DOE Office of Scientific and Technical Information (OSTI.GOV)
Fatima, Bushra, E-mail: bushrafatima25@gmail.com; Acharya, Nikita; Sanyal, Sankar P.
2016-05-06
The structural stability, electronic structure, elastic and mechanical properties of TiZn and ZrZn intermetallics have been studied using ab-initio full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation for exchange and correlation potentials. The various structural parameters, such as lattice constant (a{sub 0}), bulk modulus (B), and its pressure derivative (B’) are analysed and compared. The investigation of elastic constants affirm that both TiZn and ZrZn are elastically stable in CsCl (B{sub 2} phase) structure. The electronic structures have been analysed quantitatively from the band structure which reveals the metallic nature of these compounds. To better illustratemore » the nature of bonding and charge transfer, we have also studied the Fermi surfaces. The three well known criterion of ductility namely Pugh’s rule, Cauchy’s pressure and Frantsevich rule elucidate the ductile nature of these compounds.« less
ESTEST: A Framework for the Verification and Validation of Electronic Structure Codes
NASA Astrophysics Data System (ADS)
Yuan, Gary; Gygi, Francois
2011-03-01
ESTEST is a verification and validation (V& V) framework for electronic structure codes that supports Qbox, Quantum Espresso, ABINIT, the Exciting Code and plans support for many more. We discuss various approaches to the electronic structure V& V problem implemented in ESTEST, that are related to parsing, formats, data management, search, comparison and analyses. Additionally, an early experiment in the distribution of V& V ESTEST servers among the electronic structure community will be presented. Supported by NSF-OCI 0749217 and DOE FC02-06ER25777.
Guerra, I; Cardell, C
2015-10-01
The novel Structural Chemical Analyser (hyphenated Raman spectroscopy and scanning electron microscopy equipped with an X-ray detector) is gaining popularity since it allows 3-D morphological studies and elemental, molecular, structural and electronic analyses of a single complex micro-sized sample without transfer between instruments. However, its full potential remains unexploited in painting heritage where simultaneous identification of inorganic and organic materials in paintings is critically yet unresolved. Despite benefits and drawbacks shown in literature, new challenges have to be faced analysing multifaceted paint specimens. SEM-Structural Chemical Analyser systems differ since they are fabricated ad hoc by request. As configuration influences the procedure to optimize analyses, likewise analytical protocols have to be designed ad hoc. This paper deals with the optimization of the analytical procedure of a Variable Pressure Field Emission scanning electron microscopy equipped with an X-ray detector Raman spectroscopy system to analyse historical paint samples. We address essential parameters, technical challenges and limitations raised from analysing paint stratigraphies, archaeological samples and loose pigments. We show that accurate data interpretation requires comprehensive knowledge of factors affecting Raman spectra. We tackled: (i) the in-FESEM-Raman spectroscopy analytical sequence, (ii) correlations between FESEM and Structural Chemical Analyser/laser analytical position, (iii) Raman signal intensity under different VP-FESEM vacuum modes, (iv) carbon deposition on samples under FESEM low-vacuum mode, (v) crystal nature and morphology, (vi) depth of focus and (vii) surface-enhanced Raman scattering effect. We recommend careful planning of analysis strategies prior to research which, although time consuming, guarantees reliable results. The ultimate goal of this paper is to help to guide future users of a FESEM-Structural Chemical Analyser system in order to increase applications. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Development of the field of structural physiology
FUJIYOSHI, Yoshinori
2015-01-01
Electron crystallography is especially useful for studying the structure and function of membrane proteins — key molecules with important functions in neural and other cells. Electron crystallography is now an established technique for analyzing the structures of membrane proteins in lipid bilayers that closely simulate their natural biological environment. Utilizing cryo-electron microscopes with helium-cooled specimen stages that were developed through a personal motivation to understand the functions of neural systems from a structural point of view, the structures of membrane proteins can be analyzed at a higher than 3 Å resolution. This review covers four objectives. First, I introduce the new research field of structural physiology. Second, I recount some of the struggles involved in developing cryo-electron microscopes. Third, I review the structural and functional analyses of membrane proteins mainly by electron crystallography using cryo-electron microscopes. Finally, I discuss multifunctional channels named “adhennels” based on structures analyzed using electron and X-ray crystallography. PMID:26560835
Finite element analyses of a linear-accelerator electron gun
NASA Astrophysics Data System (ADS)
Iqbal, M.; Wasy, A.; Islam, G. U.; Zhou, Z.
2014-02-01
Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.
Finite element analyses of a linear-accelerator electron gun.
Iqbal, M; Wasy, A; Islam, G U; Zhou, Z
2014-02-01
Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.
NASA Astrophysics Data System (ADS)
Aziz, Saadullah G.; Alyoubi, Abdulrahman O.; Elroby, Shaaban A.; Hilal, Rifaat H.
2017-10-01
Kojic acid is a polyfunctional heterocyclic compound, with several important reaction centres; it has a wide range of applications in the cosmetic, medicine, food, agriculture and chemical industries. The present study aims at better insight into its electronic structure and bonding characteristics. Thus, density functional theory at the M06-2x /6-311++G** level of theory is used to investigate its ground state electronic and acid-base properties. Protonation and deprotonation enthalpies are computed and analysed. The ability of Kojic acid to form both water complexes and dimers is explored. Several different complexes and dimer structures were examined. Natural bond order and quantum topology features of the charge density were analysed. The origin of the stability of the studied complexes and dimer structures can be traced to hydrogen bonding, π-conjugative and non-covalent dispersive interactions.
76 FR 56156 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-12
... materials for energy production. The experiments will involve structural and chemical analyses of materials... experiments will involve structural and chemical analyses of materials on the electron based nanometer scale... tissues, viruses, and bacteria, to determine the morphology of multiphase materials, determine the...
Finite element analyses of a linear-accelerator electron gun
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iqbal, M., E-mail: muniqbal.chep@pu.edu.pk, E-mail: muniqbal@ihep.ac.cn; Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049; Wasy, A.
Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gunmore » is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.« less
An ab initio study of the electronic structure of indium and gallium chalcogenide bilayers
NASA Astrophysics Data System (ADS)
Ayadi, T.; Debbichi, L.; Said, M.; Lebègue, S.
2017-09-01
Using first principle calculations, we have studied the structural and electronic properties of two dimensional bilayers of indium and gallium chalcogenides. With density functional theory corrected for van der Waals interactions, the different modes of stacking were investigated in a systematic way, and several of them were found to compete in energy. Then, their band structures were obtained with the GW approximation and found to correspond to indirect bandgap semiconductors with a small dependency on the mode of stacking. Finally, by analysing the electron density, it appeared that GaSe-InS is a promising system for electron-hole separation.
Brumboiu, Iulia Emilia; Prokopiou, Georgia; Kronik, Leeor; Brena, Barbara
2017-07-28
We analyse the valence electronic structure of cobalt phthalocyanine (CoPc) by means of optimally tuning a range-separated hybrid functional. The tuning is performed by modifying both the amount of short-range exact exchange (α) included in the hybrid functional and the range-separation parameter (γ), with two strategies employed for finding the optimal γ for each α. The influence of these two parameters on the structural, electronic, and magnetic properties of CoPc is thoroughly investigated. The electronic structure is found to be very sensitive to the amount and range in which the exact exchange is included. The electronic structure obtained using the optimal parameters is compared to gas-phase photo-electron data and GW calculations, with the unoccupied states additionally compared with inverse photo-electron spectroscopy measurements. The calculated spectrum with tuned γ, determined for the optimal value of α = 0.1, yields a very good agreement with both experimental results and with GW calculations that well-reproduce the experimental data.
Electron microscopy analyses and electrical properties of the layered Bi{sub 2}WO{sub 6} phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taoufyq, A.; Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc; Département d‘Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache
2013-07-15
The bismuth tungstate Bi{sub 2}WO{sub 6} was synthesized using a classical coprecipitation method followed by a calcination process at different temperatures. The samples were characterized by X-ray diffraction, simultaneous thermogravimetry and differential thermal analysis (TGA/DTA), scanning and transmission electron microscopy (SEM, TEM) analyses. The Rietveld analysis and electron diffraction clearly confirmed the Pca2{sub 1} non centrosymmetric space group previously proposed for this phase. The layers Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} have been directly evidenced from the HRTEM images. The electrical properties of Bi{sub 2}WO{sub 6} compacted pellets systems were determined from electrical impedance spectrometry (EIS) and directmore » current (DC) analyses, under air and argon, between 350 and 700 °C. The direct current analyses showed that the conduction observed from EIS analyses was mainly ionic in this temperature range, with a small electronic contribution. Electrical change above the transition temperature of 660 °C is observed under air and argon atmospheres. The strong conductivity increase observed under argon is interpreted in terms of formation of additional oxygen vacancies coupled with electron conduction. - Graphical abstract: High resolution transmission electron microscopy: inverse fast Fourier transform giving the layered structure of the Bi{sub 2}WO{sub 6} phase, with a representation of the cell dimensions (b and c vectors). The Bi{sub 2}O{sub 2}{sup 2+} and WO{sub 4}{sup 2−} sandwiches are visible in the IFFT image. - Highlights: • Using transmission electron microscopy, we visualize the layered structure of Bi{sub 2}WO{sub 6}. • Electrical analyses under argon gas show some increase in conductivity. • The phase transition at 660 °C is evidenced from electrical modification.« less
NASA Astrophysics Data System (ADS)
Babitha, K. K.; Sreedevi, A.; Priyanka, K. P.; Ganesh, S.; Varghese, Thomas
2018-06-01
The effect of 8 MeV electron beam irradiation on the thermal, structural and electrical properties of CeO2 nanoparticles synthesized by chemical precipitation route was investigated. The dose dependent effect of electron irradiation was studied using various characterization techniques such as, thermogravimetric and differential thermal analyses, X-ray diffraction, Fourier transformed infrared spectroscopy and impedance spectroscopy. Systematic investigation based on the results of structural studies confirm that electron beam irradiation induces defects and particle size variation on CeO2 nanoparticles, which in turn results improvements in AC conductivity, dielectric constant and loss tangent. Structural modifications and high value of dielectric constant for CeO2 nanoparticles due to electron beam irradiation make it as a promising material for the fabrication of gate dielectric in metal oxide semiconductor devices.
Measurement of the electron structure function F2e at LEP energies
NASA Astrophysics Data System (ADS)
Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Belous, K.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Gonçalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Slominski, W.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Szwed, J.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomé, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.; Delphi Collaboration
2014-10-01
The hadronic part of the electron structure function F2e has been measured for the first time, using e+e- data collected by the DELPHI experiment at LEP, at centre-of-mass energies of √{ s} = 91.2- 209.5 GeV. The data analysis is simpler than that of the measurement of the photon structure function. The electron structure function F2e data are compared to predictions of phenomenological models based on the photon structure function. It is shown that the contribution of large target photon virtualities is significant. The data presented can serve as a cross-check of the photon structure function F2γ analyses and help in refining existing parameterisations.
Electron transport in NH3/NO2 sensed buckled antimonene
NASA Astrophysics Data System (ADS)
Srivastava, Anurag; Khan, Md. Shahzad; Ahuja, Rajeev
2018-04-01
The structural and electronic properties of buckled antimonene have been analysed using density functional theory based ab-initio approach. Geometrical parameters in terms of bond length and bond angle are found close to the single ruffle mono-layer of rhombohedral antimony. Inter-frontier orbital analyses suggest localization of lone pair electrons at each atomic centre. Phonon dispersion along with high symmetry point of Brillouin zone does not signify any soft mode. With an electronic band gap of 1.8eV, the quasi-2D nano-surface has been further explored for NH3/NO2 molecules sensing and qualities of interaction between NH3/NO2 gas and antimonene scrutinized in terms of electronic charges transfer. A current-voltage characteristic has also been analysed, using Non Equilibrium Green's function (NEGF), for antimonene, in presence of incoming NH3/NO2 molecules.
Fred L. Tobiason; Frank R. Fronczek; Jan P. Steynberg; Elizabeth C. Steynberg; Richard W. Hemingway; Wayne L. Mattice
1993-01-01
Molecular modeling and molecular orbital analyses of ent-epifisetinidol gave &ood predictions of the approximate "reverse half-chair" conformation found for the crystal structure. MNDO and AM1 analyses of HOMO electron densities provided an explanation for the stereospecific electrophilic aromatic substitution at C(6) in 5-deoxy-flavans...
Measuring the orbital angular momentum spectrum of an electron beam
Grillo, Vincenzo; Tavabi, Amir H.; Venturi, Federico; Larocque, Hugo; Balboni, Roberto; Gazzadi, Gian Carlo; Frabboni, Stefano; Lu, Peng-Han; Mafakheri, Erfan; Bouchard, Frédéric; Dunin-Borkowski, Rafal E.; Boyd, Robert W.; Lavery, Martin P. J.; Padgett, Miles J.; Karimi, Ebrahim
2017-01-01
Electron waves that carry orbital angular momentum (OAM) are characterized by a quantized and unbounded magnetic dipole moment parallel to their propagation direction. When interacting with magnetic materials, the wavefunctions of such electrons are inherently modified. Such variations therefore motivate the need to analyse electron wavefunctions, especially their wavefronts, to obtain information regarding the material's structure. Here, we propose, design and demonstrate the performance of a device based on nanoscale holograms for measuring an electron's OAM components by spatially separating them. We sort pure and superposed OAM states of electrons with OAM values of between −10 and 10. We employ the device to analyse the OAM spectrum of electrons that have been affected by a micron-scale magnetic dipole, thus establishing that our sorter can be an instrument for nanoscale magnetic spectroscopy. PMID:28537248
Ne matrix spectra of the sym-C6Br3F3+ radical cation
Bondybey, V.E.; Sears, T.J.; Miller, T.A.; Vaughn, C.; English, J.H.; Shiley, R.S.
1981-01-01
The electronic absorption and laser excited, wavelength resolved fluorescence spectra of the title cation have been observed in solid Ne matrix and vibrationally analysed. The vibrational structure of the excited B2A2??? state shows close similarity to the parent compound. The X2E??? ground state structure is strongly perturbed and irregular owing to a large Jahn-Teller distortion. The data are analysed in terms of a recently developed, sophisticated multimode Jahn-Teller theoretical model. We have generated the sym-C6Br3F3+ cations in solid Ne matrix and obtained their wavelength resolved emission and absorption spectra. T ground electronic X2E??? state exhibits an irregular and strongly perturbed vibrational structure, which can be successfully modeled using sophisticated multimode Jahn-Teller theory. ?? 1981.
Arjunan, V; Devi, L; Remya, P; Mohan, S
2013-09-01
The FTIR and FT-Raman spectra of 3,4-dimethoxybenzonitrile (34DMBN) have been analysed. Quantum chemical studies were performed with B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVTZ basis sets. The electron donating effect of -OCH3 and electron withdrawing effect of -C≡N groups on the ring parameters were thoroughly analysed. The structural parameters, energies, thermodynamic properties, vibrational frequencies and the NBO charges of 34DMBN were determined. The (1)H and (13)C chemical shifts with respect to TMS were investigated and also calculated theoretically using the gauge independent atomic orbital method and compared with the experimental data. The delocalisation energy of different types of bonding interactions was investigated. Copyright © 2013 Elsevier B.V. All rights reserved.
Water channel structures analysed by electron crystallography.
Tani, Kazutoshi; Fujiyoshi, Yoshinori
2014-05-01
The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules. The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids. Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function. Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins. © 2013.
NASA Astrophysics Data System (ADS)
Abbaslou, Reza Malek; Vosoughi, Vahid; Dalai, Ajay K.
2017-10-01
Carbon nanotubes (CNTs) are different from other porous substrates such as activated carbon due to their high external surfaces. This structural feature can lead in some uncertainties in the results of nitrogen adsorption analysis for characterization of CNTs. In this paper, the results of microscopic analyses and nitrogen adsorption method for characterization of carbon nanotubes were compared. Five different types of CNTs with different structures were either synthesized or purchased. The CNT samples were characterized by high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and N2 adsorption analysis. The comparisons between the results from the microscopic analyses and N2 adsorption showed that the total pore volume and BET surface measurements include the internal and external porosity of CNTs. Therefore, the interpretation of N2 adsorption data required accurate TEM analysis. In addition, the evaluation of pore size distribution curves from all CNT samples in this study and several instances in the literature revealed the presence of a common peak in the range of 2-5 nm. This peak does not explain the inner pore size distribution. The presence of this common peak can be attributed to the strong adsorption of N2 on the junction of touched and crossed nanotubes.
Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki
2016-05-01
Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.
Das, Debashish; Ghosh, Subhradip
2017-02-08
Cation disorder over different crystallographic sites in spinel oxides is known to affect their properties. Recent experiments on Mn doped multiferroic [Formula: see text] indicate that a possible distribution of Mn atoms among tetrahedrally and octahedrally coordinated sites in the spinel lattice give rise to different variations in the structural parameters and saturation magnetisations in different concentration regimes of Mn atoms substituting the Cr. A composition dependent magnetic compensation behaviour points to the role conversions of the magnetic constituents. In this work, we have investigated the thermodynamics of cation disorder in [Formula: see text] system and its consequences on the structural, electronic and magnetic properties, using results from first-principles electronic structure calculations. We have computed the variations in the cation-disorder as a function of Mn concentration and the temperature and found that at the annealing temperature of the experiment many of the systems exhibit cation disorder. Our results support the interpretations of the experimental results regarding the qualitative variations in the sub-lattice occupancies and the associated magnetisation behaviour, with composition. We have analysed the variations in structural, magnetic and electronic properties of this system with variations in the compositions and the degree of cation disorder from the variations in their electronic structures and by using the ideas from crystal field theory. Our study provides a complete microscopic picture of the effects that are responsible for composition dependent behavioural differences of the properties of this system. This work lays down a general framework, based upon results from first-principles calculations, to understand and analyse the substitutional magnetic spinel oxides [Formula: see text] in presence of cation disorder.
The electronic structure of lithium metagallate.
Johnson, N W; McLeod, J A; Moewes, A
2011-11-09
Herein we present a study of the electronic structure of lithium metagallate (LiGaO(2)), a material of interest in the field of optoelectronics. We use soft x-ray spectroscopy to probe the electronic structure of both the valence and conduction bands and compare our measurements to ab initio density functional theory calculations. We use several different exchange-correlation functionals, but find that no single theoretical approach used herein accurately quantifies both the band gap and the Ga 3d(10) states in LiGaO(2). We derive a band gap of 5.6 eV, and characterize electron hybridization in both the valence and conduction bands. Our study of the x-ray spectra may prove useful in analysing spectra from more complicated LiGaO(2) heterostructures. © 2011 IOP Publishing Ltd
NASA Astrophysics Data System (ADS)
Zhong, Yu-Xi; Guo, Yuan-Ru; Pan, Qing-Jiang
2016-02-01
Relativistic density functional theory was used to explore the structural and redox properties of 18 prototypical actinyl silylamides including a variation of metals (U, Np and Pu), metal oxidation states (VI and V) and equatorial ligands. A theoretical approach associated with implicit solvation and spin-orbit/multiplet corrections was proved to be reliable. A marked shift of reduction potentials of actinyl silylamides caused by changes of equatorial coordination ligands and implicit solvation was elucidated by analyses of electronic structures and single-electron reduction mechanism.
Sun, Cheng; Müller, Erich; Meffert, Matthias; Gerthsen, Dagmar
2018-04-01
Transmission electron microscopy (TEM) with low-energy electrons has been recognized as an important addition to the family of electron microscopies as it may avoid knock-on damage and increase the contrast of weakly scattering objects. Scanning electron microscopes (SEMs) are well suited for low-energy electron microscopy with maximum electron energies of 30 keV, but they are mainly used for topography imaging of bulk samples. Implementation of a scanning transmission electron microscopy (STEM) detector and a charge-coupled-device camera for the acquisition of on-axis transmission electron diffraction (TED) patterns, in combination with recent resolution improvements, make SEMs highly interesting for structure analysis of some electron-transparent specimens which are traditionally investigated by TEM. A new aspect is correlative SEM, STEM, and TED imaging from the same specimen region in a SEM which leads to a wealth of information. Simultaneous image acquisition gives information on surface topography, inner structure including crystal defects and qualitative material contrast. Lattice-fringe resolution is obtained in bright-field STEM imaging. The benefits of correlative SEM/STEM/TED imaging in a SEM are exemplified by structure analyses from representative sample classes such as nanoparticulates and bulk materials.
NASA Astrophysics Data System (ADS)
Arjunan, V.; Raj, Arushma; Santhanam, R.; Marchewka, M. K.; Mohan, S.
2013-02-01
Extensive vibrational investigations of 2-amino-4-methoxybenzothiazole have been carried out with FTIR and FT-Raman spectral techniques. The electronic structure of the molecule has been analysed by UV-Visible and NMR spectroscopies. The DFT studies were carried out with B3LYP and HF methods utilising 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets to determine the structural, thermodynamical, vibrational, electronic characteristics of the compound and also to understand the electronic and steric influence of the methoxy amino groups on the skeletal frequencies. The mixing of the fundamental modes was determined with the help of total energy distribution (TED). The energies of the frontier molecular orbitals have also been determined. The kinetic and thermodynamic stability and chemical hardness of the molecule have been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. 1H and 13C NMR chemical shifts and the electronic transitions of the molecule are also discussed.
Automatic Segmentation and Quantification of Filamentous Structures in Electron Tomography
Loss, Leandro A.; Bebis, George; Chang, Hang; Auer, Manfred; Sarkar, Purbasha; Parvin, Bahram
2016-01-01
Electron tomography is a promising technology for imaging ultrastructures at nanoscale resolutions. However, image and quantitative analyses are often hindered by high levels of noise, staining heterogeneity, and material damage either as a result of the electron beam or sample preparation. We have developed and built a framework that allows for automatic segmentation and quantification of filamentous objects in 3D electron tomography. Our approach consists of three steps: (i) local enhancement of filaments by Hessian filtering; (ii) detection and completion (e.g., gap filling) of filamentous structures through tensor voting; and (iii) delineation of the filamentous networks. Our approach allows for quantification of filamentous networks in terms of their compositional and morphological features. We first validate our approach using a set of specifically designed synthetic data. We then apply our segmentation framework to tomograms of plant cell walls that have undergone different chemical treatments for polysaccharide extraction. The subsequent compositional and morphological analyses of the plant cell walls reveal their organizational characteristics and the effects of the different chemical protocols on specific polysaccharides. PMID:28090597
Automatic Segmentation and Quantification of Filamentous Structures in Electron Tomography.
Loss, Leandro A; Bebis, George; Chang, Hang; Auer, Manfred; Sarkar, Purbasha; Parvin, Bahram
2012-10-01
Electron tomography is a promising technology for imaging ultrastructures at nanoscale resolutions. However, image and quantitative analyses are often hindered by high levels of noise, staining heterogeneity, and material damage either as a result of the electron beam or sample preparation. We have developed and built a framework that allows for automatic segmentation and quantification of filamentous objects in 3D electron tomography. Our approach consists of three steps: (i) local enhancement of filaments by Hessian filtering; (ii) detection and completion (e.g., gap filling) of filamentous structures through tensor voting; and (iii) delineation of the filamentous networks. Our approach allows for quantification of filamentous networks in terms of their compositional and morphological features. We first validate our approach using a set of specifically designed synthetic data. We then apply our segmentation framework to tomograms of plant cell walls that have undergone different chemical treatments for polysaccharide extraction. The subsequent compositional and morphological analyses of the plant cell walls reveal their organizational characteristics and the effects of the different chemical protocols on specific polysaccharides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka
Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speedmore » higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.« less
Conduction at domain walls in oxide multiferroics
NASA Astrophysics Data System (ADS)
Seidel, J.; Martin, L. W.; He, Q.; Zhan, Q.; Chu, Y.-H.; Rother, A.; Hawkridge, M. E.; Maksymovych, P.; Yu, P.; Gajek, M.; Balke, N.; Kalinin, S. V.; Gemming, S.; Wang, F.; Catalan, G.; Scott, J. F.; Spaldin, N. A.; Orenstein, J.; Ramesh, R.
2009-03-01
Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO3. The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.
Conduction at domain walls in oxide multiferroics.
Seidel, J; Martin, L W; He, Q; Zhan, Q; Chu, Y-H; Rother, A; Hawkridge, M E; Maksymovych, P; Yu, P; Gajek, M; Balke, N; Kalinin, S V; Gemming, S; Wang, F; Catalan, G; Scott, J F; Spaldin, N A; Orenstein, J; Ramesh, R
2009-03-01
Domain walls may play an important role in future electronic devices, given their small size as well as the fact that their location can be controlled. Here, we report the observation of room-temperature electronic conductivity at ferroelectric domain walls in the insulating multiferroic BiFeO(3). The origin and nature of the observed conductivity are probed using a combination of conductive atomic force microscopy, high-resolution transmission electron microscopy and first-principles density functional computations. Our analyses indicate that the conductivity correlates with structurally driven changes in both the electrostatic potential and the local electronic structure, which shows a decrease in the bandgap at the domain wall. Additionally, we demonstrate the potential for device applications of such conducting nanoscale features.
Electron Microprobe Analyses of Lithic Fragments and Their Minerals from Luna 20 Fines
NASA Technical Reports Server (NTRS)
Conrad, G. H.; Hlava, P. F.; Green, J. A.; Moore, R. B.; Moreland, G.; Dowty, E.; Prinz, M.; Keil, K.; Nehru, C. E.; Bunch, T. E.
1973-01-01
The bulk analyses (determined with the broad beam electron microprobe technique) of lithic fragments are given in weight percentages and are arranged according to the rock classification. Within each rock group the analyses are arranged in order of increasing FeO content. Thin section and lithic fragment numbers are given at the top of each column of analysis and correspond to the numbers recorded on photo mosaics on file in the Institute of Meteoritics. CIPW molecular norms are given for each analysis. Electron microprobe mineral analyses (given in oxide weight percentages), structural formulae and molecular end member values are presented for plagioclase, olivine, pyroxene and K-feldspar. The minerals are selected mostly from lithic fragments that were also analyzed for bulk composition. Within each mineral group the analyses are presented according to the section number and lithic fragment number. Within each lithic fragment the mineral analyses are arranged as follows: Plagioclase in order of increasing CaO; olivine and pyroexene in order of increasing FeO; and K-feldspar in order of increasing K2O. The mineral grains are identified at the top of each column of analysis by grain number and lithic fragment number.
Kodama, Wataru; Nakasako, Masayoshi
2011-08-01
Coherent x-ray diffraction microscopy is a novel technique in the structural analyses of particles that are difficult to crystallize, such as the biological particles composing living cells. As water is indispensable for maintaining particles in functional structures, sufficient hydration of targeted particles is required during sample preparation for diffraction microscopy experiments. However, the water enveloping particles also contributes significantly to the diffraction patterns and reduces the electron-density contrast of the sample particles. In this study, we propose a protocol for the structural analyses of particles in water by applying a three-dimensional reconstruction method in real space for the projection images phase-retrieved from diffraction patterns, together with a developed density modification technique. We examined the feasibility of the protocol through three simulations involving a protein molecule in a vacuum, and enveloped in either a droplet or a cube-shaped water. The simulations were carried out for the diffraction patterns in the reciprocal planes normal to the incident x-ray beam. This assumption and the simulation conditions corresponded to experiments using x-ray wavelengths of shorter than 0.03 Å. The analyses demonstrated that our protocol provided an interpretable electron-density map. Based on the results, we discuss the advantages and limitations of the proposed protocol and its practical application for experimental data. In particular, we examined the influence of Poisson noise in diffraction patterns on the reconstructed three-dimensional electron density in the proposed protocol.
Platinum replica electron microscopy: Imaging the cytoskeleton globally and locally.
Svitkina, Tatyana M
2017-05-01
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the "comfort zones" of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. Copyright © 2017 Elsevier Ltd. All rights reserved.
Platinum Replica Electron Microscopy: Imaging the Cytoskeleton Globally and Locally
SVITKINA, Tatyana M.
2017-01-01
Structural studies reveal how smaller components of a system work together as a whole. However, combining high resolution of details with full coverage of the whole is challenging. In cell biology, light microscopy can image many cells in their entirety, but at a lower resolution, whereas electron microscopy affords very high resolution, but usually at the expense of the sample size and coverage. Structural analyses of the cytoskeleton are especially demanding, because cytoskeletal networks are unresolvable by light microscopy due to their density and intricacy, whereas their proper preservation is a challenge for electron microscopy. Platinum replica electron microscopy can uniquely bridge the gap between the “comfort zones” of light and electron microscopy by allowing high resolution imaging of the cytoskeleton throughout the entire cell and in many cells in the population. This review describes the principles and applications of platinum replica electron microscopy for studies of the cytoskeleton. PMID:28323208
NASA Astrophysics Data System (ADS)
Boatman, Elizabeth Marie
The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is highly conserved in these four fossil specimens. Finally, the results of this study indicate that bioapatite can be preserved in even the most ancient vertebrate specimens, further supporting the idea that fossilization is a preservational process. This work also underlines the importance of using appropriately selected characterization and analytical techniques for the study of fossil bone, especially from the perspective of spatial resolution and the scale of the bone structural features in question.
Determining crystal structures through crowdsourcing and coursework
NASA Astrophysics Data System (ADS)
Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Silveira Belo Nascimento Roque, Paulo Sergio; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K.; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.
2016-09-01
We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.
Determining crystal structures through crowdsourcing and coursework.
Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A; Cooper, Seth; Flatten, Jeff; Rogawski, David S; Koropatkin, Nicole M; Hailu, Tsinatkeab T; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S; Chapman, Matthew R; Sikkema, Andrew P; Skiba, Meredith A; Maloney, Finn P; Beinlich, Felix R M; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C A
2016-09-16
We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality.
NASA Astrophysics Data System (ADS)
Das, Debashish; Ghosh, Subhradip
2017-02-01
Cation disorder over different crystallographic sites in spinel oxides is known to affect their properties. Recent experiments on Mn doped multiferroic \\text{CoC}{{\\text{r}}2}{{\\text{O}}4} indicate that a possible distribution of Mn atoms among tetrahedrally and octahedrally coordinated sites in the spinel lattice give rise to different variations in the structural parameters and saturation magnetisations in different concentration regimes of Mn atoms substituting the Cr. A composition dependent magnetic compensation behaviour points to the role conversions of the magnetic constituents. In this work, we have investigated the thermodynamics of cation disorder in \\text{Co}{{≤ft(\\text{C}{{\\text{r}}1-x}\\text{M}{{\\text{n}}x}\\right)}2}{{\\text{O}}4} system and its consequences on the structural, electronic and magnetic properties, using results from first-principles electronic structure calculations. We have computed the variations in the cation-disorder as a function of Mn concentration and the temperature and found that at the annealing temperature of the experiment many of the systems exhibit cation disorder. Our results support the interpretations of the experimental results regarding the qualitative variations in the sub-lattice occupancies and the associated magnetisation behaviour, with composition. We have analysed the variations in structural, magnetic and electronic properties of this system with variations in the compositions and the degree of cation disorder from the variations in their electronic structures and by using the ideas from crystal field theory. Our study provides a complete microscopic picture of the effects that are responsible for composition dependent behavioural differences of the properties of this system. This work lays down a general framework, based upon results from first-principles calculations, to understand and analyse the substitutional magnetic spinel oxides A{{≤ft({{B}1-x}{{C}x}\\right)}2}{{\\text{O}}4} in presence of cation disorder.
