision-making. This article evaluates the impact of an electronic health record on emergency department physicians' diagnosis and admission decisions. A decision analytic approach using a decision tree was constructed to model the admission decision process to assess the added value of medical information retrieved from the electronic health record. Using a Bayesian statistical model, this method was evaluated on two coronary artery disease scenarios. The results show that the cases of coronary artery disease were better diagnosed when the electronic health record was consulted and led to more informed admission decisions. Furthermore, the value of medical information required for a specific admission decision in emergency departments could be quantified. The findings support the notion that physicians and patient healthcare can benefit from implementing electronic health record systems in emergency departments. © The Author(s) 2015.
Electronic Data Interchange in Procurement
1990-04-01
contract management and order processing systems. This conversion of automated information to paper and back to automated form is not only slow and...automated purchasing computer and the contractor’s order processing computer through telephone lines, as illustrated in Figure 1-1. Computer-to-computer...into the contractor’s order processing or contract management system. This approach - converting automated information to paper and back to automated
Quantum theoretical study of electron solvation dynamics in ice layers on a Cu(111) surface.
Andrianov, I; Klamroth, T; Saalfrank, P; Bovensiepen, U; Gahl, C; Wolf, M
2005-06-15
Recent experiments using time- and angle-resolved two-photon photoemission (2PPE) spectroscopy at metal/polar adsorbate interfaces succeeded in time-dependent analysis of the process of electron solvation. A fully quantum mechanical, two-dimensional simulation of this process, which explicitly includes laser excitation, is presented here, confirming the origin of characteristic features, such as the experimental observation of an apparently negative dispersion. The inference of the spatial extent of the localized electron states from the angular dependence of the 2PPE spectra has been found to be non-trivial and system-dependent.
Electronic propensity rules in Li-H+ collisions involving initial and/or final oriented states
NASA Astrophysics Data System (ADS)
Salas, P. J.
2000-12-01
Electronic excitation and capture processes are studied in collisions involving systems with only one active electron such as the alkaline (Li)-proton in the medium-energy region (0.1-15 keV). Using the semiclassical impact parameter method, the probabilities and the orientation parameter are calculated for transitions between initial and/or final oriented states. The results show a strong asymmetry in the probabilities depending on the orientation of the initial and/or final states. An intuitive view of the processes, by means of the concepts of propensity and velocity matching rules, is provided.
Formation Process of Non-Neutral Plasmas by Multiple Electron Beams on BX-U
NASA Astrophysics Data System (ADS)
Sanpei, Akio; Himura, Haruhiko; Masamune, Sadao
An imaging diagnostic system, which is composed of a handmade phosphor screen and a high-speed camera, has been applied to identify the dynamics of multiple electron beams on BX-U. The relaxation process of those toward a non-neutral plasma is experimentally identified. Also, the radial density profile of the plasma is measured as a function of time. Assuming that the plasma is a spheroidal shape, the value of electron density ne is in the range between 2.2 × 106 and 4.4 × 108 cm-3 on BX-U.
Unearthing the secrets of mitochondrial ROS and glutathione in bioenergetics.
Mailloux, Ryan J; McBride, Skye L; Harper, Mary-Ellen
2013-12-01
During the cellular oxidation of fuels, electrons are used to power the proton pumps of the mitochondrial electron transport chain (ETC) and ultimately drive ATP synthesis and the reduction of molecular oxygen to water. During these oxidative processes, some electrons can 'spin off' during fuel oxidation and electron transport to univalently reduce O2, forming reactive oxygen species (ROS). In excess, ROS can be detrimental; however, at low concentrations oxyradicals are essential signaling molecules. Mitochondria thus use a battery of systems to finely control types and levels of ROS, including antioxidants. Several antioxidant systems depend on glutathione. Here, we review mitochondrial ROS homeostatic systems, including emerging knowledge about roles of glutathione in redox balance and the control of protein function by post-translational modification. Copyright © 2013 Elsevier Ltd. All rights reserved.
[Implementation of Oncomelania hupensis monitoring system based on Baidu Map].
Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang
2017-10-25
To construct the Oncomelania hupensis snail monitoring system based on the Baidu Map. The environmental basic information about historical snail environment and existing snail environment, etc. was collected with the monitoring data about different kinds of O. hupensis snails, and then the O. hupensis snail monitoring system was built. Geographic Information System (GIS) and the electronic fence technology and Application Program Interface (API) were applied to set up the electronic fence of the snail surveillance environments, and the electronic fence was connected to the database of the snail surveillance. The O. hupensis snail monitoring system based on the Baidu Map were built up, including three modules of O. hupensis Snail Monitoring Environmental Database, Dynamic Monitoring Platform and Electronic Map. The information about monitoring O. hupensis snails could be obtained through the computer and smartphone simultaneously. The O. hupensis snail monitoring system, which is based on Baidu Map, is a visible platform to follow the process of snailsearching and molluscaciding.
Development of a Prototype Low-Voltage Electron Beam Freeform Fabrication System
NASA Technical Reports Server (NTRS)
Watson, J. K.; Taminger, K. M.; Hafley, R. A.; Petersen, D. D.
2002-01-01
NASA's Langley Research Center and Johnson Space Center are developing a solid freeform fabrication system utilizing an electron beam energy source and wire feedstock. This system will serve as a testbed for exploring the influence of gravitational acceleration on the deposition process and will be a simplified prototype for future systems that may be deployed during long-duration space missions for assembly, fabrication, and production of structural and mechanical replacement components. Critical attributes for this system are compactness, minimal mass, efficiency in use of feedstock material, energy use efficiency, and safety. The use of a low-voltage (less than 15kV) electron beam energy source will reduce radiation so that massive shielding is not required to protect adjacent personnel. Feedstock efficiency will be optimized by use of wire, and energy use efficiency will be achieved by use of the electron beam energy source. This system will be evaluated in a microgravity environment using the NASA KC-135A aircraft.
Regulation of electron transfer processes affects phototrophic mat structure and activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan
Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that variation in the electrochemical conditions under which mats were generated significantly impacted the relative abundances of mat members and mat metabolism.« less
Regulation of electron transfer processes affects phototrophic mat structure and activity
Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; ...
2015-09-03
Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mV Ag/AgCl [cathodic (CAT) mat system] and +300 mV Ag/AgCl [anodic (AN)more » mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. In conclusion, these data suggested that variation in the electrochemical conditions under which mats were generated significantly impacted the relative abundances of mat members and mat metabolism.« less
Educational Support System for Experiments Involving Construction of Sound Processing Circuits
ERIC Educational Resources Information Center
Takemura, Atsushi
2012-01-01
This paper proposes a novel educational support system for technical experiments involving the production of practical electronic circuits for sound processing. To support circuit design and production, each student uses a computer during the experiments, and can learn circuit design, virtual circuit making, and real circuit making. In the…
Chwiej, T; Szafran, B
2013-04-17
We study electron transfer across a two-terminal quantum ring using a time-dependent description of the scattering process. For the considered scattering event the quantum ring is initially charged with one or two electrons, with another electron incident to the ring from the input channel. We study the electron transfer probability (T) as a function of the external magnetic field. We determine the periodicity of T for a varied number of electrons confined within the ring. For that purpose we develop a method to describe the wave packet dynamics for a few electrons participating in the scattering process, taking into full account the electron-electron correlations. We find that electron transfer across the quantum ring initially charged by a single electron acquires a distinct periodicity of half of the magnetic flux quantum (Φ0/2), corresponding to the formation of a transient two-electron state inside the ring. In the case of a three-electron scattering problem with two electrons initially occupying the ring, a period of Φ0/3 for T is formed in the limit of thin channels. The effect of disorder present in the confinement potential of the ring is also discussed.
Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate.
Vuorinen, Tiina; Niittynen, Juha; Kankkunen, Timo; Kraft, Thomas M; Mäntysalo, Matti
2016-10-18
Epidermal electronic systems (EESs) are skin-like electronic systems, which can be used to measure several physiological parameters from the skin. This paper presents materials and a simple, straightforward fabrication process for skin-conformable inkjet-printed temperature sensors. Epidermal temperature sensors are already presented in some studies, but they are mainly fabricated using traditional photolithography processes. These traditional fabrication routes have several processing steps and they create a substantial amount of material waste. Hence utilizing printing processes, the EES may become attractive for disposable systems by decreasing the manufacturing costs and reducing the wasted materials. In this study, the sensors are fabricated with inkjet-printed graphene/PEDOT:PSS ink and the printing is done on top of a skin-conformable polyurethane plaster (adhesive bandage). Sensor characterization was conducted both in inert and ambient atmosphere and the graphene/PEDOT:PSS temperature sensors (thermistors) were able reach higher than 0.06% per degree Celsius sensitivity in an optimal environment exhibiting negative temperature dependence.
The ATLAS Level-1 Topological Trigger performance in Run 2
NASA Astrophysics Data System (ADS)
Riu, Imma; ATLAS Collaboration
2017-10-01
The Level-1 trigger is the first event rate reducing step in the ATLAS detector trigger system, with an output rate of up to 100 kHz and decision latency smaller than 2.5 μs. During the LHC shutdown after Run 1, the Level-1 trigger system was upgraded at hardware, firmware and software levels. In particular, a new electronics sub-system was introduced in the real-time data processing path: the Level-1 Topological trigger system. It consists of a single electronics shelf equipped with two Level-1 Topological processor blades. They receive real-time information from the Level-1 calorimeter and muon triggers, which is processed to measure angles between trigger objects, invariant masses or other kinematic variables. Complementary to other requirements, these measurements are taken into account in the final Level-1 trigger decision. The system was installed and commissioning started in 2015 and continued during 2016. As part of the commissioning, the decisions from individual algorithms were simulated and compared with the hardware response. An overview of the Level-1 Topological trigger system design, commissioning process and impact on several event selections are illustrated.
ERIC Educational Resources Information Center
Campbell, Neil A.
1984-01-01
Focusing on F. W. Lancaster's prediction that paperless communication systems are inevitable for science and technology, this article presents an analysis of role of editorial processing centers (EPC) in the development of electronic journals. The traditional scientific journal, the EPC, and the EPC and electronic journal are discussed. (60…
12 CFR 7.5004 - Sale of excess electronic capacity and by-products.
Code of Federal Regulations, 2010 CFR
2010-01-01
... bank's needs for banking purposes include: (1) Data processing services; (2) Production and distribution of non-financial software; (3) Providing periodic back-up call answering services; (4) Providing full Internet access; (5) Providing electronic security system support services; (6) Providing long...
75 FR 62149 - Records Schedules; Availability and Request for Comments
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-07
... publications through the editorial process and capture bibliographic information for printed publications. 7... electronic data relating to persons of interest when the data relates to unique and significant intelligence... records of an electronic information system used to access intelligence and investigative data. 22...
DOT National Transportation Integrated Search
1999-07-01
This report presents an examination of the process used in preparing electronic credentials for commercial vehicle operations in Kentucky Maryland, and Virginia. It describes the experience of using the Commercial Vehicle Information Systems & Networ...
NASA Astrophysics Data System (ADS)
Schunk, R. W.; Barakat, A. R.; Eccles, V.; Karimabadi, H.; Omelchenko, Y.; Khazanov, G. V.; Glocer, A.; Kistler, L. M.
2014-12-01
A Kinetic Framework for the Magnetosphere-Ionosphere-Plasmasphere-Polar Wind System is being developed in order to provide a rigorous approach to modeling the interaction of hot and cold particle interactions. The framework will include ion and electron kinetic species in the ionosphere, plasmasphere and polar wind, and kinetic ion, super-thermal electron and fluid electron species in the magnetosphere. The framework is ideally suited to modeling ion outflow from the ionosphere and plasmasphere, where a wide range for fluid and kinetic processes are important. These include escaping ion interactions with (1) photoelectrons, (2) cusp/auroral waves, double layers, and field-aligned currents, (3) double layers in the polar cap due to the interaction of cold ionospheric and hot magnetospheric electrons, (4) counter-streaming ions, and (5) electromagnetic wave turbulence. The kinetic ion interactions are particularly strong during geomagnetic storms and substorms. The presentation will provide a brief description of the models involved and discuss the effect that kinetic processes have on the ion outflow.
Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry
Wilson, Alphus D.
2013-01-01
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems. PMID:23396191
Diverse applications of electronic-nose technologies in agriculture and forestry.
Wilson, Alphus D
2013-02-08
Electronic-nose (e-nose) instruments, derived from numerous types of aroma-sensor technologies, have been developed for a diversity of applications in the broad fields of agriculture and forestry. Recent advances in e-nose technologies within the plant sciences, including improvements in gas-sensor designs, innovations in data analysis and pattern-recognition algorithms, and progress in material science and systems integration methods, have led to significant benefits to both industries. Electronic noses have been used in a variety of commercial agricultural-related industries, including the agricultural sectors of agronomy, biochemical processing, botany, cell culture, plant cultivar selections, environmental monitoring, horticulture, pesticide detection, plant physiology and pathology. Applications in forestry include uses in chemotaxonomy, log tracking, wood and paper processing, forest management, forest health protection, and waste management. These aroma-detection applications have improved plant-based product attributes, quality, uniformity, and consistency in ways that have increased the efficiency and effectiveness of production and manufacturing processes. This paper provides a comprehensive review and summary of a broad range of electronic-nose technologies and applications, developed specifically for the agriculture and forestry industries over the past thirty years, which have offered solutions that have greatly improved worldwide agricultural and agroforestry production systems.
Low-Cost and Large-Area Electronics, Roll-to-Roll Processing and Beyond
NASA Astrophysics Data System (ADS)
Wiesenhütter, Katarzyna; Skorupa, Wolfgang
In the following chapter, the authors conduct a literature survey of current advances in state-of-the-art low-cost, flexible electronics. A new emerging trend in the design of modern semiconductor devices dedicated to scaling-up, rather than reducing, their dimensions is presented. To realize volume manufacturing, alternative semiconductor materials with superior performance, fabricated by innovative processing methods, are essential. This review provides readers with a general overview of the material and technology evolution in the area of macroelectronics. Herein, the term macroelectronics (MEs) refers to electronic systems that can cover a large area of flexible media. In stark contrast to well-established micro- and nano-scale semiconductor devices, where property improvement is associated with downscaling the dimensions of the functional elements, in macroelectronic systems their overall size defines the ultimate performance (Sun and Rogers in Adv. Mater. 19:1897-1916,
The UNIX/XENIX Advantage: Applications in Libraries.
ERIC Educational Resources Information Center
Gordon, Kelly L.
1988-01-01
Discusses the application of the UNIX/XENIX operating system to support administrative office automation functions--word processing, spreadsheets, database management systems, electronic mail, and communications--at the Central Michigan University Libraries. Advantages and disadvantages of the XENIX operating system and system configuration are…
1989-09-01
Guidelines Generation #2 b. Electronic Submission of Commerce Business Daily ( CBD ) Notices #6 c. On-line Debarred/Suspended List #5 d. On-Line Contract...a number of years. Reality of system differs from manual. One reference - easy to follow, block by block - is needed. -Imaging and CBD electronic...milestones are tracked - and those milestones should be monitored as a natural outcome of thc process - e.g. A milestone is noted when the RFP is
Tsukamoto, Takafumi; Yasunaga, Takuo
2014-11-01
Eos (Extensible object-oriented system) is one of the powerful applications for image processing of electron micrographs. In usual cases, Eos works with only character user interfaces (CUI) under the operating systems (OS) such as OS-X or Linux, not user-friendly. Thus, users of Eos need to be expert at image processing of electron micrographs, and have a little knowledge of computer science, as well. However, all the persons who require Eos does not an expert for CUI. Thus we extended Eos to a web system independent of OS with graphical user interfaces (GUI) by integrating web browser.Advantage to use web browser is not only to extend Eos with GUI, but also extend Eos to work under distributed computational environment. Using Ajax (Asynchronous JavaScript and XML) technology, we implemented more comfortable user-interface on web browser. Eos has more than 400 commands related to image processing for electron microscopy, and the usage of each command is different from each other. Since the beginning of development, Eos has managed their user-interface by using the interface definition file of "OptionControlFile" written in CSV (Comma-Separated Value) format, i.e., Each command has "OptionControlFile", which notes information for interface and its usage generation. Developed GUI system called "Zephyr" (Zone for Easy Processing of HYpermedia Resources) also accessed "OptionControlFIle" and produced a web user-interface automatically, because its mechanism is mature and convenient,The basic actions of client side system was implemented properly and can supply auto-generation of web-form, which has functions of execution, image preview, file-uploading to a web server. Thus the system can execute Eos commands with unique options for each commands, and process image analysis. There remain problems of image file format for visualization and workspace for analysis: The image file format information is useful to check whether the input/output file is correct and we also need to provide common workspace for analysis because the client is physically separated from a server. We solved the file format problem by extension of rules of OptionControlFile of Eos. Furthermore, to solve workspace problems, we have developed two type of system. The first system is to use only local environments. The user runs a web server provided by Eos, access to a web client through a web browser, and manipulate the local files with GUI on the web browser. The second system is employing PIONE (Process-rule for Input/Output Negotiation Environment), which is our developing platform that works under heterogenic distributed environment. The users can put their resources, such as microscopic images, text files and so on, into the server-side environment supported by PIONE, and so experts can write PIONE rule definition, which defines a workflow of image processing. PIONE run each image processing on suitable computers, following the defined rule. PIONE has the ability of interactive manipulation, and user is able to try a command with various setting values. In this situation, we contribute to auto-generation of GUI for a PIONE workflow.As advanced functions, we have developed a module to log user actions. The logs include information such as setting values in image processing, procedure of commands and so on. If we use the logs effectively, we can get a lot of advantages. For example, when an expert may discover some know-how of image processing, other users can also share logs including his know-hows and so we may obtain recommendation workflow of image analysis, if we analyze logs. To implement social platform of image processing for electron microscopists, we have developed system infrastructure, as well. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Miller, F. R.
1972-01-01
Joining processes for aerospace systems combine fusion welding and solid state joining during production of metal structures. Detailed characteristics of electron beam welding, plasma arc welding, diffusion welding, inertia welding and weldbond processes are discussed.
Personalised physical exercise regime for chronic patients through a wearable ICT platform.
Angelidis, Pantelis A
2010-01-01
Today's state of the art in exercise physiology, professional athletics and sports practice in general clearly shows that the best results depend on the personalisation and continuous update of the recommendations provided to an athlete training, a sports lover or a person whose medical condition demands regular physical exercise. The vital signs information gathered in telemonitoring systems can be better evaluated and exploited if processed along with data from the subject's electronic health records, training history and performance statistics. In this context, the current paper intends to exploit modern smart miniaturised systems and advanced information systems towards the development of an infrastructure for continuous, non-invasive acquisition and advanced processing of vital signs information. In particular, it will look into wearable electronics embedded in textile capable of performing regular or exceptional measurements of vital physiological parameters and communicating them to an application server for further processing.
2013-07-05
This content has been downloaded from IOPscience. Please scroll down to see the full text. Download details: IP Address: 198.81.129.186 This content...structures with a quadratic nonlinearity, i.e. electrodes with a quadrupolar potential. The pump for this parametric coupling process is a classical...approximation. The system operates as a parametric frequency converter, with the classical drive providing pump photons which allow coherent coupling between
A new concept in laser-assisted chemistry - The electronic-field representation
NASA Technical Reports Server (NTRS)
George, T. F.; Zimmerman, I. H.; Yuan, J.-M.; Laing, J. R.; Devries, P. L.
1977-01-01
Electronic-field representation is proposed as a technique for laser-assisted chemistry. Specifically, it is shown that several field-assisted chemical processes can be described in terms of mixed matter-field quantum states and their associated energies. The technique may be used to analyze the effects exerted by an intense laser on both bound and unbound molecular systems, and to investigate other field-induced effects including multiphoton processes, emission, and photodissociation.
NASA Astrophysics Data System (ADS)
Zhang, Ya-Jing; Zhang, Lian-Lian; Jiang, Cui; Gong, Wei-Jiang
2018-02-01
We theoretically investigate the electronic transport through a parallel-coupled multi-quantum-dot system, in which the terminal dots of a one-dimensional quantum-dot chain are embodied in the two arms of an Aharonov-Bohm interferometer. It is found that in the structures of odd(even) dots, all their even(odd) molecular states have opportunities to decouple from the leads, and in this process antiresonance occurs which are accordant with the odd(even)-numbered eigenenergies of the sub-molecule without terminal dots. Next when Majorana zero modes are introduced to couple laterally to the terminal dots, the antiresonance and decoupling phenomena still co-exist in the quantum transport process. Such a result can be helpful in understanding the special influence of Majorana zero mode on the electronic transport through quantum-dot systems.
Achieving Learning Objectives through E-Voting Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bishop, Matt; Frincke, Deb
2007-01-01
The recent explosion in the use of electronic voting machines provides a wonderful opportunity to teach students about computer security. Because voting is the cornerstone of any democracy or republic, the need for secure voting systems is obvious. Further, students are familiar with how to vote. But the complexity of mapping a traditional process of voting using secret ballots to an electronic environment shows the difficulties of implementing secure processes and systems. In this article, we show a high level mapping from selected security and privacy education outcomes into a target ‘case study’ of developing electronic voting machines intended formore » traditional secret ballot elections. Our intent is to motivate both a set of lessons specifically involving e-voting, as well as illustrating the usefulness of having a mapping from outcomes to simplified case studies.« less
NASA Astrophysics Data System (ADS)
Belkic, Dzevad
Inelastic collisions between bare nuclei and hydrogen-like atomic systems are characterized by three main channels: electron capture, excitation, and ionization. Capture dominates at lower energies, whereas excitation and ionization prevail at higher impact energies. At intermediate energies and in the region of resonant scattering near the Massey peak, all three channels become competitive. For dressed or clothed nuclei possessing electrons, such as hydrogen-like ions, several additional channels open up, including electron loss (projectile ionization or stripping). The most important aspect of electron loss is the competition between one- and two-electron processes. Here, in a typical one-electron process, the projectile emits an electron, whereas the target final and initial states are the same. A prototype of double-electron transitions in loss processes is projectile ionization accompanied with an alteration of the target state. In such a two-electron process, the target could be excited or ionized. The relative importance of these loss channels with single- and double-electron transitions involving collisions of dressed projectiles with atomic systems is also strongly dependent on the value of the impact energy. Moreover, impact energies determine which theoretical method is likely to be more appropriate to use for predictions of cross sections. At low energies, an expansion of total scattering wave functions in terms of molecular orbitals is adequate. This is because the projectile spends considerable time in the vicinity of the target, and as a result, a compound system comprised of the projectile and the target can be formed in a metastable molecular state which is prone to decay. At high energies, a perturbation series expansion is more appropriate in terms of powers of interaction potentials. In the intermediate energy region, atomic orbitals are often used with success while expanding the total scattering wave functions. The present work is focused on quantum mechanical perturbation theories applied to electron loss collisions involving two hydrogen-like atoms. Both the one- and two-electron transitions (target unaffected by collision, as well as loss-ionization) are thoroughly examined in various intervals of impact energies varying from the threshold via the Massey peak to the Bethe asymptotic region. Systematics are established for the fast, simple, and accurate computations of cross sections for loss-excitation and loss-ionization accounting for the entire spectra of all four particles, including two free electrons and two free protons. The expounded algorithmic strategy of quantum mechanical methodologies is of great importance for wide applications to particle transport physics, especially in fusion research and hadron radiotherapy. This should advantageously replace the current overwhelming tendency in these fields for using phenomenological modeling with artificial functions extracted from fitting the existing experimental/theoretical data bases for cross sections.
