DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Bing; Yu, Zijun; Bernstein, Elliot R., E-mail: erb@lamar.Colostate.edu
Decomposition of the energetic material FOX-7 (1,1-diamino-2,2-dinitroethylene, C{sub 2}H{sub 4}N{sub 4}O{sub 4}) is investigated both theoretically and experimentally. The NO molecule is observed as an initial decomposition product subsequent to electronic excitation. The observed NO product is rotationally cold (<35 K) and vibrationally hot (2800 K). The initial decomposition mechanism is explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersections play an essential role in the decomposition mechanism. Electronically excited S{sub 2} FOX-7 can radiationlessly relax to lower electronic states through (S{sub 2}/S{sub 1}){sub CI} and (S{submore » 1}/S{sub 0}){sub CI} conical intersections and undergo a nitro-nitrite isomerization to generate NO product on the S{sub 0} state. The theoretically predicted mechanism is consistent with the experimental results. As FOX-7 decomposes on the ground electronic state, thus, the vibrational energy of the NO product from FOX-7 is high. The observed rotational energy distribution for NO is consistent with the final transition state structure on the S{sub 0} state. Ground state FOX-7 decomposition agrees with previous work: the nitro-nitrite isomerization has the lowest average energy barrier, the C–NH{sub 2} bond cleavage is unlikely under the given excitation conditions, and HONO formation on the ground state surface is energy accessible but not the main process.« less
Decomposition of carbon dioxide by recombining hydrogen plasma with ultralow electron temperature
NASA Astrophysics Data System (ADS)
Yamazaki, Masahiro; Nishiyama, Shusuke; Sasaki, Koichi
2018-06-01
We examined the rate coefficient for the decomposition of CO2 in low-pressure recombining hydrogen plasmas with electron temperatures between 0.15 and 0.45 eV, where the electron-impact dissociation was negligible. By using this ultralow-temperature plasma, we clearly observed decomposition processes via vibrational excited states. The rate coefficient of the overall reaction, CO2 + e → products, was 1.5 × 10‑17 m3/s in the ultralow-temperature plasma, which was 10 times larger than the decomposition rate coefficient of 2 × 10‑18 m3/s in an ionizing plasma with an electron temperature of 4 eV.
NASA Astrophysics Data System (ADS)
Greenfield, Margo
Energetic materials play an important role in aeronautics, the weapon industry, and the propellant industry due to their broad applications as explosives and fuels. RDX (1,3,5-trinitrohexahydro-s-triazine), HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine), and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) are compounds which contain high energy density. Although RDX and HMX have been studied extensively over the past several decades a complete understanding of their decomposition mechanisms and dynamics is unknown. Time of flight mass spectroscopy (TOFMS) UV photodissociation (ns) experiments of gas phase RDX, HMX, and CL-20 generate the NO molecule as the initial decomposition product. Four different vibronic transitions of the initial decomposition product, the NO molecule, are observed: A2Sigma(upsilon'=0)←X 2pi(upsilon"=0,1,2,3). Simulations of the rovibronic intensities for the A←X transitions demonstrate that NO dissociated from RDX, HMX, and CL-20 is rotationally cold (˜20 K) and vibrationally hot (˜1800 K). Conversely, experiments on the five model systems (nitromethane, dimethylnitramine (DMNA), nitropyrrolidine, nitropiperidine and dinitropiperazine) produce rotationally hot and vibrationally cold spectra. Laser induced fluorescence (LIF) experiments are performed to rule out the possible decomposition product OH, generated along with NO, perhaps from the suggested HONO elimination mechanism. The OH radical is not observed in the fluorescence experiments, indicating the HONO decomposition intermediate is not an important pathway for the excited electronic state decomposition of cyclic nitramines. The NO molecule is also employed to measure the dynamics of the excited state decomposition. A 226 nm, 180 fs light pulse is utilized to photodissociate the gas phase systems. Stable ion states of DMNA and nitropyrrolidine are observed while the energetic materials and remaining model systems present the NO molecule as the only observed product. Pump-probe transients of the resonant A←X (0-0) transition of the NO molecule show a constant signal indicating these materials decompose faster than the time duration of the 226 nm laser light. Calculational results together with the experimental results indicate the energetic materials decompose through an internal conversion to very highly excited (˜5 eV of vibrational energy) vibrational states of their ground electronic state, while the model systems follow an excited electronic state decomposition pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Bing; Yu, Zijun; Bernstein, Elliot R., E-mail: erb@lamar.Colostate.edu
2014-01-21
Decomposition of energetic material 3,4-dinitropyrazole (DNP) and two model molecules 4-nitropyrazole and 1-nitropyrazole is investigated both theoretically and experimentally. The initial decomposition mechanisms for these three nitropyrazoles are explored with complete active space self-consistent field (CASSCF) level. The NO molecule is observed as an initial decomposition product from all three materials subsequent to UV excitation. Observed NO products are rotationally cold (<50 K) for all three systems. The vibrational temperature of the NO product from DNP is (3850 ± 50) K, 1350 K hotter than that of the two model species. Potential energy surface calculations at the CASSCF(12,8)/6-31+G(d) level illustratemore » that conical intersections plays an essential role in the decomposition mechanism. Electronically excited S{sub 2} nitropyraozles can nonradiatively relax to lower electronic states through (S{sub 2}/S{sub 1}){sub CI} and (S{sub 1}/S{sub 0}){sub CI} conical intersection and undergo a nitro-nitrite isomerization to generate NO product either in the S{sub 1} state or S{sub 0} state. In model systems, NO is generated in the S{sub 1} state, while in the energetic material DNP, NO is produced on the ground state surface, as the S{sub 1} decomposition pathway is energetically unavailable. The theoretically predicted mechanism is consistent with the experimental results, as DNP decomposes in a lower electronic state than do the model systems and thus the vibrational energy in the NO product from DNP should be hotter than from the model systems. The observed rotational energy distributions for NO are consistent with the final structures of the respective transition states for each molecule.« less
Yuan, Bing; Bernstein, Elliot R
2017-01-07
Unimolecular decomposition of energetic molecules, 3,3'-diamino-4,4'-bisfuroxan (labeled as A) and 4,4'-diamino-3,3'-bisfuroxan (labeled as B), has been explored via 226/236 nm single photon laser excitation/decomposition. These two energetic molecules, subsequent to UV excitation, create NO as an initial decomposition product at the nanosecond excitation energies (5.0-5.5 eV) with warm vibrational temperature (1170 ± 50 K for A, 1400 ± 50 K for B) and cold rotational temperature (<55 K). Initial decomposition mechanisms for these two electronically excited, isolated molecules are explored at the complete active space self-consistent field (CASSCF(12,12)/6-31G(d)) level with and without MP2 correction. Potential energy surface calculations illustrate that conical intersections play an essential role in the calculated decomposition mechanisms. Based on experimental observations and theoretical calculations, NO product is released through opening of the furoxan ring: ring opening can occur either on the S 1 excited or S 0 ground electronic state. The reaction path with the lowest energetic barrier is that for which the furoxan ring opens on the S 1 state via the breaking of the N1-O1 bond. Subsequently, the molecule moves to the ground S 0 state through related ring-opening conical intersections, and an NO product is formed on the ground state surface with little rotational excitation at the last NO dissociation step. For the ground state ring opening decomposition mechanism, the N-O bond and C-N bond break together in order to generate dissociated NO. With the MP2 correction for the CASSCF(12,12) surface, the potential energies of molecules with dissociated NO product are in the range from 2.04 to 3.14 eV, close to the theoretical result for the density functional theory (B3LYP) and MP2 methods. The CASMP2(12,12) corrected approach is essential in order to obtain a reasonable potential energy surface that corresponds to the observed decomposition behavior of these molecules. Apparently, highly excited states are essential for an accurate representation of the kinetics and dynamics of excited state decomposition of both of these bisfuroxan energetic molecules. The experimental vibrational temperatures of NO products of A and B are about 800-1000 K lower than previously studied energetic molecules with NO as a decomposition product.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Bing; Yu, Zijun; Bernstein, Elliot R., E-mail: erb@lamar.Colostate.edu
2015-03-28
Decomposition of nitrogen-rich energetic materials 1,5′-BT, 5,5′-BT, and AzTT (1,5′-Bistetrazole, 5,5′-Bistetrazole, and 5-(5-azido-(1 or 4)H-1,2,4-triazol-3-yl)tetrazole, respectively), following electronic state excitation, is investigated both experimentally and theoretically. The N{sub 2} molecule is observed as an initial decomposition product from the three materials, subsequent to UV excitation, with a cold rotational temperature (<30 K). Initial decomposition mechanisms for these three electronically excited materials are explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersections play an essential role in the decomposition mechanism. Electronically excited S{sub 1} molecules can non-adiabatically relaxmore » to their ground electronic states through (S{sub 1}/S{sub 0}){sub CI} conical intersections. 1,5′-BT and 5,5′-BT materials have several (S{sub 1}/S{sub 0}){sub CI} conical intersections between S{sub 1} and S{sub 0} states, related to different tetrazole ring opening positions, all of which lead to N{sub 2} product formation. The N{sub 2} product for AzTT is formed primarily by N–N bond rupture of the –N{sub 3} group. The observed rotational energy distributions for the N{sub 2} products are consistent with the final structures of the respective transition states for each molecule on its S{sub 0} potential energy surface. The theoretically derived vibrational temperature of the N{sub 2} product is high, which is similar to that found for energetic salts and molecules studied previously.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kimmel, Anna V.; Sushko, Peter V.; Shluger, Alexander L.
The authors have calculated the electronic structure of individual 1,1-diamino-2,2-dinitroethylene molecules (FOX-7) in the gas phase by means of density functional theory with the hybrid B3LYP functional and 6-31+G(d,p) basis set and considered their dissociation pathways. Positively and negatively charged states as well as the lowest excited states of the molecule were simulated. They found that charging and excitation can not only reduce the activation barriers for decomposition reactions but also change the dominating chemistry from endo- to exothermic type. In particular, they found that there are two competing primary initiation mechanisms of FOX-7 decomposition: C-NO{sub 2} bond fission andmore » C-NO{sub 2} to CONO isomerization. Electronic excitation or charging of FOX-7 disfavors CONO formation and, thus, terminates this channel of decomposition. However, if CONO is formed from the neutral FOX-7 molecule, charge trapping and/or excitation results in spontaneous splitting of an NO group accompanied by the energy release. Intramolecular hydrogen transfer is found to be a rare event in FOX-7 unless free electrons are available in the vicinity of the molecule, in which case HONO formation is a feasible exothermic reaction with a relatively low energy barrier. The effect of charged and excited states on other possible reactions is also studied. Implications of the obtained results to FOX-7 decomposition in condensed state are discussed.« less
Peng, Bo; Kowalski, Karol
2017-09-12
The representation and storage of two-electron integral tensors are vital in large-scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this work, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition of the two-electron integral tensor in our implementation. For the size of the atomic basis set, N b , ranging from ∼100 up to ∼2,000, the observed numerical scaling of our implementation shows [Formula: see text] versus [Formula: see text] cost of performing single CD on the two-electron integral tensor in most of the other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic orbital (AO) two-electron integral tensor from [Formula: see text] to [Formula: see text] with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled cluster formalism employing single and double excitations (CCSD) on several benchmark systems including the C 60 molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10 -4 to 10 -3 to give acceptable compromise between efficiency and accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Kowalski, Karol
The representation and storage of two-electron integral tensors are vital in large- scale applications of accurate electronic structure methods. Low-rank representation and efficient storage strategy of integral tensors can significantly reduce the numerical overhead and consequently time-to-solution of these methods. In this paper, by combining pivoted incomplete Cholesky decomposition (CD) with a follow-up truncated singular vector decomposition (SVD), we develop a decomposition strategy to approximately represent the two-electron integral tensor in terms of low-rank vectors. A systematic benchmark test on a series of 1-D, 2-D, and 3-D carbon-hydrogen systems demonstrates high efficiency and scalability of the compound two-step decomposition ofmore » the two-electron integral tensor in our implementation. For the size of atomic basis set N_b ranging from ~ 100 up to ~ 2, 000, the observed numerical scaling of our implementation shows O(N_b^{2.5~3}) versus O(N_b^{3~4}) of single CD in most of other implementations. More importantly, this decomposition strategy can significantly reduce the storage requirement of the atomic-orbital (AO) two-electron integral tensor from O(N_b^4) to O(N_b^2 log_{10}(N_b)) with moderate decomposition thresholds. The accuracy tests have been performed using ground- and excited-state formulations of coupled- cluster formalism employing single and double excitations (CCSD) on several bench- mark systems including the C_{60} molecule described by nearly 1,400 basis functions. The results show that the decomposition thresholds can be generally set to 10^{-4} to 10^{-3} to give acceptable compromise between efficiency and accuracy.« less
NASA Astrophysics Data System (ADS)
Patel, Vinay Kumar; Bhattacharya, Shantanu
2017-09-01
The present study reports a facile solid state green synthesis process using the leaf extracts of Hibiscus rosa-sinensis to synthesize CuO nanorods with average diameters of 15-20 nm and lengths up to 100 nm. The as-synthesized CuO nanorods were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction. The formation mechanism of CuO nanorods has been explained by involving the individual role of amide I (amino groups) and carboxylate groups under excess hydroxyl ions released from NaOH. The catalytic activity of CuO nanorods in thermal decomposition of potassium periodate microparticles (µ-KIO4) microparticles was studied by thermo gravimetric analysis measurement. The original size (~100 µm) of commercially procured potassium periodate was reduced to microscale length scale to about one-tenth by PEG200 assisted emulsion process. The CuO nanorods prepared by solid state green route were found to catalyze the thermal decomposition of µ-KIO4 with a reduction of 18 °C in the final thermal decomposition temperature of potassium periodate.
Shan, Tzu-Ray; van Duin, Adri C T; Thompson, Aidan P
2014-02-27
We have developed a new ReaxFF reactive force field parametrization for ammonium nitrate. Starting with an existing nitramine/TATB ReaxFF parametrization, we optimized it to reproduce electronic structure calculations for dissociation barriers, heats of formation, and crystal structure properties of ammonium nitrate phases. We have used it to predict the isothermal pressure-volume curve and the unreacted principal Hugoniot states. The predicted isothermal pressure-volume curve for phase IV solid ammonium nitrate agreed with electronic structure calculations and experimental data within 10% error for the considered range of compression. The predicted unreacted principal Hugoniot states were approximately 17% stiffer than experimental measurements. We then simulated thermal decomposition during heating to 2500 K. Thermal decomposition pathways agreed with experimental findings.
Solid-solution thermodynamics in Al-Li alloys
NASA Astrophysics Data System (ADS)
Alekseev, A. A.; Lukina, E. A.
2016-05-01
The relative equilibrium concentrations of lithium atoms distributed over different electron-structural states has been estimated. The possibility of the existence of various nonequilibrium electron-structural states of Li atoms in the solid solution in Al has been substantiated thermodynamically. Upon the decomposition of the supersaturated solid solution, the supersaturation on three electron-structural states of Li atoms that arises upon the quenching of the alloy can lead to the formation of lithium-containing phases in which the lithium atoms enter in one electron-structural state.
Unlu, Ilyas; Spencer, Julie A; Johnson, Kelsea R; Thorman, Rachel M; Ingólfsson, Oddur; McElwee-White, Lisa; Fairbrother, D Howard
2018-03-14
Electron-induced surface reactions of (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 were explored in situ under ultra-high vacuum conditions using X-ray photoelectron spectroscopy and mass spectrometry. The initial step involves electron-stimulated decomposition of adsorbed (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 molecules, accompanied by the desorption of an average of five CO ligands. A comparison with recent gas phase studies suggests that this precursor decomposition step occurs by a dissociative ionization (DI) process. Further electron irradiation decomposes the residual CO groups and (η 5 -C 5 H 5 , Cp) ligand, in the absence of any ligand desorption. The decomposition of CO ligands leads to Mn oxidation, while electron stimulated Cp decomposition causes all of the associated carbon atoms to be retained in the deposit. The lack of any Fe oxidation is ascribed to either the presence of a protective carbonaceous matrix around the Fe atoms created by the decomposition of the Cp ligand, or to desorption of both CO ligands bound to Fe in the initial decomposition step. The selective oxidation of Mn in the absence of any Fe oxidation suggests that the fate of metal atoms in mixed-metal precursors for focused electron beam induced deposition (FEBID) will be sensitive to the nature and number of ligands in the immediate coordination sphere. In related studies, the composition of deposits created from (η 5 -C 5 H 5 )Fe(CO) 2 Mn(CO) 5 under steady state deposition conditions, representative of those used to create nanostructures in electron microscopes, were measured and found to be qualitatively consistent with predictions from the UHV surface science studies.
Pham, T. Anh; Nguyen, Huy -Viet; Rocca, Dario; ...
2013-04-26
Inmore » a recent paper we presented an approach to evaluate quasiparticle energies based on the spectral decomposition of the static dielectric matrix. This method does not require the calculation of unoccupied electronic states or the direct diagonalization of large dielectric matrices, and it avoids the use of plasmon-pole models. The numerical accuracy of the approach is controlled by a single parameter, i.e., the number of eigenvectors used in the spectral decomposition of the dielectric matrix. Here we present a comprehensive validation of the method, encompassing calculations of ionization potentials and electron affinities of various molecules and of band gaps for several crystalline and disordered semiconductors. Lastly, we demonstrate the efficiency of our approach by carrying out G W calculations for systems with several hundred valence electrons.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piper, L G; Taylor, R L
This report summarizes progress during the second quarterly period of the subject contract. The methods available for the production of excited electronic states following azide decomposition are summarized. It is concluded that an experiment designed to study the kinetics of and branching ratios for electronically excited products from azide radicals reactions will be most productive in elucidating excitation mechanisms for potential chemical lasers. A flow reactor is described in which these studies may be undertaken. The major feature of this apparatus is a clean azide radical source based upon the thermal decomposition of solid, ionic azides. The contruction of themore » experimental apparatus has been started.« less
A DFT study of ethanol adsorption and decomposition on α-Al2O3(0 0 0 1) surface
NASA Astrophysics Data System (ADS)
Chiang, Hsin-Ni; Nachimuthu, Santhanamoorthi; Cheng, Ya-Chin; Damayanti, Nur Pradani; Jiang, Jyh-Chiang
2016-02-01
Ethanol adsorption and decomposition on the clean α-Al2O3(0 0 0 1) surface have been systematically investigated by density functional theory calculations. The nature of the surface-ethanol bonding has studied through the density of states (DOS) and the electron density difference (EDD) contour plots. The DOS patterns confirm that the lone pair electrons of EtOH are involved in the formation of a surface Alsbnd O dative bond and the EDD plots provide evidences for the bond weakening/forming, which are consistent with the DOS analysis. Our ethanol decomposition results indicate that ethanol dehydration to ethylene (CH3CH2OH(a) → C2H4(g) + OH(a) + H(a)), is the main reaction pathway with the energy barrier of 1.46 eV. Although the cleavage of the hydroxyl group of ethanol has lower energy barrier, the further decomposition of ethoxy owns much higher energy barrier.
Catalytically enhanced thermal decomposition of chemically grown silicon oxide layers on Si(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leroy, F., E-mail: leroy@cinam.univ-mrs.fr; Passanante, T.; Cheynis, F.
2016-03-14
The thermal decomposition of Si dioxide layers formed by wet chemical treatment on Si(001) has been studied by low-energy electron microscopy. Independent nucleations of voids occur into the Si oxide layers that open by reaction at the void periphery. Depending on the voids, the reaction rates exhibit large differences via the occurrence of a nonlinear growth of the void radius. This non-steady state regime is attributed to the accumulation of defects and silicon hydroxyl species at the SiO{sub 2}/Si interface that enhances the silicon oxide decomposition at the void periphery.
Schwartz, Michael; White, James H.; Sammells, Anthony F.
2005-09-27
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
Schwartz, Michael; White, James H.; Sammels, Anthony F.
2000-01-01
This invention relates to gas-impermeable, solid state materials fabricated into membranes for use in catalytic membrane reactors. This invention particularly relates to solid state oxygen anion- and electron-mediating membranes for use in catalytic membrane reactors for promoting partial or full oxidation of different chemical species, for decomposition of oxygen-containing species, and for separation of oxygen from other gases. Solid state materials for use in the membranes of this invention include mixed metal oxide compounds having the brownmillerite crystal structure.
2014-07-22
differences among electronically excited nitro-containing molecules with different X–NO2 (X = C, N, O) bond connections. Nitromethane (NM...Dynamics of Nitromethane at 226 nm and 271 nm at both Nanosecond and Femtosecond Temporal Scales," J. Phys. Chem. A 113, 85 (2009).
Thermal decomposition pathways of ethane
NASA Astrophysics Data System (ADS)
Gordon, Mark S.; Truong, Thanh N.; Pople, John A.
1986-10-01
The alternate thermal decomposition pathways for ethane in its ground state have been investigated, using ab initio electronic structure calculations. Single-point energies were obtained at the full MP4/6-311 G ∗∗ level, using 6-31 G ∗ geometries for reactant, products, and transition states. The thermodynamically favored products are ethylene and molecular hydrogen, but a very large barrier (130 kcal/mol) is found for the direct 1,2-elimination of hydrogen. When calculated barriers are taken into account, the lowest-energy process is the homolytic cleavage of the C-C bond to form two methyl radicals.
Changes to Electrical Conductivity in Irradiated Carbon-Nickel Nanocomposites
2010-03-01
fluxes that geosynchronous satellites must withstand as established by MIL-STD-1809... Voltage keV Kilo Electron Volt [10 3 eV] LSU Louisiana State University LTAPCVD Low Temperature Atmospheric Pressure Chemical Vapor Decomposition...geosynchronous altitude energetic electron fluxes range up to 5 x 10 6 cm -2 sec -1 for electrons with energies 2 of 0.5 MeV or greater, while proton
Theoretical Studies of Chemical Reactions following Electronic Excitation
NASA Technical Reports Server (NTRS)
Chaban, Galina M.
2003-01-01
The use of multi-configurational wave functions is demonstrated for several processes: tautomerization reactions in the ground and excited states of the DNA base adenine, dissociation of glycine molecule after electronic excitation, and decomposition/deformation of novel rare gas molecules HRgF. These processes involve bond brealung/formation and require multi-configurational approaches that include dynamic correlation.
How does methylation suppress the electron-induced decomposition of 1-methyl-nitroimidazoles?
NASA Astrophysics Data System (ADS)
Kossoski, F.; Varella, M. T. do N.
2017-10-01
The efficient decomposition of nitroimidazoles (NIs) by low energy electrons is believed to underlie their radiosensitizing properties. Recent dissociative electron attachment (DEA) measurements showed that methylation at the N1 site unexpectedly suppresses the electron-induced reactions in 4(5)-NI. We report theoretical results that provide a clear interpretation of that astounding finding. Around 1.5 eV, DEA reactions into several fragments are initiated by a π* resonance, not considered in previous studies. The autoionization lifetime of this anion state, which limits the predissociation dynamics, is considerably shorter in the methylated species, thereby suppressing the DEA signals. On the other hand, the lifetime of the π* resonance located around 3 eV is less affected by methylation, which explains why DEA is still observed at these energies. Our results demonstrate how even a simple methylation can significantly modify the probabilities for DEA reactions, which may be significant for NI-based cancer therapy.
X-ray Thomson Scattering in Warm Dense Matter without the Chihara Decomposition.
Baczewski, A D; Shulenburger, L; Desjarlais, M P; Hansen, S B; Magyar, R J
2016-03-18
X-ray Thomson scattering is an important experimental technique used to measure the temperature, ionization state, structure, and density of warm dense matter (WDM). The fundamental property probed in these experiments is the electronic dynamic structure factor. In most models, this is decomposed into three terms [J. Chihara, J. Phys. F 17, 295 (1987)] representing the response of tightly bound, loosely bound, and free electrons. Accompanying this decomposition is the classification of electrons as either bound or free, which is useful for gapped and cold systems but becomes increasingly questionable as temperatures and pressures increase into the WDM regime. In this work we provide unambiguous first principles calculations of the dynamic structure factor of warm dense beryllium, independent of the Chihara form, by treating bound and free states under a single formalism. The computational approach is real-time finite-temperature time-dependent density functional theory (TDDFT) being applied here for the first time to WDM. We compare results from TDDFT to Chihara-based calculations for experimentally relevant conditions in shock-compressed beryllium.
2014-03-27
temperature, to its electrical conductivity, while considering its dopant concentration ( or ) [2]. (1-2) As previously stated, temperature effects...electrons [2]. Equations (1-3) and (1-4) are used to calculate electron (or hole) mobility in Si based on total dopant concentration (N) at a given...nickel, or cobalt . The metal catalyst breaks down the carbon feedstock to produce CNTs. As shown in Figure 53 below, 83 gaseous carbon feedstock
Ab Initio Density Fitting: Accuracy Assessment of Auxiliary Basis Sets from Cholesky Decompositions.
Boström, Jonas; Aquilante, Francesco; Pedersen, Thomas Bondo; Lindh, Roland
2009-06-09
The accuracy of auxiliary basis sets derived by Cholesky decompositions of the electron repulsion integrals is assessed in a series of benchmarks on total ground state energies and dipole moments of a large test set of molecules. The test set includes molecules composed of atoms from the first three rows of the periodic table as well as transition metals. The accuracy of the auxiliary basis sets are tested for the 6-31G**, correlation consistent, and atomic natural orbital basis sets at the Hartree-Fock, density functional theory, and second-order Møller-Plesset levels of theory. By decreasing the decomposition threshold, a hierarchy of auxiliary basis sets is obtained with accuracies ranging from that of standard auxiliary basis sets to that of conventional integral treatments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Bing; Bernstein, Elliot R., E-mail: erb@lamar.colostate.edu
Unimolecular decomposition of nitrogen-rich energetic molecules 1,2-bis(1H-tetrazol-1-yl)ethane (1-DTE), 1,2-bis(1H-tetrazol-5-yl)ethane (5-DET), N,N-bis(1H-tetrazol-5-yl)amine (BTA), and 5,5’-bis(tetrazolyl)hydrazine (BTH) has been explored via 283 nm two photon laser excitation. The maximum absorption wavelength in the UV-vis spectra of all four materials is around 186–222 nm. The N{sub 2} molecule, with a cold rotational temperature (<30 K), is observed as an initial decomposition product from the four molecules, subsequent to UV excitation. Initial decomposition mechanisms for these four electronically excited isolated molecules are explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) level illustrate that conical intersectionsmore » play an essential role in the decomposition mechanism. The tetrazole ring opens on the S{sub 1} excited state and through conical intersections (S{sub 1}/S{sub 0}){sub CI}, N{sub 2} product is formed on the ground state potential energy surface without rotational excitation. The tetrazole rings of all four energetic molecules open at the N1—N2 ring bond with the lowest energy barrier: the C—N bond opening has higher energy barrier than that for any of the N—N ring bonds. Therefore, the tetrazole rings open at their N—N bonds to release N{sub 2}. The vibrational temperatures of N{sub 2} product from all four energetic materials are hot based on theoretical calculations. The different groups (CH{sub 2}—CH{sub 2}, NH—NH, and NH) joining the tetrazole rings can cause apparent differences in explosive behavior of 1-DTE, 5-DTE, BTA, and BTH. Conical intersections, non-Born-Oppenheimer interactions, and dynamics are the key features for excited electronic state chemistry of organic molecules, in general, and energetic molecules, in particular.« less
Entanglement entropy of electronic excitations.
Plasser, Felix
2016-05-21
A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.
NASA Astrophysics Data System (ADS)
Faradzhev, N. S.; Perry, C. C.; Kusmierek, D. O.; Fairbrother, D. H.; Madey, T. E.
2004-11-01
The kinetics of decomposition and subsequent chemistry of adsorbed CF2Cl2, activated by low-energy electron irradiation, have been examined and compared with CCl4. These molecules have been adsorbed alone and coadsorbed with water ice films of different thicknesses on metal surfaces (Ru; Au) at low temperatures (25 K; 100 K). The studies have been performed with temperature programmed desorption (TPD), reflection absorption infrared spectroscopy (RAIRS), and x-ray photoelectron spectroscopy (XPS). TPD data reveal the efficient decomposition of both halocarbon molecules under electron bombardment, which proceeds via dissociative electron attachment (DEA) of low-energy secondary electrons. The rates of CF2Cl2 and CCl4 dissociation increase in an H2O (D2O) environment (2-3×), but the increase is smaller than that reported in recent literature. The highest initial cross sections for halocarbon decomposition coadsorbed with H2O, using 180 eV incident electrons, are measured (using TPD) to be 1.0±0.2×10-15 cm2 for CF2Cl2 and 2.5±0.2×10-15 cm2 for CCl4. RAIRS and XPS studies confirm the decomposition of halocarbon molecules codeposited with water molecules, and provide insights into the irradiation products. Electron-induced generation of Cl- and F- anions in the halocarbon/water films and production of H3O+, CO2, and intermediate compounds COF2 (for CF2Cl2) and COCl2, C2Cl4 (for CCl4) under electron irradiation have been detected using XPS, TPD, and RAIRS. The products and the decomposition kinetics are similar to those observed in our recent experiments involving x-ray photons as the source of ionizing irradiation.
Near-infrared–driven decomposition of metal precursors yields amorphous electrocatalytic films
Salvatore, Danielle A.; Dettelbach, Kevan E.; Hudkins, Jesse R.; Berlinguette, Curtis P.
2015-01-01
Amorphous metal-based films lacking long-range atomic order have found utility in applications ranging from electronics applications to heterogeneous catalysis. Notwithstanding, there is a limited set of fabrication methods available for making amorphous films, particularly in the absence of a conducting substrate. We introduce herein a scalable preparative method for accessing oxidized and reduced phases of amorphous films that involves the efficient decomposition of molecular precursors, including simple metal salts, by exposure to near-infrared (NIR) radiation. The NIR-driven decomposition process provides sufficient localized heating to trigger the liberation of the ligand from solution-deposited precursors on substrates, but insufficient thermal energy to form crystalline phases. This method provides access to state-of-the-art electrocatalyst films, as demonstrated herein for the electrolysis of water, and extends the scope of usable substrates to include nonconducting and temperature-sensitive platforms. PMID:26601148
Optical and interfacial electronic properties of diamond-like carbon films
NASA Technical Reports Server (NTRS)
Woollam, J. A.; Natarajan, V.; Lamb, J.; Khan, A. A.; Bu-Abbud, G.; Banks, B.; Pouch, J.; Gulino, D. A.; Domitz, S.; Liu, D. C.
1984-01-01
Hard, semitransparent carbon films were prepared on oriented polished crystal wafers of silicon, indium phosphide and gallium arsenide, as well as on KBr and quartz. Properties of the films were determined using IR and visible absorption spectrocopy, ellipsometry, conductance-capacitance spectroscopy and alpha particle-proton recoil spectroscopy. Preparation techniques include RF plasma decomposition of methane (and other hydrocarbons), ion beam sputtering, and dual-ion-beam sputter deposition. Optical energy band gaps as large as 2.7 eV and extinction coefficients lower than 0.1 at long wavelengths are found. Electronic state densities at the interface with silicon as low as 10 to the 10th states/eV sq cm per were found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plasser, Felix, E-mail: felix.plasser@univie.ac.at
A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, butmore » more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.« less
Grigorenko, Bella L; Nemukhin, Alexander V; Polyakov, Igor V; Khrenova, Maria G; Krylov, Anna I
2015-04-30
Photobleaching and photostability of proteins of the green fluorescent protein (GFP) family are crucially important for practical applications of these widely used biomarkers. On the basis of simulations, we propose a mechanism for irreversible bleaching in GFP-type proteins under intense light illumination. The key feature of the mechanism is a photoinduced reaction of the chromophore with molecular oxygen (O2) inside the protein barrel leading to the chromophore's decomposition. Using quantum mechanics/molecular mechanics (QM/MM) modeling we show that a model system comprising the protein-bound Chro(-) and O2 can be excited to an electronic state of the intermolecular charge-transfer (CT) character (Chro(•)···O2(-•)). Once in the CT state, the system undergoes a series of chemical reactions with low activation barriers resulting in the cleavage of the bridging bond between the phenolic and imidazolinone rings and disintegration of the chromophore.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Bing; Bernstein, Elliot R., E-mail: erb@Colostate.edu
Unimolecular decomposition of nitrogen-rich energetic salt molecules bis(ammonium)5,5′-bistetrazolate (NH{sub 4}){sub 2}BT and bis(triaminoguanidinium) 5,5′-azotetrazolate TAGzT, has been explored via 283 nm laser excitation. The N{sub 2} molecule, with a cold rotational temperature (<30 K), is observed as an initial decomposition product, subsequent to UV excitation. Initial decomposition mechanisms for the two electronically excited salt molecules are explored at the complete active space self-consistent field (CASSCF) level. Potential energy surface calculations at the CASSCF(12,8)/6-31G(d) ((NH{sub 4}){sub 2}BT) and ONIOM (CASSCF/6-31G(d):UFF) (TAGzT) levels illustrate that conical intersections play an essential role in the decomposition mechanism as they provide non-adiabatic, ultrafast radiationless internalmore » conversion between upper and lower electronic states. The tetrazole ring opens on the S{sub 1} excited state surface and, through conical intersections (S{sub 1}/S{sub 0}){sub CI}, N{sub 2} product is formed on the ground state potential energy surface without rotational excitation. The tetrazole rings open at the N2—N3 ring bond with the lowest energy barrier: the C—N ring bond opening has a higher energy barrier than that for any of the N—N ring bonds: this is consistent with findings for other nitrogen-rich neutral organic energetic materials. TAGzT can produce N{sub 2} either by the opening of tetrazole ring or from the N=N group linking its two tetrazole rings. Nonetheless, opening of a tetrazole ring has a much lower energy barrier. Vibrational temperatures of N{sub 2} products are hot based on theoretical predictions. Energy barriers for opening of the tetrazole ring for all the nitrogen-rich energetic materials studied thus far, including both neutral organic molecules and salts, are in the range from 0.31 to 2.71 eV. Energy of the final molecular structure of these systems with dissociated N{sub 2} product is in the range from −1.86 to 3.11 eV. The main difference between energetic salts and neutral nitrogen-rich energetic material is that energetic salts usually have lower excitation energy.« less
NASA Technical Reports Server (NTRS)
Walker, R. D., Jr.
1973-01-01
Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.
A general melt-injection-decomposition route to oriented metal oxide nanowire arrays
NASA Astrophysics Data System (ADS)
Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang
2016-12-01
In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn2O3, Co3O4 and Cr2O3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.
Resonant electron capture by aspartame and aspartic acid molecules.
Muftakhov, M V; Shchukin, P V
2016-12-30
The processes for dissociative electron capture are the key mechanisms for decomposition of biomolecules, proteins in particular, under interaction with low-energy electrons. Molecules of aspartic acid and aspartame, i.e. modified dipeptides, were studied herein to define the impact of the side functional groups on peptide chain decomposition in resonant electron-molecular reactions. The processes of formation and decomposition of negative ions of both aspartame and aspartic acid were studied by mass spectrometry of negative ions under resonant electron capture. The obtained mass spectra were interpreted under thermochemical analysis by quantum chemical calculations. Main channels of negative molecular ions fragmentation were found and characteristic fragment ions were identified. The СООН fragment of the side chain in aspartic acid is shown to play a key role like the carboxyl group in amino acids and aliphatic oligopeptides. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung
2015-04-01
Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caballero, F.G.; Yen, Hung-Wei; Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006
2014-02-15
Interphase carbide precipitation due to austenite decomposition was investigated by high resolution transmission electron microscopy and atom probe tomography in tempered nanostructured bainitic steels. Results showed that cementite (θ) forms by a paraequilibrium transformation mechanism at the bainitic ferrite–austenite interface with a simultaneous three phase crystallographic orientation relationship. - Highlights: • Interphase carbide precipitation due to austenite decomposition • Tempered nanostructured bainitic steels • High resolution transmission electron microscopy and atom probe tomography • Paraequilibrium θ with three phase crystallographic orientation relationship.
NASA Astrophysics Data System (ADS)
Asanova, Tatyana I.; Asanov, Igor P.; Kim, Min-Gyu; Gerasimov, Evgeny Yu.; Zadesenets, Andrey V.; Plyusnin, Pavel E.; Korenev, Sergey V.
2013-10-01
The formation mechanism of Pd-Ir nanoparticles during thermal decomposition of double complex salt [Pd(NH3)4][IrCl6] has been studied by in situ X-ray absorption (XAFS) and photoelectron (XPS) spectroscopies. The changes in the structure of the Pd and Ir closest to the surroundings and chemical states of Pd, Ir, Cl, and N atoms were traced in the range from room temperature to 420 °C in inert atmosphere. It was established that the thermal decomposition process is carried out in 5 steps. The Pd-Ir nanoparticles are formed in pyramidal/rounded Pd-rich (10-200 nm) and dendrite Ir-rich (10-50 nm) solid solutions. A d charge depletion at Ir site and a gain at Pd, as well as the intra-atomic charge redistribution between the outer d and s and p electrons of both Ir and Pd in Pd-Ir nanoparticles, were found to occur.
NASA Astrophysics Data System (ADS)
Chen, Xin; Zhou, Junwei; Chen, Shuangjing; Zhang, Hui
2018-06-01
To reduce the use of precious metals and maintain the catalytic activity for NH3 decomposition reaction, it is an effective way to construct bimetallic nanoparticles with special structures. In this paper, by using density functional theory methods, we investigated NH3 decomposition reaction on three types of core-shell nanoparticles M@Ni (M = Fe, Ru, Ir) with 13 core M atoms and 42 shell Ni atoms. The size of these three particles is about 1 nm. Benefit from alloying with Ru in this nanocluster, Ru@Ni core-shell nanoparticles exhibit catalytic activity comparable to that of single metal Ru, based on the analysis of the adsorption energy and potential energy diagram of NH3 decomposition, as well as N2 desorption processes. However, as for Fe@Ni and Ir@Ni core-shell nanoparticles, their catalytic activities are still unsatisfactory compared to the active metal Ru. In addition, in order to further explain the synergistic effect of bimetallic core-shell nanoparticles, the partial density of states were also calculated. The results show that d-band electrons provided by the core metal are the main factors affecting the entire catalytic process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanda, Kaushik D.; Krylov, Anna I.
The equation-of-motion coupled-cluster (EOM-CC) methods provide a robust description of electronically excited states and their properties. Here, we present a formalism for two-photon absorption (2PA) cross sections for the equation-of-motion for excitation energies CC with single and double substitutions (EOM-CC for electronically excited states with single and double substitutions) wave functions. Rather than the response theory formulation, we employ the expectation-value approach which is commonly used within EOM-CC, configuration interaction, and algebraic diagrammatic construction frameworks. In addition to canonical implementation, we also exploit resolution-of-the-identity (RI) and Cholesky decomposition (CD) for the electron-repulsion integrals to reduce memory requirements and to increasemore » parallel efficiency. The new methods are benchmarked against the CCSD and CC3 response theories for several small molecules. We found that the expectation-value 2PA cross sections are within 5% from the quadratic response CCSD values. The RI and CD approximations lead to small errors relative to the canonical implementation (less than 4%) while affording computational savings. RI/CD successfully address the well-known issue of large basis set requirements for 2PA cross sections calculations. The capabilities of the new code are illustrated by calculations of the 2PA cross sections for model chromophores of the photoactive yellow and green fluorescent proteins.« less
A Gaussian quadrature method for total energy analysis in electronic state calculations
NASA Astrophysics Data System (ADS)
Fukushima, Kimichika
This article reports studies by Fukushima and coworkers since 1980 concerning their highly accurate numerical integral method using Gaussian quadratures to evaluate the total energy in electronic state calculations. Gauss-Legendre and Gauss-Laguerre quadratures were used for integrals in the finite and infinite regions, respectively. Our previous article showed that, for diatomic molecules such as CO and FeO, elliptic coordinates efficiently achieved high numerical integral accuracy even with a numerical basis set including transition metal atomic orbitals. This article will generalize straightforward details for multiatomic systems with direct integrals in each decomposed elliptic coordinate determined from the nuclear positions of picked-up atom pairs. Sample calculations were performed for the molecules O3 and H2O. This article will also try to present, in another coordinate, a numerical integral by partially using the Becke's decomposition published in 1988, but without the Becke's fuzzy cell generated by the polynomials of internuclear distance between the pair atoms. Instead, simple nuclear weights comprising exponential functions around nuclei are used. The one-center integral is performed with a Gaussian quadrature pack in a spherical coordinate, included in the author's original program in around 1980. As for this decomposition into one-center integrals, sample calculations are carried out for Li2.
Modeling laser-driven electron acceleration using WARP with Fourier decomposition
Lee, P.; Audet, T. L.; Lehe, R.; ...
2015-12-31
WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.
Modeling laser-driven electron acceleration using WARP with Fourier decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, P.; Audet, T. L.; Lehe, R.
WARP is used with the recent implementation of the Fourier decomposition algorithm to model laser-driven electron acceleration in plasmas. Simulations were carried out to analyze the experimental results obtained on ionization-induced injection in a gas cell. The simulated results are in good agreement with the experimental ones, confirming the ability of the code to take into account the physics of electron injection and reduce calculation time. We present a detailed analysis of the laser propagation, the plasma wave generation and the electron beam dynamics.
Revealing the correlation between real-space structure and chiral magnetic order at the atomic scale
NASA Astrophysics Data System (ADS)
Hauptmann, Nadine; Dupé, Melanie; Hung, Tzu-Chao; Lemmens, Alexander K.; Wegner, Daniel; Dupé, Bertrand; Khajetoorians, Alexander A.
2018-03-01
We image simultaneously the geometric, the electronic, and the magnetic structures of a buckled iron bilayer film that exhibits chiral magnetic order. We achieve this by combining spin-polarized scanning tunneling microscopy and magnetic exchange force microscopy (SPEX) to independently characterize the geometric as well as the electronic and magnetic structures of nonflat surfaces. This new SPEX imaging technique reveals the geometric height corrugation of the reconstruction lines resulting from strong strain relaxation in the bilayer, enabling the decomposition of the real-space from the electronic structure at the atomic level and the correlation with the resultant spin-spiral ground state. By additionally utilizing adatom manipulation, we reveal the chiral magnetic ground state of portions of the unit cell that were not previously imaged with spin-polarized scanning tunneling microscopy alone. Using density functional theory, we investigate the structural and electronic properties of the reconstructed bilayer and identify the favorable stoichiometry regime in agreement with our experimental result.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Supriya; Srivastava, Pratibha; Singh, Gurdip, E-mail: gsingh4us@yahoo.com
2013-02-15
Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ► Synthesis of ferrite nanostructures (∼20.0 nm) by wet-chemical method under different synthetic conditions. ► Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ► Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ► Burning rate measurements ofmore » CSPs with ferrite nanostructures. ► Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.« less
Khodabakhshi, F; Nosko, M; Gerlich, A P
2018-05-03
Multipass friction-stir processing was employed to uniformly disperse multiwalled carbon nanotubes (MW-CNTs) within an Al-Mg alloy metal matrix. Decomposition of MW-CNTs occurs in situ as a result of solid-state chemical reactions, forming fullerene (C60) and aluminium carbide (Al 4 C 3 ) phases during reactive high temperature severe plastic processing. The effects of this decomposition on the microstructural features, dynamic restoration mechanisms and crystallographic microtextural developments are studied for the first time by using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analysis. The formation of an equiaxed grain structure with an average size of ∼1.5 μm occurs within the stirred zone (SZ) under the influence of inclusions which hinder grain boundary migration via Zener-Smith pinning mechanisms during the discontinuous dynamic recrystallisation (DDRX). Formation of two strong Cubic and Brass microtextural components in the heat affected zone (HAZ) and thermomechanical affected zone (TMAZ) was noted as compared to the completely random and Cube components found in the base and SZ regions, respectively. The microstructural modification led to hardening and tensile strength improvement for the processed nanocomposite by ∼55% and 110%, respectively with respect to the annealed Al-Mg base alloy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.
Perovskite oxides: Oxygen electrocatalysis and bulk structure
NASA Technical Reports Server (NTRS)
Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest
1987-01-01
Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.
Perovskite-type oxides - Oxygen electrocatalysis and bulk structure
NASA Technical Reports Server (NTRS)
Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, E.
1988-01-01
Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.
2009-01-01
Worm-like nanorods and nanospheres of silver have been synthesized by photochemical decomposition of silver oxalate in water by UV irradiation in the presence of CTAB and PVP, respectively. No external seeds have been employed for the synthesis of Ag nanorods. The synthesized Ag colloids have been characterized by UV-visible spectra, powder XRD, HRTEM, and selected area electron diffraction (SAED). Ag nanospheres of average size around 2 nm have been obtained in the presence of PVP. XRD and TEM analyses revealed that top and basal planes of nanorods are bound with {111} facets. Williamson–Hall plot has revealed the presence of defects in the Ag nanospheres and nanorods. Formation of defective Ag nanocrystals is attributed to the heating effect of UV-visible irradiation. PMID:20596513
NASA Astrophysics Data System (ADS)
Vidal, Alix; Remusat, Laurent; Watteau, Françoise; Derenne, Sylvie; Quenea, Katell
2016-04-01
Earthworms play a central role in litter decomposition, soil structuration and carbon cycling. They ingest both organic and mineral compounds which are mixed, complexed with mucus and dejected in form of casts at the soil surface and along burrows. Bulk isotopic or biochemical technics have often been used to study the incorporation of litter in soil and casts, but they could not reflect the complex interaction between soil, plant and microorganisms at the microscale. However, the heterogeneous distribution of organic carbon in soil structures induces contrasted microbial activity areas. Nano-scale secondary ion mass spectrometry (NanoSIMS), which is a high spatial resolution method providing elemental and isotopic maps of organic and mineral materials, has recently been applied in soil science (Herrmann et al., 2007; Vogel et al., 2014). The combination of Nano-scale secondary ion mass spectrometry (NanoSIMS) and Transmission Electron Microscopy (TEM) has proven its potential to investigate labelled residues incorporation in earthworm casts (Vidal et al., 2016). In line of this work, we studied the spatial and temporal distribution of plant residues in soil aggregates and earthworm surface casts. This study aimed to (1) identify the decomposition states of labelled plant residues incorporated at different time steps, in casts and soil, (2) identify the microorganisms implied in this decomposition (3) relate the organic matter states of decomposition with their 13C signature. A one year mesocosm experiment was set up to follow the incorporation of 13C labelled Ryegrass (Lolium multiflorum) litter in a soil in the presence of anecic earthworms (Lumbricus terrestris). Soil and surface cast samples were collected after 8 and 54 weeks, embedded in epoxy resin and cut into ultra-thin sections. Soil was fractionated and all and analyzed with TEM and NanoSIMS, obtaining secondary ion images of 12C, 16O, 12C14N, 13C14N and 28Si. The δ13C maps were obtained using the 13C14N-/12C14N- ratio. We identified various states of decomposition within a same sample, associated with a high heterogeneity of δ13C values of plant residues. We also recognized various labelled microorganisms, mainly bacteria and fungi, underlining their participation in residues decomposition. δ13C values were higher in casts than soil aggregates and decreased between 8 and 54 weeks for both samples. Herrmann, A.M., Ritz, K., Nunan, N., Clode, P.L., Pett-Ridge, J., Kilburn, M.R., Murphy, D.V., O'Donnell, A.G., Stockdale, E.A., 2007. Nano-scale secondary ion mass spectrometry - A new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biology and Biochemistry. 39, 1835-1850. Vidal, A., Remusat, L., Watteau, F., Derenne, S., Quenea K., 2016. Incorporation of 13C labelled shoot residues in Lumbricus terrestris casts: A combination of Transmission Electron Microscopy and Nanoscale Secondary Ion Mass Spectrometry. Soil Biology and Biochemistry. Vogel, C., Mueller, C.W., Höschen, C., Buegger, F., Heister, K., Schulz, S., Schloter, M., Kögel-Knabner, I., 2014. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nature Communications 5.
Geometric, electronic, and bonding properties of AuNM (N = 1-7, M = Ni, Pd, Pt) clusters.
Yuan, D W; Wang, Yang; Zeng, Zhi
2005-03-15
Employing first-principles methods, based on density functional theory, we report the ground state geometric and electronic structures of gold clusters doped with platinum group atoms, Au(N)M (N = 1-7, M = Ni, Pd, Pt). The stability and electronic properties of Ni-doped gold clusters are similar to that of pure gold clusters with an enhancement of bond strength. Due to the strong d-d or s-d interplay between impurities and gold atoms originating in the relativistic effects and unique properties of dopant delocalized s-electrons in Pd- and Pt-doped gold clusters, the dopant atoms markedly change the geometric and electronic properties of gold clusters, and stronger bond energies are found in Pt-doped clusters. The Mulliken populations analysis of impurities and detailed decompositions of bond energies as well as a variety of density of states of the most stable dopant gold clusters are given to understand the different effects of individual dopant atom on bonding and electronic properties of dopant gold clusters. From the electronic properties of dopant gold clusters, the different chemical reactivity toward O(2), CO, or NO molecule is predicted in transition metal-doped gold clusters compared to pure gold clusters.
Muravyev, Nikita V; Monogarov, Konstantin A; Asachenko, Andrey F; Nechaev, Mikhail S; Ananyev, Ivan V; Fomenkov, Igor V; Kiselev, Vitaly G; Pivkina, Alla N
2016-12-21
Thermal decomposition of a novel promising high-performance explosive dihydroxylammonium 5,5'-bistetrazole-1,1'-diolate (TKX-50) was studied using a number of thermal analysis techniques (thermogravimetry, differential scanning calorimetry, and accelerating rate calorimetry, ARC). To obtain more comprehensive insight into the kinetics and mechanism of TKX-50 decomposition, a variety of complementary thermoanalytical experiments were performed under various conditions. Non-isothermal and isothermal kinetics were obtained at both atmospheric and low (up to 0.3 Torr) pressures. The gas products of thermolysis were detected in situ using IR spectroscopy, and the structure of solid-state decomposition products was determined by X-ray diffraction and scanning electron microscopy. Diammonium 5,5'-bistetrazole-1,1'-diolate (ABTOX) was directly identified to be the most important intermediate of the decomposition process. The important role of bistetrazole diol (BTO) in the mechanism of TKX-50 decomposition was also rationalized by thermolysis experiments with mixtures of TKX-50 and BTO. Several widely used thermoanalytical data processing techniques (Kissinger, isoconversional, formal kinetic approaches, etc.) were independently benchmarked against the ARC data, which are more germane to the real storage and application conditions of energetic materials. Our study revealed that none of the Arrhenius parameters reported before can properly describe the complex two-stage decomposition process of TKX-50. In contrast, we showed the superior performance of the isoconversional methods combined with isothermal measurements, which yielded the most reliable kinetic parameters of TKX-50 thermolysis. In contrast with the existing reports, the thermal stability of TKX-50 was determined in the ARC experiments to be lower than that of hexogen, but close to that of hexanitrohexaazaisowurtzitane (CL-20).
Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode
Camacho-Forero, Luis E.; Balbuena, Perla B.
2017-11-07
The lithium metal anode is one of the key components of the lithium–sulfur (Li–S) batteries, which are considered one of the most promising candidates for the next generation of battery systems. However, one of the main challenges that have prevented Li-metal anodes from becoming feasible to be used in commercial batteries is the continuous decomposition of the electrolyte due to its high reactivity, which leads to the formation of solid–electrolyte interphase (SEI) layers. The properties of the SEI can dramatically affect the performance of the batteries. Thus, a rigorous understanding of the electrolyte decomposition is crucial to elucidate improvements inmore » performance of the Li–S technology. Here, in this work, using density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD), we investigate the effect of electron-rich environments on the decomposition mechanism of electrolyte species in pure 1,2-dimethoxyethane (DME) solvent and 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) salt solutions. It is found that systems with pure DME require an average environment of at least ~0.9 |e| per molecule for a DME to decompose into CH 3O - and C 2H 4 2-via a 4-electron transfer. In the case of mixtures, the salts are very prone to react with any excess of electrons. In addition, DME dehydrogenation due to reactions with fragments coming from the salt decompositions was detected. Formation of oligomer anionic species from DME and salt fragments were also identified from the AIMD simulations. Finally, the thermodynamics and kinetics of the most relevant electrolyte decomposition reactions were characterized. DME decomposition reactions predicted from the AIMD simulations were found to be thermodynamically favorable under exposure to Li atoms and/or by reactions with salt fragments. Lastly, in most cases, these reactions were shown to have low to moderate activation barriers.« less
Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camacho-Forero, Luis E.; Balbuena, Perla B.
The lithium metal anode is one of the key components of the lithium–sulfur (Li–S) batteries, which are considered one of the most promising candidates for the next generation of battery systems. However, one of the main challenges that have prevented Li-metal anodes from becoming feasible to be used in commercial batteries is the continuous decomposition of the electrolyte due to its high reactivity, which leads to the formation of solid–electrolyte interphase (SEI) layers. The properties of the SEI can dramatically affect the performance of the batteries. Thus, a rigorous understanding of the electrolyte decomposition is crucial to elucidate improvements inmore » performance of the Li–S technology. Here, in this work, using density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD), we investigate the effect of electron-rich environments on the decomposition mechanism of electrolyte species in pure 1,2-dimethoxyethane (DME) solvent and 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) salt solutions. It is found that systems with pure DME require an average environment of at least ~0.9 |e| per molecule for a DME to decompose into CH 3O - and C 2H 4 2-via a 4-electron transfer. In the case of mixtures, the salts are very prone to react with any excess of electrons. In addition, DME dehydrogenation due to reactions with fragments coming from the salt decompositions was detected. Formation of oligomer anionic species from DME and salt fragments were also identified from the AIMD simulations. Finally, the thermodynamics and kinetics of the most relevant electrolyte decomposition reactions were characterized. DME decomposition reactions predicted from the AIMD simulations were found to be thermodynamically favorable under exposure to Li atoms and/or by reactions with salt fragments. Lastly, in most cases, these reactions were shown to have low to moderate activation barriers.« less
Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode.
Camacho-Forero, Luis E; Balbuena, Perla B
2017-11-22
The lithium metal anode is one of the key components of the lithium-sulfur (Li-S) batteries, which are considered one of the most promising candidates for the next generation of battery systems. However, one of the main challenges that have prevented Li-metal anodes from becoming feasible to be used in commercial batteries is the continuous decomposition of the electrolyte due to its high reactivity, which leads to the formation of solid-electrolyte interphase (SEI) layers. The properties of the SEI can dramatically affect the performance of the batteries. Thus, a rigorous understanding of the electrolyte decomposition is crucial to elucidate improvements in performance of the Li-S technology. In this work, using density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD), we investigate the effect of electron-rich environments on the decomposition mechanism of electrolyte species in pure 1,2-dimethoxyethane (DME) solvent and 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) salt solutions. It is found that systems with pure DME require an average environment of at least ∼0.9 |e| per molecule for a DME to decompose into CH 3 O - and C 2 H 4 2- via a 4-electron transfer. In the case of mixtures, the salts are very prone to react with any excess of electrons. In addition, DME dehydrogenation due to reactions with fragments coming from the salt decompositions was detected. Formation of oligomer anionic species from DME and salt fragments were also identified from the AIMD simulations. Finally, the thermodynamics and kinetics of the most relevant electrolyte decomposition reactions were characterized. DME decomposition reactions predicted from the AIMD simulations were found to be thermodynamically favorable under exposure to Li atoms and/or by reactions with salt fragments. In most cases, these reactions were shown to have low to moderate activation barriers.
Electronic State Decomposition of Energetic Materials and Model Systems
2010-11-17
Nitromethane at 226 nm and 271 nm at both Nanosecond and Femtosecond Temporal Scales," J. Phys. Chem. A 113, 85 (2009). Y. Q. Guo, A. Bhattacharya and E...less "energetic". 8. Photodissociation Dynamics of Nitromethane at 226 and 271 nm at Both Nanosecond and Femtosecond Time Scales Photodissociation...of nitromethane has been investigated for decades both theoretically and experimentally; however, as a whole picture, the dissociation dynamics for
Liu, Pan; Han, Jiuhui; Guo, Xianwei; Ito, Yoshikazu; Yang, Chuchu; Ning, Shoucong; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei
2018-02-16
Rechargeable non-aqueous lithium-oxygen batteries with a large theoretical capacity are emerging as a high-energy electrochemical device for sustainable energy strategy. Despite many efforts made to understand the fundamental Li-O 2 electrochemistry, the kinetic process of cathodic reactions, associated with the formation and decomposition of a solid Li 2 O 2 phase during charging and discharging, remains debate. Here we report direct visualization of the charge/discharge reactions on a gold cathode in a non-aqueous lithium-oxygen micro-battery using liquid-cell aberration-corrected scanning transmission electron microscopy (STEM) combining with synchronized electrochemical measurements. The real-time and real-space characterization by time-resolved STEM reveals the electrochemical correspondence of discharge/charge overpotentials to the nucleation, growth and decomposition of Li 2 O 2 at a constant current density. The nano-scale operando observations would enrich our knowledge on the underlying reaction mechanisms of lithium-oxygen batteries during round-trip discharging and charging and shed lights on the strategies in improving the performances of lithium-oxygen batteries by tailoring the cathodic reactions.
Barakat, Assem; Al-Noaimi, Mousa; Suleiman, Mohammed; Aldwayyan, Abdullah S.; Hammouti, Belkheir; Ben Hadda, Taibi; Haddad, Salim F.; Boshaala, Ahmed; Warad, Ismail
2013-01-01
[NiCl2(C14H12N2)(H2O)] complex has been synthesized from nickel chloride hexahydrate (NiCl2·6H2O) and 2,9-dimethyl-1,10-phenanthroline (dmphen) as N,N-bidentate ligand. The synthesized complex was characterized by elemental analysis, infrared (IR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy and differential thermal/thermogravimetric analysis (TG/DTA). The complex was further confirmed by single crystal X-ray diffraction (XRD) as triclinic with space group P-1. The desired complex, subjected to thermal decomposition at low temperature of 400 ºC in an open atmosphere, revealed a novel and facile synthesis of pure NiO nanoparticles with uniform spherical particle; the structure of the NiO nanoparticles product was elucidated on the basis of Fourier transform infrared (FT-IR), UV-vis spectroscopy, TG/DTA, XRD, scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDXS) and transmission electron microscopy (TEM). PMID:24351867
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manaa, M.R.; Fried, L.E.
1998-11-26
The fully optimized potential energy curves for the unimolecular decomposition of the lowest singlet and triplet states of nitromethane through the C-NO{sub 2} bond dissociation pathway are calculated using various DFT and high-level ab initio electronic structure methods. The authors perform gradient corrected density functional theory (DFT) and multiconfiguration self-consistent field (MCSCF) to conclusively demonstrate that the triplet state of nitromethane is bound. The adiabatic curve of this state exhibits a 33 kcal/mol energy barrier as determined at the MCSCF level. DFT methods locate this barrier at a shorter C-N bond distance with 12--16 kcal/mol lower energy than does MCSCF.more » In addition to MCSCF and DFT, quadratic configuration interactions with single and double substitutions (QCISD) calculations are also performed for the singlet curve. The potential energy profiles of this state predicted by FT methods based on Becke`s 1988 exchange functional differ by as much as 17 kcal/mol from the predictions of MCSCF and QCISD in the vicinity of the equilibrium structure. The computational methods predict bond dissociation energies 5--9 kcal/mol lower than the experimental value. DFT techniques based on Becke`s 3-parameter exchange functional show the best overall agreement with the higher level methods.« less
NASA Astrophysics Data System (ADS)
Liu, Haibo; Chen, Tianhu; Xie, Qiaoqin; Zou, Xuehua; Chen, Chen; Frost, Ray L.
2015-09-01
Nano zero valent iron (NZVI) was prepared by reducing natural limonite using hydrogen. X-ray fluorescence, thermogravimetry, X-ray diffraction, transmission electron microscope, temperature programmed reduction (TPR), field emission scanning electron microscope/energy disperse spectroscopy (FESEM/EDS) were utilized to characterize the natural limonite and reduced limonite. The ratios of Fe:O before and after reducing was determined using EDS. The reactivity of the NZVI was assessed by decomposition of p-nitrophenol ( p-NP) and was compared with commercial iron powder. In this study, the results of TPR and FESEM/EDS indicated that NZVI can be prepared by reducing natural limonite using hydrogen. Most importantly, this NZVI was proved to have a good performance on decomposition of p-NP and the process of p-NP decomposition agreed well with the pseudo-first-order kinetic model. The reactivity of this NZVI for decomposition of p-NP was greatly superior to that of commercial iron powder.
X-Ray Thomson Scattering Without the Chihara Decomposition
NASA Astrophysics Data System (ADS)
Magyar, Rudolph; Baczewski, Andrew; Shulenburger, Luke; Hansen, Stephanie B.; Desjarlais, Michael P.; Sandia National Laboratories Collaboration
X-Ray Thomson Scattering is an important experimental technique used in dynamic compression experiments to measure the properties of warm dense matter. The fundamental property probed in these experiments is the electronic dynamic structure factor that is typically modeled using an empirical three-term decomposition (Chihara, J. Phys. F, 1987). One of the crucial assumptions of this decomposition is that the system's electrons can be either classified as bound to ions or free. This decomposition may not be accurate for materials in the warm dense regime. We present unambiguous first principles calculations of the dynamic structure factor independent of the Chihara decomposition that can be used to benchmark these assumptions. Results are generated using a finite-temperature real-time time-dependent density functional theory applied for the first time in these conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.
Hydrated electron based decomposition of perfluorooctane sulfonate (PFOS) in the VUV/sulfite system.
Gu, Yurong; Liu, Tongzhou; Wang, Hongjie; Han, Huili; Dong, Wenyi
2017-12-31
As one of the most reactive species, hydrated electron (e aq - ) is promising for reductive decomposition of recalcitrant organic pollutants, such as perfluorooctane sulfonate (PFOS). In this study, PFOS decomposition using a vacuum ultraviolet (VUV)/sulfite system was systematically investigated in comparison with sole VUV and ultraviolet (UV)/sulfite systems. A fast and nearly complete (97.3%) PFOS decomposition was observed within 4h from its initial concentration of 37.2μM in the VUV/sulfite system. The observed rate constant (k obs ) for PFOS decomposition in the studied system was 0.87±0.0060h -1 , which was nearly 7.5 and 2 folds faster than that in sole VUV and UV/sulfite systems, respectively. Compared to previously studied UV/sulfite system, VUV/sulfite system enhanced PFOS decomposition in both weak acidic and alkaline pH conditions. In weak acidic condition (pH6.0), PFOS predominantly decomposed via direct VUV photolysis, whereas in alkaline condition (pH>9.0), PFOS decomposition was mainly induced by e aq - generated from both sulfite and VUV photolytic reactions. At a fixed initial solution pH (pH10.0), PFOS decomposition kinetics showed a positive linear dependence with sulfite dosage. The co-presence of humic acid (HA) and NO 3 - obviously suppressed PFOS decomposition, whereas HCO 3 - showed marginal inhibition. A few amount of short chain perfluorocarboxylic acids (PFCAs) were detected in PFOS decomposition process, and a high defluorination efficiency (75.4%) was achieved. These results suggested most fluorine atoms in PFOS molecule ultimately mineralized into fluoride ions, and the mechanisms for PFOS decomposition in the VUV/sulfite system were proposed. Copyright © 2017 Elsevier B.V. All rights reserved.
Analytical electron microscope study of eight ataxites
NASA Technical Reports Server (NTRS)
Novotny, P. M.; Goldstein, J. I.; Williams, D. B.
1982-01-01
Optical and electron optical (SEM, TEM, AEM) techniques were employed to investigate the fine structure of eight ataxite-iron meteorites. Structural studies indicated that the ataxites can be divided into two groups: a Widmanstaetten decomposition group and a martensite decomposition group. The Widmanstaetten decomposition group has a Type I plessite microstructure and the central taenite regions contain highly dislocated lath martensite. The steep M shaped Ni gradients in the taenite are consistent with the fast cooling rates, of not less than 500 C/my, observed for this group. The martensite decomposition group has a Type III plessite microstructure and contains all the chemical group IVB ataxites. The maximum taenite Ni contents vary from 47.5 to 52.7 wt % and are consistent with slow cooling to low temperatures of not greater than 350 C at cooling rates of not greater than 25 C/my.
Solid state proton and electron mediating membrane and use in catalytic membrane reactors
White, James H.; Schwartz, Michael; Sammells, Anthony F.
2001-01-01
Mixed electron- and proton-conducting metal oxide materials are provided. These materials are useful in fabrication of membranes for use in catalytic membrane reactions, particularly for promoting dehydrogenation of hydrocarbons, oligomerization of hydrocarbons and for the decomposition of hydrogen-containing gases. Membrane materials are perovskite compounds of the formula: AB.sub.1-x B'.sub.x O.sub.3-y where A=Ca, Sr, or Ba; B=Ce, Tb, Pr or Th; B'=Ti, V, Cr, Mn, Fe, Co, Ni or Cu; 0.2.ltoreq.x.ltoreq.0.5, and y is a number sufficient to neutralize the charge in the mixed metal oxide material.
Solid state proton and electron mediating membrane and use in catalytic membrane reactors
White, James H.; Schwartz, Michael; Sammells, Anthony F.