Sutter, B; Ming, D W; Clearfield, A; Hossner, L R
2003-01-01
The National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program is evaluating the use of Fe-, Mn-, and Cu-containing synthetic hydroxyapatite (SHA) as a slow release fertilizer for crops that might be grown on the International Space Station or at Lunar and Martian outposts. Separate Fe-, Mn-, and Cu-containing SHA materials along with a transition-metal free SHA (pure-SHA) were synthesized using a precipitation method. Chemical and mineralogical analyses determined if and how Fe, Mn, and Cu were incorporated into the SHA structure. X-ray diffraction (XRD), Rietveld refinement, and transmission electron microscopy (TEM) confirmed that SHA materials with the apatite structure were produced. Chemical analyses indicated that the metal containing SHA materials were deficient in Ca relative to pure-SHA. The shift in the infrared PO4-mu 3 vibrations, smaller unit cell parameters, smaller particle size, and greater structural strain for Fe-, Mn-, and Cu-containing SHA compared with pure-SHA suggested that Fe, Mn, and Cu were incorporated into SHA structure. Rietveld analyses revealed that Fe, Mn, and Cu substituted into the Ca2 site of SHA. An Fe-rich phase was detected by TEM analyses and backscattered electron microscopy in the Fe-containing SHA material with the greatest Fe content. The substitution of metals into SHA suggests that metal-SHA materials are potential slow-release sources of micronutrients for plant uptake in addition to Ca and P.
NASA Technical Reports Server (NTRS)
Sutter, B.; Ming, D. W.; Clearfield, A.; Hossner, L. R.
2003-01-01
The National Aeronautics and Space Administration's (NASA) Advanced Life Support (ALS) Program is evaluating the use of Fe-, Mn-, and Cu-containing synthetic hydroxyapatite (SHA) as a slow release fertilizer for crops that might be grown on the International Space Station or at Lunar and Martian outposts. Separate Fe-, Mn-, and Cu-containing SHA materials along with a transition-metal free SHA (pure-SHA) were synthesized using a precipitation method. Chemical and mineralogical analyses determined if and how Fe, Mn, and Cu were incorporated into the SHA structure. X-ray diffraction (XRD), Rietveld refinement, and transmission electron microscopy (TEM) confirmed that SHA materials with the apatite structure were produced. Chemical analyses indicated that the metal containing SHA materials were deficient in Ca relative to pure-SHA. The shift in the infrared PO4-mu 3 vibrations, smaller unit cell parameters, smaller particle size, and greater structural strain for Fe-, Mn-, and Cu-containing SHA compared with pure-SHA suggested that Fe, Mn, and Cu were incorporated into SHA structure. Rietveld analyses revealed that Fe, Mn, and Cu substituted into the Ca2 site of SHA. An Fe-rich phase was detected by TEM analyses and backscattered electron microscopy in the Fe-containing SHA material with the greatest Fe content. The substitution of metals into SHA suggests that metal-SHA materials are potential slow-release sources of micronutrients for plant uptake in addition to Ca and P.
Arjunan, V; Raj, Arushma; Santhanam, R; Marchewka, M K; Mohan, S
2013-02-01
Extensive vibrational investigations of 2-amino-4-methoxybenzothiazole have been carried out with FTIR and FT-Raman spectral techniques. The electronic structure of the molecule has been analysed by UV-Visible and NMR spectroscopies. The DFT studies were carried out with B3LYP and HF methods utilising 6-31G(d,p), 6-311++G(d,p) and cc-pVDZ basis sets to determine the structural, thermodynamical, vibrational, electronic characteristics of the compound and also to understand the electronic and steric influence of the methoxy amino groups on the skeletal frequencies. The mixing of the fundamental modes was determined with the help of total energy distribution (TED). The energies of the frontier molecular orbitals have also been determined. The kinetic and thermodynamic stability and chemical hardness of the molecule have been determined. Complete NBO analysis was also carried out to find out the intramolecular electronic interactions and their stabilisation energy. (1)H and (13)C NMR chemical shifts and the electronic transitions of the molecule are also discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
Structural basis for cellobiose dehydrogenase action during oxidative cellulose degradation
NASA Astrophysics Data System (ADS)
Tan, Tien-Chye; Kracher, Daniel; Gandini, Rosaria; Sygmund, Christoph; Kittl, Roman; Haltrich, Dietmar; Hällberg, B. Martin; Ludwig, Roland; Divne, Christina
2015-07-01
A new paradigm for cellulose depolymerization by fungi focuses on an oxidative mechanism involving cellobiose dehydrogenases (CDH) and copper-dependent lytic polysaccharide monooxygenases (LPMO); however, mechanistic studies have been hampered by the lack of structural information regarding CDH. CDH contains a haem-binding cytochrome (CYT) connected via a flexible linker to a flavin-dependent dehydrogenase (DH). Electrons are generated from cellobiose oxidation catalysed by DH and shuttled via CYT to LPMO. Here we present structural analyses that provide a comprehensive picture of CDH conformers, which govern the electron transfer between redox centres. Using structure-based site-directed mutagenesis, rapid kinetics analysis and molecular docking, we demonstrate that flavin-to-haem interdomain electron transfer (IET) is enabled by a haem propionate group and that rapid IET requires a closed CDH state in which the propionate is tightly enfolded by DH. Following haem reduction, CYT reduces LPMO to initiate oxygen activation at the copper centre and subsequent cellulose depolymerization.
Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family.
Garcia Costas, Amaya M; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J; Ledbetter, Rhesa N; Fixen, Kathryn R; Seefeldt, Lance C; Adams, Michael W W; Harwood, Caroline S; Boyd, Eric S; Peters, John W
2017-11-01
Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes. IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs. Copyright © 2017 American Society for Microbiology.
Defining Electron Bifurcation in the Electron-Transferring Flavoprotein Family
Garcia Costas, Amaya M.; Poudel, Saroj; Miller, Anne-Frances; Schut, Gerrit J.; Ledbetter, Rhesa N.; Seefeldt, Lance C.; Adams, Michael W. W.
2017-01-01
ABSTRACT Electron bifurcation is the coupling of exergonic and endergonic redox reactions to simultaneously generate (or utilize) low- and high-potential electrons. It is the third recognized form of energy conservation in biology and was recently described for select electron-transferring flavoproteins (Etfs). Etfs are flavin-containing heterodimers best known for donating electrons derived from fatty acid and amino acid oxidation to an electron transfer respiratory chain via Etf-quinone oxidoreductase. Canonical examples contain a flavin adenine dinucleotide (FAD) that is involved in electron transfer, as well as a non-redox-active AMP. However, Etfs demonstrated to bifurcate electrons contain a second FAD in place of the AMP. To expand our understanding of the functional variety and metabolic significance of Etfs and to identify amino acid sequence motifs that potentially enable electron bifurcation, we compiled 1,314 Etf protein sequences from genome sequence databases and subjected them to informatic and structural analyses. Etfs were identified in diverse archaea and bacteria, and they clustered into five distinct well-supported groups, based on their amino acid sequences. Gene neighborhood analyses indicated that these Etf group designations largely correspond to putative differences in functionality. Etfs with the demonstrated ability to bifurcate were found to form one group, suggesting that distinct conserved amino acid sequence motifs enable this capability. Indeed, structural modeling and sequence alignments revealed that identifying residues occur in the NADH- and FAD-binding regions of bifurcating Etfs. Collectively, a new classification scheme for Etf proteins that delineates putative bifurcating versus nonbifurcating members is presented and suggests that Etf-mediated bifurcation is associated with surprisingly diverse enzymes. IMPORTANCE Electron bifurcation has recently been recognized as an electron transfer mechanism used by microorganisms to maximize energy conservation. Bifurcating enzymes couple thermodynamically unfavorable reactions with thermodynamically favorable reactions in an overall spontaneous process. Here we show that the electron-transferring flavoprotein (Etf) enzyme family exhibits far greater diversity than previously recognized, and we provide a phylogenetic analysis that clearly delineates bifurcating versus nonbifurcating members of this family. Structural modeling of proteins within these groups reveals key differences between the bifurcating and nonbifurcating Etfs. PMID:28808132
Flifla, M J; Garreau, M; Rolland, J P; Coatrieux, J L; Thomas, D
1992-12-01
'IBIS' is a set of computer programs concerned with the processing of electron micrographs, with particular emphasis on the requirements for structural analyses of biological macromolecules. The software is written in FORTRAN 77 and runs on Unix workstations. A description of the various functions and the implementation mode is given. Some examples illustrate the user interface.
Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO6
NASA Astrophysics Data System (ADS)
Ait Ahsaine, H.; Taoufyq, A.; Patout, L.; Ezahri, M.; Benlhachemi, A.; Bakiz, B.; Villain, S.; Guinneton, F.; Gavarri, J.-R.
2014-10-01
The bismuth lutetium tungstate phase BiLuWO6 has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better represented by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO6 with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO6 octahedron distortions in the structure.
Preparation, Structural and Dielectric Properties of Solution Grown Polyvinyl Alcohol(PVA) Film
NASA Astrophysics Data System (ADS)
Nangia, Rakhi; Shukla, Neeraj K.; Sharma, Ambika
2017-08-01
Flexible dielectrics with high permittivity have been investigated extensively due to their applications in electronic industry. In this work, structural and electrical characteristics of polymer based film have been analysed. Poly vinyl alcohol (PVA) film was prepared by solution casting method. X-ray diffraction (XRD) characterization technique is used to investigate the structural properties. The semi-crystalline nature has been determined by the analysis of the obtained XRD pattern. Electrical properties of the synthesized film have been analysed from the C-V and I-V curves obtained at various frequencies and temperatures. Low conductivity values confirm the insulating behaviour of the film. However, it is found that conductivity increases with temperature. Also, the dielectric permittivity is found to be higher at lower frequencies and higher temperatures, that proves PVA to be an excellent dielectric material which can be used in interface electronics. Dielectric behaviour of the film has been explained based on dipole orientations to slow and fast varying electric field. However further engineering can be done to modulate the structural, electrical properties of the film.
Structural and electronic properties of M-MOF-74 (M = Mg, Co or Mn)
NASA Astrophysics Data System (ADS)
de Oliveira, Aline; de Lima, Guilherme Ferreira; De Abreu, Heitor Avelino
2018-01-01
The Metal-Organic Frameworks M-MOF-74 (M = Mg, Co or Mn) were investigated through Density Functional Theory calculations. Structural parameters and band gap energies were determined in agreement with experimental data, with errors under 2%. The methods Electron Localization Function and Quantum Theory of Atoms in Molecules were applied to the analyses of the electronic density topology of the three solids. These methodologies indicated that the bonds between the metallic cations and the oxygen atoms are predominantly ionic while the other ones are predominantly covalent. Furthermore, non-conventional hydrogen bonds were identified to Mg-MOF-74 and Co-MOF-74, which were not observed to Mn-MOF-74.
NASA Astrophysics Data System (ADS)
Chen, Biao; Zhao, Naiqin; Guo, Lichao; He, Fang; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Liu, Enzuo
2015-07-01
Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications.Uniform transition metal sulfide deposition on a smooth TiO2 surface to form a coating structure is a well-known challenge, caused mainly due to their poor affinities. Herein, we report a facile strategy for fabricating mesoporous 3D few-layered (<4 layers) MoS2 coated TiO2 nanosheet core-shell nanocomposites (denoted as 3D FL-MoS2@TiO2) by a novel two-step method using a smooth TiO2 nanosheet as a template and glucose as a binder. The core-shell structure has been systematically examined and corroborated by transmission electron microscopy, scanning transmission electron microscopy, and X-ray photoelectron spectroscopy analyses. It is found that the resultant 3D FL-MoS2@TiO2 as a lithium-ion battery anode delivers an outstanding high-rate capability with an excellent cycling performance, relating to the unique structure of 3D FL-MoS2@TiO2. The 3D uniform coverage of few-layered (<4 layers) MoS2 onto the TiO2 can remarkably enhance the structure stability and effectively shortens the transfer paths of both lithium ions and electrons, while the strong synergistic effect between MoS2 and TiO2 can significantly facilitate the transport of ions and electrons across the interfaces, especially in the high-rate charge-discharge process. Moreover, the facile fabrication strategy can be easily extended to design other oxide/carbon-sulfide/oxide core-shell materials for extensive applications. Electronic supplementary information (ESI) available: Supplementary SEM, TEM, XPS and EIS analyses. See DOI: 10.1039/c5nr03334a
THOR Turbulence Electron Analyser: TEA
NASA Astrophysics Data System (ADS)
Fazakerley, Andrew; Moore, Tom; Owen, Chris; Pollock, Craig; Wicks, Rob; Samara, Marilia; Rae, Jonny; Hancock, Barry; Kataria, Dhiren; Rust, Duncan
2016-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Turbulence Electron Analyser (TEA) will measure the plasma electron populations in the mission's Regions of Interest. It will collect a 3D electron velocity distribution with cadences as short as 5 ms. The instrument will be capable of measuring energies up to 30 keV. TEA consists of multiple electrostatic analyser heads arranged so as to measure electrons arriving from look directions covering the full sky, i.e. 4 pi solid angle. The baseline concept is similar to the successful FPI-DES instrument currently operating on the MMS mission. TEA is intended to have a similar angular resolution, but a larger geometric factor. In comparison to earlier missions, TEA improves on the measurement cadence. For example, MMS FPI-DES routinely operates at 30 ms cadence. The objective of measuring distributions at rates as fast as 5 ms is driven by the mission's scientific requirements to resolve electron gyroscale size structures, where plasma heating and fluctuation dissipation is predicted to occur. TEA will therefore be capable of making measurements of the evolution of distribution functions across thin (a few km) current sheets travelling past the spacecraft at up to 600 km/s, of the Power Spectral Density of fluctuations of electron moments and of distributions fast enough to match frequencies with waves expected to be dissipating turbulence (e.g. with 100 Hz whistler waves).
Determining crystal structures through crowdsourcing and coursework
Horowitz, Scott; Koepnick, Brian; Martin, Raoul; Tymieniecki, Agnes; Winburn, Amanda A.; Cooper, Seth; Flatten, Jeff; Rogawski, David S.; Koropatkin, Nicole M.; Hailu, Tsinatkeab T.; Jain, Neha; Koldewey, Philipp; Ahlstrom, Logan S.; Chapman, Matthew R.; Sikkema, Andrew P.; Skiba, Meredith A.; Maloney, Finn P.; Beinlich, Felix R. M.; Caglar, Ahmet; Coral, Alan; Jensen, Alice Elizabeth; Lubow, Allen; Boitano, Amanda; Lisle, Amy Elizabeth; Maxwell, Andrew T.; Failer, Barb; Kaszubowski, Bartosz; Hrytsiv, Bohdan; Vincenzo, Brancaccio; de Melo Cruz, Breno Renan; McManus, Brian Joseph; Kestemont, Bruno; Vardeman, Carl; Comisky, Casey; Neilson, Catherine; Landers, Catherine R.; Ince, Christopher; Buske, Daniel Jon; Totonjian, Daniel; Copeland, David Marshall; Murray, David; Jagieła, Dawid; Janz, Dietmar; Wheeler, Douglas C.; Cali, Elie; Croze, Emmanuel; Rezae, Farah; Martin, Floyd Orville; Beecher, Gil; de Jong, Guido Alexander; Ykman, Guy; Feldmann, Harald; Chan, Hugo Paul Perez; Kovanecz, Istvan; Vasilchenko, Ivan; Connellan, James C.; Borman, Jami Lynne; Norrgard, Jane; Kanfer, Jebbie; Canfield, Jeffrey M.; Slone, Jesse David; Oh, Jimmy; Mitchell, Joanne; Bishop, John; Kroeger, John Douglas; Schinkler, Jonas; McLaughlin, Joseph; Brownlee, June M.; Bell, Justin; Fellbaum, Karl Willem; Harper, Kathleen; Abbey, Kirk J.; Isaksson, Lennart E.; Wei, Linda; Cummins, Lisa N.; Miller, Lori Anne; Bain, Lyn; Carpenter, Lynn; Desnouck, Maarten; Sharma, Manasa G.; Belcastro, Marcus; Szew, Martin; Szew, Martin; Britton, Matthew; Gaebel, Matthias; Power, Max; Cassidy, Michael; Pfützenreuter, Michael; Minett, Michele; Wesselingh, Michiel; Yi, Minjune; Cameron, Neil Haydn Tormey; Bolibruch, Nicholas I.; Benevides, Noah; Kathleen Kerr, Norah; Barlow, Nova; Crevits, Nykole Krystyne; Dunn, Paul; Roque, Paulo Sergio Silveira Belo Nascimento; Riber, Peter; Pikkanen, Petri; Shehzad, Raafay; Viosca, Randy; James Fraser, Robert; Leduc, Robert; Madala, Roman; Shnider, Scott; de Boisblanc, Sharon; Butkovich, Slava; Bliven, Spencer; Hettler, Stephen; Telehany, Stephen; Schwegmann, Steven A.; Parkes, Steven; Kleinfelter, Susan C.; Michael Holst, Sven; van der Laan, T. J. A.; Bausewein, Thomas; Simon, Vera; Pulley, Warwick; Hull, William; Kim, Annes Yukyung; Lawton, Alexis; Ruesch, Amanda; Sundar, Anjali; Lawrence, Anna-Lisa; Afrin, Antara; Maheshwer, Bhargavi; Turfe, Bilal; Huebner, Christian; Killeen, Courtney Elizabeth; Antebi-Lerrman, Dalia; Luan, Danny; Wolfe, Derek; Pham, Duc; Michewicz, Elaina; Hull, Elizabeth; Pardington, Emily; Galal, Galal Osama; Sun, Grace; Chen, Grace; Anderson, Halie E.; Chang, Jane; Hewlett, Jeffrey Thomas; Sterbenz, Jennifer; Lim, Jiho; Morof, Joshua; Lee, Junho; Inn, Juyoung Samuel; Hahm, Kaitlin; Roth, Kaitlin; Nair, Karun; Markin, Katherine; Schramm, Katie; Toni Eid, Kevin; Gam, Kristina; Murphy, Lisha; Yuan, Lucy; Kana, Lulia; Daboul, Lynn; Shammas, Mario Karam; Chason, Max; Sinan, Moaz; Andrew Tooley, Nicholas; Korakavi, Nisha; Comer, Patrick; Magur, Pragya; Savliwala, Quresh; Davison, Reid Michael; Sankaran, Roshun Rajiv; Lewe, Sam; Tamkus, Saule; Chen, Shirley; Harvey, Sho; Hwang, Sin Ye; Vatsia, Sohrab; Withrow, Stefan; Luther, Tahra K; Manett, Taylor; Johnson, Thomas James; Ryan Brash, Timothy; Kuhlman, Wyatt; Park, Yeonjung; Popović, Zoran; Baker, David; Khatib, Firas; Bardwell, James C. A.
2016-01-01
We show here that computer game players can build high-quality crystal structures. Introduction of a new feature into the computer game Foldit allows players to build and real-space refine structures into electron density maps. To assess the usefulness of this feature, we held a crystallographic model-building competition between trained crystallographers, undergraduate students, Foldit players and automatic model-building algorithms. After removal of disordered residues, a team of Foldit players achieved the most accurate structure. Analysing the target protein of the competition, YPL067C, uncovered a new family of histidine triad proteins apparently involved in the prevention of amyloid toxicity. From this study, we conclude that crystallographers can utilize crowdsourcing to interpret electron density information and to produce structure solutions of the highest quality. PMID:27633552
Schmaltz, Thomas; Gothe, Bastian; Krause, Andreas; Leitherer, Susanne; Steinrück, Hans-Georg; Thoss, Michael; Clark, Timothy; Halik, Marcus
2017-09-26
Self-assembled monolayer field-effect transistors (SAMFETs) are not only a promising type of organic electronic device but also allow detailed analyses of structure-property correlations. The influence of the morphology on the charge transport is particularly pronounced, due to the confined monolayer of 2D-π-stacked organic semiconductor molecules. The morphology, in turn, is governed by relatively weak van-der-Waals interactions and is thus prone to dynamic structural fluctuations. Accordingly, combining electronic and physical characterization and time-averaged X-ray analyses with the dynamic information available at atomic resolution from simulations allows us to characterize self-assembled monolayer (SAM) based devices in great detail. For this purpose, we have constructed transistors based on SAMs of two molecules that consist of the organic p-type semiconductor benzothieno[3,2-b][1]benzothiophene (BTBT), linked to a C 11 or C 12 alkylphosphonic acid. Both molecules form ordered SAMs; however, our experiments show that the size of the crystalline domains and the charge-transport properties vary considerably in the two systems. These findings were confirmed by molecular dynamics (MD) simulations and semiempirical molecular-orbital electronic-structure calculations, performed on snapshots from the MD simulations at different times, revealing, in atomistic detail, how the charge transport in organic semiconductors is influenced and limited by dynamic disorder.
Structural, microstructural and vibrational analyses of the monoclinic tungstate BiLuWO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ait Ahsaine, H.; Taoufyq, A.; Institut Matériaux Microélectronique et Nanosciences de Provence, IM2NP, UMR CNRS 7334, Université de Toulon, BP 20132, 83957 La Garde Cedex
2014-10-15
The bismuth lutetium tungstate phase BiLuWO{sub 6} has been prepared using a solid state route with stoichiometric mixtures of oxide precursors. The obtained polycrystalline phase has been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. In the first step, the crystal structure has been refined using Rietveld method: the crystal cell was resolved using monoclinic system (parameters a, b, c, β) with space group A2/m. SEM images showed the presence of large crystallites with a constant local nominal composition (BiLuW). TEM analyses showed that the actual local structure could be better representedmore » by a superlattice (a, 2b, c, β) associated with space groups P2 or P2/m. The Raman spectroscopy showed the presence of vibrational bands similar to those observed in the compounds BiREWO{sub 6} with RE=Y, Gd, Nd. However, these vibrational bands were characterized by large full width at half maximum, probably resulting from the long range Bi/Lu disorder and local WO{sub 6} octahedron distortions in the structure. - Graphical abstract: The average structure of BiLuWO{sub 6} determined from X-ray diffraction data can be represented by A2/m space group. Experimental Electron Diffraction patterns along the [0vw] zone axes of the monoclinic structure and associated simulated patterns show the existence of a monoclinic superstructure with space group P2 or P2/m. - Highlights: • A new monoclinic BiLuWO{sub 6} phase has been elaborated from solid-state reaction. • The space group of the monoclinic disordered average structure should be A2/m. • Transmission electron microscopy leads to a superlattice with P2/m space group. • Raman spectroscopy suggests existence of local disorder.« less
Nature-Inspired Structural Materials for Flexible Electronic Devices.
Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong
2017-10-25
Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.
Yun, Dong-Jin; Shin, Weon-Ho; Bulliard, Xavier; Park, Jong Hwan; Kim, Seyun; Chung, Jae Gwan; Kim, Yongsu; Heo, Sung; Kim, Seong Heon
2016-08-26
A novel, direct method for the characterization of the energy level alignments at bulk-heterojunction (BHJ)/electrode interfaces on the basis of electronic spectroscopy measurements is proposed. The home-made in situ photoemission system is used to perform x-ray/ultraviolet photoemission spectroscopy (XPS/UPS), reflection electron energy loss spectroscopy (REELS) and inverse photoemission spectroscopy of organic-semiconductors (OSCs) deposited onto a Au substrate. Through this analysis system, we are able to obtain the electronic structures of a boron subphthalocyanine chloride:fullerene (SubPC:C60) BHJ and those of the separate OSC/electrode structures (SubPC/Au and C60/Au). Morphology and chemical composition analyses confirm that the original SubPC and C60 electronic structures remain unchanged in the electrodes prepared. Using this technique, we ascertain that the position and area of the nearest peak to the Fermi energy (EF = 0 eV) in the UPS (REELS) spectra of SubPC:C60 BHJ provide information on the highest occupied molecular orbital level (optical band gap) and combination ratio of the materials, respectively. Thus, extracting the adjusted spectrum from the corresponding SubPC:C60 BHJ UPS (REELS) spectrum reveals its electronic structure, equivalent to that of the C60 materials. This novel analytical approach allows complete energy-level determination for each combination ratio by separating its electronic structure information from the BHJ spectrum.
Harnessing redox activity for the formation of uranium tris(imido) compounds
NASA Astrophysics Data System (ADS)
Anderson, Nickolas H.; Odoh, Samuel O.; Yao, Yiyi; Williams, Ursula J.; Schaefer, Brian A.; Kiernicki, John J.; Lewis, Andrew J.; Goshert, Mitchell D.; Fanwick, Phillip E.; Schelter, Eric J.; Walensky, Justin R.; Gagliardi, Laura; Bart, Suzanne C.
2014-10-01
Classically, late transition-metal organometallic compounds promote multielectron processes solely through the change in oxidation state of the metal centre. In contrast, uranium typically undergoes single-electron chemistry. However, using redox-active ligands can engage multielectron reactivity at this metal in analogy to transition metals. Here we show that a redox-flexible pyridine(diimine) ligand can stabilize a series of highly reduced uranium coordination complexes by storing one, two or three electrons in the ligand. These species reduce organoazides easily to form uranium-nitrogen multiple bonds with the release of dinitrogen. The extent of ligand reduction dictates the formation of uranium mono-, bis- and tris(imido) products. Spectroscopic and structural characterization of these compounds supports the idea that electrons are stored in the ligand framework and used in subsequent reactivity. Computational analyses of the uranium imido products probed their molecular and electronic structures, which facilitated a comparison between the bonding in the tris(imido) structure and its tris(oxo) analogue.
Qian, Kang; Baldoví, José J.; Zhang, Yi-Quan; Overgaard, Jacob; Wang, Bing-Wu
2015-01-01
A dysprosium based single-ion magnet is synthesized and characterized by the angular dependence of the single-crystal magnetic susceptibility. Ab initio and effective electrostatic analyses are performed using the molecular structures determined from single crystal X-ray diffraction at 20 K, 100 K and 300 K. Contrary to the common assumption, the results reveal that the structural thermal effects that may affect the energy level scheme and magnetic anisotropy below 100 K are negligible. PMID:29568416
NASA Astrophysics Data System (ADS)
Kalceff, Marion Anne Stevens
The properties of the clean Tungsten (001) surfaces (both (1 x 1) and reconstructed (SQRT.(2 x SQRT.(2)R45(DEGREES) phases) and the effects of the common absorbates Hydrogen and Oxygen have been investigated using the techniques of Low Energy Electron Diffraction, Auger Electron Spectroscopy and Characteristic Electron Energy Loss Spectroscopy. The origins of features observed in Characteristic Energy Loss Spectra, very low energy (<10 eV) Secondary Electron Emission spectra and low energy (<40 eV) Auger spectra, are deduced and compared with recent relevant independently obtained theoretical data and with other, sometimes conflicting, analyses. The use of these spectroscopies as monitors of surface cleanliness is evaluated. In particular a previously unreported emission, observed during Oxygen adsorption, is attributed to an Auger transition involving the Oxygen 2s and 2p adsorbate levels. Experimental conventional LEED and improved resolution very low energy intensity versus energy spectra are compared with Dynamical spectra, calculated using the program package of M. A. Van Hove and S. Y. Tong or calculated by R. O. Jones using a previously determined saturated image barrier, within a spin dependent scattering model, respectively. Structural information about the clean (1 x 1), clean reconstructed (SQRT.(2 x SQRT.(2)R45(DEGREES) and Hydrogen saturated (1 x 1)-H surfaces have been obtained via visual comparison or R factor (E. Zanazzi and F. Jona) analysis of the conventional data. The conventional methods of LEED Intensity data collection are assessed and procedures to improve experimental reproducibility are proposed. From the analysis of the improved resolution data, and with reference to the corresponding set of very low energy electron reflection data also obtained for comparison, conclusions are made about the origins of fine structure observed in the experimental profiles and about the W(001) surface order before and after the temperature dependent reconstruction and during Hydrogen adsorption. Further information about the clean W(001)-(SQRT.(2 x SQRT.(2)R45(DEGREES) surface, including the clean surface transition temperature, the mode of reconstruction, and structural information is determined from the analyses of the LEED intensity pattern and temperature dependence. In particular it is found that the reconstruction involves both vertical and horizontal components of atomic displacement and is dependent upon the surface topography and defect structure. All results are evaluated in comparison with other relevant independent experimental or theoretical analyses, where possible.
Atomic structures and electronic properties of 2H-NbSe2: The impact of Ti doping
NASA Astrophysics Data System (ADS)
Li, Hongping; Chen, Lin; Zhang, Kun; Liang, Jiaqing; Tang, Hua; Li, Changsheng; Liu, Xiaojuan; Meng, Jian; Wang, Zhongchang
2014-09-01
Layered transition metal dichalcogenides have aroused renewed interest as electronic materials, yet their electronic performances could be modified by chemical doping. Here, we perform a systematic first-principles calculation to investigate the effect of Ti doping on atomic structure and electronic properties of the 2H-NbSe2. We consider a total of three possible Ti-doping models and find that both the substitution and intercalated models are chemically preferred with the intercalation model being more favorable than the substitution one. Structural analyses reveal a slight lattice distortion triggered by Ti doping, but the original structure of 2H-NbSe2 is maintained. We also observe an expansion of c axis in the substituted model, which is attributed to the reduced van der Waals interaction arising from the increased Se-Se bond length. Our calculations also predict that the electron transport properties can be enhanced by the Ti doping, especially for the Ti-intercalated 2H-NbSe2, which should be beneficial for the realization of superconductivity. Furthermore, the covalence element is found in the Ti-Se bonds, which is ascribed to the hybridization of Ti 3d and Se 4p orbitals. The findings indicate that doping of transition metals can be regarded as a useful way to tailor electronic states so as to improve electron transport properties of 2H-NbSe2.
Huang, Xintao; Yang, Jucai
2017-12-26
The most stable structures and electronic properties of TmSi n (n = 3-10) clusters and their anions have been probed by using the ABCluster global search technique combined with the PBE, TPSSh, and B3LYP density functional methods. The results revealed that the most stable structures of neutral TmSi n and their anions can be regarded as substituting a Si atom of the ground state structure of Si n + 1 with a Tm atom. The reliable AEAs, VDEs and simulated PES of TmSi n (n = 3-10) are presented. Calculations of HOMO-LUMO gap revealed that introducing Tm atom to Si cluster can improve photochemical reactivity of the cluster. The NPA analyses indicated that the 4f electron of Tm atom in TmSi n (n = 3-10) and their anions do not participate in bonding. The total magnetic moments of TmSi n are mainly provided by the 4f electrons of Tm atom. The dissociation energy of Tm atom from the most stable structure of TmSi n and their anions has been calculated to examine relative stability.
Luger, Peter; Dittrich, Birger; Tacke, Reinhold
2015-09-14
The subjects of this study are the structures and electron densities of the carbon/silicon analogues haloperidol/sila-haloperidol (1a/1b) and venlafaxine/sila-venlafaxine (2a/2b). The parent carbon compounds 1a (an antipsychotic agent) and 2a (an antidepressant) are both in clinical use. For haloperidol/sila-haloperidol, three published structures were studied in more detail: the structures of haloperidol hydrochloride (1a·HCl), haloperidol hydropicrate (1a·HPic) and sila-haloperidol hydrochloride (1b·HCl). For venlafaxine/sila-venlafaxine, the published structures of venlafaxine (2a), venlafaxine hydrochloride (2a·HCl; as orthorhombic (2a·HCl-ortho) and monoclinic polymorph (2a·HCl-mono)) and sila-venlafaxine hydrochloride (2b·HCl) were investigated. Based on these structures, the molecular electron densities were reconstructed by using the invariom formalism. They were further analysed in terms of Bader's quantum theory of atoms in molecules, electrostatic potentials mapped onto electron density isosurfaces and Hirshfeld surfaces. These studies were performed with a special emphasis on the comparison of the corresponding carbon/silicon analogues.
Graphite carbon nitride/boron-doped graphene hybrid for efficient hydrogen generation reaction.