NASA Technical Reports Server (NTRS)
Decker, A. J.; Pao, Y.-H.; Claspy, P. C.
1978-01-01
The use of a phase-modulated reference wave for the electronic heterodyne recording and processing of a hologram is described. Heterodyne recording is used to eliminate the self-interference terms of a hologram and to create a Leith-Upatnieks hologram with coaxial object and reference waves. Phase modulation is also shown to be the foundation of a multiple-view hologram system. When combined with hologram scale transformations, heterodyne recording is the key to general optical processing. Spatial filtering is treated as an example.
The concept of electron activity and its relation to redox potentials in aqueous geochemical systems
Thorstenson, D.C.
1984-01-01
The definition of a formal thermodynamic activity of electrons in redox reactions appears in the literature of the 1920's. The concept of pe as -log (electron activity) was introduced by Jorgensen in 1945 and popularized in the geochemical literature by Sillen, who considered pe and pH as master variables in geochemical reactions. The physical significance of the concept of electron activity was challenged as early as 1928. However, only in the last two decades have sufficient thermodynamic data become available to examine this question quantitatively. The chemical nature of hydrated electrons differs greatly from that of hydrated protons, and thermodynamic data show that hydrated electrons cannot exist at physically meaningful equilibrium concentrations under natural conditions. This has important consequences for the understanding of redox processes in natural waters. These are: (1) the analogy between pe and pH as master variables is generally carried much further than is justified; (2) a thermodynamically meaningful value of redox potential cannot be assigned to disequilibrium systems; (3) the most useful approach to the study of redox characteristics is the analysis and study of multiple redox couples in the system; and (4) for all practical purposes, thermodynamically defined redox potentials do not exist (and thus cannot be measured) in natural waters. The overall implication for natural systems is that, in terms of redox reactions, each case must be considered on an individual and detailed basis. Field studies would appear to be a mandatory part of any site-specific study; conclusions regarding redox processes cannot be based solely on electrode measurements or thermodynamic stability calculations. (USGS)
NASA Astrophysics Data System (ADS)
Nagarajan, Rao M.; Rask, Steven D.
1988-06-01
A hybrid lithography technique is described in which selected levels are fabricated by high resolution direct write electron beam lithography and all other levels are fabricated optically. This technique permits subhalf micron geometries and the site-by-site alignment for each field written by electron beam lithography while still maintaining the high throughput possible with optical lithography. The goal is to improve throughput and reduce overall cost of fabricating MIMIC GaAS chips without compromising device performance. The lithography equipment used for these experiments is the Cambridge Electron beam vector scan system EBMF 6.4 capable of achieving ultra high current densities with a beam of circular cross section and a gaussian intensity profile operated at 20 kev. The optical aligner is a Karl Suss Contact aligner. The flexibility of the Cambridge electron beam system is matched to the less flexible Karl Suss contact aligner. The lithography related factors, such as image placement, exposure and process related analyses, which influence overlay, pattern quality and performance, are discussed. A process chip containing 3.2768mm fields in an eleven by eleven array was used for alignment evaluation on a 3" semi-insulating GaAS wafer. Each test chip contained five optical verniers and four Prometrix registration marks per field along with metal bumps for alignment marks. The process parameters for these chips are identical to those of HEMT/epi-MESFET ohmic contact and gate layer processes. These layers were used to evaluate the overlay accuracy because of their critical alignment and dimensional control requirements. Two cases were examined: (1) Electron beam written gate layers aligned to optically imaged ohmic contact layers and (2) Electron beam written gate layers aligned to electron beam written ohmic contact layers. The effect of substrate charging by the electron beam is also investigated. The resulting peak overlay error accuracies are: (1) Electron beam to optical with t 0.2μm (2 sigma) and (2) Electron beam to electron beam with f 0.lμm (2 sigma). These results suggest that the electron beam/optical hybrid lithography techniques could be used for MIMIC volume production as alignment tolerances required by GaAS chips are met in both cases. These results are discussed in detail.
Design and performance of a high resolution, low latency stripline beam position monitor system
NASA Astrophysics Data System (ADS)
Apsimon, R. J.; Bett, D. R.; Blaskovic Kraljevic, N.; Burrows, P. N.; Christian, G. B.; Clarke, C. I.; Constance, B. D.; Dabiri Khah, H.; Davis, M. R.; Perry, C.; Resta López, J.; Swinson, C. J.
2015-03-01
A high-resolution, low-latency beam position monitor (BPM) system has been developed for use in particle accelerators and beam lines that operate with trains of particle bunches with bunch separations as low as several tens of nanoseconds, such as future linear electron-positron colliders and free-electron lasers. The system was tested with electron beams in the extraction line of the Accelerator Test Facility at the High Energy Accelerator Research Organization (KEK) in Japan. It consists of three stripline BPMs instrumented with analogue signal-processing electronics and a custom digitizer for logging the data. The design of the analogue processor units is presented in detail, along with measurements of the system performance. The processor latency is 15.6 ±0.1 ns . A single-pass beam position resolution of 291 ±10 nm has been achieved, using a beam with a bunch charge of approximately 1 nC.
Data Quality Monitoring System for New GEM Muon Detectors for the CMS Experiment Upgrade
NASA Astrophysics Data System (ADS)
King, Robert; CMS Muon Group Team
2017-01-01
The Gas Electron Multiplier (GEM) detectors are novel detectors designed to improve the muon trigger and tracking performance in CMS experiment for the high luminosity upgrade of the LHC. Partial installation of GEM detectors is planned during the 2016-2017 technical stop. Before the GEM system is installed underground, its data acquisition (DAQ) electronics must be thoroughly tested. The DAQ system includes several commercial and custom-built electronic boards running custom firmware. The front-end electronics are radiation-hard and communicate via optical fibers. The data quality monitoring (DQM) software framework has been designed to provide online verification of the integrity of the data produced by the detector electronics, and to promptly identify potential hardware or firmware malfunctions in the system. Local hits reconstruction and clustering algorithms allow quality control of the data produced by each GEM chamber. Once the new detectors are installed, the DQM will monitor the stability and performance of the system during normal data-taking operations. We discuss the design of the DQM system, the software being developed to read out and process the detector data, and the methods used to identify and report hardware and firmware malfunctions of the system.
Applications of hypermedia systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lennon, J.; Maurer, H.
1995-05-01
In this paper, we consider several new aspects of modern hypermedia systems. The applications discussed include: (1) General Information and Communication Systems: Distributed information systems for businesses, schools and universities, museums, libraries, health systems, etc. (2) Electronic orientation and information displays: Electronic guided tours, public information kiosks, and publicity dissemination with archive facilities. (3) Lecturing: A system going beyond the traditional to empower both teachers and learners. (4) Libraries: A further step towards fully electronic library systems. (5) Directories of all kinds: Staff, telephone, and all sorts of generic directories. (6) Administration: A fully integrated system such as the onemore » proposed will mean efficient data processing and valuable statistical data. (7) Research: Material can now be accessed from databases all around the world. The effects of networking and computer-supported collaborative work are discussed, and examples of new scientific visualization programs are quoted. The paper concludes with a section entitled {open_quotes}Future Directions{close_quotes}.« less
Innovating the Standard Procurement System Utilizing Intelligent Agent Technologies
1999-12-01
36 C. STANDARD PROCUREMENT SYSTEM 36 1. OVERVIEW 36 2. SPS FUNCTIONS , 37 3. SPS ADVANTAGES 39 4. SPS DISADVANTAGES 40 5. SPS SUMMARY 41 D...PROCUREMENT PROCESS INNOVATION RESULTS ’. 52 E. INTELLIGENT AGENT (IA) TECHNOLOGY 53 1. OVERVIEW 54 viii 2. ADVANTAGES 58 3. DISADVANTAGES 58 F...Electronic Mall (EMALL), GSA Advantage , etc. • Web invoicing Electronic Funds Transfer (EFT) • • International Merchant Purchase Authorization Card (IMPAC
75 FR 38073 - Information Collection; Commodity Request (Food Aid Request Entry System (FARES))
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... related to this activity is collected and processed electronically through the FARES. The Web-Based Supply Chain Management system (WBSCM) is a new procurement system in development to replace FARES at a later...
Advanced electronics for the CTF MEG system.
McCubbin, J; Vrba, J; Spear, P; McKenzie, D; Willis, R; Loewen, R; Robinson, S E; Fife, A A
2004-11-30
Development of the CTF MEG system has been advanced with the introduction of a computer processing cluster between the data acquisition electronics and the host computer. The advent of fast processors, memory, and network interfaces has made this innovation feasible for large data streams at high sampling rates. We have implemented tasks including anti-alias filter, sample rate decimation, higher gradient balancing, crosstalk correction, and optional filters with a cluster consisting of 4 dual Intel Xeon processors operating on up to 275 channel MEG systems at 12 kHz sample rate. The architecture is expandable with additional processors to implement advanced processing tasks which may include e.g., continuous head localization/motion correction, optional display filters, coherence calculations, or real time synthetic channels (via beamformer). We also describe an electronics configuration upgrade to provide operator console access to the peripheral interface features such as analog signal and trigger I/O. This allows remote location of the acoustically noisy electronics cabinet and fitting of the cabinet with doors for improved EMI shielding. Finally, we present the latest performance results available for the CTF 275 channel MEG system including an unshielded SEF (median nerve electrical stimulation) measurement enhanced by application of an adaptive beamformer technique (SAM) which allows recognition of the nominal 20-ms response in the unaveraged signal.
Electronic hardware design of electrical capacitance tomography systems.
Saied, I; Meribout, M
2016-06-28
Electrical tomography techniques for process imaging are very prominent for industrial applications, such as the oil and gas industry and chemical refineries, owing to their ability to provide the flow regime of a flowing fluid within a relatively high throughput. Among the various techniques, electrical capacitance tomography (ECT) is gaining popularity due to its non-invasive nature and its capability to differentiate between different phases based on their permittivity distribution. In recent years, several hardware designs have been provided for ECT systems that have improved its resolution of measurements to be around attofarads (aF, 10(-18) F), or the number of channels, that is required to be large for some applications that require a significant amount of data. In terms of image acquisition time, some recent systems could achieve a throughput of a few hundred frames per second, while data processing time could be achieved in only a few milliseconds per frame. This paper outlines the concept and main features of the most recent front-end and back-end electronic circuits dedicated for ECT systems. In this paper, multiple-excitation capacitance polling, a front-end electronic technique, shows promising results for ECT systems to acquire fast data acquisition speeds. A highly parallel field-programmable gate array (FPGA) based architecture for a fast reconstruction algorithm is also described. This article is part of the themed issue 'Supersensing through industrial process tomography'. © 2016 The Author(s).
Quenching of dynamic nuclear polarization by spin-orbit coupling in GaAs quantum dots.
Nichol, John M; Harvey, Shannon P; Shulman, Michael D; Pal, Arijeet; Umansky, Vladimir; Rashba, Emmanuel I; Halperin, Bertrand I; Yacoby, Amir
2015-07-17
The central-spin problem is a widely studied model of quantum decoherence. Dynamic nuclear polarization occurs in central-spin systems when electronic angular momentum is transferred to nuclear spins and is exploited in quantum information processing for coherent spin manipulation. However, the mechanisms limiting this process remain only partially understood. Here we show that spin-orbit coupling can quench dynamic nuclear polarization in a GaAs quantum dot, because spin conservation is violated in the electron-nuclear system, despite weak spin-orbit coupling in GaAs. Using Landau-Zener sweeps to measure static and dynamic properties of the electron spin-flip probability, we observe that the size of the spin-orbit and hyperfine interactions depends on the magnitude and direction of applied magnetic field. We find that dynamic nuclear polarization is quenched when the spin-orbit contribution exceeds the hyperfine, in agreement with a theoretical model. Our results shed light on the surprisingly strong effect of spin-orbit coupling in central-spin systems.