2000-01-01
Mixed electron- and proton-conducting metal oxide materials are provided. These materials are useful in fabrication of membranes for use in catalytic membrane reactions, particularly for promoting dehydrogenation of hydrocarbons, oligomerization of hydrocarbons and for the decomposition of hydrogen-containing gases. Membrane materials are perovskite compounds of the formula: AB.sub.1-x B'.sub.x O.sub.3-y where A=Ca, Sr, or Ba; B=Ce, Tb, Pr or Th; B'=Ti, V, Cr, Mn, Fe, Co, Ni or Cu; 0.2
Red shift of the SF6 vibration spectrum induced by the electron absorption: An ab initio study
NASA Astrophysics Data System (ADS)
Tang, Bin; Zhang, Long-Fei; Han, Fang-Yuan; Luo, Zong-Chang; Liang, Qin-Qin; Liu, Chen-Yao; Zhu, Li-Ping; Zhang, Jie-Ming
2018-01-01
As a widely used gas insulator, sulfur hexafluoride (SF6) has a large cross section for electron absorption, which may make the molecule ionized to the -1 charge state in the high-voltage environment. Using ab initio calculations, we show that the absorbed electron is located averagely on the six F atoms, occupying the antibonding level of the s-p σ bonds and increasing the S-F bond length. The ionized SF6- molecule decreases its decomposition energy to only 1.5 eV, much lower than that of the neutral molecule (4.8 eV), which can be understood according to the occupying of the antibonding orbital and thus weakening of the s-p σ bonds. The weakening of the bonds results in an obvious red shift in the vibrational modes of the ionized SF6- molecule by 120-270 cm-1, compared to those of the neutral molecule. The detailed origin of these vibrational modes is analyzed. Since the appearance of the ionized SF6- molecules is before the decomposition reaction of the SF6- molecule into low-fluoride sulfides, this method may improve the sensitivity of the defection of the partial discharge and save more time for the prevention of the insulation failure in advance.
NASA Astrophysics Data System (ADS)
Kakekhani, Arvin; Ismail-Beigi, Sohrab
2014-03-01
NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.
Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.
Pathak, Vinay; Prasad, Ankush; Pospíšil, Pavel
2017-01-01
Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.
Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II
Pathak, Vinay; Prasad, Ankush
2017-01-01
Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. PMID:28732060
NASA Technical Reports Server (NTRS)
Booth, Morrison, Christopher; Seidman, David N.; Noebe, Ronald D.
2009-01-01
The effects of a 2.0 at.% addition of Ta to a model Ni-10.0Al-8.5Cr (at.%) superalloy aged at 1073 K are assessed using scanning electron microscopy and atom-probe tomography. The gamma'(Ll2)-precipitate morphology that develops as a result of gamma-(fcc)matrix phase decomposition is found to evolve from a bimodal distribution of spheroidal precipitates, to {001}-faceted cuboids and parallelepipeds aligned along the elastically soft {001}-type directions. The phase compositions and the widths of the gamma'-precipitate/gamma-matrix heterophase interfaces evolve temporally as the Ni-Al-Cr-Ta alloy undergoes quasi-stationary state coarsening after 1 h of aging. Tantalum is observed to partition preferentially to the gamma'-precipitate phase, and suppresses the mobility of Ni in the gamma-matrix sufficiently to cause an accumulation of Ni on the gamma-matrix side of the gamma'/gamma interface. Additionally, computational modeling, employing Thermo-Calc, Dictra and PrecipiCalc, is employed to elucidate the kinetic pathways that lead to phase decomposition in this concentrated Ni-Al-Cr-Ta alloy.
Zhu, Tianyu; de Silva, Piotr; Van Voorhis, Troy
2018-01-09
Chemical bonding plays a central role in the description and understanding of chemistry. Many methods have been proposed to extract information about bonding from quantum chemical calculations, the majority of them resorting to molecular orbitals as basic descriptors. Here, we present a method called self-attractive Hartree (SAH) decomposition to unravel pairs of electrons directly from the electron density, which unlike molecular orbitals is a well-defined observable that can be accessed experimentally. The key idea is to partition the density into a sum of one-electron fragments that simultaneously maximize the self-repulsion and maintain regular shapes. This leads to a set of rather unusual equations in which every electron experiences self-attractive Hartree potential in addition to an external potential common for all the electrons. The resulting symmetry breaking and localization are surprisingly consistent with chemical intuition. SAH decomposition is also shown to be effective in visualization of single/multiple bonds, lone pairs, and unusual bonds due to the smooth nature of fragment densities. Furthermore, we demonstrate that it can be used to identify specific chemical bonds in molecular complexes and provides a simple and accurate electrostatic model of hydrogen bonding.
NASA Astrophysics Data System (ADS)
Bonan, G. B.; Wieder, W. R.
2012-12-01
Decomposition is a large term in the global carbon budget, but models of the earth system that simulate carbon cycle-climate feedbacks are largely untested with respect to litter decomposition. Here, we demonstrate a protocol to document model performance with respect to both long-term (10 year) litter decomposition and steady-state soil carbon stocks. First, we test the soil organic matter parameterization of the Community Land Model version 4 (CLM4), the terrestrial component of the Community Earth System Model, with data from the Long-term Intersite Decomposition Experiment Team (LIDET). The LIDET dataset is a 10-year study of litter decomposition at multiple sites across North America and Central America. We show results for 10-year litter decomposition simulations compared with LIDET for 9 litter types and 20 sites in tundra, grassland, and boreal, conifer, deciduous, and tropical forest biomes. We show additional simulations with DAYCENT, a version of the CENTURY model, to ask how well an established ecosystem model matches the observations. The results reveal large discrepancy between the laboratory microcosm studies used to parameterize the CLM4 litter decomposition and the LIDET field study. Simulated carbon loss is more rapid than the observations across all sites, despite using the LIDET-provided climatic decomposition index to constrain temperature and moisture effects on decomposition. Nitrogen immobilization is similarly biased high. Closer agreement with the observations requires much lower decomposition rates, obtained with the assumption that nitrogen severely limits decomposition. DAYCENT better replicates the observations, for both carbon mass remaining and nitrogen, without requirement for nitrogen limitation of decomposition. Second, we compare global observationally-based datasets of soil carbon with simulated steady-state soil carbon stocks for both models. The models simulations were forced with observationally-based estimates of annual litterfall and model-derived climatic decomposition index. While comparison with the LIDET 10-year litterbag study reveals sharp contrasts between CLM4 and DAYCENT, simulations of steady-state soil carbon show less difference between models. Both CLM4 and DAYCENT significantly underestimate soil carbon. Sensitivity analyses highlight causes of the low soil carbon bias. The terrestrial biogeochemistry of earth system models must be critically tested with observations, and the consequences of particular model choices must be documented. Long-term litter decomposition experiments such as LIDET provide a real-world process-oriented benchmark to evaluate models and can critically inform model development. Analysis of steady-state soil carbon estimates reveal additional, but here different, inferences about model performance.
Brinkmann, K.O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T
2017-01-01
The area of thin-film photovoltaics has been overwhelmed by organometal halide perovskites. Unfortunately, serious stability concerns arise with perovskite solar cells. For example, methyl-ammonium lead iodide is known to decompose in the presence of water and, more severely, even under inert conditions at elevated temperatures. Here, we demonstrate inverted perovskite solar cells, in which the decomposition of the perovskite is significantly mitigated even at elevated temperatures. Specifically, we introduce a bilayered electron-extraction interlayer consisting of aluminium-doped zinc oxide and tin oxide. We evidence tin oxide grown by atomic layer deposition does form an outstandingly dense gas permeation barrier that effectively hinders the ingress of moisture towards the perovskite and—more importantly—it prevents the egress of decomposition products of the perovskite. Thereby, the overall decomposition of the perovskite is significantly suppressed, leading to an outstanding device stability. PMID:28067308
Tasaki, Ken
2005-02-24
The density functional theory (DFT) calculations have been performed for the reduction decompositions of solvents widely used in Li-ion secondary battery electrolytes, ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonates (DMC), ethyl methyl carbonate (EMC), and diethyl carbonate (DEC), including a typical electrolyte additive, vinylene carbonate (VC), at the level of B3LYP/6-311+G(2d,p), both in the gas phase and solution using the polarizable conductor calculation model. In the gas phase, the first electron reduction for the cyclic carbonates and for the linear carbonates is found to be exothermic and endothermic, respectively, while the second electron reduction is endothermic for all the compounds examined. On the contrary, in solution both first and second electron reductions are exothermic for all the compounds. Among the solvents and the additive examined, the likelihood of undergoing the first electron reduction in solution was found in the order of EC > PC > VC > DMC > EMC > DEC with EC being the most likely reduced. VC, on the other hand, is most likely to undergo the second electron reduction among the compounds, in the order of VC > EC > PC. Based on the results, the experimentally demonstrated effectiveness of VC as an excellent electrolyte additive was discussed. The bulk thermodynamic properties of two dilithium alkylene glycol dicarbonates, dilithium ethylene glycol dicarbonate (Li-EDC) and dilithium 1,2-propylene glycol dicarbonate (Li-PDC), as the major component of solid-electrolyte interface (SEI) films were also examined through molecular dynamics (MD) simulations in order to understand the stability of the SEI film. It was found that film produced from a decomposition of EC, modeled by Li-EDC, has a higher density, more cohesive energy, and less solubility to the solvent than the film produced from decomposition of PC, Li-PDC. Further, MD simulations of the interface between the decomposition compound and graphite suggested that Li-EDC has more favorable interactions with the graphite surface than Li-PDC. The difference in the SEI film stability and the behavior of Li-ion battery cycling among the solvents were discussed in terms of the molecular structures.
Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W; Harding, Lawrence B; Hase, William L; Klippenstein, Stephen J
2018-05-07
Ozonolysis produces chemically activated carbonyl oxides (Criegee intermediates, CIs) that are either stabilized or decompose directly. This branching has an important impact on atmospheric chemistry. Prior theoretical studies have employed statistical models for energy partitioning to the CI arising from dissociation of the initially formed primary ozonide (POZ). Here, we used direct dynamics simulations to explore this partitioning for decomposition of c-C 2 H 4 O 3 , the POZ in ethylene ozonolysis. A priori estimates for the overall stabilization probability were then obtained by coupling the direct dynamics results with master equation simulations. Trajectories were initiated at the concerted cycloreversion transition state, as well as the second transition state of a stepwise dissociation pathway, both leading to a CI (H 2 COO) and formaldehyde (H 2 CO). The resulting CI energy distributions were incorporated in master equation simulations of CI decomposition to obtain channel-specific stabilized CI (sCI) yields. Master equation simulations of POZ formation and decomposition, based on new high-level electronic structure calculations, were used to predict yields for the different POZ decomposition channels. A non-negligible contribution of stepwise POZ dissociation was found, and new mechanistic aspects of this pathway were elucidated. By combining the trajectory-based channel-specific sCI yields with the channel branching fractions, an overall sCI yield of (48 ± 5)% was obtained. Non-statistical energy release was shown to measurably affect sCI formation, with statistical models predicting significantly lower overall sCI yields (∼30%). Within the range of experimental literature values (35%-54%), our trajectory-based calculations favor those clustered at the upper end of the spectrum.
NASA Astrophysics Data System (ADS)
Pfeifle, Mark; Ma, Yong-Tao; Jasper, Ahren W.; Harding, Lawrence B.; Hase, William L.; Klippenstein, Stephen J.
2018-05-01
Ozonolysis produces chemically activated carbonyl oxides (Criegee intermediates, CIs) that are either stabilized or decompose directly. This branching has an important impact on atmospheric chemistry. Prior theoretical studies have employed statistical models for energy partitioning to the CI arising from dissociation of the initially formed primary ozonide (POZ). Here, we used direct dynamics simulations to explore this partitioning for decomposition of c-C2H4O3, the POZ in ethylene ozonolysis. A priori estimates for the overall stabilization probability were then obtained by coupling the direct dynamics results with master equation simulations. Trajectories were initiated at the concerted cycloreversion transition state, as well as the second transition state of a stepwise dissociation pathway, both leading to a CI (H2COO) and formaldehyde (H2CO). The resulting CI energy distributions were incorporated in master equation simulations of CI decomposition to obtain channel-specific stabilized CI (sCI) yields. Master equation simulations of POZ formation and decomposition, based on new high-level electronic structure calculations, were used to predict yields for the different POZ decomposition channels. A non-negligible contribution of stepwise POZ dissociation was found, and new mechanistic aspects of this pathway were elucidated. By combining the trajectory-based channel-specific sCI yields with the channel branching fractions, an overall sCI yield of (48 ± 5)% was obtained. Non-statistical energy release was shown to measurably affect sCI formation, with statistical models predicting significantly lower overall sCI yields (˜30%). Within the range of experimental literature values (35%-54%), our trajectory-based calculations favor those clustered at the upper end of the spectrum.
NASA Astrophysics Data System (ADS)
Jeong, Jong Seok; Wu, Wangzhou; Topsakal, Mehmet; Yu, Guichuan; Sasagawa, Takao; Greven, Martin; Mkhoyan, K. Andre
2018-05-01
We report the decomposition of L a2 -xS rxCu O4 into L a2O3 and Cu nanoparticles in ultrahigh vacuum, observed by in situ heating experiments in a transmission electron microscope. The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150 °C and is considerably expedited in the temperature range of 350 °C-450 °C. Two major resultant solid phases are identified as metallic Cu and L a2O3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, L a2O3 phases are further identified to be derivatives of a fluorite structure—fluorite, pyrochlore, and (distorted) bixbyite—characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and La M4 ,5 EELS edges are reported for these structures, along with simulated O K x-ray absorption near-edge structure. The resultant Cu nanoparticles and L a2O3 phases remain unchanged after cooling to room temperature.
Photoelectron Spectroscopy of Substituted Phenylnitrenes
NASA Astrophysics Data System (ADS)
Wijeratne, Neloni R.; Da Fonte, Maria; Wenthold, Paul G.
2009-06-01
Nitrenes are unusual molecular structures with unfilled electronic valences that are isoelectronic with carbenes. Although, both can be generated by either thermal or photochemical decomposition of appropriate precursors they usually exhibit different reactivities. In this work, we carry out spectroscopic studies of substituted phenylnitrene to determine how the introduction of substituents will affect the reactivity and its thermochemical properties. All studies were carried out by using the newly constructed time-of-flight negative ion photoelectron spectrometer (NIPES) at Purdue University. The 355 nm photoelectron spectra of the o-, m-, and p-chlorophenyl nitrene anions are fairly similar to that measured for phenylnitrene anion. All spectra show low energy triplet state and a high energy singlet state. The singlet state for the meta isomer is well-resolved, with a well defined origin and observable vibrational structure. Whereas the singlet states for the ortho and para isomers have lower energy onsets and no resolved structure. The isomeric dependence suggests that the geometry differences result from the resonance interaction between the nitrogen and the substituent. Quinoidal resonance structures are possible for the open-shell singlet states of the o- and p-chlorinated phenyl nitrenes. The advantages of this type of electronic structures for the open-shell singlet states is that the unpaired electrons can be more localized on separate atoms in the molecules, minimizing the repulsion between. Because the meta position is not in resonance with the nitrenes, substitution at that position should not affect the structure of the open-shell singlet state. The measured electron affinities (EA) of the triplet phenylnitrenes are in excellent agreement with the values predicted by electronic structure calculations. The largest EA, 1.82 eV is found for the meta isomer, with para being the smallest, 1.70 eV.
Optical ranked-order filtering using threshold decomposition
Allebach, Jan P.; Ochoa, Ellen; Sweeney, Donald W.
1990-01-01
A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed.
Auto-combustion synthesis, Mössbauer study and catalytic properties of copper-manganese ferrites
NASA Astrophysics Data System (ADS)
Velinov, N.; Petrova, T.; Tsoncheva, T.; Genova, I.; Koleva, K.; Kovacheva, D.; Mitov, I.
2016-12-01
Spinel ferrites with nominal composition Cu 0.5Mn 0.5Fe 2 O 4 and different distribution of the ions are obtained by auto-combustion method. Mössbauer spectroscopy, X-ray Diffraction, Thermogravimetry-Differential Scanning Calorimetry, Scanning Electron Microscopy and catalytic test in the reaction of methanol decomposition is used for characterization of synthesized materials. The spectral results evidence that the phase composition, microstructure of the synthesized materials and the cation distribution depend on the preparation conditions. Varying the pH of the initial solution microstructure, ferrite crystallite size, cation oxidation state and distribution of ions in the in the spinel structure could be controlled. The catalytic behaviour of ferrites in the reaction of methanol decomposition also depends on the pH of the initial solution. Reduction transformations of mixed ferrites accompanied with the formation of Hägg carbide χ-Fe 5 C 2 were observed by the influence of the reaction medium.
Efficient GW calculations using eigenvalue-eigenvector decomposition of the dielectric matrix
NASA Astrophysics Data System (ADS)
Nguyen, Huy-Viet; Pham, T. Anh; Rocca, Dario; Galli, Giulia
2011-03-01
During the past 25 years, the GW method has been successfully used to compute electronic quasi-particle excitation spectra of a variety of materials. It is however a computationally intensive technique, as it involves summations over occupied and empty electronic states, to evaluate both the Green function (G) and the dielectric matrix (DM) entering the expression of the screened Coulomb interaction (W). Recent developments have shown that eigenpotentials of DMs can be efficiently calculated without any explicit evaluation of empty states. In this work, we will present a computationally efficient approach to the calculations of GW spectra by combining a representation of DMs in terms of its eigenpotentials and a recently developed iterative algorithm. As a demonstration of the efficiency of the method, we will present calculations of the vertical ionization potentials of several systems. Work was funnded by SciDAC-e DE-FC02-06ER25777.
AFRRI Reports October - December 1990
1991-01-01
in the reaction between cytosine radicals and adria- mycin, it is possible that the yield of-DMPO--O,- and of its decomposition product, DMPO-OH, are...mixture due to the decomposition Time (min) of DMPO-O- by 0,7 ’. Fig. 2. Adriamycin radical yield as a function of time. y.lrradiated The electron...radical by decomposition of superoxide spin trapped toionization of thyminc. The thymnine cation and union radicals. adducts, Ato. Pharmn. 21: 262-265
Tan, Linghua; Xu, Jianhua; Li, Shiying; Li, Dongnan; Dai, Yuming; Kou, Bo; Chen, Yu
2017-05-02
Novel graphitic carbon nitride/CuO (g-C₃N₄/CuO) nanocomposite was synthesized through a facile precipitation method. Due to the strong ion-dipole interaction between copper ions and nitrogen atoms of g-C₃N₄, CuO nanorods (length 200-300 nm, diameter 5-10 nm) were directly grown on g-C₃N₄, forming a g-C₃N₄/CuO nanocomposite, which was confirmed via X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). Finally, thermal decomposition of ammonium perchlorate (AP) in the absence and presence of the prepared g-C₃N₄/CuO nanocomposite was examined by differential thermal analysis (DTA), and thermal gravimetric analysis (TGA). The g-C₃N₄/CuO nanocomposite showed promising catalytic effects for the thermal decomposition of AP. Upon addition of 2 wt % nanocomposite with the best catalytic performance (g-C₃N₄/20 wt % CuO), the decomposition temperature of AP was decreased by up to 105.5 °C and only one decomposition step was found instead of the two steps commonly reported in other examples, demonstrating the synergistic catalytic activity of the as-synthesized nanocomposite. This study demonstrated a successful example regarding the direct growth of metal oxide on g-C₃N₄ by ion-dipole interaction between metallic ions, and the lone pair electrons on nitrogen atoms, which could provide a novel strategy for the preparation of g-C₃N₄-based nanocomposite.
On the decomposition of synchronous state mechines using sequence invariant state machines
NASA Technical Reports Server (NTRS)
Hebbalalu, K.; Whitaker, S.; Cameron, K.
1992-01-01
This paper presents a few techniques for the decomposition of Synchronous State Machines of medium to large sizes into smaller component machines. The methods are based on the nature of the transitions and sequences of states in the machine and on the number and variety of inputs to the machine. The results of the decomposition, and of using the Sequence Invariant State Machine (SISM) Design Technique for generating the component machines, include great ease and quickness in the design and implementation processes. Furthermore, there is increased flexibility in making modifications to the original design leading to negligible re-design time.
Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride
NASA Astrophysics Data System (ADS)
Senna, Mamoru; Turianicová, Erika; Šepelák, Vladimír; Bruns, Michael; Scholz, Gudrun; Lebedkin, Sergei; Kübel, Christian; Wang, Di; Kaňuchová, Mária; Kaus, Maximilian; Hahn, Horst
2014-04-01
Fluorine was incorporated into SnO2 nanoparticles from polyvinylidene fluoride (PVdF) by co-milling. The incorporation process was triggered by an oxidative partial decomposition of PVdF due to the abstraction of oxygen atoms, and began soon after milling with a simultaneous decrease in the crystallite size of SnO2 from 56 nm to 19 nm, and increase in the lattice strain by a factor 7. Appearance of D and G Raman peaks indicated that the decomposition of PVdF was accompanied by the formation of nanometric carbon species. Decomposing processes of PVdF were accompanied by the continuous change in the states of F, with a decrease of C-F in PVdF and increase in Sn-F. This indicates the gradual incorporation of F into SnO2, by replacing a part of oxygen in the oxide with fluorine. These serial mechanochemical reaction processes were discussed on the basis of X-ray diffractometry, FT-IR, Raman and UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, F1s, Sn3d and C1s X-ray photoelectron spectroscopy and Auger electron spectra, as well as magic angle spinning NMR spectroscopy of 19F and 119Sn. The present findings serve as an initial stage of incorporating fluorine into SnO2 via a solvent-free solid-state process, toward the rational fabrication of fluorine doped SnO2 powders.
Oxidative decomposition of aromatic hydrocarbons by electron beam irradiation
NASA Astrophysics Data System (ADS)
Han, Do-Hung; Stuchinskaya, Tatiana; Won, Yang-Soo; Park, Wan-Sik; Lim, Jae-Kyong
2003-05-01
Decomposition of aromatic volatile organic compounds (VOCs) under electron beam irradiation was studied in order to examine the kinetics of the process, to characterize the reaction product distribution and to develop a process of waste gas control technology. Toluene, ethylbenzene, o-, m-, p-xylenes and chlorobenzene were used as target materials. The experiments were carried out at doses ranging from 0.5 to 10 kGy, using a flow reactor utilized under electron beam irradiation. Maximum degrees of decomposition carried out at 10 kGy in air environment were 55-65% for “non-chlorinated” aromatic VOC and 85% for chlorobenzene. It was found that a combination of aromatic pollutants with chlorobenzene would considerably increase the degradation value up to nearly 50% compared to the same compounds in the absence of chlorine groups. Based on our experimental observation, the degradation mechanism of the aromatic compounds combined with chloro-compound suggests that a chlorine radical, formed from EB irradiation, induces a chain reaction, resulting in an accelerating oxidative destruction of aromatic VOCs.
Optical ranked-order filtering using threshold decomposition
Allebach, J.P.; Ochoa, E.; Sweeney, D.W.
1987-10-09
A hybrid optical/electronic system performs median filtering and related ranked-order operations using threshold decomposition to encode the image. Threshold decomposition transforms the nonlinear neighborhood ranking operation into a linear space-invariant filtering step followed by a point-to-point threshold comparison step. Spatial multiplexing allows parallel processing of all the threshold components as well as recombination by a second linear, space-invariant filtering step. An incoherent optical correlation system performs the linear filtering, using a magneto-optic spatial light modulator as the input device and a computer-generated hologram in the filter plane. Thresholding is done electronically. By adjusting the value of the threshold, the same architecture is used to perform median, minimum, and maximum filtering of images. A totally optical system is also disclosed. 3 figs.
NASA Astrophysics Data System (ADS)
Yeh, Mei-Ling
We have performed a parallel decomposition of the fictitious Lagrangian method for molecular dynamics with tight-binding total energy expression into the hypercube computer. This is the first time in literature that the dynamical simulation of semiconducting systems containing more than 512 silicon atoms has become possible with the electrons treated as quantum particles. With the utilization of the Intel Paragon system, our timing analysis predicts that our code is expected to perform realistic simulations on very large systems consisting of thousands of atoms with time requirements of the order of tens of hours. Timing results and performance analysis of our parallel code are presented in terms of calculation time, communication time, and setup time. The accuracy of the fictitious Lagrangian method in molecular dynamics simulation is also investigated, especially the energy conservation of the total energy of ions. We find that the accuracy of the fictitious Lagrangian scheme in small silicon cluster and very large silicon system simulations is good for as long as the simulations proceed, even though we quench the electronic coordinates to the Born-Oppenheimer surface only in the beginning of the run. The kinetic energy of electrons does not increase as time goes on, and the energy conservation of the ionic subsystem remains very good. This means that, as far as the ionic subsystem is concerned, the electrons are on the average in the true quantum ground states. We also tie up some odds and ends regarding a few remaining questions about the fictitious Lagrangian method, such as the difference between the results obtained from the Gram-Schmidt and SHAKE method of orthonormalization, and differences between simulations where the electrons are quenched to the Born -Oppenheimer surface only once compared with periodic quenching.
Wang, Jinzhi; Jiang, Xia; Zheng, Binghui; Niu, Yuan; Wang, Kun; Wang, Wenwen; Kardol, Paul
2015-12-01
Endogenous phosphorus (P) release from sediments is an important factor to cause eutrophication and, hence, algal bloom in lakes in China. Algal decomposition depletes dissolved oxygen (DO) and causes anaerobic conditions and therefore increases P release from sediments. As sediment P release is dependent on the iron (Fe) cycle, electron acceptors (e.g., NO3 (-), SO4 (2-), and Mn(4+)) can be utilized to suppress the reduction of Fe(3+) under anaerobic conditions and, as such, have the potential to impair the release of sediment P. Here, we used a laboratory experiment to test the effects of FeCl3, MnO2, and KNO3 on soluble reactive phosphorus (SRP) concentration and related chemical variables in the overlying water column during algal decomposition at different algal densities. Results showed that algal decomposition significantly depleted DO and thereby increased sediment Fe-bound P release. Compared with the control, addition of FeCl3 significantly decreased water SRP concentration through inhibiting sediment P release. Compared with FeCl3, addition of MnO2 has less potential to suppress sediment P release during algal decomposition. Algal decomposition has the potential for NO3 (-) removal from aquatic ecosystem through denitrification and by that alleviates the suppressing role of NO3 (-) on sediment P release. Our results indicated that FeCl3 and MnO2 could be efficient in reducing sediment P release during algal decomposition, with the strongest effect found for FeCl3; large amounts of NO3 (-) were removed from the aquatic ecosystem through denitrification during algal decomposition. Moreover, the amounts of NO3 (-) removal increased with increasing algal density.
NASA Astrophysics Data System (ADS)
Hirakawa, Kazutaka; Murata, Atsushi
2018-01-01
Water-soluble porphyrins, diethoxyphosphorus(V)tetraphenylporphyrin (EtP(V)TPP) and its fluorinated analogue (FEtP(V)TPP), decreased the typical absorption around 340 nm of nicotinamide adenine dinucleotide (NADH) under visible light irradiation, indicating oxidative decomposition. A singlet oxygen quencher, sodium azide, and a triplet quencher, potassium iodide, slightly inhibited photosensitized NADH oxidation. However, these inhibitory effects were very small. Furthermore, the fluorescence lifetime of these P(V)porphyrins was decreased by NADH, suggesting the contribution of electron transfer to the singlet excited (S1) state of P(V)porphyrin. The redox potential measurement supports the electron transfer-mediated oxidation of NADH. The quantum yields of NADH photodecomposition by P(V)porphyrins could be estimated from the kinetic data and the effect of these quenchers on NADH oxidation. The obtained values suggest that the electron accepting by the S1 states of P(V)porphyrins triggers a chain reaction of NADH oxidation. This photosensitized reaction may play an important role in the photocytotoxicity of P(V)porphyrins. The axial ligand fluorination of P(V)porphyrins improved electron accepting ability. However, fluorination slightly suppressed static interaction with NADH, resulting in decreased oxidation quantum yield.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Jong Seok; Wu, Wangzhou; Topsakal, Mehmet
Here, we report the decomposition of La 2–xSr xCuO 4 into La 2O 3 and Cu nanoparticles in ultrahigh vacuum, observed by in situ heating experiments in a transmission electron microscope. The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150°C and is considerably expedited in the temperature range of 350°C–450°C. Two major resultant solid phases are identified as metallic Cu and La 2O 3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, La 2O 3 phases are further identified to be derivatives of a fluorite structure—fluorite,more » pyrochlore, and (distorted) bixbyite—characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and LaM 4,5 EELS edges are reported for these structures, along with simulated O K x-ray absorption near-edge structure. The resultant Cu nanoparticles and La 2O 3 phases remain unchanged after cooling to room temperature.« less
Jeong, Jong Seok; Wu, Wangzhou; Topsakal, Mehmet; ...
2018-05-15
Here, we report the decomposition of La 2–xSr xCuO 4 into La 2O 3 and Cu nanoparticles in ultrahigh vacuum, observed by in situ heating experiments in a transmission electron microscope. The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150°C and is considerably expedited in the temperature range of 350°C–450°C. Two major resultant solid phases are identified as metallic Cu and La 2O 3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, La 2O 3 phases are further identified to be derivatives of a fluorite structure—fluorite,more » pyrochlore, and (distorted) bixbyite—characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and LaM 4,5 EELS edges are reported for these structures, along with simulated O K x-ray absorption near-edge structure. The resultant Cu nanoparticles and La 2O 3 phases remain unchanged after cooling to room temperature.« less
NASA Astrophysics Data System (ADS)
Goudarzi, Mojgan; Mir, Noshin; Mousavi-Kamazani, Mehdi; Bagheri, Samira; Salavati-Niasari, Masoud
2016-09-01
In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).
Sharp, Kenneth G.; D'Errico, John J.
1988-01-01
The invention relates to a method of forming amorphous, photoconductive, and semiconductive silicon films on a substrate by the vapor phase thermal decomposition of a fluorohydridodisilane or a mixture of fluorohydridodisilanes. The invention is useful for the protection of surfaces including electronic devices.
Structure and Electronic Spectra of Purine-Methyl Viologen Charge Transfer Complexes
Jalilov, Almaz S.; Patwardhan, Sameer; Singh, Arunoday; Simeon, Tomekia; Sarjeant, Amy A.; Schatz, George C.; Lewis, Frederick D.
2014-01-01
The structure and properties of the electron donor-acceptor complexes formed between methyl viologen (MV) and purine nucleosides and nucleotides in water and the solid state have been investigated using a combination of experimental and theoretical methods. Solution studies were performed using UV-vis and 1H NMR spectroscopy. Theoretical calculations were performed within the framework of density functional theory (DFT). Energy decomposition analysis indicates that dispersion and induction (charge-transfer) interactions dominate the total binding energy, whereas electrostatic interactions are largely repulsive. The appearance of charge transfer bands in the absorption spectra of the complexes are well described by time-dependent (TD) DFT and are further explained in terms of the redox properties of purine monomers and solvation effects. Crystal structures are reported for complexes of methyl viologen with the purines 2′-deoxyguanosine 3′-monophosphate GMP (DAD′DAD′ type) and 7-deazaguanosine zG (DAD′ADAD′ type). Comparison of the structures determined in the solid state and by theoretical methods in solution provides valuable insights into the nature of charge-transfer interactions involving purine bases as electron donors. PMID:24294996
Breen, Kristin J; DeBlase, Andrew F; Guasco, Timothy L; Voora, Vamsee K; Jordan, Kenneth D; Nagata, Takashi; Johnson, Mark A
2012-01-26
The transition states of a chemical reaction in solution are generally accessed through exchange of thermal energy between the solvent and the reactants. As such, an ensemble of reacting systems approaches the transition state configuration of reactant and surrounding solvent in an incoherent manner that does not lend itself to direct experimental observation. Here we describe how gas-phase cluster chemistry can provide a detailed picture of the microscopic mechanics at play when a network of six water molecules mediates the trapping of a highly reactive "hydrated electron" onto a neutral CO(2) molecule to form a radical anion. The exothermic reaction is triggered from a metastable intermediate by selective excitation of either the reactant CO(2) or the water network, which is evidenced by the evaporative decomposition of the product cluster. Ab initio molecular dynamics simulations of energized CO(2)·(H(2)O)(6)(-) clusters are used to elucidate the nature of the network deformations that mediate intracluster electron capture, thus revealing the detailed solvent fluctuations implicit in the Marcus theory for electron-transfer kinetics in solution.
NASA Astrophysics Data System (ADS)
Shvartsburg, Alexandre A.; Siu, K. W. Michael
2001-06-01
Modeling the delayed dissociation of clusters had been over the last decade a frontline development area in chemical physics. It is of fundamental interest how statistical kinetics methods previously validated for regular molecules and atomic nuclei may apply to clusters, as this would help to understand the transferability of statistical models for disintegration of complex systems across various classes of physical objects. From a practical perspective, accurate simulation of unimolecular decomposition is critical for the extraction of true thermochemical values from measurements on the decay of energized clusters. Metal clusters are particularly challenging because of the multitude of low-lying electronic states that are coupled to vibrations. This has previously been accounted for assuming the average electronic structure of a conducting cluster approximated by the levels of electron in a cavity. While this provides a reasonable time-averaged description, it ignores the distribution of instantaneous electronic structures in a "boiling" cluster around that average. Here we set up a new treatment that incorporates the statistical distribution of electronic levels around the average picture using random matrix theory. This approach faithfully reflects the completely chaotic "vibronic soup" nature of hot metal clusters. We found that the consideration of electronic level statistics significantly promotes electronic excitation and thus increases the magnitude of its effect. As this excitation always depresses the decay rates, the inclusion of level statistics results in slower dissociation of metal clusters.
The quantum chemical study of the electronic states of S2Cl and its monovalent ions.
Czernek, Jiří; Zivný, Oldřich
2012-09-01
High-level quantum chemical techniques have been utilized to accurately describe the geometrical parameters, vibrational frequencies and dissociation pathways of the X (2)A″, 1 (2)A', 2 (2)A', 2 (2)A″ states of S(2)Cl; X (1)A', 1 (3)A″, 1 (1)A″, 1 (3)A' states of S(2)Cl(+); X (1)A', 1 (3)A', (1)A″ states of S(2)Cl(-), and the corresponding excitation energies have been obtained from the energies extrapolated to their complete basis set limits. It has been established that the 2 (2)A' and 2 (2)A″ terms of S(2)Cl exhibit a strong multi-reference character, while all the remaining excited states are dominated by the single replacements from the reference determinants. The enthalpies of the decomposition reactions have been obtained to aid in the investigations into the photolysis of S(2)Cl(2) and related systems. The value of the ionization potential of S(2)Cl has been found within the error bars of the experiment, and a reliable estimate of its electron affinity, EA (0) = -2.352 eV, has been proposed.
Semiclassical approach to atomic decoherence by gravitational waves
NASA Astrophysics Data System (ADS)
Quiñones, D. A.; Varcoe, B. T. H.
2018-01-01
A new heuristic model of interaction of an atomic system with a gravitational wave (GW) is proposed. In it, the GW alters the local electromagnetic field of the atomic nucleus, as perceived by the electron, changing the state of the system. The spectral decomposition of the wave function is calculated, from which the energy is obtained. The results suggest a shift in the difference of the atomic energy levels, which will induce a small detuning to a resonant transition. The detuning increases with the quantum numbers of the levels, making the effect more prominent for Rydberg states. We performed calculations on the Rabi oscillations of atomic transitions, estimating how they would vary as a result of the proposed effect.
Determination of physical and chemical states of lubricants in concentrated contacts, part 2
NASA Technical Reports Server (NTRS)
Lauer, J. L.
1981-01-01
Infrared emission spectroscopy through a window in an operating bearing continued to provide most of the information gathered on the state of lubricants subjected to elastohydrodynamic (EHD) conditions. Other measurements were traction, scanning electron microscopy and elemental surface analysis X-rays. A very significant finding was the decomposition of a naphthenic oil lubricant in the presence of small concentrations of an organic chloride. Olefins and aromatics were formed in ever increasing amounts prior to total lubricant failure. An aromatic fluid also failed in the presence of chloride. A correlation was found between changes of the alignment of lubricant molecules evidence by infrared polarization and changes of traction under varying EHD stresses.
Separable decompositions of bipartite mixed states
NASA Astrophysics Data System (ADS)
Li, Jun-Li; Qiao, Cong-Feng
2018-04-01
We present a practical scheme for the decomposition of a bipartite mixed state into a sum of direct products of local density matrices, using the technique developed in Li and Qiao (Sci. Rep. 8:1442, 2018). In the scheme, the correlation matrix which characterizes the bipartite entanglement is first decomposed into two matrices composed of the Bloch vectors of local states. Then, we show that the symmetries of Bloch vectors are consistent with that of the correlation matrix, and the magnitudes of the local Bloch vectors are lower bounded by the correlation matrix. Concrete examples for the separable decompositions of bipartite mixed states are presented for illustration.
A system decomposition approach to the design of functional observers
NASA Astrophysics Data System (ADS)
Fernando, Tyrone; Trinh, Hieu
2014-09-01
This paper reports a system decomposition that allows the construction of a minimum-order functional observer using a state observer design approach. The system decomposition translates the functional observer design problem to that of a state observer for a smaller decomposed subsystem. Functional observability indices are introduced, and a closed-form expression for the minimum order required for a functional observer is derived in terms of those functional observability indices.
Zhang, Haitao; Yang, Jen-Hsien; Shpanchenko, Roman V; Abakumov, Artem M; Hadermann, Joke; Clérac, Rodolphe; Dikarev, Evgeny V
2009-09-07
Heterometallic lead-manganese beta-diketonates have been isolated in pure form by several synthetic methods that include solid-state and solution techniques. Two compounds with different Pb/Mn ratios, PbMn(2)(hfac)(6) (1) and PbMn(hfac)(4) (2) (hfac = hexafluoroacetylacetonate), can be obtained in quantitative yield by using different starting materials. Single crystal X-ray investigation revealed that the solid-state structure of 1 contains trinuclear molecules in which lead metal center is sandwiched between two [Mn(hfac)(3)] units, while 2 consists of infinite chains of alternating [Pb(hfac)(2)] and [Mn(hfac)(2)] fragments. The heterometallic structures are held together by strong Lewis acid-base interactions between metal atoms and diketonate ligands acting in chelating-bridging fashion. Spectroscopic investigation confirmed the retention of heterometallic structures in solutions of non-coordinating solvents as well as upon sublimation-deposition procedure. Thermal decomposition of heterometallic diketonates has been systematically investigated in a wide range of temperatures and annealing times. For the first time, it has been shown that thermal decomposition of heterometallic diketonates results in mixed-metal oxides, while both the structure of precursors and the thermolysis conditions have a significant influence on the nature of the resulting oxides. Five different Pb-Mn oxides have been detected by X-ray powder diffraction when studying the decomposition of 1 and 2 in the temperature range 500-800 degrees C. The phase that has been previously reported as "Pb(0.43)MnO(2.18)" was synthesized in the pure form by decomposition of 1, and crystallographically characterized. The orthorhombic unit cell parameters of this oxide, obtained by electron diffraction technique, have been subsequently refined using X-ray powder diffraction data. Besides that, a previously unknown lead-manganese oxide has been obtained at low temperature decomposition and short annealing times. The parameters of its monoclinically distorted unit cell have been determined. The EDX analysis revealed that this compound has a Pb/Mn ratio close to 1:4 and contains no appreciable amount of fluorine.
Molt, Robert W; Watson, Thomas; Lotrich, Victor F; Bartlett, Rodney J
2011-02-10
The geometries, harmonic frequencies, elec-tronic excitation levels, and energetic orderings of various conformers of RDX have been computed at the ab initio MP2 and CCSD(T) levels, providing more reliable results than have been previously obtained. We observe that the various local minimum-energy conformers are all competitive for being the absolute minimum and that, at reasonable temperatures, several conformers will appreciably contribute to the population of RDX. As a result, we have concluded that any mechanistic study to investigate thermal decomposition can reasonably begin from any one of the cyclohexane conformers of RDX. As such, it is necessary to consider the transition states for each RDX conformer to gauge what the activation energy is. Homolytic bond dissociation has long been speculated to be critical to detonation; we report here the most accurate estimates of homolytic BDEs yet calculated, likely to be accurate within 3 kcal mol(-1). The differences in energy for homolytic BDEs among all the possible RDR conformers are again small, such that most all of the conformers can reasonably be speculated as the next step in the mechanism starting from the RDR radical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schulberg, M.T.; Allendorf, M.D.; Outka, D.A.
NH{sub 3} is an important component of many chemical vapor deposition (CVD) processes for TiN films, which are used for diffusion barriers and other applications in microelectronic circuits. In this study, the interaction of NH{sub 3} with TiN surfaces is examined with temperature programmed desorption (TPD) and Auger electron spectroscopy. NH{sub 3} has two adsorption states on TiN: a chemisorbed state and a multilayer state. A new method for analyzing TPD spectra in systems with slow pumping speeds yields activation energies for desorption for the two states of 24 kcal/mol and 7.3 kcal/mol, respectively. The sticking probability into the chemisorptionmore » state is {approximately}0.06. These results are discussed in the context of TiN CVD. In addition, the high temperature stability of TiN is investigated. TiN decomposes to its elements only after heating to 1300 K, showing that decomposition is unlikely to occur under CVD conditions.« less
Energetic Limitations on Microbial Respiration of Organic Compounds using Aqueous Fe(III) Complexes
NASA Astrophysics Data System (ADS)
Naughton, H.; Fendorf, S. E.
2015-12-01
Soil organic matter constitutes up to 75% of the terrestrial carbon stock. Microorganisms mediate the breakdown of organic compounds and the return of carbon to the atmosphere, predominantly through respiration. Microbial respiration requires an electron acceptor and an electron donor such as small fatty acids, organic acids, alcohols, sugars, and other molecules that differ in oxidation state of carbon. Carbon redox state affects how much energy is required to oxidize a molecule through respiration. Therefore, different organic compounds should offer a spectrum of energies to respiring microorganisms. However, microbial respiration has traditionally focused on the availability and reduction potential of electron acceptors, ignoring the organic electron donor. We found through incubation experiments that the organic compound serving as electron donor determined how rapidly Shewanella putrefaciens CN32 respires organic substrate and the extent of reduction of the electron acceptor. We simulated a range of energetically favorable to unfavorable electron acceptors using organic chelators bound to Fe(III) with equilibrium stability constants ranging from log(K) of 11.5 to 25.0 for the 1:1 complex, where more stable complexes are less favorable for microbial respiration. Organic substrates varied in nominal oxidation state of carbon from +2 to -2. The most energetically favorable substrate, lactate, promoted up to 30x more rapid increase in percent Fe(II) compared to less favorable substrates such as formate. This increased respiration on lactate was more substantial with less stable Fe(III)-chelate complexes. Intriguingly, this pattern contradicts respiration rate predicted by nominal oxidation state of carbon. Our results suggest that organic substrates will be consumed so long as the energetic toll corresponding to the electron donor half reaction is counterbalanced by the energy available from the electron accepting half reaction. We propose using the chemical structure of organic matter, elucidated with techniques such as FT-ICR MS, to improve microbial decomposition and carbon cycling models by incorporating energetic limitations due to carbon oxidation.
NASA Astrophysics Data System (ADS)
Ray, Nathan J.; Styrov, Vladislav V.; Karpov, Eduard G.
2017-12-01
We report on conversion of energy released due to chemical reactions into current for the decomposition of aqueous hydrogen peroxide solution on single phases Pt and TiO2, in addition to Pt and TiO2 simultaneously. We observe that H2O2 decomposition-induced current on TiO2 drastically overshadows the current generated by H2O2 decomposition on Pt. Photo-effects avoided, H2O2 decomposition was found to yield a conversion efficiency of 10-3 electrons generated per H2O2 molecule. Further understanding of chemical reaction-induced current shows promise as a metric with which the surface reaction may be monitored and could be greatly extended into the field of analytical chemistry.
The spinodal decomposition in 17-4PH stainless steel subjected to long-term aging at 350 deg. C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Jun; Zou Hong; Li Cong
2008-05-15
The influence of aging time on the microstructure evolution of 17-4 PH martensitic stainless steel was studied by transmission electron microscopy (TEM). Results showed that the martensite decomposed by a spinodal decomposition mechanism after the alloy was subjected to long-term aging at 350 deg. C. The fine scale spinodal decomposition of {alpha}-ferrite brought about a Cr-enriched bright stripe and a Fe-enriched dark stripe, i.e., {alpha}' and {alpha} phases, separately, which were perpendicular to the grain boundary. The spinodal decomposition started at the grain boundary. Then with prolonged aging time, the decomposition microstructure expanded from the grain boundary to interior. Themore » wavelength of the spinodally decomposed microstructure changed little with extended aging time.« less
Effect of impurities on optical properties of pentaerythritol tetranitrate
NASA Astrophysics Data System (ADS)
Tsyshevskiy, Roman; Sharia, Onise; Kuklja, Maija M.
2012-03-01
Despite numerous efforts, the electronic nature of initiation of high explosives to detonation in general and mechanisms of their sensitivity to laser initiation in particular are far from being completely understood. Recent experiments show that Nd:YAG laser irradiation (at 1064nm) causes resonance explosive decomposition of PETN samples. In an attempt to shed some light on electronic excitations and to develop a rigorous interpretation to these experiments, the electronic structure and optical properties of PETN and a series of common impurities were studied. Band gaps (S0→S1) and optical singlet-triplet (S0→T1) transitions in both an ideal material and PETN containing various defects were simulated by means of state-of-the-art quantum-chemical computational techniques. It was shown that the presence of impurities in the PETN crystal causes significant narrowing of the band gap. The structure and role of molecular excitons in PETN are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.
Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO 2 and CH 4 for each molecule of organic matter degraded. However, CO 2:CH 4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO 2 has an oxidationmore » state of +4, if CH 4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO 2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO 2:CH 4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. In conclusion, this mechanism for CO 2 generation without concomitant CH 4 production has the potential to regulate the global warming potential of peatlands by elevating CO 2:CH 4 production ratios.« less
Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.; ...
2017-07-03
Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO 2 and CH 4 for each molecule of organic matter degraded. However, CO 2:CH 4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO 2 has an oxidationmore » state of +4, if CH 4 (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO 2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO 2:CH 4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. In conclusion, this mechanism for CO 2 generation without concomitant CH 4 production has the potential to regulate the global warming potential of peatlands by elevating CO 2:CH 4 production ratios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, Rachel M.; Tfaily, Malak M.; Rich, Virginia I.
Once inorganic electron acceptors are depleted, organic matter in anoxic environments decomposes by hydrolysis, fermentation, and methanogenesis, requiring syntrophic interactions between microorganisms to achieve energetic favorability. In this classic anaerobic food chain, methanogenesis represents the terminal electron accepting (TEA) process, ultimately producing equimolar CO2 and CH4 for each molecule of organic matter degraded. However, CO2:CH4 production in Sphagnum-derived, mineral-poor, cellulosic peat often substantially exceeds this 1:1 ratio, even in the absence of measureable inorganic TEAs. Since the oxidation state of C in both cellulose-derived organic matter and acetate is 0, and CO2 has an oxidation state of +4, if CH4more » (oxidation state -4) is not produced in equal ratio, then some other compound(s) must balance CO2 production by receiving 4 electrons. Here we present evidence for ubiquitous hydrogenation of diverse unsaturated compounds that appear to serve as organic TEAs in peat, thereby providing the necessary electron balance to sustain CO2:CH4 >1. While organic electron acceptors have previously been proposed to drive microbial respiration of organic matter through the reversible reduction of quinone moieties, the hydrogenation mechanism that we propose, by contrast, reduces C-C double bonds in organic matter thereby serving as 1) a terminal electron sink, 2) a mechanism for degrading complex unsaturated organic molecules, 3) a potential mechanism to regenerate electron-accepting quinones, and, in some cases, 4) a means to alleviate the toxicity of unsaturated aromatic acids. This mechanism for CO2 generation without concomitant CH4 production has the potential to regulate the global warming potential of peatlands by elevating CO2:CH4 production ratios.« less
Reactive Goal Decomposition Hierarchies for On-Board Autonomy
NASA Astrophysics Data System (ADS)
Hartmann, L.
2002-01-01
As our experience grows, space missions and systems are expected to address ever more complex and demanding requirements with fewer resources (e.g., mass, power, budget). One approach to accommodating these higher expectations is to increase the level of autonomy to improve the capabilities and robustness of on- board systems and to simplify operations. The goal decomposition hierarchies described here provide a simple but powerful form of goal-directed behavior that is relatively easy to implement for space systems. A goal corresponds to a state or condition that an operator of the space system would like to bring about. In the system described here goals are decomposed into simpler subgoals until the subgoals are simple enough to execute directly. For each goal there is an activation condition and a set of decompositions. The decompositions correspond to different ways of achieving the higher level goal. Each decomposition contains a gating condition and a set of subgoals to be "executed" sequentially or in parallel. The gating conditions are evaluated in order and for the first one that is true, the corresponding decomposition is executed in order to achieve the higher level goal. The activation condition specifies global conditions (i.e., for all decompositions of the goal) that need to hold in order for the goal to be achieved. In real-time, parameters and state information are passed between goals and subgoals in the decomposition; a termination indication (success, failure, degree) is passed up when a decomposition finishes executing. The lowest level decompositions include servo control loops and finite state machines for generating control signals and sequencing i/o. Semaphores and shared memory are used to synchronize and coordinate decompositions that execute in parallel. The goal decomposition hierarchy is reactive in that the generated behavior is sensitive to the real-time state of the system and the environment. That is, the system is able to react to state and environment and in general can terminate the execution of a decomposition and attempt a new decomposition at any level in the hierarchy. This goal decomposition system is suitable for workstation, microprocessor and fpga implementation and thus is able to support the full range of prototyping activities, from mission design in the laboratory to development of the fpga firmware for the flight system. This approach is based on previous artificial intelligence work including (1) Brooks' subsumption architecture for robot control, (2) Firby's Reactive Action Package System (RAPS) for mediating between high level automated planning and low level execution and (3) hierarchical task networks for automated planning. Reactive goal decomposition hierarchies can be used for a wide variety of on-board autonomy applications including automating low level operation sequences (such as scheduling prerequisite operations, e.g., heaters, warm-up periods, monitoring power constraints), coordinating multiple spacecraft as in formation flying and constellations, robot manipulator operations, rendez-vous, docking, servicing, assembly, on-orbit maintenance, planetary rover operations, solar system and interstellar probes, intelligent science data gathering and disaster early warning. Goal decomposition hierarchies can support high level fault tolerance. Given models of on-board resources and goals to accomplish, the decomposition hierarchy could allocate resources to goals taking into account existing faults and in real-time reallocating resources as new faults arise. Resources to be modeled include memory (e.g., ROM, FPGA configuration memory, processor memory, payload instrument memory), processors, on-board and interspacecraft network nodes and links, sensors, actuators (e.g., attitude determination and control, guidance and navigation) and payload instruments. A goal decomposition hierarchy could be defined to map mission goals and tasks to available on-board resources. As faults occur and are detected the resource allocation is modified to avoid using the faulty resource. Goal decomposition hierarchies can implement variable autonomy (in which the operator chooses to command the system at a high or low level, mixed initiative planning (in which the system is able to interact with the operator, e.g, to request operator intervention when a working envelope is exceeded) and distributed control (in which, for example, multiple spacecraft cooperate to accomplish a task without a fixed master). The full paper will describe in greater detail how goal decompositions work, how they can be implemented, techniques for implementing a candidate application and the current state of the fpga implementation.
High-purity Cu nanocrystal synthesis by a dynamic decomposition method.
Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui
2014-12-01
Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.
High-purity Cu nanocrystal synthesis by a dynamic decomposition method
NASA Astrophysics Data System (ADS)
Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui
2014-12-01
Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.
Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Wang, Aiping; Kadam, Sanket; Li, Hong; Shi, Siqi; Qi, Yue
2018-03-01
A passivation layer called the solid electrolyte interphase (SEI) is formed on electrode surfaces from decomposition products of electrolytes. The SEI allows Li+ transport and blocks electrons in order to prevent further electrolyte decomposition and ensure continued electrochemical reactions. The formation and growth mechanism of the nanometer thick SEI films are yet to be completely understood owing to their complex structure and lack of reliable in situ experimental techniques. Significant advances in computational methods have made it possible to predictively model the fundamentals of SEI. This review aims to give an overview of state-of-the-art modeling progress in the investigation of SEI films on the anodes, ranging from electronic structure calculations to mesoscale modeling, covering the thermodynamics and kinetics of electrolyte reduction reactions, SEI formation, modification through electrolyte design, correlation of SEI properties with battery performance, and the artificial SEI design. Multi-scale simulations have been summarized and compared with each other as well as with experiments. Computational details of the fundamental properties of SEI, such as electron tunneling, Li-ion transport, chemical/mechanical stability of the bulk SEI and electrode/(SEI/) electrolyte interfaces have been discussed. This review shows the potential of computational approaches in the deconvolution of SEI properties and design of artificial SEI. We believe that computational modeling can be integrated with experiments to complement each other and lead to a better understanding of the complex SEI for the development of a highly efficient battery in the future.
xEMD procedures as a data - Assisted filtering method
NASA Astrophysics Data System (ADS)
Machrowska, Anna; Jonak, Józef
2018-01-01
The article presents the possibility of using Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD), Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) and Improved Complete Ensemble Empirical Mode Decomposition (ICEEMD) algorithms for mechanical system condition monitoring applications. There were presented the results of the xEMD procedures used for vibration signals of system in different states of wear.
Unraveling the physical meaning of the Jaffe-Manohar decomposition of the nucleon spin
NASA Astrophysics Data System (ADS)
Wakamatsu, M.
2016-09-01
A general consensus now is that there are two physically inequivalent complete decompositions of the nucleon spin, i.e. the decomposition of the canonical type and that of mechanical type. The well-known Jaffe-Manohar decomposition is of the former type. Unfortunately, there is a wide-spread misbelief that this decomposition matches the partonic picture, which states that motion of quarks in the nucleon is approximately free. In the present monograph, we reveal that this understanding is not necessarily correct and that the Jaffe-Manohar decomposition is not such a decomposition, which natively reflects the intrinsic (or static) orbital angular momentum structure of the nucleon.
NASA Astrophysics Data System (ADS)
Royle, Samuel H.; Montgomery, Wren; Kounaves, Samuel P.; Sephton, Mark A.
2017-12-01
Three Mars missions have analyzed the composition of surface samples using thermal extraction techniques. The temperatures of decomposition have been used as diagnostic information for the materials present. One compound of great current interest is perchlorate, a relatively recently discovered component of Mars' surface geochemistry that leads to deleterious effects on organic matter during thermal extraction. Knowledge of the thermal decomposition behavior of perchlorate salts is essential for mineral identification and possible avoidance of confounding interactions with organic matter. We have performed a series of experiments which reveal that the hydration state of magnesium perchlorate has a significant effect on decomposition temperature, with differing temperature releases of oxygen corresponding to different perchlorate hydration states (peak of O2 release shifts from 500 to 600°C as the proportion of the tetrahydrate form in the sample increases). Changes in crystallinity/crystal size may also have a secondary effect on the temperature of decomposition, and although these surface effects appear to be minor for our samples, further investigation may be warranted. A less than full appreciation of the hydration state of perchlorate salts during thermal extraction analyses could lead to misidentification of the number and the nature of perchlorate phases present.
Li, Juchuan; Dudney, Nancy J; Nanda, Jagjit; Liang, Chengdu
2014-07-09
Electrochemical degradation on silicon (Si) anodes prevents them from being successfully used in lithium (Li)-ion battery full cells. Unlike the case of graphite anodes, the natural solid electrolyte interphase (SEI) films generated from carbonate electrolytes do not self-passivate on Si, causing continuous electrolyte decomposition and loss of Li ions. In this work, we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphorus oxynitride (Lipon), which conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, a significant effect is observed in suppressing electrolyte decomposition, while Lipon of thinner than 40 nm has a limited effect. Ionic and electronic conductivity measurements reveal that the artificial SEI is effective when it is a pure ionic conductor, but electrolyte decomposition is only partially suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40-50 nm. This work provides guidance for designing artificial SEI films for high-capacity Li-ion battery electrodes using solid electrolyte materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudney, Nancy J; Nanda, Jagjit; Liang, Chengdu
2014-01-01
Electrochemical degradation on Si anodes prevents them from being successfully used in lithium-ion full cells. Unlike the case of graphite anodes, natural solid electrolyte interphase (SEI) films generated from carbonate electrolyte do not self-passivate on Si and causes continuous electrolyte decomposition. In this work we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphor oxynitride (Lipon), that conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, significant effect is observed in suppressing the electrolyte decomposition, while Lipon of thinner than 40more » nm has little effect. Ionic and electronic conductivity measurement reveals that the artificial SEI is effective when it is a pure ionic conductor, and the electrolyte decomposition is not suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40~50 nm. This work provides guidance for designing artificial SEI for high capacity lithium-ion battery electrodes using solid electrolyte materials.« less
Mauracher, Andreas; Schöbel, Harald; Ferreira da Silva, Filipe; Edtbauer, Achim; Mitterdorfer, Christian; Denifl, Stephan; Märk, Tilmann D; Illenberger, Eugen; Scheier, Paul
2009-10-01
Electron attachment to the explosive trinitrotoluene (TNT) embedded in Helium droplets (TNT@He) generates the non-decomposed complexes (TNT)(n)(-), but no fragment ions in the entire energy range 0-12 eV. This strongly contrasts the behavior of single TNT molecules in the gas phase at ambient temperatures, where electron capture leads to a variety of different fragmentation products via different dissociative electron attachment (DEA) reactions. Single TNT molecules decompose by attachment of an electron at virtually no extra energy reflecting the explosive nature of the compound. The complete freezing of dissociation intermediates in TNT embedded in the droplet is explained by the particular mechanisms of DEA in nitrobenzenes, which is characterized by complex rearrangement processes in the transient negative ion (TNI) prior to decomposition. These mechanisms provide the condition for effective energy withdrawal from the TNI into the dissipative environment thereby completely suppressing its decomposition.
Mai, Tam V-T; Duong, Minh V; Nguyen, Hieu T; Lin, Kuang C; Huynh, Lam K
2017-04-27
An integrated deterministic and stochastic model within the master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) framework was first used to characterize temperature- and pressure-dependent behaviors of thermal decomposition of acetic anhydride in a wide range of conditions (i.e., 300-1500 K and 0.001-100 atm). Particularly, using potential energy surface and molecular properties obtained from high-level electronic structure calculations at CCSD(T)/CBS, macroscopic thermodynamic properties and rate coefficients of the title reaction were derived with corrections for hindered internal rotation and tunneling treatments. Being in excellent agreement with the scattered experimental data, the results from deterministic and stochastic frameworks confirmed and complemented each other to reveal that the main decomposition pathway proceeds via a 6-membered-ring transition state with the 0 K barrier of 35.2 kcal·mol -1 . This observation was further understood and confirmed by the sensitivity analysis on the time-resolved species profiles and the derived rate coefficients with respect to the ab initio barriers. Such an agreement suggests the integrated model can be confidently used for a wide range of conditions as a powerful postfacto and predictive tool in detailed chemical kinetic modeling and simulation for the title reaction and thus can be extended to complex chemical reactions.
Electronic Spectra of Cs2NaYb(NO2)6: Is There Quantum Cutting?
Luo, Yuxia; Liu, Zhenyu; Hau, Sam Chun-Kit; Yeung, Yau Yuen; Wong, Ka-Leung; Shiu, Kwok Keung; Chen, Xueyuan; Zhu, Haomiao; Bao, Guochen; Tanner, Peter A
2018-05-03
The crystal structure and electronic spectra of the T h symmetry hexanitritoytterbate(III) anion have been studied in Cs 2 NaY 0.96 Yb 0.04 (NO 2 ) 6 , which crystallizes in the cubic space group Fm3̅. The emission from Yb 3+ can be excited via the NO 2 - antenna. The latter electronic transition is situated at more than twice the energy of the former, but at room temperature, one photon absorbed at 470 nm in the triplet state produces no more than one photon emitted. Some degree of quantum cutting is observed at 298 K under 420 nm excitation into the singlet state and at 25 K using excitation into either state. The quantum efficiency is ∼10% at 25 K. The energy level scheme of Yb 3+ has been deduced from excitation and emission spectra and calculated by crystal field theory. New improved energy level calculations are also reported for the Cs 2 NaLn(NO 2 ) 6 (Ln = Pr, Eu, Tb) series using the f- Spectra package. The neat crystal Cs 2 NaYb(NO 2 ) 6 has also been studied, but results were unsatisfactory due to sample decomposition, and this chemical instability makes it unsuitable for applications.
A facile thermal decomposition route to synthesise CoFe2O4 nanostructures
NASA Astrophysics Data System (ADS)
Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.
2014-01-01
The synthesis of CoFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from an inorganic precursor, cobalt ferrous cinnamate hydrazinate (CoFe2(cin)3(N2H4)3) which was obtained by a novel precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. Under appropriate annealing, CoFe2(cin)3(N2H4)3 yielded CoFe2O4 nanoparticles, which were characterized for their size and structure using X-Ray diffraction (XRD), high resolution transmission electron microscopic (HRTEM), selected area electron diffraction (SAED) and scanning electron microscopic (SEM) techniques.
Acid and alkali effects on the decomposition of HMX molecule: a computational study.
Zhang, Chaoyang; Li, Yuzhen; Xiong, Ying; Wang, Xiaolin; Zhou, Mingfei
2011-11-03
The stored and wasted explosives are usually in an acid or alkali environment, leading to the importance of exploring the acid and alkali effects on the decomposition mechanism of explosives. The acid and alkali effects on the decomposition of HMX molecule in gaseous state and in aqueous solution at 298 K are studied using quantum chemistry and molecular force field calculations. The results show that both H(+) and OH(-) make the decomposition in gaseous state energetically favorable. However, the effect of H(+) is much different from that of OH(-) in aqueous solution: OH(-) can accelerate the decomposition but H(+) cannot. The difference is mainly caused by the large aqueous solvation energy difference between H(+) and OH(-). The results confirm that the dissociation of HMX is energetically favored only in the base solutions, in good agreement with previous HMX base hydrolysis experimental observations. The different acid and alkali effects on the HMX decomposition are dominated by the large aqueous solvation energy difference between H(+) and OH(-).
NASA Astrophysics Data System (ADS)
Waerenborgh, J. C.; Tsipis, E. V.; Yaremchenko, A. A.; Kharton, V. V.
2011-09-01
Conversion-electron Mössbauer spectroscopy analysis of iron surface states in the dense ceramic membranes made of 57Fe-enriched SrFe 0.7Al 0.3O 3- δ perovskite, shows no traces of reductive decomposition or carbide formation in the interfacial layers after operation under air/CH 4 gradient at 1173 K, within the limits of experimental uncertainty. The predominant trivalent state of iron cations at the membrane permeate-side surface exposed to flowing dry methane provides evidence of the kinetic stabilization mechanism, which is only possible due to slow oxygen-exchange kinetics and enables long-term operation of the ferrite-based ceramic reactors for natural gas conversion. At the membrane feed-side surface exposed to air, the fractions of Fe 4+ and Fe 3+ are close to those in the powder equilibrated at atmospheric oxygen pressure, suggesting that the exchange limitations to oxygen transport are essentially localized at the partially reduced surface.
Tan, Linghua; Xu, Jianhua; Li, Shiying; Li, Dongnan; Dai, Yuming; Kou, Bo; Chen, Yu
2017-01-01
Novel graphitic carbon nitride/CuO (g-C3N4/CuO) nanocomposite was synthesized through a facile precipitation method. Due to the strong ion-dipole interaction between copper ions and nitrogen atoms of g-C3N4, CuO nanorods (length 200–300 nm, diameter 5–10 nm) were directly grown on g-C3N4, forming a g-C3N4/CuO nanocomposite, which was confirmed via X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS). Finally, thermal decomposition of ammonium perchlorate (AP) in the absence and presence of the prepared g-C3N4/CuO nanocomposite was examined by differential thermal analysis (DTA), and thermal gravimetric analysis (TGA). The g-C3N4/CuO nanocomposite showed promising catalytic effects for the thermal decomposition of AP. Upon addition of 2 wt % nanocomposite with the best catalytic performance (g-C3N4/20 wt % CuO), the decomposition temperature of AP was decreased by up to 105.5 °C and only one decomposition step was found instead of the two steps commonly reported in other examples, demonstrating the synergistic catalytic activity of the as-synthesized nanocomposite. This study demonstrated a successful example regarding the direct growth of metal oxide on g-C3N4 by ion-dipole interaction between metallic ions, and the lone pair electrons on nitrogen atoms, which could provide a novel strategy for the preparation of g-C3N4-based nanocomposite. PMID:28772844
Theoretical Study of Decomposition Pathways for HArF and HKrF
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Donchan (Technical Monitor)
2002-01-01
To provide theoretical insights into the stability and dynamics of the new rare gas compounds HArF and HKrF, reaction paths for decomposition processes HRgF to Rg + HF and HRgF to H + Rg + F (Rg = Ar, Kr) are calculated using ab initio electronic structure methods. The bending channels, HRgF to Rg + HF, are described by single-configurational MP2 and CCSD(T) electronic structure methods, while the linear decomposition paths, HRgF to H + Rg + F, require the use of multi-configurational wave functions that include dynamic correlation and are size extensive. HArF and HKrF molecules are found to be energetically stable with respect to atomic dissociation products (H + Rg + F) and separated by substantial energy barriers from Rg + HF products, which ensure their kinetic stability. The results are compatible with experimental data on these systems.