Yang, Liang; Wang, Xin; Wang, Juan; Cui, Guomin; Liu, Daoping
2018-08-24
Metal-free carbon materials, with tuned surface chemical and electronic properties, hold great potential for the hydrogen evolution reaction (HER). We designed and synthesized a CN/BG hybrid electrocatalytic system with a porous and active graphite carbon nitride (CN) layer on boron-doped graphene (BG). A porous CN layer on graphene could provide exposed defects and edges that act as active sites for proton adsorption and reduction. The composition, structure, surface electronics, and chemical properties of this CN/BG hybrid system were tuned to obtain excellent HER activity and stability. Detailed surface chemical, morphological, and structural analyses demonstrated the synergetic effect arising from the electronic interaction between CN and BG, which contributed to the enhanced electrocatalytic performances.
Sekiguchi, Yuki; Hashimoto, Saki; Kobayashi, Amane; Oroguchi, Tomotaka; Nakasako, Masayoshi
2017-09-01
Coherent X-ray diffraction imaging (CXDI) is a technique for visualizing the structures of non-crystalline particles with size in the submicrometer to micrometer range in material sciences and biology. In the structural analysis of CXDI, the electron density map of a specimen particle projected along the direction of the incident X-rays can be reconstructed only from the diffraction pattern by using phase-retrieval (PR) algorithms. However, in practice, the reconstruction, relying entirely on the computational procedure, sometimes fails because diffraction patterns miss the data in small-angle regions owing to the beam stop and saturation of the detector pixels, and are modified by Poisson noise in X-ray detection. To date, X-ray free-electron lasers have allowed us to collect a large number of diffraction patterns within a short period of time. Therefore, the reconstruction of correct electron density maps is the bottleneck for efficiently conducting structure analyses of non-crystalline particles. To automatically address the correctness of retrieved electron density maps, a data analysis protocol to extract the most probable electron density maps from a set of maps retrieved from 1000 different random seeds for a single diffraction pattern is proposed. Through monitoring the variations of the phase values during PR calculations, the tendency for the PR calculations to succeed when the retrieved phase sets converged on a certain value was found. On the other hand, if the phase set was in persistent variation, the PR calculation tended to fail to yield the correct electron density map. To quantify this tendency, here a figure of merit for the variation of the phase values during PR calculation is introduced. In addition, a PR protocol to evaluate the similarity between a map of the highest figure of merit and other independently reconstructed maps is proposed. The protocol is implemented and practically examined in the structure analyses for diffraction patterns from aggregates of gold colloidal particles. Furthermore, the feasibility of the protocol in the structure analysis of organelles from biological cells is examined.
NASA Astrophysics Data System (ADS)
Yuan, H. K.; Kuang, A. L.; Tian, C. L.; Chen, H.
2014-03-01
The structural evolutions and electronic properties of bimetallic Aun-xPtx (n = 2-14; x ⩽ n) clusters are investigated by using the density functional theory (DFT) with the generalized gradient approximation (GGA). The monatomic doping Aun-1Pt clusters are emphasized and compared with the corresponding pristine Aun clusters. The results reveal that the planar configurations are favored for both Aun-1Pt and Aun clusters with size up to n = 13, and the former often employ the substitution patterns based on the structures of the latter. The most stable clusters are Au6 and Au6Pt, which adopt regular planar triangle (D3h) and hexagon-ring (D6h) structures and can be regarded as the preferential building units in designing large clusters. For Pt-rich bimetallic clusters, their structures can be obtained from the substitution of Pt atoms by Au atoms from the Ptn structures, where Pt atoms assemble together and occupy the center yet Au atoms prefer the apex positions showing a segregation effect. With respect to pristine Au clusters, AunPt clusters exhibit somewhat weaker and less pronounced odd-even oscillations in the highest occupied and lowest unoccupied molecular-orbital gaps (HOMO-LUMO gap), electron affinity (EA), and ionization potential (IP) due to the partially released electron pairing effect. The analyses of electronic structure indicate that Pt atoms in AuPt clusters would delocalize their one 6s and one 5d electrons to contribute the electronic shell closure. The sp-d hybridizations as well as the d-d interactions between the host Au and dopant Pt atoms result in the enhanced stabilities of AuPt clusters.
NASA Astrophysics Data System (ADS)
Koizumi, Akihisa; Kubo, Yasunori; Motoyama, Gaku; Yamamura, Tomoo; Sakurai, Yoshiharu
2018-06-01
We have measured directional Compton profiles on the (001) plane in URu2Si2 single crystal at several temperatures. Two-dimensional electron occupation number densities (2D-EONDs) were obtained from the profiles through electron momentum reconstruction and Lock-Crisp-West folding analyses. We have also performed band calculations based on 5f-electron itinerant and localized models and derived theoretical 2D-EONDs for comparison. The experimental 2D-EOND at 300 K is well described by the localized model, and the 2D-EOND at 10 K is consistent with the theoretical one based on the itinerant model. The difference between 2D-EONDs at 30 and 100 K reflects a gradual change in the electronic structure, which reveals some of the crossover phenomena from localized to itinerant states. The change from localized to itinerant states is also reflected in a B(r) function, which is obtained in the reconstruction analysis and is an autocorrelation function of the wave function in the position space. The process by which the electronic structure in URu2Si2 changes is demonstrated through a series of experimental results.
Darling, Sven; Theilade, Jørgen; Birch-Andersen, Aksel
1972-01-01
Cells of Saccharomyces cerevisiae and Hansenula anomala were digested with snail enzyme under conditions yielding prospheroplasts. Surrounding envelopes were isolated after lysis of prospheroplasts in distilled water. The envelope material was embedded and sectioned for electron microscopy, and thin, hollow structures still retaining the elongated form of the original cells were seen. The envelopes were of low electron density in sections stained with uranyl magnesium acetate and lead citrate, but were more electron-dense when stained with phosphotungstic acid. Shadowed preparations of prospheroplast envelopes revealed structures resembling ghosts. These “ghosts” were similar to the original cells in form and size but seemed to be very thin. Varying numbers of anular structures (bud scars) were found on them. Chemical analyses of the envelope indicated that an alkali-soluble glucan was a major constituent. The results show that the prospheroplast envelope is part of the original cell wall of the yeast and is located in close apposition to the cytoplasmic membrane. Images PMID:4552997
Hydrogen-induced morphotropic phase transformation of single-crystalline vanadium dioxide nanobeams.
Hong, Woong-Ki; Park, Jong Bae; Yoon, Jongwon; Kim, Bong-Joong; Sohn, Jung Inn; Lee, Young Boo; Bae, Tae-Sung; Chang, Sung-Jin; Huh, Yun Suk; Son, Byoungchul; Stach, Eric A; Lee, Takhee; Welland, Mark E
2013-04-10
We report a morphotropic phase transformation in vanadium dioxide (VO2) nanobeams annealed in a high-pressure hydrogen gas, which leads to the stabilization of metallic phases. Structural analyses show that the annealed VO2 nanobeams are hexagonal-close-packed structures with roughened surfaces at room temperature, unlike as-grown VO2 nanobeams with the monoclinic structure and with clean surfaces. Quantitative chemical examination reveals that the hydrogen significantly reduces oxygen in the nanobeams with characteristic nonlinear reduction kinetics which depend on the annealing time. Surprisingly, the work function and the electrical resistance of the reduced nanobeams follow a similar trend to the compositional variation due mainly to the oxygen-deficiency-related defects formed at the roughened surfaces. The electronic transport characteristics indicate that the reduced nanobeams are metallic over a large range of temperatures (room temperature to 383 K). Our results demonstrate the interplay between oxygen deficiency and structural/electronic phase transitions, with implications for engineering electronic properties in vanadium oxide systems.
NASA Technical Reports Server (NTRS)
Amundsen, R. M.; Feldhaus, W. S.; Little, A. D.; Mitchum, M. V.
1995-01-01
Electronic integration of design and analysis processes was achieved and refined at Langley Research Center (LaRC) during the development of an optical bench for a laser-based aerospace experiment. Mechanical design has been integrated with thermal, structural and optical analyses. Electronic import of the model geometry eliminates the repetitive steps of geometry input to develop each analysis model, leading to faster and more accurate analyses. Guidelines for integrated model development are given. This integrated analysis process has been built around software that was already in use by designers and analysis at LaRC. The process as currently implemented used Pro/Engineer for design, Pro/Manufacturing for fabrication, PATRAN for solid modeling, NASTRAN for structural analysis, SINDA-85 and P/Thermal for thermal analysis, and Code V for optical analysis. Currently, the only analysis model to be built manually is the Code V model; all others can be imported for the Pro/E geometry. The translator from PATRAN results to Code V optical analysis (PATCOD) was developed and tested at LaRC. Directions for use of the translator or other models are given.
Sander, Michael; Hofstetter, Thomas B; Gorski, Christopher A
2015-05-19
Redox-active minerals are ubiquitous in the environment and are involved in numerous electron transfer reactions that significantly affect biogeochemical processes and cycles as well as pollutant dynamics. As a consequence, research in different scientific disciplines is devoted to elucidating the redox properties and reactivities of minerals. This review focuses on the characterization of mineral redox properties using electrochemical approaches from an applied (bio)geochemical and environmental analytical chemistry perspective. Establishing redox equilibria between the minerals and working electrodes is a major challenge in electrochemical measurements, which we discuss in an overview of traditional electrochemical techniques. These issues can be overcome with mediated electrochemical analyses in which dissolved redox mediators are used to increase the rate of electron transfer and to facilitate redox equilibration between working electrodes and minerals in both amperometric and potentiometric measurements. Using experimental data on an iron-bearing clay mineral, we illustrate how mediated electrochemical analyses can be employed to derive important thermodynamic and kinetic data on electron transfer to and from structural iron. We summarize anticipated methodological advancements that will further contribute to advance an improved understanding of electron transfer to and from minerals in environmentally relevant redox processes.
Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles
NASA Astrophysics Data System (ADS)
Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.
2018-04-01
We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.
Structure analysis of Si(111)-7 × 7 reconstructed surface by transmission electron diffraction
NASA Astrophysics Data System (ADS)
Takayanagi, Kunio; Tanishiro, Yasumasa; Takahashi, Shigeki; Takahashi, Masaetsu
1985-12-01
The atomic structure of the 7 × 7 reconstructed Si(111) surface has been analysed by ultra-high vacuum (UHV) transmission electron diffraction (TED). A possible projected structure of the surface is deduced from the intensity distribution in TED patterns of normal electron incidence and from Patterson and Fourier syntheses of the intensities. A new three-dimensional structure model, the DAS model, is proposed: The model consists of 12 adatoms arranged locally in the 2 × 2 structure, a stacking fault layer and a layer with a vacancy at the corner and 9 dimers on the sides of each of the two triangular subcells of the 7 × 7 unit cell. The silicon layers in one subcell are stacked with the normal sequence, CcAaB + adatoms, while those in the other subcell are stacked with a faulted sequence, CcAa/C + adatoms. The model has only 19 dangling bonds, the smallest number among models so far proposed. Previously proposed models are tested quantitatively by the TED intensity. Advantages and limits of the TED analysis are discussed.
THOR Turbulence Electron Analyser: TEA
NASA Astrophysics Data System (ADS)
Fazakerley, Andrew; Samara, Marilia; Hancock, Barry; Wicks, Robert; Moore, Tom; Rust, Duncan; Jones, Jonathan; Saito, Yoshifumi; Pollock, Craig; Owen, Chris; Rae, Jonny
2017-04-01
Turbulence Heating ObserveR (THOR) is the first mission ever flown in space dedicated to plasma turbulence. The Turbulence Electron Analyser (TEA) will measure the plasma electron populations in the mission's Regions of Interest. It will collect a 3D electron velocity distribution with cadences as short as 5 ms. The instrument will be capable of measuring energies up to 30 keV. TEA consists of multiple electrostatic analyser heads arranged so as to measure electrons arriving from look directions covering the full sky, i.e. 4 pi solid angle. The baseline concept is similar to the successful FPI-DES instrument currently operating on the MMS mission. TEA is intended to have a similar angular resolution, but a larger geometric factor. In comparison to earlier missions, TEA improves on the measurement cadence. For example, MMS FPI-DES routinely operates at 30 ms cadence. The objective of measuring distributions at rates as fast as 5 ms is driven by the mission's scientific requirements to resolve electron gyroscale size structures, where plasma heating and fluctuation dissipation is predicted to occur. TEA will therefore be capable of making measurements of the evolution of distribution functions across thin (a few km) current sheets travelling past the spacecraft at up to 600 km/s, of the Power Spectral Density of fluctuations of electron moments and of distributions fast enough to match frequencies with waves expected to be dissipating turbulence (e.g. with 100 Hz whistler waves). A novel capability to time tag individual electron events during short intervals for the purposes of ground analysis of wave-particle interactions is also planned.
Au functionalized ZnO rose-like hierarchical structures and their enhanced NO2 sensing performance
NASA Astrophysics Data System (ADS)
Shingange, K.; Swart, H. C.; Mhlongo, G. H.
2018-04-01
Herein, we present ZnO rose-like hierarchical nanostructures employed as support to Au nanoparticles to produce Au functionalized three dimensional (3D) ZnO hierarchical nanostructures (Au/ZnO) for NO2 detection using a microwave-assisted method. Comparative analysis of NO2 sensing performance between the pristine ZnO and Au/ZnO rose-like structures at 300 °C revealed improved NO2 response and rapid response-recovery times with Au incorporation owing to a combination of high surface accessibility induced by hierarchical nanostructure design and catalytic activity of the small Au nanoparticles. Structural and optical analyses acquired from X-ray diffraction, scanning electron microscopy, transmission electron microscope and photoluminescence spectroscopy were also performed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sachan, Ritesh; Cooper, Valentino R.; Liu, Bin
2016-12-19
Atomically disordered oxides have attracted significant attention in recent years due to the possibility of enhanced ionic conductivity. However, the correlation between atomic disorder, corresponding electronic structure, and the resulting oxygen diffusivity is not well understood. The disordered variants of the ordered pyrochlore structure in gadolinium titanate (Gd 2Ti 2O 7) are seen as a particularly interesting prospect due to intrinsic presence of a vacant oxygen site in the unit atomic structure, which could provide a channel for fast oxygen conduction. In this paper, we provide insights into the subangstrom scale on the disordering-induced variations in the local atomic environmentmore » and its effect on the electronic structure in high-energy ion irradiation-induced disordered nanochannels, which can be utilized as pathways for fast oxygen ion transport. With the help of an atomic plane-by-plane-resolved analyses, the work shows how the presence of various types of TiO x polyhedral that exist in the amorphous and disordered crystalline phase modify the electronic structures relative to the ordered pyrochlore phase in Gd 2Ti 2O 7. Finally, the correlated molecular dynamics simulations on the disordered structures show a remarkable enhancement in oxygen diffusivity as compared with ordered pyrochlore lattice and make that a suitable candidate for applications requiring fast oxygen conduction.« less
Electronic-projecting Moire method applying CBR-technology
NASA Astrophysics Data System (ADS)
Kuzyakov, O. N.; Lapteva, U. V.; Andreeva, M. A.
2018-01-01
Electronic-projecting method based on Moire effect for examining surface topology is suggested. Conditions of forming Moire fringes and their parameters’ dependence on reference parameters of object and virtual grids are analyzed. Control system structure and decision-making subsystem are elaborated. Subsystem execution includes CBR-technology, based on applying case base. The approach related to analysing and forming decision for each separate local area with consequent formation of common topology map is applied.
Wavefunction Properties and Electronic Band Structures of High-Mobility Semiconductor Nanosheet MoS2
NASA Astrophysics Data System (ADS)
Baik, Seung Su; Lee, Hee Sung; Im, Seongil; Choi, Hyoung Joon; Ccsaemp Team; Edl Team
2014-03-01
Molybdenum disulfide (MoS2) nanosheet is regarded as one of the most promising alternatives to the current semiconductors due to its significant band-gap and electron-mobility enhancement upon exfoliating. To elucidate such thickness-dependent properties, we have studied the electronic band structures of bulk and monolayer MoS2 by using the first-principles density-functional method as implemented in the SIESTA code. Based on the wavefunction analyses at the conduction band minimum (CBM) points, we have investigated possible origins of mobility difference between bulk and monolayer MoS2. We provide formation energies of substitutional impurities at the Mo and S sites, and discuss feasible electron sources which may induce a significant difference in the carrier lifetime. This work was supported by NRF of Korea (Grant Nos. 2009-0079462 and 2011-0018306), Nano-Material Technology Development Program (2012M3a7B4034985), and KISTI supercomputing center (Project No. KSC-2013-C3-008). Center for Computational Studies of Advanced Electronic Material Properties.
NASA Astrophysics Data System (ADS)
Krishnan, R. Reshmi; Sanjeev, Ganesh; Prabhu, Radhakrishna; Pillai, V. P. Mahadevan
2018-02-01
Undoped and Cu-doped In2O3 films were prepared by radiofrequency magnetron sputtering technique. The effects of Cu doping and high-energy electron beam irradiation on the structural and optical properties of as-prepared films were investigated using techniques such as x-ray diffraction, x-ray photoelectron spectroscopy (XPS), lateral scanning electron microscopic image analysis, energy-dispersive x-ray (EDX) spectroscopy, micro-Raman, and ultraviolet-visible (UV-vis) spectroscopy. Moderate doping of Cu in In2O3 enhanced the intensity of (222) peak, indicating alignment of crystalline grains along <111>. Electron beam irradiation promoted orientation of crystalline grains along <111> in undoped and moderately Cu-doped films. EDX spectroscopic and XPS analyses revealed incorporation of Cu2+ ions in the lattice. The transmittance of Cu-doped films decreased with e-beam irradiation. Systematic reduction of the bandgap energy with increase in Cu doping concentration was seen in unirradiated and electron-beam-irradiated films.
Zhang, Tian; Ma, Zhongyun; Wang, Linjun; Xi, Jinyang; Shuai, Zhigang
2014-01-01
Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states. The two possible conformations of one type of DDSAM on a metal surface reveal a strong difference in the work-function modification and the electron/hole tunnelling barriers. Fermi-level pinning is found to be a key factor to understand the interface electronic properties. PMID:24615153
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fabbro, Maria T.; Department of Inorganic and Organic Chemistry, Universitat Jaume I, Campus del Riu Sec, E-12071 Castellón; Gracia, Lourdes
Ag{sub 2}CrO{sub 4} microcrystals were synthesized using the co-precipitation method. These microcrystals were characterized through X-ray diffraction (XRD) with Rietveld analysis, field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) with energy-dispersive spectroscopy (EDS), micro-Raman (MR). XRD patterns and Rietveld refinement data showed that the material exhibits an orthorhombic structure without any deleterious phases. FE-SEM and TEM micrographs revealed the morphology and the growth of Ag nanoparticles on Ag{sub 2}CrO{sub 4} microcrystals during electron beam irradiation. These events were directly monitored in real-time. Their optical properties were investigated using ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy that allowed the calculation of themore » optical band gap energy. Theoretical analyses based on the density functional theory level indicate that the incorporation of electrons is responsible for structural modifications and formation of defects on the [AgO{sub 6}] and [AgO{sub 4}] clusters, generating ideal conditions for the growth of Ag nanoparticles. - Graphical abstract: Theoretical representation of the Ag{sub 2}CrO{sub 4} orthorhombic structure. Display Omitted - Highlights: • The Ag{sub 2}CrO{sub 4} microcrystals indicate an orthorhombic structure. • The formation of Ag{sup 0} promotes Ag-nanoparticle growth on the surface of the Ag{sub 2}CrO{sub 4}. • Electron irradiation of the material induces the formation of Ag vacancies.« less
Mizani, M A; Baykal, N
2007-12-01
Paper-based privacy policies fail to resolve the new changes posed by electronic healthcare. Protecting patient privacy through electronic systems has become a serious concern and is the subject of several recent studies. The shift towards an electronic privacy policy introduces new ethical challenges that cannot be solved merely by technical measures. Structured Patient Privacy Policy (S3P) is a software tool assuming an automated electronic privacy policy in an electronic healthcare setting. It is designed to simulate different access levels and rights of various professionals involved in healthcare in order to assess the emerging ethical problems. The authors discuss ethical issues concerning electronic patient privacy policies that have become apparent during the development and application of S3P.
Baker, T. S.; Olson, N. H.; Fuller, S. D.
1999-01-01
Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-Å) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical. PMID:10585969
Morphological classification of bioaerosols from composting using scanning electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tamer Vestlund, A.; FIRA International Ltd., Maxwell Road, Stevenage, Herts SG1 2EW; Al-Ashaab, R.
2014-07-15
Highlights: • Bioaerosols were captured using the filter method. • Bioaerosols were analysed using scanning electron microscope. • Bioaerosols were classified on the basis of morphology. • Single small cells were found more frequently than aggregates and larger cells. • Smaller cells may disperse further than heavier aggregate structures. - Abstract: This research classifies the physical morphology (form and structure) of bioaerosols emitted from open windrow composting. Aggregation state, shape and size of the particles captured are reported alongside the implications for bioaerosol dispersal after release. Bioaerosol sampling took place at a composting facility using personal air filter samplers. Samplesmore » were analysed using scanning electron microscopy. Particles were released mainly as small (<1 μm) single, spherical cells, followed by larger (>1 μm) single cells, with aggregates occurring in smaller proportions. Most aggregates consisted of clusters of 2–3 particles as opposed to chains, and were <10 μm in size. No cells were attached to soil debris or wood particles. These small single cells or small aggregates are more likely to disperse further downwind from source, and cell viability may be reduced due to increased exposure to environmental factors.« less
Reconstitution of Homomeric GluA2flop Receptors in Supported Lipid Membranes
Baranovic, Jelena; Ramanujan, Chandra S.; Kasai, Nahoko; Midgett, Charles R.; Madden, Dean R.; Torimitsu, Keiichi; Ryan, John F.
2013-01-01
AMPA receptors (AMPARs) are glutamate-gated ion channels ubiquitous in the vertebrate central nervous system, where they mediate fast excitatory neurotransmission and act as molecular determinants of memory formation and learning. Together with detailed analyses of individual AMPAR domains, structural studies of full-length AMPARs by electron microscopy and x-ray crystallography have provided important insights into channel assembly and function. However, the correlation between the structure and functional states of the channel remains ambiguous particularly because these functional states can be assessed only with the receptor bound within an intact lipid bilayer. To provide a basis for investigating AMPAR structure in a membrane environment, we developed an optimized reconstitution protocol using a receptor whose structure has previously been characterized by electron microscopy. Single-channel recordings of reconstituted homomeric GluA2flop receptors recapitulate key electrophysiological parameters of the channels expressed in native cellular membranes. Atomic force microscopy studies of the reconstituted samples provide high-resolution images of membrane-embedded full-length AMPARs at densities comparable to those in postsynaptic membranes. The data demonstrate the effect of protein density on conformational flexibility and dimensions of the receptors and provide the first structural characterization of functional membrane-embedded AMPARs, thus laying the foundation for correlated structure-function analyses of the predominant mediators of excitatory synaptic signals in the brain. PMID:23382380
NASA Astrophysics Data System (ADS)
Jeong, Jong Seok; Wu, Wangzhou; Topsakal, Mehmet; Yu, Guichuan; Sasagawa, Takao; Greven, Martin; Mkhoyan, K. Andre
2018-05-01
We report the decomposition of L a2 -xS rxCu O4 into L a2O3 and Cu nanoparticles in ultrahigh vacuum, observed by in situ heating experiments in a transmission electron microscope. The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150 °C and is considerably expedited in the temperature range of 350 °C-450 °C. Two major resultant solid phases are identified as metallic Cu and L a2O3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, L a2O3 phases are further identified to be derivatives of a fluorite structure—fluorite, pyrochlore, and (distorted) bixbyite—characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and La M4 ,5 EELS edges are reported for these structures, along with simulated O K x-ray absorption near-edge structure. The resultant Cu nanoparticles and L a2O3 phases remain unchanged after cooling to room temperature.
NASA Astrophysics Data System (ADS)
Kim, Jaehyun; Kang, Jiyoung; Nishigami, Hiroshi; Kino, Hiori; Tateno, Masaru
2018-03-01
Hydrogenases catalyze both the dissociation and production of dihydrogen (H2). Most hydrogenases are inactivated rapidly and reactivated slowly (in vitro), in the presence of dioxygen (O2) and H2, respectively. However, membrane-bound [NiFe] hydrogenases (MBHs) sustain their activity even together with O2, which is termed "O2 tolerance". In previous experimental analyses, an MBH was shown to include a hydroxyl ion (OH-) bound to an Fe of the super-oxidized [4Fe-3S]5+ cluster in the proximity of the [NiFe] catalytic cluster. In this study, the functional role of the OH- in the O2 tolerance was investigated by ab initio electronic structure calculation of the [4Fe-3S] proximal cluster. The analysis revealed that the OH- significantly altered the electronic structure, thereby inducing the delocalization of the lowest unoccupied molecular orbital (LUMO) toward the [NiFe] catalytic cluster, which may intermediate the electron transfer between the catalytic and proximal clusters. This can promote the O2-tolerant catalytic cycle in the hydrogenase reaction.
Saito, Norio; Cordier, Stéphane; Lemoine, Pierric; Ohsawa, Takeo; Wada, Yoshiki; Grasset, Fabien; Cross, Jeffrey S; Ohashi, Naoki
2017-06-05
The electronic and crystal structures of Cs 2 [Mo 6 X 14 ] (X = Cl, Br, I) cluster-based compounds were investigated by density functional theory (DFT) simulations and experimental methods such as powder X-ray diffraction, ultraviolet-visible spectroscopy, and X-ray photoemission spectroscopy (XPS). The experimentally determined lattice parameters were in good agreement with theoretically optimized ones, indicating the usefulness of DFT calculations for the structural investigation of these clusters. The calculated band gaps of these compounds reproduced those experimentally determined by UV-vis reflectance within an error of a few tenths of an eV. Core-level XPS and effective charge analyses indicated bonding states of the halogens changed according to their sites. The XPS valence spectra were fairly well reproduced by simulations based on the projected electron density of states weighted with cross sections of Al K α , suggesting that DFT calculations can predict the electronic properties of metal-cluster-based crystals with good accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCormac, Kathleen; Byrd, Ian; Brannen, Rodney
We prepared highly porous Si/TiO 2 composite nanofibres using a unique sulphur-templating method combined with electrospinning. The structure, morphology, surface area, phase and composition of these nanofibres were characterized using Raman spectroscopy, scanning electron microscopy, powder X-ray diffraction, surface area analyser and thermogravimetric analyser. The specific surface area of Si/TiO 2 porous NFs is as large as 387m 2g -1, whose silicon capacity can be maintained above 1580mAhg -1 in 180 cycles.
Electron microscopy study of gold nanoparticles deposited on transition metal oxides.
Akita, Tomoki; Kohyama, Masanori; Haruta, Masatake
2013-08-20
Many researchers have investigated the catalytic performance of gold nanoparticles (GNPs) supported on metal oxides for various catalytic reactions of industrial importance. These studies have consistently shown that the catalytic activity and selectivity depend on the size of GNPs, the kind of metal oxide supports, and the gold/metal oxide interface structure. Although researchers have proposed several structural models for the catalytically active sites and have identified the specific electronic structures of GNPs induced by the quantum effect, recent experimental and theoretical studies indicate that the perimeter around GNPs in contact with the metal oxide supports acts as an active site in many reactions. Thus, it is of immense importance to investigate the detailed structures of the perimeters and the contact interfaces of gold/metal oxide systems by using electron microscopy at an atomic scale. This Account describes our investigation, at the atomic scale using electron microscopy, of GNPs deposited on metal oxides. In particular, high-resolution transmission electron microscopy (HRTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) are valuable tools to observe local atomic structures, as has been successfully demonstrated for various nanoparticles, surfaces, and material interfaces. TEM can be applied to real powder catalysts as received without making special specimens, in contrast to what is typically necessary to observe bulk materials. For precise structure analyses at an atomic scale, model catalysts prepared by using well-defined single-crystalline substrates are also adopted for TEM observations. Moreover, aberration-corrected TEM, which has high spatial resolution under 0.1 nm, is a promising tool to observe the interface structure between GNPs and metal oxide supports including oxygen atoms at the interfaces. The oxygen atoms in particular play an important role in the behavior of gold/metal oxide interfaces, because they may participate in catalytic reaction steps. Detailed information about the interfacial structures between GNPs and metal oxides provides valuable structure models for theoretical calculations which can elucidate the local electronic structure effective for activating a reactant molecule. Based on our observations with HRTEM and HAADF-STEM, we report the detailed structure of gold/metal oxide interfaces.
Microprobe studies of microtomed particles of white druse salts in shergottite EETA 79001
NASA Technical Reports Server (NTRS)
Lindstrom, D. J.
1991-01-01
The white druse material in Antarctic shergottite EETA 79001 has attracted much attention as a possible sample fo Martian aqueous deposits. Instrumental Neutron Activation Analysis (INAA) was used to determine trace element analyses of small particles of this material obtained by handpicking of likely grains from broken surfaces of the meteorite. Electron microprobe work was attempted on grain areas as large as 150x120 microns. Backscattered electron images show considerable variations in brightness, and botryoidal structures were observed. Microprobe analyses showed considerable variability both within single particles and between different particles. Microtomed surfaces of small selected particles were shown to be very useful in obtaining information on the texture and composition of rare lithologies like the white druse of EETA 79001. This material is clearly heterogeneous on all distance scales, so a large number of further analyses will be required to characterize it.
Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods.
Brayner, Roberta; Yéprémian, Claude; Djediat, Chakib; Coradin, Thibaud; Herbst, Fréderic; Livage, Jacques; Fiévet, Fernand; Couté, Alain
2009-09-01
Common Anabaena and Calothrix cyanobacteria and Klebsormidium green algae are shown to form intracellularly akaganeite beta-FeOOH nanorods of well-controlled size and unusual morphology at room temperature. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy X-ray energy dispersive spectrometry (SEM-EDS) analyses are used to investigate particle structure, size, and morphology. A mechanism involving iron-siderophore complex formation is proposed and compared with iron biomineralization in magnetotactic bacteria.
NASA Astrophysics Data System (ADS)
Galy, Jean; Matar, Samir F.
2017-02-01
The stereochemistry of ns2np4 (n = 4, 5) lone pair LP characterizing noble gas Kr and Xe (labeled M*) in M*F2 difluorides is examined within coherent crystal chemistry and ab initio visualizations. M*2+ in such oxidation state brings three lone pairs (E) and difluorides are formulated M*F2E3. The analyses use electron localization function (ELF) obtained within density functional theory calculations showing the development of the LP triplets whirling {E3} quantified in the relevant chemical systems. Detailed ELF data analyses allowed showing that in α KrF2E3 and isostructural XeF2E3 difluorides the three E electronic clouds merge or hybridize into a torus and adopt a perfect gyration circle with an elliptical section, while in β KrF2 the network architecture deforms the whole torus into an ellipsoid shape. Original precise metrics are provided for the torus in the different compounds under study. In KrF2 the geometric changes upon β → α phase transition is schematized and mechanisms for the transformation with temperature or pressure are proposed. The results are further highlighted by electronic band structure calculations which show similar features of equal band gaps of 3 eV in both α and β KrF2 and a reorganization of frontier orbitals due to the different orientations of the F-Kr-F linear molecule in the two tetragonal structures.
On the multi-reference nature of plutonium oxides: PuO22+, PuO2, PuO3 and PuO2(OH)2.