Ultrafast structural dynamics of boron nitride nanotubes studied using transmitted electrons.
Li, Zhongwen; Sun, Shuaishuai; Li, Zi-An; Zhang, Ming; Cao, Gaolong; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2017-09-14
We investigate the ultrafast structural dynamics of multi-walled boron nitride nanotubes (BNNTs) upon femtosecond optical excitation using ultrafast electron diffraction in a transmission electron microscope. Analysis of the time-resolved (100) and (002) diffraction profiles reveals highly anisotropic lattice dynamics of BNNTs, which can be attributed to the distinct nature of the chemical bonds in the tubular structure. Moreover, the changes in (002) diffraction positions and intensities suggest that the lattice response of BNNTs to the femtosecond laser excitation involves a fast and a slow lattice dynamic process. The fast process with a time constant of about 8 picoseconds can be understood to be a result of electron-phonon coupling, while the slow process with a time constant of about 100 to 300 picoseconds depending on pump laser fluence is tentatively associated with an Auger recombination effect. In addition, we discuss the power-law relationship of a three-photon absorption process in the BNNT nanoscale system.
Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science.
Shindo, Daisuke; Tanigaki, Toshiaki; Park, Hyun Soon
2017-07-01
Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa 2 Cu 3 O 7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics
NASA Astrophysics Data System (ADS)
Sato, Shunsuke A.; Kelly, Aaron; Rubio, Angel
2018-04-01
We introduce a simple ansatz for the wave function of a many-body system based on coupled forward and backward propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenfest mean-field theory in the limit that the forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model. Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over mean-field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations. This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an attractive route forward to the ab initio description of relaxation processes, such as thermalization, in condensed phase systems.
Automated Text Markup for Information Retrieval from an Electronic Textbook of Infectious Disease
Berrios, Daniel C.; Kehler, Andrew; Kim, David K.; Yu, Victor L.; Fagan, Lawrence M.
1998-01-01
The information needs of practicing clinicians frequently require textbook or journal searches. Making these sources available in electronic form improves the speed of these searches, but precision (i.e., the fraction of relevant to total documents retrieved) remains low. Improving the traditional keyword search by transforming search terms into canonical concepts does not improve search precision greatly. Kim et al. have designed and built a prototype system (MYCIN II) for computer-based information retrieval from a forthcoming electronic textbook of infectious disease. The system requires manual indexing by experts in the form of complex text markup. However, this mark-up process is time consuming (about 3 person-hours to generate, review, and transcribe the index for each of 218 chapters). We have designed and implemented a system to semiautomate the markup process. The system, information extraction for semiautomated indexing of documents (ISAID), uses query models and existing information-extraction tools to provide support for any user, including the author of the source material, to mark up tertiary information sources quickly and accurately.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, T.G.; Alston, S.G.
The research program of Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom, ion-ion, and ion-molecule collisions. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-core interaction can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. Winter has focussed on intermediate collision energies (e.g., proton energies for p-He{sup +} collisions on the order of 100 kilo-electron volts), in which many electron states are strongly coupled during themore » collision and a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. Alston has concentrated on higher collision energies (million electron-volt energies), or asymmetric collision systems, for which the coupling of the projectile is weaker with, however, many more target states being coupled together so that high-order perturbation theory is essential. Several calculations by Winter and Alston are described, as set forth in the original proposal.« less
Electronic and software systems of an automated portable static mass spectrometer
NASA Astrophysics Data System (ADS)
Chichagov, Yu. V.; Bogdanov, A. A.; Lebedev, D. S.; Kogan, V. T.; Tubol'tsev, Yu. V.; Kozlenok, A. V.; Moroshkin, V. S.; Berezina, A. V.
2017-01-01
The electronic systems of a small high-sensitivity static mass spectrometer and software and hardware tools, which allow one to determine trace concentrations of gases and volatile compounds in air and water samples in real time, have been characterized. These systems and tools have been used to set up the device, control the process of measurement, synchronize this process with accompanying measurements, maintain reliable operation of the device, process the obtained results automatically, and visualize and store them. The developed software and hardware tools allow one to conduct continuous measurements for up to 100 h and provide an opportunity for personnel with no special training to perform maintenance on the device. The test results showed that mobile mass spectrometers for geophysical and medical research, which were fitted with these systems, had a determination limit for target compounds as low as several ppb(m) and a mass resolving power (depending on the current task) as high as 250.
Flaxman, Abraham D; Stewart, Andrea; Joseph, Jonathan C; Alam, Nurul; Alam, Sayed Saidul; Chowdhury, Hafizur; Mooney, Meghan D; Rampatige, Rasika; Remolador, Hazel; Sanvictores, Diozele; Serina, Peter T; Streatfield, Peter Kim; Tallo, Veronica; Murray, Christopher J L; Hernandez, Bernardo; Lopez, Alan D; Riley, Ian Douglas
2018-02-01
There is increasing interest in using verbal autopsy to produce nationally representative population-level estimates of causes of death. However, the burden of processing a large quantity of surveys collected with paper and pencil has been a barrier to scaling up verbal autopsy surveillance. Direct electronic data capture has been used in other large-scale surveys and can be used in verbal autopsy as well, to reduce time and cost of going from collected data to actionable information. We collected verbal autopsy interviews using paper and pencil and using electronic tablets at two sites, and measured the cost and time required to process the surveys for analysis. From these cost and time data, we extrapolated costs associated with conducting large-scale surveillance with verbal autopsy. We found that the median time between data collection and data entry for surveys collected on paper and pencil was approximately 3 months. For surveys collected on electronic tablets, this was less than 2 days. For small-scale surveys, we found that the upfront costs of purchasing electronic tablets was the primary cost and resulted in a higher total cost. For large-scale surveys, the costs associated with data entry exceeded the cost of the tablets, so electronic data capture provides both a quicker and cheaper method of data collection. As countries increase verbal autopsy surveillance, it is important to consider the best way to design sustainable systems for data collection. Electronic data capture has the potential to greatly reduce the time and costs associated with data collection. For long-term, large-scale surveillance required by national vital statistical systems, electronic data capture reduces costs and allows data to be available sooner.
Electronic processing of informed consents in a global pharmaceutical company environment.
Vishnyakova, Dina; Gobeill, Julien; Oezdemir-Zaech, Fatma; Kreim, Olivier; Vachon, Therese; Clade, Thierry; Haenning, Xavier; Mikhailov, Dmitri; Ruch, Patrick
2014-01-01
We present an electronic capture tool to process informed consents, which are mandatory recorded when running a clinical trial. This tool aims at the extraction of information expressing the duration of the consent given by the patient to authorize the exploitation of biomarker-related information collected during clinical trials. The system integrates a language detection module (LDM) to route a document into the appropriate information extraction module (IEM). The IEM is based on language-specific sets of linguistic rules for the identification of relevant textual facts. The achieved accuracy of both the LDM and IEM is 99%. The architecture of the system is described in detail.
Photonics: Technology project summary
NASA Technical Reports Server (NTRS)
Depaula, Ramon P.
1991-01-01
Photonics involves the use of light (photons) in conjunction with electronics for applications in communications, computing, control, and sensing. Components used in photonic systems include lasers, optical detectors, optical wave guide devices, fiber optics, and traditional electronic devices. The goal of this program is to develop hybrid optoelectronic devices and systems for sensing, information processing, communications, and control. It is hoped that these new devices will yield at least an order of magnitude improvement in performance over existing technology. The objective of the program is to conduct research and development in the following areas: (1) materials and devices; (2) networking and computing; (3) optical processing/advanced pattern recognition; and (4) sensing.
Mission Concept to Connect Magnetospheric Physical Processes to Ionospheric Phenomena
NASA Astrophysics Data System (ADS)
Dors, E. E.; MacDonald, E.; Kepko, L.; Borovsky, J.; Reeves, G. D.; Delzanno, G. L.; Thomsen, M. F.; Sanchez, E. R.; Henderson, M. G.; Nguyen, D. C.; Vaith, H.; Gilchrist, B. E.; Spanswick, E.; Marshall, R. A.; Donovan, E.; Neilson, J.; Carlsten, B. E.
2017-12-01
On the Earth's nightside the magnetic connections between the ionosphere and the dynamic magnetosphere have a great deal of uncertainty: this uncertainty prevents us from scientifically understanding what physical processes in the magnetosphere are driving the various phenomena in the ionosphere. Since the 1990s, the space plasma physics group at Los Alamos National Laboratory has been working on a concept to connect magnetospheric physical processes to auroral phenomena in the ionosphere by firing an electron beam from a magnetospheric spacecraft and optically imaging the beam spot in the ionosphere. The magnetospheric spacecraft will carry a steerable electron accelerator, a power-storage system, a plasma contactor, and instruments to measure magnetic and electric fields, plasma, and energetic particles. The spacecraft orbit will be coordinated with a ground-based network of cameras to (a) locate the electron beam spot in the upper atmosphere and (b) monitor the aurora. An overview of the mission concept will be presented, including recent enabling advancements based on (1) a new understanding of the dynamic spacecraft charging of the accelerator and plasma-contactor system in the tenuous magnetosphere based on ion emission rather than electron collection, (2) a new understanding of the propagation properties of pulsed MeV-class beams in the magnetosphere, and (3) the design of a compact high-power 1-MeV electron accelerator and power-storage system. This strategy to (a) determine the magnetosphere-to-ionosphere connections and (b) reduce accelerator- platform charging responds to one of the six emerging-technology needs called out in the most-recent National Academies Decadal Survey for Solar and Space Physics. [LA-UR-17-23614
Ultrafast magnon generation in an Fe film on Cu(100).
Schmidt, A B; Pickel, M; Donath, M; Buczek, P; Ernst, A; Zhukov, V P; Echenique, P M; Sandratskii, L M; Chulkov, E V; Weinelt, M
2010-11-05
We report on a combined experimental and theoretical study of the spin-dependent relaxation processes in the electron system of an iron film on Cu(100). Spin-, time-, energy- and angle-resolved two-photon photoemission shows a strong characteristic dependence of the lifetime of photoexcited electrons on their spin and energy. Ab initio calculations as well as a many-body treatment corroborate that the observed properties are determined by relaxation processes involving magnon emission. Thereby we demonstrate that magnon emission by hot electrons occurs on the femtosecond time scale and thus provides a significant source of ultrafast spin-flip processes. Furthermore, engineering of the magnon spectrum paves the way for tuning the dynamic properties of magnetic materials.
Waveform Generator Signal Processing Software
DOT National Transportation Integrated Search
1988-09-01
This report describes the software that was developed to process test waveforms that were recorded by crash test data acquisition systems. The test waveforms are generated by an electronic waveform generator developed by MGA Research Corporation unde...
Electron Dynamics in Finite Quantum Systems
NASA Astrophysics Data System (ADS)
McDonald, Christopher R.
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to investigate a wide variety of problems that cannot be currently treated by any other method. Finally, the time it takes for an electron to tunnel from a bound state is investigated; a definition of the tunnel time is established and the Keldysh time is connected to the wavefunction dynamics.
NASA Astrophysics Data System (ADS)
Cave, Robert J.; Newton, Marshall D.