Naumann, Robert; Kerzig, Christoph; Goez, Martin
2017-11-01
The ruthenium-tris-bipyridyl dication as catalyst combined with the ascorbate dianion as bioavailable sacrificial donor provides the first regenerative source of hydrated electrons for chemical syntheses on millimolar scales. This electron generator is operated simply by illumination with a frequency-doubled Nd:YAG laser (532 nm) running at its normal repetition rate. Much more detailed information than by product studies alone was obtained by photokinetical characterization from submicroseconds (time-resolved laser flash photolysis) up to one hour (preparative photolysis). The experiments on short timescales established a reaction mechanism more complex than previously thought, and proved the catalytic action by unchanged concentration traces of the key transients over a number of flashes so large that the accumulated electron total surpassed the catalyst concentration many times. Preparative photolyses revealed that the sacrificial donor greatly enhances the catalyst stability through quenching the initial metal-to-ligand charge-transfer state before destructive dd states can be populated from it, such that the efficiency of this electron generator is no longer limited by catalyst decomposition but by electron scavenging by the accumulating oxidation products of the ascorbate. Applications covered dechlorinations of selected aliphatic and aromatic chlorides and the reduction of a model ketone. All these substrates are impervious to photoredox catalysts exhibiting lower reducing power than the hydrated electron, but the combination of an extremely negative standard potential and a long unquenched life allowed turnover numbers up to 1400 with our method.
Liang, Yucang; Wicker, Susanne; Wang, Xiao; Erichsen, Egil Severin; Fu, Feng
2018-01-04
Crystalline ZnO -ROH and ZnO -OR (R = Me, Et, i Pr, n Bu) nanoparticles (NPs) have been successfully synthesized by the thermal decomposition of in-situ-formed organozinc complexes Zn(OR)₂ deriving from the reaction of Zn[N(SiMe₃)₂]₂ with ROH and of the freshly prepared Zn(OR)₂ under an identical condition, respectively. With increasing carbon chain length of alkyl alcohol, the thermal decomposition temperature and dispersibility of in-situ-formed intermediate zinc alkoxides in oleylamine markedly influenced the particle sizes of ZnO -ROH and its shape (sphere, plate-like aggregations), while a strong diffraction peak-broadening effect is observed with decreasing particle size. For ZnO -OR NPs, different particle sizes and various morphologies (hollow sphere or cuboid-like rod, solid sphere) are also observed. As a comparison, the calcination of the fresh-prepared Zn(OR)₂ generated ZnO -R NPs possessing the particle sizes of 5.4~34.1 nm. All crystalline ZnO nanoparticles are characterized using X-ray diffraction analysis, electron microscopy and solid-state ¹H and 13 C nuclear magnetic resonance (NMR) spectroscopy. The size effect caused by confinement of electrons' movement and the defect centres caused by unpaired electrons on oxygen vacancies or ionized impurity heteroatoms in the crystal lattices are monitored by UV-visible spectroscopy, electron paramagnetic resonance (EPR) and photoluminescent (PL) spectroscopy, respectively. Based on the types of defects determined by EPR signals and correspondingly defect-induced probably appeared PL peak position compared to actual obtained PL spectra, we find that it is difficult to establish a direct relationship between defect types and PL peak position, revealing the complication of the formation of defect types and photoluminescence properties.
Analytic model of a multi-electron atom
NASA Astrophysics Data System (ADS)
Skoromnik, O. D.; Feranchuk, I. D.; Leonau, A. U.; Keitel, C. H.
2017-12-01
A fully analytical approximation for the observable characteristics of many-electron atoms is developed via a complete and orthonormal hydrogen-like basis with a single-effective charge parameter for all electrons of a given atom. The basis completeness allows us to employ the secondary-quantized representation for the construction of regular perturbation theory, which includes in a natural way correlation effects, converges fast and enables an effective calculation of the subsequent corrections. The hydrogen-like basis set provides a possibility to perform all summations over intermediate states in closed form, including both the discrete and continuous spectra. This is achieved with the help of the decomposition of the multi-particle Green function in a convolution of single-electronic Coulomb Green functions. We demonstrate that our fully analytical zeroth-order approximation describes the whole spectrum of the system, provides accuracy, which is independent of the number of electrons and is important for applications where the Thomas-Fermi model is still utilized. In addition already in second-order perturbation theory our results become comparable with those via a multi-configuration Hartree-Fock approach.
Investigation of automated task learning, decomposition and scheduling
NASA Technical Reports Server (NTRS)
Livingston, David L.; Serpen, Gursel; Masti, Chandrashekar L.
1990-01-01
The details and results of research conducted in the application of neural networks to task planning and decomposition are presented. Task planning and decomposition are operations that humans perform in a reasonably efficient manner. Without the use of good heuristics and usually much human interaction, automatic planners and decomposers generally do not perform well due to the intractable nature of the problems under consideration. The human-like performance of neural networks has shown promise for generating acceptable solutions to intractable problems such as planning and decomposition. This was the primary reasoning behind attempting the study. The basis for the work is the use of state machines to model tasks. State machine models provide a useful means for examining the structure of tasks since many formal techniques have been developed for their analysis and synthesis. It is the approach to integrate the strong algebraic foundations of state machines with the heretofore trial-and-error approach to neural network synthesis.
Direct observation of nanowire growth and decomposition.
Rackauskas, Simas; Shandakov, Sergey D; Jiang, Hua; Wagner, Jakob B; Nasibulin, Albert G
2017-09-26
Fundamental concepts of the crystal formation suggest that the growth and decomposition are determined by simultaneous embedding and removal of the atoms. Apparently, by changing the crystal formation conditions one can switch the regimes from the growth to decomposition. To the best of our knowledge, so far this has been only postulated, but never observed at the atomic level. By means of in situ environmental transmission electron microscopy we monitored and examined the atomic layer transformation at the conditions of the crystal growth and its decomposition using CuO nanowires selected as a model object. The atomic layer growth/decomposition was studied by varying an O 2 partial pressure. Three distinct regimes of the atomic layer evolution were experimentally observed: growth, transition and decomposition. The transition regime, at which atomic layer growth/decomposition switch takes place, is characterised by random nucleation of the atomic layers on the growing {111} surface. The decomposition starts on the side of the nanowire by removing the atomic layers without altering the overall crystal structure, which besides the fundamental importance offers new possibilities for the nanowire manipulation. Understanding of the crystal growth kinetics and nucleation at the atomic level is essential for the precise control of 1D crystal formation.
Hirakawa, Kazutaka; Murata, Atsushi
2018-01-05
Water-soluble porphyrins, diethoxyphosphorus(V)tetraphenylporphyrin (EtP(V)TPP) and its fluorinated analogue (FEtP(V)TPP), decreased the typical absorption around 340nm of nicotinamide adenine dinucleotide (NADH) under visible light irradiation, indicating oxidative decomposition. A singlet oxygen quencher, sodium azide, and a triplet quencher, potassium iodide, slightly inhibited photosensitized NADH oxidation. However, these inhibitory effects were very small. Furthermore, the fluorescence lifetime of these P(V)porphyrins was decreased by NADH, suggesting the contribution of electron transfer to the singlet excited (S 1 ) state of P(V)porphyrin. The redox potential measurement supports the electron transfer-mediated oxidation of NADH. The quantum yields of NADH photodecomposition by P(V)porphyrins could be estimated from the kinetic data and the effect of these quenchers on NADH oxidation. The obtained values suggest that the electron accepting by the S 1 states of P(V)porphyrins triggers a chain reaction of NADH oxidation. This photosensitized reaction may play an important role in the photocytotoxicity of P(V)porphyrins. The axial ligand fluorination of P(V)porphyrins improved electron accepting ability. However, fluorination slightly suppressed static interaction with NADH, resulting in decreased oxidation quantum yield. Copyright © 2017 Elsevier B.V. All rights reserved.
Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland
2009-04-21
Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.
NASA Astrophysics Data System (ADS)
Aquilante, Francesco; Gagliardi, Laura; Pedersen, Thomas Bondo; Lindh, Roland
2009-04-01
Cholesky decomposition of the atomic two-electron integral matrix has recently been proposed as a procedure for automated generation of auxiliary basis sets for the density fitting approximation [F. Aquilante et al., J. Chem. Phys. 127, 114107 (2007)]. In order to increase computational performance while maintaining accuracy, we propose here to reduce the number of primitive Gaussian functions of the contracted auxiliary basis functions by means of a second Cholesky decomposition. Test calculations show that this procedure is most beneficial in conjunction with highly contracted atomic orbital basis sets such as atomic natural orbitals, and that the error resulting from the second decomposition is negligible. We also demonstrate theoretically as well as computationally that the locality of the fitting coefficients can be controlled by means of the decomposition threshold even with the long-ranged Coulomb metric. Cholesky decomposition-based auxiliary basis sets are thus ideally suited for local density fitting approximations.
Down- and up-conversion luminescent carbon dot fluid: inkjet printing and gel glass fabrication
NASA Astrophysics Data System (ADS)
Wang, Fu; Xie, Zheng; Zhang, Bing; Liu, Yun; Yang, Wendong; Liu, Chun-Yan
2014-03-01
Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on.Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on. Electronic supplementary information (ESI) available: Details of FTIR, XRD and DLS of CDF, optical properties of CDF, TEM images of other obtained products, luminescent spectra of CDF at different temperatures, and the optical photographs of CDF inks and silica glasses with different concentrations under normal, UV and 800 nm light. See DOI: 10.1039/c3nr05869g
Optimum and Heuristic Algorithms for Finite State Machine Decomposition and Partitioning
1989-09-01
Heuristic Algorithms for Finite State Machine Decomposition and Partitioning Pravnav Ashar, Srinivas Devadas , and A. Richard Newton , T E’,’ .,jpf~s’!i3...94720. Devadas : Department of Electrical Engineering and Computer Science, Room 36-848, MIT, Cambridge, MA 02139. (617) 253-0454. Copyright* 1989 MIT...and reduction, A finite state miachinie is represenutedl by its State Transition Graphi itodlitied froini two-level B ~oolean imiinimizers. Ilist
Introduction of oxygen vacancies and fluorine into TiO{sub 2} nanoparticles by co-milling with PTFE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senna, Mamoru, E-mail: senna@applc.keio.ac.jp; Sepelak, Vladimir; Shi, Jianmin
2012-03-15
Solid-state processes of introducing oxygen vacancies and transference of fluorine to n-TiO{sub 2} nanoparticles by co-milling with poly(tetrafluoroethylene) (PTFE) powder were examined by diffuse reflectance spectroscopy (DRS) of UV, visual, near- and mid-IR regions, thermal analyses (TG-DTA), energy-dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD). The broad absorption peak at around 8800 cm{sup -1} (1140 nm) was attributed to the change in the electronic states, viz. electrons trapped at the oxygen vacancies (Vo) and d-d transitions of titanium ions. Incorporation of fluorine into n-TiO{sub 2} was concentrated at the near surfacemore » region and amounted to ca. 40 at% of the total fluorine in PTFE, after co-milling for 3 h, as confirmed by the F1s XPS spectrum. The overall atomic ratio, F/Ti, determined by EDXS was 0.294. By combining these analytical results, a mechanism of the present solid state processes at the boundary between PTFE and n-TiO{sub 2} was proposed. The entire process is triggered by the partial oxidative decomposition of PTFE. This is accompanied by the abstraction of oxygen atoms from the n-TiO{sub 2} lattices. Loss of the oxygen atoms results in the formation of the diverse states of locally distorted coordination units of titania, i.e. TiO{sub 6-n}Vo{sub n}, located at the near surface region. This leads subsequent partial ligand exchange between F and O, to incorporate fluorine preferentially to the near surface region of n-TiO{sub 2} particles, where local non-crystalline states predominate. - Graphical abstract: Scheme of the reaction processes: (a) pristine mixture, (b) oxygen abstraction from TiO{sub 2} and (c) fluorine migration from PTFE to TiO{sub 2}. Highlights: Transfer of fluorine from PTFE to n-TiO{sub 2} in a dry solid state process was confirmed. Black-Right-Pointing-Pointer 40% of F in PTFE was incorporated to the near surface region of n-TiO{sub 2} nanoparticles. Black-Right-Pointing-Pointer The transfer process is triggered by the oxidative decomposition of PTFE. Black-Right-Pointing-Pointer Fluorine incorporation is mediated by the formation of oxygen vacancies. Black-Right-Pointing-Pointer The sequential mechanisms are verified by XPS, EDXS, HRTEM, TG and DRS.« less
Deng, Zhigang; Lu, Xiaoqing; Wen, Zengqiang; Wei, Shuxian; Liu, Yunjie; Fu, Dianling; Zhao, Lianming; Guo, Wenyue
2013-10-14
Periodic density functional theory (DFT) calculations have been performed to systematically investigate the effect of reaction intermediate on catalytic activity for hydrazine (N2H4) decomposition on Rh(111). Reaction mechanisms via intramolecular and NH2-assisted N2H4 decompositions are comparatively analyzed, including adsorption configuration, reaction energy and barrier of elementary step, and reaction network. Our results show that the most favorable N2H4 decomposition pathway starts with the initial N-N bond scission to the NH2 intermediate, followed by stepwise H stripping from adsorbed N2Hx (x = 1-4) species, and finally forms the N2 and NH3 products. Comparatively, the stepwise intramolecular dehydrogenation via N2H4→ N2H3→ N2H2→ N2H → N2, and N2H4→ NH2→ NH → N with or without NH2 promotion effect, are unfavorable due to higher energy barriers encountered. Energy barrier analysis, reaction rate constants, and electronic structures are used to identify the crucial competitive route. The promotion effect of the NH2 intermediate is structurally reflected in the weakening of the N-H bond and strengthening of the N-N bond in N2Hx in the coadsorption system; it results intrinsically from the less structural deformation of the adsorbate, and weakening of the interaction between dehydrogenated fragment and departing H in transition state. Our results highlight the crucial effect of reaction intermediate on catalytic activity and provide a theoretical approach to analyze the effect.
On the electron vortex beam wavefunction within a crystal.
Mendis, B G
2015-10-01
Electron vortex beams are distorted by scattering within a crystal, so that the wavefunction can effectively be decomposed into many vortex components. Using a Bloch wave approach equations are derived for vortex beam decomposition at any given depth and with respect to any frame of reference. In the kinematic limit (small specimen thickness) scattering largely takes place at the neighbouring atom columns with a local phase change of π/2rad. When viewed along the beam propagation direction only one vortex component is present at the specimen entrance surface (i.e. the 'free space' vortex in vacuum), but at larger depths the probe is in a mixed state due to Bragg scattering. Simulations show that there is no direct correlation between vortex components and the 〈Lz〉 pendellösung, i.e. at a given depth probes with relatively constant 〈Lz〉 can be in a more mixed state compared to those with more rapidly varying 〈Lz〉. This suggests that minimising oscillations in the 〈Lz〉 pendellösung by probe channelling is not the only criterion for generating a strong electron energy loss magnetic circular dichroism (EMCD) signal. Copyright © 2015 Elsevier B.V. All rights reserved.
Cai, Yang; Koshino, Nobuyoshi; Saha, Basudeb; Espenson, James H
2005-01-07
Kinetic data have been obtained for three distinct types of reactions of phthalimide N-oxyl radicals (PINO(.)) and N-hydroxyphthalimide (NHPI) derivatives. The first is the self-decomposition of PINO(.) which was found to follow second-order kinetics. In the self-decomposition of 4-methyl-N-hydroxyphthalimide (4-Me-NHPI), H-atom abstraction competes with self-decomposition in the presence of excess 4-Me-NHPI. The second set of reactions studied is hydrogen atom transfer from NHPI to PINO(.), e.g., PINO(.) + 4-Me-NHPI <=> NHPI + 4-Me-PINO(.). The substantial KIE, k(H)/k(D) = 11 for both forward and reverse reactions, supports the assignment of H-atom transfer rather than stepwise electron-proton transfer. These data were correlated with the Marcus cross relation for hydrogen-atom transfer, and good agreement between the experimental and the calculated rate constants was obtained. The third reaction studied is hydrogen abstraction by PINO(.) from p-xylene and toluene. The reaction becomes regularly slower as the ring substituent on PINO(.) is more electron donating. Analysis by the Hammett equation gave rho = 1.1 and 1.8 for the reactions of PINO(.) with p-xylene and toluene, respectively.
Lovley, D.R.; Goodwin, S.
1988-01-01
Factors controlling the concentration of dissolved hydrogen gas in anaerobic sedimentary environments were investigated. Results, presented here or previously, demonstrated that, in sediments, only microorganisms catalyze the oxidation of H2 coupled to the reduction of nitrate, Mn(IV), Fe(III), sulfate, or carbon dioxide. Theoretical considerations suggested that, at steady-state conditions, H2 concentrations are primarily dependent upon the physiological characteristics of the microorganism(s) consuming the H2 and that organisms catalyzing H2 oxidation, with the reduction of a more electrochemically positive electron acceptor, can maintain lower H2 concentrations than organisms using electron acceptors which yield less energy from H2 oxidation. The H2 concentrations associated with the specified predominant terminal electron-accepting reactions in bottom sediments of a variety of surface water environments were: methanogenesis, 7-10 nM; sulfate reduction, 1-1.5 nM; Fe(III) reduction, 0.2 nM; Mn(IV) or nitrate reduction, less than 0.05 nM. Sediments with the same terminal electron acceptor for organic matter oxidation had comparable H2 concentrations, despite variations in the rate of organic matter decomposition, pH, and salinity. Thus, each terminal electron-accepting reaction had a unique range of steady-state H2 concentrations associated with it. Preliminary studies in a coastal plain aquifer indicated that H2 concentrations also vary in response to changes in the predominant terminal electron-accepting process in deep subsurface environments. These studies suggest that H2 measurements may aid in determining which terminal electron-accepting reactions are taking place in surface and subsurface sedimentary environments. ?? 1988.
Kinetic Deuterium Isotope Effects in the Combustion of Nitramine Propellants
1988-07-01
Transition state 33 7. Possible Isotope Effects in HMX -d., and RDX -d. 38 8. HMX synthesis 48 9. a- HMX 52 10. V- HMX 53 11. RDX Synthesis 55 12 Pellet...configuration of the transition state in HMX decomposition could be rade. KDIE in RDX Decomposition The KDIE values obtained for RDX decomposition -ire...0.13 HMX -d 8 60.3 35.7 8.6 0.10 RDX 61.2 36.7 11.8 0.10 RDX -de 53.7 22.8 8.3 0.11 DSC EXPERIMENTS The 13 -+ 8 phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Theodor; Warneke, Jonas; Zielasek, Volkmar, E-mail: zielasek@uni-bremen.de
2016-07-15
Optimizing thin metal film deposition techniques from metal-organic precursors such as atomic layer deposition, chemical vapor deposition (CVD), or electron beam-induced deposition (EBID) with the help of surface science analysis tools in ultrahigh vacuum requires a contamination-free precursor delivery technique, especially in the case of the less volatile precursors. For this purpose, the preparation of layers of undecomposed Ni(acac){sub 2} and Co(acac){sub 2} was tried via pulsed spray evaporation of a liquid solution of the precursors in ethanol into a flow of nitrogen on a CVD reactor. Solvent-free layers of intact precursor molecules were obtained when the substrate was heldmore » at a temperature of 115 °C. A qualitative comparison of thermally initiated and electron-induced precursor decomposition and metal center reduction was carried out. All deposited films were analyzed with respect to chemical composition quasi in situ by x-ray photoelectron spectroscopy. Thermally initiated decomposition yielded higher metal-to-metal oxide ratios in the deposit than the electron-induced process for which ratios of 60:40 and 20:80 were achieved for Ni and Co, resp. Compared to continuous EBID processes, all deposits showed low levels of carbon impurities of ∼10 at. %. Therefore, postdeposition irradiation of metal acetylacetonate layers by a focused electron beam and subsequent removal of intact precursor by dissolution in ethanol or by heating is proposed as electron beam lithography technique on the laboratory scale for the production of the metal nanostructures.« less
NASA Astrophysics Data System (ADS)
Benner, Ronald; Hatcher, Patrick G.; Hedges, John I.
1990-07-01
Changes in the chemical composition of mangrove ( Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed.
Benner, R.; Hatcher, P.G.; Hedges, J.I.
1990-01-01
Changes in the chemical composition of mangrove (Rhizophora mangle) leaves during decomposition in tropical estuarine waters were characterized using solid-state 13C nuclear magnetic resonance (NMR) and elemental (CHNO) analysis. Carbohydrates were the most abundant components of the leaves accounting for about 50 wt% of senescent tissues. Tannins were estimated to account for about 20 wt% of leaf tissues, and lipid components, cutin, and possibly other aliphatic biopolymers in leaf cuticles accounted for about 15 wt%. Carbohydrates were generally less resistant to decomposition than the other constituents and decreased in relative concentration during decomposition. Tannins were of intermediate resistance to decomposition and remained in fairly constant proportion during decomposition. Paraffinic components were very resistant to decomposition and increased in relative concentration as decomposition progressed. Lignin was a minor component of all leaf tissues. Standard methods for the colorimetric determination of tannins (Folin-Dennis reagent) and the gravimetric determination of lignin (Klason lignin) were highly inaccurate when applied to mangrove leaves. The N content of the leaves was particularly dynamic with values ranging from 1.27 wt% in green leaves to 0.65 wt% in senescent yellow leaves attached to trees. During decomposition in the water the N content initially decreased to 0.51 wt% due to leaching, but values steadily increased thereafter to 1.07 wt% in the most degraded leaf samples. The absolute mass of N in the leaves increased during decomposition indicating that N immobilization was occurring as decomposition progressed. ?? 1990.
Photoelectron spectra of the decomposition of ethylene on /110/ tungsten
NASA Technical Reports Server (NTRS)
Plummer, E. W.; Waclawski, B. J.; Vorburger, T. V.
1974-01-01
The experimental apparatus used in the investigation consisted of an ultrahigh-vacuum chamber, a triple-grid, a microwave-excited resonance lamp, and an electron energy analyzer. The chemical nature of the chemisorbed species was studied, taking into account the energy distribution of photoemitted electrons, work function determinations, and low-energy electron diffraction patterns.
Conductimetric determination of decomposition of silicate melts
NASA Technical Reports Server (NTRS)
Kroeger, C.; Lieck, K.
1986-01-01
A description of a procedure is given to detect decomposition of silicate systems in the liquid state by conductivity measurements. Onset of decomposition can be determined from the temperature curves of resistances measured on two pairs of electrodes, one above the other. Degree of decomposition can be estimated from temperature and concentration dependency of conductivity of phase boundaries. This procedure was tested with systems PbO-B2O3 and PbO-B2O3-SiO2.
Russell, Matthew B.; Woodall, Christopher W.; D'Amato, Anthony W.; Fraver, Shawn; Bradford, John B.
2014-01-01
Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Forest carbon (C) is stored through photosynthesis and released via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years, depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics in addition to a traditional emphasis on live-tree demographics.
Real-Time XRD Studies of Li-O2 Electrochemical Reaction in Nonaqueous Lithium-Oxygen Battery.
Lim, Hyunseob; Yilmaz, Eda; Byon, Hye Ryung
2012-11-01
Understanding of electrochemical process in rechargeable Li-O2 battery has suffered from lack of proper analytical tool, especially related to the identification of chemical species and number of electrons involved in the discharge/recharge process. Here we present a simple and straightforward analytical method for simultaneously attaining chemical and quantified information of Li2O2 (discharge product) and byproducts using in situ XRD measurement. By real-time monitoring of solid-state Li2O2 peak area, the accurate efficiency of Li2O2 formation and the number of electrons can be evaluated during full discharge. Furthermore, by observation of sequential area change of Li2O2 peak during recharge, we found nonlinearity of Li2O2 decomposition rate for the first time in ether-based electrolyte.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; El-Sayed, Mohamed Y.; Adam, Abdel Majid A.
2013-04-01
Cu(II), Co(II), and Ni(II) complexes were synthesized from 2-[(5-o-chlorophenylazo-2-hydroxybenzylidin)amino]-phenol Schiff base (H2L). Metal ions coordinate in a tetradentate or hexadentate features with these O2N donor ligand, which are characterized by elemental analyses, magnetic moments, infrared, Raman laser, electronic, and 1H NMR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Reactions with Cu(II), Co(II) and Ni(II), resulted [Cu(H2L)(H2O)2(Cl)]Cl, [Co(H2L)(H2O)3]Cl2ṡ3H2O and [Ni(H2L)(H2O)2]Cl2ṡ6H2O. The thermal decomposition behavior of H2L complexes has been investigated by thermogravimetric analysis (TG/DTG) at a heating rate of 10 °C min-1 under nitrogen atmosphere. The brightness side in this study is to take advantage for the preparation and characterizations of single phases of CuO, CoO and NiO nanoparticles using H2L complexes as precursors via a solid-state decomposition procedure. The crystalline structures of products using X-ray diffractometer (XRD), morphology of particles by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) were investigated.
Prepared by Thermal Hydro-decomposition
NASA Astrophysics Data System (ADS)
Prasoetsopha, N.; Pinitsoontorn, S.; Kamwanna, T.; Kurosaki, K.; Ohishi, Y.; Muta, H.; Yamanaka, S.
2014-06-01
The polycrystalline samples of Ca3Co4- x Ga x O9+ δ (0 ≤ x ≤ 0.15) were prepared by a simple thermal hydro-decomposition method. The high density ceramics were fabricated using a spark plasma sintering technique. The crystal structure of calcined powders was characterized by x-ray diffraction. The single phase of Ca3Co4- x Ga x O9+ δ was obtained. The scanning electron micrograph illustrated the grain alignment perpendicular to the direction of the pressure in the sintering process. The evidence from x-ray absorption near edge spectra were used to confirm the oxidation state of the Ga dopant. The thermoelectric properties of the misfit-layered of Ca3Co4- x Ga x O9+ δ were investigated. Seebeck coefficient tended to decrease with increasing Ga content due to the hole-doping effect. The electrical resistivity and thermal conductivity were monotonically decreased with increasing Ga content. The Ga doping of x = 0.15 showed the highest power factor of 3.99 × 10-4 W/mK2 at 1,023 K and the lowest thermal conductivity of 1.45 W/mK at 1,073 K. This resulted in the highest ZT of 0.29 at 1,073 K. From the optical absorption spectra, the electronic structure near the Fermi level show no significant change with Ga doping.
NASA Astrophysics Data System (ADS)
Sharma, Vikram
2017-11-01
This is the first time the graphene sample has been functionalized with metal oxide nanoparticles by thermal decomposition process. In this paper, graphene has been synthesized from natural resources using flower petals as carbon feedstock by thermal exfoliation technique at temperatures 1300 °C and the synthesis of graphene-tin oxide (SnO2) nanocomposites has been done using chemical treatment followed by thermal decomposition method. The response versus time condition has been investigated for the fabricated sample. The electrical resistance w.r.t. temperature could be explained by the thermal generation of electron-hole pairs and carrier scattering by acoustic phonons. The structural, morphological and chemical composition studies of the nanocomposites were carried out by the Raman spectroscopy, x-ray diffraction spectroscopy, scanning electron microscopy (SEM), x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy (HRTEM). The evidence of good-quality graphene is obtained from Raman spectroscopy studies. The SEM and HRTEM images have shown that SnO2 nanoparticles are well distributed in the multilayer electron transparent graphene films. The sensor response was found to lie between 8.25 and 9.36% at 500 ppm of nitrogen dioxide, and also resistance recovered quickly without any application of heat. We believe such chemical treatment of graphene could potentially be used to manufacture a new generation of low-power nano-NO2 sensors.
Mohd Nasir, Norlirubayah; Teo Ming, Ting; Ahmadun, Fakhru'l-Razi; Sobri, Shafreeza
2010-01-01
The research conducted a study on decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process. The purposes of this research are to remove pollutant through decomposition and to enhance the biodegradability of textile wastewater. The wastewater is treated using electron beam irradiation as a pre-treatment before undergo an activated sludge process. As a result, for non-irradiated wastewater, the COD removal was achieved to be between 70% and 79% after activated sludge process. The improvement of COD removal efficiency increased to 94% after irradiation of treated effluent at the dose of 50 kGy. Meanwhile, the BOD(5) removal efficiencies of non-irradiated and irradiated textile wastewater were reported to be between 80 and 87%, and 82 and 99.2%, respectively. The maximum BOD(5) removal efficiency was achieved at day 1 (HRT 5 days) of the process of an irradiated textile wastewater which is 99.2%. The biodegradability ratio of non-irradiated wastewater was reported to be between 0.34 and 0.61, while the value of biodegradability ratio of an irradiated wastewater increased to be between 0.87 and 0.96. The biodegradability enhancement of textile wastewater is increased with increasing the doses. Therefore, an electron beam radiation holds a greatest application of removing pollutants and also on enhancing the biodegradability of textile wastewater.
Decomposition of silicon carbide at high pressures and temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daviau, Kierstin; Lee, Kanani K. M.
We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60more » GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.« less
Multilevel decomposition of complete vehicle configuration in a parallel computing environment
NASA Technical Reports Server (NTRS)
Bhatt, Vinay; Ragsdell, K. M.
1989-01-01
This research summarizes various approaches to multilevel decomposition to solve large structural problems. A linear decomposition scheme based on the Sobieski algorithm is selected as a vehicle for automated synthesis of a complete vehicle configuration in a parallel processing environment. The research is in a developmental state. Preliminary numerical results are presented for several example problems.
Subcalcic diopsides from kimberlites: Chemistry, exsolution microstructures, and thermal history
McCallister, R.H.; Nord, G.L.
1981-01-01
Twenty-six subcalcic diopside megacrysts (Ca/(Ca+ Mg)) = 0.280-0.349, containing approximately 10 mol% jadeite, from 15 kimberlite bodies in South Africa, Botswana, Tanzania, and Lesotho, have been characterized by electron microprobe analysis, X-ray-precession photography, and transmission electron microscopy. Significant exsolution of pigeonite was observed only in those samples for which Ca/(Ca+Mg)???0.320. The exsolution microstructure consists of coherent (001) lamellae with wavelengths ranging from 20 to 31 nm and compositional differences between the hosts and lamellae ranging from 10 to 30 mol% wollastonite. These observations suggest that the exsolution reaction mechanism was spinodal decomposition and that the megacrysts have been quenched at various stages of completion of the decomposition process. Annealing experiments in evacuated SiO2 glass tubes at 1,150?? C for 128 hours failed to homogenize microstructure, whereas, at 5 kbar and 1,150?? C for only 7.25 hours, the two lattices were homogenized. This "pressure effect" suggests that spinodal decomposition in the kimberlitic subcalcic diopside megacrysts can only occur at depths less than ???15 km; the cause of the effect may be the jadeite component in the pyroxene. "Apparent quench" temperatures for the exsolution process in the megacrysts range from 1,250?? C to 990?? C, suggesting that decomposition must have commenced at temperatures of more than ???1,000?? C. These P-T limits lead to the conclusion that, in those kimberlites where spinodal decomposition has occurred in subcalcic diopside megacrysts, such decomposition occurred at shallow levels (<15 km) and, at the present erosion level, temperatures must have been greater than 1,000?? C. ?? 1981 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Engelbrecht, Nicolaas; Chiuta, Steven; Bessarabov, Dmitri G.
2018-05-01
The experimental evaluation of an autothermal microchannel reactor for H2 production from NH3 decomposition is described. The reactor design incorporates an autothermal approach, with added NH3 oxidation, for coupled heat supply to the endothermic decomposition reaction. An alternating catalytic plate arrangement is used to accomplish this thermal coupling in a cocurrent flow strategy. Detailed analysis of the transient operating regime associated with reactor start-up and steady-state results is presented. The effects of operating parameters on reactor performance are investigated, specifically, the NH3 decomposition flow rate, NH3 oxidation flow rate, and fuel-oxygen equivalence ratio. Overall, the reactor exhibits rapid response time during start-up; within 60 min, H2 production is approximately 95% of steady-state values. The recommended operating point for steady-state H2 production corresponds to an NH3 decomposition flow rate of 6 NL min-1, NH3 oxidation flow rate of 4 NL min-1, and fuel-oxygen equivalence ratio of 1.4. Under these flows, NH3 conversion of 99.8% and H2 equivalent fuel cell power output of 0.71 kWe is achieved. The reactor shows good heat utilization with a thermal efficiency of 75.9%. An efficient autothermal reactor design is therefore demonstrated, which may be upscaled to a multi-kW H2 production system for commercial implementation.
NASA Astrophysics Data System (ADS)
Mahjoub, Ahmed; Hochlaf, Majdi; Poisson, Lionel; Garcia, Gustavo A.; Nahon, Laurent
2013-06-01
We studied the single-photon ionization of gas-phase 2-Piperidone (DNA basis analogue) and of its dimer using vacuum-ultraviolet (VUV) synchrotron radiation coupled to a velocity map imaging electron/ion coincidence spectrometer The slow photoelectron spectrum (SPES) of the monomer is dominated by the vibrational transitions to the ground state. These spectra are assigned with the help of theoretical calculations dealing with the equilibrium geometries, electronic-state patterns and evolutions, harmonic and anharmonic wavenumbers. After its formation, dimer is subject of intramolecular isomerization, H transfer and then unimolecular fragmentation processes. The near threshold photofragmentation pattern of the cationic 2-Piperidone cation and its dimer has been recorded. The experimental method yields the fragment intensity as a function of the internal energy deposited into the parent cation. In parallel, ab initio studies on ionic and neutral fragmentation products have been performed with the aim of determining the isomers of the ionic products observed experimentally as well as of their neutral counterparts. L. Nahon, N. De Oliveria,J. F. Gil,B. Pilette,O. Marcouillé, B. La garde and F. Polack Journal of Synchrotron Radiation {19}(4), 508-520; 2012
Henze Bancroft, Leah C; Strigel, Roberta M; Hernando, Diego; Johnson, Kevin M; Kelcz, Frederick; Kijowski, Richard; Block, Walter F
2016-03-01
Chemical shift based fat/water decomposition methods such as IDEAL are frequently used in challenging imaging environments with large B0 inhomogeneity. However, they do not account for the signal modulations introduced by a balanced steady state free precession (bSSFP) acquisition. Here we demonstrate improved performance when the bSSFP frequency response is properly incorporated into the multipeak spectral fat model used in the decomposition process. Balanced SSFP allows for rapid imaging but also introduces a characteristic frequency response featuring periodic nulls and pass bands. Fat spectral components in adjacent pass bands will experience bulk phase offsets and magnitude modulations that change the expected constructive and destructive interference between the fat spectral components. A bSSFP signal model was incorporated into the fat/water decomposition process and used to generate images of a fat phantom, and bilateral breast and knee images in four normal volunteers at 1.5 Tesla. Incorporation of the bSSFP signal model into the decomposition process improved the performance of the fat/water decomposition. Incorporation of this model allows rapid bSSFP imaging sequences to use robust fat/water decomposition methods such as IDEAL. While only one set of imaging parameters were presented, the method is compatible with any field strength or repetition time. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Li, Yi; Zhang, Xiaoxing; Chen, Dachang; Xiao, Song; Tang, Ju
2018-06-01
CF4 and COF2 are the two main decomposition products of fluorocarbon gas insulating medium. We explored the gas sensing properties of Ni-MoS2 to CF4 and COF2 based on the density functional theory calculations. The adsorption energy, charge transfer, density of states and electron density difference have been discussed. It was found that the interaction between COF2 molecule and Ni-MoS2 is strong, and the adsorption energy is 0.723 eV. Ni-MoS2 acts as the electron donor and transfers some electrons to COF2 molecule during the interaction. The adsorption energy of CF4 on Ni-MoS2 is lower than that of COF2, and the interaction between them belongs to physical adsorption. Ni-MoS2 has the potential to be used as a gas sensor for COF2 detection using in the field of gas insulated switchgear on-line monitoring.
NASA Astrophysics Data System (ADS)
Fujimoto, Kazuhiro J.
2012-07-01
A transition-density-fragment interaction (TDFI) combined with a transfer integral (TI) method is proposed. The TDFI method was previously developed for describing electronic Coulomb interaction, which was applied to excitation-energy transfer (EET) [K. J. Fujimoto and S. Hayashi, J. Am. Chem. Soc. 131, 14152 (2009)] and exciton-coupled circular dichroism spectra [K. J. Fujimoto, J. Chem. Phys. 133, 124101 (2010)]. In the present study, the TDFI method is extended to the exchange interaction, and hence it is combined with the TI method for applying to the EET via charge-transfer (CT) states. In this scheme, the overlap correction is also taken into account. To check the TDFI-TI accuracy, several test calculations are performed to an ethylene dimer. As a result, the TDFI-TI method gives a much improved description of the electronic coupling, compared with the previous TDFI method. Based on the successful description of the electronic coupling, the decomposition analysis is also performed with the TDFI-TI method. The present analysis clearly shows a large contribution from the Coulomb interaction in most of the cases, and a significant influence of the CT states at the small separation. In addition, the exchange interaction is found to be small in this system. The present approach is useful for analyzing and understanding the mechanism of EET.
Reversible exciplex formation followed charge separation.
Petrova, M V; Burshtein, A I
2008-12-25
The reversible exciplex formation followed by its decomposition into an ion pair is considered, taking into account the subsequent geminate and bulk ion recombination to the triplet and singlet products (in excited and ground states). The integral kinetic equations are derived for all state populations, assuming that the spin conversion is performed by the simplest incoherent (rate) mechanism. When the forward and backward electron transfer is in contact as well as all dissociation/association reactions of heavy particles, the kernels of integral equations are specified and expressed through numerous reaction constants and characteristics of encounter diffusion. The solutions of these equations are used to specify the quantum yields of the excited state and exciplex fluorescence induced by pulse or stationary pumping. In the former case, the yields of the free ions and triplet products are also found, while in the latter case their stationary concentrations are obtained.
Electron Beam "Writes" Silicon On Sapphire
NASA Technical Reports Server (NTRS)
Heinemann, Klaus
1988-01-01
Method of growing silicon on sapphire substrate uses beam of electrons to aid growth of semiconductor material. Silicon forms as epitaxial film in precisely localized areas in micron-wide lines. Promising fabrication method for fast, densely-packed integrated circuits. Silicon deposited preferentially in contaminated substrate zones and in clean zone irradiated by electron beam. Electron beam, like surface contamination, appears to stimulate decomposition of silane atmosphere.
Mechanism of thermal decomposition of K2FeO4 and BaFeO4: A review
NASA Astrophysics Data System (ADS)
Sharma, Virender K.; Machala, Libor
2016-12-01
This paper presents thermal decomposition of potassium ferrate(VI) (K2FeO4) and barium ferrate(VI) (BaFeO4) in air and nitrogen atmosphere. Mössbauer spectroscopy and nuclear forward scattering (NFS) synchrotron radiation approaches are reviewed to advance understanding of electron-transfer processes involved in reduction of ferrate(VI) to Fe(III) phases. Direct evidences of Fe V and Fe IV as intermediate iron species using the applied techniques are given. Thermal decomposition of K2FeO4 involved Fe V, Fe IV, and K3FeO3 as intermediate species while BaFeO3 (i.e. Fe IV) was the only intermediate species during the decomposition of BaFeO4. Nature of ferrite species, formed as final Fe(III) species, of thermal decomposition of K2FeO4 and BaFeO4 under different conditions are evaluated. Steps of the mechanisms of thermal decomposition of ferrate(VI), which reasonably explained experimental observations of applied approaches in conjunction with thermal and surface techniques, are summarized.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miehe, Gerhard; Lauterbach, Stefan; Kleebe, Hans-Joachim
The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH){sub 3}) to bixbyite-type indium oxide (c-In{sub 2}O{sub 3}). The electron beam is focused onto a single cube-shaped In(OH){sub 3} crystal of {l_brace}100{r_brace} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turnmore » enables the evaluation of the kinetics of c-In{sub 2}O{sub 3} crystallization. Supplementary material (video of the transformation) related to this article can be found online at (10.1016/j.jssc.2012.09.022). After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH){sub 3} is transformed to a diffuse strongly textured ring-like pattern of c-In{sub 2}O{sub 3} that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In{sub 2}O{sub 3} domains with the size of about 5-10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In{sub 2}O{sub 3}), calculated from the shrinkage of the parent c-In(OH){sub 3} crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In{sub 2}O{sub 3} crystallization within the framework of Avrami-Erofeev formalism. The Avrami exponent of {approx}3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of nuclei with a constant growth rate. The structural transformation path in reconstructive decomposition of c-In(OH){sub 3} to c-In{sub 2}O{sub 3} is discussed in terms of (i) the displacement of hydrogen atoms that lead to breaking the hydrogen bond between OH groups of [In(OH){sub 6}] octahedra and finally to their destabilization and (ii) transformation of the vertices-shared indium-oxygen octahedra in c-In(OH){sub 3} to vertices- and edge-shared octahedra in c-In{sub 2}O{sub 3}. - Graphical abstract: Frame-by-frame analysis of video sequences recorded of HR-TEM images reveals that a single cube-shaped In(OH){sub 3} nanocrystal with {l_brace}100{r_brace} morphology decomposes into bixbyite-type In{sub 2}O{sub 3} domains while being imaged. The mechanism of this decomposition is evaluated through the analysis of the structural relationship between initial (c-In(OH){sub 3}) and transformed (c-In{sub 2}O{sub 3}) phases and though the kinetics of the decomposition followed via the time-resolved shrinkage of the initial crystal of indium hydroxide. Highlights: Black-Right-Pointing-Pointer In-situ time-resolved High Resolution Transmission Electron Microscopy. Black-Right-Pointing-Pointer Crystallographic transformation path. Black-Right-Pointing-Pointer Kinetics of the decomposition in one nanocrystal.« less
NASA Astrophysics Data System (ADS)
Lehtola, Susi; Tubman, Norm M.; Whaley, K. Birgitta; Head-Gordon, Martin
2017-10-01
Approximate full configuration interaction (FCI) calculations have recently become tractable for systems of unforeseen size, thanks to stochastic and adaptive approximations to the exponentially scaling FCI problem. The result of an FCI calculation is a weighted set of electronic configurations, which can also be expressed in terms of excitations from a reference configuration. The excitation amplitudes contain information on the complexity of the electronic wave function, but this information is contaminated by contributions from disconnected excitations, i.e., those excitations that are just products of independent lower-level excitations. The unwanted contributions can be removed via a cluster decomposition procedure, making it possible to examine the importance of connected excitations in complicated multireference molecules which are outside the reach of conventional algorithms. We present an implementation of the cluster decomposition analysis and apply it to both true FCI wave functions, as well as wave functions generated from the adaptive sampling CI algorithm. The cluster decomposition is useful for interpreting calculations in chemical studies, as a diagnostic for the convergence of various excitation manifolds, as well as as a guidepost for polynomially scaling electronic structure models. Applications are presented for (i) the double dissociation of water, (ii) the carbon dimer, (iii) the π space of polyacenes, and (iv) the chromium dimer. While the cluster amplitudes exhibit rapid decay with an increasing rank for the first three systems, even connected octuple excitations still appear important in Cr2, suggesting that spin-restricted single-reference coupled-cluster approaches may not be tractable for some problems in transition metal chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marrakchi, G.; Barbier, D.; Guillot, G.
Electrical and deep level transient spectroscopy measurements on Schottky barriers were performed in order to characterize electrically active defects in n-type GaAs (Bridgman substrates or liquid-phase epitaxial layers) after pulsed electron beam annealing. Both surface damage and bulk defects were observed in the Bridgman substrates depending on the pulse energy density. No electron traps were detected in the liquid-phase epitaxial layers before and after annealing for an energy density of 0.4 J/cm/sup 2/. The existence of an interfacial insulating layer at the metal-semiconductor interface, associated with As out-diffusion during the pulsed electron irradiation, was revealed by the abnormally high valuesmore » of the Schottky barrier diffusion potential. Moreover, two new electron traps with activation energy of 0.35 and 0.43 eV, called EP1 and EP2, were introduced in the Bridgman substrates after pulsed electron beam annealing. The presence of these traps, related to the As evaporation, was tentatively attributed to the decrease of the EL2 electron trap signal after 0.4-J/cm/sup 2/ annealing. It is proposed that these new defects states are due to the decomposition of the As/sub Ga/-As/sub i/ complex recently considered as the most probable defect configuration for the dominant EL2 electron trap usually detected in as-grown GaAs substrates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Tapas; Satpati, Biswarup, E-mail: biswarup.satpati@saha.ac.in; Kabiraj, D.
We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (∼ 200 nm) grown initially on silicon substrate. The nanoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.
Atomic-batched tensor decomposed two-electron repulsion integrals
NASA Astrophysics Data System (ADS)
Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove
2017-04-01
We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.
NASA Astrophysics Data System (ADS)
Jayashri, T. A.; Krishnan, G.; Rema Rani, N.
2014-12-01
Tris(1,2-diaminoethane)nickel(II)sulphate was prepared, and characterised by various chemical and spectral techniques. The sample was irradiated with 60Co gamma rays for varying doses. Sulphite ion and ammonia were detected and estimated in the irradiated samples. Non-isothermal decomposition kinetics, X-ray diffraction pattern, Fourier transform infrared spectroscopy, electronic, fast atom bombardment mass spectra, and surface morphology of the complex were studied before and after irradiation. Kinetic parameters were evaluated by integral, differential, and approximation methods. Irradiation enhanced thermal decomposition, lowering thermal and kinetic parameters. The mechanism of decomposition is controlled by R3 function. From X-ray diffraction studies, change in lattice parameters and subsequent changes in unit cell volume and average crystallite size were observed. Both unirradiated and irradiated samples of the complex belong to trigonal crystal system. Decrease in the intensity of the peaks was observed in the infrared spectra of irradiated samples. Electronic spectral studies revealed that the M-L interaction is unaffected by irradiation. Mass spectral studies showed that the fragmentation patterns of the unirradiated and irradiated samples are similar. The additional fragment with m/z 256 found in the irradiated sample is attributed to S8+. Surface morphology of the complex changed upon irradiation.
Atomic-batched tensor decomposed two-electron repulsion integrals.
Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove
2017-04-07
We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.
Polymethacrylic acid as a new precursor of CuO nanoparticles
NASA Astrophysics Data System (ADS)
Hosny, Nasser Mohammed; Zoromba, Mohamed Shafick
2012-11-01
Polymethacrylic acid and its copper complexes have been synthesized and characterized. These complexes have been used as precursors to produce CuO nanoparticles by thermal decomposition in air. The stages of decompositions and the calcination temperature of the precursors have been determined from thermal analyses (TGA). The obtained CuO nanoparticles have been characterized by X-ray diffraction (XRD), scanning tunneling microscopy (STM) and transmission electron microscopy (TEM). XRD showed a monoclinic structure with particle size 8-20 nm for the synthesized copper oxide nanoparticles. These nanoparticles are catalytically active in decomposing hydrogen peroxide and a mechanism of decomposition has been suggested.
Michele L. Renschin; Hal O. Liechty; Michael G. Shelton
2002-01-01
Abstract - Although fire has long been an important forest management tool in the southern United States, little is known concerning the effects of long-term fire use on nutrient cycling and decomposition. To better understand the effects of fire on these processes, decomposition rates, and foliage litter quality were quantified in a study...
M.B. Russell; C.W. Woodall; A.W. D' Amato; S. Fraver; J.B. Bradford
2014-01-01
Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Forest carbon (C) is stored through photosynthesis and released via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased...
Zhang, Xiaoxing; Huang, Rong; Gui, Yingang; Zeng, Hong
2016-01-01
Detection of decomposition products of sulfur hexafluoride (SF6) is one of the best ways to diagnose early latent insulation faults in gas-insulated equipment, and the occurrence of sudden accidents can be avoided effectively by finding early latent faults. Recently, functionalized graphene, a kind of gas sensing material, has been reported to show good application prospects in the gas sensor field. Therefore, calculations were performed to analyze the gas sensing properties of intrinsic graphene (Int-graphene) and functionalized graphene-based material, Ag-decorated graphene (Ag-graphene), for decomposition products of SF6, including SO2F2, SOF2, and SO2, based on density functional theory (DFT). We thoroughly investigated a series of parameters presenting gas-sensing properties of adsorbing process about gas molecule (SO2F2, SOF2, SO2) and double gas molecules (2SO2F2, 2SOF2, 2SO2) on Ag-graphene, including adsorption energy, net charge transfer, electronic state density, and the highest and lowest unoccupied molecular orbital. The results showed that the Ag atom significantly enhances the electrochemical reactivity of graphene, reflected in the change of conductivity during the adsorption process. SO2F2 and SO2 gas molecules on Ag-graphene presented chemisorption, and the adsorption strength was SO2F2 > SO2, while SOF2 absorption on Ag-graphene was physical adsorption. Thus, we concluded that Ag-graphene showed good selectivity and high sensitivity to SO2F2. The results can provide a helpful guide in exploring Ag-graphene material in experiments for monitoring the insulation status of SF6-insulated equipment based on detecting decomposition products of SF6. PMID:27809269
Generalized decompositions of dynamic systems and vector Lyapunov functions
NASA Astrophysics Data System (ADS)
Ikeda, M.; Siljak, D. D.
1981-10-01
The notion of decomposition is generalized to provide more freedom in constructing vector Lyapunov functions for stability analysis of nonlinear dynamic systems. A generalized decomposition is defined as a disjoint decomposition of a system which is obtained by expanding the state-space of a given system. An inclusion principle is formulated for the solutions of the expansion to include the solutions of the original system, so that stability of the expansion implies stability of the original system. Stability of the expansion can then be established by standard disjoint decompositions and vector Lyapunov functions. The applicability of the new approach is demonstrated using the Lotka-Volterra equations.
NASA Astrophysics Data System (ADS)
Russell, M. B.; Woodall, C. W.; D'Amato, A. W.; Fraver, S.; Bradford, J. B.
2014-06-01
Forest ecosystems play a critical role in mitigating greenhouse gas emissions. Long-term forest carbon (C) storage is determined by the balance between C fixation into biomass through photosynthesis and C release via decomposition and combustion. Relative to C fixation in biomass, much less is known about C depletion through decomposition of woody debris, particularly under a changing climate. It is assumed that the increased temperatures and longer growing seasons associated with projected climate change will increase the decomposition rates (i.e., more rapid C cycling) of downed woody debris (DWD); however, the magnitude of this increase has not been previously addressed. Using DWD measurements collected from a national forest inventory of the eastern United States, we show that the residence time of DWD may decrease (i.e., more rapid decomposition) by as much as 13% over the next 200 years depending on various future climate change scenarios and forest types. Although existing dynamic global vegetation models account for the decomposition process, they typically do not include the effect of a changing climate on DWD decomposition rates. We expect that an increased understanding of decomposition rates, as presented in this current work, will be needed to adequately quantify the fate of woody detritus in future forests. Furthermore, we hope these results will lead to improved models that incorporate climate change scenarios for depicting future dead wood dynamics, in addition to a traditional emphasis on live tree demographics.
Hwang, Sooyeon; Kim, Seung Min; Bak, Seong-Min; Cho, Byung-Won; Chung, Kyung Yoon; Lee, Jeong Yong; Chang, Wonyoung; Stach, Eric A
2014-09-10
In this work, we take advantage of in situ transmission electron microscopy (TEM) to investigate thermally induced decomposition of the surface of Li(x)Ni(0.8)Co(0.15)Al(0.05)O2 (NCA) cathode materials that have been subjected to different states of charge (SOC). While uncharged NCA is stable up to 400 °C, significant changes occur in charged NCA with increasing temperature. These include the development of surface porosity and changes in the oxygen K-edge electron energy loss spectra, with pre-edge peaks shifting to higher energy losses. These changes are closely related to O2 gas released from the structure, as well as to phase changes of NCA from the layered structure to the disordered spinel structure, and finally to the rock-salt structure. Although the temperatures where these changes initiate depend strongly on the state of charge, there also exist significant variations among particles with the same state of charge. Notably, when NCA is charged to x = 0.33 (the charge state that is the practical upper limit voltage in most applications), the surfaces of some particles undergo morphological and oxygen K-edge changes even at temperatures below 100 °C, a temperature that electronic devices containing lithium ion batteries (LIB) can possibly see during normal operation. Those particles that experience these changes are likely to be extremely unstable and may trigger thermal runaway at much lower temperatures than would be usually expected. These results demonstrate that in situ heating experiments are a unique tool not only to study the general thermal behavior of cathode materials but also to explore particle-to-particle variations, which are sometimes of critical importance in understanding the performance of the overall system.
Rabanal-León, Walter A; Páez-Hernández, Dayán; Arratia-Pérez, Ramiro
2014-12-21
The present work is focused on the elucidation of the electronic structure, bonding nature and optical properties of a series of low symmetry (C2) coordination compounds of type [Ln(III)HAM](3+), where "Ln(III)" are the trivalent lanthanide ions: La(3+), Ce(3+), Eu(3+) and Lu(3+), while "HAM" is the neutral six-nitrogen donor macrocyclic ligand [C22N6H26]. This systematic study has been performed in the framework of the Relativistic Density Functional Theory (R-DFT) and also using a multi-reference approach via the Complete Active Space (CAS) wavefunction treatment with the aim of analyzing their ground state and excited state electronic structures as well as electronic correlation. Furthermore, the use of the energy decomposition scheme proposed by Morokuma-Ziegler and the electron localization function (ELF) allows us to characterize the bonding between the lanthanide ions and the macrocyclic ligand, obtaining as a result a dative-covalent interaction. Due to a great deal of lanthanide optical properties and their technological applications, the absorption spectra of this set of coordination compounds were calculated using the time-dependent density functional theory (TD-DFT), where the presence of the intense Ligand to Metal Charge Transfer (LMCT) bands in the ultraviolet and visible region and the inherent f-f electronic transitions in the Near-Infra Red (NIR) region for some lanthanide ions allow us to propose these systems as "single antenna molecules" with potential applications in NIR technologies.
Shpotyuk, Oleh; Ingram, Adam; Bujňáková, Zdenka; Baláž, Peter
2017-12-01
Microstructure hierarchical model considering the free-volume elements at the level of interacting crystallites (non-spherical approximation) and the agglomerates of these crystallites (spherical approximation) was developed to describe free-volume evolution in mechanochemically milled As 4 S 4 /ZnS composites employing positron annihilation spectroscopy in a lifetime measuring mode. Positron lifetime spectra were reconstructed from unconstrained three-term decomposition procedure and further subjected to parameterization using x3-x2-coupling decomposition algorithm. Intrinsic inhomogeneities due to coarse-grained As 4 S 4 and fine-grained ZnS nanoparticles were adequately described in terms of substitution trapping in positron and positronium (Ps) (bound positron-electron) states due to interfacial triple junctions between contacting particles and own free-volume defects in boundary compounds. Compositionally dependent nanostructurization in As 4 S 4 /ZnS nanocomposite system was imagined as conversion from o-Ps trapping sites to positron traps. The calculated trapping parameters that were shown could be useful to characterize adequately the nanospace filling in As 4 S 4 /ZnS composites.
Physical nature of surface structure degradation in long term operated rails
NASA Astrophysics Data System (ADS)
Gromov, V. E.; Yuriev, A. A.; Peregudov, O. A.; Konovalov, S. V.; Ivanov, Yu. F.; Glezer, A. M.; Semin, A. P.
2017-12-01
Here we present research data on the structural-phase state and surface properties of rails after long-term operation with a transported tonnage of gross weight 500 and 1000 mln tons. Using optical, scanning, and transmission electron diffraction microscopy, and measurements of microhardness and tribological parameters, it is shown that the wear rate of the material after transport of 500 and 1000 mln tons increases 3 and 3.4 times, respectively, and the friction coefficient decreases 1.4 and 1.1 times. After transport of 500 mln tons, complete failure of cementite plates occurs resulting in round cementite particles of size 10-50 nm. After transport of 1000 mln tons, dynamic recrystallization develops in the material. Two competitive mechanisms are suggested for such evolution: (1) decomposition of cementite particles with their transfer to the volume of ferrite grains or plates in pearlite and (2) decomposition and dissolution of cementite particles, transition of carbon atoms to dislocations (to Cottrell atmospheres), transfer of carbon atoms by dislocations to the volume of ferrite grains or plates, and formation of nano-sized cementite particles.
NASA Technical Reports Server (NTRS)
Herley, P. J.; Levy, P. W.
1972-01-01
The X-ray and gamma-ray induced decomposition of ammonium perchlorate was studied by optical, transmission, and scanning electron microscopy. This material is a commonly used oxidizer in solid propellents which could be employed in deep-space probes, and where they will be subjected to a variety of radiations for as long as ten years. In some respects the radiation-induced damage closely resembles the effects produced by thermal decomposition, but in other respects the results differ markedly. Similar radiation and thermal effects include the following: (1) irregular or ill-defined circular etch pits are formed in both cases; (2) approximately the same size pits are produced; (3) the pit density is similar; (4) the c face is considerably more reactive than the m face; and (5) most importantly, many of the etch pits are aligned in crystallographic directions which are the same for thermal or radiolytic decomposition. Thus, dislocations play an important role in the radiolytic decomposition process.
NASA Astrophysics Data System (ADS)
Sun, Rui; Park, Kyoyeon; de Jong, Wibe A.; Lischka, Hans; Windus, Theresa L.; Hase, William L.
2012-07-01
Electronic structure calculations and direct chemical dynamics simulations are used to study the formation and decomposition of dioxetane on its ground state singlet potential energy surface. The stationary points for 1O2 + C2H4, the singlet .O-O-CH2-CH2. biradical, the transition state (TS) connecting this biradical with dioxetane, and the two transition states and gauche .O-CH2-CH2-O. biradical connecting dioxetane with the formaldehyde product molecules are investigated at different levels of electronic structure theory including UB3LYP, UMP2, MRMP2, and CASSCF and a range of basis sets. The UB3LYP/6-31G* method was found to give representative energies for the reactive system and was used as a model for the simulations. UB3LYP/6-31G* direct dynamics trajectories were initiated at the TS connecting the .O-O-CH2-CH2. biradical and dioxetane by sampling the TS's vibrational energy levels, and rotational and reaction coordinate energies, with Boltzmann distributions at 300, 1000, and 1500 K. This corresponds to the transition state theory model for trajectories that pass the TS. The trajectories were directed randomly towards both the biradical and dioxetane. A small fraction of the trajectories directed towards the biradical recrossed the TS and formed dioxetane. The remainder formed 1O2 + C2H4 and of these ˜ 40% went directly from the TS to 1O2 + C2H4 without getting trapped and forming an intermediate in the .O-O-CH2-CH2. biradical potential energy minimum, a non-statistical result. The dioxetane molecules which are formed dissociate to two formaldehyde molecules with a rate constant two orders of magnitude smaller than that predicted by Rice-Ramsperger-Kassel-Marcus theory. The reaction dynamics from dioxetane to the formaldehyde molecules do not follow the intrinsic reaction coordinate or involve trapping in the gauche .O-CH2-CH2-O. biradical potential energy minimum. Important non-statistical dynamics are exhibited for this reactive system.
Electron beam technology for multipollutant emissions control from heavy fuel oil-fired boiler.
Chmielewski, Andrzej G; Ostapczuk, Anna; Licki, Janusz
2010-08-01
The electron beam treatment technology for purification of exhaust gases from the burning of heavy fuel oil (HFO) mazout with sulfur content approximately 3 wt % was tested at the Institute of Nuclear Chemistry and Technology laboratory plant. The parametric study was conducted to determine the sulfur dioxide (SO2), oxides of nitrogen (NO(x)), and polycyclic aromatic hydrocarbon (PAH) removal efficiency as a function of temperature and humidity of irradiated gases, absorbed irradiation dose, and ammonia stoichiometry process parameters. In the test performed under optimal conditions with an irradiation dose of 12.4 kGy, simultaneous removal efficiencies of approximately 98% for SO2, and 80% for NO(x) were recorded. The simultaneous decrease of PAH and one-ringed aromatic hydrocarbon (benzene, toluene, and xylenes [BTX]) concentrations was observed in the irradiated flue gas. Overall removal efficiencies of approximately 42% for PAHs and 86% for BTXs were achieved with an irradiation dose 5.3 kGy. The decomposition ratio of these compounds increased with an increase of absorbed dose. The decrease of PAH and BTX concentrations was followed by the increase of oxygen-containing aromatic hydrocarbon concentrations. The PAH and BTX decomposition process was initialized through the reaction with hydroxyl radicals that formed in the electron beam irradiated flue gas. Their decomposition process is based on similar principles as the primary reaction concerning SO2 and NO(x) removal; that is, free radicals attack organic compound chains or rings, causing volatile organic compound decomposition. Thus, the electron beam flue gas treatment (EBFGT) technology ensures simultaneous removal of acid (SO2 and NO(x)) and organic (PAH and BTX) pollutants from flue gas emitted from burning of HFO. This technology is a multipollutant emission control technology that can be applied for treatment of flue gas emitted from coal-, lignite-, and HFO-fired boilers. Other thermal processes such as metallurgy and municipal waste incinerators are potential candidates for this technology application.
Wicker, Susanne; Wang, Xiao; Erichsen, Egil Severin; Fu, Feng
2018-01-01
Crystalline ZnO-ROH and ZnO-OR (R = Me, Et, iPr, nBu) nanoparticles (NPs) have been successfully synthesized by the thermal decomposition of in-situ-formed organozinc complexes Zn(OR)2 deriving from the reaction of Zn[N(SiMe3)2]2 with ROH and of the freshly prepared Zn(OR)2 under an identical condition, respectively. With increasing carbon chain length of alkyl alcohol, the thermal decomposition temperature and dispersibility of in-situ-formed intermediate zinc alkoxides in oleylamine markedly influenced the particle sizes of ZnO-ROH and its shape (sphere, plate-like aggregations), while a strong diffraction peak-broadening effect is observed with decreasing particle size. For ZnO-OR NPs, different particle sizes and various morphologies (hollow sphere or cuboid-like rod, solid sphere) are also observed. As a comparison, the calcination of the fresh-prepared Zn(OR)2 generated ZnO-R NPs possessing the particle sizes of 5.4~34.1 nm. All crystalline ZnO nanoparticles are characterized using X-ray diffraction analysis, electron microscopy and solid-state 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The size effect caused by confinement of electrons’ movement and the defect centres caused by unpaired electrons on oxygen vacancies or ionized impurity heteroatoms in the crystal lattices are monitored by UV-visible spectroscopy, electron paramagnetic resonance (EPR) and photoluminescent (PL) spectroscopy, respectively. Based on the types of defects determined by EPR signals and correspondingly defect-induced probably appeared PL peak position compared to actual obtained PL spectra, we find that it is difficult to establish a direct relationship between defect types and PL peak position, revealing the complication of the formation of defect types and photoluminescence properties. PMID:29300343
Yang, Wenjuan; Wen, Yanwei; Chen, Rong; Zeng, Dawen; Shan, Bin
2014-10-21
First-principle calculations have been carried out to investigate structural stabilities, electronic structures and optical properties of tungsten doped bismuth oxychloride (BiOCl). The structures of substitutional and interstitial tungsten, and in the form of WO6-ligand-doped BiOCl are examined. The substitutional and interstitial tungsten doping leads to discrete midgap states within the forbidden band gap, which has an adverse effect on the photocatalytic properties. On the other hand, the WO6-ligand-doped BiOCl structure induces a continuum of hybridized states in the forbidden gap, which favors transport of electrons and holes and could result in enhancement of visible light activity. In addition, the band gap of WO6-BiOCl decreases by 0.25 eV with valence band maximum (VBM) shifting upwards compared to that of pure BiOCl. By calculating optical absorption spectra of pure BiOCl and WO6-ligand-doped BiOCl structure, it is found that the absorption peak of the WO6-ligand-doped BiOCl structure has a red shift towards visible light compared with that of pure BiOCl, which agrees well with experimental observations. These results reveal the tungsten doped BiOCl system as a promising material in photocatalytic decomposition of organics and water splitting under sunlight irradiation.
Theoretical studies of the decomposition mechanisms of 1,2,4-butanetriol trinitrate.
Pei, Liguan; Dong, Kehai; Tang, Yanhui; Zhang, Bo; Yu, Chang; Li, Wenzuo
2017-12-06
Density functional theory (DFT) and canonical variational transition-state theory combined with a small-curvature tunneling correction (CVT/SCT) were used to explore the decomposition mechanisms of 1,2,4-butanetriol trinitrate (BTTN) in detail. The results showed that the γ-H abstraction reaction is the initial pathway for autocatalytic BTTN decomposition. The three possible hydrogen atom abstraction reactions are all exothermic. The rate constants for autocatalytic BTTN decomposition are 3 to 10 40 times greater than the rate constants for the two unimolecular decomposition reactions (O-NO 2 cleavage and HONO elimination). The process of BTTN decomposition can be divided into two stages according to whether the NO 2 concentration is above a threshold value. HONO elimination is the main reaction channel during the first stage because autocatalytic decomposition requires NO 2 and the concentration of NO 2 is initially low. As the reaction proceeds, the concentration of NO 2 gradually increases; when it exceeds the threshold value, the second stage begins, with autocatalytic decomposition becoming the main reaction channel.
Ab initio kinetics of gas phase decomposition reactions.
Sharia, Onise; Kuklja, Maija M
2010-12-09
The thermal and kinetic aspects of gas phase decomposition reactions can be extremely complex due to a large number of parameters, a variety of possible intermediates, and an overlap in thermal decomposition traces. The experimental determination of the activation energies is particularly difficult when several possible reaction pathways coexist in the thermal decomposition. Ab initio calculations intended to provide an interpretation of the experiment are often of little help if they produce only the activation barriers and ignore the kinetics of the decomposition process. To overcome this ambiguity, a theoretical study of a complete picture of gas phase thermo-decomposition, including reaction energies, activation barriers, and reaction rates, is illustrated with the example of the β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) molecule by means of quantum-chemical calculations. We study three types of major decomposition reactions characteristic of nitramines: the HONO elimination, the NONO rearrangement, and the N-NO(2) homolysis. The reaction rates were determined using the conventional transition state theory for the HONO and NONO decompositions and the variational transition state theory for the N-NO(2) homolysis. Our calculations show that the HMX decomposition process is more complex than it was previously believed to be and is defined by a combination of reactions at any given temperature. At all temperatures, the direct N-NO(2) homolysis prevails with the activation barrier at 38.1 kcal/mol. The nitro-nitrite isomerization and the HONO elimination, with the activation barriers at 46.3 and 39.4 kcal/mol, respectively, are slow reactions at all temperatures. The obtained conclusions provide a consistent interpretation for the reported experimental data.