Boguslawski, Katharina; Réal, Florent; Tecmer, Paweł; Duperrouzel, Corinne; Gomes, André Severo Pereira; Legeza, Örs; Ayers, Paul W; Vallet, Valérie
2017-02-08
Actinide-containing complexes present formidable challenges for electronic structure methods due to the large number of degenerate or quasi-degenerate electronic states arising from partially occupied 5f and 6d shells. Conventional multi-reference methods can treat active spaces that are often at the upper limit of what is required for a proper treatment of species with complex electronic structures, leaving no room for verifying their suitability. In this work we address the issue of properly defining the active spaces in such calculations, and introduce a protocol to determine optimal active spaces based on the use of the Density Matrix Renormalization Group algorithm and concepts of quantum information theory. We apply the protocol to elucidate the electronic structure and bonding mechanism of volatile plutonium oxides (PuO 3 and PuO 2 (OH) 2 ), species associated with nuclear safety issues for which little is known about the electronic structure and energetics. We show how, within a scalar relativistic framework, orbital-pair correlations can be used to guide the definition of optimal active spaces which provide an accurate description of static/non-dynamic electron correlation, as well as to analyse the chemical bonding beyond a simple orbital model. From this bonding analysis we are able to show that the addition of oxo- or hydroxo-groups to the plutonium dioxide species considerably changes the π-bonding mechanism with respect to the bare triatomics, resulting in bent structures with a considerable multi-reference character.
NASA Astrophysics Data System (ADS)
Arjunan, V.; Thirunarayanan, S.; Mohan, S.
2018-04-01
The stable conformer of 4-bromoisophthalic acid (BIPA) has been identified by potential energy profile analysis. All the structural parameters of 4-bromoisophthalic acid are determined by B3LYP method with 6-311++G**, 6-31G** and cc-pVTZ basis sets. The fundamental vibrations are analysed with the use of FT-IR (4000-400 cm-1) and FT-Raman (4000-100 cm-1) spectra. The harmonic vibrational frequencies are theoretically calculated and compared with experimental FTIR and FT-Raman frequencies. The 1H and 13C NMR spectra have been analysed and compared with theoretical 1H and 13C NMR chemical shifts calculated by gauge independent atomic orbital (GIAO) method. The electronic properties, such as HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) energies are determined by B3LYP/cc-pVTZ method. The electron density distribution and site of chemical reactivity of BIPA molecule have been obtained by mapping electron density isosurface with molecular electrostatic potential (MEP). Stability of the molecules arising from hyperconjugative interactions, charge delocalizations have been analysed by using natural bond orbital (NBO) analysis. The thermodynamic properties and atomic natural charges of the compound are analysed and the reactive sites of the molecule are identified. The global and local reactivity descriptors are evaluated to analyse the chemical reactivity and site selectivity of molecule through Fukui functions.
Du, Jiguang; Sun, Xiyuan; Jiang, Gang
2016-01-01
The interaction natures between Pu and different ligands in several plutonyl (VI) complexes are investigated by performing topological analyses of electron density. The geometrical structures in both gaseous and aqueous phases are obtained with B3LYP functional, and are generally in agreement with available theoretical and experimental results when combined with all-electron segmented all-electron relativistic contracted (SARC) basis set. The Pu–Oyl bond orders show significant linear dependence on bond length and the charge of oxygen atoms in plutonyl moiety. The closed-shell interactions were identified for Pu-Ligand bonds in most complexes with quantum theory of atoms in molecules (QTAIM) analyses. Meanwhile, we found that some Pu–Ligand bonds, like Pu–OH−, show weak covalent. The interactive nature of Pu–ligand bonds were revealed based on the interaction quantum atom (IQA) energy decomposition approach, and our results indicate that all Pu–Ligand interactions is dominated by the electrostatic attraction interaction as expected. Meanwhile it is also important to note that the quantum mechanical exchange-correlation contributions can not be ignored. By means of the non-covalent interaction (NCI) approach it has been found that some weak and repulsion interactions existed in plutonyl(VI) complexes, which can not be distinguished by QTAIM, can be successfully identified. PMID:27077844
NASA Astrophysics Data System (ADS)
Nakamura, Atsutomo; Ukita, Masaya; Shimoda, Naofumi; Furushima, Yuho; Toyoura, Kazuaki; Matsunaga, Katsuyuki
2017-06-01
First principles calculations were performed to understand an electronic origin of high ductility in silver chloride (AgCl) with the rock salt structure. From calculations of generalised stacking fault energies for different slip systems, it was found that only the {1 1 0}? slip system is favourably activated in sodium chloride (NaCl) with the same rock salt structure, whereas AgCl shows three kinds of possible slip systems along the ? direction on the {0 0 1}, {1 1 0}, and {1 1 1} planes, which is in excellent agreement with experiment. Detailed analyses of the electronic structures across slip planes showed that the more covalent character of bonding of Ag-Cl than Na-Cl tends to make the slip motion energetically favourable. It was also surprising to find out that strong Ag-Ag covalent bonds across the slip plane are formed in the {0 0 1}〈1 1 0〉 slip system in AgCl, which makes it possible to activate the multiple slip systems in AgCl.
Kawamoto, Akihiro; Matsuo, Lisa; Kato, Takayuki; Yamamoto, Hiroki
2016-01-01
ABSTRACT Mycoplasma pneumoniae, a pathogenic bacterium, glides on host surfaces using a unique mechanism. It forms an attachment organelle at a cell pole as a protrusion comprised of knoblike surface structures and an internal core. Here, we analyzed the three-dimensional structure of the organelle in detail by electron cryotomography. On the surface, knoblike particles formed a two-dimensional array, albeit with limited regularity. Analyses using a nonbinding mutant and an antibody showed that the knoblike particles correspond to a naplike structure that has been observed by negative-staining electron microscopy and is likely to be formed as a complex of P1 adhesin, the key protein for binding and gliding. The paired thin and thick plates feature a rigid hexagonal lattice and striations with highly variable repeat distances, respectively. The combination of variable and invariant structures in the internal core and the P1 adhesin array on the surface suggest a model in which axial extension and compression of the thick plate along a rigid thin plate is coupled with attachment to and detachment from the substrate during gliding. PMID:27073090
NASA Astrophysics Data System (ADS)
Malan, Frederick P.; Singleton, Eric; van Rooyen, Petrus H.; Conradie, Jeanet; Landman, Marilé
2017-11-01
The synthesis, density functional theory (DFT) conformational study and structure analysis of novel two-legged piano stool Ni N-heterocyclic carbene (NHC) complexes and square planar Ni bis-N-heterocyclic carbene complexes, all containing either bromido- or thiophenolato ligands, are described. [CpNi(SPh)(NHC)] complexes were obtained from the neutral 18-electron [CpNiBr(NHC)] complexes by substitution of a bromido ligand with SPh, using NEt3 as a base to abstract the proton of HSPh. The 16-electron biscarbene complexes [Ni(SPh)2{NHC}2] were isolated when an excess of HSPh was added to the reaction mixture. Biscarbene complexes of the type [NiBr2(NHC)2] were obtained in the reaction of NiCp2 with a slight excess of the specific imidazolium bromide salt. The molecular and electronic structures of the mono- and bis-N-heterocyclic carbene complexes have been analysed using single crystal diffraction and density functional theory (DFT) calculations, to give insight into their structural properties.
Assessment of technical condition of concrete pavement by the example of district road
NASA Astrophysics Data System (ADS)
Linek, M.; Nita, P.; Żebrowski, W.; Wolka, P.
2018-05-01
The article presents the comprehensive assessment of concrete pavement condition. Analyses included the district road located in the swietokrzyskie province, used for 11 years. Comparative analyses were conducted twice. The first analysis was carried out after 9 years of pavement operation, in 2015. In order to assess the extent of pavement degradation, the tests were repeated in 2017. Within the scope of field research, the traffic intensity within the analysed road section was determined. Visual assessment of pavement condition was conducted, according to the guidelines included in SOSN-B. Visual assessment can be extended by ground-penetrating radar measurements which allow to provide comprehensive assessment of the occurred structure changes within its entire thickness and length. The assessment included also performance parameters, i.e. pavement regularity, surface roughness and texture. Extension of test results by the assessment of changes in internal structure of concrete composite and structure observations by means of Scanning Electron Microscope allow for the assessment of parameters of internal structure of hardened concrete. Supplementing the observations of internal structure by means of computed tomography scan provides comprehensive information of possible discontinuities and composite structure. According to the analysis of the obtained results, conclusions concerning the analysed pavement condition were reached. It was determined that the pavement is distinguished by high performance parameters, its condition is good and it does not require any repairs. Maintenance treatment was suggested in order to extend the period of proper operation of the analysed pavement.
NASA Astrophysics Data System (ADS)
Phan, The-Long; Ho, T. A.; Dang, N. T.; Nguyen, Manh Cuong; Dao, Van-Duong
2017-07-01
We prepared well-aligned Zn1-x Mn x O:yP nanocolumns (x = 0-0.02, and y = 0 and 1 mol%) on SiO2/Si(0 0 1) substrates by using pulsed laser deposition (PLD) and then investigated their electronic structure and optical and magnetic properties at room temperature. The analyses of x-ray photoelectron and x-ray absorption fine structure spectra revealed Mn2+ and/or P ions existing in nanocolumns, where Mn2+ ions are situated in the Zn2+ site of the ZnO-wurtzite structure. Although the incorporation of Mn2+ and/or P ions did not form secondary phases, as confirmed by x-ray and electron diffraction patterns, more lattice defects were created, and consequently changed the band-gap energy as well as the electron-phonon interactions in the nanocolumns. Magnetization versus magnetic-field measurements revealed that all the samples exhibited FM order. In particular, the (Mn, P) co-doping with x = 0.02 and y = 1 remarkably enhanced the magnetic moment up to 2.92 µ B/Mn. Based on the results obtained from analyzing the electronic structures, UV-Vis absorption and resonant Raman scattering spectra, and theoretical calculations, we believe that the enhancement of the FM order in (Mn, P)-doped ZnO nanocolumns is due to exchange interactions taking place between vacancy-mediated Mn2+ ions.
The Role of Phase Changes in TiO2/Pt/TiO2 Filaments
NASA Astrophysics Data System (ADS)
Bíró, Ferenc; Hajnal, Zoltán; Dücső, Csaba; Bársony, István
2018-04-01
This work analyses the role of phase changes in TiO2/Pt/TiO2 layer stacks for micro-heater application regarding their stability and reliable operation. The polycrystalline Pt layer wrapped in a TiO2 adhesion layer underwent a continuous recrystallisation in a self-heating operation causing a drift in the resistance ( R) versus temperature ( T) performance. Simultaneously, the TiO2 adhesion layer also deteriorates at high temperature by phase changes from amorphous to anatase and rutile crystallite formation, which not only influences the Pt diffusion in different migration phenomena, but also reduces the cross section of the Pt heater wire. Thorough scanning electron microscopy, energy dispersive spectroscopy, cross-sectional transmission electron microscopy (XTEM) and electron beam diffraction analysis of the structures operated at increasing temperature revealed the elemental structural processes leading to the instabilities and the accelerated degradation, resulting in rapid breakdown of the heater wire. Owing to stability and reliability criteria, the conditions for safe operation of these layer structures could be determined.
Electronic coupling through natural amino acids.
Berstis, Laura; Beckham, Gregg T; Crowley, Michael F
2015-12-14
Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For both motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green's function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.
A graphical vector autoregressive modelling approach to the analysis of electronic diary data
2010-01-01
Background In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied. Methods We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (VAR) models. We give a comprehensive description of the underlying concepts and explain how the dependence structure can be recovered from electronic diary data by a search over suitable constrained (graphical) VAR models. Results The graphical VAR approach is applied to the electronic diary data of 35 obese patients with and without binge eating disorder (BED). The dynamic relationships for the two subgroups between eating behaviour, depression, anxiety and eating control are visualized in two path diagrams. Results show that the two subgroups of obese patients with and without BED are distinguishable by the temporal patterns which influence their respective eating behaviours. Conclusion The use of the graphical VAR approach for the analysis of electronic diary data leads to a deeper insight into patient's dynamics and dependence structures. An increasing use of this modelling approach could lead to a better understanding of complex psychological and physiological mechanisms in different areas of medical care and research. PMID:20359333
Penttinen, Leena; Rutanen, Chiara; Saloheimo, Markku; Kruus, Kristiina; Rouvinen, Juha; Hakulinen, Nina
2018-01-01
Coupled binuclear copper (CBC) enzymes have a conserved type 3 copper site that binds molecular oxygen to oxidize various mono- and diphenolic compounds. In this study, we found a new crystal form of catechol oxidase from Aspergillus oryzae (AoCO4) and solved two new structures from two different crystals at 1.8-Å and at 2.5-Å resolutions. These structures showed different copper site forms (met/deoxy and deoxy) and also differed from the copper site observed in the previously solved structure of AoCO4. We also analysed the electron density maps of all of the 56 CBC enzyme structures available in the protein data bank (PDB) and found that many of the published structures have vague copper sites. Some of the copper sites were then re-refined to find a better fit to the observed electron density. General problems in the refinement of metalloproteins and metal centres are discussed.
NASA Astrophysics Data System (ADS)
Priebe, Katharina E.; Rathje, Christopher; Yalunin, Sergey V.; Hohage, Thorsten; Feist, Armin; Schäfer, Sascha; Ropers, Claus
2017-12-01
Ultrafast electron and X-ray imaging and spectroscopy are the basis for an ongoing revolution in the understanding of dynamical atomic-scale processes in matter. The underlying technology relies heavily on laser science for the generation and characterization of ever shorter pulses. Recent findings suggest that ultrafast electron microscopy with attosecond-structured wavefunctions may be feasible. However, such future technologies call for means to both prepare and fully analyse the corresponding free-electron quantum states. Here, we introduce a framework for the preparation, coherent manipulation and characterization of free-electron quantum states, experimentally demonstrating attosecond electron pulse trains. Phase-locked optical fields coherently control the electron wavefunction along the beam direction. We establish a new variant of quantum state tomography—`SQUIRRELS'—for free-electron ensembles. The ability to tailor and quantitatively map electron quantum states will promote the nanoscale study of electron-matter entanglement and new forms of ultrafast electron microscopy down to the attosecond regime.
NASA Astrophysics Data System (ADS)
Shen, Kesheng; Jia, Guangrui; Zhang, Xianzhou; Jiao, Zhaoyong
2016-10-01
The electronic structure, elastic and optical properties of Cu2ZnGe(SexS1 - x)4 alloys are systematically analysed using first-principles calculations. The lattice parameters agree well with the theoretical and experimental values which are searched as complete as possible indicating our calculations are reliable. The elastic properties are investigated first and are compared with the similar compounds CZTS and CZTSe due to the unavailable experimental data currently. The variation of the optical properties caused by the increase of Se/S ratio is discussed. The static optical constants are calculated and the corrected values are also predicted according to the available experimental data.
Crystal growth of carbonate apatite using a CaCO3 flux.
Suetsugu, Y; Tanaka, J
1999-09-01
Single crystals of carbonate apatite were grown using a CaCO3 flux under an Ar gas pressure of 55 MPa. The crystals obtained were observed by scanning electron microscopy, optical microscopy and X-ray diffraction. Electron probe microanalyses and thermal analyses were performed. CO3 ions in planar triangle form replaced both OH sites and PO4 tetrahedral sites in the apatite structure: in particular, the OH sites were perfectly substituted by CO3 ions using this method.
NASA Astrophysics Data System (ADS)
Karabıyık, Hasan; Kırılmış, Cumhur; Karabıyık, Hande
2017-08-01
The molecular and crystal structure of the title compound in which two thiazole-2-amine rings are linked to each other by disulfide bridge (sbnd Csbnd Ssbnd Ssbnd Csbnd) were studied by single-crystal X-ray diffraction, FT-IR, NMR spectroscopy, quantum chemical calculations and topological analyses on the electron density. A novel synthesis route for the compounds having symmetrical disulfide bridge is reported. The most important result regarding the compound is about electron donating or accepting properties of the terminal amine groups. Planar amine group acts as an electron-donating group, while pyramidal amine behaves as electron-accepting group. This inference was confirmed by scrutiny of crystallographic geometry and quantum chemical studies. To ascertain underlying reasons for this fact, intermolecular interactions (Nsbnd H⋯N type H-bonds and Csbnd H···π interactions) were studied. These interactions involving aromatic thiazole rings are verified by topological electron density and Hirshfeld surface analyses. Intermolecular interactions do not have an effect on the differentiation in electron donating or accepting ability of amine groups, because both amine groups are involved in Nsbnd H⋯N type H-bonds. In methodological sense, it has been understood that Ehrenfest forces acting on electron density are useful theoretical probe to analyze intra-molecular charge transfer processes.
NASA Astrophysics Data System (ADS)
Belova, Natalya V.; Girichev, Georgiy V.; Kotova, Vitaliya E.; Korolkova, Kseniya A.; Trang, Nguyen Hoang
2018-03-01
The molecular structure of 4-methylpiridine-N-oxide, 4-MePyO, has been studied by gas-phase electron diffraction monitored by mass spectrometry (GED/MS) and quantum chemical (DFT) calculations. Both, quantum chemistry and GED analyses resulted in CS molecular symmetry with the planar pyridine ring. Obtained molecular parameters confirm the hyperconjugation in the pyridine ring and the sp2 hybridization concept of the nitrogen and carbon atoms in the ring. The experimental geometric parameters are in a good agreement with the parameters for non-substituted N-oxide and reproduced very closely by DFT calculations. The presence of the electron-donating CH3 substituent in 4-MePyO leads to a decrease of the ipso-angle and to an increase of r(N→O) in comparison with the non-substituted PyO. Electron density distribution analysis has been performed in terms of natural bond orbitals (NBO) scheme. The nature of the semipolar N→O bond is discussed.
Trends in the Electron Microscopy Data Bank (EMDB).
Patwardhan, Ardan
2017-06-01
Recent technological advances, such as the introduction of the direct electron detector, have transformed the field of cryo-EM and the landscape of molecular and cellular structural biology. This study analyses these trends from the vantage point of the Electron Microscopy Data Bank (EMDB), the public archive for three-dimensional EM reconstructions. Over 1000 entries were released in 2016, representing almost a quarter of the total number of entries (4431). Structures at better than 6 Å resolution now represent one of the fastest-growing categories, while the share of annually released tomography-related structures is approaching 20%. The use of direct electron detectors is growing very rapidly: they were used for 70% of the structures released in 2016, in contrast to none before 2011. Microscopes from FEI have an overwhelming lead in terms of usage, and the use of the RELION software package continues to grow rapidly after having attained a leading position in the field. China is rapidly emerging as a major player in the field, supplementing the US, Germany and the UK as the big four. Similarly, Tsinghua University ranks only second to the MRC Laboratory for Molecular Biology in terms of involvement in publications associated with cryo-EM structures at better than 4 Å resolution. Overall, the numbers point to a rapid democratization of the field, with more countries and institutes becoming involved.
Trends in the Electron Microscopy Data Bank (EMDB)
Patwardhan, Ardan
2017-01-01
Recent technological advances, such as the introduction of the direct electron detector, have transformed the field of cryo-EM and the landscape of molecular and cellular structural biology. This study analyses these trends from the vantage point of the Electron Microscopy Data Bank (EMDB), the public archive for three-dimensional EM reconstructions. Over 1000 entries were released in 2016, representing almost a quarter of the total number of entries (4431). Structures at better than 6 Å resolution now represent one of the fastest-growing categories, while the share of annually released tomography-related structures is approaching 20%. The use of direct electron detectors is growing very rapidly: they were used for 70% of the structures released in 2016, in contrast to none before 2011. Microscopes from FEI have an overwhelming lead in terms of usage, and the use of the RELION software package continues to grow rapidly after having attained a leading position in the field. China is rapidly emerging as a major player in the field, supplementing the US, Germany and the UK as the big four. Similarly, Tsinghua University ranks only second to the MRC Laboratory for Molecular Biology in terms of involvement in publications associated with cryo-EM structures at better than 4 Å resolution. Overall, the numbers point to a rapid democratization of the field, with more countries and institutes becoming involved. PMID:28580912
NASA Astrophysics Data System (ADS)
Kogure, Toshihiro; Raimbourg, Hugues; Kumamoto, Akihito; Fujii, Eiko; Ikuhara, Yuichi
2014-12-01
High-resolution structure analyses using electron beam techniques have been performed for the investigation of subgrain boundaries (SGBs) in deformed orthopyroxene (Opx) in mylonite from Hidaka Metamorphic Belt, Hokkaido, Japan, to understand ductile deformation mechanism of silicate minerals in shear zones. Scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD) analysis of Opx porphyroclasts in the mylonitic rock indicated that the crystal orientation inside the Opx crystals gradually changes by rotation about the b-axis by SGBs and crystal folding. In order to observe the SGBs along the b-axis by transmission electron microscopy (TEM) or scanning TEM (STEM), the following sample preparation protocol was adopted. First, petrographic thin sections were slightly etched with hydrofluoric acid to identify SGBs in SEM. The Opx crystals whose b-axes were oriented close to the normal of the surface were identified by EBSD, and the areas containing SGBs were picked and thinned for (S) TEM analysis with a focused ion beam instrument with micro-sampling system. High-resolution TEM imaging of the SGBs in Opx revealed various boundary structures from a periodic array of dissociated (100) [001] edge dislocations to partially or completely incoherent crystals, depending on the misorientation angle. Atomic-resolution STEM imaging clearly confirmed the formation of clinopyroxene (Cpx) structure between the dissociated partial dislocations. Moreover, X-ray microanalysis in STEM revealed that the Cpx contains a considerable amount of calcium replacing iron. Such chemical inhomogeneity may limit glide motion of the dislocation and eventually the plastic deformation of the Opx porphyroclasts at a low temperature. Chemical profiles across the high-angle incoherent SGB also showed an enrichment of the latter in calcium at the boundary, suggesting that SGBs are an efficient diffusion pathway of calcium out of host Opx grain during cooling.
NASA Astrophysics Data System (ADS)
Jo, Vinna; Woo Lee, Dong; Koo, Hyun-Joo; Ok, Kang Min
2011-04-01
Three new uni-dimensional alkali metal titanium fluoride materials, A2TiF 5· nH 2O ( A=K, Rb, or Cs; n=0 or 1) have been synthesized by hydrothermal reactions. The structures of A2TiF 5· nH 2O have been determined by single-crystal X-ray diffraction. The Ti 4+ cations have been reduced to Ti 3+ during the synthesis reactions. All three A2TiF 5· nH 2O materials contain novel 1-D chain structures that are composed of the slightly distorted Ti 3+F 6 corner-sharing octahedra attributable to the Jahn-Teller distortion. The coordination environment of the alkali metal cations plays an important role to determine the degree of turning in the chain structures. Complete structural analyses, Infrared and UV-vis diffuse reflectance spectra, and thermal analyses are presented, as are electronic structure calculations.
Ganner, Thomas; Sattelkow, Jürgen; Rumpf, Bernhard; Eibinger, Manuel; Reishofer, David; Winkler, Robert; Nidetzky, Bernd; Spirk, Stefan; Plank, Harald
2016-01-01
In many areas of science and technology, patterned films and surfaces play a key role in engineering and development of advanced materials. Here, we introduce a new generic technique for the fabrication of polysaccharide nano-structures via focused electron beam induced conversion (FEBIC). For the proof of principle, organosoluble trimethylsilyl-cellulose (TMSC) thin films have been deposited by spin coating on SiO2 / Si and exposed to a nano-sized electron beam. It turns out that in the exposed areas an electron induced desilylation reaction takes place converting soluble TMSC to rather insoluble cellulose. After removal of the unexposed TMSC areas, structured cellulose patterns remain on the surface with FWHM line widths down to 70 nm. Systematic FEBIC parameter sweeps reveal a generally electron dose dependent behavior with three working regimes: incomplete conversion, ideal doses and over exposure. Direct (FT-IR) and indirect chemical analyses (enzymatic degradation) confirmed the cellulosic character of ideally converted areas. These investigations are complemented by a theoretical model which suggests a two-step reaction process by means of TMSC → cellulose and cellulose → non-cellulose material conversion in excellent agreement with experimental data. The extracted, individual reaction rates allowed the derivation of design rules for FEBIC parameters towards highest conversion efficiencies and highest lateral resolution. PMID:27585861
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Jong Seok; Wu, Wangzhou; Topsakal, Mehmet
Here, we report the decomposition of La 2–xSr xCuO 4 into La 2O 3 and Cu nanoparticles in ultrahigh vacuum, observed by in situ heating experiments in a transmission electron microscope. The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150°C and is considerably expedited in the temperature range of 350°C–450°C. Two major resultant solid phases are identified as metallic Cu and La 2O 3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, La 2O 3 phases are further identified to be derivatives of a fluorite structure—fluorite,more » pyrochlore, and (distorted) bixbyite—characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and LaM 4,5 EELS edges are reported for these structures, along with simulated O K x-ray absorption near-edge structure. The resultant Cu nanoparticles and La 2O 3 phases remain unchanged after cooling to room temperature.« less
Jeong, Jong Seok; Wu, Wangzhou; Topsakal, Mehmet; ...
2018-05-15
Here, we report the decomposition of La 2–xSr xCuO 4 into La 2O 3 and Cu nanoparticles in ultrahigh vacuum, observed by in situ heating experiments in a transmission electron microscope. The analysis of electron diffraction data reveals that the phase decomposition process starts at about 150°C and is considerably expedited in the temperature range of 350°C–450°C. Two major resultant solid phases are identified as metallic Cu and La 2O 3 by electron diffraction, simulation, and electron energy-loss spectroscopy (EELS) analyses. With the aid of calculations, La 2O 3 phases are further identified to be derivatives of a fluorite structure—fluorite,more » pyrochlore, and (distorted) bixbyite—characterized by different oxygen-vacancy order. Additionally, the bulk plasmon energy and the fine structures of the O K and LaM 4,5 EELS edges are reported for these structures, along with simulated O K x-ray absorption near-edge structure. The resultant Cu nanoparticles and La 2O 3 phases remain unchanged after cooling to room temperature.« less
Heterostructured nanohybrid of zinc oxide-montmorillonite clay.
Hur, Su Gil; Kim, Tae Woo; Hwang, Seong-Ju; Hwang, Sung-Ho; Yang, Jae Hun; Choy, Jin-Ho
2006-02-02
We have synthesized heterostructured zinc oxide-aluminosilicate nanohybrids through a hydrothermal reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and the sol solution of zinc acetate. According to X-ray diffraction, N2 adsorption-desorption isotherm, and field emission-scanning electron microscopic analyses, it was found that the intercalation of zinc oxide nanoparticles expands the basal spacing of the host montmorillonite clay, and the crystallites of the nanohybrids are assembled to form a house-of-cards structure. From UV-vis spectroscopic investigation, it becomes certain that calcined nanohybrid contains two kinds of the zinc oxide species in the interlayer space of host lattice and in mesopores formed by the house-of-cards type stacking of the crystallites. Zn K-edge X-ray absorption near-edge structure/extended X-ray absorption fine structure analyses clearly demonstrate that guest species in the nanohybrids exist as nanocrystalline zinc oxides with wurzite-type structure.
Effect of the aggregate morphology on the dispersability of MWCNTs in polymer melts
NASA Astrophysics Data System (ADS)
de Luna, M. Salzano; Tito, A.; Citterio, A.; Mazzocchia, C.; Acierno, D.; Filippone, G.
2012-07-01
Polystyrene nanocomposites filled with multi-walled carbon nanotubes have been prepared through a masterbatch melt mixing method and subjected to morphological, rheological and dielectrical analyses. The role of the structure of the initial aggregates has been investigated by comparing commercially available and synthesized MWCNTs prepared through fluidized bed chemical vapor deposition method and purified through a scalable one-pot route. Electron microscopy analyses reveal a less compact structure of the synthesized particles, in which the nanotubes are arranged in less entangled bundles. This reduces the strength of the initial agglomerates, thus enhancing their dispersability inside the host polymer by means of melt compounding as confirmed by both rheological and dielectrical measurements.
Structural and optical investigation on the wings of Idea malabarica (Moore, 1877).
Sackey, Juliet; Nuru, Zebib Y; Sone, Bertrand Tumbain; Maaza, Malik
2017-02-01
The nanostructures on the wings of Idea malabarica (Moore, 1877) were analysed using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy, Fourier transform-infrared spectroscopy, and reflectance measurements. The chemical and morphological analyses revealed the chitin-based intricate nanostructures. The influence of the nanostructures on the wetting characteristics of the wing was investigated using optical imaging. Applying the Maxwell-Garnet approximation to the porosities within the nanostructures, the refractive indices, which relate the reflectance response, were estimated. It was concluded that the colour seen on the wings of the Idea malabarica originate from the nanostructural configurations of the chitin-based structures and the embedded pigment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gohar, M. Y. A; Sofu, T.; Zhong, Z.
2008-10-30
A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed viamore » the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten and uranium are very similar allowing the use of either material in the subcritical assembly without changing its characteristics. However, the uranium target has a higher neutron yield, which increases the neutron flux of the subcritical assembly. Based on the considered dimensions and heat generation profiles, the commercial CFD software Star-CD is used for the thermal-hydraulic analysis of each target design to satisfy a set of thermal criteria, the most limiting of which being to maintain the water temperature 50 below the boiling point. It is found that the turbulence in the inlet channels dissipates quickly in narrow gaps between the target plates and, as a result, the heat transfer is limited by the laminar flow conditions. On average, 3-D CFD analyses of target assemblies agree well with 1-D calculations using RELAP (performed by KIPT). However, the recirculation and stagnation zones predicted with the CFD models prove the importance of a 3-D analysis to avoid the resulting hotspots. The calculated temperatures are subsequently used for the structural analysis of each target configuration to satisfy the other engineering design requirements. The thermo-structural calculations are performed mostly with NASTRAN and the results occasionally compared with the results from MARC. Both, NASTRAN and MARC are commercially available structural-mechanics analysis software. Although, a significant thermal gradient forms in target elements along the beam direction, the high thermal stresses are generally observed peripherally around the edge of thin target disks/plates. Due to its high thermal conductivity, temperatures and thermal stresses in tungsten target are estimated to be significantly lower than in uranium target. The deformations of the target disks/plates are found to be insignificant, which eliminate concerns for flow blockages in narrow coolant channels. Consistent with the specifications of the KIPT accelerator to be used in this facility, the electron beam power is 100-kW with electron energy in the range of 100 to 200 MeV. As expected, the 100 MeV electrons deposit their energy faster while the 200-MeV electrons spread their energy deposition further along the beam direction. However in that electron energy range, the energy deposition profiles near the beam window require very thin target plates/disks to limit the temperatures and thermal stresses.« less
Pluth, Joseph J.; Smith, Joseph V.
2002-01-01
A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16⋅∼8H2O; triclinic, P1̄, a = 13.634(5) Å, b = 13.687(7), c = 14.522(7), α = 110.83(1)°, β = 107.21(1), γ = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4⋅H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite. PMID:12177404
Pluth, Joseph J; Smith, Joseph V
2002-08-20
A crystal from the type locality Ajo, AZ, yielded just enough intensity from streaked diffractions using synchrotron x-rays at the Advanced Photon Source to solve the crystal structure with composition (K + Na)3Cu20Al3Si29O76(OH)16* approximately 8H2O; triclinic, P1, a = 13.634(5) A, b = 13.687(7), c = 14.522(7), alpha = 110.83(1) degrees, beta = 107.21(1), gamma = 105.68(1); refined to a final R = 12.5%. Electron microprobe analysis yielded a similar chemical composition that is slightly different from the combined chemical and electron microprobe analyses in the literature. The ajoite structure can be described as a zeolitic octahedral-tetrahedral framework that combines the alternate stacking of edge-sharing octahedral CuO6 layers and curved aluminosilicate layers and strings. Channels bounded by elliptical 12-rings and circular 8-rings of tetrahedra contain (K and Na) ions and water. The Al atoms occupy some of the Si tetrahedral sites. Each Cu atom has near-planar bonds to four oxygen atoms plus two longer distances that generate a distorted octahedron. Valence bond estimates indicate that 8 oxygen atoms of 46 are hydroxyl. Only one alkali atom was located in distorted octahedral coordination, and electron microprobe analyses indicate K and Na as major substituents. The water from chemical analysis presumably occurs as disordered molecules of zeolitic type not giving electron density from diffraction. The high R factor results from structural disorder and many weak intensities close to detection level. The crystal chemistry is compared with shattuckite, Cu5(SiO3)4(OH)2, and planchéite, Cu8Si8O22(OH)4.H2O, both found in oxidized copper deposits of Arizona but only the former directly with ajoite.
Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi
2015-07-01
Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Highly patterned growth of SnO2 nanowires using a sub-atmospheric vapor-liquid-solid deposition
NASA Astrophysics Data System (ADS)
Akbari, M.; Mohajerzadeh, S.
2017-08-01
We report the realization of tin-oxide nanowires on patterned structures using a vapor-liquid-solid (VLS) process. While gold acts as the catalyst for the growth of wires, a tin-oxide containing sol-gel solution is spin coated on silicon substrate to act as the source for SnO vapor. The growth of tin-oxide nano-structures occurs mostly at the vicinity of the pre-deposited solution. By patterning the gold as the catalyst material, one is able to observe the growth at desired places. The growth of nanowires is highly dense within 100 µm away from such in situ source and their length is of the order of 5 µm. By further distancing from the source, the growth becomes more limited and nanowires become shorter and more sparsely distributed. The growth of nanowires has been studied using scanning and transmission electron microscopy tools while their composition has been investigated using XRD and EDS analyses. As a novel application, we have employed the grown nanowires as electron detection elements to measure the emitted electrons from electron sources. This configuration can be further used as electron detectors for scanning electron microscopes.
Nitrogen-containing species in the structure of the synthesized nano-hydroxyapatite
NASA Astrophysics Data System (ADS)
Gafurov, M.; Biktagirov, T.; Yavkin, B.; Mamin, G.; Filippov, Y.; Klimashina, E.; Putlayev, V.; Orlinskii, S.
2014-04-01
Synthesized by the wet chemical precipitation technique, hydroxyapatite (HAp) powders with the sizes of the crystallites of 20-50 nm and 1 μm were analyzed by different analytical methods. By means of electron paramagnetic resonance (EPR) it is shown that during the synthesis process nitrate anions from the reagents (byproducts) could incorporate into the HAp structure. The relaxation times and EPR parameters of the stable axially symmetric NO{3/2-} paramagnetic centers detected after X-ray irradiation are measured with high accuracy. Analyses of high-frequency (95 GHz) electron-nuclear double resonance spectra from 1H and 31P nuclei and ab initio density functional theory calculations allow suggesting that the paramagnetic centers and nitrate anions as the precursors of NO{3/2-} radicals preferably occupy PO{4/3-} site in the HAp structure.
Dahlström, C; Allem, R; Uesaka, T
2011-02-01
We have developed a new method for characterizing microstructures of paper coating using argon ion beam milling technique and field emission scanning electron microscopy. The combination of these two techniques produces extremely high-quality images with very few artefacts, which are particularly suited for quantitative analyses of coating structures. A new evaluation method has been developed by using marker-controlled watershed segmentation technique of the secondary electron images. The high-quality secondary electron images with well-defined pores makes it possible to use this semi-automatic segmentation method. One advantage of using secondary electron images instead of backscattered electron images is being able to avoid possible overestimation of the porosity because of the signal depth. A comparison was made between the new method and the conventional method using greyscale histogram thresholding of backscattered electron images. The results showed that the conventional method overestimated the pore area by 20% and detected around 5% more pores than the new method. As examples of the application of the new method, we have investigated the distributions of coating binders, and the relationship between local coating porosity and base sheet structures. The technique revealed, for the first time with direct evidence, the long-suspected coating non-uniformity, i.e. binder migration, and the correlation between coating porosity versus base sheet mass density, in a straightforward way. © 2010 The Authors Journal compilation © 2010 The Royal Microscopical Society.
RF and structural characterization of new SRF films
DOE Office of Scientific and Technical Information (OSTI.GOV)
A.-M. Valente-Feliciano,H. L. Phillips,C. E. Reece,X. Zhao,D. Gu,R. Lukaszew,B. Xiao,K. Seo
2009-09-01
In the past years, energetic vacuum deposition methods have been developed in different laboratories to improve Nb/Cu technology for superconducting cavities. Jefferson Lab is pursuing energetic condensation deposition via Electron Cyclotron Resonance. As part of this study, the influence of the deposition energy on the material and RF properties of the Nb thin film is investigated. The film surface and structure analyses are conducted with various techniques like X-ray diffraction, Transmission Electron Microscopy, Auger Electron Spectroscopy and RHEED. The microwave properties of the films are characterized on 50 mm disk samples with a 7.5 GHz surface impedance characterization system. Thismore » paper presents surface impedance measurements in correlation with surface and material characterization for Nb films produced on copper substrates with different bias voltages and also highlights emerging opportunities for developing multilayer SRF films with a new deposition system.« less
Synthesis and characterization of nanocrystalline Co-Fe-Nb-Ta-B alloy
NASA Astrophysics Data System (ADS)
Raanaei, Hossein; Fakhraee, Morteza
2017-09-01
In this research work, structural and magnetic evolution of Co57Fe13Nb8Ta4B18 alloy, during mechanical alloying process, have been investigated by using, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, electron dispersive X-ray spectroscopy, differential thermal analysis and also vibrating sample magnetometer. It is observed that at 120 milling time, the crystallite size reaches to about 7.8 nm. Structural analyses show that, the solid solution of the initial powder mixture occurs at160 h milling time. The coercivity behavior demonstrates a rise, up to 70 h followed by decreasing tendency up to final stage of milling process. Thermal analysis of 160 h milling time sample reveals two endothermic peaks. The characterization of annealed milled sample for 160 h milling time at 427 °C shows crystallite size growth accompanied by increasing in saturation magnetization.
Russo, Christopher J.; Passmore, Lori A.
2016-01-01
Electron cryomicroscopy (cryo-EM) allows structure determination of a wide range of biological molecules and specimens. All-gold supports improve cryo-EM images by reducing radiation-induced motion and image blurring. Here we compare the mechanical and electrical properties of all-gold supports to amorphous carbon foils. Gold supports are more conductive, and have suspended foils that are not compressed by differential contraction when cooled to liquid nitrogen temperatures. These measurements show how the choice of support material and geometry can reduce specimen movement by more than an order of magnitude during low-dose imaging. We provide methods for fabrication of all-gold supports and preparation of vitrified specimens. We also analyse illumination geometry for optimal collection of high resolution, low-dose data. Together, the support structures and methods herein can improve the resolution and quality of images from any electron cryomicroscope. PMID:26592474
Wiesing, M; de Los Arcos, T; Gebhard, M; Devi, A; Grundmeier, G
2017-12-20
The structural and electronic origins of the interactions between polycarbonate and sputter deposited TiAlN were analysed using a combined electron and force spectroscopic approach. Interaction forces were measured by means of dynamic force spectroscopy and the surface polarizability was analysed by X-ray photoelectron valence band spectroscopy. It could be shown that the adhesive interactions between polycarbonate and TiAlN are governed by van der Waals forces. Different surface cleansing and oxidizing treatments were investigated and the effect of the surface chemistry on the force interactions was analysed. Intense surface oxidation resulted in a decreased adhesion force by a factor of two due to the formation of a 2 nm thick Ti 0.21 Al 0.45 O surface oxide layer. The origin of the residual adhesion forces caused by the mixed Ti 0.21 Al 0.45 O surface oxide was clarified by considering the non-retarded Hamaker coefficients as calculated by Lifshitz theory, based on optical data from Reflection Electron Energy Loss Spectroscopy. This disclosed increased dispersion forces of Ti 0.21 Al 0.45 O due to the presence of Ti(iv) ions and related Ti 3d band optical transitions.
Progression in structural, magnetic and electrical properties of La-doped group IV elements
NASA Astrophysics Data System (ADS)
Deepapriya, S.; Annie Vinosha, P.; Rodney, John D.; Jerome Das, S.
2018-04-01
Progression of group IV elements such as zinc ferrite (ZnFe2O4), cobalt ferrite (CoFe2O4) was synthesized by doping lanthanum (La), via adopting a facile co-precipitation method. Doping hefty rare earth ion in spinel structure can amend to the physical properties of the lattice, which can be used in the enhancement of magnetic and electrical properties of the as-synthesized nanomaterial, it is vital to metamorphose and optimize its micro structural and magnetic features. The structural properties of the samples was analysed by powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), Transmission electron microscopy (TEM) and UV-visible spectral analysis (UV-vis) reveals the optical property and optical band gap. The magnetic properties were evaluated using a vibrating sample magnetometer (VSM), the presence of functional group was confirmed by FTIR. XRD analyses elucidates that the synthesized samples zinc and cobalt had a spinel structure. From TEM analyses the morphology and diameter of the particle was observed. The substituted rare earth ions in Zinc ferrite inhibit the grain growth of the materials in an efficient manner compared with that of the Cobalt ferrite.
Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A.
Markovic-Mueller, Sandra; Stuttfeld, Edward; Asthana, Mayanka; Weinert, Tobias; Bliven, Spencer; Goldie, Kenneth N; Kisko, Kaisa; Capitani, Guido; Ballmer-Hofer, Kurt
2017-02-07
Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel development upon activation of three receptor tyrosine kinases: VEGFR-1, -2, and -3. Partial structures of VEGFR/VEGF complexes based on single-particle electron microscopy, small-angle X-ray scattering, and X-ray crystallography revealed the location of VEGF binding and domain arrangement of individual receptor subdomains. Here, we describe the structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A at 4 Å resolution. We combined X-ray crystallography, single-particle electron microscopy, and molecular modeling for structure determination and validation. The structure reveals the molecular details of ligand-induced receptor dimerization, in particular of homotypic receptor interactions in immunoglobulin homology domains 4, 5, and 7. Functional analyses of ligand binding and receptor activation confirm the relevance of these homotypic contacts and identify them as potential therapeutic sites to allosterically inhibit VEGFR-1 activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki
2014-01-01
The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m−2. Polarization curve analyses revealed that the maximum power density was 7.4 W m−3 with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste. PMID:24789988
Yamamoto, Shuji; Suzuki, Kei; Araki, Yoko; Mochihara, Hiroki; Hosokawa, Tetsuya; Kubota, Hiroko; Chiba, Yusuke; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki
2014-01-01
The relationship between the bacterial communities in anolyte and anode biofilms and the electrochemical properties of microbial fuel cells (MFCs) was investigated when a complex organic waste-decomposing solution was continuously supplied to MFCs as an electron donor. The current density increased gradually and was maintained at approximately 100 to 150 mA m(-2). Polarization curve analyses revealed that the maximum power density was 7.4 W m(-3) with an internal resistance of 110 Ω. Bacterial community structures in the organic waste-decomposing solution and MFCs differed from each other. Clonal analyses targeting 16S rRNA genes indicated that bacterial communities in the biofilms on MFCs developed to specific communities dominated by novel Geobacter. Multidimensional scaling analyses based on DGGE profiles revealed that bacterial communities in the organic waste-decomposing solution fluctuated and had no dynamic equilibrium. Bacterial communities on the anolyte in MFCs had a dynamic equilibrium with fluctuations, while those of the biofilm converged to the Geobacter-dominated structure. These bacterial community dynamics of MFCs differed from those of control-MFCs under open circuit conditions. These results suggested that bacterial communities in the anolyte and biofilm have a gentle symbiotic system through electron flow, which resulted in the advance of current density from complex organic waste.
Cryo-EM structures of two bovine adenovirus type 3 intermediates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Lingpeng; Huang, Xiaoxing; Li, Xiaomin
2014-02-15
Adenoviruses (Ads) infect hosts from all vertebrate species and have been investigated as vaccine vectors. We report here near-atomic structures of two bovine Ad type 3 (BAd3) intermediates obtained by cryo-electron microscopy. A comparison between the two intermediate structures reveals that the differences are localized in the fivefold vertex region, while their facet structures are identical. The overall facet structure of BAd3 exhibits a similar structure to human Ads; however, BAd3 protein IX has a unique conformation. Mass spectrometry and cryo-electron tomography analyses indicate that one intermediate structure represents the stage during DNA encapsidation, whilst the other intermediate structure representsmore » a later stage. These results also suggest that cleavage of precursor protein VI occurs during, rather than after, the DNA encapsidation process. Overall, our results provide insights into the mechanism of Ad assembly, and allow the first structural comparison between human and nonhuman Ads at backbone level. - Highlights: • First structure of bovine adenovirus type 3. • Some channels are located at the vertex of intermediate during DNA encapsidation. • Protein IX exhibits a unique conformation of trimeric coiled–coiled structure. • Cleavage of precursor protein VI occurs during the DNA encapsidation process.« less
First evidence of tyre debris characterization at the nanoscale by focused ion beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milani, M.; Pucillo, F.P.; Ballerini, M.
2004-07-15
In this paper, we present a novel technique for the nanoscale characterization of the outer and inner structure of tyre debris. Tyre debris is produced by the normal wear of tyres. In previous studies, the microcharacterization and identification were performed by analytical electron microscopy. This study is a development of the characterization of surface and microstructure of tyre debris. For the first time, tyre debris was analysed by focused ion beam (FIB), a technique with 2- to 5-nm resolution that does not require any sample preparation. We studied tyre debris produced in the laboratory. We made electron and ionic imagingmore » of the surface of the material, and after a ionic cut, we studied the internal microstructure of the same sample. The tyre debris was analysed by FIB without any sample preparations unlike the case of scanning and transmission electron microscopy (SEM and TEM). Useful information was derived to improve detection and monitoring techniques of pollution by tyre degradation processes.« less
Electronic coupling through natural amino acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berstis, Laura; Beckham, Gregg T., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov; Crowley, Michael F., E-mail: michael.crowley@nrel.gov, E-mail: gregg.beckham@nrel.gov
2015-12-14
Myriad scientific domains concern themselves with biological electron transfer (ET) events that span across vast scales of rate and efficiency through a remarkably fine-tuned integration of amino acid (AA) sequences, electronic structure, dynamics, and environment interactions. Within this intricate scheme, many questions persist as to how proteins modulate electron-tunneling properties. To help elucidate these principles, we develop a model set of peptides representing the common α-helix and β-strand motifs including all natural AAs within implicit protein-environment solvation. Using an effective Hamiltonian strategy with density functional theory, we characterize the electronic coupling through these peptides, furthermore considering side-chain dynamics. For bothmore » motifs, predictions consistently show that backbone-mediated electronic coupling is distinctly sensitive to AA type (aliphatic, polar, aromatic, negatively charged and positively charged), and to side-chain orientation. The unique properties of these residues may be employed to design activated, deactivated, or switch-like superexchange pathways. Electronic structure calculations and Green’s function analyses indicate that localized shifts in the electron density along the peptide play a role in modulating these pathways, and further substantiate the experimentally observed behavior of proline residues as superbridges. The distinct sensitivities of tunneling pathways to sequence and conformation revealed in this electronic coupling database help improve our fundamental understanding of the broad diversity of ET reactivity and provide guiding principles for peptide design.« less
Nanopatterning on calixarene thin films via low-energy field-emission scanning probe lithography.
He, Xiaoyue; Li, Peng; Liu, Pengchong; Zhang, Xiaoxian; Zhou, Xiangqian; Liu, Wei; Qiu, Xiaohui
2018-08-10
Field-emitted, low-energy electrons from the conducting tip of an atomic force microscope were adopted for nanolithography on calixarene ultrathin films coated on silicon wafers. A structural evolution from protrusion to depression down to a 30 nm spatial resolution was reproducibly obtained by tuning the sample voltage and exposure current in the lithography process. Close analyses of the profiles showed that the nanostructures formed by a single exposure with a high current are almost identical to those created by cumulative exposure with a lower current but an equal number of injected electrons. Surface potential imaging by Kelvin probe force microscopy found a negatively charged region surrounding the groove structures once the structures were formed. We conclude that the mechanism related to the formation of a temporary negative state and molecule decomposition, rather than thermal ablation, is responsible for the low-energy field-emission electron lithography on a calixarene molecular resist. We hope that our elucidation of the underlying mechanism is helpful for molecular resist design and further improving the reproducibility and throughput of nanolithography.
Sicoli, Giuseppe; Mathis, Gérald; Aci-Sèche, Samia; Saint-Pierre, Christine; Boulard, Yves; Gasparutto, Didier; Gambarelli, Serge
2009-06-01
Double electron-electron resonance (DEER) was applied to determine nanometre spin-spin distances on DNA duplexes that contain selected structural alterations. The present approach to evaluate the structural features of DNA damages is thus related to the interspin distance changes, as well as to the flexibility of the overall structure deduced from the distance distribution. A set of site-directed nitroxide-labelled double-stranded DNA fragments containing defined lesions, namely an 8-oxoguanine, an abasic site or abasic site analogues, a nick, a gap and a bulge structure were prepared and then analysed by the DEER spectroscopic technique. New insights into the application of 4-pulse DEER sequence are also provided, in particular with respect to the spin probes' positions and the rigidity of selected systems. The lesion-induced conformational changes observed, which were supported by molecular dynamics studies, confirm the results obtained by other, more conventional, spectroscopic techniques. Thus, the experimental approaches described herein provide an efficient method for probing lesion-induced structural changes of nucleic acids.
Reichelt, R; Günther, S; Wintterlin, J; Moritz, W; Aballe, L; Mentes, T O
2007-10-07
A low energy electron diffraction (LEED) I/V analysis was performed of the (4 x 4) oxygen structure on Ag(111). Two data sets were used, one recorded with a conventional LEED system and a second with a low energy electron microscope (LEEM). The data sets agree well with each other, demonstrating that I/V structure analyses can be performed with the same quality with LEEM as with conventional LEED. The structure obtained confirms the recently proposed model that involves a reconstruction of the Ag(111) surface. Previous models based on a thin layer of Ag(2)O that had been accepted for more than 30 years are disproved. The reconstruction model contains two units of six triangularly arranged Ag atoms and a stacking fault in one half of the unit cell. The six O atoms per unit cell occupy sites in the trenches between the Ag(6) triangles. Small lateral displacements of the Ag atoms lift the mirror symmetry of the structure, leading to two nonequivalent groups of O atoms. The atoms of both groups are located approximately 0.5 Angstrom below the top Ag layer, on fourfold positions with respect to the top layer Ag atoms. Ag-O distances between 2.05 and 2.3 Angstrom are found. The oxygen atoms exhibit large static or dynamic displacements of up to 0.3 Angstrom at 300 K.
NASA Astrophysics Data System (ADS)
Ghanbari Niyaky, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.
2017-03-01
In this paper, a combined experimental and theoretical study on a new CdLBr2 complex (L = N1-(2-bromobenzylidene)-N2-(2-((E)-(2-bromobenzylidene) amino)ethyl) ethane-1,2-diamine) synthesized via template method, is described. The crystal structure analysis of the complex indicates that, the Cd(II) ion is centered in a distorted square pyramidal space constructed by three iminic nitrogens of the ligand as well as two bromide anions. More analysis of crystal packing proposed a supramolecular structure stabilized by some non-covalent interactions such as Br⋯Br and Xsbnd H⋯Br (X = N and C) in solid state. Furthermore, 3D Hirshfeld surface analyses and DFT studies were applied for theoretical investigation of the complexes. Theoretical achievements were found in a good agreement with respect to the experimental data. To evaluate the nature of bonding and the strength of the intra and inter-molecular interactions a natural bond orbital (NBO) analysis on the complex structure was performed. Time dependent density functional theory (TD-DFT) was also applied to predict the electronic spectral data of the complex as compared with the experimental ones. CdLBr2 complex as nano-structure compound was also prepared under ultrasonic conditions and characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). Finally, it was found that the cadmium complex can be used as a suitable precursor for preparation of CdO nanoparticles via calcination process at 600 °C under air atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pabisiak, Tomasz; Kiejna, Adam, E-mail: kiejna@ifd.uni.wroc.pl; Winiarski, Maciej J.
2016-01-28
This is the first of two papers dealing with the adsorption of Au and formation of Au{sub n} nanostructures (n = 1–4) on hematite (0001) surface and adsorption of CO thereon. The stoichiometric Fe-terminated (0001) surface of hematite was investigated using density functional theory in the generalized gradient approximation of Perdew-Burke-Ernzerhof (PBE) form with Hubbard correction U, accounting for strong electron correlations (PBE+U). The structural, energetic, and electronic properties of the systems studied were examined for vertical and flattened configurations of Au{sub n} nanostructures adsorbed on the hematite surfaces. The flattened ones, which can be viewed as bilayer-like structures, weremore » found energetically more favored than vertical ones. For both classes of structures the adsorption binding energy increases with the number of Au atoms in a structure. The adsorption of Au{sub n} induces charge rearrangement at the Au{sub n}/oxide contact which is reflected in work function changes. In most considered cases Au{sub n} adsorption increases the work function. A detailed analysis of the bonding electron charge is presented and the corresponding electron charge rearrangements at the contacts were quantified by a Bader charge analyses. The interaction of a CO molecule with the Au{sub n} nanostructures supported on α-Fe{sub 2}O{sub 3} (0001) and the oxide support was studied. It is found that the CO adsorption binding to the hematite supported Au{sub n} structures is more than twice as strong as to the bare hematite surface. Analysis of the Bader charges on the atoms showed that in each case CO binds to the most positively charged (cationic) atom of the Au{sub n} structure. Changes in the electronic structure of the Au{sub n} species and of the oxide support, and their consequences for the interactions with CO, are discussed.« less
Imaging of surface spin textures on bulk crystals by scanning electron microscopy
NASA Astrophysics Data System (ADS)
Akamine, Hiroshi; Okumura, So; Farjami, Sahar; Murakami, Yasukazu; Nishida, Minoru
2016-11-01
Direct observation of magnetic microstructures is vital for advancing spintronics and other technologies. Here we report a method for imaging surface domain structures on bulk samples by scanning electron microscopy (SEM). Complex magnetic domains, referred to as the maze state in CoPt/FePt alloys, were observed at a spatial resolution of less than 100 nm by using an in-lens annular detector. The method allows for imaging almost all the domain walls in the mazy structure, whereas the visualisation of the domain walls with the classical SEM method was limited. Our method provides a simple way to analyse surface domain structures in the bulk state that can be used in combination with SEM functions such as orientation or composition analysis. Thus, the method extends applications of SEM-based magnetic imaging, and is promising for resolving various problems at the forefront of fields including physics, magnetics, materials science, engineering, and chemistry.
Unconventional Magnetic Domain Structure in the Ferromagnetic Phase of MnP Single Crystals
NASA Astrophysics Data System (ADS)
Koyama, Tsukasa; Yano, Shin-ichiro; Togawa, Yoshihiko; Kousaka, Yusuke; Mori, Shigeo; Inoue, Katsuya; Kishine, Jun-ichiro; Akimitsu, Jun
2012-04-01
We have studied ferromagnetic (FM) structures in the FM phase of MnP single crystals by low-temperature Lorentz transmission electron microscopy and small-angle electron diffraction analysis. In Lorentz Fresnel micrographs, striped FM domain structures were observed at an external magnetic field less than 10 Oe in specimens with the ab-plane in their plane. From real- and reciprocal-space analyses, it was clearly identified that striped FM domains oriented to the c-axis appear with Bloch-type domain walls in the b-direction and order regularly along the a-axis with a constant separation less than 100 nm. Moreover, the magnetic chirality reverses in alternate FM domain walls. These specific spin configuration of striped FM domains will affect the magnetic phase transition from the FM phase to the proper screw spiral phase at low temperature or to the FAN phase in magnetic fields in MnP.
NASA Astrophysics Data System (ADS)
Li, Hongxia; Zhou, You; Du, Gang; Huang, Yanwei; Ji, Zhenguo
2018-03-01
Flexible resistance random access memory (ReRAM) devices with a heterojunction structure of PET/ITO/ZnO/TiO2/Au were fabricated on polyethylene terephthalate/indium tin oxide (PET/ITO) substrates by different physical and chemical preparation methods. X-ray diffraction, scanning electron microscopy and atomic force microscopy were carried out to investigate the crystal structure, surface topography and cross-sectional structure of the prepared films. X-ray photoelectron spectroscopy was also used to identify the chemical state of Ti, O and Zn elements. Theoretical and experimental analyses were conducted to identify the effect of piezoelectric potential of ZnO on resistive switching characteristics of flexible ZnO/TiO2 heterojunction cells. The results showed a pathway to enhance the performance of ReRAM devices by engineering the interface barrier, which is also feasible for other electronics, optoelectronics and photovoltaic devices.
4d Electronic structure analysis of ruthenium in the perovskite oxides by Ru K- and L-edge XAS.
Kim, J Y; Hwang, S H; Kim, S J; Demazeau, G; Choy, J H; Shimada, H
2001-03-01
The 4d electronic structure of ruthenium in the perovskite oxides, La2MRuIVO6 (M = Zn, Mg, and Li) and Ba2YRuVO6, has been investigated by the Ru K-and L-edge XANES and EXAFS analyses. Such X-ray absorption spectroscopic results clarify that the RuIV (d4) and RuV (d3) ions are stabilized in nearly regular Oh site. Comparing the Ru L-edge XANES spectra of perovskites containing isovalent ruthenium, it has been found that the t2g state is mainly influenced by A site cation, whereas the eg is mainly affected by neighboring B site cation. The experimental EXAFS spectra in the range of R < or = approximately 4.5 A are well reproduced by ab-initio calculation based on crystallographic data, which supports the long-range structure presented by Rietveld refinement.
NASA Astrophysics Data System (ADS)
Talbi, Abderazek; Kaya-Boussougou, Sostaine; Sauldubois, Audrey; Stolz, Arnaud; Boulmer-Leborgne, Chantal; Semmar, Nadjib
2017-07-01
This paper deals with the formation of laser-induced periodic surface structures (LIPSS) on mesoporous silicon thin films induced by two laser regimes in the UV range: picosecond and femtosecond. Different LIPSS formation mechanisms from nanoparticles, mainly coalescence and agglomeration, have been evidenced by scanning electron microscopy analysis. The apparition of a liquid phase during both laser interaction at low fluence (20 mJ/cm2) and after a large number of laser pulses (up to 12,000) has been also shown with 100 nm size through incubation effect. Transmission electron microscopy analyses have been conducted to investigate the molten phase structures below and inside LIPSS. Finally, it has shown that LIPSS are composed of amorphous silicon when mesoporous silicon is irradiated by laser beam in both regimes. Nevertheless, mesoporous silicon located between LIPSS stays crystallized.
NASA Astrophysics Data System (ADS)
Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Klie, Robert F.; Öǧüt, Serdar
2017-07-01
The electronic properties of epitaxial oxide thin films grown on compound semiconductors are largely determined by the interfacial atomic structure, as well as the thermodynamic conditions during synthesis. Ferroelectric polarization and Fermi-level pinning in SrTiO3 films have been attributed to the presence of oxygen vacancies at the oxide/semiconductor interface. Here, we present scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy analyses of GaAs films grown on SrTiO3 combined with first-principles calculations to determine the atomic and electronic structures of the SrTiO3/GaAs interfaces. An atomically abrupt SrO/As interface is observed and the interfacial SrO layer is found to be O-deficient. First-principles density functional theory (DFT) calculations show SrO/Ga and Sr/As interfaces are favorable under O-rich and O-poor conditions, respectively. The SrO/Ga interface is reconstructed via the formation of Ga-Ga dimers while the Sr/As interface is abrupt and consistent with the experiment. DFT calculations further reveal that intrinsic two-dimensional electron gas (2DEG) forms in both SrO/Ga and Sr/As interfaces, and the Fermi level is pinned to the localized 2DEG states. Interfacial O vacancies can enhance the 2DEG density while it is possible for Ga/As vacancies to unpin the Fermi level from the 2DEG states.
Test-electron analysis of the magnetic reconnection topology
NASA Astrophysics Data System (ADS)
Borgogno, D.; Perona, A.; Grasso, D.
2017-12-01
Three-dimensional (3D) investigations of the magnetic reconnection field topology in space and laboratory plasmas have identified the abidance of magnetic coherent structures in the stochastic region, which develop during the nonlinear stage of the reconnection process. Further analytical and numerical analyses highlighted the efficacy of some of these structures in limiting the magnetic transport. The question then arises as to what is the possible role played by these patterns in the dynamics of the plasma particles populating the chaotic region. In order to explore this aspect, we provide a detailed description of the nonlinear 3D magnetic field topology in a collisionless magnetic reconnection event with a strong guide field. In parallel, we study the evolution of a population of test electrons in the guiding-center approximation all along the reconnection process. In particular, we focus on the nonlinear spatial redistribution of the initially thermal electrons and show how the electron dynamics in the stochastic region depends on the sign and on the value of their velocities. While the particles with the highest positive speed populate the coherent current structures that survive in the chaotic sea, the presence of the manifolds calculated in the stochastic region defines the confinement area for the electrons with the largest negative velocity. These results stress the link between the magnetic topology and the electron motion and contribute to the overall picture of a non-stationary fluid magnetic reconnection description in a geometry proper to physical systems where the effects of the curvature can be neglected.
Comparative Analysis of Type IV Pilin in Desulfuromonadales
Shu, Chuanjun; Xiao, Ke; Yan, Qin; Sun, Xiao
2016-01-01
During anaerobic respiration, the bacteria Geobacter sulfurreducens can transfer electrons to extracellular electron accepters through its pilus. G. sulfurreducens pili have been reported to have metallic-like conductivity that is similar to doped organic semiconductors. To study the characteristics and origin of conductive pilin proteins found in the pilus structure, their genetic, structural, and phylogenetic properties were analyzed. The genetic relationships, and conserved structures and sequences that were obtained were used to predict the evolution of the pilins. Homologous genes that encode conductive pilin were found using PilFind and Cluster. Sequence characteristics and protein tertiary structures were analyzed with MAFFT and QUARK, respectively. The origin of conductive pilins was explored by building a phylogenetic tree. Truncation is a characteristic of conductive pilin. The structures of truncated pilins and their accompanying proteins were found to be similar to the N-terminal and C-terminal ends of full-length pilins respectively. The emergence of the truncated pilins can probably be ascribed to the evolutionary pressure of their extracellular electron transporting function. Genes encoding truncated pilins and proteins similar to the C-terminal of full-length pilins, which contain a group of consecutive anti-parallel beta-sheets, are adjacent in bacterial genomes. According to the genetic, structure, and phylogenetic analyses performed in this study, we inferred that the truncated pilins and their accompanying proteins probably evolved from full-length pilins by gene fission through duplication, degeneration, and separation. These findings provide new insights about the molecular mechanisms involved in long-range electron transport along the conductive pili of Geobacter species. PMID:28066394
A conceptual design study for a two-dimensional, electronically scanned thinned array radiometer
NASA Technical Reports Server (NTRS)
Mutton, Philip; Chromik, Christopher C.; Dixon, Iain; Statham, Richard B.; Stillwagen, Frederic H.; Vontheumer, Alfred E.; Sasamoto, Washito A.; Garn, Paul A.; Cosgrove, Patrick A.; Ganoe, George G.