1996-01-01
A new method for the calculation of the electronic coupling matrix element for electron transfer processes is introduced and results for several systems are presented. The method can be applied to ground and excited state systems and can be used in cases where several states interact strongly. Within the set of states chosen it is a non-perturbative treatment, and can be implemented using quantities obtained solely in terms of the adiabatic states. Several applications based on quantum chemical calculations are briefly presented. Finally, since quantities for adiabatic states are the only input to the method, it can also be used with purely experimental data to estimate electron transfer matrix elements.
Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.
Quevedo-Lopez, M A; Wondmagegn, W T; Alshareef, H N; Ramirez-Bon, R; Gnade, B E
2011-06-01
The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed.
Electronic Data Interchange (EDI) for Libraries and Publishers.
ERIC Educational Resources Information Center
Santosuosso, Joe
1992-01-01
Defines electronic data interchange (EDI) as the exchange of data between computer systems without human intervention or interpretation. Standards are discussed; and the implementation of EDI in libraries and the serials publishing community in the areas of orders and acquisitions, claims, and invoice processing is described. (LRW)
ERIC Educational Resources Information Center
Burton, Adrian P.
1995-01-01
Discusses accessing online electronic documents at the European Telecommunications Satellite Organization (EUTELSAT). Highlights include off-site paper document storage, the document management system, benefits, the EUTELSAT Standard IBM Access software, implementation, the development process, and future enhancements. (AEF)
40 CFR 86.1806-01 - On-board diagnostics.
Code of Federal Regulations, 2010 CFR
2010-07-01
...-board diagnostic system during the certification process, that functions properly on low-sulfur gasoline... equipped. (1) A catalyst is replaced with a deteriorated or defective catalyst, or an electronic simulation... oxygen sensor is replaced with a deteriorated or defective oxygen sensor, or an electronic simulation of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsui, S., E-mail: smatsui@gpi.ac.jp; Mori, Y.; Nonaka, T.
2016-05-15
For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films andmore » Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.« less
Matsui, S; Mori, Y; Nonaka, T; Hattori, T; Kasamatsu, Y; Haraguchi, D; Watanabe, Y; Uchiyama, K; Ishikawa, M
2016-05-01
For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.
Photoinduced Electron Transfer from Various Aniline Derivatives to Graphene Quantum Dots.
Ghosh, Tufan; Chatterjee, Swarupa; Prasad, Edamana
2015-12-10
The present study utilizes the luminescence nature of the graphene quantum dots (GQDs) to analyze the mechanistic aspects of the photoinduced electron transfer (PET) processes between GQDs and aniline derivatives. A systematic investigation of PET from various aniline derivatives to GQDs has been presented. Solution-processable GQDs have been synthesized from graphene oxide (GO) at 200 °C. The as-synthesized GQDs exhibit a strong green luminescence at 510 nm, upon photoexcitation at 440 nm. Various aniline derivatives (aniline, N-methylaniline, N,N'-dimethylaniline, N-ethylaniline, N,N'-diethylaniline, and N,N'-diphenylaniline) have been utilized as electron donors to probe the PET process. Results from UV-visible absorption and steady-state and time-resolve luminescence spectroscopy suggest that the GQDs interact with the aniline derivatives in the excited state, which results in a significant luminescence quenching of the GQDs. The bimolecular rate constants of the dynamic quenching have been deduced for various donor-acceptor systems, and the values are in the range of (1.06-2.68) × 10(9) M(-1) s(-1). The negative values of the free energy change of the electron transfer process suggest that PET from aniline derivatives to GQDs is feasible and could be responsible for the luminescence quenching. The PET has been confirmed by detecting radical cations for certain aniline derivatives, using a nanosecond laser flash photolysis setup. The present study shows that among the various types of graphene systems, GQDs are better candidates for understanding the mechanism of PET in graphene-based donor-acceptor systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
Diaz, Luis A.; Clark, Gemma G.; Lister, Tedd E.
2017-06-08
The rapid growth of the electronic waste can be viewed both as an environmental threat and as an attractive source of minerals that can reduce the mining of natural resources, and stabilize the market of critical materials, such as rare earths. Here in this article surface response methodology was used to optimize a previously developed electrochemical recovery process for base metals from electronic waste using a mild oxidant (Fe 3+). Through this process an effective extraction of base metals can be achieved enriching the concentration of precious metals and significantly reducing environmental impacts and operational costs associated with the wastemore » generation and chemical consumption. The optimization was performed using a bench-scale system specifically designed for this process. Operational parameters such as flow rate, applied current density and iron concentration were optimized to reduce the specific energy consumption of the electrochemical recovery process to 1.94 kWh per kg of metal recovered at a processing rate of 3.3 g of electronic waste per hour.« less
NASA Technical Reports Server (NTRS)
Taminger, Karen M.; Hafley, Robert A.; Domack, Marcia S.
2006-01-01
The layer-additive nature of the electron beam freeform fabrication (EBF3) process results in a tortuous thermal path producing complex microstructures including: small homogeneous equiaxed grains; dendritic growth contained within larger grains; and/or pervasive dendritic formation in the interpass regions of the deposits. Several process control variables contribute to the formation of these different microstructures, including translation speed, wire feed rate, beam current and accelerating voltage. In electron beam processing, higher accelerating voltages embed the energy deeper below the surface of the substrate. Two EBF3 systems have been established at NASA Langley, one with a low-voltage (10-30kV) and the other a high-voltage (30-60 kV) electron beam gun. Aluminum alloy 2219 was processed over a range of different variables to explore the design space and correlate the resultant microstructures with the processing parameters. This report is specifically exploring the impact of accelerating voltage. Of particular interest is correlating energy to the resultant material characteristics to determine the potential of achieving microstructural control through precise management of the heat flux and cooling rates during deposition.
Prabhakar, P.; Sames, William J.; Dehoff, Ryan R.; ...
2015-03-28
Here, a computational modeling approach to simulate residual stress formation during the electron beam melting (EBM) process within the additive manufacturing (AM) technologies for Inconel 718 is presented in this paper. The EBM process has demonstrated a high potential to fabricate components with complex geometries, but the resulting components are influenced by the thermal cycles observed during the manufacturing process. When processing nickel based superalloys, very high temperatures (approx. 1000 °C) are observed in the powder bed, base plate, and build. These high temperatures, when combined with substrate adherence, can result in warping of the base plate and affect themore » final component by causing defects. It is important to have an understanding of the thermo-mechanical response of the entire system, that is, its mechanical behavior towards thermal loading occurring during the EBM process prior to manufacturing a component. Therefore, computational models to predict the response of the system during the EBM process will aid in eliminating the undesired process conditions, a priori, in order to fabricate the optimum component. Such a comprehensive computational modeling approach is demonstrated to analyze warping of the base plate, stress and plastic strain accumulation within the material, and thermal cycles in the system during different stages of the EBM process.« less
Family Registration Card as electronic medical carrier in Bosnia and Herzegovina.
Novo, Ahmed; Masic, Izet; Toromanovic, Selim; Loncarevic, Nedim; Junuzovic, Dzelaludin; Dizdarevic, Jadranka
2004-01-01
Medical documentation is a very important part of the medical documentalistics and is occupies a large part of daily work of medical staff working in Primary Health Care. Paper documentation is going to be replaced by electronic cards in Bosnia and Herzegovina and a new Health Care System is under development, based on an Electronic Family Registration Card. Developed countries proceeded from the manual and semiautomatic method of medical data processing to the new method of entering, storage, transferring, searching and protecting data, using electronic equipment. Currently, many European countries have developed a Medical Card Based Electronic Information System. Three types of electronic card are currently in use: a Hybrid Card, a Smart Card and a Laser Card. The dilemma is which card should be used as a data carrier. The Electronic Family Registration Cared is a question of strategic interest for B&H, but also a great investment. We should avoid the errors of other countries that have been developing card-based system. In this article we present all mentioned cards and compare advantages and disadvantages of different technologies.
Development of clinical contents model markup language for electronic health records.
Yun, Ji-Hyun; Ahn, Sun-Ju; Kim, Yoon
2012-09-01
To develop dedicated markup language for clinical contents models (CCM) to facilitate the active use of CCM in electronic health record systems. Based on analysis of the structure and characteristics of CCM in the clinical domain, we designed extensible markup language (XML) based CCM markup language (CCML) schema manually. CCML faithfully reflects CCM in both the syntactic and semantic aspects. As this language is based on XML, it can be expressed and processed in computer systems and can be used in a technology-neutral way. CCML HAS THE FOLLOWING STRENGTHS: it is machine-readable and highly human-readable, it does not require a dedicated parser, and it can be applied for existing electronic health record systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report contains papers on the following topics: NREN Security Issues: Policies and Technologies; Layer Wars: Protect the Internet with Network Layer Security; Electronic Commission Management; Workflow 2000 - Electronic Document Authorization in Practice; Security Issues of a UNIX PEM Implementation; Implementing Privacy Enhanced Mail on VMS; Distributed Public Key Certificate Management; Protecting the Integrity of Privacy-enhanced Electronic Mail; Practical Authorization in Large Heterogeneous Distributed Systems; Security Issues in the Truffles File System; Issues surrounding the use of Cryptographic Algorithms and Smart Card Applications; Smart Card Augmentation of Kerberos; and An Overview of the Advanced Smart Card Access Control System.more » Selected papers were processed separately for inclusion in the Energy Science and Technology Database.« less
Electronic clinical safety reporting system: a benefits evaluation.
Elliott, Pamela; Martin, Desmond; Neville, Doreen
2014-06-11
Eastern Health, a large health care organization in Newfoundland and Labrador (NL), started a staged implementation of an electronic occurrence reporting system (used interchangeably with "clinical safety reporting system") in 2008, completing Phase One in 2009. The electronic clinical safety reporting system (CSRS) was designed to replace a paper-based system. The CSRS involves reporting on occurrences such as falls, safety/security issues, medication errors, treatment and procedural mishaps, medical equipment malfunctions, and close calls. The electronic system was purchased from a vendor in the United Kingdom that had implemented the system in the United Kingdom and other places, such as British Columbia. The main objective of the new system was to improve the reporting process with the goal of improving clinical safety. The project was funded jointly by Eastern Health and Canada Health Infoway. The objectives of the evaluation were to: (1) assess the CSRS on achieving its stated objectives (particularly, the benefits realized and lessons learned), and (2) identify contributions, if any, that can be made to the emerging field of electronic clinical safety reporting. The evaluation involved mixed methods, including extensive stakeholder participation, pre/post comparative study design, and triangulation of data where possible. The data were collected from several sources, such as project documentation, occurrence reporting records, stakeholder workshops, surveys, focus groups, and key informant interviews. The findings provided evidence that frontline staff and managers support the CSRS, identifying both benefits and areas for improvement. Many benefits were realized, such as increases in the number of occurrences reported, in occurrences reported within 48 hours, in occurrences reported by staff other than registered nurses, in close calls reported, and improved timelines for notification. There was also user satisfaction with the tool regarding ease of use, accessibility, and consistency. The implementation process encountered challenges related to customizing the software and the development of the classification system for coding occurrences. This impacted on the ability of the managers to close-out files in a timely fashion. The issues that were identified, and suggestions for improvements to the form itself, were shared with the Project Team as soon as they were noted. Changes were made to the system before the rollout. There were many benefits realized from the new system that can contribute to improved clinical safety. The participants preferred the electronic system over the paper-based system. The lessons learned during the implementation process resulted in recommendations that informed the rollout of the system in Eastern Health, and in other health care organizations in the province of Newfoundland and Labrador. This study also informed the evaluation of other health organizations in the province, which was completed in 2013.