Catalytic decomposition of toxic chemicals over iron group metals supported on carbon nanotubes.
Li, Lili; Chen, Can; Chen, Long; Zhu, Zixue; Hu, Jianli
2014-03-18
This study explores catalytic decomposition of phosphine (PH3) using iron group metals (Co, Ni) and metal oxides (Fe2O3, Co(3)O4, NiO) supported on carbon nanotubes (CNTs). The catalysts are synthesized by means of a deposition-precipitation method. The morphology, structure, and composition of the catalysts are characterized using a number of analytical instrumentations, including high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, BET surface area measurement, and inductively coupled plasma. The activity of the catalysts in the PH3 decomposition reaction is measured and correlated with their surface and structural properties. The characterization results show that phosphidation occurs on the catalyst surface, and the resulting metal phosphides act as an active phase in the PH3 decomposition reaction. Cobalt phosphide, CoP, is formed on Co/CNTs and Co(3)O4/CNTs, whereas iron phosphide, FeP, is formed on Fe2O3/CNTs. In contrast, phosphorus-rich phosphide NiP2 is formed on Ni/CNTs and NiO/CNTs. The initial activities of the catalysts are shown in the following sequence: Ni/CNTs > Co/CNTs > Co(3)O4/CNTs >NiO/CNTs > Fe2O3/CNTs, whereas activities of metal phosphides are shown in the following order: CoP > NiP2 > FeP. The catalytic activity of metal phosphides is attributed to their electronic properties. Cobalt phosphide formed on Co/CNTs and Co(3)O4/CNTs exhibits not only the highest activity, but also long-term stability in the PH3 decomposition reaction.
NASA Astrophysics Data System (ADS)
Fan, Hong-Yi; Fan, Yue
2002-01-01
By virtue of the technique of integration within an ordered product of operators and the Schmidt decomposition of the entangled state |η〉, we reduce the general projection calculation in the theory of quantum teleportation to a as simple as possible form and present a general formalism for teleportating quantum states of continuous variable. The project supported by National Natural Science Foundation of China and Educational Ministry Foundation of China
Stress-induced activation of decomposition of organic explosives: a simple way to understand.
Zhang, Chaoyang
2013-01-01
We provide a very simply way to understand the stress-induced activation of decomposition of organic explosives by taking the simplest explosive molecule nitromethane (NM) as a prototype and constraining one or two NM molecules in a shell to represent the condensed phrase of NM against the stress caused by tension and compression, sliding and rotational shear, and imperfection. The results show that the stress loaded on NM molecule can always reduce the barriers of its decomposition. We think the origin of this stress-induced activation is due to the increased repulsive intra- and/or inter- molecular interaction potentials in explosives resulted from the stress, whose release is positive to accelerate the decomposition. Besides, by these models, we can understand that the explosives in gaseous state are easier to analyze than those in condensed state and the voids in condensed explosives make them more sensitive to external stimuli relative to the perfect crystals.
Kinetic energy as functional of the correlation hole
NASA Astrophysics Data System (ADS)
Nalewajski, Roman F.
2003-01-01
Using the marginal decomposition of the many-body probability distribution the electronic kinetic energy is expressed as the functional of the electron density and correlation hole. The analysis covers both the molecule as a whole and its constituent subsystems. The importance of the Fisher information for locality is emphasized.
Hydrogen production by photoelectrolytic decomposition of H2O using solar energy
NASA Technical Reports Server (NTRS)
Rauh, R. D.; Alkaitis, S. A.; Buzby, J. M.; Schiff, R.
1980-01-01
Photoelectrochemical systems for the efficient decomposition of water are discussed. Semiconducting d band oxides which would yield the combination of stability, low electron affinity, and moderate band gap essential for an efficient photoanode are sought. The materials PdO and Fe-xRhxO3 appear most likely. Oxygen evolution yields may also be improved by mediation of high energy oxidizing agents, such as CO3(-). Examination of several p type semiconductors as photocathodes revealed remarkable stability for p-GaAs, and also indicated p-CdTe as a stable H2 photoelectrode. Several potentially economical schemes for photoelectrochemical decomposition of water were examined, including photoelectrochemical diodes and two stage, four photon processes.
NASA Astrophysics Data System (ADS)
Wang, Fenggong; Tsyshevsky, Roman; Zverev, Anton; Mitrofanov, Anatoly; Kuklja, Maija
Organic-inorganic interfaces provide both intrigues and opportunities for designing systems that possess properties and functionalities inaccessible by each individual component. In particular, mixing with a photocatalyst may significantly affect the adsorption, decomposition, and photoresponse of organic molecules. Here, we choose the formulation of TiO2 and trinitrotoluene (TNT), a highly catalytic oxide and a prominent explosive, as a prototypical example to explore the interaction at the interface on the photosensitivity of energetic materials. We show that, whether or not a catalytic oxide additive can help molecular decompositions under light illumination depends largely on the band alignment between the oxide surface and the energetic molecule. Furthermore, an oxygen vacancy can lead to the electron density transfer from the surface to the energetic molecules, causing an enhancement of the bonding between molecules and surface and a reduction of the molecular decomposition activation barriers.
The effect of alkali metal on the surface properties of potassium doped Au-Beta zeolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobczak, Izabela, E-mail: sobiza@amu.edu.pl; Rydz, Michal; Ziolek, Maria
2013-02-15
Graphical abstract: Display Omitted Highlights: ► Interaction of gold with K leads to the change of electronic state and redox properties of gold. ► The amount of potassium incorporated into Au-zeolites determines the size of gold particles. ► K(0.2 wt.%)/Au-Beta exhibits the best performance in decomposition of N{sub 2}O and removal of Bu{sub 2}S. -- Abstract: Beta zeolite was applied as support for gold introduced by gold-precipitation method and potassium added by impregnation or adsorption. The effect of zeolite composition and the amount of potassium introduced on the surface properties of the final materials was considered. Moreover, the interaction ofmore » gold and potassium species was found to be related to the adsorptive and catalytic behaviour of zeolites in NO reduction with propene and deodorization. K/Au-Beta(Impregnated) exhibits the best performance in the above mentioned processes because of the small gold particles (between 2 and 5 nm) and interaction of gold with potassium species leading to the change of electronic properties of the surface (the appearance of cationic gold species). Potassium added as a promoter improves the catalytic properties of Au-zeolite in N{sub 2}O decomposition and also in deodorization (increase of the ability to dibutyl sulphide oxidation). The catalysts prepared were characterized by XRD, XPS, UV–vis, TEM, pyridine adsorption combined with FTIR and test reaction (2-propanol transformation).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Hai; University of Chinese Academy of Sciences, Beijing 100049; Lv, Baoliang, E-mail: lbl604@sxicc.ac.cn
2014-12-15
Graphical abstract: Co{sub 3}O{sub 4} nanowires with excellent ammonium perchlorate catalytic decomposition property were synthesized via a methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process in the presence of methanamide. - Abstract: Co{sub 3}O{sub 4} nanowires, with the length of tens of micrometers and the width of several hundred nanometers, were produced by a hydrothermal treatment and a post-anneal process. X-ray diffraction (XRD) result showed that the Co{sub 3}O{sub 4} nanowires belong to cubic crystal system. Scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM) analysis indicated that the Co{sub 3}O{sub 4} nanowires, composed by single crystalline nanoparticles, were of polycrystallinemore » nature. On the basis of time-dependent experiments, methanamide-assisted hydrolysis and subsequent dissolution–recrystallization process were used to explain the precursors' formation process of the polycrystalline Co{sub 3}O{sub 4} nanowires. The TGA experiments showed that the as-obtained Co{sub 3}O{sub 4} nanowires can catalyze the thermal decomposition of ammonium perchlorate (AP) effectively.« less
Solventless synthesis, morphology, structure and magnetic properties of iron oxide nanoparticles
NASA Astrophysics Data System (ADS)
Das, Bratati; Kusz, Joachim; Reddy, V. Raghavendra; Zubko, Maciej; Bhattacharjee, Ashis
2017-12-01
In this study we report the solventless synthesis of iron oxide through thermal decomposition of acetyl ferrocene as well as its mixtures with maliec anhydride and characterization of the synthesized product by various comprehensive physical techniques. Morphology, size and structure of the reaction products were investigated by scanning electron microscopy, transmission electron microscopy and X-ray powder diffraction technique, respectively. Physical characterization techniques like FT-IR spectroscopy, dc magnetization study as well as 57Fe Mössbauer spectroscopy were employed to characterize the magnetic property of the product. The results observed from these studies unequivocally established that the synthesized materials are hematite. Thermal decomposition has been studied with the help of thermogravimetry. Reaction pathway for synthesis of hematite has been proposed. It is noted that maliec anhydride in the solid reaction environment as well as the gaseous reaction atmosphere strongly affect the reaction yield as well as the particle size. In general, a method of preparing hematite nanoparticles through solventless thermal decomposition technique using organometallic compounds and the possible use of reaction promoter have been discussed in detail.
Some aspects of the thermodynamic behaviour of the lead-doped Bi-2223 system
NASA Astrophysics Data System (ADS)
Tetenbaum, M.; Maroni, V. A.
1996-02-01
A thermodynamic assessment of lead-doped Bi-2223 with emphasis on compositions and oxygen partial pressures within the homogeneity region prior to solid-state decomposition is presented. Equations for the variation of oxygen partial pressure with composition and temperature have been derived from our EMF measurements. Long-term metastability was indicated during cycling over a temperature range of ∼ 700-815°C of a lead-doped Bi-2223 sample having an oxygen-deficient stoichiometry of 9.64 prior to solid-state decomposition corresponding to the diphasic CuOCu 2O system. A trend of increasing negative values of the partial molar enthalpy Δ overlineH( O 2) and entropy Δ overlineS( O2 with increasing oxygen deficiency of the condensed phase indicated an increase in ordering of the cuprate structure prior to solid-state decomposition.
A general framework of noise suppression in material decomposition for dual-energy CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrongolo, Michael; Dong, Xue; Zhu, Lei, E-mail: leizhu@gatech.edu
Purpose: As a general problem of dual-energy CT (DECT), noise amplification in material decomposition severely reduces the signal-to-noise ratio on the decomposed images compared to that on the original CT images. In this work, the authors propose a general framework of noise suppression in material decomposition for DECT. The method is based on an iterative algorithm recently developed in their group for image-domain decomposition of DECT, with an extension to include nonlinear decomposition models. The generalized framework of iterative DECT decomposition enables beam-hardening correction with simultaneous noise suppression, which improves the clinical benefits of DECT. Methods: The authors propose tomore » suppress noise on the decomposed images of DECT using convex optimization, which is formulated in the form of least-squares estimation with smoothness regularization. Based on the design principles of a best linear unbiased estimator, the authors include the inverse of the estimated variance–covariance matrix of the decomposed images as the penalty weight in the least-squares term. Analytical formulas are derived to compute the variance–covariance matrix for decomposed images with general-form numerical or analytical decomposition. As a demonstration, the authors implement the proposed algorithm on phantom data using an empirical polynomial function of decomposition measured on a calibration scan. The polynomial coefficients are determined from the projection data acquired on a wedge phantom, and the signal decomposition is performed in the projection domain. Results: On the Catphan{sup ®}600 phantom, the proposed noise suppression method reduces the average noise standard deviation of basis material images by one to two orders of magnitude, with a superior performance on spatial resolution as shown in comparisons of line-pair images and modulation transfer function measurements. On the synthesized monoenergetic CT images, the noise standard deviation is reduced by a factor of 2–3. By using nonlinear decomposition on projections, the authors’ method effectively suppresses the streaking artifacts of beam hardening and obtains more uniform images than their previous approach based on a linear model. Similar performance of noise suppression is observed in the results of an anthropomorphic head phantom and a pediatric chest phantom generated by the proposed method. With beam-hardening correction enabled by their approach, the image spatial nonuniformity on the head phantom is reduced from around 10% on the original CT images to 4.9% on the synthesized monoenergetic CT image. On the pediatric chest phantom, their method suppresses image noise standard deviation by a factor of around 7.5, and compared with linear decomposition, it reduces the estimation error of electron densities from 33.3% to 8.6%. Conclusions: The authors propose a general framework of noise suppression in material decomposition for DECT. Phantom studies have shown the proposed method improves the image uniformity and the accuracy of electron density measurements by effective beam-hardening correction and reduces noise level without noticeable resolution loss.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salo, Heikki; Laurikainen, Eija; Laine, Jarkko
The Spitzer Survey of Stellar Structure in Galaxies (S{sup 4}G) is a deep 3.6 and 4.5 μm imaging survey of 2352 nearby (<40 Mpc) galaxies. We describe the S{sup 4}G data analysis pipeline 4, which is dedicated to two-dimensional structural surface brightness decompositions of 3.6 μm images, using GALFIT3.0. Besides automatic 1-component Sérsic fits, and 2-component Sérsic bulge + exponential disk fits, we present human-supervised multi-component decompositions, which include, when judged appropriate, a central point source, bulge, disk, and bar components. Comparison of the fitted parameters indicates that multi-component models are needed to obtain reliable estimates for the bulge Sérsicmore » index and bulge-to-total light ratio (B/T), confirming earlier results. Here, we describe the preparations of input data done for decompositions, give examples of our decomposition strategy, and describe the data products released via IRSA and via our web page (www.oulu.fi/astronomy/S4G-PIPELINE4/MAIN). These products include all the input data and decomposition files in electronic form, making it easy to extend the decompositions to suit specific science purposes. We also provide our IDL-based visualization tools (GALFIDL) developed for displaying/running GALFIT-decompositions, as well as our mask editing procedure (MASK-EDIT) used in data preparation. A detailed analysis of the bulge, disk, and bar parameters derived from multi-component decompositions will be published separately.« less
Patel, Jayesh D; Mighri, Frej; Ajji, Abdellah; Chaudhuri, Tapas K
2015-04-01
The present work deals with two different CdS nanostructures produced via hydrothermal and solvothermal decompositions of aminocaproic acid (ACA)-mixed Cd-thiourea complex precursor at 175 °C. Both nanostructures were extensively characterized for their structural, morphological and optical properties. The powder X-ray diffraction characterization showed that the two CdS nanostructures present a wurtzite morphology. Scanning electron microscopy and energy-dispersive X-ray characterizations revealed that the hydrothermal decomposition produced well-shaped CdS flowers composed of six dendritic petals, and the solvothermal decomposition produced CdS microspheres with close stoichiometric chemical composition. The UV-vis absorption and photoluminescence spectra of CdS dendritic flowers and microsphere nanostructures showed that both nanostructures present a broad absorption between 200 and 700 nm and exhibit strong green emissions at 576 and 520 nm upon excitations at 290 nm and 260 nm, respectively. The transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) characterizations confirmed that CdS microspheres were mesoporous and were composed of small nanocrystals. A possible growth mechanism in the formation of the CdS nanostructures was proposed based on morphology evolution as a function of the reaction time. Furthermore, the as-synthesized CdS nanostructures were found to exhibit highly efficient photocatalytic activities for the degradation of methyl orange (MeO) and rhodamine B (RhB) dyes.
Lorentz microscopy sheds light on the role of dipolar interactions in magnetic hyperthermia
NASA Astrophysics Data System (ADS)
Campanini, M.; Ciprian, R.; Bedogni, E.; Mega, A.; Chiesi, V.; Casoli, F.; de Julián Fernández, C.; Rotunno, E.; Rossi, F.; Secchi, A.; Bigi, F.; Salviati, G.; Magén, C.; Grillo, V.; Albertini, F.
2015-04-01
Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates.Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation states of the nanoparticles. Moreover, the presence of magnetic dipolar interactions can strongly affect the nanoparticle efficiency as a hyperthermic mediator. In this paper, we present a novel way to visualize and map the magnetic dipolar interactions in different kinds of nanoparticle aggregates by the use of Lorentz microscopy, an easy and reliable in-line electron holographic technique. By exploiting Lorentz microscopy, which is complementary to the magnetic measurements, it is possible to correlate the interaction degrees of magnetic nanoparticles with their magnetic behaviors. In particular, we demonstrate that Lorentz microscopy is successful in visualizing the magnetic configurations stabilized by dipolar interactions, thus paving the way to the comprehension of the power loss mechanisms for different nanoparticle aggregates. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr00273g
Perfluoropolyalkylether decomposition on catalytic aluminas
NASA Technical Reports Server (NTRS)
Morales, Wilfredo
1994-01-01
The decomposition of Fomblin Z25, a commercial perfluoropolyalkylether liquid lubricant, was studied using the Penn State Micro-oxidation Test, and a thermal gravimetric/differential scanning calorimetry unit. The micro-oxidation test was conducted using 440C stainless steel and pure iron metal catalyst specimens, whereas the thermal gravimetric/differential scanning calorimetry tests were conducted using catalytic alumina pellets. Analysis of the thermal data, high pressure liquid chromatography data, and x-ray photoelectron spectroscopy data support evidence that there are two different decomposition mechanisms for Fomblin Z25, and that reductive sites on the catalytic surfaces are responsible for the decomposition of Fomblin Z25.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberger, David; Evlyukhin, Egor; Cifligu, Petrika
We report measurements of the X-ray-induced decomposition of crystalline strontium oxalate (SrC2O4) as a function of energy and high pressure in two separate experiments. SrC2O4 at ambient conditions was irradiated with monochromatic synchrotron X-rays ranging in energy from 15 to 28 keV. A broad resonance of the decomposition yield was observed with a clear maximum when irradiating with ~20 keV X-rays and ambient pressure. Little or no decomposition was observed at 15 keV, which is below the Sr K-shell energy of 16.12 keV, suggesting that excitation of core electrons may play an important role in the destabilization of the C2O42–more » anion. A second experiment was performed to investigate the high-pressure dependence of the X-ray-induced decomposition of strontium oxalate at fixed energy. SrC2O4 was compressed in a diamond anvil cell (DAC) in the pressure range from 0 to 7.6 GPa with 1 GPa increments and irradiated in situ with 20 keV X-rays. A marked pressure dependence of the decomposition yield of SrC2O4 was observed with a decomposition yield maximum at around 1 GPa, suggesting that different crystal structures of the material play an important role in the decomposition process. This may be due in part to a phase transition observed near this pressure.« less
Goldberger, David; Evlyukhin, Egor; Cifligu, Petrika; Wang, Yonggang; Pravica, Michael
2017-09-28
We report measurements of the X-ray-induced decomposition of crystalline strontium oxalate (SrC 2 O 4 ) as a function of energy and high pressure in two separate experiments. SrC 2 O 4 at ambient conditions was irradiated with monochromatic synchrotron X-rays ranging in energy from 15 to 28 keV. A broad resonance of the decomposition yield was observed with a clear maximum when irradiating with ∼20 keV X-rays and ambient pressure. Little or no decomposition was observed at 15 keV, which is below the Sr K-shell energy of 16.12 keV, suggesting that excitation of core electrons may play an important role in the destabilization of the C 2 O 4 2- anion. A second experiment was performed to investigate the high-pressure dependence of the X-ray-induced decomposition of strontium oxalate at fixed energy. SrC 2 O 4 was compressed in a diamond anvil cell (DAC) in the pressure range from 0 to 7.6 GPa with 1 GPa increments and irradiated in situ with 20 keV X-rays. A marked pressure dependence of the decomposition yield of SrC 2 O 4 was observed with a decomposition yield maximum at around 1 GPa, suggesting that different crystal structures of the material play an important role in the decomposition process. This may be due in part to a phase transition observed near this pressure.
NASA Astrophysics Data System (ADS)
Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh; Nekrasov, Kirill A.; Kichigina, Natalia V.
2018-02-01
The structural, electronic, and vibrational properties of bulk platinum oxide (PtO) at compressive pressures in the interval from 0 GPa to 35 GPa are investigated using the density functional theory. The calculated electronic band structure of PtO shows poor metallicity at very low density of states on the Fermi level. However, the hybrid pseudopotential calculation yielded 0.78 eV and 1.30 eV direct band and indirect gap, respectively. Importantly, our results predict that PtO has a direct band gap within the framework of HSE06, and it prefers equally zero magnetic order at different pressures. In the Raman spectra, peaks are slightly shifted towards higher frequency with the decrease in pressure. We have also calculated the thermoelectric properties, namely the electronic thermal conductivity and electrical conductivity, with respect to temperature and thermodynamic properties such as entropy, specific heat at constant volume, enthalpy and Gibbs free energy with respect to pressure. The result shows that PtO is a promising candidate for use as a catalyst, in sensors, as a photo-cathode in water electrolysis, for thermal decomposition of inorganic salt and fuel cells.
Can visible light impact litter decomposition under pollution of ZnO nanoparticles?
Du, Jingjing; Zhang, Yuyan; Liu, Lina; Qv, Mingxiang; Lv, Yanna; Yin, Yifei; Zhou, Yinfei; Cui, Minghui; Zhu, Yanfeng; Zhang, Hongzhong
2017-11-01
ZnO nanoparticles is one of the most used materials in a wide range including antibacterial coating, electronic device, and personal care products. With the development of nanotechnology, ecotoxicology of ZnO nanoparticles has been received increasing attention. To assess the phototoxicity of ZnO nanoparticles in aquatic ecosystem, microcosm experiments were conducted on Populus nigra L. leaf litter decomposition under combined effect of ZnO nanoparticles and visible light radiation. Litter decomposition rate, pH value, extracellular enzyme activity, as well as the relative contributions of fungal community to litter decomposition were studied. Results showed that long-term exposure to ZnO nanoparticles and visible light led to a significant decrease in litter decomposition rate (0.26 m -1 vs 0.45 m -1 ), and visible light would increase the inhibitory effect (0.24 m -1 ), which caused significant decrease in pH value of litter cultures, fungal sporulation rate, as well as most extracellular enzyme activities. The phototoxicity of ZnO nanoparticles also showed impacts on fungal community composition, especially on the genus of Varicosporium, whose abundance was significantly and positively related to decomposition rate. In conclusion, our study provides the evidence for negatively effects of ZnO NPs photocatalysis on ecological process of litter decomposition and highlights the contribution of visible light radiation to nanoparticles toxicity in freshwater ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals
NASA Astrophysics Data System (ADS)
Ge, Qinghui; Mao, Yuezhi; Head-Gordon, Martin
2018-02-01
An energy decomposition analysis (EDA) scheme is developed for understanding the intermolecular interaction involving molecules in their excited states. The EDA utilizes absolutely localized molecular orbitals to define intermediate states and is compatible with excited state methods based on linear response theory such as configuration interaction singles and time-dependent density functional theory. The shift in excitation energy when an excited molecule interacts with the environment is decomposed into frozen, polarization, and charge transfer contributions, and the frozen term can be further separated into Pauli repulsion and electrostatics. These terms can be added to their counterparts obtained from the ground state EDA to form a decomposition of the total interaction energy. The EDA scheme is applied to study a variety of systems, including some model systems to demonstrate the correct behavior of all the proposed energy components as well as more realistic systems such as hydrogen-bonding complexes (e.g., formamide-water, pyridine/pyrimidine-water) and halide (F-, Cl-)-water clusters that involve charge-transfer-to-solvent excitations.
Phase decomposition and ordering in Ni-11.3 at.% Ti studied with atom probe tomography.
Al-Kassab, T; Kompatscher, M; Kirchheim, R; Kostorz, G; Schönfeld, B
2014-09-01
The decomposition behavior of Ni-rich Ni-Ti was reassessed using Tomographic Atom Probe (TAP) and Laser Assisted Wide Angle Tomographic Atom Probe. Single crystalline specimens of Ni-11.3 at.% Ti were investigated, the states selected from the decomposition path were the metastable γ″ and γ' states introduced on the basis of small-angle neutron scattering (SANS) and the two-phase model for evaluation. The composition values of the precipitates in these states could not be confirmed by APT data as the interface of the ordered precipitates may not be neglected. The present results rather suggest to apply a three-phase model for the interpretation of SANS measurements, in which the width of the interface remains nearly unchanged and the L12 structure close to 3:1 stoichiometry is maintained in the core of the precipitates from the γ″ to the γ' state. Copyright © 2014 Elsevier Ltd. All rights reserved.
Decomposition of PCBs in transformer oil using an electron beam accelerator
NASA Astrophysics Data System (ADS)
Jung, In-Ha; Lee, Myun-Joo; Mah, Yoon-Jung
2012-07-01
Decomposition of PCBs in commercially used transformer oil used for more than 30 years has been carried out at normal temperature and pressure without any additives using an electron beam accelerator. The experiments were carried out in two ways: batch and continuous pilot plant with 1.5 MeV of energy, a 50 mA current, and 75 kW of power in a commercial scale accelerator. The electron beam irradiation seemed to transform large molecular weight compounds into lower ones, but the impact was considered too small on the physical properties of oil. Residual concentrations of PCBs after irradiation depend on the absorption dose of the electron beam energy, but aliphatic chloride compounds were produced at higher doses of irradiation. As the results from FT-NMR, chloride ions decomposed from the PCBs are likely to react with aliphatic hydro carbon compounds rather than existing as free radical ions in the transformer oil. Since this is a dry process, treated oil can be used as cutting oil or machine oil for heavy equipment without any additional treatments.
Tsegaw, Yetsedaw Andargie; Sander, Wolfram; Kaiser, Ralf I
2016-03-10
Thin films of nitromethane (CH3NO2) along with its isotopically labeled counterpart D3-nitromethane (CD3NO2) were photolyzed at discrete wavelength between 266 nm (4.7 eV) and 121 nm (10.2 eV) to explore the underlying mechanisms involved in the decomposition of model compounds of energetic materials in the condensed phase at 5 K. The chemical modifications of the ices were traced in situ via electron paramagnetic resonance, thus focusing on the detection of (hitherto elusive) reaction intermediates and products with unpaired electrons. These studies revealed the formation of two carbon-centered radicals [methyl (CH3), nitromethyl (CH2NO2)], one oxygen-centered radical [methoxy (CH3O)], two nitrogen-centered radicals [nitrogen monoxide (NO), nitrogen dioxide (NO2)], as well as atomic hydrogen (H). The decomposition products of these channels and the carbon-centered nitromethyl (CH2NO2) radical in particular represent crucial reaction intermediates leading via sequential molecular mass growth processes in the exposed nitromethane samples to complex organic molecules as predicted previously by dynamics calculations. The detection of the nitromethyl (CH2NO2) radical along with atomic hydrogen (H) demonstrated the existence of a high-energy decomposition pathway, which is closed under collisionless conditions in the gas phase.
Adsorbing H₂S onto a single graphene sheet: A possible gas sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reshak, A. H., E-mail: maalidph@yahoo.co.uk; Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis; Auluck, S.
2014-09-14
The electronic structure of pristine graphene sheet and the resulting structure of adsorbing a single molecule of H₂S on pristine graphene in three different sites (bridge, top, and hollow) are studied using the full potential linearized augmented plane wave method. Our calculations show that the adsorption of H₂S molecule on the bridge site opens up a small direct energy gap of about 0.1 eV at symmetry point M, while adsorption of H₂S on top site opens a gap of 0.3 eV around the symmetry point K. We find that adsorbed H₂S onto the hollow site of pristine graphene sheet causesmore » to push the conduction band minimum and the valence band maximum towards Fermi level resulting in a metallic behavior. Comparing the angular momentum decomposition of the atoms projected electronic density of states of pristine graphene sheet with that of H₂S–graphene for three different cases, we find a significant influence of the location of the H₂S molecule on the electronic properties especially the strong hybridization between H₂S molecule and graphene sheet.« less
Nanopatterning on calixarene thin films via low-energy field-emission scanning probe lithography.
He, Xiaoyue; Li, Peng; Liu, Pengchong; Zhang, Xiaoxian; Zhou, Xiangqian; Liu, Wei; Qiu, Xiaohui
2018-08-10
Field-emitted, low-energy electrons from the conducting tip of an atomic force microscope were adopted for nanolithography on calixarene ultrathin films coated on silicon wafers. A structural evolution from protrusion to depression down to a 30 nm spatial resolution was reproducibly obtained by tuning the sample voltage and exposure current in the lithography process. Close analyses of the profiles showed that the nanostructures formed by a single exposure with a high current are almost identical to those created by cumulative exposure with a lower current but an equal number of injected electrons. Surface potential imaging by Kelvin probe force microscopy found a negatively charged region surrounding the groove structures once the structures were formed. We conclude that the mechanism related to the formation of a temporary negative state and molecule decomposition, rather than thermal ablation, is responsible for the low-energy field-emission electron lithography on a calixarene molecular resist. We hope that our elucidation of the underlying mechanism is helpful for molecular resist design and further improving the reproducibility and throughput of nanolithography.
Navarathne, Daminda; Skene, W G
2013-12-11
A series of symmetric and unsymmetric conjugated azomethines derived from cinnamaldehyde and 2,5-diaminothiophene-3,4-dicarboxylic acid diethyl ester were prepared. The optical, electrochemical, and spectroelectrochemical properties of the electronic push-pull and push-push triads were investigated. Their properties could be tuned contingent on the cinnamaldehyde's electron withdrawing and donating substituents. The push-push symmetric derivative exhibited positive solvatochromism with the absorbance spanning some 31 nm, depending on the solvent polarity. Solvent dependent spectroelectrochemistry was also found for the symmetric push-push azomethine. The color of the neutral state and radical cation spanned 215 nm. The most pronounced color transition of the purple colored material was found in dimethyl sulfoxide (DMSO), where the color bleached with electrochemical oxidation. This was a result of the absorbance shifting into the near infrared (NIR) and not from decomposition of the azomethine. Electrochromic devices with the azomethines possessing desired reversible oxidation and color changes in the visible were fabricated and tested to demonstrate the applicability of these azomethine triads in devices.
Self Organization in Compensated Semiconductors
NASA Astrophysics Data System (ADS)
Berezin, Alexander A.
2004-03-01
In partially compensated semiconductor (PCS) Fermi level is pinned to donor sub-band. Due to positional randomness and almost isoenergetic hoppings, donor-spanned electronic subsystem in PCS forms fluid-like highly mobile collective state. This makes PCS playground for pattern formation, self-organization, complexity emergence, electronic neural networks, and perhaps even for origins of life, bioevolution and consciousness. Through effects of impact and/or Auger ionization of donor sites, whole PCS may collapse (spinodal decomposition) into microblocks potentially capable of replication and protobiological activity (DNA analogue). Electronic screening effects may act in RNA fashion by introducing additional length scale(s) to system. Spontaneous quantum computing on charged/neutral sites becomes potential generator of informationally loaded microstructures akin to "Carl Sagan Effect" (hidden messages in Pi in his "Contact") or informational self-organization of "Library of Babel" of J.L. Borges. Even general relativity effects at Planck scale (R.Penrose) may affect the dynamics through (e.g.) isotopic variations of atomic mass and local density (A.A.Berezin, 1992). Thus, PCS can serve as toy model (experimental and computational) at interface of physics and life sciences.
Microbial interactions during carrion decomposition
USDA-ARS?s Scientific Manuscript database
This addresses the microbial ecology of carrion decomposition in the age of metagenomics. It describes what is known about the microbial communities on carrion, including a brief synopsis about the communities on other organic matter sources. It provides a description of studies using state-of-the...
Ab initio calculation of the electronic absorption spectrum of liquid water
NASA Astrophysics Data System (ADS)
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa
2014-04-01
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are in good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O-H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.
Mechanistical Studies on the Irradiation of Methanol in Extraterrestrial Ices
NASA Astrophysics Data System (ADS)
Bennett, Chris J.; Chen, Shih-Hua; Sun, Bing-Jian; Chang, Agnes H. H.; Kaiser, Ralf I.
2007-05-01
Pure ices of amorphous methanol, CH3OH(X1A'), were irradiated at 11 K by 5 keV electrons at 100 nA for 1 hr. These energetic electrons simulate electronic energy transfer processes that occur as interstellar ices, comets, and icy solar system bodies are subjected to irradiation from MeV ions and secondary electrons produced in this process. The results were analyzed quantitatively via absorption-reflection-absorption Fourier transform infrared (FTIR) spectroscopy, with the identification of new species aided by high-level electronic structure calculations. The unimolecular decomposition of methanol was found to proceed via the formation of (1) the hydroxymethyl radical, CH2OH(X2A''), and atomic hydrogen, H(2S1/2), (2) the methoxy radical, CH3O(X2A'), plus atomic hydrogen, (3) formaldehyde, H2CO(X1A1) plus molecular hydrogen, H2(X1Σ+g), and (4) the formation of methane, CH4(X1A1), together with atomic oxygen, O(1D). The accessibility of the last channel indicates that the reverse process, oxygen addition into methane to form methanol, should also be feasible. A kinetic model is presented for the decomposition of methanol into these species, as well as the formyl radical, HCO(X2A'), and carbon monoxide, CO(X1Σ+). During the subsequent warming up of the sample, radicals previously generated within the matrix were mobilized and found to recombine to form methyl formate, CH3OCHO(X1A'), glycolaldehyde, CH2OHCHO(X1A'), and ethylene glycol, HOCH 2CH2OH(X1A). Upper limits for the production of these species by the recombination of neighboring radicals produced during irradiation as well as during the warm-up procedure are presented. The generation of these molecules by irradiation of ices in the solid state and their subsequent sublimation into the gas phase can help explain their high abundances as observed toward hot molecular cores and underlines their importance in astrobiology.
NASA Astrophysics Data System (ADS)
Vinaykumar, R.; Mazumder, R.; Bera, J.
2017-05-01
Co-Ti co-substituted SrM hexagonal ferrite (SrCo1.5Ti1.5Fe9O19) was synthesized by sol-gel combustion and solid state route. The effects of sources of TiO2 raw materials; titanium tetra-isopropoxide (TTIP) and titanyl nitrate (TN) on the phase formation behavior and properties of the ferrite were studied. The thermal decomposition behavior of the gel was studied using TG-DSC. The phase formation behavior of the ferrite was studied by using X-ray powder diffraction and FTIR analysis. Phase formation was comparatively easier in the TN-based sol-gel process. The morphology of powder and sintered ferrite was investigated using scanning electron microscope. Magnetic properties like magnetization, coercivity, permeability, tan δμ and dielectric properties were investigated. The ferrite synthesized by sol-gel based chemical route showed higher saturation magnetization, permeability and permittivity compared to the ferrite synthesized by solid state route.
Filming nuclear dynamics of iodine using x-ray diffraction at the LCLS
NASA Astrophysics Data System (ADS)
Ware, Matthew; Natan, Adi; Glownia, James; Cryan, James; Bucksbaum, Phil
2017-04-01
We will provide an overview of our analysis of the nuclear dynamics of iodine. At the LCLS, we pumped a gas cell of iodine with a weak 520nm, 50 fs pulse, and the nuclear dynamics are then probed with 9 keV, 40 fs x-rays with variable time delay. This allows us to simultaneously image nuclear wavepackets on the dissociating A state, on the bound B state, and even Raman wavepackets in the ground electronic state. We will explain at length how we isolate each of these signals using a Legendre decomposition of our x-ray data and the selection rules for each of the transitions. Likewise, we will discuss how we convert the x-ray diffraction patterns into real-space movies of the nuclear dynamics. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Atomic, Molecular, and Optical Science Program. Use of LCLS supported under DOE Contract No. DE-AC02-76F00515.
Guesmi, Hazar; Berthomieu, Dorothee; Bromley, Bryan; Coq, Bernard; Kiwi-Minsker, Lioubov
2010-03-28
The characterization of Fe/ZSM5 zeolite materials, the nature of Fe-sites active in N(2)O direct decomposition, as well as the rate limiting step are still a matter of debate. The mechanism of N(2)O decomposition on the binuclear oxo-hydroxo bridged extraframework iron core site [Fe(II)(mu-O)(mu-OH)Fe(II)](+) inside the ZSM-5 zeolite has been studied by combining theoretical and experimental approaches. The overall calculated path of N(2)O decomposition involves the oxidation of binuclear Fe(II) core sites by N(2)O (atomic alpha-oxygen formation) and the recombination of two surface alpha-oxygen atoms leading to the formation of molecular oxygen. Rate parameters computed using standard statistical mechanics and transition state theory reveal that elementary catalytic steps involved into N(2)O decomposition are strongly dependent on the temperature. This theoretical result was compared to the experimentally observed steady state kinetics of the N(2)O decomposition and temperature-programmed desorption (TPD) experiments. A switch of the reaction order with respect to N(2)O pressure from zero to one occurs at around 800 K suggesting a change of the rate determining step from the alpha-oxygen recombination to alpha-oxygen formation. The TPD results on the molecular oxygen desorption confirmed the mechanism proposed.
Decomposition of toluene in a steady-state atmospheric-pressure glow discharge
NASA Astrophysics Data System (ADS)
Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.; Trushkin, N. I.; Akishev, Yu. S.
2013-02-01
Results are presented from experimental studies of decomposition of toluene (C6H5CH3) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C6H5CH3 removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N2: O2: H2O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge is demonstrated. The main mechanisms of the influence of humidity on C6H5CH3 decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C6H5CH3 is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.
Oxidative decomposition of propylene carbonate in lithium ion batteries: a DFT study.
Leggesse, Ermias Girma; Lin, Rao Tung; Teng, Tsung-Fan; Chen, Chi-Liang; Jiang, Jyh-Chiang
2013-08-22
This paper reports an in-depth mechanistic study on the oxidative decomposition of propylene carbonate in the presence of lithium salts (LiClO4, LiBF4, LiPF6, and LiAsF6) with the aid of density functional theory calculations at the B3LYP/6-311++G(d,p) level of theory. The solvent effect is accounted for by using the implicit solvation model with density method. Moreover, the rate constants for the decompositions of propylene carbonate have been investigated by using transition-state theory. The shortening of the original carbonyl C-O bond and a lengthening of the adjacent ethereal C-O bonds of propylene carbonate, which occurs as a result of oxidation, leads to the formation of acetone radical and CO2 as a primary oxidative decomposition product. The termination of the primary radical generates polycarbonate, acetone, diketone, 2-(ethan-1-ylium-1-yl)-4-methyl-1,3-dioxolan-4-ylium, and CO2. The thermodynamic and kinetic data show that the major oxidative decomposition products of propylene carbonate are independent of the type of lithium salt. However, the decomposition rate constants of propylene carbonate are highly affected by the lithium salt type. On the basis of the rate constant calculations using transition-state theory, the order of gas volume generation is: [PC-ClO4](-) > [PC-BF4](-) > [PC-AsF6](-) > [PC-PF6](-).
Pulsed electron accelerator for radiation technologies in the enviromental applications
NASA Astrophysics Data System (ADS)
Korenev, Sergey
1997-05-01
The project of pulsed electron accelerator for radiation technologies in the environmental applications is considered. An accelerator consists of high voltage generator with vacuum insulation and vacuum diode with plasma cathode on the basis discharge on the surface of dielectric of large dimensions. The main parameters of electron accelerators are following: kinetic energy 0.2 - 2.0 MeV, electron beam current 1 - 30 kA and pulse duration 1- 5 microseconds. The main applications of accelerator for decomposition of wastewaters are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lave, Matthew; Hayes, William; Pohl, Andrew
2015-02-02
We report an evaluation of the accuracy of combinations of models that estimate plane-of-array (POA) irradiance from measured global horizontal irradiance (GHI). This estimation involves two steps: 1) decomposition of GHI into direct and diffuse horizontal components and 2) transposition of direct and diffuse horizontal irradiance (DHI) to POA irradiance. Measured GHI and coincident measured POA irradiance from a variety of climates within the United States were used to evaluate combinations of decomposition and transposition models. A few locations also had DHI measurements, allowing for decoupled analysis of either the decomposition or the transposition models alone. Results suggest that decompositionmore » models had mean bias differences (modeled versus measured) that vary with climate. Transposition model mean bias differences depended more on the model than the location. Lastly, when only GHI measurements were available and combinations of decomposition and transposition models were considered, the smallest mean bias differences were typically found for combinations which included the Hay/Davies transposition model.« less
NASA Astrophysics Data System (ADS)
Zhang, Xuebing; Liu, Ning; Xi, Jiaxin; Zhang, Yunqi; Zhang, Wenchun; Yang, Peipei
2017-08-01
How to analyze the nonstationary response signals and obtain vibration characters is extremely important in the vibration-based structural diagnosis methods. In this work, we introduce a more reasonable time-frequency decomposition method termed local mean decomposition (LMD) to instead the widely-used empirical mode decomposition (EMD). By employing the LMD method, one can derive a group of component signals, each of which is more stationary, and then analyze the vibration state and make the assessment of structural damage of a construction or building. We illustrated the effectiveness of LMD by a synthetic data and an experimental data recorded in a simply-supported reinforced concrete beam. Then based on the decomposition results, an elementary method of damage diagnosis was proposed.
Using Microwave Sample Decomposition in Undergraduate Analytical Chemistry
NASA Astrophysics Data System (ADS)
Griff Freeman, R.; McCurdy, David L.
1998-08-01
A shortcoming of many undergraduate classes in analytical chemistry is that students receive little exposure to sample preparation in chemical analysis. This paper reports the progress made in introducing microwave sample decomposition into several quantitative analysis experiments at Truman State University. Two experiments being performed in our current laboratory rotation include closed vessel microwave decomposition applied to the classical gravimetric determination of nickel and the determination of sodium in snack foods by flame atomic emission spectrometry. A third lab, using open-vessel microwave decomposition for the Kjeldahl nitrogen determination is now ready for student trial. Microwave decomposition reduces the time needed to complete these experiments and significantly increases the student awareness of the importance of sample preparation in quantitative chemical analyses, providing greater breadth and realism in the experiments.
P, Ragesh Kumar T; Weirich, Paul; Hrachowina, Lukas; Hanefeld, Marc; Bjornsson, Ragnar; Hrodmarsson, Helgi Rafn; Barth, Sven; Fairbrother, D Howard; Huth, Michael; Ingólfsson, Oddur
2018-01-01
In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H 2 FeRu 3 (CO) 13 covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo 3 (CO) 12 , metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of H 2 FeRu 3 (CO) 13 demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8-9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO) 4 from H 2 FeRu 3 (CO) 13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of H 2 FeRu 3 (CO) 13 as compared to the structurally similar HFeCo 3 (CO) 12 .
P, Ragesh Kumar T; Weirich, Paul; Hrachowina, Lukas; Hanefeld, Marc; Bjornsson, Ragnar; Hrodmarsson, Helgi Rafn; Barth, Sven; Fairbrother, D Howard; Huth, Michael
2018-01-01
In the current contribution we present a comprehensive study on the heteronuclear carbonyl complex H2FeRu3(CO)13 covering its low energy electron induced fragmentation in the gas phase through dissociative electron attachment (DEA) and dissociative ionization (DI), its decomposition when adsorbed on a surface under controlled ultrahigh vacuum (UHV) conditions and exposed to irradiation with 500 eV electrons, and its performance in focused electron beam induced deposition (FEBID) at room temperature under HV conditions. The performance of this precursor in FEBID is poor, resulting in maximum metal content of 26 atom % under optimized conditions. Furthermore, the Ru/Fe ratio in the FEBID deposit (≈3.5) is higher than the 3:1 ratio predicted. This is somewhat surprising as in recent FEBID studies on a structurally similar bimetallic precursor, HFeCo3(CO)12, metal contents of about 80 atom % is achievable on a routine basis and the deposits are found to maintain the initial Co/Fe ratio. Low temperature (≈213 K) surface science studies on thin films of H2FeRu3(CO)13 demonstrate that electron stimulated decomposition leads to significant CO desorption (average of 8–9 CO groups per molecule) to form partially decarbonylated intermediates. However, once formed these intermediates are largely unaffected by either further electron irradiation or annealing to room temperature, with a predicted metal content similar to what is observed in FEBID. Furthermore, gas phase experiments indicate formation of Fe(CO)4 from H2FeRu3(CO)13 upon low energy electron interaction. This fragment could desorb at room temperature under high vacuum conditions, which may explain the slight increase in the Ru/Fe ratio of deposits in FEBID. With the combination of gas phase experiments, surface science studies and actual FEBID experiments, we can offer new insights into the low energy electron induced decomposition of this precursor and how this is reflected in the relatively poor performance of H2FeRu3(CO)13 as compared to the structurally similar HFeCo3(CO)12. PMID:29527432
NASA Astrophysics Data System (ADS)
Royle, S. H.; Montgomery, W.; Kounaves, S. P.; Sephton, M. A.
2017-12-01
A number of missions to Mars have analyzed the composition of surface samples using thermal extraction techniques. The temperatures of decomposition have been used as diagnostic information for the materials present. One material of great current interest is perchlorate, a relatively recently discovered component of Mars surface geochemistry that leads to deleterious effects on organic matter during thermal extraction. Knowledge of the thermal decomposition behavior of perchlorate salts is essential for mineral identification and possible avoidance of confounding interactions with organic matter. We have performed a series of stepped pyrolysis experiments on samples of magnesium perchlorate hydrate which were dehydrated to various extents - as confirmed by XRD and FTIR analysis. Our data reveal that the hydration state of magnesium perchlorate has a significant effect on decomposition temperature, with differing temperature releases of oxygen corresponding to different perchlorate hydration states. We find that the peak temperature of oxygen release increases from 500 to 600°C as the proportion of the tetrahydrate form in the sample increases and the hexahydrate form decreases. It was known previously that cation chemistry can affect the temperature of oxygen release and now our work shows that the hydration state of these salts can lead to similar variations. Consequently, incorrect identification of perchlorate species may occur if hydration state is not taken into account and a mixture of metastable hydration states (of one type of perchlorate) may be mistaken for a mixture of perchlorate salts. Our findings are important for Mars as the hydration state of salts in the regolith may change throughout the Martian year due to large variations in humidity and temperature.
NASA Astrophysics Data System (ADS)
Goroncy, Christian; Saloga, Patrick E. J.; Gruner, Mathias; Schmudde, Madlen; Vonnemann, Jonathan; Otero, Edwige; Haag, Rainer; Graf, Christina
2018-05-01
For the application of iron oxide nanoparticles from thermal decomposition approaches as contrast agents in magnetic resonance imaging (MRI), their initial hydrophobic ligands have to be replaced by hydrophilic ones. This exchange can influence the surface oxidation state and the magnetic properties of the particles. Here, the effect of the anchor group of three organic ligands, citric acid and two catechols, dihydrocaffeic acid and its nitrated derivative nitro dihydrocaffeic acid on iron oxide nanoparticles is evaluated. The oleate ligands of Fe3O4/γ-Fe2O3 nanoparticles prepared by the thermal decomposition of iron oleate were exchanged against the hydrophilic ligands. X-ray absorption spectroscopy, especially X-ray magnetic circular dichroism (XMCD) measurements in the total electron yield (TEY) mode was used to investigate local magnetic and electronic properties of the particles' surface region before and after the ligand exchange. XMCD was combined with charge transfer multiplet calculations which provide information on the contributions of Fe2+ and Fe3+ at different lattice sites, i.e. either in tetrahedral or octahedral environment. The obtained data demonstrate that nitro hydrocaffeic acid leads to least reduction of the magnetizability of the surface region of the iron oxide nanoparticles compared to the two other ligands. For all hydrophilic samples, the proportion of Fe3+ ions in octahedral sites increases at the expense of the Fe2+ in octahedral sites whereas the percentage of Fe3+ in tetrahedral sites hardly changes. These observations suggest that an oxidation process took place, but a selective decrease of the Fe2+ ions in octahedral sites ions due to surface dissolution processes is unlikely. The citrate ligand has the least oxidative effect, whereas the degree of oxidation was similar for both catechol ligands regardless of the nitro group. Twenty-four hours of incubation in isotonic saline has nearly no influences on the magnetic properties of the nanoparticles, the least on those with the nitrated hydrocaffeic acid ligand.
Kang, Guo-Jun; Song, Chao; Ren, Xue-Feng
2016-11-25
The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH₃-YD2 and TPhe-YD) were systematically investigated by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO₂ cluster were fully investigated. From the analyses of natural bond orbital (NBO), extended charge decomposition analysis (ECDA), and electron density variations (Δρ) between the excited state and ground state, it was found that the introduction of N(CH₃)₂ and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT) character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH₃)₂ and 1,1,2-triphenylethene groups. NCH₃-YD2 with N(CH₃)₂ groups in the donor part is an effective way to improve the interactions between the dyes and TiO₂ surface, light having efficiency (LHE), and free energy change (ΔG inject ), which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs).
Liang, Jiyuan; Yang, Jie; Cao, Weiguo; Guo, Xiangke; Guo, Xuefeng; Ding, Weiping
2015-09-01
Coaxial-line and hollow Mn2O3 nanofibers have been synthesized by a simple single-nozzle electrospinning method without using a complicated coaxial jet head, combined with final calcination. The crystal structure and morphology of the Mn2O3 nanofibers were investigated by using the X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The results indicate that the electrospinning distance has important influence on the morphology and structure of the obtained Mn2O3 nanofibers, which changes from hollow fibers for short electrospinning distance to coaxial-line structure for long electrospinning distance after calcination in the air. The formation mechanisms of different structured Mn2O3 fibers are discussed in detail. This facile and effective method is easy to scale up and may be versatile for constructing coaxial-line and hollow fibers of other metal oxides. The catalytic activity of the obtained Mn2O3 nanofibers on thermal decomposition of ammonium perchlorate (AP) was studied by differential scanning calorimetry (DSC). The results show that the hollow Mn2O3 nanofibers have good catalytic activity to promote the thermal decomposition of AP.
NASA Astrophysics Data System (ADS)
Dado, Boaz; Gelbstein, Yaniv; Mogilansky, Dimitri; Ezersky, Vladimir; Dariel, Moshe P.
2010-09-01
Pseudoternary (Ge,Sn,Pb)Te compounds display favorable thermoelectric properties. Spinodal decomposition in the quasiternary (Ge,Sn,Pb)Te system is at the origin of a wide solubility gap at low Sn concentrations. The structural evolution of the spinodal decomposition was investigated as a function of aging time at 500°C, using x-ray diffraction, electron microscopy, and scanning electron microscopy. The evolution of the structure at 500°C consists initially of a short diffusion-controlled demixing stage into Pb- and Ge-rich coherent areas, with compositions corresponding to the inflection points of the free-energy curve. The Pb-rich areas adopt configurations associated with the directions of the soft elastic moduli of the cubic compound. Both the Pb- and Ge-rich areas are supersaturated and undergo in a second stage a nucleation and growth process and give rise to a biphased structure with equilibrium compositions corresponding to the boundaries of the miscibility gap. The resulting Pb-rich areas display a relatively stable microstructure suggesting the presence of long-range interactions between the Pb-rich precipitates in the Ge-rich matrix.
NASA Astrophysics Data System (ADS)
Park, Y.; Eriksson, N.; Newell, R.; Keiser, D. D.; Sohn, Y. H.
2016-11-01
Eutectoid decomposition of γ-phase (cI2) into α-phase (oC4) and γ‧-phase (tI6) during the hot isostatic pressing (HIP) of the U-10 wt% Mo (U10Mo) alloy was investigated using monolithic fuel plate samples consisting of U10Mo fuel alloy, Zr diffusion barrier and AA6061 cladding. The decomposition of the γ-phase was observed because the HIP process is carried out near the eutectoid temperature, 555 °C. Initially, a cellular structure, consisting of γ‧-phase surrounded by α-phase, developed from the destabilization of the γ-phase. The cellular structure further developed into an alternating lamellar structure of α- and γ‧-phases. Using scanning electron microscopy and transmission electron microscopy, qualitative and quantitative microstructural analyses were carried out to identify the phase constituents, and elucidate the microstructural development based on time-temperature-transformation diagram of the U10Mo alloy. The destabilization of γ -phase into α- and γ‧-phases would be minimized when HIP process was carried out with rapid ramping/cooling rate and dwell temperature higher than 560 °C.
NASA Astrophysics Data System (ADS)
Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong
2015-10-01
A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species.
Li, Yongfu; Chen, Na; Harmon, Mark E.; Li, Yuan; Cao, Xiaoyan; Chappell, Mark A.; Mao, Jingdong
2015-01-01
A feedback between decomposition and litter chemical composition occurs with decomposition altering composition that in turn influences the decomposition rate. Elucidating the temporal pattern of chemical composition is vital to understand this feedback, but the effects of plant species and climate on chemical changes remain poorly understood, especially over multiple years. In a 10-year decomposition experiment with litter of four species (Acer saccharum, Drypetes glauca, Pinus resinosa, and Thuja plicata) from four sites that range from the arctic to tropics, we determined the abundance of 11 litter chemical constituents that were grouped into waxes, carbohydrates, lignin/tannins, and proteins/peptides using advanced 13C solid-state NMR techniques. Decomposition generally led to an enrichment of waxes and a depletion of carbohydrates, whereas the changes of other chemical constituents were inconsistent. Inconsistent convergence in chemical compositions during decomposition was observed among different litter species across a range of site conditions, whereas one litter species converged under different climate conditions. Our data clearly demonstrate that plant species rather than climate greatly alters the temporal pattern of litter chemical composition, suggesting the decomposition-chemistry feedback varies among different plant species. PMID:26515033
Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.
Rotskoff, Grant M
2017-03-01
We show that current fluctuations in a stochastic pump can be robustly mapped to fluctuations in a corresponding time-independent nonequilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps similar to the "housekeeping" heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps are shown to satisfy a universal bound determined by the steady state entropy production.
Decomposition pathways of C2 oxygenates on Rh-modified tungsten carbide surfaces
Kelly, Thomas G.; Ren, Hui; Chen, Jingguang G.
2015-03-27
Ethanol decomposition on tungsten monocarbide (WC) and Rh-modified WC was investigated using ultrahigh vacuum (UHV) surface science experiments and density functional theory (DFT) calculations. DFT calculations indicated that the binding energies of ethanol and its decomposition intermediates on WC(0001) were modified by Rh, with Rh/WC(0001) showing similar values to those on Rh(111). Through temperature-programmed desorption (TPD) experiments on polycrystalline WC and Rh-modified WC, it was shown that the selectivity for ethanol decomposition was different on these surfaces. On WC, the C-O bond of ethanol was preferentially broken to produce ethylene; on Rh-modified WC, the C-C bond was broken to producemore » carbon monoxide and methane. In addition, high-resolution electron energy loss spectroscopy (HREELS) was used to determine likely surface intermediates. On Rh-modified WC, ethanol first formed ethoxy through O-H scission, then reacted through an aldehyde intermediate to form the C1 products.« less
Chun, Ho-Hwan; Jo, Wan-Kuen
2016-05-01
In this study, a N-, C-, and S-doped titania (NCS-TiO2) composite was prepared by combining the titanium precursor with a single dopant source, and the photocatalytic activity of this system for the decomposition of volatile organic compounds (VOCs) at indoor-concentration levels, under exposure to visible light, was examined. The NCS-TiO2 composite and the pure TiO2 photocatalyst, used as a reference, were characterized via X-ray diffraction, scanning electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The average efficiencies of benzene, toluene, ethyl benzene, and o-xylene decomposition using NCS-TiO2 for were 70, 87, -100, and -100%, respectively, whereas the values obtained using the pure TiO2 powder were -0, 18, 49, and 51%, respectively. These results suggested that, for the photocatalytic decomposition of toxic VOCs under visible-light exposure conditions, NCS-TiO2 was superior to the reference photocatalyst. The decomposition efficiencies of the target VOCs were inversely related to the initial concentration and relative humidity as well as to the air-flow rate. The decomposition efficiencies of the target chemicals achieved with a conventional lamp/NCS-TiO2 system were higher than those achieved with a light emitting diode/NCS-TiO2 system. Overall, NCS-TiO2 can be used for the efficient decomposition of VOCs under visible-light exposure, if the operational conditions are optimized.
Methanol decomposition reactions over a boron-doped graphene supported Ru-Pt catalyst.
Damte, Jemal Yimer; Lyu, Shang-Lin; Leggesse, Ermias Girma; Jiang, Jyh Chiang
2018-04-04
The decomposition of methanol is currently attracting research attention due to the potential widespread applications of its end products. In this work, density functional theory (DFT) calculations have been performed to investigate the adsorption and decomposition of methanol on a Ru-Pt/boron doped graphene surface. We find that the most favorable reaction pathway is methanol (CH3OH) decomposition through O-H bond breaking to form methoxide (CH3O) as the initial step, followed by further dehydrogenation steps which generate formaldehyde (CH2O), formyl (CHO), and carbon monoxide (CO). The calculations illustrate that CH3OH and CO groups prefer to adsorb at the Ru-top sites, while CH2OH, CH3O, CH2O, CHO, and H2 groups favor the Ru-Pt bridge sites, indicating the preference of Ru atoms to adsorb the active intermediates or species having lone-pair electrons. Based on the results, it is found that the energy barrier for CH3OH decomposition through the initial O-H bond breaking is less than its desorption energy of 0.95 eV, showing that CH3OH prefers to undergo decomposition to CH3O rather than direct desorption. The study provides in-depth theoretical insights into the potentially enhanced catalytic activity of Ru-Pt/boron doped graphene surfaces for methanol decomposition reactions, thereby contributing to the understanding and designing of an efficient catalyst under optimum conditions.
Analysis of electron beam induced deposition (EBID) of residual hydrocarbons in electron microscopy
NASA Astrophysics Data System (ADS)
Rykaczewski, Konrad; White, William B.; Fedorov, Andrei G.
2007-03-01
In this work we have developed a comprehensive dynamic model of electron beam induced deposition (EBID) of residual hydrocarbon coupling mass transport, electron transport and scattering, and species decomposition to predict the deposition of carbon nanopillars. The simulations predict the local species and electron density distributions, as well as the three-demensional morphology and the growth rate of the deposit. Since the process occurs in a high vacuum environment, surface diffusion is considered as the primary transport mode of surface-adsorbed hydrocarbon precursor. The governing surface transport equation (STE) of the adsorbed species is derived and solved numerically. The transport, scattering, and absorption of primary electron as well as secondary electron generation are treated using the Monte Carlo method. Low energy secondary electrons are the major contributors to hydrocarbon decomposition due to their energy range matching peak dissociation reaction cross section energies for precursor molecules. The deposit and substrate are treated as a continuous entity allowing the simulation of the growth of a realistically sized deposit rather than a large number of cells representing each individual atom as in previously published simulations [Mitsuishi et al., Ultramicroscopy 103, 17 (2005); Silvis-Cividjian, Ph.D. thesis, University of Delft, 2002]. Such formulation allows for simple coupling of the STE with the dynamic growth of the nanopillar. Three different growth regimes occurring in EBID are identified using scaling analysis, and simulations are used to describe the deposit morphology and precursor surface concentration specific for each growth regime.
NASA Astrophysics Data System (ADS)
Vargeese, Anuj A.; Mija, S. J.; Muralidharan, Krishnamurthi
2014-07-01
Ammonium nitrate (AN) is crystallized along with copper oxide, titanium dioxide, and lithium fluoride. Thermal kinetic constants for the decomposition reaction of the samples were calculated by model-free (Friedman's differential and Vyzovkins nonlinear integral) and model-fitting (Coats-Redfern) methods. To determine the decomposition mechanisms, 12 solid-state mechanisms were tested using the Coats-Redfern method. The results of the Coats-Redfern method show that the decomposition mechanism for all samples is the contracting cylinder mechanism. The phase behavior of the obtained samples was evaluated by differential scanning calorimetry (DSC), and structural properties were determined by X-ray powder diffraction (XRPD). The results indicate that copper oxide modifies the phase transition behavior and can catalyze AN decomposition, whereas LiF inhibits AN decomposition, and TiO2 shows no influence on the rate of decomposition. Possible explanations for these results are discussed. Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Energetic Materials to view the free supplemental file.
Direct and Indirect Effects of UV-B Exposure on Litter Decomposition: A Meta-Analysis
Song, Xinzhang; Peng, Changhui; Jiang, Hong; Zhu, Qiuan; Wang, Weifeng
2013-01-01
Ultraviolet-B (UV-B) exposure in the course of litter decomposition may have a direct effect on decomposition rates via changing states of photodegradation or decomposer constitution in litter while UV-B exposure during growth periods may alter chemical compositions and physical properties of plants. Consequently, these changes will indirectly affect subsequent litter decomposition processes in soil. Although studies are available on both the positive and negative effects (including no observable effects) of UV-B exposure on litter decomposition, a comprehensive analysis leading to an adequate understanding remains unresolved. Using data from 93 studies across six biomes, this introductory meta-analysis found that elevated UV-B directly increased litter decomposition rates by 7% and indirectly by 12% while attenuated UV-B directly decreased litter decomposition rates by 23% and indirectly increased litter decomposition rates by 7%. However, neither positive nor negative effects were statistically significant. Woody plant litter decomposition seemed more sensitive to UV-B than herbaceous plant litter except under conditions of indirect effects of elevated UV-B. Furthermore, levels of UV-B intensity significantly affected litter decomposition response to UV-B (P<0.05). UV-B effects on litter decomposition were to a large degree compounded by climatic factors (e.g., MAP and MAT) (P<0.05) and litter chemistry (e.g., lignin content) (P<0.01). Results suggest these factors likely have a bearing on masking the important role of UV-B on litter decomposition. No significant differences in UV-B effects on litter decomposition were found between study types (field experiment vs. laboratory incubation), litter forms (leaf vs. needle), and decay duration. Indirect effects of elevated UV-B on litter decomposition significantly increased with decay duration (P<0.001). Additionally, relatively small changes in UV-B exposure intensity (30%) had significant direct effects on litter decomposition (P<0.05). The intent of this meta-analysis was to improve our understanding of the overall effects of UV-B on litter decomposition. PMID:23818993
Cortopassi, Wilian A; Simion, Robert; Honsby, Charles E; França, Tanos C C; Paton, Robert S
2015-12-21
JMJD2A catalyses the demethylation of di- and trimethylated lysine residues in histone tails and is a target for the development of new anticancer medicines. Mechanistic details of demethylation are yet to be elucidated and are important for the understanding of epigenetic processes. We have evaluated the initial step of histone demethylation by JMJD2A and demonstrate the dramatic effect of the protein environment upon oxygen binding using quantum mechanics/molecular mechanics (QM/MM) calculations. The changes in electronic structure have been studied for possible spin states and different conformations of O2 , using a combination of quantum and classical simulations. O2 binding to this histone demethylase is computed to occur preferentially as an end-on superoxo radical bound to a high-spin ferric centre, yielding an overall quintet ground state. The favourability of binding is strongly influenced by the surrounding protein: we have quantified this effect using an energy decomposition scheme into electrostatic and dispersion contributions. His182 and the methylated lysine assist while Glu184 and the oxoglutarate cofactor are deleterious for O2 binding. Charge separation in the superoxo-intermediate benefits from the electrostatic stabilization provided by the surrounding residues, stabilizing the binding process significantly. This work demonstrates the importance of the extended protein environment in oxygen binding, and the role of energy decomposition in understanding the physical origin of binding/recognition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
USDA-ARS?s Scientific Manuscript database
DeNitrification DeComposition (DNDC) model predictions of NH3 fluxes following chemical fertilizer application were evaluated by comparison to relaxed eddy accumulation (REA) measurements, in Central Illinois, United States, over the 2014 growing season of corn. Practical issues for evaluating closu...
ERIC Educational Resources Information Center
Koga, Nobuyoshi; Goshi, Yuri; Yoshikawa, Masahiro; Tatsuoka, Tomoyuki
2014-01-01
An undergraduate kinetic experiment of the thermal decomposition of solids by microscopic observation and thermal analysis was developed by investigating a suitable reaction, applicable techniques of thermal analysis and microscopic observation, and a reliable kinetic calculation method. The thermal decomposition of sodium hydrogen carbonate is…
Liu, Zhichao; Wu, Qiong; Zhu, Weihua; Xiao, Heming
2015-04-28
Density functional theory with dispersion-correction (DFT-D) was employed to study the effects of vacancy and pressure on the structure and initial decomposition of crystalline 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (β-NTO), a high-energy insensitive explosive. A comparative analysis of the chemical behaviors of NTO in the ideal bulk crystal and vacancy-containing crystals under applied hydrostatic compression was considered. Our calculated formation energy, vacancy interaction energy, electron density difference, and frontier orbitals reveal that the stability of NTO can be effectively manipulated by changing the molecular environment. Bimolecular hydrogen transfer is suggested to be a potential initial chemical reaction in the vacancy-containing NTO solid at 50 GPa, which is prior to the C-NO2 bond dissociation as its initiation decomposition in the gas phase. The vacancy defects introduced into the ideal bulk NTO crystal can produce a localized site, where the initiation decomposition is preferentially accelerated and then promotes further decompositions. Our results may shed some light on the influence of the molecular environments on the initial pathways in molecular explosives.
A density functional theory study of the decomposition mechanism of nitroglycerin.