1993-01-01
A conceptual design for the Two-Dimensional, Electronically Steered Thinned Array Radiometer (ESTAR) is described. This instrument is a synthetic aperture microwave radiometer that operates in the L-band frequency range for the measurement of soil moisture and ocean salinity. Two auxiliary instruments, an 8-12 micron, scanning infrared radiometer and a 0.4-1.0 micron, charge coupled device (CCD) video camera, are included to provided data for sea surface temperature measurements and spatial registration of targets respectively. The science requirements were defined by Goddard Space Flight Center. Instrument and the spacecraft configurations are described for missions using the Pegasus and Taurus launch vehicles. The analyses and design trades described include: estimations of size, mass and power, instrument viewing coverage, mechanical design trades, structural and thermal analyses, data and communications performance assessments, and cost estimation.
Sc2O@Cs(126339)-C92: Di-scandium oxide cluster encapsulated into a large fullerene cage
NASA Astrophysics Data System (ADS)
Gu, Yong-Xin; Li, Qiao-Zhi; Li, De-Huai; Zhao, Rui-Sheng; Zhao, Xiang
2018-04-01
The geometric, electronic structure and thermodynamic stability of Sc2O@C92 has been characterized by using hybrid density functional theory calculations combined with statistical thermodynamic analyses. Results indicate that the isolated pentagon rule (IPR) isomers Sc2O@Cs(126339)-C92, Sc2O@C1(126367)-C92 and Sc2O@C1(126390)-C92 are favorable. Noteworthy, it is the first time to declare that fullerene isomer Cs(126339)-C92 could be considered as the suitable cage to encapsulate metallic cluster. The electronic properties of these three isomers were performed with frontier molecular orbital (HOMO and LUMO) analyses and bond order calculations. Finally, 13C NMR and UV-vis-NIR spectra were simulated to provide valuable information for future experiments.
Differences between Subjective Balanced Occlusion and Measurements Reported With T-Scan III
Lila-Krasniqi, Zana; Shala, Kujtim; Krasniqi, Teuta Pustina; Bicaj, Teuta; Ahmedi, Enis; Dula, Linda; Dragusha, Arlinda Tmava; Guguvcevski, Ljuben
2017-01-01
BACKGROUND: The aetiology of Temporomandibular disorder is multifactorial, and numerous studies have addressed that occlusion may be of great importance in the pathogenesis of Temporomandibular disorder. AIM: The aim of this study is to determine if any direct relationship exists between balanced occlusion and Temporomandibular disorder and to evaluate the differences between subjective balanced occlusion and measurements reported with T-scan III electronic system. MATERIAL AND METHODS: A total of 54 subjects were divided into three groups, selection based on anamnesis-responded to a Fonseca questionnaire and clinical measurements analysed with electronic system T-scan III. In the I study group were participants with fixed dentures with prosthetic ceramic restorations. In the II study group were symptomatic participants with TMD. In the third control group were healthy participants with full arch dentition that completed a subjective questionnaire that documented the absence of jaw pain, joint noise, locking and subjects without a history of TMD. The occlusal balance was reported subjectively through Fonseca questionnaire and compared with occlusion analysed with electronic system T-scan III. RESULTS: For attributive data were used percentage of the structure. Differences in P < 0.05 were considered significant. After distributing attributive data of occlusal balance subjectively reported and compared with measurements analysed with electronic system T-scan III were found significant difference P < 0.001 in all three groups. CONCLUSION: In our study, it was concluded that there were statistically significant differences of balanced occlusion in all three groups. Also it was concluded that subjective data are not exact with measurements reported with electronic device T-scan III. PMID:28932311
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Sharshar, T.; Adam, Abdel Majid A.; Elsabawy, Khaled M.; Hemeda, O. M.
2014-09-01
The iso-leucine-iodide and methionine-iodide charge-transfer complexes were prepared and characterized using different spectroscopic techniques. The iodide charge-transfer complexes were synthesized by grinding KI-I2-amino acid with 1:1:1 M ratio in presence of few drops of methanol solvent. The structures of both solid amino acid iodide charge-transfer complexes are discussed with the help of the obtained results of the infrared and Raman laser spectra, Uv-vis. electronic spectra and thermal analyses. The electrical properties (AC resistivity and dielectric constant) of both complexes were investigated. The positron annihilation Doppler broadening (PADB) spectroscopies were also used to probe the structural changes of both complexes. The PADB line-shape parameters (S and W) were found to be dependent on the structure, electronic configuration of the charge transfer complex. The PADB technique is a powerful tool to probe the structural features of the KI-I2-amino acid complexes.
Crystal Structure Variations of Sn Nanoparticles upon Heating
NASA Astrophysics Data System (ADS)
Mittal, Jagjiwan; Lin, Kwang-Lung
2018-04-01
Structural changes in Sn nanoparticles during heating below the melting point have been investigated using differential scanning calorimetry (DSC), x-ray diffraction (XRD) analysis, electron diffraction (ED), and high-resolution transmission electron microscopy (HRTEM). DSC revealed that the heat required to melt the nanoparticles (28.43 J/g) was about half compared with Sn metal (52.80 J/g), which was attributed to the large surface energy contribution for the nanoparticles. ED and XRD analyses of the Sn nanoparticles revealed increased intensity for crystal planes having large interplaner distances compared with regular crystal planes with increasing heat treatment temperature (HTT). HRTEM revealed an increase in interlayer spacing at the surface and near joints between nanoparticles with the HTT, leading to an amorphous structure of nanoparticles at the surface at 220°C. These results highlight the changes that occur in the morphology and crystal structure of Sn nanoparticles at the surface and in the interior with increase of the heat treatment temperature.
A theoretical-electron-density databank using a model of real and virtual spherical atoms.
Nassour, Ayoub; Domagala, Slawomir; Guillot, Benoit; Leduc, Theo; Lecomte, Claude; Jelsch, Christian
2017-08-01
A database describing the electron density of common chemical groups using combinations of real and virtual spherical atoms is proposed, as an alternative to the multipolar atom modelling of the molecular charge density. Theoretical structure factors were computed from periodic density functional theory calculations on 38 crystal structures of small molecules and the charge density was subsequently refined using a density model based on real spherical atoms and additional dummy charges on the covalent bonds and on electron lone-pair sites. The electron-density parameters of real and dummy atoms present in a similar chemical environment were averaged on all the molecules studied to build a database of transferable spherical atoms. Compared with the now-popular databases of transferable multipolar parameters, the spherical charge modelling needs fewer parameters to describe the molecular electron density and can be more easily incorporated in molecular modelling software for the computation of electrostatic properties. The construction method of the database is described. In order to analyse to what extent this modelling method can be used to derive meaningful molecular properties, it has been applied to the urea molecule and to biotin/streptavidin, a protein/ligand complex.
Preparation of porous Si and TiO 2 nanofibres using a sulphur-templating method for lithium storage
McCormac, Kathleen; Byrd, Ian; Brannen, Rodney; ...
2015-02-03
We prepared highly porous Si/TiO 2 composite nanofibres using a unique sulphur-templating method combined with electrospinning. The structure, morphology, surface area, phase and composition of these nanofibres were characterized using Raman spectroscopy, scanning electron microscopy, powder X-ray diffraction, surface area analyser and thermogravimetric analyser. The specific surface area of Si/TiO 2 porous NFs is as large as 387m 2g -1, whose silicon capacity can be maintained above 1580mAhg -1 in 180 cycles.
CCD research. [design, fabrication, and applications
NASA Technical Reports Server (NTRS)
Gassaway, J. D.
1976-01-01
The fundamental problems encountered in designing, fabricating, and applying CCD's are reviewed. Investigations are described and results and conclusions are given for the following: (1) the development of design analyses employing computer aided techniques and their application to the design of a grapped structure; (2) the role of CCD's in applications to electronic functions, in particular, signal processing; (3) extending the CCD to silicon films on sapphire (SOS); and (4) all aluminum transfer structure with low noise input-output circuits. Related work on CCD imaging devices is summarized.
NASA Astrophysics Data System (ADS)
Khan, Wilayat; Hussain, Sajjad; Minar, Jan; Azam, Sikander
2018-02-01
Ternary chalcohalides have been widely utilized for different device applications. The thermoelectric properties of SbSI, SbSeI and SbSBr have been investigated by theoretical simulations, and the findings have been performed using BoltzTraP code, based on semi-classical Boltzmann transport theory. In this study, we simulated the electronic structures using the Englo-Vosko generalized gradient approximation employed in the WIEN2k program. From the electronic band structures, we found a combination of light and heavy bands around the Fermi level in the valence band, which strongly affect the effective masses of the carriers. The entire thermoelectric parameters, like the electrical, the electronic part of the thermal conductivities, the Seebeck coefficient and the power factor have been analysed as functions of temperature and chemical potential. The correlation between the effective masses and the thermoelectric properties is also included in the discussion because the effective mass reveals the mobility of the carriers which in turn affect the thermoelectric properties. The substitution of sulfur reveals high electrical conductivity and a smaller Seebeck coefficient based on effective mass leads to the increase in the power factor.
Crystal structure of simple metals at high pressures
NASA Astrophysics Data System (ADS)
Degtyareva, Olga
2010-09-01
The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structures found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.
Nunez-Iglesias, Juan; Blanch, Adam J; Looker, Oliver; Dixon, Matthew W; Tilley, Leann
2018-01-01
We present Skan (Skeleton analysis), a Python library for the analysis of the skeleton structures of objects. It was inspired by the "analyse skeletons" plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API) allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan's measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM)-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions.
Looker, Oliver; Dixon, Matthew W.; Tilley, Leann
2018-01-01
We present Skan (Skeleton analysis), a Python library for the analysis of the skeleton structures of objects. It was inspired by the “analyse skeletons” plugin for the Fiji image analysis software, but its extensive Application Programming Interface (API) allows users to examine and manipulate any intermediate data structures produced during the analysis. Further, its use of common Python data structures such as SciPy sparse matrices and pandas data frames opens the results to analysis within the extensive ecosystem of scientific libraries available in Python. We demonstrate the validity of Skan’s measurements by comparing its output to the established Analyze Skeletons Fiji plugin, and, with a new scanning electron microscopy (SEM)-based method, we confirm that the malaria parasite Plasmodium falciparum remodels the host red blood cell cytoskeleton, increasing the average distance between spectrin-actin junctions. PMID:29472997
Effects of 1 MeV electrons on the deformation mechanisms of polyethylene/carbon nanotube composites
NASA Astrophysics Data System (ADS)
Yang, Jianqun; Zhang, Xiaodong; Liu, Chaoming; Li, Xingji; Li, Hongxia; Ma, Guoliang; Tian, Feng
2017-10-01
Polymer nano-composites, especially in polyethylene (PE)/carbon nanotube (CNT) composites can be employed as radiation shielding and structural materials in space. When the PE/CNT composites are used in space, it is easy to suffer from radiation damage caused by charged particles. However, few studies about deformation mechanisms of the composites exposed to electron become available so far. In this paper, mutiwalled carbon nanotubes (MWCNTs) were incorporated into low density polyethylene (LDPE) with MWCNT loadings concentrations of 0.1 wt%. The structural evolution during uniaxial tensile deformation of the LDPE/0.1% MWCNT composites before and after 1 MeV electrons were investigated by means of a small angle X-ray scattering (SAXS) and wide angle X-ray diffraction (WAXD). Experimental results show that 1 MeV electrons obviously increase the ultimate tensile strength of the LDPE/MWCNT composites. From SAXS and WAXD analyses, it is shown that 1 MeV electrons inhibit the disintegration and the rotation of the lamellae, and slow down the formation of the new crystals. It is concluded that the intense interaction between MWCNTs and LDPE matrix and the crosslinking strengthening generated by 1 MeV electrons is the dominant reason for the changes of the deformation behaviors of LDPE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venghaus, Florian; Eisfeld, Wolfgang, E-mail: wolfgang.eisfeld@uni-bielefeld.de
2016-03-21
Robust diabatization techniques are key for the development of high-dimensional coupled potential energy surfaces (PESs) to be used in multi-state quantum dynamics simulations. In the present study we demonstrate that, besides the actual diabatization technique, common problems with the underlying electronic structure calculations can be the reason why a diabatization fails. After giving a short review of the theoretical background of diabatization, we propose a method based on the block-diagonalization to analyse the electronic structure data. This analysis tool can be used in three different ways: First, it allows to detect issues with the ab initio reference data and ismore » used to optimize the setup of the electronic structure calculations. Second, the data from the block-diagonalization are utilized for the development of optimal parametrized diabatic model matrices by identifying the most significant couplings. Third, the block-diagonalization data are used to fit the parameters of the diabatic model, which yields an optimal initial guess for the non-linear fitting required by standard or more advanced energy based diabatization methods. The new approach is demonstrated by the diabatization of 9 electronic states of the propargyl radical, yielding fully coupled full-dimensional (12D) PESs in closed form.« less
NASA Astrophysics Data System (ADS)
Ling, Wang; Dong, Die; Shi-Jian, Wang; Zheng-Quan, Zhao
2015-01-01
The geometrical, electronic, and magnetic properties of small CunFe (n=1-12) clusters have been investigated by using density functional method B3LYP and LanL2DZ basis set. The structural search reveals that Fe atoms in low-energy CunFe isomers tend to occupy the position with the maximum coordination number. The ground state CunFe clusters possess planar structure for n=2-5 and three-dimensional (3D) structure for n=6-12. The electronic properties of CunFe clusters are analyzed through the averaged binding energy, the second-order energy difference and HOMO-LUMO energy gap. It is found that the magic numbers of stability are 1, 3, 7 and 9 for the ground state CunFe clusters. The energy gap of Fe-encapsulated cage clusters is smaller than that of other configurations. The Cu5Fe and Cu7Fe clusters have a very large energy gap (>2.4 eV). The vertical ionization potential (VIP), electron affinity (EA) and photoelectron spectra are also calculated and simulated theoretically for all the ground-state clusters. The magnetic moment analyses for the ground-state CunFe clusters show that Fe atom can enhance the magnetic moment of the host cluster and carries most of the total magnetic moment.
Haberfehlner, Georg; Thaler, Philipp; Knez, Daniel; Volk, Alexander; Hofer, Ferdinand; Ernst, Wolfgang E.; Kothleitner, Gerald
2015-01-01
Structure, shape and composition are the basic parameters responsible for properties of nanoscale materials, distinguishing them from their bulk counterparts. To reveal these in three dimensions at the nanoscale, electron tomography is a powerful tool. Advancing electron tomography to atomic resolution in an aberration-corrected transmission electron microscope remains challenging and has been demonstrated only a few times using strong constraints or extensive filtering. Here we demonstrate atomic resolution electron tomography on silver/gold core/shell nanoclusters grown in superfluid helium nanodroplets. We reveal morphology and composition of a cluster identifying gold- and silver-rich regions in three dimensions and we estimate atomic positions without using any prior information and with minimal filtering. The ability to get full three-dimensional information down to the atomic scale allows understanding the growth and deposition process of the nanoclusters and demonstrates an approach that may be generally applicable to all types of nanoscale materials. PMID:26508471
Intrinsic electronic defects and multiple-atom processes in the oxidic semiconductor Ga2O3
NASA Astrophysics Data System (ADS)
Schmeißer, Dieter; Henkel, Karsten
2018-04-01
We report on the electronic structure of gallium oxide (Ga2O3) single crystals as studied by resonant photoelectron spectroscopy (resPES). We identify intrinsic electronic defects that are formed by mixed-atomic valence states. We differentiate three coexisting defect states that differ in their electronic correlation energy and their spatial localization lengths. Their relative abundance is described by a fractional ionicity with covalent and ionic bonding contributions. For Ga2O3, our analyses of the resPES data enable us to derive two main aspects: first, experimental access is given to determine the ionicity based on the original concepts of Pauling and Phillips. Second, we report on multi-atomic energy loss processes in the Ga2p core level and X-ray absorption data. The two experimental findings can be explained consistently in the same context of mixed-atomic valence states and intrinsic electronic defects.
Prediction of the electron redundant SinNn fullerenes
NASA Astrophysics Data System (ADS)
Yang, Huihui; Song, Yan; Zhang, Yan; Chen, Hongshan
2018-05-01
The stabilities and electronic structures of SimAln-mNn and SinNn (n = 16, 20, m = 12 and n = 24, m = 16) fullerene-like cages have been investigated using density functional method B3LYP and the second-order perturbation theory MP2. The results show that the SimAln-mNn and SinNn fullerenes are more stable than the AlN counterparts. Comparing with the corresponding AlnNn cages, one silicon atom in each Si2N2 square protrudes and the excess electrons reside as lone pair electrons at the outside of the protrudent Si atoms. Analyses on the electronic structures suggest that the Sisbnd N bonds are covalent bonding with strong polarity. The ELF (electron localization function) shows large electron pair probability between Si and N atoms. The orbital interactions between Si and N are stronger than that between Al and N atoms; the overlap integral is 0.40 per Sisbnd N bond in SinNn and 0.34 per Alsbnd N bond in AlnNn. The AIM (atoms in molecule) charges on the Al atoms in AlnNn and SimAln-mNn are 2.37 and 2.40. The charges on the in-plane and protrudent Si atoms are about 2.88 and 1.50 respectively. Considering the large local dipole moments around the protrudent Si atoms, the electrostatic interactions are also favorable to the SiN cages.
Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang; ...
2018-02-09
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Dongsheng; Marras, Alexander E.; Liu, Jianfang
Scaffolded DNA origami has proven to be a powerful and efficient technique to fabricate functional nanomachines by programming the folding of a single-stranded DNA template strand into three-dimensional (3D) nanostructures, designed to be precisely motion-controlled. Although two-dimensional (2D) imaging of DNA nanomachines using transmission electron microscopy and atomic force microscopy suggested these nanomachines are dynamic in 3D, geometric analysis based on 2D imaging was insufficient to uncover the exact motion in 3D. In this paper, we use the individual-particle electron tomography method and reconstruct 129 density maps from 129 individual DNA origami Bennett linkage mechanisms at ~6-14 nm resolution. The statisticalmore » analyses of these conformations lead to understanding the 3D structural dynamics of Bennett linkage mechanisms. Moreover, our effort provides experimental verification of a theoretical kinematics model of DNA origami, which can be used as feedback to improve the design and control of motion via optimized DNA sequences and routing.« less
All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures.
Yang, Huayan; Wang, Yu; Huang, Huaqi; Gell, Lars; Lehtovaara, Lauri; Malola, Sami; Häkkinen, Hannu; Zheng, Nanfeng
2013-01-01
Noble metal nanoparticles stabilized by organic ligands are important for applications in assembly, site-specific bioconjugate labelling and sensing, drug delivery and medical therapy, molecular recognition and molecular electronics, and catalysis. Here we report crystal structures and theoretical analysis of three Ag44(SR)30 and three Au12Ag32(SR)30 intermetallic nanoclusters stabilized with fluorinated arylthiols (SR=SPhF, SPhF2 or SPhCF3). The nanocluster forms a Keplerate solid of concentric icosahedral and dodecahedral atom shells, protected by six Ag2(SR)5 units. Positive counterions in the crystal indicate a high negative charge of 4(-) per nanoparticle, and density functional theory calculations explain the stability as an 18-electron superatom shell closure in the metal core. Highly featured optical absorption spectra in the ultraviolet-visible region are analysed using time-dependent density functional perturbation theory. This work forms a basis for further understanding, engineering and controlling of stability as well as electronic and optical properties of these novel nanomaterials.
Arjunan, V; Raj, Arushma; Anitha, R; Mohan, S
2014-05-05
Optimised geometrical structural parameters, harmonic vibrational frequencies, natural bonding orbital analysis and frontier molecular orbitals are determined by B3LYP and B3PW91 methods. The exact geometry of 5-chloro-1-methyl-4-nitroimidazole is determined through conformational analysis. The experimentally observed infrared and Raman bands have been assigned and analysed. The (13)C and (1)H NMR chemical shifts of the compound are investigated. The total electron density and molecular electrostatic potentials are determined. The electrostatic potential (electron+nuclei) distribution, molecular shape, size and dipole moments of the molecule have been displayed. The energies of the frontier molecular orbitals and LUMO-HOMO energy gap are measured. The possible electronic transitions of the molecule are studied by TD-DFT method along with the UV-Visible spectrum. The structure-activity relationship of the compound is also investigated by conceptual DFT methods. Copyright © 2014 Elsevier B.V. All rights reserved.
Gwon, Taehong; Mohamed, Ahmed Yousef; Yoo, Chanyoung; Park, Eui-Sang; Kim, Sanggyun; Yoo, Sijung; Lee, Han-Koo; Cho, Deok-Yong; Hwang, Cheol Seong
2017-11-29
The local bonding structures of Ge x Te 1-x (x = 0.5, 0.6, and 0.7) films prepared through atomic layer deposition (ALD) with Ge(N(Si(CH 3 ) 3 ) 2 ) 2 and ((CH 3 ) 3 Si) 2 Te precursors were investigated using Ge K-edge X-ray absorption spectroscopy (XAS). The results of the X-ray absorption fine structure analyses show that for all of the compositions, the as-grown films were amorphous with a tetrahedral Ge coordination of a mixture of Ge-Te and Ge-Ge bonds but without any signature of Ge-GeTe decomposition. The compositional evolution in the valence band electronic structures probed through X-ray photoelectron spectroscopy suggests a substantial chemical influence of additional Ge on the nonstoichiometric GeTe. This implies that the ALD process can stabilize Ge-abundant bonding networks like -Te-Ge-Ge-Te- in amorphous GeTe. Meanwhile, the XAS results on the Ge-rich films that had undergone post-deposition annealing at 350 °C show that the parts of the crystalline Ge-rich GeTe became separated into Ge crystallites and rhombohedral GeTe in accordance with the bulk phase diagram, whereas the disordered GeTe domains still remained, consistent with the observations of transmission electron microscopy and Raman spectroscopy. Therefore, amorphousness in GeTe may be essential for the nonsegregated Ge-rich phases and the low growth temperature of the ALD enables the achievement of the structurally metastable phases.
NASA Astrophysics Data System (ADS)
Jiang, Hao; Li, Tie; Wang, Yifeng; He, Pengfei
2018-04-01
Soot particles emitted from diesel engines have a significant impact on the atmospheric environment. Detailed understanding of soot formation and oxidation processes is helpful for reducing the pollution of soot particles, which requires information such as the size and nano-structure parameters of the soot primary particles sampled in a high-temperature and high-pressure diesel jet flame. Based on the thermophoretic principle, a novel sampling probe minimally disturbing the diesel jet flame in a constant volume combustion vessel is developed for analysing soot particles. The injected quantity of diesel fuel is less than 10 mg, and the soot particles sampled by carriers with a transmission electron microscope (TEM) grid and lacey TEM grid can be used to analyse the morphologies of soot aggregates and the nano-structure of the soot primary particles, respectively. When the quantity of diesel fuel is more than 10 mg, in order to avoid burning-off of the carriers in higher temperature and pressure conditions, single-crystal silicon chips are employed. Ultrasonic oscillations and alcohol extraction are then implemented to obtain high quality soot samples for observation using a high-resolution transmission electron microscope. An in-house Matlab-based code is developed to extract the nano-structure parameters of the soot particles. A complete sampling and analysis procedure of the soot particles is provided to study the formation and oxidation mechanism of soot.
Ab initio conformational analysis of N-formyl ?-alanine amide including electron correlation
NASA Astrophysics Data System (ADS)
Yu, Ching-Hsing; Norman, Mya A.; Schäfer, Lothar; Ramek, Michael; Peeters, Anik; van Alsenoy, Christian
2001-06-01
The conformational properties of N-formyl L-alanine amide (ALA) were investigated using RMP2/6-311G∗∗ ab initio gradient geometry optimization. One hundred forty four structures of ALA were optimized at 30° grid points in its φ(N-C(α)), ψ(C(α)-C‧) conformational space. Using cubic spline functions, the grid structures were then used to construct analytical representations of complete surfaces, in φ,ψ-space, of bond lengths, bond angles, torsional sensitivity and electrostatic atomic charges. Analyses show that, in agreement with previous studies, the right-handed helical conformation, αR, is not a local energy minimum of the potential energy surface of ALA. Comparisons with protein crystallographic data show that the characteristic differences between geometrical trends in dipeptides and proteins, previously found for ab initio dipeptide structures obtained without electron correlation, are also found in the electron-correlated geometries. In contrast to generally accepted features of force fields used in empirical molecular modeling, partial atomic charges obtained by the CHELPG method are found to be not constant, but to vary significantly throughout the φ,ψ-space. By comparing RHF and MP2 structures, the effects of dispersion forces on ALA were studied, revealing molecular contractions for those conformations, in which small adjustments of torsional angles entail large changes in non-bonded distances.
Studies of the pedestal structure and inter-ELM pedestal evolution in JET with the ITER-like wall
NASA Astrophysics Data System (ADS)
Maggi, C. F.; Frassinetti, L.; Horvath, L.; Lunniss, A.; Saarelma, S.; Wilson, H.; Flanagan, J.; Leyland, M.; Lupelli, I.; Pamela, S.; Urano, H.; Garzotti, L.; Lerche, E.; Nunes, I.; Rimini, F.; Contributors, JET
2017-11-01
The pedestal structure of type I ELMy H-modes has been analysed for JET with the ITER-like Wall (JET-ILW). The electron pressure pedestal width is independent of ρ * and increases proportionally to √β pol,PED. Additional broadening of the width is observed, at constant β pol, PED, with increasing ν * and/or neutral gas injection and the contribution of atomic physics effects in setting the pedestal width cannot as yet be ruled out. Neutral penetration alone does not determine the shape of the edge density profile in JET-ILW. The ratio of electron density to electron temperature scale lengths in the edge transport barrier region, η e, is of order 2-3 within experimental uncertainties. Existing understanding, represented in the stationary linear peeling-ballooning mode stability and the EPED pedestal structure models, is extended to the dynamic evolution between ELM crashes in JET-ILW, in order to test the assumptions underlying these two models. The inter-ELM temporal evolution of the pedestal structure in JET-ILW is not unique, but depends on discharge conditions, such as heating power and gas injection levels. The strong reduction in p e,PED with increasing D 2 gas injection at high power is primarily due to clamping of \
Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi
2014-05-01
Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the `diffraction before destruction' scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles.
Sekiguchi, Yuki; Oroguchi, Tomotaka; Takayama, Yuki; Nakasako, Masayoshi
2014-01-01
Coherent X-ray diffraction imaging is a promising technique for visualizing the structures of non-crystalline particles with dimensions of micrometers to sub-micrometers. Recently, X-ray free-electron laser sources have enabled efficient experiments in the ‘diffraction before destruction’ scheme. Diffraction experiments have been conducted at SPring-8 Angstrom Compact free-electron LAser (SACLA) using the custom-made diffraction apparatus KOTOBUKI-1 and two multiport CCD detectors. In the experiments, ten thousands of single-shot diffraction patterns can be collected within several hours. Then, diffraction patterns with significant levels of intensity suitable for structural analysis must be found, direct-beam positions in diffraction patterns determined, diffraction patterns from the two CCD detectors merged, and phase-retrieval calculations for structural analyses performed. A software suite named SITENNO has been developed to semi-automatically apply the four-step processing to a huge number of diffraction data. Here, details of the algorithm used in the suite are described and the performance for approximately 9000 diffraction patterns collected from cuboid-shaped copper oxide particles reported. Using the SITENNO suite, it is possible to conduct experiments with data processing immediately after the data collection, and to characterize the size distribution and internal structures of the non-crystalline particles. PMID:24763651
NASA Astrophysics Data System (ADS)
Chioma, Festus; Ekennia, Anthony C.; Ibeji, Collins U.; Okafor, Sunday N.; Onwudiwe, Damian C.; Osowole, Aderoju A.; Ujam, Oguejiofo T.
2018-07-01
A pyrimidine-based ligand, 2-(pyrimidin-2-ylamino)naphthalene-1,4-dione (L), has been synthesized by the reaction of 2-aminopyrimidine with 2-hydroxy-1,4-napthoquinone. Reaction of the ligand with Ni(II), Co(II), Mn(II) and Zn(II) acetate gave the corresponding metal complexes which were characterized by spectroscopic techniques, (infrared, electronic), elemental analysis, room-temperature magnetometry, conductance measurements and thermogravimetry-differential scanning calorimetry (TG-DSC) analyses. The room-temperature magnetic data and electronic spectral measurements of the complexes gave evidence of 4-coordinate square planar/tetrahedral geometry. The thermal analyses values obtained indicated the monohydrate complexes. The antimicrobial screening of the compounds showed mild to very good results. The Mn(II) complex showed the best result within in the range of 11.5-29 mm. The electronic, structural and spectroscopic properties of the complexes were further discussed using density functional theory. Molecular docking studies showed significant binding affinity with the drug targets and the metal complexes have potentials to be used as drugs.
NASA Astrophysics Data System (ADS)
Yoosefian, Mehdi; Pakpour, Atef; Etminan, Nazanin
2018-06-01
This paper discusses the use of carboxylated single-walled carbon nanotube as a general nanofilter platform for the removal of acrolein carcinogen from cigarette smoke. The analyses carried out in the detailed study of the electronic and structural effects of the adsorption of acrolein onto COOH loaded on single-walled carbon nanotube under the density functional theory framework. The results of Bader theory of atoms in molecules, natural bond orbital, molecular potential electron surface and density of state confirm the potential application of the suggested nanofilter platform.
Ionic channels: natural nanotubes described by the drift diffusion equations
NASA Astrophysics Data System (ADS)
Eisenberg, Bob
2000-05-01
Ionic channels are a large class of proteins with holes down their middle that control a wide range of cellular functions important in health and disease. Ionic channels can be analysed using a combination of the Poisson and drift diffusion equations familiar from computational electronics because their behavior is dominated by the electrical properties of their simple structure.
Gorski, Christopher A; Klüpfel, Laura; Voegelin, Andreas; Sander, Michael; Hofstetter, Thomas B
2012-09-04
Structural Fe in clay minerals is an important, albeit poorly characterized, redox-active phase found in many natural and engineered environments. This work develops an experimental approach to directly assess the redox properties of a natural Fe-bearing smectite (ferruginous smectite, SWa-1, 12.6 wt % Fe) with mediated electrochemical reduction (MER) and oxidation (MEO). By utilizing a suite of one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in SWa-1 and a working electrode, we show that the Fe2+/Fe3+ couple in SWa-1 is redox-active over a large range of potentials (from E(H) = -0.63 V to +0.61 V vs SHE). Electrochemical and spectroscopic analyses of SWa-1 samples that were subject to reduction and re-oxidation cycling revealed both reversible and irreversible structural Fe rearrangements that altered the observed apparent standard reduction potential (E(H)(ø)) of structural Fe. E(H)(ø)-values vary by as much as 0.56 V between SWa-1 samples with different redox histories. The wide range of E(H)-values over which SWa-1 is redox-active and redox history-dependent E(H)(ø)-values underscore the importance of Fe-bearing clay minerals as redox-active phases in a wide range of redox regimes.
Quantitative studies on structure-DPPH• scavenging activity relationships of food phenolic acids.
Jing, Pu; Zhao, Shu-Juan; Jian, Wen-Jie; Qian, Bing-Jun; Dong, Ying; Pang, Jie
2012-11-01
Phenolic acids are potent antioxidants, yet the quantitative structure-activity relationships of phenolic acids remain unclear. The purpose of this study was to establish 3D-QSAR models able to predict phenolic acids with high DPPH• scavenging activity and understand their structure-activity relationships. The model has been established by using a training set of compounds with cross-validated q2 = 0.638/0.855, non-cross-validated r2 = 0.984/0.986, standard error of estimate = 0.236/0.216, and F = 139.126/208.320 for the best CoMFA/CoMSIA models. The predictive ability of the models was validated with the correlation coefficient r2(pred) = 0.971/0.996 (>0.6) for each model. Additionally, the contour map results suggested that structural characteristics of phenolics acids favorable for the high DPPH• scavenging activity might include: (1) bulky and/or electron-donating substituent groups on the phenol ring; (2) electron-donating groups at the meta-position and/or hydrophobic groups at the meta-/ortho-position; (3) hydrogen-bond donor/electron-donating groups at the ortho-position. The results have been confirmed based on structural analyses of phenolic acids and their DPPH• scavenging data from eight recent publications. The findings may provide deeper insight into the antioxidant mechanisms and provide useful information for selecting phenolic acids for free radical scavenging properties.