Intelligent Transportation System Strategic Plan For Las Vegas Valley
DOT National Transportation Integrated Search
1996-11-01
"INTELLIGENT TRANSPORTATION SYSTEMS" (ITS) IS A COLLECTIVE TERM FOR MEASURES TARGETING THE EFFICIENT OPERATIONS AND MANAGEMENT OF TRANSPORTATION FACILITIES AND SERVICES, USUALLY INVOLVING THE USE OF ELECTRONIC EQUIPMENT FOR COLLECTING,. PROCESSING, R...
Identifying patients for clinical trials using fuzzy ternary logic expressions on HL7 messages.
Majeed, Raphael W; Röhrig, Rainer
2011-01-01
Identifying eligible patients is one of the most critical parts of any clinical trial. The process of recruiting patients for the third phase of any clinical trial is usually done manually, informing relevant physicians or putting notes on bulletin boards. While most necessary information is already available in electronic hospital information systems, required data still has to be looked up individually. Most university hospitals make use of a dedicated communication server to distribute information from independent information systems, e.g. laboratory information systems, electronic health records, surgery planning systems. Thus, a theoretical model is developed to formally describe inclusion and exclusion criteria for each clinical trial using a fuzzy ternary logic expression. These expressions will then be used to process HL7 messages from a communication server in order to identify eligible patients.
Automation of the electron-beam welding process
NASA Astrophysics Data System (ADS)
Koleva, E.; Dzharov, V.; Kardjiev, M.; Mladenov, G.
2016-03-01
In this work, the automatic control is considered of the vacuum and cooling systems of the located in the IE-BAS equipment for electron-beam welding, evaporation and surface modification. A project was elaborated for the control and management based on the development of an engineering support system using existing and additional technical means of automation. Optimization of the indicators, which are critical for the duration of reaching the working regime and stopping the operation of the installation, can be made using experimentally obtained transient characteristics. The automation of the available equipment aimed at improving its efficiency and the repeatability of the obtained results, as well as at stabilizing the process parameters, should be integrated in an Engineering Support System which, besides the operator supervision, consists of several subsystems for equipment control, data acquisition, information analysis, system management and decision-making support.
Diment, Kieren; Garrety, Karin; Yu, Ping
2011-01-01
This paper describes how a method for evaluating organisational change based on the theory of logical types can be used for classifying organisational change processes to understand change after the implementation of an electronic documentation system in a residential aged care facility. In this instance we assess the organisational change reflected by care staff's perceptions of the benefits of the new documentation system at one site, at pre-implementation, and at 12 months post-implementation. The results show how a coherent view from the staff as a whole of the personal benefits, the benefits for others and the benefits for the organization create a situation of positive feedback leading to embeddedness of the documentation system into the site, and a broader appreciation of the potential capabilities of the electronic documentation system.
Exploring Photoinduced Excited State Evolution in Heterobimetallic Ru(II)-Co(III) Complexes.
Kuhar, Korina; Fredin, Lisa A; Persson, Petter
2015-06-18
Quantum chemical calculations provide detailed theoretical information concerning key aspects of photoinduced electron and excitation transfer processes in supramolecular donor-acceptor systems, which are particularly relevant to fundamental charge separation in emerging molecular approaches for solar energy conversion. Here we use density functional theory (DFT) calculations to explore the excited state landscape of heterobimetallic Ru-Co systems with varying degrees of interaction between the two metal centers, unbound, weakly bound, and tightly bound systems. The interplay between structural and electronic factors involved in various excited state relaxation processes is examined through full optimizations of multiple charge/spin states of each of the investigated systems. Low-energy relaxed heterobimetallic states of energy transfer and excitation transfer character are characterized in terms of energy, structure, and electronic properties. These findings support the notion of efficient photoinduced charge separation from a Ru(II)-Co(III) ground state, via initial optical excitation of the Ru-center, to low-energy Ru(III)-Co(II) states. The strongly coupled system has significant involvement of the conjugated bridge, qualitatively distinguishing it from the other two weakly coupled systems. Finally, by constructing potential energy surfaces for the three systems where all charge/spin state combinations are projected onto relevant reaction coordinates, excited state decay pathways are explored.
ERIC Educational Resources Information Center
Chang, Chi-Cheng
A Web-Based Learning Portfolio (WBLP) was evaluated through practical teaching process to understand if the WBLP system helps students to grasp the learning process and enhances learning outcomes. The evaluation results reveal that this WBLP system has been more useful for students to obtain the feedback from other students than from their…
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.
2010-02-01
The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.
Proposed imaging of the ultrafast electronic motion in samples using x-ray phase contrast.
Dixit, Gopal; Slowik, Jan Malte; Santra, Robin
2013-03-29
Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.
Proposed Imaging of the Ultrafast Electronic Motion in Samples using X-Ray Phase Contrast
NASA Astrophysics Data System (ADS)
Dixit, Gopal; Slowik, Jan Malte; Santra, Robin
2013-03-01
Tracing the motion of electrons has enormous relevance to understanding ubiquitous phenomena in ultrafast science, such as the dynamical evolution of the electron density during complex chemical and biological processes. Scattering of ultrashort x-ray pulses from an electronic wave packet would appear to be the most obvious approach to image the electronic motion in real time and real space with the notion that such scattering patterns, in the far-field regime, encode the instantaneous electron density of the wave packet. However, recent results by Dixit et al. [Proc. Natl. Acad. Sci. U.S.A. 109, 11 636 (2012)] have put this notion into question and have shown that the scattering in the far-field regime probes spatiotemporal density-density correlations. Here, we propose a possible way to image the instantaneous electron density of the wave packet via ultrafast x-ray phase contrast imaging. Moreover, we show that inelastic scattering processes, which plague ultrafast scattering in the far-field regime, do not contribute in ultrafast x-ray phase contrast imaging as a consequence of an interference effect. We illustrate our general findings by means of a wave packet that lies in the time and energy range of the dynamics of valence electrons in complex molecular and biological systems. This present work offers a potential to image not only instantaneous snapshots of nonstationary electron dynamics, but also the Laplacian of these snapshots which provide information about the complex bonding and topology of the charge distributions in the systems.
Hadronic model for the non-thermal radiation from the binary system AR Scorpii
NASA Astrophysics Data System (ADS)
Bednarek, W.
2018-05-01
AR Scorpii is a close binary system containing a rotation powered white dwarf and a low-mass M type companion star. This system shows non-thermal emission extending up to the X-ray energy range. We consider hybrid (lepto-hadronic) and pure hadronic models for the high energy non-thermal processes in this binary system. Relativistic electrons and hadrons are assumed to be accelerated in a strongly magnetised, turbulent region formed in collision of a rotating white dwarf magnetosphere and a magnetosphere/dense atmosphere of the M-dwarf star. We propose that the non-thermal X-ray emission is produced either by the primary electrons or the secondary e± pairs from decay of charged pions created in collisions of hadrons with the companion star atmosphere. We show that the accompanying γ-ray emission from decay of neutral pions, which are produced by these same protons, is expected to be on the detectability level of the present and/or the future satellite and Cherenkov telescopes. The γ-ray observations of the binary system AR Sco should allow us to constrain the efficiency of hadron and electron acceleration and also the details of the radiation processes.
Methods, media, and systems for detecting attack on a digital processing device
Stolfo, Salvatore J.; Li, Wei-Jen; Keromylis, Angelos D.; Androulaki, Elli
2014-07-22
Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document to the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.
Methods, media, and systems for detecting attack on a digital processing device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stolfo, Salvatore J.; Li, Wei-Jen; Keromytis, Angelos D.
Methods, media, and systems for detecting attack are provided. In some embodiments, the methods include: comparing at least part of a document to a static detection model; determining whether attacking code is included in the document based on the comparison of the document to the static detection model; executing at least part of the document; determining whether attacking code is included in the document based on the execution of the at least part of the document; and if attacking code is determined to be included in the document based on at least one of the comparison of the document tomore » the static detection model and the execution of the at least part of the document, reporting the presence of an attack. In some embodiments, the methods include: selecting a data segment in at least one portion of an electronic document; determining whether the arbitrarily selected data segment can be altered without causing the electronic document to result in an error when processed by a corresponding program; in response to determining that the arbitrarily selected data segment can be altered, arbitrarily altering the data segment in the at least one portion of the electronic document to produce an altered electronic document; and determining whether the corresponding program produces an error state when the altered electronic document is processed by the corresponding program.« less
A Versatile High-Vacuum Cryo-transfer System for Cryo-microscopy and Analytics
Tacke, Sebastian; Krzyzanek, Vladislav; Nüsse, Harald; Wepf, Roger Albert; Klingauf, Jürgen; Reichelt, Rudolf
2016-01-01
Cryogenic microscopy methods have gained increasing popularity, as they offer an unaltered view on the architecture of biological specimens. As a prerequisite, samples must be handled under cryogenic conditions below their recrystallization temperature, and contamination during sample transfer and handling must be prevented. We present a high-vacuum cryo-transfer system that streamlines the entire handling of frozen-hydrated samples from the vitrification process to low temperature imaging for scanning transmission electron microscopy and transmission electron microscopy. A template for cryo-electron microscopy and multimodal cryo-imaging approaches with numerous sample transfer steps is presented. PMID:26910419
NASA Astrophysics Data System (ADS)
Keller, P. E.; Gmitro, A. F.
1993-07-01
A prototype neutral network system of multifaceted, planar interconnection holograms and opto-electronic neurons is analyzed. This analysis shows that a hologram fabricated with electron-beam lithography has the capacity to connect 6700 neuron outputs to 6700 neuron inputs, and that, the encoded synaptic weights have a precision of approximately 5 bits. Higher interconnection densities can be achieved by accepting a lower synaptic weight accuracy. For systems employing laser diodes at the outputs of the neurons, processing rates in the range of 45 to 720 trillion connections per second can potentially be achieved.
Generative electronic background music system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazurowski, Lukasz
In this short paper-extended abstract the new approach to generation of electronic background music has been presented. The Generative Electronic Background Music System (GEBMS) has been located between other related approaches within the musical algorithm positioning framework proposed by Woller et al. The music composition process is performed by a number of mini-models parameterized by further described properties. The mini-models generate fragments of musical patterns used in output composition. Musical pattern and output generation are controlled by container for the mini-models - a host-model. General mechanism has been presented including the example of the synthesized output compositions.
NASA Technical Reports Server (NTRS)
Pokras, V. M.; Yevdokimov, V. P.; Maslov, V. D.
1978-01-01
The structure and potential of the information reference system OZhUR designed for the automated data processing systems of scientific space vehicles (SV) is considered. The system OZhUR ensures control of the extraction phase of processing with respect to a concrete SV and the exchange of data between phases.The practical application of the system OZhUR is exemplified in the construction of a data processing system for satellites of the Cosmos series. As a result of automating the operations of exchange and control, the volume of manual preparation of data is significantly reduced, and there is no longer any need for individual logs which fix the status of data processing. The system Ozhur is included in the automated data processing system Nauka which is realized in language PL-1 in a binary one-address system one-state (BOS OS) electronic computer.
Hwang, Jungseek
2016-03-31
We introduce an approximate method which can be used to simulate the optical conductivity data of correlated multiband systems for normal and superconducting cases by taking advantage of a reversed process in comparison to a usual optical data analysis, which has been used to extract the electron-boson spectral density function from measured optical spectra of single-band systems, like cuprates. We applied this method to optical conductivity data of two multiband pnictide systems (Ba0.6K0.4Fe2As2 and LiFeAs) and obtained the electron-boson spectral density functions. The obtained electron-boson spectral density consists of a sharp mode and a broad background. The obtained spectral density functions of the multiband systems show similar properties as those of cuprates in several aspects. We expect that our method helps to reveal the nature of strong correlations in the multiband pnictide superconductors.
After the Fall: The Use of Surplus Capacity in an Academic Library Automation System.
ERIC Educational Resources Information Center
Wright, A. J.