Pei, Liguan; Dong, Kehai; Tang, Yanhui; Zhang, Bo; Yu, Chang; Li, Wenzuo
2017-08-21
The detailed decomposition mechanism of nitroglycerin (NG) in the gas phase was studied by examining reaction pathways using density functional theory (DFT) and canonical variational transition state theory combined with a small-curvature tunneling correction (CVT/SCT). The mechanism of NG autocatalytic decomposition was investigated at the B3LYP/6-31G(d,p) level of theory. Five possible decomposition pathways involving NG were identified and the rate constants for the pathways at temperatures ranging from 200 to 1000 K were calculated using CVT/SCT. There was found to be a lower energy barrier to the β-H abstraction reaction than to the α-H abstraction reaction during the initial step in the autocatalytic decomposition of NG. The decomposition pathways for CHOCOCHONO 2 (a product obtained following the abstraction of three H atoms from NG by NO 2 ) include O-NO 2 cleavage or isomer production, meaning that the autocatalytic decomposition of NG has two reaction pathways, both of which are exothermic. The rate constants for these two reaction pathways are greater than the rate constants for the three pathways corresponding to unimolecular NG decomposition. The overall process of NG decomposition can be divided into two stages based on the NO 2 concentration, which affects the decomposition products and reactions. In the first stage, the reaction pathway corresponding to O-NO 2 cleavage is the main pathway, but the rates of the two autocatalytic decomposition pathways increase with increasing NO 2 concentration. However, when a threshold NO 2 concentration is reached, the NG decomposition process enters its second stage, with the two pathways for NG autocatalytic decomposition becoming the main and secondary reaction pathways.
NASA Astrophysics Data System (ADS)
Avdeev, Vasilii I.; Bedilo, Alexander F.
2018-03-01
The electronic nature of sites over Fe-ferrierite zeolite stabilizing active α-oxygen is analyzed by the periodic DFT + U approach. It is shown that two antiferromagnetically coupled Fe2+ cations with bridging OH-bonds form a stable bi-nuclear site of the [Fe2+<2OH>Fe2+] doped FER complex. Frontier orbitals of this complex populated by two electrons with minority spins are localized in the bandgap. As a result, [Fe2+<2OH>Fe2+] unit acquires the properties of a binuclear Lewis acid dipolarophile for 1,3-dipole N2O. First reaction step of N2O decomposition follows the Huisgen‧s concept of the 1,3-dipolar cycloaddition concept followed by the formation of reactive oxygen species Fesbnd O.
NASA Astrophysics Data System (ADS)
Havu, Vile; Blum, Volker; Scheffler, Matthias
2007-03-01
Numeric atom-centered local orbitals (NAO) are efficient basis sets for all-electron electronic structure theory. The locality of NAO's can be exploited to render (in principle) all operations of the self-consistency cycle O(N). This is straightforward for 3D integrals using domain decomposition into spatially close subsets of integration points, enabling critical computational savings that are effective from ˜tens of atoms (no significant overhead for smaller systems) and make large systems (100s of atoms) computationally feasible. Using a new all-electron NAO-based code,^1 we investigate the quantitative impact of exploiting this locality on two distinct classes of systems: Large light-element molecules [Alanine-based polypeptide chains (Ala)n], and compact transition metal clusters. Strict NAO locality is achieved by imposing a cutoff potential with an onset radius rc, and exploited by appropriately shaped integration domains (subsets of integration points). Conventional tight rc<= 3å have no measurable accuracy impact in (Ala)n, but introduce inaccuracies of 20-30 meV/atom in Cun. The domain shape impacts the computational effort by only 10-20 % for reasonable rc. ^1 V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, The FHI Ab Initio Molecular Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).
Theoretical study of the decomposition pathways and products of C5- perfluorinated ketone (C5 PFK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Yuwei; Wang, Xiaohua, E-mail: xhw@mail.xjtu.edu.cn, E-mail: mzrong@mail.xjtu.edu.cn; Li, Xi
Due to the high global warming potential (GWP) and increasing environmental concerns, efforts on searching the alternative gases to SF{sub 6}, which is predominantly used as insulating and interrupting medium in high-voltage equipment, have become a hot topic in recent decades. Overcoming the drawbacks of the existing candidate gases, C5- perfluorinated ketone (C5 PFK) was reported as a promising gas with remarkable insulation capacity and the low GWP of approximately 1. Experimental measurements of the dielectric strength of this novel gas and its mixtures have been carried out, but the chemical decomposition pathways and products of C5 PFK during breakdownmore » are still unknown, which are the essential factors in evaluating the electric strength of this gas in high-voltage equipment. Therefore, this paper is devoted to exploring all the possible decomposition pathways and species of C5 PFK by density functional theory (DFT). The structural optimizations, vibrational frequency calculations and energy calculations of the species involved in a considered pathway were carried out with DFT-(U)B3LYP/6-311G(d,p) method. Detailed potential energy surface was then investigated thoroughly by the same method. Lastly, six decomposition pathways of C5 PFK decomposition involving fission reactions and the reactions with a transition states were obtained. Important intermediate products were also determined. Among all the pathways studied, the favorable decomposition reactions of C5 PFK were found, involving C-C bond ruptures producing Ia and Ib in pathway I, followed by subsequent C-C bond ruptures and internal F atom transfers in the decomposition of Ia and Ib presented in pathways II + III and IV + V, respectively. Possible routes were pointed out in pathway III and lead to the decomposition of IIa, which is the main intermediate product found in pathway II of Ia decomposition. We also investigated the decomposition of Ib, which can undergo unimolecular reactions to give the formation of IV a, IV b and products of CF{sub 3} + CF-CF{sub 3} in pathway IV. Although IV a is dominant to a lesser extent due to its relative high energy barrier, its complicated decomposition pathway V was also studied and CF{sub 3}, C = CF{sub 2} as well as C-CF{sub 3} species were found as the ultimate products. To complete the decomposition of C5 PFK, pathway V I of Ic decomposition was fully explored and the final products were obtained. Therefore, the integrate decomposition scheme of C5 PFK was proposed, which contains six pathways and forty-eight species (including all the reactants, products and transition states). This work is hopeful to lay a theoretical basis for the insulating properties of C5 PFK.« less
Mössbauer study of the thermal decomposition of alkali tris(oxalato)ferrates(III)
NASA Astrophysics Data System (ADS)
Brar, A. S.; Randhawa, B. S.
1985-07-01
The thermal decomposition of alkali (Li,Na,K,Cs,NH 4) tris(oxalato)ferrates(III) has been studied at different temperatures up to 700°C using Mössbauer, infrared spectroscopy, and thermogravimetric techniques. The formation of different intermediates has been observed during thermal decomposition. The decomposition in these complexes starts at different temperatures, i.e., at 200°C in the case of lithium, cesium, and ammonium ferrate(III), 250°C in the case of sodium, and 270°C in the case of potassium tris(oxalato)ferrate(III). The intermediates, i.e., Fe 11C 2O 4, K 6Fe 112(ox) 5. and Cs 2Fe 11 (ox) 2(H 2O) 2, are formed during thermal decomposition of lithium, potassium, and cesium tris(oxalato)ferrates(III), respectively. In the case of sodium and ammonium tris(oxalato)ferrates(III), the decomposition occurs without reduction to the iron(II) state and leads directly to α-Fe 2O 3.
Decomposition of toluene in a steady-state atmospheric-pressure glow discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trushkin, A. N.; Grushin, M. E.; Kochetov, I. V.
Results are presented from experimental studies of decomposition of toluene (C{sub 6}H{sub 5}CH{sub 3}) in a polluted air flow by means of a steady-state atmospheric pressure glow discharge at different water vapor contents in the working gas. The experimental results on the degree of C{sub 6}H{sub 5}CH{sub 3} removal are compared with the results of computer simulations conducted in the framework of the developed kinetic model of plasma chemical decomposition of toluene in the N{sub 2}: O{sub 2}: H{sub 2}O gas mixture. A substantial influence of the gas flow humidity on toluene decomposition in the atmospheric pressure glow discharge ismore » demonstrated. The main mechanisms of the influence of humidity on C{sub 6}H{sub 5}CH{sub 3} decomposition are determined. The existence of two stages in the process of toluene removal, which differ in their duration and the intensity of plasma chemical decomposition of C{sub 6}H{sub 5}CH{sub 3} is established. Based on the results of computer simulations, the composition of the products of plasma chemical reactions at the output of the reactor is analyzed as a function of the specific energy deposition and gas flow humidity. The existence of a catalytic cycle in which hydroxyl radical OH acts a catalyst and which substantially accelerates the recombination of oxygen atoms and suppression of ozone generation when the plasma-forming gas contains water vapor is established.« less
2017-01-01
The synthesis of iron oxide nanoparticles (NPs) by thermal decomposition of iron precursors using oleic acid as surfactant has evolved to a state-of-the-art method to produce monodisperse, spherical NPs. The principles behind such monodisperse syntheses are well-known: the key is a separation between burst nucleation and growth phase, whereas the size of the population is set by the precursor-to-surfactant ratio. Here we follow the thermal decomposition of iron pentacarbonyl in the presence of oleic acid via in situ X-ray scattering. This method allows reaction kinetics and precursor states to be followed with high time resolution and statistical significance. Our investigation demonstrates that the final particle size is directly related to a phase of inorganic cluster formation that takes place between precursor decomposition and particle nucleation. The size and concentration of clusters were shown to be dependent on precursor-to-surfactant ratio and heating rate, which in turn led to differences in the onset of nucleation and concentration of nuclei after the burst nucleation phase. This first direct observation of prenucleation formation of inorganic and micellar structures in iron oxide nanoparticle synthesis by thermal decomposition likely has implications for synthesis of other NPs by similar routes. PMID:28572705
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Woo-Young; Seol, Jae-Bok, E-mail: jb-seol@postech.ac.kr; Kwak, Chan-Min
The compositional distribution of In atoms in InGaN/GaN multiple quantum wells is considered as one of the candidates for carrier localization center, which enhances the efficiency of the light-emitting diodes. However, two challenging issues exist in this research area. First, an inhomogeneous In distribution is initially formed by spinodal decomposition during device fabrication as revealed by transmission electron microscopy. Second, electron-beam irradiation during microscopy causes the compositional inhomogeneity of In to appear as a damage contrast. Here, a systematic approach was proposed in this study: Electron-beam with current density ranging from 0 to 20.9 A/cm{sup 2} was initially exposed to themore » surface regions during microscopy. Then, the electron-beam irradiated regions at the tip surface were further removed, and finally, atom probe tomography was performed to run the samples without beam-induced damage and to evaluate the existence of local inhomegenity of In atoms. We proved that after eliminating the electron-beam induced damage regions, no evidence of In clustering was observed in the blue-emitting InGaN/GaN devices. In addition, it is concluded that the electron-beam induced localization of In atoms is a surface-related phenomenon, and hence spinodal decomposition, which is typically responsible for such In clustering, is negligible for biaxially strained blue-emitting InGaN/GaN devices.« less
Ab initio calculation of the electronic absorption spectrum of liquid water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martiniano, Hugo F. M. C.; Galamba, Nuno; Cabral, Benedito J. Costa, E-mail: ben@cii.fc.ul.pt
2014-04-28
The electronic absorption spectrum of liquid water was investigated by coupling a one-body energy decomposition scheme to configurations generated by classical and Born-Oppenheimer Molecular Dynamics (BOMD). A Frenkel exciton Hamiltonian formalism was adopted and the excitation energies in the liquid phase were calculated with the equation of motion coupled cluster with single and double excitations method. Molecular dynamics configurations were generated by different approaches. Classical MD were carried out with the TIP4P-Ew and AMOEBA force fields. The BLYP and BLYP-D3 exchange-correlation functionals were used in BOMD. Theoretical and experimental results for the electronic absorption spectrum of liquid water are inmore » good agreement. Emphasis is placed on the relationship between the structure of liquid water predicted by the different models and the electronic absorption spectrum. The theoretical gas to liquid phase blue-shift of the peak positions of the electronic absorption spectrum is in good agreement with experiment. The overall shift is determined by a competition between the O–H stretching of the water monomer in liquid water that leads to a red-shift and polarization effects that induce a blue-shift. The results illustrate the importance of coupling many-body energy decomposition schemes to molecular dynamics configurations to carry out ab initio calculations of the electronic properties in liquid phase.« less
Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.
Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi
2011-04-01
The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.
Effect of Cobalt Particle Size on Acetone Steam Reforming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Junming; Zhang, He; Yu, Ning
2015-06-11
Carbon-supported cobalt nanoparticles with different particle sizes were synthesized and characterized by complementary characterization techniques such as X-ray diffraction, N-2 sorption, acetone temperature-programmed desorption, transmission electron microscopy, and CO chemisorption. Using acetone steam reforming reaction as a probe reaction, we revealed a volcano-shape curve of the intrinsic activity (turnover frequency of acetone) and the CO2 selectivity as a function of the cobalt particle size with the highest activity and selectivity observed at a particle size of approximately 12.8nm. Our results indicate that the overall performance of acetone steam reforming is related to a combination of particle-size-dependent acetone decomposition, water dissociation,more » and the oxidation state of the cobalt nanoparticles.« less
Nanocomposite vacuum-Arc TiC/a-C:H coatings prepared using an additional ionization of acetylene
NASA Astrophysics Data System (ADS)
Trakhtenberg, I. Sh.; Gavrilov, N. V.; Emlin, D. R.; Plotnikov, S. A.; Vladimirov, A. B.; Volkova, E. G.; Rubshtein, A. P.
2014-07-01
The composition, structure, and properties of TiC/a-C:H coatings obtained by simultaneous vacuum-arc deposition of titanium and carbon in a low-pressure argon-acetylene medium additionally activated by a low-energy (a few hundreds of electron-volts) electron beam. The creation of conditions under which the decomposition of acetylene is provided by the ionization and dissociation of molecules due to electron impacts and by the recharging of molecules through titanium and argon ions with subsequent dissociation should favor the most complete decomposition of acetylene in a wide range of pressures. With increasing acetylene pressure, the structure of the nanocomposite coating changes: the size of TiC crystallites decreases, and the fraction of interfaces (or the fraction of regions with a disordered (amorphous) structure) increases. The application of a bias voltage leads to an increase in the sizes of TiC nanocrystallites. The coatings with a maximum microhardness (˜40 GPa) have been obtained without the action of an electron beam under an acetylene pressure of ˜0.05-0.08 Pa and the atomic ratio Ti: C ˜ 0.9: 1.1 in the coating.
Statistical Analysis of the Ionosphere based on Singular Value Decomposition
NASA Astrophysics Data System (ADS)
Demir, Uygar; Arikan, Feza; Necat Deviren, M.; Toker, Cenk
2016-07-01
Ionosphere is made up of a spatio-temporally varying trend structure and secondary variations due to solar, geomagnetic, gravitational and seismic activities. Hence, it is important to monitor the ionosphere and acquire up-to-date information about its state in order both to better understand the physical phenomena that cause the variability and also to predict the effect of the ionosphere on HF and satellite communications, and satellite-based positioning systems. To charaterise the behaviour of the ionosphere, we propose to apply Singular Value Decomposition (SVD) to Total Electron Content (TEC) maps obtained from the TNPGN-Active (Turkish National Permanent GPS Network) CORS network. TNPGN-Active network consists of 146 GNSS receivers spread over Turkey. IONOLAB-TEC values estimated from each station are spatio-temporally interpolated using a Universal Kriging based algorithm with linear trend, namely IONOLAB-MAP, with very high spatial resolution. It is observed that the dominant singular value of TEC maps is an indicator of the trend structure of the ionosphere. The diurnal, seasonal and annual variability of the most dominant value is the representation of solar effect on ionosphere in midlatitude range. Secondary and smaller singular values are indicators of secondary variation which can have significance especially during geomagnetic storms or seismic disturbances. The dominant singular values are related to the physical basis vectors where ionosphere can be fully reconstructed using these vectors. Therefore, the proposed method can be used both for the monitoring of the current state of a region and also for the prediction and tracking of future states of ionosphere using singular values and singular basis vectors. This study is supported by by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.
Trotochaud, Lena; Tsyshevsky, Roman; Holdren, Scott; ...
2017-08-21
Certain organophosphorus molecules are infamous due to their use as highly toxic nerve agents. The filtration materials currently in common use for protection against chemical warfare agents were designed before organophosphorus compounds were used as chemical weapons. A better understanding of the surface chemistry between simulant molecules and the individual filtration-material components is a critical precursor to the development of more effective materials for filtration, destruction, decontamination, and/or sensing of nerve agents. Here, we report on the surface adsorption and reactions of a sarin simulant molecule, dimethyl methylphosphonate (DMMP), with cupric oxide surfaces. In situ ambient pressure X-ray photoelectron andmore » infrared spectroscopies are coupled with density functional calculations to propose mechanisms for DMMP decomposition on CuO. We find extensive room temperature decomposition of DMMP on CuO, with the majority of decomposition fragments bound to the CuO surface. We observe breaking of PO-CH3, P-OCH3, and P-CH3bonds at room temperature. On the basis of these results, we identify specific DMMP decomposition mechanisms not seen on other metal oxides. Participation of lattice oxygen in the decomposition mechanism leads to significant changes in chemical and electronic surface environment, which are manifest in the spectroscopic and computational data. This study establishes a computational baseline for the study of highly toxic organophosphorous compounds on metal oxide surfaces.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trotochaud, Lena; Tsyshevsky, Roman; Holdren, Scott
Certain organophosphorus molecules are infamous due to their use as highly toxic nerve agents. The filtration materials currently in common use for protection against chemical warfare agents were designed before organophosphorus compounds were used as chemical weapons. A better understanding of the surface chemistry between simulant molecules and the individual filtration-material components is a critical precursor to the development of more effective materials for filtration, destruction, decontamination, and/or sensing of nerve agents. Here, we report on the surface adsorption and reactions of a sarin simulant molecule, dimethyl methylphosphonate (DMMP), with cupric oxide surfaces. In situ ambient pressure X-ray photoelectron andmore » infrared spectroscopies are coupled with density functional calculations to propose mechanisms for DMMP decomposition on CuO. We find extensive room temperature decomposition of DMMP on CuO, with the majority of decomposition fragments bound to the CuO surface. We observe breaking of PO-CH3, P-OCH3, and P-CH3bonds at room temperature. On the basis of these results, we identify specific DMMP decomposition mechanisms not seen on other metal oxides. Participation of lattice oxygen in the decomposition mechanism leads to significant changes in chemical and electronic surface environment, which are manifest in the spectroscopic and computational data. This study establishes a computational baseline for the study of highly toxic organophosphorous compounds on metal oxide surfaces.« less
Implementation of material decomposition using an EMCCD and CMOS-based micro-CT system.
Podgorsak, Alexander R; Nagesh, Sv Setlur; Bednarek, Daniel R; Rudin, Stephen; Ionita, Ciprian N
2017-02-11
This project assessed the effectiveness of using two different detectors to obtain dual-energy (DE) micro-CT data for the carrying out of material decomposition. A micro-CT coupled to either a complementary metal-oxide semiconductor (CMOS) or an electron multiplying CCD (EMCCD) detector was used to acquire image data of a 3D-printed phantom with channels filled with different materials. At any instance, materials such as iohexol contrast agent, water, and platinum were selected to make up the scanned object. DE micro-CT data was acquired, and slices of the scanned object were differentiated by material makeup. The success of the decomposition was assessed quantitatively through the computation of percentage normalized root-mean-square error (%NRMSE). Our results indicate a successful decomposition of iohexol for both detectors (%NRMSE values of 1.8 for EMCCD, 2.4 for CMOS), as well as platinum (%NRMSE value of 4.7). The CMOS detector performed material decomposition on air and water on average with 7 times more %NRMSE, possibly due to the decreased sensitivity of the CMOS system. Material decomposition showed the potential to differentiate between materials such as the iohexol and platinum, perhaps opening the door for its use in the neurovascular anatomical region. Work supported by Toshiba America Medical Systems, and partially supported by NIH grant 2R01EB002873.
Implementation of material decomposition using an EMCCD and CMOS-based micro-CT system
NASA Astrophysics Data System (ADS)
Podgorsak, Alexander R.; Nagesh, S. V. Setlur; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.
2017-03-01
This project assessed the effectiveness of using two different detectors to obtain dual-energy (DE) micro-CT data for the carrying out of material decomposition. A micro-CT coupled to either a complementary metal-oxide semiconductor (CMOS) or an electron multiplying CCD (EMCCD) detector was used to acquire image data of a 3D-printed phantom with channels filled with different materials. At any instance, materials such as iohexol contrast agent, water, and platinum were selected to make up the scanned object. DE micro-CT data was acquired, and slices of the scanned object were differentiated by material makeup. The success of the decomposition was assessed quantitatively through the computation of percentage normalized root-mean-square error (%NRMSE). Our results indicate a successful decomposition of iohexol for both detectors (%NRMSE values of 1.8 for EMCCD, 2.4 for CMOS), as well as platinum (%NRMSE value of 4.7). The CMOS detector performed material decomposition on air and water on average with 7 times more %NRMSE, possibly due to the decreased sensitivity of the CMOS system. Material decomposition showed the potential to differentiate between materials such as the iohexol and platinum, perhaps opening the door for its use in the neurovascular anatomical region. Work supported by Toshiba America Medical Systems, and partially supported by NIH grant 2R01EB002873.
Radiolytic Synthesis of Pt-Particle/ABS Catalysts for H₂O₂ Decomposition in Contact Lens Cleaning.
Ohkubo, Yuji; Aoki, Tomonori; Seino, Satoshi; Mori, Osamu; Ito, Issaku; Endo, Katsuyoshi; Yamamura, Kazuya
2017-08-23
A container used in contact lens cleaning requires a Pt plating weight of 1.5 mg for H₂O₂ decomposition although Pt is an expensive material. Techniques that decrease the amount of Pt are therefore needed. In this study, Pt nanoparticles instead of Pt plating film were supported on a substrate of acrylonitrile-butadiene-styrene copolymer (ABS). This was achieved by the reduction of Pt ions in an aqueous solution containing the ABS substrate using high-energy electron-beam irradiation. Pt nanoparticles supported on the ABS substrate (Pt-particle/ABS) had a size of 4-10 nm. The amount of Pt required for Pt-particle/ABS was 250 times less than that required for an ABS substrate covered with Pt plating film (Pt-film/ABS). The catalytic activity for H₂O₂ decomposition was estimated by measuring the residual H₂O₂ concentration after immersing the catalyst for 360 min. The Pt-particle/ABS catalyst had a considerably higher specific catalytic activity for H₂O₂ decomposition than the Pt-film/ABS catalyst. In addition, sterilization performance was estimated from the initial rate of H₂O₂ decomposition over 60 min. The Pt-particle/ABS catalyst demonstrated a better sterilization performance than the Pt-film/ABS catalyst. The difference between Pt-particle/ABS and Pt-film/ABS was shown to reflect the size of the O₂ bubbles formed during H₂O₂ decomposition.
Water-Gas Shift and Methane Reactivity on Reducible Perovskite-Type Oxides
2015-01-01
Comparative (electro)catalytic, structural, and spectroscopic studies in hydrogen electro-oxidation, the (inverse) water-gas shift reaction, and methane conversion on two representative mixed ionic–electronic conducting perovskite-type materials La0.6Sr0.4FeO3−δ (LSF) and SrTi0.7Fe0.3O3−δ (STF) were performed with the aim of eventually correlating (electro)catalytic activity and associated structural changes and to highlight intrinsic reactivity characteristics as a function of the reduction state. Starting from a strongly prereduced (vacancy-rich) initial state, only (inverse) water-gas shift activity has been observed on both materials beyond ca. 450 °C but no catalytic methane reforming or methane decomposition reactivity up to 600 °C. In contrast, when starting from the fully oxidized state, total methane oxidation to CO2 was observed on both materials. The catalytic performance of both perovskite-type oxides is thus strongly dependent on the degree/depth of reduction, on the associated reactivity of the remaining lattice oxygen, and on the reduction-induced oxygen vacancies. The latter are clearly more reactive toward water on LSF, and this higher reactivity is linked to the superior electrocatalytic performance of LSF in hydrogen oxidation. Combined electron microscopy, X-ray diffraction, and Raman measurements in turn also revealed altered surface and bulk structures and reactivities. PMID:26045733
On bipartite pure-state entanglement structure in terms of disentanglement
NASA Astrophysics Data System (ADS)
Herbut, Fedor
2006-12-01
Schrödinger's disentanglement [E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935)], i.e., remote state decomposition, as a physical way to study entanglement, is carried one step further with respect to previous work in investigating the qualitative side of entanglement in any bipartite state vector. Remote measurement (or, equivalently, remote orthogonal state decomposition) from previous work is generalized to remote linearly independent complete state decomposition both in the nonselective and the selective versions. The results are displayed in terms of commutative square diagrams, which show the power and beauty of the physical meaning of the (antiunitary) correlation operator inherent in the given bipartite state vector. This operator, together with the subsystem states (reduced density operators), constitutes the so-called correlated subsystem picture. It is the central part of the antilinear representation of a bipartite state vector, and it is a kind of core of its entanglement structure. The generalization of previously elaborated disentanglement expounded in this article is a synthesis of the antilinear representation of bipartite state vectors, which is reviewed, and the relevant results of [Cassinelli et al., J. Math. Anal. Appl. 210, 472 (1997)] in mathematical analysis, which are summed up. Linearly independent bases (finite or infinite) are shown to be almost as useful in some quantum mechanical studies as orthonormal ones. Finally, it is shown that linearly independent remote pure-state preparation carries the highest probability of occurrence. This singles out linearly independent remote influence from all possible ones.
ERIC Educational Resources Information Center
Hammer, Niels; Loffler, Sabine; Feja, Christine; Sandrock, Mara; Schmidt, Wolfgang; Bechmann, Ingo; Steinke, Hanno
2012-01-01
Anatomical fixation and conservation are required to prevent specimens from undergoing autolysis and decomposition. While fixation is the primary arrest of the structures responsible for autolysis and decomposition, conservation preserves the state of fixation. Although commonly used, formaldehyde has been classified as carcinogenic to humans. For…
Gibbsian Stationary Non-equilibrium States
NASA Astrophysics Data System (ADS)
De Carlo, Leonardo; Gabrielli, Davide
2017-09-01
We study the structure of stationary non-equilibrium states for interacting particle systems from a microscopic viewpoint. In particular we discuss two different discrete geometric constructions. We apply both of them to determine non reversible transition rates corresponding to a fixed invariant measure. The first one uses the equivalence of this problem with the construction of divergence free flows on the transition graph. Since divergence free flows are characterized by cyclic decompositions we can generate families of models from elementary cycles on the configuration space. The second construction is a functional discrete Hodge decomposition for translational covariant discrete vector fields. According to this, for example, the instantaneous current of any interacting particle system on a finite torus can be canonically decomposed in a gradient part, a circulation term and an harmonic component. All the three components are associated with functions on the configuration space. This decomposition is unique and constructive. The stationary condition can be interpreted as an orthogonality condition with respect to an harmonic discrete vector field and we use this decomposition to construct models having a fixed invariant measure.
The effect of body size on the rate of decomposition in a temperate region of South Africa.
Sutherland, A; Myburgh, J; Steyn, M; Becker, P J
2013-09-10
Forensic anthropologists rely on the state of decomposition of a body to estimate the post-mortem-interval (PMI) which provides information about the natural events and environmental forces that could have affected the remains after death. Various factors are known to influence the rate of decomposition, among them temperature, rainfall and exposure of the body. However, conflicting reports appear in the literature on the effect of body size on the rate of decay. The aim of this project was to compare decomposition rates of large pigs (Sus scrofa; 60-90 kg), with that of small pigs (<35 kg), to assess the influence of body size on decomposition rates. For the decomposition rates of small pigs, 15 piglets were assessed three times per week over a period of three months during spring and early summer. Data collection was conducted until complete skeletonization occurred. Stages of decomposition were scored according to separate categories for each anatomical region, and the point values for each region were added to determine the total body score (TBS), which represents the overall stage of decomposition for each pig. For the large pigs, data of 15 pigs were used. Scatter plots illustrating the relationships between TBS and PMI as well as TBS and accumulated degree days (ADD) were used to assess the pattern of decomposition and to compare decomposition rates between small and large pigs. Results indicated that rapid decomposition occurs during the early stages of decomposition for both samples. Large pigs showed a plateau phase in the course of advanced stages of decomposition, during which decomposition was minimal. A similar, but much shorter plateau was reached by small pigs of >20 kg at a PMI of 20-25 days, after which decomposition commenced swiftly. This was in contrast to the small pigs of <20 kg, which showed no plateau phase and their decomposition rates were swift throughout the duration of the study. Overall, small pigs decomposed 2.82 times faster than large pigs, indicating that body size does have an effect on the rate of decomposition. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Bischoff, Florian A; Harrison, Robert J; Valeev, Edward F
2012-09-14
We present an approach to compute accurate correlation energies for atoms and molecules using an adaptive discontinuous spectral-element multiresolution representation for the two-electron wave function. Because of the exponential storage complexity of the spectral-element representation with the number of dimensions, a brute-force computation of two-electron (six-dimensional) wave functions with high precision was not practical. To overcome the key storage bottlenecks we utilized (1) a low-rank tensor approximation (specifically, the singular value decomposition) to compress the wave function, and (2) explicitly correlated R12-type terms in the wave function to regularize the Coulomb electron-electron singularities of the Hamiltonian. All operations necessary to solve the Schrödinger equation were expressed so that the reconstruction of the full-rank form of the wave function is never necessary. Numerical performance of the method was highlighted by computing the first-order Møller-Plesset wave function of a helium atom. The computed second-order Møller-Plesset energy is precise to ~2 microhartrees, which is at the precision limit of the existing general atomic-orbital-based approaches. Our approach does not assume special geometric symmetries, hence application to molecules is straightforward.
Clament Sagaya Selvam, N; Kim, Yeong Gyeong; Kim, Dong Jin; Hong, Won-Hwa; Kim, Woong; Park, Sung Hyuk; Jo, Wan-Kuen
2018-09-01
The efficient photocatalytic degradation of harmful organic pollutants (isoniazid (ISN) and 1,4-dioxane (DX)) via the Z-scheme electron transfer mechanism was accomplished using a photostable composite photocatalyst consisting of BiVO 4 , CdS, and reduced graphene oxide (RGO). Compared to their pristine counterparts, the RGO-mediated Z-scheme CdS/BiVO 4 (CdS/RGO-BiVO 4 ) nanocomposites exhibited superior degradation activities, mainly attributed to the prolonged charge separation. RGO was found to be involved in visible-light harvesting and acted as a solid-state electron mediator at the CdS/BiVO 4 interface to realize an effective Z-scheme electron transfer pathway, avoid photocatalyst self-oxidation, and lengthen the life span of charge carriers. The results of reactive species scavenging experiments, photoluminescence measurements, and transient photocurrent measurements, as well as the calculated band potentials of the synthesized photocatalysts, supported the Z-scheme electron/hole pair separation mechanism. Additionally, the intermediates formed during the degradation of ISN and DX were identified, and a possible fragmentation pattern was proposed. This systematic work aims to develop photostable Z-scheme composites as unique photocatalytic systems for the efficient removal of harmful organic pollutants. Copyright © 2018 Elsevier B.V. All rights reserved.
Mapping current fluctuations of stochastic pumps to nonequilibrium steady states.
NASA Astrophysics Data System (ADS)
Rotskoff, Grant
We show that current fluctuations in stochastic pumps can be robustly mapped to fluctuations in a corresponding time-independent non-equilibrium steady state. We thus refine a recently proposed mapping so that it ensures equivalence of not only the averages, but also the optimal representation of fluctuations in currents and density. Our mapping leads to a natural decomposition of the entropy production in stochastic pumps, similar to the ``housekeeping'' heat. As a consequence of the decomposition of entropy production, the current fluctuations in weakly perturbed stochastic pumps satisfy a universal bound determined by the steady state entropy production. National Science Foundation Graduate Research Fellowship.
Kinetics of the cellular decomposition of supersaturated solid solutions
NASA Astrophysics Data System (ADS)
Ivanov, M. A.; Naumuk, A. Yu.
2014-09-01
A consistent description of the kinetics of the cellular decomposition of supersaturated solid solutions with the development of a spatially periodic structure of lamellar (platelike) type, which consists of alternating phases of precipitates on the basis of the impurity component and depleted initial solid solution, is given. One of the equations, which determines the relationship between the parameters that describe the process of decomposition, has been obtained from a comparison of two approaches in order to determine the rate of change in the free energy of the system. The other kinetic parameters can be described with the use of a variational method, namely, by the maximum velocity of motion of the decomposition boundary at a given temperature. It is shown that the mutual directions of growth of the lamellae of different phases are determined by the minimum value of the interphase surface energy. To determine the parameters of the decomposition, a simple thermodynamic model of states with a parabolic dependence of the free energy on the concentrations has been used. As a result, expressions that describe the decomposition rate, interlamellar distance, and the concentration of impurities in the phase that remain after the decomposition have been derived. This concentration proves to be equal to the half-sum of the initial concentration and the equilibrium concentration corresponding to the decomposition temperature.
People counting in classroom based on video surveillance
NASA Astrophysics Data System (ADS)
Zhang, Quanbin; Huang, Xiang; Su, Juan
2014-11-01
Currently, the switches of the lights and other electronic devices in the classroom are mainly relied on manual control, as a result, many lights are on while no one or only few people in the classroom. It is important to change the current situation and control the electronic devices intelligently according to the number and the distribution of the students in the classroom, so as to reduce the considerable waste of electronic resources. This paper studies the problem of people counting in classroom based on video surveillance. As the camera in the classroom can not get the full shape contour information of bodies and the clear features information of faces, most of the classical algorithms such as the pedestrian detection method based on HOG (histograms of oriented gradient) feature and the face detection method based on machine learning are unable to obtain a satisfied result. A new kind of dual background updating model based on sparse and low-rank matrix decomposition is proposed in this paper, according to the fact that most of the students in the classroom are almost in stationary state and there are body movement occasionally. Firstly, combining the frame difference with the sparse and low-rank matrix decomposition to predict the moving areas, and updating the background model with different parameters according to the positional relationship between the pixels of current video frame and the predicted motion regions. Secondly, the regions of moving objects are determined based on the updated background using the background subtraction method. Finally, some operations including binarization, median filtering and morphology processing, connected component detection, etc. are performed on the regions acquired by the background subtraction, in order to induce the effects of the noise and obtain the number of people in the classroom. The experiment results show the validity of the algorithm of people counting.
Studies on seasonal arthropod succession on carrion in the southeastern Iberian Peninsula.
Arnaldos, M I; Romera, E; Presa, J J; Luna, A; García, M D
2004-08-01
A global study of the sarcosaprophagous community that occurs in the southeastern Iberian Peninsula during all four seasons is made for the first time, and its diversity is described with reference to biological indices. A total of 18,179 adults and, additionally, a number of preimaginal states were collected. The results for the main arthropod groups, and their diversity are discussed in relation to the season and decompositional stages. The results provide an extensive inventory of carrion-associated arthropods. An association between decomposition stages and more representative arthropod groups is established. With respect to the biological indices applied, Margalef's index shows that the diversity of the community increases as the state of decomposition advances, while Sorenson's quantitative index shows that the greatest similarities are between spring and summer on the one hand, and fall and winter, on the other.
Liu, Qi; Mu, Daobin; Wu, Borong; Wang, Lei; Gai, Liang; Wu, Feng
2017-02-22
The solid-electrolyte interface (SEI) film in a sodium-ion battery is closely related to capacity fading and cycling stability of the battery. However, there are few studies on the SEI film of sodium-ion batteries and the mechanism of SEI film formation is unclear. The mechanism for the reduction of ethylene carbonate (EC), propylene carbonate (PC), vinylene carbonate (VC), ethylene sulfite (ES), 1,3-propylene sulfite (PS), and fluorinated ethylene carbonate (FEC) is studied by DFT. The reaction activation energies, Gibbs free energies, enthalpies, and structures of the transition states are calculated. It is indicated that VC, ES, and PS additives in the electrolyte are all easier to form organic components in the anode SEI film by one-electron reduction. The priority of one-electron reduction to produce organic SEI components is in the order of VC>PC>EC; two-electron reduction to produce the inorganic Na 2 CO 3 component is different and follows the order of EC>PC>VC. Two-electron reduction for sulfites ES and PS to form inorganic Na 2 SO 3 is harder than that of carbonate ester reduction. It is also suggested that the one- and two-electron reductive decomposition pathway for FEC is more feasible to produce inorganic NaF components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ushirogata, Keisuke; Sodeyama, Keitaro; Okuno, Yukihiro; Tateyama, Yoshitaka
2013-08-14
The solid-electrolyte interphase (SEI) formed through the reductive decomposition of solvent molecules plays a crucial role in the stability and capability of a lithium-ion battery (LIB). Here we investigated the effects of adding vinylene carbonate (VC) to ethylene carbonate (EC) solvent, a typical electrolyte in LIBs, on the reductive decomposition. We focused on both thermodynamics and kinetics of the possible processes and used density functional theory-based molecular dynamics with explicit solvent and Blue-moon ensemble technique for the free energy change. We considered Li(+) in only EC solvent (EC system) and in EC solvent with a VC additive (EC/VC system) to elucidate the additive effects. In addition to clarifying the equilibrium properties, we evaluated the free energy changes along several EC or VC decomposition pathways under one-electron (1e) reduction condition. Two-electron (2e) reduction and attacks of anion radicals to intact molecules were also examined. The present results completely reproduce the gaseous products observed in the experiments. We also found a new mechanism involving the VC additive: the VC additive preferentially reacts with the EC anion radical to suppress the 2e reduction of EC and enhance the initial SEI formation, contrary to the conventional scenario in which VC additive is sacrificially reduced and its radical oligomerization becomes the source of SEI. Because our mechanism needs only 1e reduction, the irreversible capacity at the SEI formation will decrease, which is also consistent with the experimental observations. These results reveal the primary role of VC additive in the EC solvent.
Test program to demonstrate the stability of hydrazine in propellant tanks
NASA Technical Reports Server (NTRS)
Moran, C. M.; Sutton, D.
1983-01-01
The suitability of stainless steels and Inconel for long-term hydrazine propellant-storage tanks is investigated. Rectangular coupon samples cut from propellent tanks were sealed with a measured amount of hydrazine in glass capsules, stored at 43 or 60 C, and removed after 6 to 24 months, when corrosion of the coupon and decomposition of the hydrazine was determined, and SEM and electron spectroscopy were performed on some coupons. Corrosion was found to be unmeasurably low for all the coupons, and hydrazine decomposition produced less than 1.0 cu cm of gas per sq cm of wetted surface per year, except in those few cases when catalysis or contamination were detected. Especially good stability was observed for type 304L stainless steel. The decomposition rates determined in the coupon tests are confirmed by preliminary results of actual tank storage trials.
NASA Astrophysics Data System (ADS)
Nakhjavan, Bahar; Tahir, Muhammad Nawaz; Natalio, Filipe; Panthöfer, Martin; Gao, Haitao; Dietzsch, Michael; Andre, Rute; Gasi, Teuta; Ksenofontov, Vadim; Branscheid, Robert; Kolb, Ute; Tremel, Wolfgang
2012-07-01
Ni@Fe2O3 heterodimer nanoparticles (NPs) were synthesized by thermal decomposition of organometallic reactants. After functionalization, these Ni@Fe2O3 heterodimers became water soluble. The pristine heterodimeric NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetic susceptibility measurements. A special advantage of the heterodimers lies in the fact that nanodomains of different composition can be used as catalysts for the removal of environmentally hazardous halogenated pollutants.Ni@Fe2O3 heterodimer nanoparticles (NPs) were synthesized by thermal decomposition of organometallic reactants. After functionalization, these Ni@Fe2O3 heterodimers became water soluble. The pristine heterodimeric NPs were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Mössbauer spectroscopy and magnetic susceptibility measurements. A special advantage of the heterodimers lies in the fact that nanodomains of different composition can be used as catalysts for the removal of environmentally hazardous halogenated pollutants. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr12121b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Shanshan; Jing Xiaoyan; Liu Jingyuan
2013-01-15
Porous sheet-like cobalt oxide (Co{sub 3}O{sub 4}) were successfully synthesized by precipitation method combined with calcination of cobalt hydroxide precursors. The structure, morphology and porosity properties of the products were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption-desorption measurement. The as-prepared sheet-like microstructures were approximately 2-3 {mu}m in average diameter, and the morphology of the cobalt hydroxide precursors was retained after the calcination process. However, it appeared a large number of uniform pores in the sheets after calcination. In order to calculate the potential catalytic activity, the thermal decomposition of ammoniummore » perchlorate (AP) has been analyzed, in which cobalt oxide played a role of an additive and the porous sheet-like Co{sub 3}O{sub 4} microstructures exhibited high catalytic performance and considerable decrease in the thermal decomposition temperature of AP. Moreover, a formation mechanism for the sheet-like microstructures has been discussed. - Graphical abstract: Porous sheet-like Co{sub 3}O{sub 4} were synthesized by facile precipitation method combined with calcination of {beta}-Co(OH){sub 2} precursors. Thermogravimetric-differential scanning calorimetric analysis indicates potential catalytic activity in the thermal decomposition of ammonium perchlorate. Highlights: Black-Right-Pointing-Pointer Synthesis of sheet-like {beta}-Co(OH){sub 2} precursors by precipitation method. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} were obtained by calcining {beta}-Co(OH){sub 2} precursors. Black-Right-Pointing-Pointer The possible formation mechanism of porous sheet-like Co{sub 3}O{sub 4} has been discussed. Black-Right-Pointing-Pointer Porous sheet-like Co{sub 3}O{sub 4} decrease the thermal decomposition temperature of ammonium perchlorate.« less
Molybdenum Oxide Nitrides of the Mo2(O,N,□)5 Type: On the Way to Mo2O5.
Weber, Dominik; Huber, Manop; Gorelik, Tatiana E; Abakumov, Artem M; Becker, Nils; Niehaus, Oliver; Schwickert, Christian; Culver, Sean P; Boysen, Hans; Senyshyn, Anatoliy; Pöttgen, Rainer; Dronskowski, Richard; Ressler, Thorsten; Kolb, Ute; Lerch, Martin
2017-08-07
Blue-colored molybdenum oxide nitrides of the Mo 2 (O,N,□) 5 type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting Mo V O 6 units. The new materials are stable up to ∼773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb 9 O 24.9 -type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo 2 O 5 . On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo 2 O 5 , backed by electronic-structure and phonon calculations from first principles, is given.
Yim, Chul Jin; Unithrattil, Sanjith; Chung, Woon Jin; Im, Won Bin
2013-12-01
Red emitting nanofibers, KGdTa2O7:Eu3+ were synthesized by electrospinning technique followed by heat treatment. As-prepared uniform fiber precursor with diameter ranging from about 700 nm to about 900 nm were calcined after removing organic species by calcination. The fiber surface become rough and diameter decreased to about 250-340 nm range due to decomposition of organic species and formation of inorganic phase. Morphology, structural and photoluminescent properties of fibers were analyzed using thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL). TG-DTA analysis indicates that KGdTa2O7:Eu3+ began to crystalize at 520 degrees C. Fibers annealed at 900 degrees C formed well crystallized uniform fibers. Under ultraviolet excitation KGdTa2O7:Eu3+ exhibits red emission due to transitions in 4f states of Eu3+. The excitation band is dominated by the Eu(3+)--O2-charge transfer band peaked at 289 nm. The emission peak is in the region that is ideal for red light emission.
Preparation of α-Fe2O3 nanotubes via electrospinning and research on their catalytic properties
NASA Astrophysics Data System (ADS)
Shao, Hao; Zhang, Xuebin; Chen, Fanyan; Liu, Shasha; Ji, Yi; Zhu, Yajun; Feng, Yi
2012-09-01
In this paper, smooth α-Fe2O3 nanotubes have been successfully synthesized by electrospinning of ferric nitrate-polyvinyl alcohol solution followed by calcination in air. The morphologies and structures of the samples were characterized by transmission electron microscopy, scanning electron microscopy and X-ray diffraction. The catalytic properties were studied by differential thermal analysis and thermogravimetric analysis. The results indicated that the as-prepared α-Fe2O3 nanotubes showed a continuous morphology and an extremely high degree of crystallization. The average inner and outer diameters of the obtained α-Fe2O3 nanotubes were about 60 nm and 100 nm, respectively. The obtained α-Fe2O3 nanotubes were able to lower the temperature of the high-temperature thermal decomposition of ammonium perchlorate, while they had little effect on the crystallographic phase transformation and the low-temperature thermal decomposition.
A trimodal porous carbon as an effective catalyst for hydrogen production by methane decomposition.
Shen, Yi; Lua, Aik Chong
2016-01-15
A new type of porous carbon with an interconnected trimodal pore system is synthesized by a nanocasting method using nanoparticulated bimodal micro-mesoporous silica particles as the template. The synthesized template and carbon material are characterized using transmission electron microscopy (TEM), field emission electron scanning microscopy (FESEM) and nitrogen adsorption-desorption test. The synthesized carbon material has an extremely high surface area, a large pore volume and an interconnected pore structure, which could provide abundant active sites and space for chemical reactions and minimize the diffusion resistance of the reactants. The resulting carbon is used as the catalyst for hydrogen production by the thermal decomposition of methane. The catalytic results show that the as-synthesized carbon in this study produces much higher methane conversion and hydrogen yield than the commercial carbon materials. Copyright © 2015 Elsevier Inc. All rights reserved.
Electron energy-loss spectroscopy of single nanocrystals: mapping of tin allotropes.
Roesgaard, Søren; Ramasse, Quentin; Chevallier, Jacques; Fyhn, Mogens; Julsgaard, Brian
2018-05-25
Using monochromated electron energy-loss spectroscopy (EELS), we are able to map different allotropes in Sn-nanocrystals embedded in Si. It is demonstrated that α-Sn and β-Sn, as well as an interface related plasmon, can be distinguished in embedded Sn-nanostructures. The EELS data is interpreted by standard non-negative matrix factorization followed by a manual Lorentzian decomposition. The decomposition allows for a more physical understanding of the EELS mapping without reducing the level of information. Extending the analysis from a reference system to smaller nanocrystals demonstrates that allotrope determination in nanoscale systems down below 5 nm is possible. Such local information proves the use of monochromated EELS mapping as a powerful technique to study nanoscale systems. This possibility enables investigation of small nanostructures that cannot be investigated through other means, allowing for a better understanding and thus leading to realizations that can result in nanomaterials with improved properties.
Structures, electronic properties and reaction paths from Fe(CO)5 molecule to small Fe clusters
NASA Astrophysics Data System (ADS)
Li, Zhi; Zhao, Zhen
2018-04-01
The geometries, electrical characters and reaction paths from Fe(CO)5 molecule to small Fe clusters were investigated by using all-electron density functional theory. The results show that in the decomposition process of pentacarbonyl-iron, Fe(CO)5 molecule prefers to remove a carbon monoxide and adsorb another Fe(CO)5 molecule to produce nonacarbonyldiiron Fe2(CO)9 then Fe2(CO)9 gradually removes carbon monoxide to produce small Fe clusters. As It can be seen from the highest occupied molecule orbital-lowest unoccupied molecule orbital gap curves, the Fe(CO)n=3, and 5 and Fe2(CO)n=3, 7 and 9 intermediates have higher chemical stability than their neighbors. The local magnetic moment of the carbon monoxide is aligning anti-ferromagnetic. The effect of external magnetic field to the initial decomposition products of Fe(CO)5 can be ignored.
Electron energy-loss spectroscopy of single nanocrystals: mapping of tin allotropes
NASA Astrophysics Data System (ADS)
Roesgaard, Søren; Ramasse, Quentin; Chevallier, Jacques; Fyhn, Mogens; Julsgaard, Brian
2018-05-01
Using monochromated electron energy-loss spectroscopy (EELS), we are able to map different allotropes in Sn-nanocrystals embedded in Si. It is demonstrated that α-Sn and β-Sn, as well as an interface related plasmon, can be distinguished in embedded Sn-nanostructures. The EELS data is interpreted by standard non-negative matrix factorization followed by a manual Lorentzian decomposition. The decomposition allows for a more physical understanding of the EELS mapping without reducing the level of information. Extending the analysis from a reference system to smaller nanocrystals demonstrates that allotrope determination in nanoscale systems down below 5 nm is possible. Such local information proves the use of monochromated EELS mapping as a powerful technique to study nanoscale systems. This possibility enables investigation of small nanostructures that cannot be investigated through other means, allowing for a better understanding and thus leading to realizations that can result in nanomaterials with improved properties.
On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate
NASA Astrophysics Data System (ADS)
Moezzi, Amir; Cortie, Michael; Dowd, Annette; McDonagh, Andrew
2014-04-01
The decomposition of zinc hydroxide carbonate, Zn5(CO3)2(OH)6 (ZHC), into the high surface area form of ZnO known as "active zinc oxide" is examined. In particular, the nucleation and evolution of the ZnO nanocrystals is of interest as the size of these particles controls the activity of the product. The decomposition process was studied using X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. At about 240 °C ZHC decomposes to porous ZnO in a single step. The product material has a specific surface area in the range of 47-65 m2 g-1 and initially has a crystallite size that is of the order of 10 nm. A further increase in temperature, however, causes the particles to coarsen to over 25 nm in diameter. In principle, the coarsening phenomenon may be interrupted to control the particle size.
Srivastava, Madhur; Freed, Jack H
2017-11-16
Regularization is often utilized to elicit the desired physical results from experimental data. The recent development of a denoising procedure yielding about 2 orders of magnitude in improvement in SNR obviates the need for regularization, which achieves a compromise between canceling effects of noise and obtaining an estimate of the desired physical results. We show how singular value decomposition (SVD) can be employed directly on the denoised data, using pulse dipolar electron spin resonance experiments as an example. Such experiments are useful in measuring distances and their distributions, P(r) between spin labels on proteins. In noise-free model cases exact results are obtained, but even a small amount of noise (e.g., SNR = 850 after denoising) corrupts the solution. We develop criteria that precisely determine an optimum approximate solution, which can readily be automated. This method is applicable to any signal that is currently processed with regularization of its SVD analysis.
A transient semimetallic layer in detonating nitromethane
NASA Astrophysics Data System (ADS)
Reed, Evan J.; Riad Manaa, M.; Fried, Laurence E.; Glaesemann, Kurt R.; Joannopoulos, J. D.
2008-01-01
Despite decades of research, the microscopic details and extreme states of matter found within a detonating high explosive have yet to be elucidated. Here we present the first quantum molecular-dynamics simulation of a shocked explosive near detonation conditions. We discover that the wide-bandgap insulator nitromethane (CH3NO2) undergoes chemical decomposition and a transformation into a semimetallic state for a limited distance behind the detonation front. We find that this transformation is associated with the production of charged decomposition species and provides a mechanism to explain recent experimental observations.
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G
2011-08-28
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G.
2011-01-01
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi–Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi–Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. PMID:21895159
State interference in resonance Auger and x-ray emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cesar, A.; Agren, H.
1992-03-01
Starting from a scattering-theory formulation, cross sections for Auger and x-ray decay from energetically shifted inner-shell states are derived. Two situations are studied: (i) when there are several close-lying intermediate core-hole states with no vibrational excitations, in which case a {ital state} {ital interference} effect is identified; and (ii) when there are several close-lying intermediate states with vibrational excitations, in which case a {ital vibronic} {ital interference} effect is identified. In the latter case, the present formalism is a many-state generalization of the {ital vibrational} {ital interference} {ital effects} derived from the same type of scattering formalism in our previousmore » paper (A. Cesar, H. Agren, and V. Carravetta, Phys. Rev. A 40, 187 (1989)). Applications are carried out for spectra of some few-state model systems. It is found that a conventional analysis in terms of discrete noninteracting (noninterfering) states, such as the one-center decomposition model, is only valid when the ratio ({ital R}) between energy shift and lifetime is sufficiently large. For states with small {ital R}, a more complete theoretical account must be undertaken, including, e.g., the calculation of phases of the respective transition moments. The presented formalism applies to resonance Auger or x-ray emission spectra, to Auger and x-ray emission from core-electron shake-up states, and also, under certain circumstances, to emission from chemically shifted core-hole states.« less
NASA Astrophysics Data System (ADS)
An, Chongwei; Ding, Penghui; Ye, Baoyun; Geng, Xiaoheng; Wang, Jingyu
2017-03-01
Carbon-coated copper nanoparticles (CCNPs) were prepared by initiating a high-density charge pressed with a mixture of microcrystalline wax, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and copper nitrate hydrate (Cu(NO3)2.3H2O) in an explosion vessel filled with nitrogen gas. The detonation products were characterized by transmission electron microcopy (TEM), high resolution transmission electron microcopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and Raman spectroscopy. The effects of CCNPs on thermal decomposition of ammonium perchlorate (AP) were also investigated by differential scanning calorimeter (DSC). Results indicated that the detonation products were spherical, 25-40 nm in size, and had an apparent core-shell structure. In this structure, the carbon shell was 3-5 nm thick and mainly composed of graphite, C8 (a kind of carbyne), and amorphous carbon. When 5 wt.% CCNPs was mixed with 95 wt.% AP, the high-temperature decomposition peak of AP decreased by 95.97, 96.99, and 96.69 °Cat heating rates of 5, 10, and 20 °C/min, respectively. Moreover, CCNPs decreased the activation energy of AP as calculated through Kissinger's method by 25%, which indicated outstanding catalysis for the thermal decomposition of AP.
Modeling Oil Shale Pyrolysis: High-Temperature Unimolecular Decomposition Pathways for Thiophene.
Vasiliou, AnGayle K; Hu, Hui; Cowell, Thomas W; Whitman, Jared C; Porterfield, Jessica; Parish, Carol A
2017-10-12
The thermal decomposition mechanism of thiophene has been investigated both experimentally and theoretically. Thermal decomposition experiments were done using a 1 mm × 3 cm pulsed silicon carbide microtubular reactor, C 4 H 4 S + Δ → Products. Unlike previous studies these experiments were able to identify the initial thiophene decomposition products. Thiophene was entrained in either Ar, Ne, or He carrier gas, passed through a heated (300-1700 K) SiC microtubular reactor (roughly ≤100 μs residence time), and exited into a vacuum chamber. The resultant molecular beam was probed by photoionization mass spectroscopy and IR spectroscopy. The pyrolysis mechanisms of thiophene were also investigated with the CBS-QB3 method using UB3LYP/6-311++G(2d,p) optimized geometries. In particular, these electronic structure methods were used to explore pathways for the formation of elemental sulfur as well as for the formation of H 2 S and 1,3-butadiyne. Thiophene was found to undergo unimolecular decomposition by five pathways: C 4 H 4 S → (1) S═C═CH 2 + HCCH, (2) CS + HCCCH 3 , (3) HCS + HCCCH 2 , (4) H 2 S + HCC-CCH, and (5) S + HCC-CH═CH 2 . The experimental and theoretical findings are in excellent agreement.
Calculation of excitation energies from the CC2 linear response theory using Cholesky decomposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baudin, Pablo, E-mail: baudin.pablo@gmail.com; qLEAP – Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C; Marín, José Sánchez
2014-03-14
A new implementation of the approximate coupled cluster singles and doubles CC2 linear response model is reported. It employs a Cholesky decomposition of the two-electron integrals that significantly reduces the computational cost and the storage requirements of the method compared to standard implementations. Our algorithm also exploits a partitioning form of the CC2 equations which reduces the dimension of the problem and avoids the storage of doubles amplitudes. We present calculation of excitation energies of benzene using a hierarchy of basis sets and compare the results with conventional CC2 calculations. The reduction of the scaling is evaluated as well asmore » the effect of the Cholesky decomposition parameter on the quality of the results. The new algorithm is used to perform an extrapolation to complete basis set investigation on the spectroscopically interesting benzylallene conformers. A set of calculations on medium-sized molecules is carried out to check the dependence of the accuracy of the results on the decomposition thresholds. Moreover, CC2 singlet excitation energies of the free base porphin are also presented.« less
NASA Astrophysics Data System (ADS)
Shao, X. H.; Zheng, S. J.; Chen, D.; Jin, Q. Q.; Peng, Z. Z.; Ma, X. L.
2016-07-01
The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening.
Shao, X. H.; Zheng, S. J.; Chen, D.; Jin, Q. Q.; Peng, Z. Z.; Ma, X. L.
2016-01-01
The high hardness or yield strength of an alloy is known to benefit from the presence of small-scale precipitation, whose hardening effect is extensively applied in various engineering materials. Stability of the precipitates is of critical importance in maintaining the high performance of a material under mechanical loading. The long period stacking ordered (LPSO) structures play an important role in tuning the mechanical properties of an Mg-alloy. Here, we report deformation twinning induces decomposition of lamellar LPSO structures and their re-precipitation in an Mg-Zn-Y alloy. Using atomic resolution scanning transmission electron microscopy (STEM), we directly illustrate that the misfit dislocations at the interface between the lamellar LPSO structure and the deformation twin is corresponding to the decomposition and re-precipitation of LPSO structure, owing to dislocation effects on redistribution of Zn/Y atoms. This finding demonstrates that deformation twinning could destabilize complex precipitates. An occurrence of decomposition and re-precipitation, leading to a variant spatial distribution of the precipitates under plastic loading, may significantly affect the precipitation strengthening. PMID:27435638
NASA Astrophysics Data System (ADS)
Miehe, Gerhard; Lauterbach, Stefan; Kleebe, Hans-Joachim; Gurlo, Aleksander
2013-02-01
The high-resolution transmission electron microscopy (HR-TEM) is used to study, in situ, spatially resolved decomposition in individual nanocrystals of metal hydroxides and oxyhydroxides. This case study reports on the decomposition of indium hydroxide (c-In(OH)3) to bixbyite-type indium oxide (c-In2O3). The electron beam is focused onto a single cube-shaped In(OH)3 crystal of {100} morphology with ca. 35 nm edge length and a sequence of HR-TEM images was recorded during electron beam irradiation. The frame-by-frame analysis of video sequences allows for the in situ, time-resolved observation of the shape and orientation of the transformed crystals, which in turn enables the evaluation of the kinetics of c-In2O3 crystallization. Supplementary material (video of the transformation) related to this article can be found online at 10.1016/j.jssc.2012.09.022. After irradiation the shape of the parent cube-shaped crystal is preserved, however, its linear dimension (edge) is reduced by the factor 1.20. The corresponding spotted selected area electron diffraction (SAED) pattern representing zone [001] of c-In(OH)3 is transformed to a diffuse strongly textured ring-like pattern of c-In2O3 that indicates the transformed cube is no longer a single crystal but is disintegrated into individual c-In2O3 domains with the size of about 5-10 nm. The induction time of approximately 15 s is estimated from the time-resolved Fourier transforms. The volume fraction of the transformed phase (c-In2O3), calculated from the shrinkage of the parent c-In(OH)3 crystal in the recorded HR-TEM images, is used as a measure of the kinetics of c-In2O3 crystallization within the framework of Avrami-Erofeev formalism. The Avrami exponent of ˜3 is characteristic for a reaction mechanism with fast nucleation at the beginning of the reaction and subsequent three-dimensional growth of nuclei with a constant growth rate. The structural transformation path in reconstructive decomposition of c-In(OH)3 to c-In2O3 is discussed in terms of (i) the displacement of hydrogen atoms that lead to breaking the hydrogen bond between OH groups of [In(OH)6] octahedra and finally to their destabilization and (ii) transformation of the vertices-shared indium-oxygen octahedra in c-In(OH)3 to vertices- and edge-shared octahedra in c-In2O3.
Decomposition mechanism of chromite in sulfuric acid-dichromic acid solution
NASA Astrophysics Data System (ADS)
Zhao, Qing; Liu, Cheng-jun; Li, Bao-kuan; Jiang, Mao-fa
2017-12-01
The sulfuric acid leaching process is regarded as a promising, cleaner method to prepare trivalent chromium products from chromite; however, the decomposition mechanism of the ore is poorly understood. In this work, binary spinels of Mg-Al, Mg-Fe, and Mg-Cr in the powdered and lump states were synthesized and used as raw materials to investigate the decomposition mechanism of chromite in sulfuric acid-dichromic acid solution. The leaching yields of metallic elements and the changes in morphology of the spinel were studied. The experimental results showed that the three spinels were stable in sulfuric acid solution and that dichromic acid had little influence on the decomposition behavior of the Mg-Al spinel and Mg-Fe spinel because Mg2+, Al3+, and Fe3+ in spinels cannot be oxidized by Cr6+. However, in the case of the Mg-Cr spinel, dichromic acid substantially promoted the decomposition efficiency and functioned as a catalyst. The decomposition mechanism of chromite in sulfuric acid-dichromic acid solution was illustrated on the basis of the findings of this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manthe, Uwe, E-mail: uwe.manthe@uni-bielefeld.de; Ellerbrock, Roman, E-mail: roman.ellerbrock@uni-bielefeld.de
2016-05-28
A new approach for the quantum-state resolved analysis of polyatomic reactions is introduced. Based on the singular value decomposition of the S-matrix, energy-dependent natural reaction channels and natural reaction probabilities are defined. It is shown that the natural reaction probabilities are equal to the eigenvalues of the reaction probability operator [U. Manthe and W. H. Miller, J. Chem. Phys. 99, 3411 (1993)]. Consequently, the natural reaction channels can be interpreted as uniquely defined pathways through the transition state of the reaction. The analysis can efficiently be combined with reactive scattering calculations based on the propagation of thermal flux eigenstates. Inmore » contrast to a decomposition based straightforwardly on thermal flux eigenstates, it does not depend on the choice of the dividing surface separating reactants from products. The new approach is illustrated studying a prototypical example, the H + CH{sub 4} → H{sub 2} + CH{sub 3} reaction. The natural reaction probabilities and the contributions of the different vibrational states of the methyl product to the natural reaction channels are calculated and discussed. The relation between the thermal flux eigenstates and the natural reaction channels is studied in detail.« less
Reconstruction of Complex Network based on the Noise via QR Decomposition and Compressed Sensing.
Li, Lixiang; Xu, Dafei; Peng, Haipeng; Kurths, Jürgen; Yang, Yixian
2017-11-08
It is generally known that the states of network nodes are stable and have strong correlations in a linear network system. We find that without the control input, the method of compressed sensing can not succeed in reconstructing complex networks in which the states of nodes are generated through the linear network system. However, noise can drive the dynamics between nodes to break the stability of the system state. Therefore, a new method integrating QR decomposition and compressed sensing is proposed to solve the reconstruction problem of complex networks under the assistance of the input noise. The state matrix of the system is decomposed by QR decomposition. We construct the measurement matrix with the aid of Gaussian noise so that the sparse input matrix can be reconstructed by compressed sensing. We also discover that noise can build a bridge between the dynamics and the topological structure. Experiments are presented to show that the proposed method is more accurate and more efficient to reconstruct four model networks and six real networks by the comparisons between the proposed method and only compressed sensing. In addition, the proposed method can reconstruct not only the sparse complex networks, but also the dense complex networks.
Nanoparticle-assisted photo-Fenton reaction for photo-decomposition of humic acid
NASA Astrophysics Data System (ADS)
Banik, Jhuma; Basumallick, Srijita
2017-11-01
We report here the synthesis of CuO-doped ZnO composite nanomaterials (NMs) by chemical route and demonstrated for the first time that these NMs are efficient catalysts for H2O2-assisted photo-decomposition (photo-Fenton type catalyst) of humic acid, a natural pollutant of surface water by solar irradiation. This has been explained by faster electron transfer to OH radical at the p-n hetero-junction of this composite catalyst. Application of this composite catalyst in decomposing humus substances of local pond water by solar energy has been demonstrated.
Signal evaluations using singular value decomposition for Thomson scattering diagnostics.
Tojo, H; Yamada, I; Yasuhara, R; Yatsuka, E; Funaba, H; Hatae, T; Hayashi, H; Itami, K
2014-11-01
This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (Te) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.
Signal evaluations using singular value decomposition for Thomson scattering diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tojo, H., E-mail: tojo.hiroshi@jaea.go.jp; Yatsuka, E.; Hatae, T.
2014-11-15
This paper provides a novel method for evaluating signal intensities in incoherent Thomson scattering diagnostics. A double-pass Thomson scattering system, where a laser passes through the plasma twice, generates two scattering pulses from the plasma. Evaluations of the signal intensities in the spectrometer are sometimes difficult due to noise and stray light. We apply the singular value decomposition method to Thomson scattering data with strong noise components. Results show that the average accuracy of the measured electron temperature (T{sub e}) is superior to that of temperature obtained using a low-pass filter (<20 MHz) or without any filters.
Controlled decomposition and oxidation: A treatment method for gaseous process effluents
NASA Technical Reports Server (NTRS)
Mckinley, Roger J. B., Sr.
1990-01-01
The safe disposal of effluent gases produced by the electronics industry deserves special attention. Due to the hazardous nature of many of the materials used, it is essential to control and treat the reactants and reactant by-products as they are exhausted from the process tool and prior to their release into the manufacturing facility's exhaust system and the atmosphere. Controlled decomposition and oxidation (CDO) is one method of treating effluent gases from thin film deposition processes. CDO equipment applications, field experience, and results of the use of CDO equipment and technological advances gained from the field experiences are discussed.
Efficient photoreductive decomposition of N-nitrosodimethylamine by UV/iodide process.