Novel porous CuO microrods: synthesis, characterization, and their photocatalysis property
NASA Astrophysics Data System (ADS)
Huang, Jiarui; Fu, Guijun; Shi, Chengcheng; Wang, Xinyue; Zhai, Muheng; Gu, Cuiping
2014-09-01
Porous copper oxide microrods have been synthesized via calcining copper glycinate monohydrate microrod precursor which was prepared in mild conditions without any template or additive. Several techniques, such as X-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller (BET) N2 adsorption-desorption analyses, were used to characterize the structure and morphology of the products. Scanning electron microscopy (SEM) analyses show that the precursor consists of a large quantity of uniform rod-like micro/nanostructures with typical lengths in the range of 25-40 μm and diameters in the range of 0.1-0.35 μm. The microrod-like precursors transformed into porous microrod products after calcination at 450 °C in flow air for 2 h. The BET surface area of the porous CuO microrods was calculated to be 8.5 m² g-1. In addition, the obtained porous CuO microrods were used as catalysts to photodegrade rhodamine B (RhB), methyl orange, methylene blue, eosin B, and p-nitrophenol. Compared with commercial CuO powders, the as-prepared porous CuO microrods exhibit superior properties on photocatalytic decomposition of RhB due to their porous hierarchical structures.
Benge, James; Beach, Thomas; Gladding, Connie; Maestas, Gail
2008-01-01
The Military Health System (MHS) deployed its electronic health record (EHR), AHLTA to Military Treatment Facilities (MTFs) around the world. This paper focuses on the approach and barriers to using structured text in AHLTA to document care encounters and illustrates the direct correlation between the use of structured text and achievement of expected benefits. AHLTA uses commercially available products, a health data dictionary and standardized medical terminology, enabling the capture of structured computable data. With structured text stored in the AHLTA Clinical Data Repository (CDR), the MHS has seen a return on its EHR investment with improvements in the accuracy and completeness of coding and the documentation of care provided. Determining the aspects of documentation where structured text is most beneficial, as well as the degree of structured text needed has been a significant challenge. This paper describes how the economic value framework aligns the enterprise strategic objectives with the EHR investment features, performance metrics and expected benefits. The framework analyses focus on return on investment calculations, baseline assessment and post-implementation benefits validation. Cost avoidance, revenue enhancements and operational improvements, such as evidence-based medicine and medical surveillance can be directly attributed to use structured text.
NASA Astrophysics Data System (ADS)
Halim Başkan, M.; Kartal, Zeki; Aydın, Murat
2015-12-01
Gamma irradiated powders of glycine anhydride and betaine hydrochloride have been investigated at room temperature by electron paramagnetic resonance (EPR). In these compounds, the observed paramagnetic species were attributed to the R1 and R2 radicals, respectively. It was determined that the free electron interacted with environmental protons and 14N nucleus in both radicals. The EPR spectra of gamma irradiated powder samples remained unchanged at room temperature for two weeks after irradiation. Also, the Fourier Transform Infrared (FT-IR), FT-Raman and thermal analyses of both compounds were investigated. The functional groups in the molecular structures of glycine anhydride and betaine hydrochloride were identified by vibrational spectroscopies (FT-IR and FT-Raman).
NASA Astrophysics Data System (ADS)
Rajamanickam, Govindaraj; Narendhiran, Santhosh; Muthu, Senthil Pandian; Mukhopadhyay, Sumita; Perumalsamy, Ramasamy
2017-12-01
Titanium dioxide is a promising wide band gap semiconducting material for dye-sensitized solar cell. The poor electron transport properties still remain a challenge with conventional nanoparticles. Here, we synthesized TiO2 nanorods/nanoparticles by hydrothermal method to improve the charge transport properties. The structural and morphological information of the prepared nanorods/nanoparticles was analysed with X-ray diffraction and electron microscopy analysis, respectively. A high power conversion efficiency of 7.7% is achieved with nanorods/nanoparticles employed device under 100 mW/cm2. From the electrochemical impedance analysis, superior electron transport properties have been found for synthesized TiO2 nanorods/nanoparticles employed device than commercial P25 nanoparticles based device.
Densification of a-IGZO with low-temperature annealing for flexible electronics applications
NASA Astrophysics Data System (ADS)
Troughton, J. G.; Downs, P.; Price, R.; Atkinson, D.
2017-01-01
Amorphous InGaZnO (a-IGZO) thin-film transistors are a leading contender for active channel materials in next generation flat panel displays and flexible electronics. Improved electronic functionality has been linked to the increased density of a-IGZO, and while much work has looked at high-temperature processes, studies at temperatures compatible with flexible substrates are needed. Here, compositional and structural analyses show that short term, low-temperature annealing (<6 h) can increase the density of sputtered a-IGZO by up to 5.6% for temperatures below 300 °C, which is expected to improve the transistor performance, while annealing for longer times leads to a subsequent decrease in density due to oxygen absorption.
A facile thermal decomposition route to synthesise CoFe2O4 nanostructures
NASA Astrophysics Data System (ADS)
Kalpanadevi, K.; Sinduja, C. R.; Manimekalai, R.
2014-01-01
The synthesis of CoFe2O4 nanoparticles has been achieved by a simple thermal decomposition method from an inorganic precursor, cobalt ferrous cinnamate hydrazinate (CoFe2(cin)3(N2H4)3) which was obtained by a novel precipitation method from the corresponding metal salts, cinnamic acid and hydrazine hydrate. The precursor was characterized by hydrazine and metal analyses, infrared spectral analysis and thermo gravimetric analysis. Under appropriate annealing, CoFe2(cin)3(N2H4)3 yielded CoFe2O4 nanoparticles, which were characterized for their size and structure using X-Ray diffraction (XRD), high resolution transmission electron microscopic (HRTEM), selected area electron diffraction (SAED) and scanning electron microscopic (SEM) techniques.
Wanner, Adrian A; Genoud, Christel; Friedrich, Rainer W
2016-11-08
Large-scale reconstructions of neuronal populations are critical for structural analyses of neuronal cell types and circuits. Dense reconstructions of neurons from image data require ultrastructural resolution throughout large volumes, which can be achieved by automated volumetric electron microscopy (EM) techniques. We used serial block face scanning EM (SBEM) and conductive sample embedding to acquire an image stack from an olfactory bulb (OB) of a zebrafish larva at a voxel resolution of 9.25×9.25×25 nm 3 . Skeletons of 1,022 neurons, 98% of all neurons in the OB, were reconstructed by manual tracing and efficient error correction procedures. An ergonomic software package, PyKNOSSOS, was created in Python for data browsing, neuron tracing, synapse annotation, and visualization. The reconstructions allow for detailed analyses of morphology, projections and subcellular features of different neuron types. The high density of reconstructions enables geometrical and topological analyses of the OB circuitry. Image data can be accessed and viewed through the neurodata web services (http://www.neurodata.io). Raw data and reconstructions can be visualized in PyKNOSSOS.
Wanner, Adrian A.; Genoud, Christel; Friedrich, Rainer W.
2016-01-01
Large-scale reconstructions of neuronal populations are critical for structural analyses of neuronal cell types and circuits. Dense reconstructions of neurons from image data require ultrastructural resolution throughout large volumes, which can be achieved by automated volumetric electron microscopy (EM) techniques. We used serial block face scanning EM (SBEM) and conductive sample embedding to acquire an image stack from an olfactory bulb (OB) of a zebrafish larva at a voxel resolution of 9.25×9.25×25 nm3. Skeletons of 1,022 neurons, 98% of all neurons in the OB, were reconstructed by manual tracing and efficient error correction procedures. An ergonomic software package, PyKNOSSOS, was created in Python for data browsing, neuron tracing, synapse annotation, and visualization. The reconstructions allow for detailed analyses of morphology, projections and subcellular features of different neuron types. The high density of reconstructions enables geometrical and topological analyses of the OB circuitry. Image data can be accessed and viewed through the neurodata web services (http://www.neurodata.io). Raw data and reconstructions can be visualized in PyKNOSSOS. PMID:27824337
Light-induced structural changes and the site of O=O bond formation in PSII caught by XFEL.
Suga, Michihiro; Akita, Fusamichi; Sugahara, Michihiro; Kubo, Minoru; Nakajima, Yoshiki; Nakane, Takanori; Yamashita, Keitaro; Umena, Yasufumi; Nakabayashi, Makoto; Yamane, Takahiro; Nakano, Takamitsu; Suzuki, Mamoru; Masuda, Tetsuya; Inoue, Shigeyuki; Kimura, Tetsunari; Nomura, Takashi; Yonekura, Shinichiro; Yu, Long-Jiang; Sakamoto, Tomohiro; Motomura, Taiki; Chen, Jing-Hua; Kato, Yuki; Noguchi, Takumi; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Nango, Eriko; Tanaka, Rie; Naitow, Hisashi; Matsuura, Yoshinori; Yamashita, Ayumi; Yamamoto, Masaki; Nureki, Osamu; Yabashi, Makina; Ishikawa, Tetsuya; Iwata, So; Shen, Jian-Ren
2017-03-02
Photosystem II (PSII) is a huge membrane-protein complex consisting of 20 different subunits with a total molecular mass of 350 kDa for a monomer. It catalyses light-driven water oxidation at its catalytic centre, the oxygen-evolving complex (OEC). The structure of PSII has been analysed at 1.9 Å resolution by synchrotron radiation X-rays, which revealed that the OEC is a Mn 4 CaO 5 cluster organized in an asymmetric, 'distorted-chair' form. This structure was further analysed with femtosecond X-ray free electron lasers (XFEL), providing the 'radiation damage-free' structure. The mechanism of O=O bond formation, however, remains obscure owing to the lack of intermediate-state structures. Here we describe the structural changes in PSII induced by two-flash illumination at room temperature at a resolution of 2.35 Å using time-resolved serial femtosecond crystallography with an XFEL provided by the SPring-8 ångström compact free-electron laser. An isomorphous difference Fourier map between the two-flash and dark-adapted states revealed two areas of apparent changes: around the Q B /non-haem iron and the Mn 4 CaO 5 cluster. The changes around the Q B /non-haem iron region reflected the electron and proton transfers induced by the two-flash illumination. In the region around the OEC, a water molecule located 3.5 Å from the Mn 4 CaO 5 cluster disappeared from the map upon two-flash illumination. This reduced the distance between another water molecule and the oxygen atom O4, suggesting that proton transfer also occurred. Importantly, the two-flash-minus-dark isomorphous difference Fourier map showed an apparent positive peak around O5, a unique μ 4 -oxo-bridge located in the quasi-centre of Mn1 and Mn4 (refs 4,5). This suggests the insertion of a new oxygen atom (O6) close to O5, providing an O=O distance of 1.5 Å between these two oxygen atoms. This provides a mechanism for the O=O bond formation consistent with that proposed previously.
NASA Astrophysics Data System (ADS)
Arbiol, Jordi; Estradé, Sònia; Prades, Joan D.; Cirera, Albert; Furtmayr, Florian; Stark, Christoph; Laufer, Andreas; Stutzmann, Martin; Eickhoff, Martin; Gass, Mhairi H.; Bleloch, Andrew L.; Peiró, Francesca; Morante, Joan R.
2009-04-01
We report on the effect of Mg doping on the properties of GaN nanowires grown by plasma assisted molecular beam epitaxy. The most significant feature is the presence of triple-twin domains, the density of which increases with increasing Mg concentration. The resulting high concentration of misplaced atoms gives rise to local changes in the crystal structure equivalent to the insertion of three non-relaxed zinc-blende (ZB) atomic cells, which result in quantum wells along the wurtzite (WZ) nanowire growth axis. High resolution electron energy loss spectra were obtained exactly on the twinned (zinc-blende) and wurtzite planes. These atomically resolved measurements, which allow us to identify modifications in the local density of states, revealed changes in the band to band electronic transition energy from 3.4 eV for wurtzite to 3.2 eV in the twinned lattice regions. These results are in good agreement with specific ab initio atomistic simulations and demonstrate that the redshift observed in previous photoluminescence analyses is directly related to the presence of these zinc-blende domains, opening up new possibilities for band-structure engineering.
On the transferability of electron density in binary vanadium borides VB, V3B4 and VB2.
Terlan, Bürgehan; Akselrud, Lev; Baranov, Alexey I; Borrmann, Horst; Grin, Yuri
2015-12-01
Binary vanadium borides are suitable model systems for a systematic analysis of the transferability concept in intermetallic compounds due to chemical intergrowth in their crystal structures. In order to underline this structural relationship, topological properties of the electron density in VB, V3B4 and VB2 reconstructed from high-resolution single-crystal X-ray diffraction data as well as derived from quantum chemical calculations, are analysed in terms of Bader's Quantum Theory of Atoms in Molecules [Bader (1990). Atoms in Molecules: A Quantum Theory, 1st ed. Oxford: Clarendon Press]. The compounds VB, V3B4 and VB2 are characterized by a charge transfer from the metal to boron together with two predominant atomic interactions, the shared covalent B-B interactions and the polar covalent B-M interactions. The resembling features of the crystal structures are well reflected by the respective B-B interatomic distances as well as by ρ(r) values at the B-B bond critical points. The latter decrease with an increase in the corresponding interatomic distances. The B-B bonds show transferable electron density properties at bond critical points depending on the respective bond distances.
Lin, Qisheng; Miller, Gordon J
2018-01-16
Intermetallic compounds represent an extensive pool of candidates for energy related applications stemming from magnetic, electric, optic, caloric, and catalytic properties. The discovery of novel intermetallic compounds can enhance understanding of the chemical principles that govern structural stability and chemical bonding as well as finding new applications. Valence electron-poor polar intermetallics with valence electron concentrations (VECs) between 2.0 and 3.0 e - /atom show a plethora of unprecedented and fascinating structural motifs and bonding features. Therefore, establishing simple structure-bonding-property relationships is especially challenging for this compound class because commonly accepted valence electron counting rules are inappropriate. During our efforts to find quasicrystals and crystalline approximants by valence electron tuning near 2.0 e - /atom, we observed that compositions close to those of quasicrystals are exceptional sources for unprecedented valence electron-poor polar intermetallics, e.g., Ca 4 Au 10 In 3 containing (Au 10 In 3 ) wavy layers, Li 14.7 Mg 36.8 Cu 21.5 Ga 66 adopting a type IV clathrate framework, and Sc 4 Mg x Cu 15-x Ga 7.5 that is incommensurately modulated. In particular, exploratory syntheses of AAu 3 T (A = Ca, Sr, Ba and T = Ge, Sn) phases led to interesting bonding features for Au, such as columns, layers, and lonsdaleite-type tetrahedral frameworks. Overall, the breadth of Au-rich polar intermetallics originates, in part, from significant relativistics effect on the valence electrons of Au, effects which result in greater 6s/5d orbital mixing, a small effective metallic radius, and an enhanced Mulliken electronegativity, all leading to ultimate enhanced binding with nearly all metals including itself. Two other successful strategies to mine electron-poor polar intermetallics include lithiation and "cation-rich" phases. Along these lines, we have studied lithiated Zn-rich compounds in which structural complexity can be realized by small amounts of Li replacing Zn atoms in the parent binary compounds CaZn 2 , CaZn 3 , and CaZn 5 ; their phase formation and bonding schemes can be rationalized by Fermi surface-Brillouin zone interactions between nearly free-electron states. "Cation-rich", electron-poor polar intermetallics have emerged using rare earth metals as the electropositive ("cationic") component together metal/metalloid clusters that mimic the backbones of aromatic hydrocarbon molecules, which give evidence of extensive electronic delocalization and multicenter bonding. Thus, we can identify three distinct, valence electron-poor, polar intermetallic systems that have yielded unprecedented phases adopting novel structures containing complex clusters and intriguing bonding characteristics. In this Account, we summarize our recent specific progress in the developments of novel Au-rich BaAl 4 -type related structures, shown in the "gold-rich grid", lithiation-modulated Ca-Li-Zn phases stabilized by different bonding characteristics, and rare earth-rich polar intermetallics containing unprecedented hydrocarbon-like planar Co-Ge metal clusters and pronounced delocalized multicenter bonding. We will focus mainly on novel structural motifs, bonding analyses, and the role of valence electrons for phase stability.
NASA Astrophysics Data System (ADS)
Liu, Chun Mei; Xu, Chao; Duan, Man Yi
2015-10-01
SnS has potential technical applications, but many of its properties are still not well studied. In this work, the structural, thermodynamic, elastic, and electronic properties of α-SnS have been investigated by the plane wave pseudo-potential density functional theory with the framework of generalised gradient approximation. The calculated pressure-dependent lattice parameters agree well with the available experimental data. Our thermodynamic properties of α-SnS, including heat capacity CP , entropy S, and Gibbs free energy relation of -(GT -H0) curves, show similar growth trends as the experimental data. At T=298.15 K, our CP =52.31 J/mol·K, S=78.93 J/mol·K, and -(GT -H0)=12.03 J/mol all agree very well with experimental data CP =48.77 J/mol·K and 49.25 J/mol·K, S=76.78 J/mol·K, and -(GT -H0)=12.38 J/mol. The elastic constants, together with other elastic properties, are also computed. The anisotropy analyses indicate obvious elastic anisotropy for α-SnS along different symmetry planes and axes. Moreover, calculations demonstrate that α-SnS is an indirect gap semiconductor, and it transforms to semimetal with pressure increasing up to 10.2 GPa. Combined with the density of states, the characters of the band structure have been analysed in detail.
Saario, Sirpa; Hall, Christopher; Peckover, Sue
2012-12-01
Information and communication technologies are widely used in health and social care settings to replace previous means of record keeping, assessment and communication. Commentary on the strengths and weaknesses of such systems abound, thus it is useful to examine how they are used in practice. This article draws on findings from two separate studies, conducted between 2005 and 2007, which examined how child health and welfare professionals use electronic documents in Finland and England. Known respectively as Miranda and CAF, these systems are different in terms of structure and function but in their everyday use common features are identified, notably the continued use of and reliance on non-electronic means of communication. Based on interviews with professionals, three forms of non-electronic communication are described: alternative records, phone calls and letters, which facilitate the sharing of the electronic record. Finally, the electronic documents are further analysed as potential boundary objects which aim to create common understanding between sites and professionals. Copyright © 2012 Elsevier Ltd. All rights reserved.
Molecular and electronic structures of M 2O 7 (M = Mn, Tc, Re)
Lawler, Keith V.; Childs, Bradley C.; Mast, Daniel S.; ...
2017-02-21
The molecular and electronic structures for the Group 7b heptoxides were investigated by computational methods as both isolated molecules and in the solid-state. The metal-oxygen-metal bending angle of the single molecule increased with increasing atomic number, with Re 2O 7 preferring a linear structure. Natural bond orbital and localized orbital bonding analyses indicate that there is a three-center covalent bond between the metal atoms and the bridging oxygen, and the increasing ionic character of the bonds favors larger bond angles. The calculations accurately reproduce the experimental crystal structures within a few percent. Analysis of the band structures and density ofmore » states shows similar bonding for all of the solid-state heptoxides, including the presence of the three-center covalent bond. DFT+U simulations show that PBE-D3 underpredicts the band gap by ~0.2 eV due to an under-correlation of the metal d conducting states. As a result, homologue and compression studies show that Re 2O 7 adopts a polymeric structure because the Re-oxide tetrahedra are easily distorted by packing stresses to form additional three-center covalent bonds.« less
Electronic screen use and mental well-being of 10-12-year-old children.
Yang, Fei; Helgason, Asgeir R; Sigfusdottir, Inga Dora; Kristjansson, Alfgeir Logi
2013-06-01
Today's children spend a great deal of time viewing electronic screen material, but the consequences of such behaviors, if any, are unknown. This study sought to identify (i) the magnitude of total daily electronic screen time and (ii) the relations between electronic screen use and mental well-being indicators, in a sample of 10-12-year-old children. We analysed cross-sectional, population-based data of 10-12-year-old children from the 2007 Youth in Iceland school survey (n = 10,829, response rate: 81.7%, boys: 50.5%). Logistic regression models with odds ratios and 95% confidence intervals were conducted to assess the odds of each selected mental well-being indicator, depending on the number of daily hours spent on each electronic screen-based activity. All analyses were conducted separately for boys and girls and adjusted for family structure. The prevalence of self-reported screen use of 4 hours per day or more ranges from 2.8% to 6.6% among boys and from 1.0% to 3.8% among girls. All five screen-based activities were significantly associated with all seven well-being indicators (P < 0.001) with symptoms being more common with increased time spent on screen use. This study is the first of its kind to demonstrate a dose-response relationship between electronic screen use and mental well-being in 10-12-year-old children. Further research is needed to assess the validity and potential implications of these findings.
Effect of edge defects on band structure of zigzag graphene nanoribbons
NASA Astrophysics Data System (ADS)
Wadhwa, Payal; Kumar, Shailesh; Dhilip Kumar, T. J.; Shukla, Alok; Kumar, Rakesh
2018-04-01
In this article, we report band structure studies of zigzag graphene nanoribbons (ZGNRs) on introducing defects (sp3 hybridized carbon atoms) in different concentrations at edges by varying the ratio of sp3 to sp2 hybridized carbon atoms. On the basis of theoretical analyses, bandgap values of ZGNRs are found to be strongly dependent on the relative arrangement of sp3 to sp2 hybridized carbon atoms at the edges for a defect concentration; so the findings would greatly help in understanding the bandgap of nanoribbons for their electronic applications.
NASA Astrophysics Data System (ADS)
Arulmozhi, K. T.; Mythili, N.
2013-12-01
Lead oxide (PbO) nanoparticles were chemically synthesized using Lead (II) acetate as precursor. The effects of organic capping agents such as Oleic acid, Ethylene Diamine Tetra Acetic acid (EDTA) and Cetryl Tri Methyl Butoxide (CTAB) on the size and morphology of the nanoparticles were studied. Characterization techniques such as X-ray diffraction (XRD), Fourier Transform-Infrared spectroscopy (FT-IR), Photoluminescence (PL) Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS) and Transmission Electron Microscopy (TEM) were used to analyse the prepared nanoparticles for their physical, structural and optical properties. The characterization studies reveal that the synthesized PbO nanoparticles had well defined crystalline structure and sizes in the range of 25 nm to 36 nm for capping agents used and 40 nm for pure PbO nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serra, A.; Rossi, M.; Buccolieri, A.
2014-06-19
The structural and morphological evolution of nanostructured thin films obtained from thermal evaporation of polycrystalline Sn-Se starting charge as a function of the subsequent annealing temperature in an oxygen flow has been analysed. High-resolution transmission electron microscopy, small area electron diffraction, digital image processing, x-ray diffraction and Raman spectroscopy have been employed in order to investigate the structure and the morphology of the obtained films. The results evidenced, in the temperature range from RT to 500°C, the transition of the material from a homogeneous mixture of SnSe and SnSe{sub 2} nanocrystals, towards a homogeneous mixture of SnO{sub 2} and SeO{submore » 2} nanocrystals, with an intermediate stage in which only SnSe{sub 2} nanocrystals are present.« less
Limiting factors in atomic resolution cryo electron microscopy: No simple tricks
Zhang, Xing; Zhou, Z. Hong
2013-01-01
To bring cryo electron microscopy (cryoEM) of large biological complexes to atomic resolution, several factors – in both cryoEM image acquisition and 3D reconstruction – that may be neglected at low resolution become significantly limiting. Here we present thorough analyses of four limiting factors: (a) electron-beam tilt, (b) inaccurate determination of defocus values, (c) focus gradient through particles, and (d) particularly for large particles, dynamic (multiple) scattering of electrons. We also propose strategies to cope with these factors: (a) the divergence and direction tilt components of electron-beam tilt could be reduced by maintaining parallel illumination and by using a coma-free alignment procedure, respectively. Moreover, the effect of all beam tilt components, including spiral tilt, could be eliminated by use of a spherical aberration corrector. (b) More accurate measurement of defocus value could be obtained by imaging areas adjacent to the target area at high electron dose and by measuring the image shift induced by tilting the electron beam. (c) Each known Fourier coefficient in the Fourier transform of a cryoEM image is the sum of two Fourier coefficients of the 3D structure, one on each of two curved ‘characteristic surfaces’ in 3D Fourier space. We describe a simple model-based iterative method that could recover these two Fourier coefficients on the two characteristic surfaces. (d) The effect of dynamic scattering could be corrected by deconvolution of a transfer function. These analyses and our proposed strategies offer useful guidance for future experimental designs targeting atomic resolution cryoEM reconstruction. PMID:21627992
Application of Natural Mineral Additives in Construction
NASA Astrophysics Data System (ADS)
Linek, Malgorzata; Nita, Piotr; Wolka, Paweł; Zebrowski, Wojciech
2017-12-01
The article concerns the idea of using selected mineral additives in the pavement quality concrete composition. The basis of the research paper was the modification of cement concrete intended for airfield pavements. The application of the additives: metakaolonite and natural zeolite was suggested. Analyses included the assessment of basic physical properties of modifiers. Screening analysis, assessment of micro structure and chemical microanalysis were conducted in case of these materials. The influence of the applied additives on the change of concrete mix parameters was also presented. The impact of zeolite and metakaolinite on the mix density, oxygen content and consistency class was analysed. The influence of modifiers on physical and mechanical changes of the hardened cement concrete was discussed (concrete density, compressive strength and bending strength during fracturing) in diversified research periods. The impact of the applied additives on the changes of internal structure of cement concrete was discussed. Observation of concrete micro structure was conducted using the scanning electron microscope. According to the obtained lab test results, parameters of the applied modifiers and their influence on changes of internal structure of cement concrete are reflected in the increase of mechanical properties of pavement quality concrete. The increase of compressive and bending strength in case of all analysed research periods was proved.
NASA Astrophysics Data System (ADS)
Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin
2015-04-01
An anti-adhesion surface with a water contact angle of 167° was fabricated on aluminium samples of rubber plastic moulds by electrolysis plasma treatment using mixed electrolytes of C6H5O7(NH4)3 and Na2SO4, followed by fluorination. To optimise the fabrication conditions, several important processing parameters such as the discharge voltage, discharge time, concentrations of supporting electrolyte and stearic acid ethanol solution were examined systematically. Using scanning electron microscopy (SEM) to analyse surfaces morphology, micrometer scale pits, and protrusions were found on the surface, with numerous nanometer mastoids contained in the protrusions. These binary micro/nano-scale structures, which are similar to the micro-structures of soil-burrowing animals, play a critical role in achieving low adhesion properties. Otherwise, the anti-adhesion behaviours of the resulting samples were analysed by the atomic force microscope (AFM), Fourier-transform infrared spectrophotometer (FTIR), electrons probe micro-analyzer (EPMA), optical contact angle meter, digital Vickers microhardness (Hv) tester, and electronic universal testing. The results show that the electrolysis plasma treatment does not require complex processing parameters, using a simple device, and is an environment-friendly and effective method. Under the optimised conditions, the contact angle (CA) for the modified anti-adhesion surface is up to 167°, the sliding angle (SA) is less than 2°, roughness of the sample surface is only 0.409μm. Moreover, the adhesion force and Hv are 0. 9KN and 385, respectively.
Gawryluk, Ryan M R; Chisholm, Kenneth A; Pinto, Devanand M; Gray, Michael W
2012-11-01
The mitochondrion, derived in evolution from an α-proteobacterial progenitor, plays a key metabolic role in eukaryotes. Mitochondria house the electron transport chain (ETC) that couples oxidation of organic substrates and electron transfer to proton pumping and synthesis of ATP. The ETC comprises several multiprotein enzyme complexes, all of which have counterparts in bacteria. However, mitochondrial ETC assemblies from animals, plants and fungi are generally more complex than their bacterial counterparts, with a number of 'supernumerary' subunits appearing early in eukaryotic evolution. Little is known, however, about the ETC of unicellular eukaryotes (protists), which are key to understanding the evolution of mitochondria and the ETC. We present an analysis of the ETC proteome from Acanthamoeba castellanii, an ecologically, medically and evolutionarily important member of Amoebozoa (sister to Opisthokonta). Data obtained from tandem mass spectrometric (MS/MS) analyses of purified mitochondria as well as ETC complexes isolated via blue native polyacrylamide gel electrophoresis are combined with the results of bioinformatic queries of sequence databases. Our bioinformatic analyses have identified most of the ETC subunits found in other eukaryotes, confirming and extending previous observations. The assignment of proteins as ETC subunits by MS/MS provides important insights into the primary structures of ETC proteins and makes possible, through the use of sensitive profile-based similarity searches, the identification of novel constituents of the ETC along with the annotation of highly divergent but phylogenetically conserved ETC subunits. © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Henderson, Gregory Newell
Semiconductor device dimensions are rapidly approaching a fundamental limit where drift-diffusion equations and the depletion approximation are no longer valid. In this regime, quantum effects can dominate device response. To increase further device density and speed, new devices must be designed that use these phenomena to positive advantage. In addition, quantum effects provide opportunities for a new class of devices which can perform functions previously unattainable with "conventional" semiconductor devices. This thesis has described research in the analysis of electron wave effects in semiconductors and the development of methods for the design, fabrication, and characterization of quantum devices based on these effects. First, an exact set of quantitative analogies are presented which allow the use of well understood optical design and analysis tools for the development of electron wave semiconductor devices. Motivated by these analogies, methods are presented for modeling electron wave grating diffraction using both an exact rigorous coupled-wave analysis and approximate analyses which are useful for grating design. Example electron wave grating switch and multiplexer designs are presented. In analogy to thin-film optics, the design and analysis of electron wave Fabry-Perot interference filters are also discussed. An innovative technique has been developed for testing these (and other) electron wave structures using Ballistic Electron Emission Microscopy (BEEM). This technique uses a liquid-helium temperature scanning tunneling microscope (STM) to perform spectroscopy of the electron transmittance as a function of electron energy. Experimental results show that BEEM can resolve even weak quantum effects, such as the reflectivity of a single interface between materials. Finally, methods are discussed for incorporating asymmetric electron wave Fabry-Perot filters into optoelectronic devices. Theoretical and experimental results show that such structures could be the basis for a new type of electrically pumped mid - to far-infrared semiconductor laser.
Guan, Fang; Zhai, Xiaofan; Duan, Jizhou; Zhang, Meixia; Hou, Baorong
2016-01-01
Certain species of sulfate-reducing bacteria (SRB) use cathodes as electron donors for metabolism, and this electron transfer process may influence the proper protection potential choice for structures. The interaction between SRB and polarized electrodes had been the focus of numerous investigations. In this paper, the impact of cathodic protection (CP) on Desulfovibrio caledoniens metabolic activity and its influence on highs trength steel EQ70 were studied by bacterial analyses and electrochemical measurements. The results showed that EQ70 under -0.85 VSCE CP had a higher corrosion rate than that without CP, while EQ70 with -1.05 VSCE had a lower corrosion rate. The enhanced SRB metabolic activity at -0.85 VSCE was most probably caused by the direct electron transfer from the electrode polarized at -0.85 VSCE. This direct electron transfer pathway was unavailable in -1.05 VSCE. In addition, the application of cathodic protection led to the transformation of sulfide rusts into carbonates rusts. These observations have been employed to provide updated recommendations for the optimum CP potential for steel structures in the presence of SRB. PMID:27603928
NASA Astrophysics Data System (ADS)
Magesh, G.; Bhoopathi, G.; Nithya, N.; Arun, A. P.; Ranjith Kumar, E.