The possible uses of excess central processing unit capacity in an integrated academic library automation system discussed in this draft proposal include (1) in-house services such as word processing, electronic mail, management decision support using PERT/CPM techniques, and control of physical plant operation; (2) public services such as the…
NASA Technical Reports Server (NTRS)
Gebben, V. D.; Webb, J. A., Jr.
1972-01-01
An electronic circuit for processing arterial blood pressure waveform signals is described. The circuit detects blood pressure as the heart pumps blood through the aortic valve and the pressure distribution caused by aortic valve closure. From these measurements, timing signals for use in measuring the left ventricular ejection time is determined, and signals are provided for computer monitoring of the cardiovascular system. Illustrations are given of the circuit and pressure waveforms.
NASA Astrophysics Data System (ADS)
Gill, Douglas M.; Rasras, Mahmoud; Tu, Kun-Yii; Chen, Young-Kai; White, Alice E.; Patel, Sanjay S.; Carothers, Daniel; Pomerene, Andrew; Kamocsai, Robert; Beattie, James; Kopa, Anthony; Apsel, Alyssa; Beals, Mark; Mitchel, Jurgen; Liu, Jifeng; Kimerling, Lionel C.
2008-02-01
Integrating electronic and photonic functions onto a single silicon-based chip using techniques compatible with mass-production CMOS electronics will enable new design paradigms for existing system architectures and open new opportunities for electro-optic applications with the potential to dramatically change the management, cost, footprint, weight, and power consumption of today's communication systems. While broadband analog system applications represent a smaller volume market than that for digital data transmission, there are significant deployments of analog electro-optic systems for commercial and military applications. Broadband linear modulation is a critical building block in optical analog signal processing and also could have significant applications in digital communication systems. Recently, broadband electro-optic modulators on a silicon platform have been demonstrated based on the plasma dispersion effect. The use of the plasma dispersion effect within a CMOS compatible waveguide creates new challenges and opportunities for analog signal processing since the index and propagation loss change within the waveguide during modulation. We will review the current status of silicon-based electrooptic modulators and also linearization techniques for optical modulation.
Advanced electronic displays and their potential in future transport aircraft
NASA Technical Reports Server (NTRS)
Hatfield, J. J.
1981-01-01
It is pointed out that electronic displays represent one of the keys to continued integration and improvement of the effectiveness of avionic systems in future transport aircraft. An employment of modern electronic display media and generation has become vital in connection with the increases in modes and functions of modern aircraft. Requirements for electronic systems of future transports are examined, and a description is provided of the tools which are available for cockpit integration, taking into account trends in information processing and presentation, trends in integrated display devices, and trends concerning input/output devices. Developments related to display media, display generation, and I/O devices are considered, giving attention to a comparison of CRT and flat-panel display technology, advanced HUD technology and multifunction controls. Integrated display formats are discussed along with integrated systems and cockpit configurations.
DOT National Transportation Integrated Search
2004-09-01
The following case study provides an in-depth view of the deployment of Commercial Vehicle Information Systems and Networks (CVISN) Electronic Credentialing in Washington State. It describes successful practices and lessons learned in operations and ...
Managing the Manpower Aspects of Applying Micro-Electronics Technology.
ERIC Educational Resources Information Center
Thornton, P.; Routledge, C.
1980-01-01
Outlines major effects that the application of micro-electronics devices in products/processes and in office systems will have on future manpower and skill requirements in manufacturing organizations. Identifies the type of problems these changes will pose for manpower managers. Provides general guidelines for the successful management of these…
14 CFR 302.3 - Filing of documents.
Code of Federal Regulations, 2013 CFR
2013-01-01
... in Washington, DC. Documents may be filed either on paper or by electronic means using the process set at the DOT Dockets Management System (DMS) internet website. (2) Such documents will be deemed to... below the space provided for signature. Electronic filers need only submit one copy of the document...
14 CFR 302.3 - Filing of documents.
Code of Federal Regulations, 2012 CFR
2012-01-01
... in Washington, DC. Documents may be filed either on paper or by electronic means using the process set at the DOT Dockets Management System (DMS) internet website. (2) Such documents will be deemed to... below the space provided for signature. Electronic filers need only submit one copy of the document...
14 CFR 302.3 - Filing of documents.
Code of Federal Regulations, 2014 CFR
2014-01-01
... in Washington, DC. Documents may be filed either on paper or by electronic means using the process set at the DOT Dockets Management System (DMS) internet website. (2) Such documents will be deemed to... below the space provided for signature. Electronic filers need only submit one copy of the document...
14 CFR 302.3 - Filing of documents.
Code of Federal Regulations, 2011 CFR
2011-01-01
... in Washington, DC. Documents may be filed either on paper or by electronic means using the process set at the DOT Dockets Management System (DMS) internet website. (2) Such documents will be deemed to... below the space provided for signature. Electronic filers need only submit one copy of the document...
Somewhere over the Verde Rainbow
ERIC Educational Resources Information Center
Ekart, Donna F.
2008-01-01
When the electronic resource management system (ERM) at Kansas State University Libraries suffered a horrible data loss, the "contract db" presented a challenge for the librarians responsible for electronic resources. It was a decent data repository, but it had no ability to manage the tangled process of licensing, acquiring, activating,…
Correlating electronic and vibrational motions in charge transfer systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalil, Munira
2014-06-27
The goal of this research program was to measure coupled electronic and nuclear motions during photoinduced charge transfer processes in transition metal complexes by developing and using novel femtosecond spectroscopies. The scientific highlights and the resulting scientific publications from the DOE supported work are outlined in the technical report.
Quality and efficiency successes leveraging IT and new processes.
Chaiken, Barry P; Christian, Charles E; Johnson, Liz
2007-01-01
Today, healthcare annually invests billions of dollars in information technology, including clinical systems, electronic medical records and interoperability platforms. While continued investment and parallel development of standards are critical to secure exponential benefits from clinical information technology, intelligent and creative redesign of processes through path innovation is necessary to deliver meaningful value. Reports from two organizations included in this report review the steps taken to reinvent clinical processes that best leverage information technology to deliver safer and more efficient care. Good Samaritan Hospital, Vincennes, Indiana, implemented electronic charting, point-of-care bar coding of medications prior to administration, and integrated clinical documentation for nursing, laboratory, radiology and pharmacy. Tenet Healthcare, during its implementation and deployment of multiple clinical systems across several hospitals, focused on planning that included team-based process redesign. In addition, Tenet constructed valuable and measurable metrics that link outcomes with its strategic goals.
1990-12-01
data rate to the electronics would be much lower on the average and the data much "richer" in information. Intelligent use of...system bottleneck, a high data rate should be provided by I/O systems. 2. machines with intelligent storage management specially designed for logic...management information processing, surveillance sensors, intelligence data collection and handling, solid state sciences, electromagnetics, and propagation, and electronic reliability/maintainability and compatibility.
Electronic Timekeeping: North Dakota State University Improves Payroll Processing.
ERIC Educational Resources Information Center
Vetter, Ronald J.; And Others
1993-01-01
North Dakota State University has adopted automated timekeeping to improve the efficiency and effectiveness of payroll processing. The microcomputer-based system accurately records and computes employee time, tracks labor distribution, accommodates complex labor policies and company pay practices, provides automatic data processing and reporting,…
Electron-electron correlation in two-photon double ionization of He-like ions
NASA Astrophysics Data System (ADS)
Hu, S. X.
2018-01-01
Electron correlation plays a crucial role in quantum many-body physics ranging from molecular bonding and strong-field-induced multielectron ionization, to superconducting in materials. Understanding the dynamic electron correlation in the photoionization of relatively simple quantum three-body systems, such as He and He-like ions, is an important step toward manipulating complex systems through photoinduced processes. Here we have performed ab initio investigations of two-photon double ionization (TPDI) of He and He-like ions (L i+,B e2 + , and C4 +) exposed to intense attosecond x-ray pulses. Results from such fully correlated quantum calculations show weaker and weaker electron correlation effects in TPDI spectra as the ionic charge increases, which is opposite to the intuition that the absolute increase of correlation in the ground state should lead to more equal energy sharing in photoionization. These findings indicate that the final-state electron-electron correlation ultimately determines the energy sharing of the two ionized electrons in TPDI.
NASA Astrophysics Data System (ADS)
Hirano, Ryoichi; Iida, Susumu; Amano, Tsuyoshi; Watanabe, Hidehiro; Hatakeyama, Masahiro; Murakami, Takeshi; Suematsu, Kenichi; Terao, Kenji
2016-03-01
Novel projection electron microscope optics have been developed and integrated into a new inspection system named EBEYE-V30 ("Model EBEYE" is an EBARA's model code) , and the resulting system shows promise for application to half-pitch (hp) 16-nm node extreme ultraviolet lithography (EUVL) patterned mask inspection. To improve the system's inspection throughput for 11-nm hp generation defect detection, a new electron-sensitive area image sensor with a high-speed data processing unit, a bright and stable electron source, and an image capture area deflector that operates simultaneously with the mask scanning motion have been developed. A learning system has been used for the mask inspection tool to meet the requirements of hp 11-nm node EUV patterned mask inspection. Defects are identified by the projection electron microscope system using the "defectivity" from the characteristics of the acquired image. The learning system has been developed to reduce the labor and costs associated with adjustment of the detection capability to cope with newly-defined mask defects. We describe the integration of the developed elements into the inspection tool and the verification of the designed specification. We have also verified the effectiveness of the learning system, which shows enhanced detection capability for the hp 11-nm node.
Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.
2012-01-01
Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multi-frequency EPR measurements to interrogate the microscopic nature and dynamics of ultra fast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer. PMID:22568866
Moisture-triggered physically transient electronics
Gao, Yang; Zhang, Ying; Wang, Xu; Sim, Kyoseung; Liu, Jingshen; Chen, Ji; Feng, Xue; Xu, Hangxun; Yu, Cunjiang
2017-01-01
Physically transient electronics, a form of electronics that can physically disappear in a controllable manner, is very promising for emerging applications. Most of the transient processes reported so far only occur in aqueous solutions or biofluids, offering limited control over the triggering and degradation processes. We report novel moisture-triggered physically transient electronics, which exempt the needs of resorption solutions and can completely disappear within well-controlled time frames. The triggered transient process starts with the hydrolysis of the polyanhydride substrate in the presence of trace amounts of moisture in the air, a process that can generate products of corrosive organic acids to digest various inorganic electronic materials and components. Polyanhydride is the only example of polymer that undergoes surface erosion, a distinct feature that enables stable operation of the functional devices over a predefined time frame. Clear advantages of this novel triggered transience mode include that the lifetime of the devices can be precisely controlled by varying the moisture levels and changing the composition of the polymer substrate. The transience time scale can be tuned from days to weeks. Various transient devices, ranging from passive electronics (such as antenna, resistor, and capacitor) to active electronics (such as transistor, diodes, optoelectronics, and memories), and an integrated system as a platform demonstration have been developed to illustrate the concept and verify the feasibility of this design strategy. PMID:28879237
Electron beam welding passes initial test
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Sirvy, B.
1979-11-01
Once the new electron-beam welding process is coupled with vertical or J-curve pipelaying techniques, Total-Compagnie Francaise des Petroles (Gestion and Recherches) will be able to offer a system capable of laying up to 36-in. pipe in deep water (1000-9900 ft) at a pace competitive with the best performance of a shallow-water barge: 8200 ft in 24 hr. Electron-beam welding provides the fast, single-station joining needed to make J-curve laying economical. Tests recently demonstrated that this welding technique can join 1.25-in.-wall, 24-in. pipe in less than 3 min; conventional processes require 1-1 1/2 hr.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 232.7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7002 Policy. (a)(1) Contractors shall submit payment requests...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 232.7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7002 Policy. (a)(1) Contractors shall submit payment requests...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 232.7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7002 Policy. (a) Contractors shall submit payment requests and...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 232.7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7002 Policy. (a) Contractors shall submit payment requests and...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 232.7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Electronic Submission and Processing of Payment Requests and Receiving Reports 232.7002 Policy. (a)(1) Contractors shall submit payment requests...