Sun, Zhuyu; Zhang, Chaojie; Zhao, Xiaoyun; Chen, Jing; Zhou, Qi
2017-05-05
N-nitrosodimethylamine (NDMA) has aroused extensive concern as a disinfection byproduct due to its high toxicity and elevated concentration levels in water sources. This study investigates the photoreductive decomposition of NDMA by UV/iodide process. The results showed that this process is an effective strategy for the treatment of NDMA with 99.2% NDMA removed within 10min. The depletion of NDMA by UV/iodide process obeyed pseudo-first-order kinetics with a rate constant (k 1 ) of 0.60±0.03min -1 . Hydrated electrons (e aq - ) generated by the UV irradiation of iodide were proven to play a critical role. Dimethylamine (DMA) and nitrite (NO 2 - ) were formed as the main intermediate products, which completely converted to formate (HCOO - ), ammonium (NH 4 + ) and nitrogen (N 2 ). Therefore, not only the high efficiencies in NDMA destruction, but the elimination of toxic intermediates make UV/iodide process advantageous. A photoreduction mechanism was proposed: NDMA initially absorbed photons to a photoexcited state, and underwent a cleavage of NNO bond under the attack of e aq - . The solution pH had little impact on NDMA removal. However, alkaline conditions were more favorable for the elimination of DMA and NO 2 - , thus effectively reducing the secondary pollution. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sicolo, Sabrina; Fingerle, Mathias; Hausbrand, René; Albe, Karsten
2017-06-01
The chemical instability of the glassy solid electrolyte LiPON against metallic lithium and the occurrence of side reactions at their interface is investigated by combining a surface science approach and quantum-mechanical calculations. Using an evolutionary structure search followed by a melt-quenching protocol, a model for the disordered structure of LiPON is generated and put into contact with lithium. Even the static optimization of a simple model interface suggests that the diffusion of lithium into LiPON is driven by a considerable driving force that could easily take place under experimental conditions. Calculated reaction energies indicate that the reduction and decomposition of LiPON is thermodynamically favorable. By monitoring the evolution of the LiPON core levels as a function of lithium exposure, the disruption of the LiPON network alongside the occurrence of new phases is observed. The direct comparison between UV photoelectron spectroscopy measurements and calculated electronic densities of states for increasing stages of lithiation univocally identifies the new phases as Li2O, Li3P and Li3N. These products are stable against Li metal and form a passivation layer which shields the electrolyte from further decomposition while allowing for the diffusion of Li ions.
NASA Astrophysics Data System (ADS)
Latyshev, A. V.; Gordeeva, N. M.
2017-09-01
We obtain an analytic solution of the boundary problem for the behavior (fluctuations) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in the conductive layer in an external electric field. We use the kinetic Vlasov-Boltzmann equation with the Bhatnagar-Gross-Krook collision integral and the Maxwell equation for the electric field. We use the mirror boundary conditions for the reflections of electrons from the layer boundary. The boundary problem reduces to a one-dimensional problem with a single velocity. For this, we use the method of consecutive approximations, linearization of the equations with respect to the absolute distribution of the Fermi-Dirac electrons, and the conservation law for the number of particles. Separation of variables then helps reduce the problem equations to a characteristic system of equations. In the space of generalized functions, we find the eigensolutions of the initial system, which correspond to the continuous spectrum (Van Kampen mode). Solving the dispersion equation, we then find the eigensolutions corresponding to the adjoint and discrete spectra (Drude and Debye modes). We then construct the general solution of the boundary problem by decomposing it into the eigensolutions. The coefficients of the decomposition are given by the boundary conditions. This allows obtaining the decompositions of the distribution function and the electric field in explicit form.
Lieberman, Craig M; Navulla, Anantharamulu; Zhang, Haitao; Filatov, Alexander S; Dikarev, Evgeny V
2014-05-05
Heterometallic single-source precursors for the Pb/Fe = 1:1 oxide materials, PbFe(β-dik)4 (β-dik = hexafluoroacetylacetonate (hfac, 1), acetylacetonate (acac, 2), and trifluoroacetylacetonate (tfac, 4)), have been isolated by three different solid-state synthetic methods. The crystal structures of heterometallic diketonates 1, 2, and 4 were found to contain polymeric chains built on alternating [Fe(β-dik)2] and [Pb(β-dik)2] units that are held together by bridging M-O interactions. Heterometallic precursors are highly volatile, but soluble only in coordinating solvents, in which they dissociate into solvated homometallic fragments. In order to design the heterometallic precursor with a proper metal/metal ratio and with a discrete molecular structure, we used a combination of two different diketonate ligands. Heteroleptic complex Pb2Fe2(hfac)6(acac)2 (5) has been obtained by optimized stoichiometric reaction of an addition of homo-Fe(acac)2 to heterometallic Pb2Fe(hfac)6 (3) diketonate that can be run in solution on a high scale. The combination of two ligands with electron-withdrawing and electron-donating groups allows changing the connectivity pattern within the heterometallic assembly and yields the precursor with a discrete tetranuclear structure. In accord with its molecular structure, heteroleptic complex 5 is soluble even in noncoordinating solvents and was found to retain its heterometallic structure in solution. Thermal decomposition of heterometallic precursors in air at 750 °C resulted in the target Pb2Fe2O5 oxide, a prospective multiferroic material. Prolonging the annealing time or increasing the decomposition temperature leads to another phase-pure lead-iron oxide PbFe12O19 that is a representative of the important family of magnetic hexaferrites.
A novel ECG data compression method based on adaptive Fourier decomposition
NASA Astrophysics Data System (ADS)
Tan, Chunyu; Zhang, Liming
2017-12-01
This paper presents a novel electrocardiogram (ECG) compression method based on adaptive Fourier decomposition (AFD). AFD is a newly developed signal decomposition approach, which can decompose a signal with fast convergence, and hence reconstruct ECG signals with high fidelity. Unlike most of the high performance algorithms, our method does not make use of any preprocessing operation before compression. Huffman coding is employed for further compression. Validated with 48 ECG recordings of MIT-BIH arrhythmia database, the proposed method achieves the compression ratio (CR) of 35.53 and the percentage root mean square difference (PRD) of 1.47% on average with N = 8 decomposition times and a robust PRD-CR relationship. The results demonstrate that the proposed method has a good performance compared with the state-of-the-art ECG compressors.
Infrared spectroscopy of radiation-chemical transformation of n-hexane on a beryllium surface
NASA Astrophysics Data System (ADS)
Gadzhieva, N. N.
2017-07-01
The radiation-chemical decomposition of n-hexane in a Be- n-hexane system under the effect of γ-irradiation at room temperature is studied by infrared reflection-absorption spectroscopy. In the absorbed dose range 5 kGy ≤ Vγ ≤ 50 kGy, intermediate surface products of radiation-heterogeneous decomposition of n-hexane (beryllium alkyls, π-olefin complexes, and beryllium hydrides) are detected. It is shown that complete radiolysis occurs at Vγ = 30 kGy; below this dose, decomposition of n-hexane occurs only partially, while higher doses lead to steady-state saturation. The radiation-chemical yield of the final decomposition product—molecular hydrogen—is determined to be G ads(H2) = 24.8 molecules/100 eV. A possible mechanism of this process is discussed.
2007-02-05
Electronic excitation has been suggested as one contributing mechanistic step in a multiprocess detonation model [18], and such electronic...and, (b) Dick, J. J., Orientation Dependence of the Shock Initiation Sensitivity of PETN: A Steric Hindrance Model , Workshop on Desensitization of...Explosives and Propellants, Rijswijk, The Netherlands, 11-13 Nov 1991. [15] Piermarini, G. J., Block, S., Miller , P. J., Effects of Pressure on
Nonadiabatic electron response in the Hasegawa-Wakatani equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltzfus-Dueck, T.; Scott, B. D.; Krommes, J. A.
2013-08-15
Tokamak edge turbulence is strongly influenced by parallel electron physics, which relaxes density and potential fluctuations towards electron adiabatic response. Beginning with the paradigmatic Hasegawa-Wakatani equations (HWEs) for resistive tokamak edge turbulence, a unique decomposition of the electric potential (φ) into adiabatic (a) and nonadiabatic (b) portions is derived, based on the requirement that a neither drive nor respond to the parallel current j{sub ∥}. The form of the decomposition clarifies that, at perpendicular scales large relative to the sound radius, the electron adiabatic response controls the nonzonal φ, not the fluctuating density n. Simple energy balance arguments allow onemore » to rigorously bound the ratio of rms nonzonal nonadiabatic fluctuations (b(tilde sign)) relative to adiabatic ones (ã). The role of the vorticity nonlinearity in transferring energy between adiabatic and nonadiabatic fluctuations aids intuitive understanding of self-sustained turbulence in the HWEs. When the normalized parallel resistivity is weak, b(tilde sign) becomes effectively slaved, allowing the reduction to an approximate one-field model that remains valid for strong turbulence. In addition to guiding physical intuition, the one-field reduction should greatly ease further analytical manipulations. Direct numerical simulation of the 2D HWEs confirms the convergence of the asymptotic formula for b(tilde sign)« less
NASA Astrophysics Data System (ADS)
Richings, Gareth W.; Habershon, Scott
2018-04-01
We present significant algorithmic improvements to a recently proposed direct quantum dynamics method, based upon combining well established grid-based quantum dynamics approaches and expansions of the potential energy operator in terms of a weighted sum of Gaussian functions. Specifically, using a sum of low-dimensional Gaussian functions to represent the potential energy surface (PES), combined with a secondary fitting of the PES using singular value decomposition, we show how standard grid-based quantum dynamics methods can be dramatically accelerated without loss of accuracy. This is demonstrated by on-the-fly simulations (using both standard grid-based methods and multi-configuration time-dependent Hartree) of both proton transfer on the electronic ground state of salicylaldimine and the non-adiabatic dynamics of pyrazine.
Down- and up-conversion luminescent carbon dot fluid: inkjet printing and gel glass fabrication.
Wang, Fu; Xie, Zheng; Zhang, Bing; Liu, Yun; Yang, Wendong; Liu, Chun-yan
2014-04-07
Room temperature liquid-like nanoparticles have emerged as an exciting new research and development area, because their properties could be tailored over a broad range by manipulating geometric and chemical characteristics of the inorganic core and organic canopy. However, related applications are rarely reported due to the multi-step synthesis process and potential toxicity of cadmium based nanomaterials. In this study, we prepared inexpensive and eco-friendly carbon dot fluid by the direct thermal decomposition method. The carbon dot fluid can be excited from UV to near infrared light, and can be prepared as highly concentrated luminescent ink or incorporated into sol-gel derived organically modified silicate glass, suggesting that it has great application potential in the field of printable electronics, solid state lighting and so on.
Zhu, Yizhou; He, Xingfeng; Mo, Yifei
2015-10-06
First-principles calculations were performed to investigate the electrochemical stability of lithium solid electrolyte materials in all-solid-state Li-ion batteries. The common solid electrolytes were found to have a limited electrochemical window. Our results suggest that the outstanding stability of the solid electrolyte materials is not thermodynamically intrinsic but is originated from kinetic stabilizations. The sluggish kinetics of the decomposition reactions cause a high overpotential leading to a nominally wide electrochemical window observed in many experiments. The decomposition products, similar to the solid-electrolyte-interphases, mitigate the extreme chemical potential from the electrodes and protect the solid electrolyte from further decompositions. With the aidmore » of the first-principles calculations, we revealed the passivation mechanism of these decomposition interphases and quantified the extensions of the electrochemical window from the interphases. We also found that the artificial coating layers applied at the solid electrolyte and electrode interfaces have a similar effect of passivating the solid electrolyte. Our newly gained understanding provided general principles for developing solid electrolyte materials with enhanced stability and for engineering interfaces in all-solid-state Li-ion batteries.« less
NASA Astrophysics Data System (ADS)
Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Haynes, J. Allen
2013-08-01
We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.
Aytug, Tolga; Simpson, John T; Lupini, Andrew R; Trejo, Rosa M; Jellison, Gerald E; Ivanov, Ilia N; Pennycook, Stephen J; Hillesheim, Daniel A; Winter, Kyle O; Christen, David K; Hunter, Scott R; Haynes, J Allen
2013-08-09
We describe the formation and properties of atomically bonded, optical quality, nanostructured thin glass film coatings on glass plates, utilizing phase separation by spinodal decomposition in a sodium borosilicate glass system. Following deposition via magnetron sputtering, thermal processing and differential etching, these coatings are structurally superhydrophilic (i.e., display anti-fogging functionality) and demonstrate robust mechanical properties and superior abrasion resistance. After appropriate chemical surface modification, the surfaces display a stable, non-wetting Cassie-Baxter state and exhibit exceptional superhydrophobic performance, with water droplet contact angles as large as 172°. As an added benefit, in both superhydrophobic and superhydrophilic states these nanostructured surfaces can block ultraviolet radiation and can be engineered to be anti-reflective with broadband and omnidirectional transparency. Thus, the present approach could be tailored toward distinct coatings for numerous markets, such as residential windows, windshields, specialty optics, goggles, electronic and photovoltaic cover glasses, and optical components used throughout the US military.
NASA Astrophysics Data System (ADS)
Mao, J.; Chen, N.; Harmon, M. E.; Li, Y.; Cao, X.; Chappell, M.
2012-12-01
Advanced 13C solid-state NMR techniques were employed to study the chemical structural changes of litter decomposition across broad spatial and long time scales. The fresh and decomposed litter samples of four species (Acer saccharum (ACSA), Drypetes glauca (DRGL), Pinus resinosa (PIRE), and Thuja plicata (THPL)) incubated for up to 10 years at four sites under different climatic conditions (from Arctic to tropical forest) were examined. Decomposition generally led to an enrichment of cutin and surface wax materials, and a depletion of carbohydrates causing overall composition to become more similar compared with original litters. However, the changes of main constituents in the four litters were inconsistent with the four litters following different pathways of decomposition at the same site. As decomposition proceeded, waxy materials decreased at the early stage and then gradually increased in PIRE; DRGL showed a significant depletion of lignin and tannin while the changes of lignin and tannin were relative small and inconsistent for ACSA and THPL. In addition, the NCH groups, which could be associated with either fungal cell wall chitin or bacterial wall petidoglycan, were enriched in all litters except THPL. Contrary to the classic lignin-enrichment hypothesis, DRGL with low-quality C substrate had the highest degree of composition changes. Furthermore, some samples had more "advanced" compositional changes in the intermediate stage of decomposition than in the highly-decomposed stage. This pattern might be attributed to the formation of new cross-linking structures, that rendered substrates more complex and difficult for enzymes to attack. Finally, litter quality overrode climate and time factors as a control of long-term changes of chemical composition.
NASA Astrophysics Data System (ADS)
Ueda, Yoshihiro; Suzuki, Yasumitsu; Watanabe, Kazuyuki
2018-02-01
Angle-resolved secondary electron emission (ARSEE) spectra were analyzed for two-dimensional atomic sheets using a time-dependent first-principles simulation of electron scattering. We demonstrate that the calculated ARSEE spectra capture the unoccupied band structure of the atomic sheets. The excitation dynamics that lead to SEE have also been revealed by the time-dependent Kohn-Sham decomposition scheme. In the present study, the mechanism for the experimentally observed ARSEE from atomic sheets is elucidated with respect to both energetics and the dynamical aspects of SEE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niu, T; Dong, X; Petrongolo, M
Purpose: Dual energy CT (DECT) imaging plays an important role in advanced imaging applications due to its material decomposition capability. Direct decomposition via matrix inversion suffers from significant degradation of image signal-to-noise ratios, which reduces clinical value. Existing de-noising algorithms achieve suboptimal performance since they suppress image noise either before or after the decomposition and do not fully explore the noise statistical properties of the decomposition process. We propose an iterative image-domain decomposition method for noise suppression in DECT, using the full variance-covariance matrix of the decomposed images. Methods: The proposed algorithm is formulated in the form of least-square estimationmore » with smoothness regularization. It includes the inverse of the estimated variance-covariance matrix of the decomposed images as the penalty weight in the least-square term. Performance is evaluated using an evaluation phantom (Catphan 600) and an anthropomorphic head phantom. Results are compared to those generated using direct matrix inversion with no noise suppression, a de-noising method applied on the decomposed images, and an existing algorithm with similar formulation but with an edge-preserving regularization term. Results: On the Catphan phantom, our method retains the same spatial resolution as the CT images before decomposition while reducing the noise standard deviation of decomposed images by over 98%. The other methods either degrade spatial resolution or achieve less low-contrast detectability. Also, our method yields lower electron density measurement error than direct matrix inversion and reduces error variation by over 97%. On the head phantom, it reduces the noise standard deviation of decomposed images by over 97% without blurring the sinus structures. Conclusion: We propose an iterative image-domain decomposition method for DECT. The method combines noise suppression and material decomposition into an iterative process and achieves both goals simultaneously. The proposed algorithm shows superior performance on noise suppression with high image spatial resolution and low-contrast detectability. This work is supported by a Varian MRA grant.« less
Marais-Werner, Anátulie; Myburgh, J; Becker, P J; Steyn, M
2018-01-01
Several studies have been conducted on decomposition patterns and rates of surface remains; however, much less are known about this process for buried remains. Understanding the process of decomposition in buried remains is extremely important and aids in criminal investigations, especially when attempting to estimate the post mortem interval (PMI). The aim of this study was to compare the rates of decomposition between buried and surface remains. For this purpose, 25 pigs (Sus scrofa; 45-80 kg) were buried and excavated at different post mortem intervals (7, 14, 33, 92, and 183 days). The observed total body scores were then compared to those of surface remains decomposing at the same location. Stages of decomposition were scored according to separate categories for different anatomical regions based on standardised methods. Variation in the degree of decomposition was considerable especially with the buried 7-day interval pigs that displayed different degrees of discolouration in the lower abdomen and trunk. At 14 and 33 days, buried pigs displayed features commonly associated with the early stages of decomposition, but with less variation. A state of advanced decomposition was reached where little change was observed in the next ±90-183 days after interment. Although the patterns of decomposition for buried and surface remains were very similar, the rates differed considerably. Based on the observations made in this study, guidelines for the estimation of PMI are proposed. This pertains to buried remains found at a depth of approximately 0.75 m in the Central Highveld of South Africa.
NASA Astrophysics Data System (ADS)
Hu, Xiaogang; Rymer, William Z.; Suresh, Nina L.
2014-04-01
Objective. The aim of this study is to assess the accuracy of a surface electromyogram (sEMG) motor unit (MU) decomposition algorithm during low levels of muscle contraction. Approach. A two-source method was used to verify the accuracy of the sEMG decomposition system, by utilizing simultaneous intramuscular and surface EMG recordings from the human first dorsal interosseous muscle recorded during isometric trapezoidal force contractions. Spike trains from each recording type were decomposed independently utilizing two different algorithms, EMGlab and dEMG decomposition algorithms. The degree of agreement of the decomposed spike timings was assessed for three different segments of the EMG signals, corresponding to specified regions in the force task. A regression analysis was performed to examine whether certain properties of the sEMG and force signal can predict the decomposition accuracy. Main results. The average accuracy of successful decomposition among the 119 MUs that were common to both intramuscular and surface records was approximately 95%, and the accuracy was comparable between the different segments of the sEMG signals (i.e., force ramp-up versus steady state force versus combined). The regression function between the accuracy and properties of sEMG and force signals revealed that the signal-to-noise ratio of the action potential and stability in the action potential records were significant predictors of the surface decomposition accuracy. Significance. The outcomes of our study confirm the accuracy of the sEMG decomposition algorithm during low muscle contraction levels and provide confidence in the overall validity of the surface dEMG decomposition algorithm.
Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret
NASA Astrophysics Data System (ADS)
Sun, Hongyan; Vaghjiani, Ghanshyam L.
2015-05-01
Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation of (NO2 + H2O) to be the major decomposition path. Furthermore, we provide fundamental interpretations for the experimental results of Klapötke et al. [Combust. Flame 139, 358-366 (2004)] regarding the thermal stability of MNB and DNB, and their decomposition products. Notably, a fundamental understanding of fuel stability, decomposition mechanism, and key reactions leading to ignition is essential in the design and manipulation of molecular systems for the development of new energetic materials for advanced propulsion applications.
Ab Initio Kinetics and Thermal Decomposition Mechanism of Mononitrobiuret and 1,5- Dinitrobiuret
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Hongyan; Vaghjiani, Ghanshyam G.
2015-05-26
Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was foundmore » that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which reveal the formation of (NO2 + H2O) to be the major decomposition path. Furthermore, we provide fundamental interpretations for the experimental results of Klapötke et al. [Combust. Flame 139, 358–366 (2004)] regarding the thermal stability of MNB and DNB, and their decomposition products. Notably, a fundamental understanding of fuel stability, decomposition mechanism, and key reactions leading to ignition is essential in the design and manipulation of molecular systems for the development of new energetic materials for advanced propulsion applications.« less
Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret.
Sun, Hongyan; Vaghjiani, Ghanshyam L
2015-05-28
Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was found that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH2 group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C2v symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice-Ramsperger-Kassel-Marcus/multi-well master equation simulations, the results of which reveal the formation of (NO2 + H2O) to be the major decomposition path. Furthermore, we provide fundamental interpretations for the experimental results of Klapötke et al. [Combust. Flame 139, 358-366 (2004)] regarding the thermal stability of MNB and DNB, and their decomposition products. Notably, a fundamental understanding of fuel stability, decomposition mechanism, and key reactions leading to ignition is essential in the design and manipulation of molecular systems for the development of new energetic materials for advanced propulsion applications.
MO-FG-204-01: Improved Noise Suppression for Dual-Energy CT Through Entropy Minimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrongolo, M; Zhu, L
2015-06-15
Purpose: In dual energy CT (DECT), noise amplification during signal decomposition significantly limits the utility of basis material images. Since clinically relevant objects contain a limited number of materials, we propose to suppress noise for DECT based on image entropy minimization. An adaptive weighting scheme is employed during noise suppression to improve decomposition accuracy with limited effect on spatial resolution and image texture preservation. Methods: From decomposed images, we first generate a 2D plot of scattered data points, using basis material densities as coordinates. Data points representing the same material generate a highly asymmetric cluster. We orient an axis bymore » minimizing the entropy in a 1D histogram of these points projected onto the axis. To suppress noise, we replace pixel values of decomposed images with center-of-mass values in the direction perpendicular to the optimal axis. To limit errors due to cluster overlap, we weight each data point’s contribution based on its high and low energy CT values and location within the image. The proposed method’s performance is assessed on physical phantom studies. Electron density is used as the quality metric for decomposition accuracy. Our results are compared to those without noise suppression and with a recently developed iterative method. Results: The proposed method reduces noise standard deviations of the decomposed images by at least one order of magnitude. On the Catphan phantom, this method greatly preserves the spatial resolution and texture of the CT images and limits induced error in measured electron density to below 1.2%. In the head phantom study, the proposed method performs the best in retaining fine, intricate structures. Conclusion: The entropy minimization based algorithm with adaptive weighting substantially reduces DECT noise while preserving image spatial resolution and texture. Future investigations will include extensive investigations on material decomposition accuracy that go beyond the current electron density calculations. This work was supported in part by the National Institutes of Health (NIH) under Grant Number R21 EB012700.« less
Distributed Prognostics based on Structural Model Decomposition
NASA Technical Reports Server (NTRS)
Daigle, Matthew J.; Bregon, Anibal; Roychoudhury, I.
2014-01-01
Within systems health management, prognostics focuses on predicting the remaining useful life of a system. In the model-based prognostics paradigm, physics-based models are constructed that describe the operation of a system and how it fails. Such approaches consist of an estimation phase, in which the health state of the system is first identified, and a prediction phase, in which the health state is projected forward in time to determine the end of life. Centralized solutions to these problems are often computationally expensive, do not scale well as the size of the system grows, and introduce a single point of failure. In this paper, we propose a novel distributed model-based prognostics scheme that formally describes how to decompose both the estimation and prediction problems into independent local subproblems whose solutions may be easily composed into a global solution. The decomposition of the prognostics problem is achieved through structural decomposition of the underlying models. The decomposition algorithm creates from the global system model a set of local submodels suitable for prognostics. Independent local estimation and prediction problems are formed based on these local submodels, resulting in a scalable distributed prognostics approach that allows the local subproblems to be solved in parallel, thus offering increases in computational efficiency. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the distributed approach, compare the performance with a centralized approach, and establish its scalability. Index Terms-model-based prognostics, distributed prognostics, structural model decomposition ABBREVIATIONS
Applications of singular value analysis and partial-step algorithm for nonlinear orbit determination
NASA Technical Reports Server (NTRS)
Ryne, Mark S.; Wang, Tseng-Chan
1991-01-01
An adaptive method in which cruise and nonlinear orbit determination problems can be solved using a single program is presented. It involves singular value decomposition augmented with an extended partial step algorithm. The extended partial step algorithm constrains the size of the correction to the spacecraft state and other solve-for parameters. The correction is controlled by an a priori covariance and a user-supplied bounds parameter. The extended partial step method is an extension of the update portion of the singular value decomposition algorithm. It thus preserves the numerical stability of the singular value decomposition method, while extending the region over which it converges. In linear cases, this method reduces to the singular value decomposition algorithm with the full rank solution. Two examples are presented to illustrate the method's utility.
Divergence-free approach for obtaining decompositions of quantum-optical processes
NASA Astrophysics Data System (ADS)
Sabapathy, K. K.; Ivan, J. S.; García-Patrón, R.; Simon, R.
2018-02-01
Operator-sum representations of quantum channels can be obtained by applying the channel to one subsystem of a maximally entangled state and deploying the channel-state isomorphism. However, for continuous-variable systems, such schemes contain natural divergences since the maximally entangled state is ill defined. We introduce a method that avoids such divergences by utilizing finitely entangled (squeezed) states and then taking the limit of arbitrary large squeezing. Using this method, we derive an operator-sum representation for all single-mode bosonic Gaussian channels where a unique feature is that both quantum-limited and noisy channels are treated on an equal footing. This technique facilitates a proof that the rank-1 Kraus decomposition for Gaussian channels at its respective entanglement-breaking thresholds, obtained in the overcomplete coherent-state basis, is unique. The methods could have applications to simulation of continuous-variable channels.
Jalaleddini, Kian; Tehrani, Ehsan Sobhani; Kearney, Robert E
2017-06-01
The purpose of this paper is to present a structural decomposition subspace (SDSS) method for decomposition of the joint torque to intrinsic, reflexive, and voluntary torques and identification of joint dynamic stiffness. First, it formulates a novel state-space representation for the joint dynamic stiffness modeled by a parallel-cascade structure with a concise parameter set that provides a direct link between the state-space representation matrices and the parallel-cascade parameters. Second, it presents a subspace method for the identification of the new state-space model that involves two steps: 1) the decomposition of the intrinsic and reflex pathways and 2) the identification of an impulse response model of the intrinsic pathway and a Hammerstein model of the reflex pathway. Extensive simulation studies demonstrate that SDSS has significant performance advantages over some other methods. Thus, SDSS was more robust under high noise conditions, converging where others failed; it was more accurate, giving estimates with lower bias and random errors. The method also worked well in practice and yielded high-quality estimates of intrinsic and reflex stiffnesses when applied to experimental data at three muscle activation levels. The simulation and experimental results demonstrate that SDSS accurately decomposes the intrinsic and reflex torques and provides accurate estimates of physiologically meaningful parameters. SDSS will be a valuable tool for studying joint stiffness under functionally important conditions. It has important clinical implications for the diagnosis, assessment, objective quantification, and monitoring of neuromuscular diseases that change the muscle tone.
Decomposition of Time Scales in Linear Systems and Markovian Decision Processes.
1980-11-01
this research. I, 3 iv U TABLE OF CONTENTS *Chapter Page *-1. INTRODUCTION .................................................. 1 2. EIGENSTRUCTTJRE...Components ..... o....... 16 2.4. Ordering of State Variables.. ......... ........ 20 2.5. Example - 8th Order Power System Model................ 22 3 ...results. In Chapter 3 we consider the time scale decomposition of singularly perturbed systems. For this problem (1.1) takes the form 12 + u (1.4) 2
a Transient Semi-Metallic Layer in Detonating Nitromethane
NASA Astrophysics Data System (ADS)
Reed, Evan J.; Manaa, M. Riad; Fried, Laurence E.; Glaesemann, Kurt; Joannopoulos, John D.
2007-12-01
We present the first ever glimpse behind a detonation shock front in a chemically reactive quantum molecular dynamics simulation of the explosive nitromethane (CH3NO2). We discover that the wide-bandgap insulator nitromethane undergoes chemical decomposition and a transformation into a semi-metallic state for a limited distance behind the detonation front. We find this transformation is associated with the production of charged decomposition species.
Peng, Bo; Kowalski, Karol
2017-01-25
In this paper, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of high-dimensional tensor contractions in post-Hartree-Fock calculations. Finally, we discuss the second-order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as examples to demonstrate the efficiency of this technique in representing the two-electron integrals in a compact form.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Bo; Kowalski, Karol
In this paper, we apply reverse Cuthill-McKee (RCM) algorithm to transform two-electron integral tensors to their block diagonal forms. By further applying Cholesky decomposition (CD) on each of the diagonal blocks, we are able to represent the high-dimensional two-electron integral tensors in terms of permutation matrices and low-rank Cholesky vectors. This representation facilitates low-rank factorizations of high-dimensional tensor contractions in post-Hartree-Fock calculations. Finally, we discuss the second-order Møller-Plesset (MP2) method and the linear coupled-cluster model with doubles (L-CCD) as examples to demonstrate the efficiency of this technique in representing the two-electron integrals in a compact form.
Sladkevich, Sergey; Dupont, Anne-Laurence; Sablier, Michel; Seghouane, Dalila; Cole, Richard B
2016-11-01
Cellulose paper degradation products forming in the "tideline" area at the wet-dry interface of pure cellulose paper were analyzed using gas chromatography-electron ionization-mass spectrometry (GC-EI-MS) and high-resolution electrospray ionization-mass spectrometry (ESI-MS, LTQ Orbitrap) techniques. Different extraction protocols were employed in order to solubilize the products of oxidative cellulose decomposition, i.e., a direct solvent extraction or a more laborious chromophore release and identification (CRI) technique aiming to reveal products responsible for paper discoloration in the tideline area. Several groups of low molecular weight compounds were identified, suggesting a complex pathway of cellulose decomposition in the tidelines formed at the cellulose-water-oxygen interface. Our findings, namely the appearance of a wide range of linear saturated carboxylic acids (from formic to nonanoic), support the oxidative autocatalytic mechanism of decomposition. In addition, the identification of several furanic compounds (which can be, in part, responsible for paper discoloration) plus anhydro carbohydrate derivatives sheds more light on the pathways of cellulose decomposition. Most notably, the mechanisms of tideline formation in the presence of molecular oxygen appear surprisingly similar to pathways of pyrolytic cellulose degradation. More complex chromophore compounds were not detected in this study, thereby revealing a difference between this short-term tideline experiment and longer-term cellulose aging.
NASA Astrophysics Data System (ADS)
Zhang, Xiaoxing; Li, Yi; Xiao, Song; Tian, Shuangshuang; Deng, Zaitao; Tang, Ju
2017-08-01
C3F7CN has been the focus of the alternative gas research field over the past two years because of its excellent insulation properties and environmental characteristics. Experimental studies on its insulation performance have made many achievements. However, few studies on the formation mechanism of the decomposition components exist. A discussion of the decomposition characteristics of insulating media will provide guidance for scientific experimental research and the work that must be completed before further engineering application. In this study, the decomposition mechanism of C3F7CN in the presence of trace H2O under discharge was calculated based on the density functional theory and transition state theory. The reaction heat, Gibbs free energy, and activation energy of different decomposition pathways were investigated. The ionization parameters and toxicity of C3F7CN and various decomposition products were analyzed from the molecular structure perspective. The formation mechanism of the C3F7CN discharge decomposition components and the influence of trace water were evaluated. This paper confirms that C3F7CN has excellent decomposition characteristics, which provide theoretical support for later experiments and related engineering applications. However, the existence of trace water has a negative impact on C3F7CN’s insulation performance. Thus, strict trace water content standards should be developed to ensure dielectric insulation and the safety of maintenance personnel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Lingzi; Matz, Dallas L.; Pemberton, Jeanne E.
The reaction chemistry of vapor-deposited 2,2':5',2''-terthiophene (α-3T) solid-state thin films with postdeposited Ag, Al, and Ca is investigated in ultrahigh vacuum using Raman spectroscopy. Vapor-deposited Ag forms nanoparticles on these films and induces considerable surface enhanced Raman scattering (SERS) along with a change in molecular symmetry of adjacent α-3T and formation of Ag–S bonds; no other reaction chemistry is observed. Vapor-deposited Al and Ca undergo chemical reaction with α-3T initiated by metal-to-α-3T electron transfer. For Al, the resulting product is predominantly amorphous carbon through initial radical formation and subsequent decomposition reactions. For Ca, the spectral evidence suggests two pathways: onemore » leading to α-3T polymerization and the other resulting in thiophene ring opening, both initiated by radical formation through Ca-to-α-3T electron transfer. These interfacial reactions reflect the complex chemistry that can occur between low work function metals and thiophene-based oligomers. This reactivity is strongly correlated with metal work function.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang, Lingzi; Matz, Dallas L.; Pemberton, Jeanne E.
The reaction chemistry of vapor-deposited 2,2':5',2''-terthiophene (α-3T) solid-state thin films with postdeposited Ag, Al, and Ca is investigated in ultrahigh vacuum using Raman spectroscopy. Vapor-deposited Ag forms nanoparticles on these films and induces considerable surface enhanced Raman scattering (SERS) along with a change in molecular symmetry of adjacent α-3T and formation of Ag–S bonds; no other reaction chemistry is observed. Vapor-deposited Al and Ca undergo chemical reaction with α-3T initiated by metal-to-α-3T electron transfer. For Al, the resulting product is predominantly amorphous carbon through initial radical formation and subsequent decomposition reactions. For Ca, the spectral evidence suggests two pathways: onemore » leading to α-3T polymerization and the other resulting in thiophene ring opening, both initiated by radical formation through Ca-to-α-3T electron transfer. These interfacial reactions reflect the complex chemistry that can occur between low work function metals and thiophene-based oligomers. This reactivity is strongly correlated with metal work function.« less
Analytically derived switching functions for exact H2+ eigenstates
NASA Astrophysics Data System (ADS)
Thorson, W. R.; Kimura, M.; Choi, J. H.; Knudson, S. K.
1981-10-01
Electron translation factors (ETF's) appropriate for slow atomic collisions may be constructed using switching functions. In this paper we derive a set of switching functions for the H2+ system by an analytical "two-center decomposition" of the exact molecular eigenstates. These switching functions are closely approximated by the simple form f=bη, where η is the "angle variable" of prolate spheroidal coordinates. For given united atom angular momentum quantum numbers (l,m), the characteristic parameter blm depends only on the quantity c2=-ɛR22, where ɛ is the electronic binding energy and R the internuclear distance in a.u. The resulting parameters are in excellent agreement with those found in our earlier work by a heuristic "optimization" scheme based on a study of coupling matrix-element behavior for a number of H2+ states. An approximate extension to asymmetric cases (HeH2+) has also been made. Nonadiabatic couplings based on these switching functions have been used in recent close-coupling calculations for H+-H(1s) collisions and He2+-H(1s) collisions at energies 1.0-20 keV.
Thermal decomposition of ammonium perchlorate in the presence of Al(OH)(3)·Cr(OH)(3) nanoparticles.
Zhang, WenJing; Li, Ping; Xu, HongBin; Sun, Randi; Qing, Penghui; Zhang, Yi
2014-03-15
An Al(OH)(3)·Cr(OH)(3) nanoparticle preparation procedure and its catalytic effect and mechanism on thermal decomposition of ammonium perchlorate (AP) were investigated using transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis and differential scanning calorimetry (TG-DSC), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis and mass spectroscopy (TG-MS). In the preparation procedure, TEM, SAED, and FT-IR showed that the Al(OH)(3)·Cr(OH)(3) particles were amorphous particles with dimensions in the nanometer size regime containing a large amount of surface hydroxyl under the controllable preparation conditions. When the Al(OH)(3)·Cr(OH)(3) nanoparticles were used as additives for the thermal decomposition of AP, the TG-DSC results showed that the addition of Al(OH)(3)·Cr(OH)(3) nanoparticles to AP remarkably decreased the onset temperature of AP decomposition from approximately 450°C to 245°C. The FT-IR, RS and XPS results confirmed that the surface hydroxyl content of the Al(OH)(3)·Cr(OH)(3) nanoparticles decreased from 67.94% to 63.65%, and Al(OH)3·Cr(OH)3 nanoparticles were limitedly transformed from amorphous to crystalline after used as additives for the thermal decomposition of AP. Such behavior of Al(OH)(3)·Cr(OH)(3) nanoparticles promoted the oxidation of NH3 of AP to decompose to N2O first, as indicated by the TG-MS results, accelerating the AP thermal decomposition. Copyright © 2014 Elsevier B.V. All rights reserved.
Sponge-like silver obtained by decomposition of silver nitrate hexamethylenetetramine complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afanasiev, Pavel, E-mail: pavel.afanasiev@ircelyon.univ-lyon.fr
2016-07-15
Silver nitrate hexamethylenetetramine [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] coordination compound has been prepared via aqueous route and characterized by chemical analysis, XRD and electron microscopy. Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] under hydrogen and under inert has been studied by thermal analysis and mass spectrometry. Thermal decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] proceeds in the range 200–250 °C as a self-propagating rapid redox process accompanied with the release of multiple gases. The decomposition leads to formation of sponge-like silver having hierarchical open pore system with pore size spanning from 10 µm to 10 nm. The as-obtained silver spongesmore » exhibited favorable activity toward H{sub 2}O{sub 2} electrochemical reduction, making them potentially interesting as non-enzyme hydrogen peroxide sensors. - Graphical abstract: Thermal decomposition of silver nitrate hexamethylenetetramine coordination compound [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to sponge like silver that possesses open porous structure and demonstrates interesting properties as an electrochemical hydrogen peroxide sensor. Display Omitted - Highlights: • [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] orthorhombic phase prepared and characterized. • Decomposition of [Ag(NO{sub 3})·N{sub 4}(CH{sub 2}){sub 6}] leads to metallic silver sponge with opened porosity. • Ag sponge showed promising properties as a material for hydrogen peroxide sensors.« less
Decomposition and particle release of a carbon nanotube/epoxy nanocomposite at elevated temperatures
NASA Astrophysics Data System (ADS)
Schlagenhauf, Lukas; Kuo, Yu-Ying; Bahk, Yeon Kyoung; Nüesch, Frank; Wang, Jing
2015-11-01
Carbon nanotubes (CNTs) as fillers in nanocomposites have attracted significant attention, and one of the applications is to use the CNTs as flame retardants. For such nanocomposites, possible release of CNTs at elevated temperatures after decomposition of the polymer matrix poses potential health threats. We investigated the airborne particle release from a decomposing multi-walled carbon nanotube (MWCNT)/epoxy nanocomposite in order to measure a possible release of MWCNTs. An experimental set-up was established that allows decomposing the samples in a furnace by exposure to increasing temperatures at a constant heating rate and under ambient air or nitrogen atmosphere. The particle analysis was performed by aerosol measurement devices and by transmission electron microscopy (TEM) of collected particles. Further, by the application of a thermal denuder, it was also possible to measure non-volatile particles only. Characterization of the tested samples and the decomposition kinetics were determined by the usage of thermogravimetric analysis (TGA). The particle release of different samples was investigated, of a neat epoxy, nanocomposites with 0.1 and 1 wt% MWCNTs, and nanocomposites with functionalized MWCNTs. The results showed that the added MWCNTs had little effect on the decomposition kinetics of the investigated samples, but the weight of the remaining residues after decomposition was influenced significantly. The measurements with decomposition in different atmospheres showed a release of a higher number of particles at temperatures below 300 °C when air was used. Analysis of collected particles by TEM revealed that no detectable amount of MWCNTs was released, but micrometer-sized fibrous particles were collected.
Agrawal, S; Panchagnula, R
2004-10-01
The chemical stability of rifampicin both in solid state and various media has widely been investigated. While rifampicin is appreciably stable in solid-state, its decomposition rate is very high in acidic as well as in alkaline medium and a variety of decomposition products were identified. The literature reports on highly variable rifampicin decomposition in acidic medium. Hence, the objective of this investigation was to study possible reasons responsible for this variability. For this purpose, filter validation and correlation between rifampicin and its degradation products were developed to account for the loss of rifampicin in acidic media. For analysis of rifampicin with or without the presence of isoniazid, a simple and accurate method was developed using high performance chromatography recommended in FDC monographs of the United States Pharmacopoeia. Using the equations developed in this investigation, the amount of rifampicin degraded in the acidic media was calculated from the area under curve of the degradation products. Further, it was proved that in a dissolution study, the colorimetric method of analysis recommended in the United States Pharmacopoeia provides accurate results regarding rifampicin release. Filter type, time of injection as well as interpretation of data are important factors that affect analysis results of rifampicin in in vitro studies and quality control.
NASA Astrophysics Data System (ADS)
Toride, N.; Matsuoka, K.
2017-12-01
In order to predict the fate and transport of nitrogen in a reduced paddy field as a result of decomposition of organic matter, we implemented within the PHREEQC program a modified coupled carbon and nitrogen cycling model based on the LEACHM code. SOM decay processes from organic carbon (Org-C) to biomass carbon (Bio-C), humus carbon (Hum-C), and carbon dioxide (CO2) were described using first-order kinetics. Bio-C was recycled into the organic pool. When oxygen was available in an aerobic condition, O2 was used to produce CO2 as an electron accepter. When O2 availability is low, other electron acceptors such as NO3-, Mn4+, Fe3+, SO42-, were used depending on the redox potential. Decomposition of Org-N was related to the carbon cycle using the C/N ratio. Mineralization and immobilization were determined based on available NH4-N and the nitrogen demand for the formation of biomass and humus. Although nitrification was independently described with the first-order decay process, denitrification was linked with the SOM decay since NO3- was an electron accepter for the CO2 production. Proton reactions were coupled with the nitrification from NH4+ to NO3-, and the ammonium generation from NH3 to NH4+. Furthermore, cation and anion exchange reactions were included with the permanent negative charges and the pH dependent variable charges. The carbon and nitrogen cycling model described with PHREEQC was linked with HYDRUS-1D using the HP1 code. Various nitrogen and carbon transport scenarios were demonstrated for the application of organic matter to a saturated paddy soil.
Frański, Rafał; Gierczyk, Błażej; Zalas, Maciej; Jankowski, Wojciech; Hoffmann, Marcin
2018-05-01
Gas phase decompositions of protonated methyl benzoate and its conjugates have been studied by using electrospray ionization-collision induced dissociation-tandem mass spectrometry. Loss of CO 2 molecule, thus transfer of methyl group, has been observed. In order to better understand this process, the theoretical calculations have been performed. For methyl benzoate conjugates, it has been found that position of substituent affects the loss of CO 2 molecule, not the electron donor/withdrawing properties of the substituent. Therefore, electrospray ionization-mass spectrometry in positive ion mode may be useful for differentiation of isomers of methyl benzoate conjugates. Copyright © 2018 John Wiley & Sons, Ltd.
Radiolysis of lignin: Prospective mechanism of high-temperature decomposition
NASA Astrophysics Data System (ADS)
Ponomarev, A. V.
2017-12-01
The range of the radiation-thermal processes resulting in conversion of lignin into monomeric phenols is considered. Statistically the most probable places of macromolecule ionization are aromatic units. Release of phenolic products from a lignin macromolecule is the multistage process beginning via fragmentation of primary cation-radicals. Reactions of electrons and small radicals with macromolecules, also as degradation of cation-radicals, result in formation of phenoxyl radicals. Macroradicals possess lower heat stability in comparison with macromolecules. Thermal decomposition of macroradicals leads to release of monohydric and dihydric phenols. The probability of benzenediols formation increases in the presence of alkanes. As noted, partial transformation of lignin into charcoal is inevitable.
NASA Astrophysics Data System (ADS)
Villaverde, Eduardo Lopez; Robert, Sébastien; Prada, Claire
2017-02-01
In the present work, the Total Focusing Method (TFM) is used to image defects in a High Density Polyethylene (HDPE) pipe. The viscoelastic attenuation of this material corrupts the images with a high electronic noise. In order to improve the image quality, the Decomposition of the Time Reversal Operator (DORT) filtering is combined with spatial Walsh-Hadamard coded transmissions before calculating the images. Experiments on a complex HDPE joint demonstrate that this method improves the signal-to-noise ratio by more than 40 dB in comparison with the conventional TFM.
NASA Astrophysics Data System (ADS)
Owens, F. J.; Sharma, J.
1980-03-01
Solid samples of 1,3,5, trinitro 1,3,5, triazacyclohexane (RDX), trinitrotoluene (TNT), and ammonium nitrate were subjected to shock pulses of strength and duration less than the threshold to cause detonation. The recovered shocked samples were studied by x-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR). The results of these measurements indicate that the shock pulse either broke or altered the internal bonds of the molecules of the solid. The results of the shock decomposition are compared with measurements of the uv and slow thermal decomposition of these materials using the same experimental techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Dean T.; Coughlin, D. R.; Williamson, Don L.
Here, the influence of partitioning temperature on microstructural evolution during quenching and partitioning was investigated in a 0.38C-1.54Mn-1.48Si wt.% steel using Mössbauer spectroscopy and transmission electron microscopy. η-carbide formation occurs in the martensite during the quenching, holding, and partitioning steps. More effective carbon partitioning from martensite to austenite was observed at 450 than 400°C, resulting in lower martensite carbon contents, less carbide formation, and greater retained austenite amounts for short partitioning times. Conversely, greater austenite decomposition occurs at 450°C for longer partitioning times. Lastly, cementite forms during austenite decomposition and in the martensite for longer partitioning times at 450°C.
NASA Astrophysics Data System (ADS)
He, Zheng-Hua; Chen, Jun; Wu, Qiang; Ji, Guang-Fu
2017-11-01
We present the density functional theory (DFT) calculations for microscopic electron properties of β-HMX under shock loading. The metallization pressure is determined to be within 30-55 GPa. The frontier molecular orbitals mainly localize on N-NO2 groups initially and disperse with pressure increase, while HOMO and LUMO orbitals trend to aggregate with each other. The deformation of N-NO2 groups and enhanced hydrogen-bonding interactions cause the electron delocalization and lower the band gap, inducing the reaction initiation finally. Our results show that using the electron properties can reliably predict the initial decomposition of energetic materials under shock loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier-Kiener, Verena; Schuh, Benjamin; George, Easo P.
A CrMnFeCoNi high-entropy alloy was investigated by nanoindentation from room temperature to 400 °C in the nanocrystalline state and cast plus homogenized coarse-grained state. In the latter case a < 100 >-orientated grain was selected by electron back scatter diffraction for nanoindentation. It was found that hardness decreases more strongly with increasing temperature than Young’s modulus, especially for the coarse-grained state. The modulus of the nanocrystalline state was slightly higher than that of the coarse-grained one. For the coarse-grained sample a strong thermally activated deformation behavior was found up to 100–150 °C, followed by a diminishing thermally activated contribution atmore » higher testing temperatures. For the nanocrystalline state, different temperature dependent deformation mechanisms are proposed. At low temperatures, the governing processes appear to be similar to those in the coarse-grained sample, but with increasing temperature, dislocation-grain boundary interactions likely become more dominant. Finally, at 400 °C, decomposition of the nanocrystalline alloy causes a further reduction in thermal activation. Furthermore, this is rationalized by a reduction of the deformation controlling internal length scale by precipitate formation in conjunction with a diffusional contribution.« less
Distributed Damage Estimation for Prognostics based on Structural Model Decomposition
NASA Technical Reports Server (NTRS)
Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil
2011-01-01
Model-based prognostics approaches capture system knowledge in the form of physics-based models of components, and how they fail. These methods consist of a damage estimation phase, in which the health state of a component is estimated, and a prediction phase, in which the health state is projected forward in time to determine end of life. However, the damage estimation problem is often multi-dimensional and computationally intensive. We propose a model decomposition approach adapted from the diagnosis community, called possible conflicts, in order to both improve the computational efficiency of damage estimation, and formulate a damage estimation approach that is inherently distributed. Local state estimates are combined into a global state estimate from which prediction is performed. Using a centrifugal pump as a case study, we perform a number of simulation-based experiments to demonstrate the approach.
The potential phototoxicity of nano-scale ZnO induced by visible light on freshwater ecosystems.
Du, Jingjing; Qv, Mingxiang; Zhang, Yuyan; Yin, Xiaoyun; Wan, Ning; Zhang, Baozhong; Zhang, Hongzhong
2018-06-06
With the development of nanotechnology, nanomaterials have been widely applied in anti-bacterial coating, electronic device, and personal care products. NanoZnO is one of the most used materials and its ecotoxicity has been extensively studied. To explore the potential phototoxicity of nanoZnO induced by visible light, we conducted a long-term experiment on litter decomposition of Typha angustifolia leaves with assessment of fungal multifaceted natures. After 158 d exposure, the decomposition rate of leaf litter was decreased by nanoZnO but no additional effect by visible light. However, visible light enhanced the inhibitory effect of nanoZnO on fungal sporulation rate due to light-induced dissolution of nanoZnO. On the contrary, enzymes such as β-glucosidase, cellobiohydrolase, and leucine-aminopeptidase were significantly increased by the interaction of nanoZnO and visible light, which led to high efficiency of leaf carbon decomposition. Furthermore, different treatments and exposure time separated fungal community associated with litter decomposition. Therefore, the study provided the evidence of the contribution of visible light to nanoparticle phototoxicity at the ecosystem level. Copyright © 2018 Elsevier Ltd. All rights reserved.
Silver-palladium catalysts for the direct synthesis of hydrogen peroxide
NASA Astrophysics Data System (ADS)
Khan, Zainab; Dummer, Nicholas F.; Edwards, Jennifer K.
2017-11-01
A series of bimetallic silver-palladium catalysts supported on titania were prepared by wet impregnation and assessed for the direct synthesis of hydrogen peroxide, and its subsequent side reactions. The addition of silver to a palladium catalyst was found to significantly decrease hydrogen peroxide productivity and hydrogenation, but crucially increase the rate of decomposition. The decomposition product, which is predominantly hydroxyl radicals, can be used to decrease bacterial colonies. The interaction between silver and palladium was characterized using scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The results of the TPR and XPS indicated the formation of a silver-palladium alloy. The optimal 1% Ag-4% Pd/TiO2 bimetallic catalyst was able to produce approximately 200 ppm of H2O2 in 30 min. The findings demonstrate that AgPd/TiO2 catalysts are active for the synthesis of hydrogen peroxide and its subsequent decomposition to reactive oxygen species. The catalysts are promising for use in wastewater treatment as they combine the disinfectant properties of silver, hydrogen peroxide production and subsequent decomposition. This article is part of a discussion meeting issue 'Providing sustainable catalytic solutions for a rapidly changing world'.
Zhu, Junli; Jia, Jia; Li, Xuepeng; Dong, Liangliang; Li, Jianrong
2013-12-15
The effects of ferrous iron, heating temperature and different additives on the decomposition of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA) and generation of free radicals in jumbo squid (Dosidicus gigas) extract during heating were evaluated by electron spin resonance (ESR). The thermal decomposition of TMAO to TMA, DMA and FA and free radical signals was observed in squid extract, whereas no DMA, FA and free radical signals were detected in cod extract or in aqueous TMAO solution in vitro at high temperatures. Significant increase in levels of DMA, FA and radicals intensity were observed in squid extract and TMAO solution in the presence of ferrous iron with increasing temperature. Hydrogen peroxide stimulated the production of DMA, FA and ESR signals in squid extract, while citric acid, trisodium citrate, calcium chloride, tea polyphenols and resveratrol had the opposite effect. Similar ESR spectra of six peaks regarded as amminium radical were detected in the squid extract and TMAO-iron(II) solution, suggesting that the amminium radical was involved in the decomposition of TMAO. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu
2014-07-01
The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.
A general range-separated double-hybrid density-functional theory
NASA Astrophysics Data System (ADS)
Kalai, Cairedine; Toulouse, Julien
2018-04-01
A range-separated double-hybrid (RSDH) scheme which generalizes the usual range-separated hybrids and double hybrids is developed. This scheme consistently uses a two-parameter Coulomb-attenuating-method (CAM)-like decomposition of the electron-electron interaction for both exchange and correlation in order to combine Hartree-Fock exchange and second-order Møller-Plesset (MP2) correlation with a density functional. The RSDH scheme relies on an exact theory which is presented in some detail. Several semi-local approximations are developed for the short-range exchange-correlation density functional involved in this scheme. After finding optimal values for the two parameters of the CAM-like decomposition, the RSDH scheme is shown to have a relatively small basis dependence and to provide atomization energies, reaction barrier heights, and weak intermolecular interactions globally more accurate or comparable to range-separated MP2 or standard MP2. The RSDH scheme represents a new family of double hybrids with minimal empiricism which could be useful for general chemical applications.
Unveiling the proton spin decomposition at a future electron-ion collider
Aschenauer, Elke C.; Sassot, Rodolfo; Stratmann, Marco
2015-11-24
We present a detailed assessment of how well a future electron-ion collider could constrain helicity parton distributions in the nucleon and, therefore, unveil the role of the intrinsic spin of quarks and gluons in the proton’s spin budget. Any remaining deficit in this decomposition will provide the best indirect constraint on the contribution due to the total orbital angular momenta of quarks and gluons. Specifically, all our studies are performed in the context of global QCD analyses based on realistic pseudodata and in the light of the most recent data obtained from polarized proton-proton collisions at BNL-RHIC that have providedmore » evidence for a significant gluon polarization in the accessible, albeit limited range of momentum fractions. We also present projections on what can be achieved on the gluon’s helicity distribution by the end of BNL-RHIC operations. As a result, all estimates of current and projected uncertainties are performed with the robust Lagrange multiplier technique.« less
NASA Astrophysics Data System (ADS)
Son, Youn-Suk; Kim, Ki-Joon; Kim, Ji-Yong; Kim, Jo-Chun
2010-12-01
We applied a hybrid technique to assess the decomposition characteristics of ethylbenzene and toluene that annexed the catalyst technique with existing electron beam (EB) technology. The removal efficiency of ethylbenzene in the EB-catalyst hybrid turned out to be 30% greater than that of EB-only treatment. We concluded that ethylbenzene was decomposed more easily than toluene by EB irradiation. We compared the independent effects of the EB-catalyst hybrid and catalyst-only methods, and observed that the efficiency of the EB-catalyst hybrid demonstrated approximately 6% improvement for decomposing toluene and 20% improvement for decomposing ethylbenzene. The G-values for ethylbenzene increased with initial concentration and reactor type: for example, the G-values by reactor type at 2800 ppmC were 7.5-10.9 (EB-only) and 12.9-25.7 (EB-catalyst hybrid). We also observed a significant decrease in by-products as well as in the removal efficiencies associated with the EB-catalyst hybrid technique.
Wu, Jyh Ming; Chen, Yi-Ru; Lin, Yu-Hung
2011-03-01
We are the first group to use a simple direct ultraviolet light (UV, λ=365 nm, I=76 mW cm(-2)) in a decomposition process to fabricate ZnO nanowires on a flexible substrate using a zinc acetylacetonate hydrate precursor in ambient air. ZnO nanocrystal (or nanowire) production only requires three to ten minutes. A field emission scanning electron microscopy (FESEM) image reveals a high aspect ratio of the ZnO nanowires, which are grown on a substrate with a diameter of ∼50-100 nm, and a length of up to several hundred microns. High resolution transmission electron microscopy (HRTEM) images reveal that the nanowires consist of many single crystalline ZnO nanoparticles that grow along the c axis, which suggests an oriented attachment process. A potential application for flexible UV photodetectors was investigated using a UV lamp (λ=365 nm, I=2.34 mW cm(-2)). A significant ratio of photocurrent to dark current--around 11,300%--was achieved.
Young Children's Thinking About Decomposition: Early Modeling Entrees to Complex Ideas in Science
NASA Astrophysics Data System (ADS)
Ero-Tolliver, Isi; Lucas, Deborah; Schauble, Leona
2013-10-01
This study was part of a multi-year project on the development of elementary students' modeling approaches to understanding the life sciences. Twenty-three first grade students conducted a series of coordinated observations and investigations on decomposition, a topic that is rarely addressed in the early grades. The instruction included in-class observations of different types of soil and soil profiling, visits to the school's compost bin, structured observations of decaying organic matter of various kinds, study of organisms that live in the soil, and models of environmental conditions that affect rates of decomposition. Both before and after instruction, students completed a written performance assessment that asked them to reason about the process of decomposition. Additional information was gathered through one-on-one interviews with six focus students who represented variability of performance across the class. During instruction, researchers collected video of classroom activity, student science journal entries, and charts and illustrations produced by the teacher. After instruction, the first-grade students showed a more nuanced understanding of the composition and variability of soils, the role of visible organisms in decomposition, and environmental factors that influence rates of decomposition. Through a variety of representational devices, including drawings, narrative records, and physical models, students came to regard decomposition as a process, rather than simply as an end state that does not require explanation.
Energy transfer and photochemistry on a metal surface: Mo(CO)/sub 6/ on Rh(100)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germer, T.A.; Ho, W.
1989-05-01
The occurrence of photoinduced reactions on solid surfaces depends on the relative rates between the excited-state decomposition and the energy transfer to the surface. In this study, the photodecomposition of Mo(CO)/sub 6/ on Rh(100) at 90 K by 325-nm UV irradiation has been studied as a function of coverage and surface preparation using thermal desorption spectroscopy, electron energy-loss spectroscopy, and photoinduced desorption spectroscopy. It is found that Mo(CO)/sub 6/ adsorbs dissociatively on Rh(100) into carbonyl fragments and CO in the first monolayer and molecularly in multilayers. Photoinduced desorption of CO is observed for the multilayers adsorbed onto the dissociated firstmore » layer via a nonthermal electronic excitation of adsorbed metal carbonyls. The presence of the metal surface prevents complete decarbonylation as in the gas phase; deexcitation of electronically excited carbonyls is not sufficiently fast to quench all the observed photochemistry. It is also found that Mo(CO)/sub 6/ adsorbs molecularly on a presaturated CO ordered overlayer on Rh(100) and undergoes photodissociation to a greater degree than on the dissociated and disordered surface of carbonyl fragments. The ordered CO layer effectively screens the interaction between the molecular carbonyls and the Rh(100) layer surface.« less
Maitarad, Phornphimon; Namuangruk, Supawadee; Zhang, Dengsong; Shi, Liyi; Li, Hongrui; Huang, Lei; Boekfa, Bundet; Ehara, Masahiro
2014-06-17
The adsorption of nitrous oxide (N2O) on metal-porphyrins (metal: Ti, Cr, Fe, Co, Ni, Cu, or Zn) has been theoretically investigated using density functional theory with the M06L functional to explore their use as potential catalysts for the direct decomposition of N2O. Among these metal-porphyrins, Ti-porphyrin is the most active for N2O adsorption in the triplet ground state with the strongest adsorption energy (-13.32 kcal/mol). Ti-porphyrin was then assessed for the direct decomposition of N2O. For the overall reaction mechanism of three N2O molecules on Ti-porphyrin, two plausible catalytic cycles are proposed. Cycle 1 involves the consecutive decomposition of the first two N2O molecules, while cycle 2 is the decomposition of the third N2O molecule. For cycle 1, the activation energies of the first and second N2O decompositions are computed to be 3.77 and 49.99 kcal/mol, respectively. The activation energy for the third N2O decomposition in cycle 2 is 47.79 kcal/mol, which is slightly lower than that of the second activation energy of the first cycle. O2 molecules are released in cycles 1 and 2 as the products of the reaction, which requires endothermic energies of 102.96 and 3.63 kcal/mol, respectively. Therefore, the O2 desorption is mainly released in catalytic cycle 2 of a TiO3-porphyrin intermediate catalyst. In conclusion, regarding the O2 desorption step for the direct decomposition of N2O, the findings would be very useful to guide the search for potential N2O decomposition catalysts in new directions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knyazev, V.D.; Dubinsky, I.A.; Slagle, I.R.
1994-10-27
The kinetics of the unimolecular decomposition of the sec-C[sub 4]H[sub 9] radical has been studied experimentally in a heated tubular flow reactor coupled to a photoionization mass spectrometer. Rate constants for the decomposition were determined in time-resolved experiments as a function of temperature (598-680 K) and bath gas density (3-18) [times] 10[sup 16] molecules cm[sup [minus]3] in three bath gases: He, Ar, and N[sub 2]. The rate constants are in the falloff region under the conditions of the experiments. The results of earlier studies of the reverse reaction were reanalyzed and used to create a transition state model of themore » reaction. This transition state model was used to obtain values of the microcanonical rate constants, k (E). Falloff behavior was reproduced using master equation modeling with the energy barrier height for decomposition (necessary to calculate k(E)) obtained from optimization of the agreement between experimental and calculated rate constants. The resulting model of the reaction provides the high-pressure limit rate constants for the decomposition reaction and the reverse reaction. 52 refs., 7 figs., 3 tabs.« less
Universality of Schmidt decomposition and particle identity
NASA Astrophysics Data System (ADS)
Sciara, Stefania; Lo Franco, Rosario; Compagno, Giuseppe
2017-03-01
Schmidt decomposition is a widely employed tool of quantum theory which plays a key role for distinguishable particles in scenarios such as entanglement characterization, theory of measurement and state purification. Yet, its formulation for identical particles remains controversial, jeopardizing its application to analyze general many-body quantum systems. Here we prove, using a newly developed approach, a universal Schmidt decomposition which allows faithful quantification of the physical entanglement due to the identity of particles. We find that it is affected by single-particle measurement localization and state overlap. We study paradigmatic two-particle systems where identical qubits and qutrits are located in the same place or in separated places. For the case of two qutrits in the same place, we show that their entanglement behavior, whose physical interpretation is given, differs from that obtained before by different methods. Our results are generalizable to multiparticle systems and open the way for further developments in quantum information processing exploiting particle identity as a resource.
Universality of Schmidt decomposition and particle identity
Sciara, Stefania; Lo Franco, Rosario; Compagno, Giuseppe
2017-01-01
Schmidt decomposition is a widely employed tool of quantum theory which plays a key role for distinguishable particles in scenarios such as entanglement characterization, theory of measurement and state purification. Yet, its formulation for identical particles remains controversial, jeopardizing its application to analyze general many-body quantum systems. Here we prove, using a newly developed approach, a universal Schmidt decomposition which allows faithful quantification of the physical entanglement due to the identity of particles. We find that it is affected by single-particle measurement localization and state overlap. We study paradigmatic two-particle systems where identical qubits and qutrits are located in the same place or in separated places. For the case of two qutrits in the same place, we show that their entanglement behavior, whose physical interpretation is given, differs from that obtained before by different methods. Our results are generalizable to multiparticle systems and open the way for further developments in quantum information processing exploiting particle identity as a resource. PMID:28333163
Universality of Schmidt decomposition and particle identity.
Sciara, Stefania; Lo Franco, Rosario; Compagno, Giuseppe
2017-03-23
Schmidt decomposition is a widely employed tool of quantum theory which plays a key role for distinguishable particles in scenarios such as entanglement characterization, theory of measurement and state purification. Yet, its formulation for identical particles remains controversial, jeopardizing its application to analyze general many-body quantum systems. Here we prove, using a newly developed approach, a universal Schmidt decomposition which allows faithful quantification of the physical entanglement due to the identity of particles. We find that it is affected by single-particle measurement localization and state overlap. We study paradigmatic two-particle systems where identical qubits and qutrits are located in the same place or in separated places. For the case of two qutrits in the same place, we show that their entanglement behavior, whose physical interpretation is given, differs from that obtained before by different methods. Our results are generalizable to multiparticle systems and open the way for further developments in quantum information processing exploiting particle identity as a resource.
NASA Technical Reports Server (NTRS)
DeSilva, J .H. S. R.; Udinwe, V.; Sideris, P. J.; Smart, M. C.; Krause, F. C.; Hwang, C.; Smith, K. A.; Greenbaum, S. G.
2012-01-01
Solid electrolyte interphase (SEI) formation in lithium ion cells prepared with advanced electrolytes is investigated by solid state multinuclear (7Li, 19F, 31P) magnetic resonance (NMR) measurements of electrode materials harvested from cycled cells subjected to an accelerated aging protocol. The electrolyte composition is varied to include the addition of fluorinated carbonates and triphenyl phosphate (TPP, a flame retardant). In addition to species associated with LiPF6 decomposition, cathode NMR spectra are characterized by the presence of compounds originating from the TPP additive. Substantial amounts of LiF are observed in the anodes as well as compounds originating from the fluorinated carbonates.
A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, C. Kristopher; Hauck, Cory D.
In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less
A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework
Garrett, C. Kristopher; Hauck, Cory D.
2018-04-05
In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less
Acetone Chemistry on Oxidized and Reduced TiO 2(110)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, Michael A
2004-12-09
The chemistry of acetone on the oxidized and reduced surfaces of TiO 2(110) was examined using temperature programmed desorption (TPD) and high resolution electron energy loss spectroscopy (HREELS). The reduced surface was prepared with about 7% oxygen vacancy sites by annealing in ultrahigh vacuum (UHV) at 850 K, and the oxidized surface was prepared by exposure of the reduced surface to molecular oxygen at 95 K followed by heating the surface to a variety of temperatures between 200 and 500 K. Acetone adsorbs molecularly on the reduced surface with no evidence for either decomposition or preferential binding at vacancy sites.more » Based on HREELS, the majority of acetone molecules adsorbed in an η¹ configuration at Ti⁴⁺ sites through interaction of lone pair electrons on the carbonyl oxygen atom. Repulsive acetone-acetone interactions shift the desorption peak from 345 K at low coverage to 175 K as the first layer saturates with a coverage of ~ 1 ML. In contrast, about 7% of the acetone adlayer decomposes when the surface is pretreated with molecular oxygen. Acetate is among the detected decomposition products, but only comprises about 1/3rd of the amount of acetone decomposed and its yield depends on the temperature at which the O₂ exposed surface was preheated to prior to acetone adsorption. Aside from the small level of irreversible decomposition, about 0.25 ML of acetone is stabilized to 375 K by coadsorbed oxygen. These acetone species exhibit an HREELS spectrum unlike that of η¹-acetone or of any other species proposed to exist from the interaction of acetone with TiO₂ powders. Based on the presence of extensive ¹⁶O/¹⁸O exchange between acetone and coadsorbed oxygen in the 375 K acetone TPD state, it is proposed that a polymeric form of acetone forms on the TiO₂(110) surface through nucleophilic attack of oxygen on the carbonyl carbon atom of acetone, and is propagated to neighboring η¹-acetone molecules. This process is initiated at temperatures as low as 135 K based on HREELS. Although the dominant thermal pathway of this surface species is to liberate acetone in UHV, it may be a key intermediate in acetone thermal and photolytic chemistry on TiO₂ surfaces.« less
Automatic network coupling analysis for dynamical systems based on detailed kinetic models.
Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich
2005-10-01
We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.
Testing the monogamy relations via rank-2 mixtures
NASA Astrophysics Data System (ADS)
Jung, Eylee; Park, DaeKil
2016-10-01
We introduce two tangle-based four-party entanglement measures t1 and t2, and two negativity-based measures n1 and n2, which are derived from the monogamy relations. These measures are computed for three four-qubit maximally entangled and W states explicitly. We also compute these measures for the rank-2 mixture ρ4=p | GHZ4>< GHZ4|+(1 -p ) | W4>< W4| by finding the corresponding optimal decompositions. It turns out that t1(ρ4) is trivial and the corresponding optimal decomposition is equal to the spectral decomposition. Probably, this triviality is a sign of the fact that the corresponding monogamy inequality is not sufficiently tight. We fail to compute t2(ρ4) due to the difficulty in the calculation of the residual entanglement. The negativity-based measures n1(ρ4) and n2(ρ4) are explicitly computed and the corresponding optimal decompositions are also derived explicitly.
S-induced modifications of the optoelectronic properties of ZnO mesoporous nanobelts
Fabbri, Filippo; Nasi, Lucia; Fedeli, Paolo; Ferro, Patrizia; Salviati, Giancarlo; Mosca, Roberto; Calzolari, Arrigo; Catellani, Alessandra
2016-01-01
The synthesis of ZnO porous nanobelts with high surface-to-volume ratio is envisaged to enhance the zinc oxide sensing and photocatalytic properties. Yet, controlled stoichiometry, doping and compensation of as-grown n-type behavior remain open problems for this compound. Here, we demonstrate the effect of residual sulfur atoms on the optical properties of ZnO highly porous, albeit purely wurtzite, nanobelts synthesized by solvothermal decomposition of ZnS hybrids. By means of combined cathodoluminescence analyses and density functional theory calculations, we attribute a feature appearing at 2.36 eV in the optical emission spectra to sulfur related intra-gap states. A comparison of different sulfur configurations in the ZnO matrix demonstrates the complex compensating effect on the electronic properties of the system induced by S-inclusion. PMID:27301986
Laser-induced phase separation of silicon carbide
Choi, Insung; Jeong, Hu Young; Shin, Hyeyoung; Kang, Gyeongwon; Byun, Myunghwan; Kim, Hyungjun; Chitu, Adrian M.; Im, James S.; Ruoff, Rodney S.; Choi, Sung-Yool; Lee, Keon Jae
2016-01-01
Understanding the phase separation mechanism of solid-state binary compounds induced by laser–material interaction is a challenge because of the complexity of the compound materials and short processing times. Here we present xenon chloride excimer laser-induced melt-mediated phase separation and surface reconstruction of single-crystal silicon carbide and study this process by high-resolution transmission electron microscopy and a time-resolved reflectance method. A single-pulse laser irradiation triggers melting of the silicon carbide surface, resulting in a phase separation into a disordered carbon layer with partially graphitic domains (∼2.5 nm) and polycrystalline silicon (∼5 nm). Additional pulse irradiations cause sublimation of only the separated silicon element and subsequent transformation of the disordered carbon layer into multilayer graphene. The results demonstrate viability of synthesizing ultra-thin nanomaterials by the decomposition of a binary system. PMID:27901015
Photocatalytic decomposition of Rhodamine B on uranium-doped mesoporous titanium dioxide
Liu, Yi; Becker, Blake; Burdine, Brandon; ...
2017-04-13
Mesoporous uranium-doped TiO 2 anatase materials were studied to determine the influence of U-doping on the photocatalytic properties for Rhodamine B (RhB) degradation. The physico-chemical properties of the samples were characterized and the results of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy demonstrate homogeneous incorporation of uranium into the anatase lattice. X-ray photoelectron spectroscopy of the doped anatase confirmed the dominance of the U 4+ species and an increasing proportion of U 6+ species as the uranium doping was increased. The absorption thresholds of the uranium-doped anatase extended into the visible light region. A synergistic effect of the bandmore » gap energy and oxidation state of the dopant contribute to an enhanced photocatalytic capability for RhB degradation by U-doped TiO 2.« less
Photocatalytic decomposition of Rhodamine B on uranium-doped mesoporous titanium dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yi; Becker, Blake; Burdine, Brandon
Mesoporous uranium-doped TiO 2 anatase materials were studied to determine the influence of U-doping on the photocatalytic properties for Rhodamine B (RhB) degradation. The physico-chemical properties of the samples were characterized and the results of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy demonstrate homogeneous incorporation of uranium into the anatase lattice. X-ray photoelectron spectroscopy of the doped anatase confirmed the dominance of the U 4+ species and an increasing proportion of U 6+ species as the uranium doping was increased. The absorption thresholds of the uranium-doped anatase extended into the visible light region. A synergistic effect of the bandmore » gap energy and oxidation state of the dopant contribute to an enhanced photocatalytic capability for RhB degradation by U-doped TiO 2.« less
NASA Technical Reports Server (NTRS)
John, Bonnie; Vera, Alonso; Matessa, Michael; Freed, Michael; Remington, Roger
2002-01-01
CPM-GOMS is a modeling method that combines the task decomposition of a GOMS analysis with a model of human resource usage at the level of cognitive, perceptual, and motor operations. CPM-GOMS models have made accurate predictions about skilled user behavior in routine tasks, but developing such models is tedious and error-prone. We describe a process for automatically generating CPM-GOMS models from a hierarchical task decomposition expressed in a cognitive modeling tool called Apex. Resource scheduling in Apex automates the difficult task of interleaving the cognitive, perceptual, and motor resources underlying common task operators (e.g. mouse move-and-click). Apex's UI automatically generates PERT charts, which allow modelers to visualize a model's complex parallel behavior. Because interleaving and visualization is now automated, it is feasible to construct arbitrarily long sequences of behavior. To demonstrate the process, we present a model of automated teller interactions in Apex and discuss implications for user modeling. available to model human users, the Goals, Operators, Methods, and Selection (GOMS) method [6, 21] has been the most widely used, providing accurate, often zero-parameter, predictions of the routine performance of skilled users in a wide range of procedural tasks [6, 13, 15, 27, 28]. GOMS is meant to model routine behavior. The user is assumed to have methods that apply sequences of operators and to achieve a goal. Selection rules are applied when there is more than one method to achieve a goal. Many routine tasks lend themselves well to such decomposition. Decomposition produces a representation of the task as a set of nested goal states that include an initial state and a final state. The iterative decomposition into goals and nested subgoals can terminate in primitives of any desired granularity, the choice of level of detail dependent on the predictions required. Although GOMS has proven useful in HCI, tools to support the construction of GOMS models have not yet come into general use.
Ab initio calculations of the effects of H+ and NH4+ on the initial decomposition of HMX.
Wang, Luoxin; Tuo, Xinlin; Yi, Changhai; Wang, Xiaogong
2008-10-01
In this work, the effects of H(+) and NH(4)(+) on the initial decomposition of HMX were investigated on the basis of the B3P86/6-31G** and B3LYP/6-31G* calculations. Three initial decomposition pathways including the N-NO(2) bond fission, HONO elimination and C-N bond dissociation were considered for the complexes formed by HMX with H(+) (PHMX1 and PHMX2) or with NH(4)(+) (AHMX). We found that H(+) and NH(4)(+) did not evidently induce the HMX to trigger the N-NO(2) heterolysis because the energy barrier of N-NO(2) heterolysis was found to be higher than the bond dissociation energy of N-NO(2) homolytic cleavage. Meanwhile, the transition state barriers of the HONO elimination from the complexes were found to be similar to that from the isolated HMX, which means that the HONO elimination reaction of HMX was not affected by the H(+) and NH(4)(+). As for the ring-opening reaction of HMX due to the C-N bond dissociation, the calculated potential energy profile showed that the energy of the complex (AHMX) went uphill along the C-N bond length and no transition state existed on the curve. However, the transition state energy barriers of C-N bond dissociation were calculated to be only 5.0 kcal/mol and 5.5 kcal/mol for the PHMX1 and PHMX2 complexes, respectively, which were much lower than the C-N bond dissociation energy of isolated HMX. Moreover, among the three initial decomposition reactions, the C-N bond dissociation was also the most energetically favorable pathway for the PHMX1 and PHMX2. Our calculation results showed that the H(+) can significantly promote the initial thermal decomposition of C-N bond of HMX, which, however, is influenced by NH(4)(+) slightly.
Alteration of Asian lacquer: in-depth insight using a physico-chemical multiscale approach.
Le Hô, Anne-Solenn; Duhamel, Chloé; Daher, Céline; Bellot-Gurlet, Ludovic; Paris, Céline; Regert, Martine; Sablier, Michel; André, Guilhem; Desroches, Jean-Paul; Dumas, Paul
2013-10-07
Oriental lacquer has been used in Asian countries for thousands of years as a durable and aesthetic coating material for its adhesive, consolidating, protective and decorative properties. Although these objects are made from an unusual material in Occident, Western museum collections host many lacquerwares. Curators, restorers and scientists are daily confronted with questions of their conservation and their alteration. The characterization of their conservation state is usually assessed through visual observations. However deterioration often starts at the microscopic level and cannot be detected by a simple visual inspection. Often, ageing and deterioration of artworks are connected to physical, mechanical and chemical transformations. Thus new insight into alteration of lacquer involves the monitoring of macro-, microscopic and molecular modifications, and this can be assessed from physico-chemical measurements. Non-invasive (microtopography and Scanning Electron Microscopy - SEM) and micro-invasive (infrared micro-spectroscopy using a synchrotron source - SR-μFTIR) investigations were performed to study the degradation processes of lacquers and evaluate their level of alteration. In particular, spectral decomposition and fitting procedure were performed in the 1820-1520 cm(-1) region to follow the shift of the C=O and C=C band positions during lacquer ageing. The present work proves the potential of this physico-chemical approach in conservation studies of lacquers and in the quantification of the state of alteration. It evidences chemical phenomena of alteration such as oxidation and decomposition of a lacquer polymeric network. It also demonstrates for the first time the degradation front of artificially aged lacquer and the chemical imaging of a more than 2000 years old archaeological lacquer by using SR-μFTIR.
Unitary irreducible representations of SL(2,C) in discrete and continuous SU(1,1) bases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conrady, Florian; Hnybida, Jeff; Department of Physics, University of Waterloo, Waterloo, Ontario
2011-01-15
We derive the matrix elements of generators of unitary irreducible representations of SL(2,C) with respect to basis states arising from a decomposition into irreducible representations of SU(1,1). This is done with regard to a discrete basis diagonalized by J{sup 3} and a continuous basis diagonalized by K{sup 1}, and for both the discrete and continuous series of SU(1,1). For completeness, we also treat the more conventional SU(2) decomposition as a fifth case. The derivation proceeds in a functional/differential framework and exploits the fact that state functions and differential operators have a similar structure in all five cases. The states aremore » defined explicitly and related to SU(1,1) and SU(2) matrix elements.« less
Shock chemistry in SX358 foams
NASA Astrophysics Data System (ADS)
Maerzke, Katie; Coe, Joshua; Fredenburg, Anthony; Lang, John; Dattelbaum, Dana
2017-06-01
We have developed new equation of state models for SX358, a cross-linked PDMS polymer. Recent experiments on SX358 over a range of initial densities (0-65% porous) have yielded new data that allow for a more thorough calibration of the equations of state. SX358 chemically decomposes under shock compression, as evidenced by a cusp in the shock locus. We therefore treat this material using two equations of state, specifically a SESAME model for the unreacted material and a free energy minimization assuming full chemical and thermodynamic equilibrium for the decomposition products. The shock locus of porous SX358 is found to be ``anomalous'' in that the decomposition reaction causes a volume expansion, rather than a volume collapse. Similar behavior has been observed in other polymer foams, notably polyurethane.
Mohamed, Hala Sh; Dahy, AbdelRahman A; Mahfouz, Refaat M
2017-10-25
Kinetic analysis for the non-isothermal decomposition of un-irradiated and photon-beam-irradiated 5-fluorouracil (5-FU) as anti-cancer drug, was carried out in static air. Thermal decomposition of 5-FU proceeds in two steps. One minor step in the temperature range of (270-283°C) followed by the major step in the temperature range of (285-360°C). The non-isothermal data for un-irradiated and photon-irradiated 5-FU were analyzed using linear (Tang) and non-linear (Vyazovkin) isoconversional methods. The results of the application of these free models on the present kinetic data showed quite a dependence of the activation energy on the extent of conversion. For un-irradiated 5-FU, the non-isothermal data analysis indicates that the decomposition is generally described by A3 and A4 modeles for the minor and major decomposition steps, respectively. For a photon-irradiated sample of 5-FU with total absorbed dose of 10Gy, the decomposition is controlled by A2 model throughout the coversion range. The activation energies calculated in case of photon-irradiated 5-FU were found to be lower compared to the values obtained from the thermal decomposition of the un-irradiated sample probably due to the formation of additional nucleation sites created by a photon-irradiation. The decomposition path was investigated by intrinsic reaction coordinate (IRC) at the B3LYP/6-311++G(d,p) level of DFT. Two transition states were involved in the process by homolytic rupture of NH bond and ring secession, respectively. Published by Elsevier B.V.
Dong, Fan; Zhao, Weirong; Wu, Zhongbiao; Guo, Sen
2009-03-15
Multi-type nitrogen doped TiO(2) nanoparticles were prepared by thermal decomposition of the mixture of titanium hydroxide and urea at 400 degrees C for 2h. The as-prepared photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL). The results showed that the as-prepared samples exhibited strong visible light absorption due to multi-type nitrogen doped in the form of substitutional (N-Ti-O and Ti-O-N) and interstitial (pi* character NO) states, which were 0.14 and 0.73 eV above the top of the valence band, respectively. A physical model of band structure was established to clarify the visible light photocatalytic process over the as-prepared samples. The photocatalytic activity was evaluated for the photodegradation of gaseous toluene under visible light irradiation. The activity of the sample prepared from wet titanium hydroxide and urea (TiO(2)-Nw, apparent reaction rate constant k = 0.045 min(-1)) was much higher than other samples including P25 (k = 0.0013 min(-1)). The high activity can be attributed to the results of the synergetic effects of strong visible light absorption, good crystallization, large surface hydroxyl groups, and enhanced separation of photoinduced carriers.
NASA Astrophysics Data System (ADS)
Zhou, Changsong; Song, Zijian; Zhang, Zhiyue; Yang, Hongmin; Wang, Ben; Yu, Jie; Sun, Lushi
2017-12-01
Density functional theory calculations have been carried out for H2O2 and Hg0 co-interaction on Fe3O4 (111) surface. On the Fetet1-terminated Fe3O4 (111) surface, the most favored configurations are H2O2 decomposition and produce two OH groups, which have strong interaction with Hg atom to form an OHsbnd Hgsbnd OH intermediate. The adsorbed OHsbnd Hgsbnd OH is stable and hardly detaches from the catalyst surface due to the highly endothermic process. A large amount of electron transfer has been found from Hg to the produced OH groups and has little irreversible effect on the Fe3O4 (111) surface. On the Feoct2-terminated Fe3O4 (111) surface, the Feoct2 site is more active than Fetet1 site. H2O2 decomposition and Hg0 oxidation processes are more likely to occur due to that the Feoct2 site both contains Fe2+ and Fe3+ cations. The calculations reveal that Hg0 oxidation by the OH radical produced from H2O2 is energetically favored. Additionally, Hg0 and H2O2 co-interaction mechanism on the Fe3O4 (111) interface has been investigated on the basis of partial local density of state calculation.
Ghoshal, Sourav; Hazra, Montu K
2016-02-04
The decomposition of isolated carbonic acid (H2CO3) molecule into CO2 and H2O (H2CO3 → CO2 + H2O) is prevented by a large activation barrier (>35 kcal/mol). Nevertheless, it is surprising that the detection of the H2CO3 molecule has not been possible yet, and the hunt for the free H2CO3 molecule has become challenging not only in the Earth's atmosphere but also on Mars. In view of this fact, we report here the high levels of quantum chemistry calculations investigating both the energetics and kinetics of the OH radical-initiated H2CO3 degradation reaction to interpret the loss of the H2CO3 molecule in the Earth's atmosphere. It is seen from our study that proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) are the two mechanisms by which the OH radical initiates the degradation of the H2CO3 molecule. Moreover, the PCET mechanism is potentially the important one, as the effective barrier, defined as the difference between the zero point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, for the PCET mechanism at the CCSD(T)/6-311++G(3df,3pd) level of theory is ∼3 to 4 kcal/mol lower than the effective barrier height associated with the HAT mechanism. The CCSD(T)/6-311++G(3df,3pd) level predicted effective barrier heights for the degradations of the two most stable conformers of H2CO3 molecule via the PCET mechanism are only ∼2.7 and 4.3 kcal/mol. A comparative reaction rate analysis at the CCSD(T)/6-311++G(3df,3pd) level of theory has also been carried out to explore the potential impact of the OH radical-initiated H2CO3 degradation relative to that from water (H2O), formic acid (FA), acetic acid (AA) and sulfuric acid (SA) assisted H2CO3 → CO2 + H2O decomposition reactions in both the Earth's troposphere and stratosphere. The comparison of the reaction rates reveals that, although the atmospheric concentration of the OH radical is substantially lower than the concentrations of the H2O, FA, AA in the Earth's atmosphere, nevertheless, the OH radical-initiated H2CO3 degradation reaction has significant impact, especially toward the loss of the H2CO3 molecule in the Earth's atmosphere. In clean environments, which exist in greater numbers in comparison to the polluted environments of the Earth's atmosphere, the impact of the OH radical-initiated H2CO3 degradation reaction is seen to be comparable to that from a competing pathway which utilizes hydrogen bonded molecules such as H2O, FA or AA to catalyze the H2CO3 decomposition. Similarly, in the polluted environments, and especially in the Earth's troposphere, although the reactions rates for the OH radical-initiated H2CO3 degradation and FA-assisted H2CO3 decomposition are comparable within a factor of ∼15, nevertheless, the AA-assisted H2CO3 decomposition reaction is appeared to be the dominant channel. This follows only because of slightly greater catalytic efficiency of the AA over FA upon the H2CO3 → CO2 + H2O decomposition reaction. In contrary, although the catalytic efficiencies of SA, FA, and AA upon the H2CO3 decomposition reaction are similar to each other and the concentrations of both the SA and OH radical in the Earth's atmosphere are more-or-less equal to each other, but nevertheless, the SA-assisted H2CO3 decomposition reaction cannot compete with the OH radical-initiated H2CO3 degradation reaction.
Solid-state reaction kinetics of neodymium doped magnesium hydrogen phosphate system
NASA Astrophysics Data System (ADS)
Gupta, Rashmi; Slathia, Goldy; Bamzai, K. K.
2018-05-01
Neodymium doped magnesium hydrogen phosphate (NdMHP) crystals were grown by using gel encapsulation technique. Structural characterization of the grown crystals has been carried out by single crystal X-ray diffraction (XRD) and it revealed that NdMHP crystals crystallize in orthorhombic crystal system with space group Pbca. Kinetics of the decomposition of the grown crystals has been studied by non-isothermal analysis. The estimation of decomposition temperatures and weight loss has been made from the thermogravimetric/differential thermo analytical (TG/DTA) in conjuncture with DSC studies. The various steps involved in the thermal decomposition of the material have been analysed using Horowitz-Metzger, Coats-Redfern and Piloyan-Novikova equations for evaluating various kinetic parameters.
NASA Astrophysics Data System (ADS)
Dyrdin, V. V.; Smirnov, V. G.; Kim, T. L.; Manakov, A. Yu.; Fofanov, A. A.; Kartopolova, I. S.
2017-06-01
The physical processes occurring in the coal - natural gas system under the gas pressure release were studied experimentally. The possibility of gas hydrates presence in the inner space of natural coal was shown, which decomposition leads to an increase in the amount of gas passing into the free state. The decomposition of gas hydrates can be caused either by the seam temperature increase or the pressure decrease to lower than the gas hydrates equilibrium curve. The contribution of methane released during gas hydrates decomposition should be taken into account in the design of safe mining technologies for coal seams prone to gas dynamic phenomena.
Atasoy, Selen; Roseman, Leor; Kaelen, Mendel; Kringelbach, Morten L; Deco, Gustavo; Carhart-Harris, Robin L
2017-12-15
Recent studies have started to elucidate the effects of lysergic acid diethylamide (LSD) on the human brain but the underlying dynamics are not yet fully understood. Here we used 'connectome-harmonic decomposition', a novel method to investigate the dynamical changes in brain states. We found that LSD alters the energy and the power of individual harmonic brain states in a frequency-selective manner. Remarkably, this leads to an expansion of the repertoire of active brain states, suggestive of a general re-organization of brain dynamics given the non-random increase in co-activation across frequencies. Interestingly, the frequency distribution of the active repertoire of brain states under LSD closely follows power-laws indicating a re-organization of the dynamics at the edge of criticality. Beyond the present findings, these methods open up for a better understanding of the complex brain dynamics in health and disease.
Ab initio kinetics and thermal decomposition mechanism of mononitrobiuret and 1,5-dinitrobiuret
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Hongyan, E-mail: hongyan.sun1@gmail.com, E-mail: ghanshyam.vaghjiani@us.af.mil; Vaghjiani, Ghanshyam L., E-mail: hongyan.sun1@gmail.com, E-mail: ghanshyam.vaghjiani@us.af.mil
2015-05-28
Mononitrobiuret (MNB) and 1,5-dinitrobiuret (DNB) are tetrazole-free, nitrogen-rich, energetic compounds. For the first time, a comprehensive ab initio kinetics study on the thermal decomposition mechanisms of MNB and DNB is reported here. In particular, the intramolecular interactions of amine H-atom with electronegative nitro O-atom and carbonyl O-atom have been analyzed for biuret, MNB, and DNB at the M06-2X/aug-cc-pVTZ level of theory. The results show that the MNB and DNB molecules are stabilized through six-member-ring moieties via intramolecular H-bonding with interatomic distances between 1.8 and 2.0 Å, due to electrostatic as well as polarization and dispersion interactions. Furthermore, it was foundmore » that the stable molecules in the solid state have the smallest dipole moment amongst all the conformers in the nitrobiuret series of compounds, thus revealing a simple way for evaluating reactivity of fuel conformers. The potential energy surface for thermal decomposition of MNB was characterized by spin restricted coupled cluster theory at the RCCSD(T)/cc-pV∞ Z//M06-2X/aug-cc-pVTZ level. It was found that the thermal decomposition of MNB is initiated by the elimination of HNCO and HNN(O)OH intermediates. Intramolecular transfer of a H-atom, respectively, from the terminal NH{sub 2} group to the adjacent carbonyl O-atom via a six-member-ring transition state eliminates HNCO with an energy barrier of 35 kcal/mol and from the central NH group to the adjacent nitro O-atom eliminates HNN(O)OH with an energy barrier of 34 kcal/mol. Elimination of HNN(O)OH is also the primary process involved in the thermal decomposition of DNB, which processes C{sub 2v} symmetry. The rate coefficients for the primary decomposition channels for MNB and DNB were quantified as functions of temperature and pressure. In addition, the thermal decomposition of HNN(O)OH was analyzed via Rice–Ramsperger–Kassel–Marcus/multi-well master equation simulations, the results of which reveal the formation of (NO{sub 2} + H{sub 2}O) to be the major decomposition path. Furthermore, we provide fundamental interpretations for the experimental results of Klapötke et al. [Combust. Flame 139, 358–366 (2004)] regarding the thermal stability of MNB and DNB, and their decomposition products. Notably, a fundamental understanding of fuel stability, decomposition mechanism, and key reactions leading to ignition is essential in the design and manipulation of molecular systems for the development of new energetic materials for advanced propulsion applications.« less
ZnO twin-cones: synthesis, photoluminescence, and catalytic decomposition of ammonium perchlorate.
Sun, Xuefei; Qiu, Xiaoqing; Li, Liping; Li, Guangshe
2008-05-19
ZnO twin-cones, a new member to the ZnO family, were prepared directly by a solvothermal method using a mixed solution of zinc nitrate and ethanol. The reaction and growth mechanisms of ZnO twin-cones were investigated by X-ray diffraction, UV-visible spectra, infrared and ion trap mass spectra, and transmission electron microscopy. All as-prepared ZnO cones consisted of tiny single crystals with lengths of several micrometers. With prolonging of the reaction time from 1.5 h to 7 days, the twin-cone shape did not change at all, while the lattice parameters increased slightly and the emission peak of photoluminescence shifted from the green region to the near orange region. ZnO twin-cones are also explored as an additive to promote the thermal decomposition of ammonium perchlorate. The variations of photoluminescence spectra and catalytic roles in ammonium perchlorate decomposition were discussed in terms of the defect structure of ZnO twin-cones.
2011-05-03
18 . NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON Dr. Tommy W. Hawkins a. REPORT Unclassified b. ABSTRACT Unclassified c. THIS PAGE...branching using Rice-Ramsperger-Kassel-Marcus (RRKM) theory, 18 and finally to the analysis of inter-conversions of primary decomposition products...theory, 18 was employed to examine the properties of the reactant, intermediate complex and transition states as a function of the total internal energy
On the decomposition of a dynamical system into non-interacting subsystems.
NASA Technical Reports Server (NTRS)
Rosen, R.
1972-01-01
It is shown that, under rather general conditions, it is possible to formally decompose the dynamics of an n-dimensional dynamical system into a number of non-interacting subsystems. It is shown that these decompositions are in general not simply related to the kinds of observational procedures in terms of which the original state variables of the system are defined. Some consequences of this construction for reductionism in biology are discussed.
Catalytic decomposition of toxic chemicals over metal-promoted carbon nanotubes.
Li, Lili; Han, Changxiu; Han, Xinyu; Zhou, Yixiao; Yang, Li; Zhang, Baogui; Hu, Jianli
2011-01-15
Effective decomposition of toxic gaseous compounds is important for pollution control at many chemical manufacturing plants. This study explores catalytic decomposition of phosphine (PH(3)) using novel metal-promoted carbon nanotubes (CNTs). The cerium-promoted Co/CNTs catalysts (CoCe/CNTs) are synthesized by means of coimpregnation method and reduced by three different methods (H(2), KBH(4), NaH(2)PO(2)·H(2)O/KBH(4)). The morphology, structure, and composition of the catalysts are characterized using a number of analytical instrumentations including high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, BET surface area measurement, and inductively coupled plasma. The activity of the catalysts in PH(3) decomposition reaction is measured and correlated with their surface and structural properties. The characterization results show that the CoCe/CNTs catalyst reduced by H(2) possesses small particles and is shown thermally stable in PH(3) decomposition reaction. The activities of these catalysts are compared and are shown in the following sequence: CoCe/CNTs > Co/CNTs > CoCeBP/CNTs> CoCeB/CNTs. The difference in reduction method results in the formation of different active phases during the PH(3) decomposition reaction. After a catalytic activity test, only the CoP phase is formed on CoCe/CNTs and Co/CNTs catalysts, whereas multiphases CoP, Co(2)P, and Co phases are formed on CoCeBP/CNTs and CoCeB/CNTs. Results show that the CoP phase is formed predominantly on the CoCe/CNTs and Co/CNTs catalysts and is found to likely be the most active phase for this reaction. Furthermore, the CoCe/CNTs catalyst exhibits not only highest activity but also long-term stability in PH(3) decomposition reaction. When operated in a fixed-bed reactor at 360 °C, single-pass PH(3) conversion of about 99.8% can be achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, H. L.; Shah, S. A. A.; Hao, Y. L.
It is well-known that the body centered cubic (bcc) crystal in titanium alloys reaches its stability limit as the electron-to-atom (e/a) ratio of the alloy drops down to ~4.24. This critical value, however, is much higher than that of a multifunctional bcc type alloy (e/a = 4.15). Here we demonstrate that a nano-scale concentration modulation created by spinodal decomposition is what stabilizes the bcc crystal of the alloy. Aided by such a nano-scale concentration heterogeneity, unexpected properties from its chemically homogeneous counterpart are obtained. This provides a new strategy to design functional titanium alloys by tuning the spinodal decomposition.
NASA Astrophysics Data System (ADS)
Morimoto, Takashi; Ansari, S. G.; Yoneyama, Koji; Nakajima, Teppei; Masuda, Atsushi; Matsumura, Hideki; Nakamura, Megumi; Umemoto, Hironobu
2006-02-01
The mechanism of catalytic chemical vapor deposition (Cat-CVD) processes for hexamethyldisilazane (HMDS) and trisdimethylaminosilane (TDMAS), which are used as source gases to prepare SiNx or SiCxNy films, was studied using three different mass spectrometric techniques: ionization by Li+ ion attachment, vacuum-ultraviolet radiation and electron impact. The results for HMDS show that Si-N bonds dissociate selectively, although Si-C bonds are weaker, and (CH3)3SiNH should be one of the main precursors of deposited films. This decomposition mechanism did not change when NH3 was introduced, but the decomposition efficiency was slightly increased. Similar results were obtained for TDMAS.
Long-term litter decomposition controlled by manganese redox cycling
Keiluweit, Marco; Nico, Peter; Harmon, Mark E.; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus
2015-01-01
Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn2+ provided by fresh plant litter to produce oxidative Mn3+ species at sites of active decay, with Mn eventually accumulating as insoluble Mn3+/4+ oxides. Formation of reactive Mn3+ species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn3+-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn3+ species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant–soil system may have a profound impact on litter decomposition rates. PMID:26372954
Bailey, E A; Dutton, A W; Mattingly, M; Devasia, S; Roemer, R B
1998-01-01
Reduced-order modelling techniques can make important contributions in the control and state estimation of large systems. In hyperthermia, reduced-order modelling can provide a useful tool by which a large thermal model can be reduced to the most significant subset of its full-order modes, making real-time control and estimation possible. Two such reduction methods, one based on modal decomposition and the other on balanced realization, are compared in the context of simulated hyperthermia heat transfer problems. The results show that the modal decomposition reduction method has three significant advantages over that of balanced realization. First, modal decomposition reduced models result in less error, when compared to the full-order model, than balanced realization reduced models of similar order in problems with low or moderate advective heat transfer. Second, because the balanced realization based methods require a priori knowledge of the sensor and actuator placements, the reduced-order model is not robust to changes in sensor or actuator locations, a limitation not present in modal decomposition. Third, the modal decomposition transformation is less demanding computationally. On the other hand, in thermal problems dominated by advective heat transfer, numerical instabilities make modal decomposition based reduction problematic. Modal decomposition methods are therefore recommended for reduction of models in which advection is not dominant and research continues into methods to render balanced realization based reduction more suitable for real-time clinical hyperthermia control and estimation.
Long-term litter decomposition controlled by manganese redox cycling.
Keiluweit, Marco; Nico, Peter; Harmon, Mark E; Mao, Jingdong; Pett-Ridge, Jennifer; Kleber, Markus
2015-09-22
Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of litter was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn(2+) provided by fresh plant litter to produce oxidative Mn(3+) species at sites of active decay, with Mn eventually accumulating as insoluble Mn(3+/4+) oxides. Formation of reactive Mn(3+) species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn(3+)-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn(3+) species in the litter layer. This observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant-soil system may have a profound impact on litter decomposition rates.
NASA Astrophysics Data System (ADS)
Xie, Hang; Jiang, Feng; Tian, Heng; Zheng, Xiao; Kwok, Yanho; Chen, Shuguang; Yam, ChiYung; Yan, YiJing; Chen, Guanhua
2012-07-01
Basing on our hierarchical equations of motion for time-dependent quantum transport [X. Zheng, G. H. Chen, Y. Mo, S. K. Koo, H. Tian, C. Y. Yam, and Y. J. Yan, J. Chem. Phys. 133, 114101 (2010), 10.1063/1.3475566], we develop an efficient and accurate numerical algorithm to solve the Liouville-von-Neumann equation. We solve the real-time evolution of the reduced single-electron density matrix at the tight-binding level. Calculations are carried out to simulate the transient current through a linear chain of atoms, with each represented by a single orbital. The self-energy matrix is expanded in terms of multiple Lorentzian functions, and the Fermi distribution function is evaluated via the Padè spectrum decomposition. This Lorentzian-Padè decomposition scheme is employed to simulate the transient current. With sufficient Lorentzian functions used to fit the self-energy matrices, we show that the lead spectral function and the dynamics response can be treated accurately. Compared to the conventional master equation approaches, our method is much more efficient as the computational time scales cubically with the system size and linearly with the simulation time. As a result, the simulations of the transient currents through systems containing up to one hundred of atoms have been carried out. As density functional theory is also an effective one-particle theory, the Lorentzian-Padè decomposition scheme developed here can be generalized for first-principles simulation of realistic systems.
Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2O 3 (0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Gregory A.
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on -Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products ( D2, O2 and D¬2O) and the total sputtering yield increased with increasing D2O coverage up to ~15 water monolayers (i.e. ~15 1015 cm-2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D2O and H2O) demonstrated that the highest water decomposition yields occurred at the interfaces of the nanoscalemore » water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO2(110) interfaces. We propose that the relatively low activity of Al2O3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the molecular hydrogen.100 eV electrons are stopped in the H 2O portion of the isotopically-layered nanoscale film on α-Al 2O 3(0001) but D 2is produced at the D 2O/alumina interface by mobile electronic excitations and/or hydronium ions.« less
Approximate analytical solutions in the analysis of elastic structures of complex geometry
NASA Astrophysics Data System (ADS)
Goloskokov, Dmitriy P.; Matrosov, Alexander V.
2018-05-01
A method of analytical decomposition for analysis plane structures of a complex configuration is presented. For each part of the structure in the form of a rectangle all the components of the stress-strain state are constructed by the superposition method. The method is based on two solutions derived in the form of trigonometric series with unknown coefficients using the method of initial functions. The coefficients are determined from the system of linear algebraic equations obtained while satisfying the boundary conditions and the conditions for joining the structure parts. The components of the stress-strain state of a bent plate with holes are calculated using the analytical decomposition method.
Equation of State and Shock-Driven Decomposition of 'Soft' Materials
Coe, Joshua Damon; Dattelbaum, Dana Mcgraw
2017-12-01
Equation of state (EOS) efforts at National Nuclear Security Administration (NNSA) national laboratories tend to focus heavily on metals, and rightly so given their obvious primacy in nuclear weapons. Our focus here, however, is on the EOS of 'soft' matter such as polymers and their derived foams, which present a number of challenges distinct from those of other material classes. This brief description will cover only one aspect of polymer EOS modeling: treatment of shock-driven decomposition. Here, these interesting (and sometimes neglected) materials exhibit a number of other challenging features— glass transitions, complex thermal behavior, response that is both viscousmore » and elastic—each warranting additional discussions of their own.« less
Equation of State and Shock-Driven Decomposition of 'Soft' Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coe, Joshua Damon; Dattelbaum, Dana Mcgraw
Equation of state (EOS) efforts at National Nuclear Security Administration (NNSA) national laboratories tend to focus heavily on metals, and rightly so given their obvious primacy in nuclear weapons. Our focus here, however, is on the EOS of 'soft' matter such as polymers and their derived foams, which present a number of challenges distinct from those of other material classes. This brief description will cover only one aspect of polymer EOS modeling: treatment of shock-driven decomposition. Here, these interesting (and sometimes neglected) materials exhibit a number of other challenging features— glass transitions, complex thermal behavior, response that is both viscousmore » and elastic—each warranting additional discussions of their own.« less
Electron-stimulated reactions in nanoscale water films adsorbed on (alpha)-Al2O3(0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Gregory A.
2018-05-11
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on -Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products ( D2, O2 and D¬2O) and the total sputtering yield increased with increasing D2O coverage up to ~15 water monolayers (i.e. ~15 1015 cm-2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D2O and H2O) demonstrated that the highest water decomposition yields occurred at the interfaces of the nanoscalemore » water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO2(110) interfaces. We propose that the relatively low activity of Al2O3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the molecular hydrogen.« less
Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)
Petrik, Nikolay G.; Kimmel, Greg A.
2018-04-11
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D 2O) films adsorbed on an α-Al 2O 3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D 2, O 2 and D 2O) and the total sputtering yield increased with increasing D 2O coverage up to ~15 water monolayers (i.e. ~15 x 10 15 cm -2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D 2O and H 2O) demonstrated thatmore » the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO 2(110) interfaces. Here, we propose that the relatively low activity of Al 2O 3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.« less
Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petrik, Nikolay G.; Kimmel, Greg A.
The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D 2O) films adsorbed on an α-Al 2O 3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D 2, O 2 and D 2O) and the total sputtering yield increased with increasing D 2O coverage up to ~15 water monolayers (i.e. ~15 x 10 15 cm -2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D 2O and H 2O) demonstrated thatmore » the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO 2(110) interfaces. Here, we propose that the relatively low activity of Al 2O 3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.« less
Quantitative analysis of microbial biomass yield in aerobic bioreactor.
Watanabe, Osamu; Isoda, Satoru
2013-12-01
We have studied the integrated model of reaction rate equations with thermal energy balance in aerobic bioreactor for food waste decomposition and showed that the integrated model has the capability both of monitoring microbial activity in real time and of analyzing biodegradation kinetics and thermal-hydrodynamic properties. On the other hand, concerning microbial metabolism, it was known that balancing catabolic reactions with anabolic reactions in terms of energy and electron flow provides stoichiometric metabolic reactions and enables the estimation of microbial biomass yield (stoichiometric reaction model). We have studied a method for estimating real-time microbial biomass yield in the bioreactor during food waste decomposition by combining the integrated model with the stoichiometric reaction model. As a result, it was found that the time course of microbial biomass yield in the bioreactor during decomposition can be evaluated using the operational data of the bioreactor (weight of input food waste and bed temperature) by the combined model. The combined model can be applied to manage a food waste decomposition not only for controlling system operation to keep microbial activity stable, but also for producing value-added products such as compost on optimum condition. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Sanjeeva Gandhi, M; Mok, Young Sun
2014-12-01
In order to explore the effects of the shape of ZnO nanomaterials on the plasma-catalytic decomposition of butane and the distribution of byproducts, three types of ZnO nanomaterials (nanoparticles (NPs), nanorods (NRs) and nanowires (NWs)) were prepared and coated on multi-channel porous alumina ceramic membrane. The structures and morphologies of the nanomaterials were confirmed by X-ray diffraction method and scanning electron microscopy. The observed catalytic activity of ZnO in the oxidative decomposition of butane was strongly shape-dependent. It was found that the ZnO NWs exhibited higher catalytic activity than the other nanomaterials and could completely oxidize butane into carbon oxides (COx). When using the bare or ZnO NPs-coated ceramic membrane, several unwanted partial oxidation and decomposition products like acetaldehyde, acetylene, methane and propane were identified during the decomposition of butane. When the ZnO NWs- or ZnO NRs-coated membrane was used, however, the formation of such unwanted byproducts except methane was completely avoided, and full conversion into COx was achieved. Better carbon balance and COx selectivity were obtained with the ZnO NWs and NRs than with the NPs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Maier-Kiener, Verena; Schuh, Benjamin; George, Easo P.; ...
2016-11-19
The equiatomic high-entropy alloy (HEA), CrMnFeCoNi, has recently been shown to be microstructurally unstable, resulting in a multi-phase microstructure after intermediate-temperature annealing treatments. The decomposition occurs rapidly in the nanocrystalline (NC) state and after longer annealing times in coarse-grained states. To characterize the mechanical properties of differently annealed NC states containing multiple phases, nanoindentation was used in this paper. The results revealed besides drastic changes in hardness, also for the first time significant changes in the Young's modulus and strain rate sensitivity. Finally, nanoindentation of NC HEAs is, therefore, a useful complementary screening tool with high potential as a highmore » throughput approach to detect phase decomposition, which can also be used to qualitatively predict the long-term stability of single-phase HEAs.« less
Transition mechanism of the reaction interface of the thermal decomposition of calcite
NASA Astrophysics Data System (ADS)
Li, Zhi; Zhao, Zhen; Wang, Qi; Wang, Guocheng
2018-06-01
Even the reaction layer (excited state CaCO3) is so thin that it is difficult to detect, it is significantly restrict the orientation of the solid product (excited state CaO) of the thermal decomposition of calcite. Quantum chemical calculation with GGA-PW91 functional reveals that the ground-state (CaCO3)m clusters are more stable than the hybrid objects (CaCO3)m-(CaO)n clusters. The lowest-energy (CaCO3)m clusters are more kinetically stable than that of (CaCO3)m-n(CaO)n clusters and then than that of (CaO)n clusters except (CaCO3)(CaO)3 clusters from the HOMO-LUMO gaps. (CaCO3)2 clusters should co-exist at room temperature and they prefer to decompose with the temperature increasing.
NASA Astrophysics Data System (ADS)
Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.
2017-03-01
Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, W; Zhou, Yunshen; Hou, Wenjia
Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni 3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing tomore » the autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni 3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni 3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less
Yang, Li; Sun, Rui; Hase, William L
2011-11-08
In a previous study (J. Chem. Phys.2008, 129, 094701) it was shown that for a large molecule, with a total energy much greater than its barrier for decomposition and whose vibrational modes are harmonic oscillators, the expressions for the classical Rice-Ramsperger-Kassel-Marcus (RRKM) (i.e., RRK) and classical transition-state theory (TST) rate constants become equivalent. Using this relationship, a molecule's unimolecular rate constants versus temperature may be determined from chemical dynamics simulations of microcanonical ensembles for the molecule at different total energies. The simulation identifies the molecule's unimolecular pathways and their Arrhenius parameters. In the work presented here, this approach is used to study the thermal decomposition of CH3-NH-CH═CH-CH3, an important constituent in the polymer of cross-linked epoxy resins. Direct dynamics simulations, at the MP2/6-31+G* level of theory, were used to investigate the decomposition of microcanonical ensembles for this molecule. The Arrhenius A and Ea parameters determined from the direct dynamics simulation are in very good agreement with the TST Arrhenius parameters for the MP2/6-31+G* potential energy surface. The simulation method applied here may be particularly useful for large molecules with a multitude of decomposition pathways and whose transition states may be difficult to determine and have structures that are not readily obvious.
Al-Nimry, Suhair S; Alkhamis, Khouloud A; Alzarieni, Kawthar Z
2017-02-01
Chitin-metal silicates are multifunctional excipients used in tablets. Previously, a correlation between the surface acidity of chitin-calcium and chitin-magnesium silicate and the chemical decomposition of cefotaxime sodium was found but not with chitin-aluminum silicate. This lack of correlation could be due to the catalytic effect of silica alumina or the difference in surface area of the excipients. The objective of this study was to investigate the effect of the specific surface area of the excipient on the chemical decomposition of cefotaxime sodium in the solid state. Chitin was purified and coprocessed with different metal silicates to prepare the excipients. The specific surface area was determined using gas adsorption. The chemical decomposition was studied at constant temperature and relative humidity. Also, the degradation in solution was studied. A correlation was found between the degradation rate constant and the surface area of chitin-aluminum and chitin-calcium silicate but not with chitin-magnesium silicate. This was due to the small average pore diameter of this excipient. Also, the degradation in solution was slower than in solid state. In conclusion, the stability of cefotaxime sodium was dependent on the surface area of the excipient in contact with the drug. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Vega-Teijido, Mauricio Angel; Kieninger, Martina; Ventura, Oscar N
2017-12-05
The formation of selenium species in some biological processes involves the generation of ionic and radical intermediates such as RSe ● , RSe - , RSeO ● , and RSeO - , among others. We performed a theoretical study of the possible mechanisms for the reaction of the two simplest Se radicals-the hydroselenyl (HSe ● ) and selenenic (HSeO ● ) radicals, in which the possible products, intermediates, and transition-state structures were investigated. Density functional theory (DFT) was applied at the B3LYP/6-311++G(3df,3pd) level and the Ahlrichs Coulomb fitting basis sets were employed with an effective core potential (ECP) for both Se atoms. The same procedure was used to calculate the electronic density. All calculations were also performed using the M06-2X functional, which describes weaker bonds better than B3LYP does. In the reaction of interest, the so-called CR complex (HSe····SeOH) is formed initially. After passing through the transition state TS1, cis-HSeSeOH is obtained as a product. If a low barrier is then overcome (passing through the transition state TS32), the trans-HSeSeOH species is obtained. The CR complex can also rearrange into the intermediate INT after overcoming the barrier presented by the transition state TS2. Additionally, the decomposition of INT to H 2 O and 1 Se 2 is possible through another transition state. This reaction is not included in this study. We also observed a second possible route for the conversion of INT to one of the HSeSeOH species; this route occurs through two pathways (with transition states TS31 and TS32). A comparison of some of the results with those obtained for sulfur analogs along the same pathways is also presented in this work. Graphical abstract Electronic envelopes for HSeO ● and HSe ● radicals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Téllez-Vázquez, J.O., E-mail: oswald.tellez@gmail.com; Patiño-Carachure, C., E-mail: cpatino@pampano.unacar.mx; Rosas, G., E-mail: grtrejo@yahoo07.com.mx
2016-02-15
In this paper, the results of the Al{sub 2}O{sub 3} nanowires' growth through a chemical reaction between Al and water vapor at 1050 °C are presented. Our approach is based on two primary considerations. First, at room temperature, the Al{sub 65}Cu{sub 15}Co{sub 20} alloy is affected by the following mechanism: 2Al (s) + 3H{sub 2}O (g) → Al{sub 2}O{sub 3} (s) + H{sub 2} (g). In this reaction, the released hydrogen induces cleavage fracture of the material to form small particles. Second, the Al{sub 65}Cu{sub 15}Co{sub 20} quasicrystalline phase is transformed on heating to liquid + Al (Cu, Co) cubicmore » phase through a peritectic reaction at 1050 °C. The Al-rich liquid then reacts with water vapor, forming Al{sub 2}O{sub 3} nanowires. X-ray diffraction (XRD) analysis shows that the formed nanowires have a hexagonal structure, and infrared analysis further confirms the presence of α-Al{sub 2}O{sub 3} phase in the final products. Transmission electron microscopy observations show that nanoparticles are present at the end of nanowires, suggesting the VLS growth mechanism. Elemental analysis by energy dispersive spectroscopy (EDS) indicates that the particles at the tip of the nanowires are mainly formed by Co and Cu alloying elements and small amounts of Al. Electron microscopy observations showed nanowires with diameters ranging from 20 to 70 nm; the average diameter was 37 nm and the nanowire lengths were up to several micrometers. - Highlights: • Hexagonal alumina nanowires are grown at 1050 °C through the VLS process. • Alumina nanowires are obtained by the decomposition of decagonal quasicrystalline phase. • The decagonal phase decomposition follows a peritectic reaction at 1030 °C. • Nanoparticles are obtained by hydrogen embrittlement mechanism. • The nanoparticles catalyze the water decomposition to form wires.« less
Theoretical Studies of Some HEDM Species: Cyclic O4, Cyclic O3 and Cubane
NASA Technical Reports Server (NTRS)
Walch, Stephen P.; Langhoff, Steve R. (Technical Monitor)
1996-01-01
Calculations have been carried out for the HEDM species (cyclic O4, cyclic O3, and cubane) using CASSCF/derivative and CASSCF/ICCI methods. Cyclic O4 is of interest both as a potential HEDM species and because of its possible role in the ozone deficit problem in atmospheric chemistry. We have studied the pathway for decomposition from the D(2d) minimum and also have found the approximate location of the singlet triplet crossing. The barrier to decomposition is found to be about 9 kcal/mol and is not limited by the singlet triplet crossing. For cyclic O3 we have focused on the crossings between the lowest five surfaces (X(1)A(1), s(1)A(1), (1)A(2), (1)B(1), and (1)B(2)) to provide some insight into ways to form cyclic O3 photochemically. The crossing region between the X(1)A(1) and 2(1)A(1) surfaces is in agreement with the work of Xantheas et al. The calculations show that vertical excitation from the ground state to the (1)A(2) state leads to a crossing with the (1)A(1) manifold near the crossing region of the X(1)A(1) and 2(1)A(1) surfaces. We have studied the decomposition pathways for cubane to benzene plus acetylene and to cyclooctatetraene. We have also studied the ground and excited states for the photochemical ring closure step. The state which closes to cubane can be described as a double triplet pi to pi* excitation with respect to the ground state. Thus, this state has only a small oscillator strength with respect to the ground state. However, there is a singlet pi to pi* state at nearly the same energy and excitation to this state followed by intersystem crossing could lead to the triplet pi to pi* state.
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN.
Liu, Chang; Cheng, Gang; Chen, Xihui; Pang, Yusong
2018-05-11
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears.
Planetary Gears Feature Extraction and Fault Diagnosis Method Based on VMD and CNN
Cheng, Gang; Chen, Xihui
2018-01-01
Given local weak feature information, a novel feature extraction and fault diagnosis method for planetary gears based on variational mode decomposition (VMD), singular value decomposition (SVD), and convolutional neural network (CNN) is proposed. VMD was used to decompose the original vibration signal to mode components. The mode matrix was partitioned into a number of submatrices and local feature information contained in each submatrix was extracted as a singular value vector using SVD. The singular value vector matrix corresponding to the current fault state was constructed according to the location of each submatrix. Finally, by training a CNN using singular value vector matrices as inputs, planetary gear fault state identification and classification was achieved. The experimental results confirm that the proposed method can successfully extract local weak feature information and accurately identify different faults. The singular value vector matrices of different fault states have a distinct difference in element size and waveform. The VMD-based partition extraction method is better than ensemble empirical mode decomposition (EEMD), resulting in a higher CNN total recognition rate of 100% with fewer training times (14 times). Further analysis demonstrated that the method can also be applied to the degradation recognition of planetary gears. Thus, the proposed method is an effective feature extraction and fault diagnosis technique for planetary gears. PMID:29751671
Effective NOx remediation from a surrogate flue gas using the US NRL Electra electron beam facility
NASA Astrophysics Data System (ADS)
Petrova, Tz. B.; Petrov, G. M.; Wolford, M. F.; Giuliani, J. L.; Ladouceur, H. D.; Hegeler, F.; Myers, M. C.; Sethian, J. D.
2017-02-01
Nitric oxide (NOx) emission is under restrictive federal regulations because of its negative impact on atmosphere, biosphere, and human health. Therefore, its removal has been a subject of extensive research to develop new efficient and cost effective techniques that can be applied on an industrial scale. In this work, we study both experimentally and theoretically an effective removal of NOx pollutants from a surrogate flue gas (SFG) using high power electron beam (e-beam) pulses. SFG is a simulant for exhaust from coal combustion power plants (82% N2, 6% O2, 12% CO2, and ˜100 ppm of NOx). The pulsed electron beam is generated using the United States Naval Research Laboratory Electra facility, which delivers e-beams with energies of ˜500 keV and a power pulse duration of ˜140 ns. During the e-beam irradiation, the energetic electrons generate a non-equilibrium plasma containing chemically active species, which then react with NOx to form harmless substances. A non-equilibrium time-dependent model is developed to describe NOx remediation from SFG. The model combines e-beam deposition rates obtained by solving the electron Boltzmann equation and extensive plasma chemistry modeling, which follows the species on a time scale from sub-nanoseconds to a few seconds. NOx decomposition as a function of electron beam parameters is studied. It is demonstrated experimentally that short (ns) pulses are the most efficient for NOx removal. A sharp reduction of NOx was measured with e-beam power deposition increasing, following the trend predicted by the model, achieving a 20 fold reduction to ˜5 ppm at energy deposition ˜20 J/l.
NASA Astrophysics Data System (ADS)
Khan, Yaser; Brumer, Paul
2012-11-01
A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.
Verbs in the lexicon: Why is hitting easier than breaking?
McKoon, Gail; Love, Jessica
2011-11-01
Adult speakers use verbs in syntactically appropriate ways. For example, they know implicitly that the boy hit at the fence is acceptable but the boy broke at the fence is not. We suggest that this knowledge is lexically encoded in semantic decompositions. The decomposition for break verbs (e.g. crack, smash) is hypothesized to be more complex than that for hit verbs (e.g. kick, kiss). Specifically, the decomposition of a break verb denotes that "an entity changes state as the result of some external force" whereas the decomposition for a hit verb denotes only that "an entity potentially comes in contact with another entity." In this article, verbs of the two types were compared in a lexical decision experiment - Experiment 1 - and they were compared in sentence comprehension experiments with transitive sentences (e.g. the car hit the bicycle and the car broke the bicycle) - Experiments 2 and 3. In Experiment 1, processing times were shorter for the hit than the break verbs and in Experiments 2 and 3, processing times were shorter for the hit sentences than the break sentences, results that are in accord with the complexities of the postulated semantic decompositions.
Lúcio, Aline D; Vequi-Suplicy, Cíntia C; Fernandez, Roberto M; Lamy, M Teresa
2010-03-01
The highly hydrophobic fluorophore Laurdan (6-dodecanoyl-2-(dimethylaminonaphthalene)) has been widely used as a fluorescent probe to monitor lipid membranes. Actually, it monitors the structure and polarity of the bilayer surface, where its fluorescent moiety is supposed to reside. The present paper discusses the high sensitivity of Laurdan fluorescence through the decomposition of its emission spectrum into two Gaussian bands, which correspond to emissions from two different excited states, one more solvent relaxed than the other. It will be shown that the analysis of the area fraction of each band is more sensitive to bilayer structural changes than the largely used parameter called Generalized Polarization, possibly because the latter does not completely separate the fluorescence emission from the two different excited states of Laurdan. Moreover, it will be shown that this decomposition should be done with the spectrum as a function of energy, and not wavelength. Due to the presence of the two emission bands in Laurdan spectrum, fluorescence anisotropy should be measured around 480 nm, to be able to monitor the fluorescence emission from one excited state only, the solvent relaxed state. Laurdan will be used to monitor the complex structure of the anionic phospholipid DMPG (dimyristoyl phosphatidylglycerol) at different ionic strengths, and the alterations caused on gel and fluid membranes due to the interaction of cationic peptides and cholesterol. Analyzing both the emission spectrum decomposition and anisotropy it was possible to distinguish between effects on the packing and on the hydration of the lipid membrane surface. It could be clearly detected that a more potent analog of the melanotropic hormone alpha-MSH (Ac-Ser(1)-Tyr(2)-Ser(3)-Met(4)-Glu(5)-His(6)-Phe(7)-Arg(8)-Trp(9)-Gly(10)-Lys(11)-Pro(12)-Val(13)-NH(2)) was more effective in rigidifying the bilayer surface of fluid membranes than the hormone, though the hormone significantly decreases the bilayer surface hydration.
Singlet molecular oxygen generated by biological hydroperoxides.
Miyamoto, Sayuri; Martinez, Glaucia R; Medeiros, Marisa H G; Di Mascio, Paolo
2014-10-05
The chemistry behind the phenomenon of ultra-weak photon emission has been subject of considerable interest for decades. Great progress has been made on the understanding of the chemical generation of electronically excited states that are involved in these processes. Proposed mechanisms implicated the production of excited carbonyl species and singlet molecular oxygen in the mechanism of generation of chemiluminescence in biological system. In particular, attention has been focused on the potential generation of singlet molecular oxygen in the recombination reaction of peroxyl radicals by the Russell mechanism. In the last ten years, our group has demonstrated the generation of singlet molecular oxygen from reactions involving the decomposition of biologically relevant hydroperoxides, especially from lipid hydroperoxides in the presence of metal ions, peroxynitrite, HOCl and cytochrome c. In this review we will discuss details on the chemical aspects related to the mechanism of singlet molecular oxygen generation from different biological hydroperoxides. Copyright © 2014 Elsevier B.V. All rights reserved.
Magnetofluid Simulations of the Global Solar Wind Including Pickup Ions and Turbulence Modeling
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.; Usmanov, Arcadi V.; Matthaeus, William H.
2011-01-01
I will describe a three-dimensional magnetohydrodynamic model of the solar wind that takes into account turbulent heating of the wind by velocity and magnetic fluctuations as well as a variety of effects produced by interstellar pickup protons. In this report, the interstellar pickup protons are treated as one fluid and the protons and electrons are treated together as a second fluid. The model equations include a Reynolds decomposition of the plasma velocity and magnetic field into mean and fluctuating quantities, as well as energy transfer from interstellar pickup protons to solar wind protons that results in the deceleration of the solar wind. The model is used to simulate the global steady-state structure of the solar wind in the region from 0.3 to 100 AU. Where possible, the model is compared with Voyager data. Initial results from generalization to a three-fluid model is described elsewhere in this session.
NASA Astrophysics Data System (ADS)
Gour, Nand Kishor; Begum, Saheen Shehnaz; Deka, Ramesh Chandra
2018-06-01
Degradation of 1,1-Dichlorodimethylether by NO3 radical in the troposphere has been modelled theoretically by employing Gaussian09 suite at BHandHLYP/6-311++G(d,p) level. Energies of all optimized electronic structures have been further refined at CCSD(T) method along with the same basis set to characterize stationary points on the potential energy surface including transition states. The rate constants of the titled reaction are obtained over the temperature range 200-450 K. Results show that H-abstraction is highly favourable for sbnd CHCl2 group of CH3OCHCl2. The atmospheric lifetime and global warming potential of the titled molecule have been reported. The thermal decomposition of CH3OC(Orad)Cl2 has also been explored.
NASA Astrophysics Data System (ADS)
Hemker, Roy
1999-11-01
The advances in computational speed make it now possible to do full 3D PIC simulations of laser plasma and beam plasma interactions, but at the same time the increased complexity of these problems makes it necessary to apply modern approaches like object oriented programming to the development of simulation codes. We report here on our progress in developing an object oriented parallel 3D PIC code using Fortran 90. In its current state the code contains algorithms for 1D, 2D, and 3D simulations in cartesian coordinates and for 2D cylindrically-symmetric geometry. For all of these algorithms the code allows for a moving simulation window and arbitrary domain decomposition for any number of dimensions. Recent 3D simulation results on the propagation of intense laser and electron beams through plasmas will be presented.
Growth of tungsten oxide nanostructures by chemical solution deposition
NASA Astrophysics Data System (ADS)
Jin, L. H.; Bai, Y.; Li, C. S.; Wang, Y.; Feng, J. Q.; Lei, L.; Zhao, G. Y.; Zhang, P. X.
2018-05-01
Tungsten oxide nanostructures were fabricated on LaAlO3 (00l) substrates by a simple chemical solution deposition. The decomposition behavior and phase formation of ammonium tungstate precursor were characterized by thermal analysis and X-ray diffraction. Moreover, the morphology and chemical state of nanostructures were analyzed by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectra. The effects of crystallization temperature on the formation of nanodots and nanowires were investigated. The results indicated that the change of nanostructures had close relationship with the crystallization temperature during the chemical solution deposition process. Under higher crystallization temperature, the square-like dots transformed into the dome-like nanodots and nanowires. Moreover high density well-ordered nanodots could be obtained on the substrate with the further increase of crystallization temperature. It also suggested that this simple chemical solution process could be used to adjust the nanostructures of tungsten oxide compounds on substrate.
Azomethine diimides end-capped with anthracene moieties: Experimental and theoretical investigations
NASA Astrophysics Data System (ADS)
Schab-Balcerzak, Ewa; Grucela, Marzena; Malecki, Grzegorz; Kotowicz, Sonia; Siwy, Mariola; Janeczek, Henryk; Golba, Sylwia; Praski, Aleksander
2017-01-01
New arylene bisimide derivatives containing imine linkages and anthracene units were synthesized. Azomethine diimides were prepared via condensation reaction of 9-anthracenecarboxaldehyde and diamines with phthalic diimide or naphthalene diimide core and Schiff base linkers. They were characterized by FTIR spectroscopy, elemental analysis and mass spectrometry (MALDI-TOF-MS). The synthesized compounds exhibited high resistance against thermal decomposition up to 400 °C. Investigated compounds are electrochemically active and undergo reversible electrochemical reduction and irreversible oxidation processes as was found in cyclic voltammetry studies. The photoluminescence measurements of synthesized compounds in solid state as thin film on glass substrate revealed their ability to emission of the blue light with quantum yield efficiency about 2%. The electronic structure and spectroscopic properties of prepared azomethine diimides were also calculated by the density functional theory (DFT). The electrical properties of the diimide derivatives were preliminary investigated by current-voltage measurements.
Circular Mixture Modeling of Color Distribution for Blind Stain Separation in Pathology Images.
Li, Xingyu; Plataniotis, Konstantinos N
2017-01-01
In digital pathology, to address color variation and histological component colocalization in pathology images, stain decomposition is usually performed preceding spectral normalization and tissue component segmentation. This paper examines the problem of stain decomposition, which is a naturally nonnegative matrix factorization (NMF) problem in algebra, and introduces a systematical and analytical solution consisting of a circular color analysis module and an NMF-based computation module. Unlike the paradigm of existing stain decomposition algorithms where stain proportions are computed from estimated stain spectra using a matrix inverse operation directly, the introduced solution estimates stain spectra and stain depths via probabilistic reasoning individually. Since the proposed method pays extra attentions to achromatic pixels in color analysis and stain co-occurrence in pixel clustering, it achieves consistent and reliable stain decomposition with minimum decomposition residue. Particularly, aware of the periodic and angular nature of hue, we propose the use of a circular von Mises mixture model to analyze the hue distribution, and provide a complete color-based pixel soft-clustering solution to address color mixing introduced by stain overlap. This innovation combined with saturation-weighted computation makes our study effective for weak stains and broad-spectrum stains. Extensive experimentation on multiple public pathology datasets suggests that our approach outperforms state-of-the-art blind stain separation methods in terms of decomposition effectiveness.
Influence of gamma-irradiation on the non-isothermal decomposition of calcium-gadolinium oxalate
NASA Astrophysics Data System (ADS)
Moharana, S. C.; Praharaj, J.; Bhatta, D.
Thermal decomposition of co-precipitated unirradiated and irradiated Ca-Gd oxalate has been studied by adopting differential thermal analysis (DTA) and thermogravimetric (TG) techniques. The reaction occurs through two stages corresponding to the decomposition of gadolinium oxalate (Gd-Ox) followed by that of calcium oxalate (Ca-Ox). The kinetic parameters for both the stages are calculated by using solid state reaction models and Coats-Redfern's equation. The co-precipitation as well as irradiation alter the DTA peak temperatures and the kinetic parameters of Ca-Ox. The decomposition of Gd-Ox follows the two dimensional Contracting area (R-2) mechanism, while that of Ca-Ox follows the Avrami-Erofeev (A(2)) mechanism (n =2), which are also exhibited by the co-precipitated and irradiated samples. Co-precipitation decreases the energy of activation and the pre-exponential factor of the individual components but the reverse phenomenon takes place upon irradiation of the co-precipitate. The mechanisms underlying the phenomena are explored.
Pernin, Céline; Cortet, Jérôme; Joffre, Richard; Le Petit, Jean; Torre, Franck
2006-01-01
Effects of sewage sludge on litter mesofauna communities (Collembola and Acari) and cork oak (Quercus suber L.) leaf litter decomposition have been studied during 18 mo using litterbags in an in situ experimental forest firebreak in southeastern France. The sludge (2.74 t DM ha(-1) yr(-1)) was applied to fertilize and maintain a pasture created on the firebreak. Litterbag colonization had similar dynamics on both the control and fertilized plots and followed a typical Mediterranean pattern showing a greater abundance in spring and autumn and a lower abundance in summer. After 9 mo of litter colonization, Collembola and Acari, but mainly Oribatida, were more abundant on the sludge-fertilized plot. Leaf litter decomposition showed a similar pattern on both plots, but it was faster on the control plot. Furthermore, leaves from the fertilized plot were characterized by greater nitrogen content. Both chemical composition of leaves and sludges and the decomposition state of leaves have significantly affected the mesofauna community composition from each plot.
New Possibilities for Magnetic Control of Chemical and Biochemical Reactions.
Buchachenko, Anatoly; Lawler, Ronald G
2017-04-18
Chemistry is controlled by Coulomb energy; magnetic energy is lower by many orders of magnitude and may be confidently ignored in the energy balance of chemical reactions. The situation becomes less clear, however, when reaction rates are considered. In this case, magnetic perturbations of nearly degenerate energy surface crossings may produce observable, and sometimes even dramatic, effects on reactions rates, product yields, and spectroscopic transitions. A case in point that has been studied for nearly five decades is electron spin-selective chemistry via the intermediacy of radical pairs. Magnetic fields, external (permanent or oscillating) and the internal magnetic fields of magnetic nuclei, have been shown to overcome electron spin selection rules for pairs of reactive paramagnetic intermediates, catalyzing or inhibiting chemical reaction pathways. The accelerating effects of magnetic stimulation may therefore be considered to be magnetic catalysis. This type of catalysis is most commonly observed for reactions of a relatively long-lived radical pair containing two weakly interacting electron spins formed by dissociation of molecules or by electron transfer. The pair may exist in singlet (total electron spin is zero) or triplet (total spin is unity) spin states. In virtually all cases, only the singlet state yields stable reaction products. Magnetic interactions with nuclear spins or applied fields may therefore affect the reactivity of radical pairs by changing the angular momentum of the pairs. Magnetic catalysis, first detected via its effect on spin state populations in nuclear and electron spin resonance, has been shown to function in a great variety of well-characterized reactions of organic free radicals. Considerably less well studied are examples suggesting that the basic mechanism may also explain magnetic effects that stimulate ATP synthesis, eliminating ATP deficiency in cardiac diseases, control cell proliferation, killing cancer cells, and control transcranial magnetic stimulation against cognitive deceases. Magnetic control has also been observed for some processes of importance in materials science and earth and environmental science and may play a role in animal navigation. In this Account, the radical pair mechanism is applied as a consistent explanation for several intriguing new magnetic phenomena. Specific examples include acceleration of solid state reactions of silicon by the magnetic isotope 29 Si, enrichment of 17 O during thermal decomposition of metal carbonates and magnetic effects on crystal plasticity. In each of these cases, the results are consistent with an initial one-electron transfer to generate a radical pair. Similar processes can account for mass-independent fractionation of isotopes of mercury, sulfur, germanium, tin, iron, and uranium in both naturally occurring samples and laboratory experiments. In the area of biochemistry, catalysis by magnetic isotopes has now been reported in several reactions of DNA and high energy phosphate. Possible medical applications of these observations are pointed out.