A Business Case for Electronic Commerce
1990-09-01
Electronic Commerce . This report presents the results of that examination. Based upon an examination of 16 key documents, we estimate that DoD could realize direct and indirect cost savings of almost $1.2 billion over a 10-year period by replacing these manually processed documents with their electronic equivalents. To achieve those savings, DoD would need to make investments totaling approximately $80 million in new systems and procedures. (Author)
78 FR 2695 - Privacy Act of 1974; System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
... data elements used in the Workplace Environment Tracking System (WETS), a new electronic national..., Workplace Harassment Fact Finding, Threat Assessment Case Tracking, and Workplace Environment Intervention... tracking system for these four processes will reasonably assure that workplace harassment policies and...
Smart electronics and microengineering: the Australian focus
NASA Astrophysics Data System (ADS)
Hariz, Alex
1998-04-01
Integrated MEMS together with signal-conditioning electronics on the same chip appears to be the ultimate solution to realizing smart computer devices integratable into larger systems. This in principle will lead to systems with decentralized intelligence leading to applications in numerous fields. It is conceived that such devices would be the product of merging two mature technologies, that of microsensors and that of IC manufacture which is enjoying a well established success. Using common and suitable materials it is reasonable to expect a high degree of compatibility with little modification to standard processes. The various aspects of this co-integration will be analyzed and factors critical to the viability of the process, that go beyond mere technical feasibility will be highlighted. Australian research in this area is strong and continues to grow. We will pinpoint opportunities and constraints to the promising prospect of smart electronics and MEMS.
Benítez, Alfredo; Santiago, Ulises; Sanchez, John E; Ponce, Arturo
2018-01-01
In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.
NASA Astrophysics Data System (ADS)
Benítez, Alfredo; Santiago, Ulises; Sanchez, John E.; Ponce, Arturo
2018-01-01
In this work, an innovative cathodoluminescence (CL) system is coupled to a scanning electron microscope and synchronized with a Raspberry Pi computer integrated with an innovative processing signal. The post-processing signal is based on a Python algorithm that correlates the CL and secondary electron (SE) images with a precise dwell time correction. For CL imaging, the emission signal is collected through an optical fiber and transduced to an electrical signal via a photomultiplier tube (PMT). CL Images are registered in a panchromatic mode and can be filtered using a monochromator connected between the optical fiber and the PMT to produce monochromatic CL images. The designed system has been employed to study ZnO samples prepared by electrical arc discharge and microwave methods. CL images are compared with SE images and chemical elemental mapping images to correlate the emission regions of the sample.
Materials and processing approaches for foundry-compatible transient electronics
Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.
2017-01-01
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries. PMID:28652373
Chemical modulation of electronic structure at the excited state
NASA Astrophysics Data System (ADS)
Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.
2017-12-01
Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.
Putting the Power of Configuration in the Hands of the Users
NASA Technical Reports Server (NTRS)
Al-Shihabi, Mary-Jo; Brown, Mark; Rigolini, Marianne
2011-01-01
Goal was to reduce the overall cost of human space flight while maintaining the most demanding standards for safety and mission success. In support of this goal, a project team was chartered to replace 18 legacy Space Shuttle nonconformance processes and systems with one fully integrated system Problem Reporting and Corrective Action (PRACA) processes provide a closed-loop system for the identification, disposition, resolution, closure, and reporting of all Space Shuttle hardware/software problems PRACA processes are integrated throughout the Space Shuttle organizational processes and are critical to assuring a safe and successful program Primary Project Objectives Develop a fully integrated system that provides an automated workflow with electronic signatures Support multiple NASA programs and contracts with a single "system" architecture Define standard processes, implement best practices, and minimize process variations
Vereshchaka, Vadym V.; Glamazdin, Oleksandr V.; Pomatsalyuk, Roman I.
2014-07-01
Two data acquisition and processing systems are used simultaneously to measure electron beam polarization by Moller polarimeter in Hall A of Jefferson Lab (Newport News, VA, USA). The old system (since 1997) is fully functional, but is not repairable in case of malfunction (system modules arenot manufactured anymore). The new system (since 2010) based on flash-ADC is more accurate, but currently requires more detailed adjustment and further improvement. Description and specifications of two data acquisition and processing systems have been given. The results of polarization measurements during experiments conducted in Hall A from 2010 to 2012 are compared.
Peres, Heloísa; Cruz, Diná; Tellez, Michelle; de Cássia Gengo E Silva, Rita; Ortiz, Diley; Diogo, Regina; Ortiz, Dóris R
2016-01-01
The aim of this study was to present the experience of a teaching hospital with the implementation of improvements to an electronic documentation system of the nursing process (PROCEnf-USP®). The improvements were based on functional performance and technical quality of the system. It was adopted Scrum™ method for version control PROCEnf-USP® by enabling agility, flexibility and possibility of integration between development and users. The PROCEnf-USP® has been used since 2009 and has professional and academic environments. The current version lets you generate reports and supports decisions about diagnoses, outcomes and interventions. It is provided the use of indicators to monitor results and registration at the point of care. The establishment of important.
Implementation of a web-based medication tracking system in a large academic medical center.
Calabrese, Sam V; Williams, Jonathan P
2012-10-01
Pharmacy workflow efficiencies achieved through the use of an electronic medication-tracking system are described. Medication dispensing turnaround times at the inpatient pharmacy of a large hospital were evaluated before and after transition from manual medication tracking to a Web-based tracking process involving sequential bar-code scanning and real-time monitoring of medication status. The transition was carried out in three phases: (1) a workflow analysis, including the identification of optimal points for medication scanning with hand-held wireless devices, (2) the phased implementation of an automated solution and associated hardware at a central dispensing pharmacy and three satellite locations, and (3) postimplementation data collection to evaluate the impact of the new tracking system and areas for improvement. Relative to the manual tracking method, electronic medication tracking allowed the capture of far more data points, enabling the pharmacy team to delineate the time required for each step of the medication dispensing process and to identify the steps most likely to involve delays. A comparison of baseline and postimplementation data showed substantial reductions in overall medication turnaround times with the use of the Web-based tracking system (time reductions of 45% and 22% at the central and satellite sites, respectively). In addition to more accurate projections and documentation of turnaround times, the Web-based tracking system has facilitated quality-improvement initiatives. Implementation of an electronic tracking system for monitoring the delivery of medications provided a comprehensive mechanism for calculating turnaround times and allowed the pharmacy to identify bottlenecks within the medication distribution system. Altering processes removed these bottlenecks and decreased delivery turnaround times.
Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons
NASA Astrophysics Data System (ADS)
Su, Yue-Hua; Lu, Han-Tao
2018-04-01
One challenge in contemporary condensed matter physics is to understand unconventional electronic physics beyond the paradigm of Landau Fermi-liquid theory. Here, we present a perspective that posits that most such examples of unconventional electronic physics stem from restrictions on the degrees of freedom of quantum electrons in Landau Fermi liquids. Since the degrees of freedom are deeply connected to the system's symmetries and topology, these restrictions can thus be realized by external constraints or by interaction-driven processes via the following mechanisms: (i) symmetry breaking, (ii) new emergent symmetries, and (iii) nontrivial topology. Various examples of unconventional electronic physics beyond the reach of traditional Landau Fermi liquid theory are extensively investigated from this point of view. Our perspective yields basic pathways to study the breakdown of Landau Fermi liquids and also provides a guiding principle in the search for novel electronic systems and devices.
Adiabatic Expansion of Electron Gas in a Magnetic Nozzle.
Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira
2018-01-26
A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5/3, when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.
Adiabatic Expansion of Electron Gas in a Magnetic Nozzle
NASA Astrophysics Data System (ADS)
Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira
2018-01-01
A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.
Digital Audio Radio Field Tests
NASA Technical Reports Server (NTRS)
Hollansworth, James E.
1997-01-01
Radio history continues to be made at the NASA Lewis Research Center with the beginning of phase two of Digital Audio Radio testing conducted by the Consumer Electronic Manufacturers Association (a sector of the Electronic Industries Association and the National Radio Systems Committee) and cosponsored by the Electronic Industries Association and the National Association of Broadcasters. The bulk of the field testing of the four systems should be complete by the end of October 1996, with results available soon thereafter. Lewis hosted phase one of the testing process, which included laboratory testing of seven proposed digital audio radio systems and modes (see the following table). Two of the proposed systems operate in two modes, thus making a total of nine systems for testing. These nine systems are divided into the following types of transmission: in-band on channel (IBOC), in-band adjacent channel (IBAC), and new bands - the L-band (1452 to 1492 MHz) and the S-band (2310 to 2360 MHz).
A decision technology system for health care electronic commerce.
Forgionne, G A; Gangopadhyay, A; Klein, J A; Eckhardt, R
1999-08-01
Mounting costs have escalated the pressure on health care providers and payers to improve decision making and control expenses. Transactions to form the needed decision data will routinely flow, often electronically, between the affected parties. Conventional health care information systems facilitate flow, process transactions, and generate useful decision information. Typically, such support is offered through a series of stand-alone systems that lose much useful decision knowledge and wisdom during health care electronic commerce (e-commerce). Integrating the stand-alone functions can enhance the quality and efficiency of the segmented support, create synergistic effects, and augment decision-making performance and value for both providers and payers. This article presents an information system that can provide complete and integrated support for e-commerce-based health care decision making. The article describes health care e-commerce, presents the system, examines the system's potential use and benefits, and draws implications for health care management and practice.
Architectural development of an advanced EVA Electronic System
NASA Technical Reports Server (NTRS)
Lavelle, Joseph
1992-01-01
An advanced electronic system for future EVA missions (including zero gravity, the lunar surface, and the surface of Mars) is under research and development within the Advanced Life Support Division at NASA Ames Research Center. As a first step in the development, an optimum system architecture has been derived from an analysis of the projected requirements for these missions. The open, modular architecture centers around a distributed multiprocessing concept where the major subsystems independently process their own I/O functions and communicate over a common bus. Supervision and coordination of the subsystems is handled by an embedded real-time operating system kernel employing multitasking software techniques. A discussion of how the architecture most efficiently meets the electronic system functional requirements, maximizes flexibility for future development and mission applications, and enhances the reliability and serviceability of the system in these remote, hostile environments is included.
Theoretical insights into multiscale electronic processes in organic photovoltaics
NASA Astrophysics Data System (ADS)
Tretiak, Sergei
Present day electronic devices are enabled by design and implementation of precise interfaces that control the flow of charge carriers. This requires robust and predictive multiscale approaches for theoretical description of underlining complex phenomena. Combined with thorough experimental studies such approaches provide a reliable estimate of physical properties of nanostructured materials and enable a rational design of devices. From this perspective I will discuss first principle modeling of small-molecule bulk-heterojunction organic solar cells and push-pull chromophores for tunable-color organic light emitters. The emphasis is on electronic processes involving intra- and intermolecular energy or charge transfer driven by strong electron-phonon coupling inherent to pi-conjugated systems. Finally I will describe how precise manipulation and control of organic-organic interfaces in a photovoltaic device can increase its power conversion efficiency by 2-5 times in a model bilayer system. Applications of these design principles to practical architectures like bulk heterojunction devices lead to an enhancement in power conversion efficiency from 4.0% to 7.0%. These interface manipulation strategies are universally applicable to any donor-acceptor interface, making them both fundamentally interesting and technologically important for achieving high efficiency organic electronic devices.