Yang, Chuchu; Han, Jiuhui; Liu, Pan; Hou, Chen; Huang, Gang; Fujita, Takeshi; Hirata, Akihiko; Chen, Mingwei
2017-11-01
Operando scanning transmission electron microscopy observations of cathodic reactions in a liquid-cell Li-O 2 microbattery in the presence of the redox mediator tetrathiafulvalene (TTF) in 1.0 m LiClO 4 dissolved dimethyl sulfoxide electrolyte are reported. It is found that the TTF addition does not obviously affect the discharge reaction for the formation of a solid Li 2 O 2 phase. The coarsening of Li 2 O 2 nanoparticles occurs via both conventional Ostwald ripening and nonclassical crystallization by particle attachment. During charging, the oxidation reaction at significantly reduced charge potentials mainly takes place at Li 2 O 2 /electrolyte interfaces and has obvious correspondence with the oxidized TTF + distributions in the electric fields of the charged electrode. This study provides direct evidence that TTF truly plays a role in promoting the decomposition of Li 2 O 2 as a soluble charge-transfer agent between the electrode and the Li 2 O 2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Tran, Huy Kim; Sawko, Paul M.
1992-01-01
Silicon carbide (SiC) fiber is a material that may be used in advanced thermal protection systems (TPS) for future aerospace vehicles. SiC fiber's mechanical properties depend greatly on the presence or absence of sizing and its microstructure. In this research, silicon dioxide is found to be present on the surface of the fiber. Electron Spectroscopy for Chemical Analysis (ESCA) and Scanning Electron Microscopy (SEM) show that a thin oxide layer (SiO2) exists on the as-received fibers, and the oxide thickness increases when the fibers are exposed to high temperature. ESCA also reveals no evidence of Si-C bonding on the fiber surface on both as-received and heat treated fibers. The silicon oxide layer is thought to signal the decomposition of SiC bonds and may be partially responsible for the degradation in the breaking strength observed at temperatures above 400 C. The variation in electrical resistivity of the fibers with increasing temperature indicates a transition to a higher band gap material at 350 to 600 C. This is consistent with a decomposition of SiC involving silicon oxide formation.
You, Huilin; Wu, Zheng; Jia, Yanmin; Xu, Xiaoli; Xia, Yuntao; Han, Zichen; Wang, Yu
2017-09-01
A mechano-/photo- bi-catalyst of piezoelectric-ZnO@photoelectric-TiO 2 core-shell nanofibers was hydrothermally synthesized for Methyl Orange (10 mg L -1 ) decomposition. The mechano-/photo- bi-catalysis in ZnO@TiO 2 is superior to mechano- or photo-catalysis in decomposing Methyl Orange, which is mainly attributed to the synergy effect of the piezoelectric-ZnO core's mechano-catalysis and the thin photoelectric TiO 2 shell's photo-catalysis. The heterostructure of the piezoelectric-ZnO@photoelectric-TiO 2 core-shell interface, being helpful to reduce electron-hole pair recombination and to separate the piezoelectrically-/photoelectric ally- induced electrons and holes, may also make a great contribution to the enhanced catalysis performance. The mechano-/photo-bi-catalysis in ZnO@TiO 2 core-shell nanofibers possesses the advantages of high efficiency, non-toxicity and tractability and is potential in utilizing mechanical/solar energy to deal with dye wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yan, Ning; Qin, Lijun; Li, Jianguo; Zhao, Fengqi; Feng, Hao
2018-09-01
Reduced graphene oxide (rGO) decorated with finely dispersed Fe2O3 nanoparticles (rGO@Fe2O3) was prepared through a facile atomic layer deposition (ALD) route. Compositional and morphological characterizations were conducted using various techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). A uniform dispersion of densely packed Fe2O3 nanoparticles has been successfully achieved on the graphene nanosheets, leading to improved spatial distribution as well as increased number of active sites compared to unsupported Fe2O3 nanoparticles. Differential scanning calorimetry (DSC) results show that rGO@Fe2O3 composites exhibit excellent catalytic activities in the thermal decomposition of ammonium perchlorate (AP), which are probably due to the synergistic effect of the rGO nanosheets and the supported Fe2O3 nanoparticles. ALD has been proved to be an effective approach to design and develop new classes of materials as efficient combustion catalysts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schaefer, Michael, E-mail: mvschaefer@mail.usf.edu, E-mail: axk650@case.edu, E-mail: mohan@case.edu, E-mail: schlaf@mail.usf.edu; Kumar, Ajay, E-mail: mvschaefer@mail.usf.edu, E-mail: axk650@case.edu, E-mail: mohan@case.edu, E-mail: schlaf@mail.usf.edu; Mohan Sankaran, R., E-mail: mvschaefer@mail.usf.edu, E-mail: axk650@case.edu, E-mail: mohan@case.edu, E-mail: schlaf@mail.usf.edu
Microplasma-assisted gas-phase nucleation has emerged as an important new approach to produce high-purity, nanometer-sized, and narrowly dispersed particles. This study aims to integrate this technique with vacuum conditions to enable synthesis and deposition in an ultrahigh vacuum compatible environment. The ultimate goal is to combine nanoparticle synthesis with photoemission spectroscopy-based electronic structure analysis. Such measurements require in vacuo deposition to prevent surface contamination from sample transfer, which can be deleterious for nanoscale materials. A homebuilt microplasma reactor was integrated into an existing atomic layer deposition system attached to a surface science multi-chamber system equipped with photoemission spectroscopy. As proof-of-concept, wemore » studied the decomposition of ferrocene vapor in the microplasma to synthesize iron oxide nanoparticles. The injection parameters were optimized to achieve complete precursor decomposition under vacuum conditions, and nanoparticles were successfully deposited. The stoichiometry of the deposited samples was characterized in situ using X-ray photoelectron spectroscopy indicating that iron oxide was formed. Additional transmission electron spectroscopy characterization allowed the determination of the size, shape, and crystal lattice of the particles, confirming their structural properties.« less
Application of generalized singular value decomposition to ionospheric tomography
NASA Astrophysics Data System (ADS)
Bhuyan, K.; Singh, S.; Bhuyan, P.
2004-10-01
The electron density distribution of the low- and mid-latitude ionosphere has been investigated by the computerized tomography technique using a Generalized Singular Value Decomposition (GSVD) based algorithm. Model ionospheric total electron content (TEC) data obtained from the International Reference Ionosphere 2001 and slant relative TEC data measured at a chain of three stations receiving transit satellite transmissions in Alaska, USA are used in this analysis. The issue of optimum efficiency of the GSVD algorithm in the reconstruction of ionospheric structures is being addressed through simulation of the equatorial ionization anomaly (EIA), in addition to its application to investigate complicated ionospheric density irregularities. Results show that the Generalized Cross Validation approach to find the regularization parameter and the corresponding solution gives a very good reconstructed image of the low-latitude ionosphere and the EIA within it. Provided that some minimum norm is fulfilled, the GSVD solution is found to be least affected by considerations, such as pixel size and number of ray paths. The method has also been used to investigate the behaviour of the mid-latitude ionosphere under magnetically quiet and disturbed conditions.
Alling, B.; Högberg, H.; Armiento, R.; Rosen, J.; Hultman, L.
2015-01-01
Transition metal diborides are ceramic materials with potential applications as hard protective thin films and electrical contact materials. We investigate the possibility to obtain age hardening through isostructural clustering, including spinodal decomposition, or ordering-induced precipitation in ternary diboride alloys. By means of first-principles mixing thermodynamics calculations, 45 ternary M11–xM2xB2 alloys comprising MiB2 (Mi = Mg, Al, Sc, Y, Ti, Zr, Hf, V, Nb, Ta) with AlB2 type structure are studied. In particular Al1–xTixB2 is found to be of interest for coherent isostructural decomposition with a strong driving force for phase separation, while having almost concentration independent a and c lattice parameters. The results are explained by revealing the nature of the electronic structure in these alloys, and in particular, the origin of the pseudogap at EF in TiB2, ZrB2, and HfB2. PMID:25970763
Transmission and reflection of terahertz plasmons in two-dimensional plasmonic devices
Sydoruk, Oleksiy; Choonee, Kaushal; Dyer, Gregory Conrad
2015-03-10
We found that plasmons in two-dimensional semiconductor devices will be reflected by discontinuities, notably, junctions between gated and non-gated electron channels. The transmitted and reflected plasmons can form spatially- and frequency-varying signals, and their understanding is important for the design of terahertz detectors, oscillators, and plasmonic crystals. Using mode decomposition, we studied terahertz plasmons incident on a junction between a gated and a nongated channel. The plasmon reflection and transmission coefficients were found numerically and analytically and studied between 0.3 and 1 THz for a range of electron densities. At higher frequencies, we could describe the plasmons by a simplifiedmore » model of channels in homogeneous dielectrics, for which the analytical approximations were accurate. At low frequencies, however, the full geometry and mode spectrum had to be taken into account. Moreover, the results agreed with simulations by the finite-element method. As a result, mode decomposition thus proved to be a powerful method for plasmonic devices, combining the rigor of complete solutions of Maxwell's equations with the convenience of analytical expressions.« less
High-mobility ultrathin semiconducting films prepared by spin coating.
Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali
2004-03-18
The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).
High-mobility ultrathin semiconducting films prepared by spin coating
NASA Astrophysics Data System (ADS)
Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali
2004-03-01
The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).
Machine learning properties of materials and molecules with entropy-regularized kernels
NASA Astrophysics Data System (ADS)
Ceriotti, Michele; Bartók, Albert; CsáNyi, GáBor; de, Sandip
Application of machine-learning methods to physics, chemistry and materials science is gaining traction as a strategy to obtain accurate predictions of the properties of matter at a fraction of the typical cost of quantum mechanical electronic structure calculations. In this endeavor, one can leverage general-purpose frameworks for supervised-learning. It is however very important that the input data - for instance the positions of atoms in a molecule or solid - is processed into a form that reflects all the underlying physical symmetries of the problem, and that possesses the regularity properties that are required by machine-learning algorithms. Here we introduce a general strategy to build a representation of this kind. We will start from existing approaches to compare local environments (basically, groups of atoms), and combine them using techniques borrowed from optimal transport theory, discussing the relation between this idea and additive energy decompositions. We will present a few examples demonstrating the potential of this approach as a tool to predict molecular and materials' properties with an accuracy on par with state-of-the-art electronic structure methods. MARVEL NCCR (Swiss National Science Foundation) and ERC StG HBMAP (European Research Council, G.A. 677013).
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
NASA Astrophysics Data System (ADS)
Shao, Yihan; Gan, Zhengting; Epifanovsky, Evgeny; Gilbert, Andrew T. B.; Wormit, Michael; Kussmann, Joerg; Lange, Adrian W.; Behn, Andrew; Deng, Jia; Feng, Xintian; Ghosh, Debashree; Goldey, Matthew; Horn, Paul R.; Jacobson, Leif D.; Kaliman, Ilya; Khaliullin, Rustam Z.; Kuś, Tomasz; Landau, Arie; Liu, Jie; Proynov, Emil I.; Rhee, Young Min; Richard, Ryan M.; Rohrdanz, Mary A.; Steele, Ryan P.; Sundstrom, Eric J.; Woodcock, H. Lee, III; Zimmerman, Paul M.; Zuev, Dmitry; Albrecht, Ben; Alguire, Ethan; Austin, Brian; Beran, Gregory J. O.; Bernard, Yves A.; Berquist, Eric; Brandhorst, Kai; Bravaya, Ksenia B.; Brown, Shawn T.; Casanova, David; Chang, Chun-Min; Chen, Yunqing; Chien, Siu Hung; Closser, Kristina D.; Crittenden, Deborah L.; Diedenhofen, Michael; DiStasio, Robert A., Jr.; Do, Hainam; Dutoi, Anthony D.; Edgar, Richard G.; Fatehi, Shervin; Fusti-Molnar, Laszlo; Ghysels, An; Golubeva-Zadorozhnaya, Anna; Gomes, Joseph; Hanson-Heine, Magnus W. D.; Harbach, Philipp H. P.; Hauser, Andreas W.; Hohenstein, Edward G.; Holden, Zachary C.; Jagau, Thomas-C.; Ji, Hyunjun; Kaduk, Benjamin; Khistyaev, Kirill; Kim, Jaehoon; Kim, Jihan; King, Rollin A.; Klunzinger, Phil; Kosenkov, Dmytro; Kowalczyk, Tim; Krauter, Caroline M.; Lao, Ka Un; Laurent, Adèle D.; Lawler, Keith V.; Levchenko, Sergey V.; Lin, Ching Yeh; Liu, Fenglai; Livshits, Ester; Lochan, Rohini C.; Luenser, Arne; Manohar, Prashant; Manzer, Samuel F.; Mao, Shan-Ping; Mardirossian, Narbe; Marenich, Aleksandr V.; Maurer, Simon A.; Mayhall, Nicholas J.; Neuscamman, Eric; Oana, C. Melania; Olivares-Amaya, Roberto; O'Neill, Darragh P.; Parkhill, John A.; Perrine, Trilisa M.; Peverati, Roberto; Prociuk, Alexander; Rehn, Dirk R.; Rosta, Edina; Russ, Nicholas J.; Sharada, Shaama M.; Sharma, Sandeep; Small, David W.; Sodt, Alexander; Stein, Tamar; Stück, David; Su, Yu-Chuan; Thom, Alex J. W.; Tsuchimochi, Takashi; Vanovschi, Vitalii; Vogt, Leslie; Vydrov, Oleg; Wang, Tao; Watson, Mark A.; Wenzel, Jan; White, Alec; Williams, Christopher F.; Yang, Jun; Yeganeh, Sina; Yost, Shane R.; You, Zhi-Qiang; Zhang, Igor Ying; Zhang, Xing; Zhao, Yan; Brooks, Bernard R.; Chan, Garnet K. L.; Chipman, Daniel M.; Cramer, Christopher J.; Goddard, William A., III; Gordon, Mark S.; Hehre, Warren J.; Klamt, Andreas; Schaefer, Henry F., III; Schmidt, Michael W.; Sherrill, C. David; Truhlar, Donald G.; Warshel, Arieh; Xu, Xin; Aspuru-Guzik, Alán; Baer, Roi; Bell, Alexis T.; Besley, Nicholas A.; Chai, Jeng-Da; Dreuw, Andreas; Dunietz, Barry D.; Furlani, Thomas R.; Gwaltney, Steven R.; Hsu, Chao-Ping; Jung, Yousung; Kong, Jing; Lambrecht, Daniel S.; Liang, WanZhen; Ochsenfeld, Christian; Rassolov, Vitaly A.; Slipchenko, Lyudmila V.; Subotnik, Joseph E.; Van Voorhis, Troy; Herbert, John M.; Krylov, Anna I.; Gill, Peter M. W.; Head-Gordon, Martin
2015-01-01
A summary of the technical advances that are incorporated in the fourth major release of the Q-Chem quantum chemistry program is provided, covering approximately the last seven years. These include developments in density functional theory methods and algorithms, nuclear magnetic resonance (NMR) property evaluation, coupled cluster and perturbation theories, methods for electronically excited and open-shell species, tools for treating extended environments, algorithms for walking on potential surfaces, analysis tools, energy and electron transfer modelling, parallel computing capabilities, and graphical user interfaces. In addition, a selection of example case studies that illustrate these capabilities is given. These include extensive benchmarks of the comparative accuracy of modern density functionals for bonded and non-bonded interactions, tests of attenuated second order Møller-Plesset (MP2) methods for intermolecular interactions, a variety of parallel performance benchmarks, and tests of the accuracy of implicit solvation models. Some specific chemical examples include calculations on the strongly correlated Cr2 dimer, exploring zeolite-catalysed ethane dehydrogenation, energy decomposition analysis of a charged ter-molecular complex arising from glycerol photoionisation, and natural transition orbitals for a Frenkel exciton state in a nine-unit model of a self-assembling nanotube.
Payne, Liam; Heard, Peter J; Scott, Thomas B
2015-01-01
Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK's first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600-1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment.
Fresch, Barbara; Bocquel, Juanita; Hiluf, Dawit; Rogge, Sven; Levine, Raphael D; Remacle, Françoise
2017-07-05
To realize low-power, compact logic circuits, one can explore parallel operation on single nanoscale devices. An added incentive is to use multivalued (as distinct from Boolean) logic. Here, we theoretically demonstrate that the computation of all the possible outputs of a multivariate, multivalued logic function can be implemented in parallel by electrical addressing of a molecule made up of three interacting dopant atoms embedded in Si. The electronic states of the dopant molecule are addressed by pulsing a gate voltage. By simulating the time evolution of the non stationary electronic density built by the gate voltage, we show that one can implement a molecular decision tree that provides in parallel all the outputs for all the inputs of the multivariate, multivalued logic function. The outputs are encoded in the populations and in the bond orders of the dopant molecule, which can be measured using an STM tip. We show that the implementation of the molecular logic tree is equivalent to a spectral function decomposition. The function that is evaluated can be field-programmed by changing the time profile of the pulsed gate voltage. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Payne, Liam; Heard, Peter J.; Scott, Thomas B.
2015-01-01
Pile grade A (PGA) graphite was used as a material for moderating and reflecting neutrons in the UK’s first generation Magnox nuclear power reactors. As all but one of these reactors are now shut down there is a need to understand the residual state of the material prior to decommissioning of the cores, in particular the location and concentration of key radio-contaminants such as 14C. The oxidation behaviour of unirradiated PGA graphite was studied, in the temperature range 600–1050°C, in air and nitrogen using thermogravimetric analysis, scanning electron microscopy and X-ray tomography to investigate the possibility of using thermal degradation techniques to examine 14C distribution within irradiated material. The thermal decomposition of PGA graphite was observed to follow the three oxidation regimes historically identified by previous workers with limited, uniform oxidation at temperatures below 600°C and substantial, external oxidation at higher temperatures. This work demonstrates that the different oxidation regimes of PGA graphite could be developed into a methodology to characterise the distribution and concentration of 14C in irradiated graphite by thermal treatment. PMID:26575374
Tardif, Antoine; Shipley, Bill; Bloor, Juliette M. G.; Soussana, Jean-François
2014-01-01
Background and Aims The biomass-ratio hypothesis states that ecosystem properties are driven by the characteristics of dominant species in the community. In this study, the hypothesis was operationalized as community-weighted means (CWMs) of monoculture values and tested for predicting the decomposition of multispecies litter mixtures along an abiotic gradient in the field. Methods Decomposition rates (mg g−1 d−1) of litter from four herb species were measured using litter-bed experiments with the same soil at three sites in central France along a correlated climatic gradient of temperature and precipitation. All possible combinations from one to four species mixtures were tested over 28 weeks of incubation. Observed mixture decomposition rates were compared with those predicted by the biomass-ratio hypothesis. Variability of the prediction errors was compared with the species richness of the mixtures, across sites, and within sites over time. Key Results Both positive and negative prediction errors occurred. Despite this, the biomass-ratio hypothesis was true as an average claim for all sites (r = 0·91) and for each site separately, except for the climatically intermediate site, which showed mainly synergistic deviations. Variability decreased with increasing species richness and in less favourable climatic conditions for decomposition. Conclusions Community-weighted mean values provided good predictions of mixed-species litter decomposition, converging to the predicted values with increasing species richness and in climates less favourable to decomposition. Under a context of climate change, abiotic variability would be important to take into account when predicting ecosystem processes. PMID:24482152
Long-term litter decomposition controlled by manganese redox cycling
Keiluweit, Marco; Nico, Peter S.; Harmon, Mark; ...
2015-09-08
Litter decomposition is a keystone ecosystem process impacting nutrient cycling and productivity, soil properties, and the terrestrial carbon (C) balance, but the factors regulating decomposition rate are still poorly understood. Traditional models assume that the rate is controlled by litter quality, relying on parameters such as lignin content as predictors. However, a strong correlation has been observed between the manganese (Mn) content of litter and decomposition rates across a variety of forest ecosystems. Here, we show that long-term litter decomposition in forest ecosystems is tightly coupled to Mn redox cycling. Over 7 years of litter decomposition, microbial transformation of littermore » was paralleled by variations in Mn oxidation state and concentration. A detailed chemical imaging analysis of the litter revealed that fungi recruit and redistribute unreactive Mn 2+ provided by fresh plant litter to produce oxidative Mn 3+ species at sites of active decay, with Mn eventually accumulating as insoluble Mn 3+/4+ oxides. Formation of reactive Mn 3+ species coincided with the generation of aromatic oxidation products, providing direct proof of the previously posited role of Mn 3+-based oxidizers in the breakdown of litter. Our results suggest that the litter-decomposing machinery at our coniferous forest site depends on the ability of plants and microbes to supply, accumulate, and regenerate short-lived Mn 3+ species in the litter layer. As a result, this observation indicates that biogeochemical constraints on bioavailability, mobility, and reactivity of Mn in the plant–soil system may have a profound impact on litter decomposition rates.« less
Electrochemical Protection of Thin Film Electrodes in Solid State Nanopores
Harrer, Stefan; Waggoner, Philip S.; Luan, Binquan; Afzali-Ardakani, Ali; Goldfarb, Dario L.; Peng, Hongbo; Martyna, Glenn; Rossnagel, Stephen M.; Stolovitzky, Gustavo A.
2011-01-01
We have eliminated electrochemical surface oxidation and reduction as well as water decomposition inside sub-5-nm wide nanopores in conducting TiN membranes using a surface passivation technique. Nanopore ionic conductances, and therefore pore diameters, were unchanged in passivated pores after applying potentials of ±4.5 V for as long as 24 h. Water decomposition was eliminated by using aqueous 90% glycerol solvent. The use of a protective self-assembled monolayer of hexadecylphosphonic acid was also investigated. PMID:21597142
Pierce, Dean T.; Coughlin, D. R.; Williamson, Don L.; ...
2016-05-03
Here, the influence of partitioning temperature on microstructural evolution during quenching and partitioning was investigated in a 0.38C-1.54Mn-1.48Si wt.% steel using Mössbauer spectroscopy and transmission electron microscopy. η-carbide formation occurs in the martensite during the quenching, holding, and partitioning steps. More effective carbon partitioning from martensite to austenite was observed at 450 than 400°C, resulting in lower martensite carbon contents, less carbide formation, and greater retained austenite amounts for short partitioning times. Conversely, greater austenite decomposition occurs at 450°C for longer partitioning times. Lastly, cementite forms during austenite decomposition and in the martensite for longer partitioning times at 450°C.
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Nurazar, Roghaye
2014-03-01
The adsorption and dissociative reaction of methanol on B12N12 fullerene-like nanocage is investigated by using density functional calculations. Equilibrium geometries, adsorption energies, and electronic properties of CH3OH adsorption on the surface of the B12N12 were identified. The calculated adsorption energies range from -1.3 to -34.9 kcal/mol. It is found that the electrical conductivity of the nanocage can be modified upon the adsorption of CH3OH. The mechanism of methanol decomposition via CO and OH bond scissions is also studied. The results indicate that OH bond scission is the most favorable pathway on the B12N12 surface.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, Aaron
2004-01-01
The development of a practical method of accurately calculating the full scattering amplitude, without making a partial wave decomposition is continued. The method is developed in the context of electron-hydrogen scattering, and here exchange is dealt with by considering e-H scattering in the static exchange approximation. The Schroedinger equation in this approximation can be simplified to a set of coupled integro-differential equations. The equations are solved numerically for the full scattering wave function. The scattering amplitude can most accurately be calculated from an integral expression for the amplitude; that integral can be formally simplified, and then evaluated using the numerically determined wave function. The results are essentially identical to converged partial wave results.
Moloney, G P; Craik, D J; Iskander, M N
1992-07-01
A series of 3,4-dihydro-1,3-benzoxazine and 3,4-dihydro-1,3-pyridooxazine derivatives was synthesized, and the hydrolysis of the derivatives was studied with proton nuclear magnetic resonance spectroscopy. The oxazine derivatives underwent various degrees of hydrolysis when H2O was added to dimethyl sulfoxide solutions of the compounds. The rates and extents of decomposition of the oxazine ring systems depended on the electronic effects of substituents within the molecules. Examination of the proton nuclear magnetic resonance spectra that were generated during decomposition of the oxazines and trends in stability of the oxazine derivatives suggest the formation of an intermediate in the hydrolysis mechanism.
Human decomposition and the reliability of a 'Universal' model for post mortem interval estimations.
Cockle, Diane L; Bell, Lynne S
2015-08-01
Human decomposition is a complex biological process driven by an array of variables which are not clearly understood. The medico-legal community have long been searching for a reliable method to establish the post-mortem interval (PMI) for those whose deaths have either been hidden, or gone un-noticed. To date, attempts to develop a PMI estimation method based on the state of the body either at the scene or at autopsy have been unsuccessful. One recent study has proposed that two simple formulae, based on the level of decomposition humidity and temperature, could be used to accurately calculate the PMI for bodies outside, on or under the surface worldwide. This study attempted to validate 'Formula I' [1] (for bodies on the surface) using 42 Canadian cases with known PMIs. The results indicated that bodies exposed to warm temperatures consistently overestimated the known PMI by a large and inconsistent margin for Formula I estimations. And for bodies exposed to cold and freezing temperatures (less than 4°C), then the PMI was dramatically under estimated. The ability of 'Formulae II' to estimate the PMI for buried bodies was also examined using a set of 22 known Canadian burial cases. As these cases used in this study are retrospective, some of the data needed for Formula II was not available. The 4.6 value used in Formula II to represent the standard ratio of time that burial decelerates the rate of decomposition was examined. The average time taken to achieve each stage of decomposition both on, and under the surface was compared for the 118 known cases. It was found that the rate of decomposition was not consistent throughout all stages of decomposition. The rates of autolysis above and below the ground were equivalent with the buried cases staying in a state of putrefaction for a prolonged period of time. It is suggested that differences in temperature extremes and humidity levels between geographic regions may make it impractical to apply formulas developed in one region to any other region. These results also suggest that there are other variables, apart from temperature and humidity that may impact the rate of human decomposition. These variables, or complex of variables, are considered regionally specific. Neither of the Universal Formulae performed well, and our results do not support the proposition of Universality for PMI estimation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Nano-jewellery: C5Au12--a gold-plated diamond at molecular level.
Naumkin, F
2006-06-07
A mixed carbon-metal cluster is designed by combining the tetrahedral C(5) radical (with a central atom-the skeleton of the C(5)H(12) molecule) and the spherical Au(12) layer (the external atomic shell of the Au(13) cluster). The C(5)Au(12) cluster and its negative and positive ionic derivatives, C(5)Au(12)(+/-), are investigated ab initio (DFT) in terms of optimized structures and relative energies of a few spin-states, for the icosahedral-like and octahedral-like isomers. The cluster is predicted to be generally more stable in its octahedral shape (similar to C(5)H(12)) which prevails for the negative ion and may compete with the icosahedral shape for the neutral system and positive ion. Adiabatic ionization energies (AIE) and electron affinities (AEA) of C(5)Au(12), vertical electron-detachment (VDE) energies of C(5)Au(12)(-), and vertical ionization and electron-attachment energies (VIE, VEA) of C(5)Au(12) are calculated as well, and compared with those for the corresponding isomers of the Au(13) cluster. The AIE and VIE values are found to be close for the two systems, while the AEA and VDE values are significantly reduced for the radical-based species. A simple fragment-based model is proposed for the decomposition of the total interaction into carbon-gold and gold-gold components.
NASA Astrophysics Data System (ADS)
Campo, D.; Quintero, O. L.; Bastidas, M.
2016-04-01
We propose a study of the mathematical properties of voice as an audio signal. This work includes signals in which the channel conditions are not ideal for emotion recognition. Multiresolution analysis- discrete wavelet transform - was performed through the use of Daubechies Wavelet Family (Db1-Haar, Db6, Db8, Db10) allowing the decomposition of the initial audio signal into sets of coefficients on which a set of features was extracted and analyzed statistically in order to differentiate emotional states. ANNs proved to be a system that allows an appropriate classification of such states. This study shows that the extracted features using wavelet decomposition are enough to analyze and extract emotional content in audio signals presenting a high accuracy rate in classification of emotional states without the need to use other kinds of classical frequency-time features. Accordingly, this paper seeks to characterize mathematically the six basic emotions in humans: boredom, disgust, happiness, anxiety, anger and sadness, also included the neutrality, for a total of seven states to identify.
An integrated condition-monitoring method for a milling process using reduced decomposition features
NASA Astrophysics Data System (ADS)
Liu, Jie; Wu, Bo; Wang, Yan; Hu, Youmin
2017-08-01
Complex and non-stationary cutting chatter affects productivity and quality in the milling process. Developing an effective condition-monitoring approach is critical to accurately identify cutting chatter. In this paper, an integrated condition-monitoring method is proposed, where reduced features are used to efficiently recognize and classify machine states in the milling process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition, and Shannon power spectral entropy is calculated to extract features from the decomposed signals. Principal component analysis is adopted to reduce feature size and computational cost. With the extracted feature information, the probabilistic neural network model is used to recognize and classify the machine states, including stable, transition, and chatter states. Experimental studies are conducted, and results show that the proposed method can effectively detect cutting chatter during different milling operation conditions. This monitoring method is also efficient enough to satisfy fast machine state recognition and classification.
NASA Astrophysics Data System (ADS)
Guo, Feng; Zhang, Hong; Hu, Hai-Quan; Cheng, Xin-Lu; Zhang, Li-Yan
2015-11-01
We investigate the Hugoniot curve, shock-particle velocity relations, and Chapman-Jouguet conditions of the hot dense system through molecular dynamics (MD) simulations. The detailed pathways from crystal nitromethane to reacted state by shock compression are simulated. The phase transition of N2 and CO mixture is found at about 10 GPa, and the main reason is that the dissociation of the C-O bond and the formation of C-C bond start at 10.0-11.0 GPa. The unreacted state simulations of nitromethane are consistent with shock Hugoniot data. The complete pathway from unreacted to reacted state is discussed. Through chemical species analysis, we find that the C-N bond breaking is the main event of the shock-induced nitromethane decomposition. Project supported by the National Natural Science Foundation of China (Grant No. 11374217) and the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014BQ008).
Entanglement branching operator
NASA Astrophysics Data System (ADS)
Harada, Kenji
2018-01-01
We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipireddy, R.; Stinis, P.; Tartakovsky, A. M.
We present a novel approach for solving steady-state stochastic partial differential equations (PDEs) with high-dimensional random parameter space. The proposed approach combines spatial domain decomposition with basis adaptation for each subdomain. The basis adaptation is used to address the curse of dimensionality by constructing an accurate low-dimensional representation of the stochastic PDE solution (probability density function and/or its leading statistical moments) in each subdomain. Restricting the basis adaptation to a specific subdomain affords finding a locally accurate solution. Then, the solutions from all of the subdomains are stitched together to provide a global solution. We support our construction with numericalmore » experiments for a steady-state diffusion equation with a random spatially dependent coefficient. Our results show that highly accurate global solutions can be obtained with significantly reduced computational costs.« less
NASA Astrophysics Data System (ADS)
Vasilev, A. A.; Dzidziguri, E. L.; Muratov, D. G.; Zhilyaeva, N. A.; Efimov, M. N.; Karpacheva, G. P.
2018-04-01
Metal-carbon nanocomposites consisting of FeCo alloy nanoparticles dispersed in a carbon matrix were synthesized by the thermal decomposition method of a precursor based on polyvinyl alcohol and metals salts. The synthesized powders were investigated by X-ray diffraction (XRD), X-ray fluorescent spectrometry (XRFS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Surface characteristics of materials were measured by BET-method. The morphology and dispersity of metal nanoparticles were studied depending on the metals ratio in the composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zentner, I.; Ferré, G., E-mail: gregoire.ferre@ponts.org; Poirion, F.
2016-06-01
In this paper, a new method for the identification and simulation of non-Gaussian and non-stationary stochastic fields given a database is proposed. It is based on two successive biorthogonal decompositions aiming at representing spatio–temporal stochastic fields. The proposed double expansion allows to build the model even in the case of large-size problems by separating the time, space and random parts of the field. A Gaussian kernel estimator is used to simulate the high dimensional set of random variables appearing in the decomposition. The capability of the method to reproduce the non-stationary and non-Gaussian features of random phenomena is illustrated bymore » applications to earthquakes (seismic ground motion) and sea states (wave heights).« less
NASA Astrophysics Data System (ADS)
Roehl, Jan Hendrik; Oberrath, Jens
2016-09-01
``Active plasma resonance spectroscopy'' (APRS) is a widely used diagnostic method to measure plasma parameter like electron density. Measurements with APRS probes in plasmas of a few Pa typically show a broadening of the spectrum due to kinetic effects. To analyze the broadening a general kinetic model in electrostatic approximation based on functional analytic methods has been presented [ 1 ] . One of the main results is, that the system response function Y(ω) is given in terms of the matrix elements of the resolvent of the dynamic operator evaluated for values on the imaginary axis. To determine the response function of a specific probe the resolvent has to be approximated by a huge matrix which is given by a banded block structure. Due to this structure a block based LU decomposition can be implemented. It leads to a solution of Y(ω) which is given only by products of matrices of the inner block size. This LU decomposition allows to analyze the influence of kinetic effects on the broadening and saves memory and calculation time. Gratitude is expressed to the internal funding of Leuphana University.
Low-mass ions observed in plasma desorption mass spectrometry of high explosives
Hakansson; Coorey; Zubarev; Talrose; Hakansson
2000-03-01
The low-mass ions observed in both positive and negative plasma desorption mass spectrometry (PDMS) of the high explosives HMX, RDX, CL-20, NC, PETN and TNT are reported. Possible identities of the most abundant ions are suggested and their presence or absence in the different spectra is related to the properties of the explosives as matrices in PDMS. The detection of abundant NO+ and NO2- ions for HMX, RDX and CL-20, which are efficient matrices, indicates that explosive decomposition takes place in PDMS of these three substances and that a contribution from the corresponding chemical energy release is possible. The observation of abundant C2H4N+ and CH2N+ ions, which have high protonation properties, might also explain the higher protein charge states observed with these matrices. Also, the observation of NO2-, possibly formed by electron scavenging which increases the survival probability of positively charged protein molecular ions, completes the pattern. TNT does not give any of these ions and it is thereby possible to explain why it does not work as a PDMS matrix. For NC and PETN, decomposition does not seem to be as pronounced as for HMX, RDX and CL-20, and also no particularly abundant ions with high protonation properties are observed. The fact that NC works well as a matrix might be related to other properties of this compound, such as its high adsorption ability.
FNAS modify matric and transparent experiments
NASA Technical Reports Server (NTRS)
Smith, Guy A.; Kosten, Sue E.; Workman, Gary L.
1992-01-01
Monotectic alloy materials are created by rapid melt/rapid solidification processing on the NASA KC-135. Separation of the uniform liquid into two liquids may occur by either of two processes; spinodal decomposition or nucleation followed by growth. In the first case, the liquid is unstable to composition waves, which form and grow, giving liquids of two different compositions. In the latter process discrete particles of the second liquid phase form via thermal fluctuations and then grow by diffusion. The two processes are very different, with the determining process being dictated by temperature, composition, and thermodynamic characteristics of the alloy. The first two quantities are process variables, while the third is determined by electronic interactions between the atoms in the alloy. In either case the initial alloy decomposition is followed by coarsening, resulting in growth of the particle size at nearly constant volume fraction. In particular, reduced gravity experiments on monotectic solutions have shown a number of interesting results in the KC-135. Monotectic solutions exhibit a miscibility gap in the liquid state, and consequently, gravity driven forces can dominate the solidification parameters at 1 g. In reduced gravity however, the distribution of the phases is different, resulting in new and interesting microstructures. The Rapid Melt/Rapid Quench Furnace allows one to melt a sample and resolidify it in one parabola of the KC-135's flight path, thus eliminating any accumulative influence of multiple parabolas to affect the microstructure of the material.
Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes.
Bokare, Alok D; Choi, Wonyong
2014-06-30
Iron-catalyzed hydrogen peroxide decomposition for in situ generation of hydroxyl radicals (HO(•)) has been extensively developed as advanced oxidation processes (AOPs) for environmental applications. A variety of catalytic iron species constituting metal salts (in Fe(2+) or Fe(3+) form), metal oxides (e.g., Fe2O3, Fe3O4), and zero-valent metal (Fe(0)) have been exploited for chemical (classical Fenton), photochemical (photo-Fenton) and electrochemical (electro-Fenton) degradation pathways. However, the requirement of strict acidic conditions to prevent iron precipitation still remains the bottleneck for iron-based AOPs. In this article, we present a thorough review of alternative non-iron Fenton catalysts and their reactivity towards hydrogen peroxide activation. Elements with multiple redox states (like chromium, cerium, copper, cobalt, manganese and ruthenium) all directly decompose H2O2 into HO(•) through conventional Fenton-like pathways. The in situ formation of H2O2 and decomposition into HO(•) can be also achieved using electron transfer mechanism in zero-valent aluminum/O2 system. Although these Fenton systems (except aluminum) work efficiently even at neutral pH, the H2O2 activation mechanism is very specific to the nature of the catalyst and critically depends on its composition. This review describes in detail the complex mechanisms and emphasizes on practical limitations influencing their environmental applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Ultraviolet photodissociation dynamics of the benzyl radical.
Song, Yu; Zheng, Xianfeng; Lucas, Michael; Zhang, Jingsong
2011-05-14
Ultraviolet (UV) photodissociation dynamics of jet-cooled benzyl radical via the 4(2)B(2) electronically excited state is studied in the photolysis wavelength region of 228 to 270 nm using high-n Rydberg atom time-of-flight (HRTOF) and resonance enhanced multiphoton ionization (REMPI) techniques. In this wavelength region, H-atom photofragment yield (PFY) spectra are obtained using ethylbenzene and benzyl chloride as the precursors of benzyl radical, and they have a broad peak centered around 254 nm and are in a good agreement with the previous UV absorption spectra of benzyl. The H + C(7)H(6) product translational energy distributions, P(E(T))s, are derived from the H-atom TOF spectra. The P(E(T)) distributions peak near 5.5 kcal mol(-1), and the fraction of average translational energy in the total excess energy,
Raznikova, M O; Raznikov, V V
2015-01-01
In this work, information relating to charge states of biomolecule ions in solution obtained using the electrospray ionization mass spectrometry of different biopolymers is analyzed. The data analyses have mainly been carried out by solving an inverse problem of calculating the probabilities of retention of protons and other charge carriers by ionogenic groups of biomolecules with known primary structures. The approach is a new one and has no known to us analogues. A program titled "Decomposition" was developed and used to analyze the charge distribution of ions of native and denatured cytochrome c mass spectra. The possibility of splitting of the charge-state distribution of albumin into normal components, which likely corresponds to various conformational states of the biomolecule, has been demonstrated. The applicability criterion for using previously described method of decomposition of multidimensional charge-state distributions with two charge carriers, e.g., a proton and a sodium ion, to characterize the spatial structure of biopolymers in solution has been formulated. In contrast to known mass-spectrometric approaches, this method does not require the use of enzymatic hydrolysis or collision-induced dissociation of the biopolymers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Close, M.R.; Petersen, J.L.; Kugler, E.L.
1999-04-05
Molybdenum sulfide catalysts with surface areas ranging from 16 to 120 m{sup 2}/g were prepared by the thermal decomposition of Mo(CO){sub 6} and H{sub 2}S vapors in a specially designed tubular reactor system. The gas phase decomposition (GPD) reactions performed at 500--1100 C produced only MoS{sub 2} when excess H{sub 2}S was used. The optimum temperature range for the high-yield production of MoS{sub 2} was from 500 to 700 C. By controlling the decomposition temperature, the Mo(CO){sub 6} partial pressure, or the inert gas flow rate, the surface area, oxidation state, chemical composition, and the grain size of the molybdenummore » sulfide product(s) were modified. At reactor temperatures between 300 and 400 C, lower valent molybdenum sulfide materials, which were sulfur deficient relative to MoS{sub 2}, were obtained with formal molybdenum oxidation states intermediate to those found for Chevrel phase compounds, M{prime}Mo{sub 6}S{sub 8} (M{prime} = Fe, Ni, Co) and MoS{sub 2}. By lowering the H{sub 2}S flow rate used for the GPD reaction at 1000 C, mixtures containing variable amounts of MoS{sub 2} and Mo{sub 2}S{sub 3} were produced. Thus, through the modification of critical reactor parameters used for these GPD reactions, fundamental material properties were controlled.« less
Vortmann, Britta; Nowak, Sascha; Engelhard, Carsten
2013-03-19
Lithium ion batteries (LIBs) are key components for portable electronic devices that are used around the world. However, thermal decomposition products in the battery reduce its lifetime, and decomposition processes are still not understood. In this study, a rapid method for in situ analysis and reaction monitoring in LIB electrolytes is presented based on high-resolution mass spectrometry (HR-MS) with low-temperature plasma probe (LTP) ambient desorption/ionization for the first time. This proof-of-principle study demonstrates the capabilities of ambient mass spectrometry in battery research. LTP-HR-MS is ideally suited for qualitative analysis in the ambient environment because it allows direct sample analysis independent of the sample size, geometry, and structure. Further, it is environmental friendly because it eliminates the need of organic solvents that are typically used in separation techniques coupled to mass spectrometry. Accurate mass measurements were used to identify the time-/condition-dependent formation of electrolyte decomposition compounds. A LIB model electrolyte containing ethylene carbonate and dimethyl carbonate was analyzed before and after controlled thermal stress and over the course of several weeks. Major decomposition products identified include difluorophosphoric acid, monofluorophosphoric acid methyl ester, monofluorophosphoric acid dimethyl ester, and hexafluorophosphate. Solvents (i.e., dimethyl carbonate) were partly consumed via an esterification pathway. LTP-HR-MS is considered to be an attractive method for fundamental LIB studies.
Lin, Kuen-Song; Adhikari, Abhijit Krishna; Wang, Chi-Yu; Hsu, Pei-Ju; Chan, Ho-Yang
2013-04-01
The decomposition of CO2 over oxygen deficient nickel ferrite nanoparticles (NFNs) and zinc ferrite nanoparticles (ZFNs) at 573 K was studied. The oxidation states with fine structure of Fe/Ni or Fe/Zn species were also measured in NFNs and ZFNs catalysts, respectively. Oxygen deficiency of catalysts was obtained by reduction in hydrogen. Decomposition of CO2 into carbon and oxygen has been carried out within few minutes when it comes into contact with oxygen deficient catalysts through incorporation of oxygen into ferrite nanoparticles. Oxygen and carbon rather than CO were produced in the decomposition process. The complete decomposition of CO2 was possible because of higher degree of oxygen deficiency andsurface-to-volume ratio of the catalysts. The pre-edge XANES spectra of Fe species in both catalysts exhibit an absorbance feature at 7114 eV for the 1s to 3d transition which is forbidden by the selection rule in case of perfect octahedral symmetry. The EXAFS data showed that the NFNs had two central Fe atoms coordinated by primarily Fe-O and Fe-Fe with bond distances of 1.871 and 3.051 angstroms, respectively. In case of ZFNs these values are 1.889 and 3.062 A, respectively. Methane gas was produced during the reactivation of NFNs by flowing hydrogen gas. Decomposition of CO2, moreover, recovery of valuable methane using heat energy of offgas produced from power generation plant or steel industry is an appealing alternative for energy recovery.
On the Structure Sensitivity of Formic Acid Decomposition on Cu Catalysts
Li, Sha; Scaranto, Jessica; Mavrikakis, Manos
2016-08-03
Catalytic decomposition of formic acid (HCOOH) has attracted substantial attention since HCOOH is a major by-product in biomass reforming, a promising hydrogen carrier, and also a potential low temperature fuel cell feed. Despite the abundance of experimental studies for vapor-phase HCOOH decomposition on Cu catalysts, the reaction mechanism and its structure sensitivity is still under debate. In this work, self-consistent, periodic density functional theory calculations were performed on three model surfaces of copper—Cu(111), Cu(100) and Cu(211), and both the HCOO (formate)-mediated and COOH (carboxyl)-mediated pathways were investigated for HCOOH decomposition. The energetics of both pathways suggest that the HCOO-mediated routemore » is more favorable than the COOH-mediated route on all three surfaces, and that HCOOH decomposition proceeds through two consecutive dehydrogenation steps via the HCOO intermediate followed by the recombinative desorption of H 2. On all three surfaces, HCOO dehydrogenation is the likely rate determining step since it has the highest transition state energy and also the highest activation energy among the three catalytic steps in the HCOO pathway. The reaction is structure sensitive on Cu catalysts since the examined three Cu facets have dramatically different binding strengths for the key intermediate HCOO and varied barriers for the likely rate determining step—HCOO dehydrogenation. Cu(100) and Cu(211) bind HCOO much more strongly than Cu(111), and they are also characterized by potential energy surfaces that are lower in energy than that for the Cu(111) facet. Coadsorbed HCOO and H represents the most stable state along the reaction coordinate, indicating that, under reaction conditions, there might be a substantial surface coverage of the HCOO intermediate, especially at under-coordinated step, corner or defect sites. Therefore, under reaction conditions, HCOOH decomposition is predicted to occur most readily on the terrace sites of Cu nanoparticles. Finally, as a result, we hereby present an example of a fundamentally structure-sensitive reaction, which may present itself as structure-insensitive in typical varied particle-size experiments.« less
Weiss, Ingrid M; Muth, Christina; Drumm, Robert; Kirchner, Helmut O K
2018-01-01
The pathways of thermal instability of amino acids have been unknown. New mass spectrometric data allow unequivocal quantitative identification of the decomposition products. Calorimetry, thermogravimetry and mass spectrometry were used to follow the thermal decomposition of the eight amino acids G, C, D, N, E, Q, R and H between 185 °C and 280 °C. Endothermic heats of decomposition between 72 and 151 kJ/mol are needed to form 12 to 70% volatile products. This process is neither melting nor sublimation. With exception of cysteine they emit mainly H 2 O, some NH 3 and no CO 2 . Cysteine produces CO 2 and little else. The reactions are described by polynomials, AA→ a NH 3 + b H 2 O+ c CO 2 + d H 2 S+ e residue, with integer or half integer coefficients. The solid monomolecular residues are rich in peptide bonds. Eight of the 20 standard amino acids decompose at well-defined, characteristic temperatures, in contrast to commonly accepted knowledge. Products of decomposition are simple. The novel quantitative results emphasize the impact of water and cyclic condensates with peptide bonds and put constraints on hypotheses of the origin, state and stability of amino acids in the range between 200 °C and 300 °C.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xiang; Yang, Chao; State Key Laboratory of Computer Science, Chinese Academy of Sciences, Beijing 100190
2015-03-15
We present a numerical algorithm for simulating the spinodal decomposition described by the three dimensional Cahn–Hilliard–Cook (CHC) equation, which is a fourth-order stochastic partial differential equation with a noise term. The equation is discretized in space and time based on a fully implicit, cell-centered finite difference scheme, with an adaptive time-stepping strategy designed to accelerate the progress to equilibrium. At each time step, a parallel Newton–Krylov–Schwarz algorithm is used to solve the nonlinear system. We discuss various numerical and computational challenges associated with the method. The numerical scheme is validated by a comparison with an explicit scheme of high accuracymore » (and unreasonably high cost). We present steady state solutions of the CHC equation in two and three dimensions. The effect of the thermal fluctuation on the spinodal decomposition process is studied. We show that the existence of the thermal fluctuation accelerates the spinodal decomposition process and that the final steady morphology is sensitive to the stochastic noise. We also show the evolution of the energies and statistical moments. In terms of the parallel performance, it is found that the implicit domain decomposition approach scales well on supercomputers with a large number of processors.« less
Uncertainty propagation in orbital mechanics via tensor decomposition
NASA Astrophysics Data System (ADS)
Sun, Yifei; Kumar, Mrinal
2016-03-01
Uncertainty forecasting in orbital mechanics is an essential but difficult task, primarily because the underlying Fokker-Planck equation (FPE) is defined on a relatively high dimensional (6-D) state-space and is driven by the nonlinear perturbed Keplerian dynamics. In addition, an enormously large solution domain is required for numerical solution of this FPE (e.g. encompassing the entire orbit in the x-y-z subspace), of which the state probability density function (pdf) occupies a tiny fraction at any given time. This coupling of large size, high dimensionality and nonlinearity makes for a formidable computational task, and has caused the FPE for orbital uncertainty propagation to remain an unsolved problem. To the best of the authors' knowledge, this paper presents the first successful direct solution of the FPE for perturbed Keplerian mechanics. To tackle the dimensionality issue, the time-varying state pdf is approximated in the CANDECOMP/PARAFAC decomposition tensor form where all the six spatial dimensions as well as the time dimension are separated from one other. The pdf approximation for all times is obtained simultaneously via the alternating least squares algorithm. Chebyshev spectral differentiation is employed for discretization on account of its spectral ("super-fast") convergence rate. To facilitate the tensor decomposition and control the solution domain size, system dynamics is expressed using spherical coordinates in a noninertial reference frame. Numerical results obtained on a regular personal computer are compared with Monte Carlo simulations.
Electronics and Algorithms for HOM Based Beam Diagnostics
NASA Astrophysics Data System (ADS)
Frisch, Josef; Baboi, Nicoleta; Eddy, Nathan; Nagaitsev, Sergei; Hensler, Olaf; McCormick, Douglas; May, Justin; Molloy, Stephen; Napoly, Olivier; Paparella, Rita; Petrosyan, Lyudvig; Ross, Marc; Simon, Claire; Smith, Tonee
2006-11-01
The signals from the Higher Order Mode (HOM) ports on superconducting cavities can be used as beam position monitors and to do survey structure alignment. A HOM-based diagnostic system has been installed to instrument both couplers on each of the 40 cryogenic accelerating structures in the DESY TTF2 Linac. The electronics uses a single stage down conversion from the 1.7 GHz HOM spectral line to a 20MHz IF which has been digitized. The electronics is based on low cost surface mount components suitable for large scale production. The analysis of the HOM data is based on Singular Value Decomposition. The response of the OM modes is calibrated using conventional BPMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Xue; Niu, Tianye; Zhu, Lei, E-mail: leizhu@gatech.edu
2014-05-15
Purpose: Dual-energy CT (DECT) is being increasingly used for its capability of material decomposition and energy-selective imaging. A generic problem of DECT, however, is that the decomposition process is unstable in the sense that the relative magnitude of decomposed signals is reduced due to signal cancellation while the image noise is accumulating from the two CT images of independent scans. Direct image decomposition, therefore, leads to severe degradation of signal-to-noise ratio on the resultant images. Existing noise suppression techniques are typically implemented in DECT with the procedures of reconstruction and decomposition performed independently, which do not explore the statistical propertiesmore » of decomposed images during the reconstruction for noise reduction. In this work, the authors propose an iterative approach that combines the reconstruction and the signal decomposition procedures to minimize the DECT image noise without noticeable loss of resolution. Methods: The proposed algorithm is formulated as an optimization problem, which balances the data fidelity and total variation of decomposed images in one framework, and the decomposition step is carried out iteratively together with reconstruction. The noise in the CT images from the proposed algorithm becomes well correlated even though the noise of the raw projections is independent on the two CT scans. Due to this feature, the proposed algorithm avoids noise accumulation during the decomposition process. The authors evaluate the method performance on noise suppression and spatial resolution using phantom studies and compare the algorithm with conventional denoising approaches as well as combined iterative reconstruction methods with different forms of regularization. Results: On the Catphan©600 phantom, the proposed method outperforms the existing denoising methods on preserving spatial resolution at the same level of noise suppression, i.e., a reduction of noise standard deviation by one order of magnitude. This improvement is mainly attributed to the high noise correlation in the CT images reconstructed by the proposed algorithm. Iterative reconstruction using different regularization, including quadratic orq-generalized Gaussian Markov random field regularization, achieves similar noise suppression from high noise correlation. However, the proposed TV regularization obtains a better edge preserving performance. Studies of electron density measurement also show that our method reduces the average estimation error from 9.5% to 7.1%. On the anthropomorphic head phantom, the proposed method suppresses the noise standard deviation of the decomposed images by a factor of ∼14 without blurring the fine structures in the sinus area. Conclusions: The authors propose a practical method for DECT imaging reconstruction, which combines the image reconstruction and material decomposition into one optimization framework. Compared to the existing approaches, our method achieves a superior performance on DECT imaging with respect to decomposition accuracy, noise reduction, and spatial resolution.« less
New mechanism for autocatalytic decomposition of H2CO3 in the vapor phase.
Ghoshal, Sourav; Hazra, Montu K
2014-04-03
In this article, we present high level ab initio calculations investigating the energetics of a new autocatalytic decomposition mechanism for carbonic acid (H2CO3) in the vapor phase. The calculation have been performed at the MP2 level of theory in conjunction with aug-cc-pVDZ, aug-cc-pVTZ, and 6-311++G(3df,3pd) basis sets as well as at the CCSD(T)/aug-cc-pVTZ level. The present study suggests that this new decomposition mechanism is effectively a near-barrierless process at room temperature and makes vapor phase of H2CO3 unstable even in the absence of water molecules. Our calculation at the MP2/aug-cc-pVTZ level predicts that the effective barrier, defined as the difference between the zero-point vibrational energy (ZPE) corrected energy of the transition state and the total energy of the isolated starting reactants in terms of bimolecular encounters, is nearly zero for the autocatalytic decomposition mechanism. The results at the CCSD(T)/aug-cc-pVTZ level of calculations suggest that the effective barrier, as defined above, is sensitive to some extent to the levels of calculations used, nevertheless, we find that the effective barrier height predicted at the CCSD(T)/aug-cc-pVTZ level is very small or in other words the autocatalytic decomposition mechanism presented in this work is a near-barrierless process as mentioned above. Thus, we suggest that this new autocatalytic decomposition mechanism has to be considered as the primary mechanism for the decomposition of carbonic acid, especially at its source, where the vapor phase concentration of H2CO3 molecules reaches its highest levels.
Fancher, J P; Aitkenhead-Peterson, J A; Farris, T; Mix, K; Schwab, A P; Wescott, D J; Hamilton, M D
2017-10-01
Soil samples from the Forensic Anthropology Research Facility (FARF) at Texas State University, San Marcos, TX, were analyzed for multiple soil characteristics from cadaver decomposition islands to a depth of 5centimeters (cm) from 63 human decomposition sites, as well as depths up to 15cm in a subset of 11 of the cadaver decomposition islands plus control soils. Postmortem interval (PMI) of the cadaver decomposition islands ranged from 6 to 1752 days. Some soil chemistry, including nitrate-N (NO 3 -N), ammonium-N (NH 4 -N), and dissolved inorganic carbon (DIC), peaked at early PMI values and their concentrations at 0-5cm returned to near control values over time likely due to translocation down the soil profile. Other soil chemistry, including dissolved organic carbon (DOC), dissolved organic nitrogen (DON), orthophosphate-P (PO 4 -P), sodium (Na + ), and potassium (K + ), remained higher than the control soil up to a PMI of 1752days postmortem. The body mass index (BMI) of the cadaver appeared to have some effect on the cadaver decomposition island chemistry. To estimate PMI using soil chemistry, backward, stepwise multiple regression analysis was used with PMI as the dependent variable and soil chemistry, body mass index (BMI) and physical soil characteristics such as saturated hydraulic conductivity as independent variables. Measures of soil parameters derived from predator and microbial mediated decomposition of human remains shows promise in estimating PMI to within 365days for a period up to nearly five years. This persistent change in soil chemistry extends the ability to estimate PMI beyond the traditionally utilized methods of entomology and taphonomy in support of medical-legal investigations, humanitarian recovery efforts, and criminal and civil cases. Copyright © 2017 Elsevier B.V. All rights reserved.
Kumar, Nitin; Radin, Maxwell D.; Wood, Brandon C.; ...
2015-04-13
A viable Li/O 2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. In some recent experiments it is suggested that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li 2O 2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), onmore » surfaces of Li 2O 2. Comparisons are made between the two predominant Li 2O 2 surface charge states by calculating decomposition pathways on peroxide-terminated (O 2 2–) and superoxide-terminated (O 2 1–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O 2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH –). In the remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li 2O 2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Finally, our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O 2.« less
Xiong, W; Zhou, Yunshen; Hou, Wenjia; ...
2015-11-10
Direct formation of graphene with controlled number of graphitic layers on dielectric surfaces is highly desired for practical applications. Despite significant progress achieved in understanding the formation of graphene on metallic surfaces through chemical vapor deposition (CVD) of hydrocarbons, very limited research is available elucidating the graphene formation process via rapid thermal processing (RTP) of solid-state amorphous carbon, through which graphene is formed directly on dielectric surfaces accompanied by autonomous nickel evaporation. It is suggested that a metastable hexagonal nickel carbide (Ni 3C) intermediate phase plays a critical role in transforming amorphous carbon to 2D crystalline graphene and contributing tomore » the autonomous Ni evaporation. Temperature resolved carbon and nickel evolution in the RTP process is investigated using Auger electron spectroscopic (AES) depth profiling and glancing-angle X-ray diffraction (GAXRD). Formation, migration and decomposition of the hexagonal Ni 3C are confirmed to be responsible for the formation of graphene and the evaporation of Ni at 1100 °C. The Ni 3C-assisted graphene formation mechanism expands the understanding of Ni-catalyzed graphene formation, and provides insightful guidance for controlled growth of graphene through the solid-state transformation process.« less
Thermodynamically controlled preservation of organic carbon in floodplains
Boye, Kristin; Noel, Vincent; Tfaily, Malak M.; ...
2017-05-01
Organic matter decomposition in soils and terrestrial sediments has a prominent role in the global carbon cycle. Carbon stocks in anoxic environments, such as wetlands and the subsurface of floodplains, are large and presumed to decompose slowly. The degree of microbial respiration in anoxic environments is typically thought to depend on the energetics of available terminal electron acceptors such as nitrate or sulfate; microbes couple the reduction of these compounds to the oxidation of organic carbon. But, it is also possible that the energetics of the organic carbon itself can determine whether it is decomposed. We examined water-soluble organic carbonmore » by Fourier-transform ion-cyclotron-resonance mass spectrometry to compare the chemical composition and average nominal oxidation state of carbon—a metric reflecting whether microbial oxidation of organic matter is thermodynamically favourable—in anoxic (sulfidic) and oxic (non-sulfidic) floodplain sediments. We also observed distinct minima in the average nominal oxidation state of water-soluble carbon in sediments exhibiting anoxic, sulfate-reducing conditions, suggesting preservation of carbon compounds with nominal oxidation states below the threshold that makes microbial sulfate reduction thermodynamically favourable. Finally, we show that thermodynamic limitations constitute an important complement to other mechanisms of carbon preservation, such as enzymatic restrictions and mineral association, within anaerobic environments.« less
Thermodynamically controlled preservation of organic carbon in floodplains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boye, Kristin; Noel, Vincent; Tfaily, Malak M.
Organic matter decomposition in soils and terrestrial sediments has a prominent role in the global carbon cycle. Carbon stocks in anoxic environments, such as wetlands and the subsurface of floodplains, are large and presumed to decompose slowly. The degree of microbial respiration in anoxic environments is typically thought to depend on the energetics of available terminal electron acceptors such as nitrate or sulfate; microbes couple the reduction of these compounds to the oxidation of organic carbon. But, it is also possible that the energetics of the organic carbon itself can determine whether it is decomposed. We examined water-soluble organic carbonmore » by Fourier-transform ion-cyclotron-resonance mass spectrometry to compare the chemical composition and average nominal oxidation state of carbon—a metric reflecting whether microbial oxidation of organic matter is thermodynamically favourable—in anoxic (sulfidic) and oxic (non-sulfidic) floodplain sediments. We also observed distinct minima in the average nominal oxidation state of water-soluble carbon in sediments exhibiting anoxic, sulfate-reducing conditions, suggesting preservation of carbon compounds with nominal oxidation states below the threshold that makes microbial sulfate reduction thermodynamically favourable. Finally, we show that thermodynamic limitations constitute an important complement to other mechanisms of carbon preservation, such as enzymatic restrictions and mineral association, within anaerobic environments.« less
Thermodynamically controlled preservation of organic carbon in floodplains
NASA Astrophysics Data System (ADS)
Boye, Kristin; Noël, Vincent; Tfaily, Malak M.; Bone, Sharon E.; Williams, Kenneth H.; Bargar, John R.; Fendorf, Scott
2017-06-01
Organic matter decomposition in soils and terrestrial sediments has a prominent role in the global carbon cycle. Carbon stocks in anoxic environments, such as wetlands and the subsurface of floodplains, are large and presumed to decompose slowly. The degree of microbial respiration in anoxic environments is typically thought to depend on the energetics of available terminal electron acceptors such as nitrate or sulfate; microbes couple the reduction of these compounds to the oxidation of organic carbon. However, it is also possible that the energetics of the organic carbon itself can determine whether it is decomposed. Here we examined water-soluble organic carbon by Fourier-transform ion-cyclotron-resonance mass spectrometry to compare the chemical composition and average nominal oxidation state of carbon--a metric reflecting whether microbial oxidation of organic matter is thermodynamically favourable--in anoxic (sulfidic) and oxic (non-sulfidic) floodplain sediments. We observed distinct minima in the average nominal oxidation state of water-soluble carbon in sediments exhibiting anoxic, sulfate-reducing conditions, suggesting preservation of carbon compounds with nominal oxidation states below the threshold that makes microbial sulfate reduction thermodynamically favourable. We conclude that thermodynamic limitations constitute an important complement to other mechanisms of carbon preservation, such as enzymatic restrictions and mineral association, within anaerobic environments.
A critical literature review of focused electron beam induced deposition
NASA Astrophysics Data System (ADS)
van Dorp, W. F.; Hagen, C. W.
2008-10-01
An extensive review is given of the results from literature on electron beam induced deposition. Electron beam induced deposition is a complex process, where many and often mutually dependent factors are involved. The process has been studied by many over many years in many different experimental setups, so it is not surprising that there is a great variety of experimental results. To come to a better understanding of the process, it is important to see to which extent the experimental results are consistent with each other and with the existing model. All results from literature were categorized by sorting the data according to the specific parameter that was varied (current density, acceleration voltage, scan patterns, etc.). Each of these parameters can have an effect on the final deposit properties, such as the physical dimensions, the composition, the morphology, or the conductivity. For each parameter-property combination, the available data are discussed and (as far as possible) interpreted. By combining models for electron scattering in a solid, two different growth regimes, and electron beam induced heating, the majority of the experimental results were explained qualitatively. This indicates that the physical processes are well understood, although quantitatively speaking the models can still be improved. The review makes clear that several major issues remain. One issue encountered when interpreting results from literature is the lack of data. Often, important parameters (such as the local precursor pressure) are not reported, which can complicate interpretation of the results. Another issue is the fact that the cross section for electron induced dissociation is unknown. In a number of cases, a correlation between the vertical growth rate and the secondary electron yield was found, which suggests that the secondary electrons dominate the dissociation rather than the primary electrons. Conclusive evidence for this hypothesis has not been found. Finally, there is a limited understanding of the mechanism of electron induced precursor dissociation. In many cases, the deposit composition is not directly dependent on the stoichiometric composition of the precursor and the electron induced decomposition paths can be very different from those expected from calculations or thermal decomposition. The dissociation mechanism is one of the key factors determining the purity of the deposits and a better understanding of this process will help develop electron beam induced deposition into a viable nanofabrication technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela
Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonicalmore » nucleobases fragmentations of N–H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N–H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π{sub 1}{sup −} and π{sub 2}{sup −} states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.« less
Francés-Monerris, Antonio; Segarra-Martí, Javier; Merchán, Manuela; Roca-Sanjuán, Daniel
2015-12-07
Low-energy (0-3 eV) ballistic electrons originated during the irradiation of biological material can interact with DNA/RNA nucleobases yielding transient-anion species which undergo decompositions. Since the discovery that these reactions can eventually lead to strand breaking of the DNA chains, great efforts have been dedicated to their study. The main fragmentation at the 0-3 eV energy range is the ejection of a hydrogen atom from the specific nitrogen positions. In the present study, the methodological approach introduced in a previous work on uracil [I. González-Ramírez et al., J. Chem. Theory Comput. 8, 2769-2776 (2012)] is employed to study the DNA canonical nucleobases fragmentations of N-H bonds induced by low-energy electrons. The approach is based on minimum energy path and linear interpolation of internal coordinates computations along the N-H dissociation channels carried out at the complete-active-space self-consistent field//complete-active-space second-order perturbation theory level. On the basis of the calculated theoretical quantities, new assignations for the adenine and cytosine anion yield curves are provided. In addition, the π1 (-) and π2 (-) states of the pyrimidine nucleobases are expected to produce the temporary anions at electron energies close to 1 and 2 eV, respectively. Finally, the present theoretical results do not allow to discard neither the dipole-bound nor the valence-bound mechanisms in the range of energies explored, suggesting that both possibilities may coexist in the experiments carried out with the isolated nucleobases.