2018-05-01
Chitosan/ZnO nanocomposites was synthesized by in-situ chemical precipitation method. The effect of polysaccharide Chitosan concentration (0.1 g, 0.5 g, 1 g and 3 g) was investigated by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM) with Energy dispersive spectroscopy (EDX), High Resolution Transmission Electron Microscopy (HRTEM), UV-visible (UV), Fourier Transform Infrared (FTIR) and Photoluminescence Spectroscopy (PL). XRD pattern confirms the hexagonal wurtzite structure of the Chitosan/ZnO nanocomposites. The structural morphology and the elemental composition of the samples were analysed by FESEM and EDX respectively. From TEM analysis, it is observed that the particles in spindle shape morphology with average particle size ranges 10-20 nm. UV-Vis analysis reveals that the Chitosan concentration affect the absorption band edge and shift towards lower wavelength. The oxygen vacancy induced photoluminescence of ZnO nanoparticles was observed and its intensity decreases by tuning the Chitosan concentration.
Crystal structure of simple metals at high pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degtyareva, Olga
2010-10-22
The effects of pressure on the crystal structure of simple (or sp-) elements are analysed in terms of changes in coordination number, packing density, and interatomic distances, and general rules are established. In the polyvalent elements from groups 14-17, the covalently bonded structures tend to transform to metallic phases with a gradual increase in coordination number and packing density, a behaviour normally expected under pressure. Group 1 and 2 metallic elements, however, show a reverse trend towards structures with low packing density due to intricate changes in their electronic structure. Complex crystal structures such as host-guest and incommensurately modulated structuresmore » found in these elements are given special attention in this review in an attempt to determine their role in the observed phase-transition sequences.« less
NASA Astrophysics Data System (ADS)
Cheddadi, S.; Boubendira, K.; Meradji, H.; Ghemid, S.; Hassan, F. El Haj; Lakel, S.; Khenata, R.
2017-12-01
First-principle calculations on the structural, electronic, optical, elastic and thermal properties of the chalcopyrite MgXAs2 (X=Si, Ge) have been performed within the density functional theory (DFT) using the full-potential linearized augmented plane wave (FP-LAPW) method. The obtained equilibrium structural parameters are in good agreement with the available experimental data and theoretical results. The calculated band structures reveal a direct energy band gap for the interested compounds. The predicted band gaps using the modified Becke-Johnson (mBJ) exchange approximation are in fairly good agreement with the experimental data. The optical constants such as the dielectric function, refractive index, and the extinction coefficient are calculated and analysed. The independent elastic parameters namely, C_{11}, C_{12}, C_{13}, C_{33}, C_{44} and C_{66 } are evaluated. The effects of temperature and pressure on some macroscopic properties of MgSiAs2 and MgGeAs2 are predicted using the quasiharmonic Debye model in which the lattice vibrations are taken into account.
Palma, Leopoldo; Scott, David J.; Harris, Gemma; Din, Salah-Ud; Williams, Thomas L.; Roberts, Oliver J.; Young, Mark T.; Caballero, Primitivo; Berry, Colin
2017-01-01
The Vip3 proteins produced during vegetative growth by strains of the bacterium Bacillus thuringiensis show insecticidal activity against lepidopteran insects with a mechanism of action that may involve pore formation and apoptosis. These proteins are promising supplements to our arsenal of insecticidal proteins, but the molecular details of their activity are not understood. As a first step in the structural characterisation of these proteins, we have analysed their secondary structure and resolved the surface topology of a tetrameric complex of the Vip3Ag4 protein by transmission electron microscopy. Sites sensitive to proteolysis by trypsin are identified and the trypsin-cleaved protein appears to retain a similar structure as an octomeric complex comprising four copies each of the ~65 kDa and ~21 kDa products of proteolysis. This processed form of the toxin may represent the active toxin. The quality and monodispersity of the protein produced in this study make Vip3Ag4 a candidate for more detailed structural analysis using cryo-electron microscopy. PMID:28505109
Buttingsrud, Bård; Ryeng, Einar; King, Ross D; Alsberg, Bjørn K
2006-06-01
The requirement of aligning each individual molecule in a data set severely limits the type of molecules which can be analysed with traditional structure activity relationship (SAR) methods. A method which solves this problem by using relations between objects is inductive logic programming (ILP). Another advantage of this methodology is its ability to include background knowledge as 1st-order logic. However, previous molecular ILP representations have not been effective in describing the electronic structure of molecules. We present a more unified and comprehensive representation based on Richard Bader's quantum topological atoms in molecules (AIM) theory where critical points in the electron density are connected through a network. AIM theory provides a wealth of chemical information about individual atoms and their bond connections enabling a more flexible and chemically relevant representation. To obtain even more relevant rules with higher coverage, we apply manual postprocessing and interpretation of ILP rules. We have tested the usefulness of the new representation in SAR modelling on classifying compounds of low/high mutagenicity and on a set of factor Xa inhibitors of high and low affinity.
Characterisation of the Microstructure of Fe–Al/Cr3C2 Composite Coatings
NASA Astrophysics Data System (ADS)
Liu, Xiaoming; JunhuiDong; Yang, Yuehong; Sun, Changming; Tuo, Ya; Li, Yanwei
2018-03-01
An Fe-Al/Cr3C2 composite coating is investigated to assess its suitability for treating high-temperature components in a power plant. The coating exhibits excellent high- temperature properties including good corrosion, erosion and friction-wear resistance at high temperatures. To deduce the formation of the Fe-Al/Cr3C2 composite coating and to provide an adequate theoretical basis for its extensive application, its structures and microstructures are investigated. Scanning electronic microscopy (SEM)is used along with energy-dispersive X-ray analysis (EDAX) to analyse the surface of the coating. Energy-dispersive spectroscopy (EDS) is used to analyse the cross-section of the coating. Further, X-ray diffraction (XRD) and transmission electron microscopy (TEM) are used to analyse the phases and micro structural features within the coating. The results reveal that the basic phases are two orderly inter metallic compounds (Fe3Al and FeAl) and that the reinforcement includes two oxides (Al2O3 and Cr2O3) as well as substantial quantities of Cr3C2. Al2O3is formed using two mechanisms: oxidation of aluminium in the coating and separation of Al2O3crystals from Fe3Al and FeAl. The grain size of Al2O3 and Cr2O3 in the coatings is nanometric. These two oxides may increase the corrosion-erosion and wear resistances of the coating when they are used as reinforcements.
Characteristics of the tail of Comet Giacobini-Zinner
NASA Technical Reports Server (NTRS)
Scarf, F. L.
1986-01-01
The physical structure and characteristics of the Comet Giacobini-Zinner tail are described. Variations in the vector B-field configuration, the electron distribution function, the energetic ion population, and the electromagnetic and electrostatic plasma wave spectra are analyzed. The ICE detected a two-lobe magnetic field configuration and a narrow central plasma sheet. Additional analyses proposed for the Giacobini-Zinner tail data are discussed.
Murphy, Caitlin N; Dodsworth, Jeremy A; Babbitt, Aaron B; Hedlund, Brian P
2013-05-01
Microrespirometry showed that several organic and inorganic electron donors stimulated oxygen consumption in two ∼80°C springs. Sediment and planktonic communities were structurally and functionally distinct, and quantitative PCR revealed catabolically distinct subpopulations of Thermocrinis. This study suggests that a variety of chemolithotrophic metabolisms operate simultaneously in these springs.
Tunneling conductance in superconductor-hybrid double quantum dots Josephson junction
NASA Astrophysics Data System (ADS)
Chamoli, Tanuj; Ajay
2018-05-01
The present work deals with the theoretical model study to analyse the tunneling conductance across a superconductor hybrid double quantum dots tunnel junction (S-DQD-S). Recently, there are many experimental works where the Josephson current across such nanoscopic junction is found to be dependent on nature of the superconducting electrodes, coupling of the hybrid double quantum dot's electronic states with the electronic states of the superconductors and nature of electronic structure of the coupled dots. For this, we have attempted a theoretical model containing contributions of BCS superconducting leads, magnetic coupled quantum dot states and coupling of superconducting leads with QDs. In order to include magnetic coupled QDs the contributions of competitive Kondo and Ruderman-Kittel- Kasuya-Yosida (RKKY) interaction terms are also introduced through many body effects in the model Hamiltonian at low temperatures (where Kondo temperature TK < superconducting transition temperature TC). Employing non-equilibrium Green's function approach within mean field approximation, we have obtained expressions for density of states (DOS) and analysed the same using numerical computation to underline the nature of DOS close to Fermi level in S-DQD-S junctions. On the basis of numerical computation, it is pointed out that indirect exchange interaction between impurities (QD) i.e. RKKY interaction suppresses the screening of magnetic QD due to Cooper pair electrons i.e. Kondo effect in the form of reduction in the magnitude of sharp DOS peak close to Fermi level which is in qualitative agreement with the experimental observations in such tunnel junctions. Tunneling conductance is proportional to DOS, hence we can analyse it's behaviour with the help of DOS.
Cryo-EM structures of the TMEM16A calcium-activated chloride channel.
Dang, Shangyu; Feng, Shengjie; Tien, Jason; Peters, Christian J; Bulkley, David; Lolicato, Marco; Zhao, Jianhua; Zuberbühler, Kathrin; Ye, Wenlei; Qi, Lijun; Chen, Tingxu; Craik, Charles S; Jan, Yuh Nung; Minor, Daniel L; Cheng, Yifan; Jan, Lily Yeh
2017-12-21
Calcium-activated chloride channels (CaCCs) encoded by TMEM16A control neuronal signalling, smooth muscle contraction, airway and exocrine gland secretion, and rhythmic movements of the gastrointestinal system. To understand how CaCCs mediate and control anion permeation to fulfil these physiological functions, knowledge of the mammalian TMEM16A structure and identification of its pore-lining residues are essential. TMEM16A forms a dimer with two pores. Previous CaCC structural analyses have relied on homology modelling of a homologue (nhTMEM16) from the fungus Nectria haematococca that functions primarily as a lipid scramblase, as well as subnanometre-resolution electron cryo-microscopy. Here we present de novo atomic structures of the transmembrane domains of mouse TMEM16A in nanodiscs and in lauryl maltose neopentyl glycol as determined by single-particle electron cryo-microscopy. These structures reveal the ion permeation pore and represent different functional states. The structure in lauryl maltose neopentyl glycol has one Ca 2+ ion resolved within each monomer with a constricted pore; this is likely to correspond to a closed state, because a CaCC with a single Ca 2+ occupancy requires membrane depolarization in order to open (C.J.P. et al., manuscript submitted). The structure in nanodiscs has two Ca 2+ ions per monomer and its pore is in a closed conformation; this probably reflects channel rundown, which is the gradual loss of channel activity that follows prolonged CaCC activation in 1 mM Ca 2+ . Our mutagenesis and electrophysiological studies, prompted by analyses of the structures, identified ten residues distributed along the pore that interact with permeant anions and affect anion selectivity, as well as seven pore-lining residues that cluster near pore constrictions and regulate channel gating. Together, these results clarify the basis of CaCC anion conduction.
Phylogenetic analysis of TCE-dechlorinating consortia enriched on a variety of electron donors.
Freeborn, Ryan A; West, Kimberlee A; Bhupathiraju, Vishvesh K; Chauhan, Sadhana; Rahm, Brian G; Richardson, Ruth E; Alvarez-Cohen, Lisa
2005-11-01
Two rapidly fermented electron donors, lactate and methanol, and two slowly fermented electron donors, propionate and butyrate, were selected for enrichment studies to evaluate the characteristics of anaerobic microbial consortia that reductively dechlorinate TCE to ethene. Each electron donor enrichment subculture demonstrated the ability to dechlorinate TCE to ethene through several serial transfers. Microbial community analyses based upon 16S rDNA, including terminal restriction fragment length polymorphism (T-RFLP) and clone library/sequencing, were performed to assess major changes in microbial community structure associated with electron donors capable of stimulating reductive dechlorination. Results demonstrated that five phylogenic subgroups or genera of bacteria were present in all consortia, including Dehalococcoides sp., low G+C Gram-positives (mostly Clostridium and Eubacterium sp.), Bacteroides sp., Citrobacter sp., and delta Proteobacteria (mostly Desulfovibrio sp.). Phylogenetic association indicates that only minor shifts in the microbial community structure occurred between the four alternate electron donor enrichments and the parent consortium. Inconsistent detection of Dehalococcoides spp. in clone libraries and T-RFLP of enrichment subcultures was resolved using quantitative polymerase chain reaction (Q-PCR). Q-PCR with primers specific to Dehalococcoides 16S rDNA resulted in positive detection of this species in all enrichments. Our results suggest that TCE-dechlorinating consortia can be stably maintained on a variety of electron donors and that quantities of Dehalococcoides cells detected with Dehalococcoides specific 16S rDNA primer/probe sets do not necessarily correlate well with solvent degradation rates.
Ramírez-Aldaba, Hugo; Vazquez-Arenas, Jorge; Sosa-Rodríguez, Fabiola S; Valdez-Pérez, Donato; Ruiz-Baca, Estela; García-Meza, Jessica Viridiana; Trejo-Córdova, Gabriel; Lara, René H
2017-08-01
Biofilm formation and evolution are key factors to consider to better understand the kinetics of arsenopyrite biooxidation. Chemical and surface analyses were carried out using Raman spectroscopy, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), glow discharge spectroscopy (GDS), and protein analysis (i.e., quantification) in order to evaluate the formation of intermediate secondary compounds and any significant changes arising in the biofilm structure of Acidithiobacillus thiooxidans during a 120-h period of biooxidation. Results show that the biofilm first evolves from a low cell density structure (1 to 12 h) into a formation of microcolonies (24 to 120 h) and then finally becomes enclosed by a secondary compound matrix that includes pyrite (FeS 2 )-like, S n 2- /S 0 , and As 2 S 3 compounds, as shown by Raman and SEM-EDS. GDS analyses (concentration-depth profiles, i.e., 12 h) indicate significant differences for depth speciation between abiotic control and biooxidized surfaces, thus providing a quantitative assessment of surface-bulk changes across samples (i.e. reactivity and /or structure-activity relationship). Respectively, quantitative protein analyses and CLSM analyses suggest variations in the type of extracellular protein expressed and changes in the biofilm structure from hydrophilic (i.e., exopolysaccharides) to hydrophobic (i.e., lipids) due to arsenopyrite and cell interactions during the 120-h period of biooxidation. We suggest feasible environmental and industrial implications for arsenopyrite biooxidation based on the findings of this study.
Effect of Thickness on the Structure, Composition and Properties of Titanium Nitride Nano-Coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Gustavo; Shutthanandan, V.; Thevuthasan, Suntharampillai
2014-05-05
Titanium nitride (TiNx) coatings were grown by magnetron sputtering onto Si(1 0 0) substrates by varying time of deposition to produce coatings with variable thickness (dTiN) in the range of 20-120 nm. TiNx coatings were characterized by studying their structure, composition, and mechanical properties. Nuclear reaction analysis (NRA) combined with Rutherford backscattering spectrometry (RBS) analyses indicate that the grown coatings were stoichiometric TiN. Grazing incidence X-ray diffraction (GIXRD) measurements indicate that the texturing of TiN coatings changes as a function of dTiN. The (1 1 1) and (0 0 2) peaks appear initially; (1 1 1) becomes intense while (0more » 0 2) disappears with increasing dTiN. Dense, columnar grain structure was evident for all the coatings in electron microscopy analyses. The residual stress for TiN coatings with dTiN~120 nm was 1.07 GPa in compression while thinner samples exhibit higher values of stress.« less
Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses
NASA Astrophysics Data System (ADS)
Kurta, Ruslan P.; Donatelli, Jeffrey J.; Yoon, Chun Hong; Berntsen, Peter; Bielecki, Johan; Daurer, Benedikt J.; DeMirci, Hasan; Fromme, Petra; Hantke, Max Felix; Maia, Filipe R. N. C.; Munke, Anna; Nettelblad, Carl; Pande, Kanupriya; Reddy, Hemanth K. N.; Sellberg, Jonas A.; Sierra, Raymond G.; Svenda, Martin; van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu; Aquila, Andrew; Zwart, Peter H.; Mancuso, Adrian P.
2017-10-01
We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.
Observations of Multi-band Structures in Double Star TC-1 PEACE Electron and HIA Ion Data
NASA Astrophysics Data System (ADS)
Mohan Narasimhan, K.; Fazakerley, A. N.; Grimald, S.; Dandouras, I. S.; Mihaljcic, B.; Kistler, L. M.; Owen, C. J.
2015-12-01
Several authors have reported inner magnetosphere observations of proton distributions confined to narrow energy bands in the range 1 - 25 keV (Smith and Hoffman (1974), etc). These structures have been described as "nose structures", with reference to their appearance in energy-time spectrograms and are also known as "bands" if they occur for extended periods of time. Multi-nose structures have been observed if 2 or more noses appear at the same time (Vallat et al., 2007). Gaps between "noses" (or "bands") have been explained in terms of the competing corotation, convection and magnetic gradient drifts. Charge exchange losses in slow drift paths for steady state scenarios and the role of substorm injections have also been considered (Li et al., 2000; Ebihara et al., 2004). We analyse observations of electron and ion multi-band structures frequently seen in Double-Star TC1 PEACE and HIA data. We present results from statistical surveys conducted using data from the duration of the mission. Furthermore, using a combination of both statistics and simulations, we test previous theories as to possible formation mechanisms and explore other possible explanations.
NASA Astrophysics Data System (ADS)
Issaoui, N.; Ghalla, H.; Bardak, F.; Karabacak, M.; Aouled Dlala, N.; Flakus, H. T.; Oujia, B.
2017-02-01
In this work, the molecular structures and vibrational spectral analyses of 3-(2-Theinyl)acrylic acid (3-2TAA) monomer and dimer structures have been reported by using density functional theory calculations at B3LYP/6-311++G(d,p) level of theory. The complete assignments of the fundamental vibrational modes were obtained using potential energy distribution. Intermolecular interactions were analyzed by orbital NBO and topological AIM approaches. The electronic properties have been carried out using TD-DFT approach. Great agreements between experimental and theoretical values were achieved throughout the analysis of structural parameters and spectroscopic features. Inhibitor characteristics on human monoamine oxidase B (MAOB) enzyme of two determined stable conformers of 3-2TAA (β and γ) along with four selective inhibitors, namely safinamide, a coumarin analogue, farnesol, and phenyethylhydrazine were investigated via molecular docking. Moreover, molecular electrostatic potential (MEP) and temperature dependency of thermodynamic functions have been reported.
NASA Astrophysics Data System (ADS)
Wang, Heng; Isobe, Jin; Shimizu, Takeshi; Matsumura, Daiju; Ina, Toshiaki; Yoshikawa, Hirofumi
2017-08-01
γ-phase LiV2O5, which shows superior electrochemical performance as cathode material in Li-ion batteries, was prepared by annealing the polyoxovanadate cluster Li7 [V15O36(CO3)]. The reaction mechanism was studied using operando X-ray absorption fine structure (XAFS), powder X-ray diffraction (PXRD), and X-ray photoelectron spectroscopy (XPS) analyses. The X-ray absorption near edge structure (XANES) and XPS results reveal that γ-LiV2O5 undergoes two-electron redox reaction per V2O5 pyramid unit, resulting in a large reversible capacity of 260 Ah/kg. The extended X-ray absorption fine structure (EXAFS) and PXRD analyses also suggest that the V-V distance slightly increases, due to the reduction of V5+ to V4+ during Li ion intercalation as the material structure is maintained. As a result, γ-LixV2O5 shows highly reversible electrochemical reaction with x = 0.1-1.9.
The structure of high-temperature solar flare plasma in non-thermal flare models
NASA Technical Reports Server (NTRS)
Emslie, A. G.
1985-01-01
Analytic differential emission measure distributions have been derived for coronal plasma in flare loops heated both by collisions of high-energy suprathermal electrons with background plasma, and by ohmic heating by the beam-normalizing return current. For low densities, reverse current heating predominates, while for higher densities collisional heating predominates. There is thus a minimum peak temperature in an electron-heated loop. In contrast to previous approximate analyses, it is found that a stable reverse current can dominate the heating rate in a flare loop, especially in the low corona. Two 'scaling laws' are found which relate the peak temperature in the loop to the suprathermal electron flux. These laws are testable observationally and constitute a new diagnostic procedure for examining modes of energy transport in flaring loops.
[Development of a medical equipment support information system based on PDF portable document].
Cheng, Jiangbo; Wang, Weidong
2010-07-01
According to the organizational structure and management system of the hospital medical engineering support, integrate medical engineering support workflow to ensure the medical engineering data effectively, accurately and comprehensively collected and kept in electronic archives. Analyse workflow of the medical, equipment support work and record all work processes by the portable electronic document. Using XML middleware technology and SQL Server database, complete process management, data calculation, submission, storage and other functions. The practical application shows that the medical equipment support information system optimizes the existing work process, standardized and digital, automatic and efficient orderly and controllable. The medical equipment support information system based on portable electronic document can effectively optimize and improve hospital medical engineering support work, improve performance, reduce costs, and provide full and accurate digital data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohnishi, Masato, E-mail: masato.ohnishi@rift.mech.tohoku.ac.jp; Suzuki, Ken; Miura, Hideo, E-mail: hmiura@rift.mech.tohoku.ac.jp
2015-04-15
When a radial strain is applied to a carbon nanotube (CNT), the increase in local curvature induces orbital hybridization. The effect of the curvature-induced orbital hybridization on the electronic properties of CNTs, however, has not been evaluated quantitatively. In this study, the strength of orbital hybridization in CNTs under homogeneous radial strain was evaluated quantitatively. Our analyses revealed the detailed procedure of the change in electronic structure of CNTs. In addition, the dihedral angle, the angle between π-orbital axis vectors of adjacent atoms, was found to effectively predict the strength of local orbital hybridization in deformed CNTs.
Biomolecule detection based on Si single-electron transistors for practical use
NASA Astrophysics Data System (ADS)
Nakajima, Anri; Kudo, Takashi; Furuse, Sadaharu
2013-07-01
Experimental and theoretical analyses demonstrated that ultra-sensitive biomolecule detection can be achieved using a Si single-electron transistor (SET). A multi-island channel structure was used to enable room-temperature operation. Coulomb oscillation increases transconductance without increasing channel width, which increases detection sensitivity to a charged target. A biotin-modified SET biosensor was used to detect streptavidin at a dilute concentration. In addition, an antibody-functionalized SET biosensor was used for immunodetection of prostate-specific antigen, demonstrating its suitability for practical use. The feasibility of ultra-sensitive detection of biomolecules for practical use by using a SET biosensor was clearly proven through this systematic study.
Corrosion behavior of surface films on boron-implanted high purity iron and stainless steels
NASA Technical Reports Server (NTRS)
Kim, H. J.; Carter, W. B.; Hochman, R. F.; Meletis, E. I.
1985-01-01
Boron (dose, 2 x 10 to the 17th ions/sq cm) was implanted into high purity iron, AISI 316 austenitic stainless steel, and AISI 440C martensitic stainless steel, at 40 keV. The film structure of implanted samples was examined and characterized by contrast and diffraction analyses utilizing transmission electron microscopy. The effect of B(+) ion implantation on the corrosion behavior was studied using the potentiodynamic polarization technique. Tests were performed in deaerated 1 N H2SO4 and 0.1 M NaCl solutions. Scanning electron microscopy was used to examine the morphology of the corroded surfaces after testing.
Schmidt, Franziska; Kühbacher, Markus; Gross, Ulrich; Kyriakopoulos, Antonius; Schubert, Helmut; Zehbe, Rolf
2011-03-01
3D imaging at a subcellular resolution is a powerful tool in the life sciences to investigate cells and their interactions with native tissues or artificial objects. While a tomographic experimental setup achieving a sufficient structural resolution can be established with either X-rays or electrons, the use of electrons is usually limited to very thin samples in transmission electron microscopy due to the poor penetration depths of electrons. The combination of a serial sectioning approach and scanning electron microscopy in state of the art dual beam experimental setups therefore offers a means to image highly resolved spatial details using a focused ion beam for slicing and an electron beam for imaging. The advantage of this technique over X-ray μCT or X-ray microscopy attributes to the fact that absorption is not a limiting factor in imaging and therefore even strong absorbing structures can be spatially reconstructed with a much higher possible resolution. This approach was used in this study to elucidate the effect of an electric potential on the morphology of cells from a hippocampal cell line (HT22) deposited on gold microelectrodes. While cells cultivated on two different controls (gold and polymer substrates) did show the expected stretched morphology, cells on both the anode and the cathode differed significantly. Cells deposited on the anode part of the electrode exhibited the most extreme deviation, being almost spherical and showed signs of chromatin condensation possibly indicating cell death. Furthermore, EDX was used as supplemental methodology for combined chemical and structural analyses. Copyright © 2010 Elsevier B.V. All rights reserved.
3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.
Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho
2017-01-01
Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Hui; Hou, Gao-Lei; Liu, Yi-Rong
2016-05-31
Bicarbonate serves a crucial biochemical role in the physiological pH buffering system and also has important atmospheric implications. In the current study, HCO 3 $-$(H 2O) n (n = 0-13) clusters were successfully produced via electrospray ionization of corresponding bulk salt solution, and were characterized by combining negative ion photoelectron spectroscopy and theoretical calculations. The photoelectron spectra reveal that the electron binding energy monotonically increases with the cluster size up to n = 10 and remains largely the same after n > 10. The photo-detaching feature of the solute HCO3$-$itself, which dominates in the small clusters, diminishes with increase ofmore » water coverage. Based on the charge distribution and molecular orbital analyses, the universal high electron binding energy tail that dominates in the larger clusters can be attributed to ionization of water. Thus, the transition of ionization from solute to solvent at the size larger than n=10 has been observed. Extensive theoretical structural search based on the Basin-Hopping unbiased method was carried out, and a plethora of low energy isomers have been obtained for each medium and large size. By comparing the simulated photoelectron spectra and calculated electron binding energies with the experiments, as well as by comparing the simulated infrared spectra with previously reported IR spectra, the probable global minima and the structural evolutionary routes are presented. The nature of bicarbonate-water interactions are mainly electrostatic as implied by the electron localization function (ELF) analysis.« less
NASA Astrophysics Data System (ADS)
Ishimasa, Tsutomu; Iwami, Shuhei; Sakaguchi, Norihito; Oota, Ryo; Mihalkovič, Marek
2015-11-01
The dodecagonal quasicrystal classified into the five-dimensional space group P126/mmc, recently discovered in a Mn-Cr-Ni-Si alloy, has been analysed using atomic-resolution spherical aberration-corrected electron microscopy, i.e. high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and conventional transmission electron microscopy. By observing along the 12-fold axis, non-periodic tiling consisting of an equilateral triangle and a square has been revealed, of which common edge length is a = 4.560 Å. These tiles tend to form a network of dodecagons of which size is ?a ≈ 17 Å in diameter. The tiling was interpreted as an aggregate of 100 Å-scale oriented domains of high- and low-quality quasicrystals with small crystallites appearing at their boundaries. The quasicrystal domains exhibited a densely filled circular acceptance region in the phason space. This is the first observation of the acceptance region in an actual dodecagonal quasicrystal. Atomic structure model consistent with the electron microscopy images is a standard Frank-Kasper decoration of the triangle and square tiles that can be inferred from the crystal structures of Zr4Al3 and Cr3Si. Four kinds of layers located at z = 0, ±1/4 and 1/2 are stacked periodically along the 12-fold axis, and the atoms at z = 0 and 1/2 form hexagonal anti-prisms consistently with the 126-screw axis. The validity of this structure model was examined by means of powder X-ray diffraction.
de Andrade Rosa, Ivone; Caruso, Marjolly Brigido; de Oliveira Santos, Eidy; Gonzaga, Luiz; Zingali, Russolina Benedeta; de Vasconcelos, Ana Tereza R; de Souza, Wanderley; Benchimol, Marlene
2017-06-01
The costa is a prominent striated fibre that is found in protozoa of the Trichomonadidae family that present an undulating membrane. It is composed primarily of proteins that have not yet been explored. In this study, we used cell fractionation to obtain a highly enriched costa fraction whose structure and composition was further analysed by electron microscopy and mass spectrometry. Electron microscopy of negatively stained samples revealed that the costa, which is a periodic structure with alternating electron-dense and electron-lucent bands, displays three distinct regions, named the head, neck and body. Fourier transform analysis showed that the electron-lucent bands present sub-bands with a regular pattern. An analysis of the costa fraction via one- and two-dimensional electrophoresis and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) allowed the identification of 54 hypothetical proteins. Fourteen of those proteins were considered to be major components of the fraction. The costa of T. foetus is a complex and organised cytoskeleton structure made of a large number of proteins which is assembled into filamentous structures. Some of these proteins exhibit uncharacterised domains and no function related according to gene ontology, suggesting that the costa structure may be formed by a new class of proteins that differ from those previously described in other organisms. Seven of these proteins contain prefoldin domains displaying coiled-coil regions. This propriety is shared with proteins of the striated fibres of other protozoan as well as in intermediate filaments. Our observations suggest the presence of a new class of the cytoskeleton filaments in T. foetus. We believe that our data could auxiliate in determining the specific locations of these proteins in the distinct regions that compose the costa, as well as to define the functional roles of each component. Therefore, our study will help in the better understanding of the organisation and function of this structure in unicellular organisms. © 2017 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Single crystals of the 96 K superconductor (Hg,Cu)Ba2CuO4+δ: Growth, structure and magnetism
NASA Astrophysics Data System (ADS)
Pelloquin, D.; Hardy, V.; Maignan, A.; Raveau, B.
1997-02-01
Single crystals of the 1201 (n = 1) (Hg,Cu)Ba2CuO4+δ mercury based cuprate have been grown by using a simple process without dry box. The as-synthesized crystals exhibit constant Tc(onset) of 96 K with sharp superconducting transitions. The electron microscopy coupled with EDX analyses evidence a ``1201''-type structure while a mercury deficiency is observed balanced by an excess of copper. The structural refinements based on single-crystal X-ray diffraction data confirm the electron deficiency on the Hg site (0,0,0) and show a splitting of the latter along the c axis correlated to the partial substitution of Cu for Hg. This structural study leads to the following formula Hg0.84Cu0.16Ba2CuO4.19. The magnetic study of a large crystal (1.1 × 0.38 × 0.065 mm3) shows that the (Hg,Cu)-1201 crystals exhibit an irreversibility line higher than that of the 1201 Hg0.8Bi0.2Ba2CuO4+δ crystal (Tc = 75 K). From the reversible magnetization, a λab(0) = 2470 Å value can be extrapolated. Using a 3D-2D decoupling formula, we obtain γ = 29 for the electronic anisotropy of this phase.
NASA Astrophysics Data System (ADS)
Chen, I.-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming
2015-09-01
Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance. Electronic supplementary information (ESI) available: A series of Ru K-edge EXAFS spectra fitting results for RuO2 together with oxides with different Ru-Ti atomic ratios treated at 200 °C. See DOI: 10.1039/c5nr03660g
Barta, Michael L.; Thomas, Keisha; Yuan, Hongling; Lovell, Scott; Battaile, Kevin P.; Schramm, Vern L.; Hefty, P. Scott
2014-01-01
The obligate intracellular human pathogen Chlamydia trachomatis is the etiological agent of blinding trachoma and sexually transmitted disease. Genomic sequencing of Chlamydia indicated this medically important bacterium was not exclusively dependent on the host cell for energy. In order for the electron transport chain to function, electron shuttling between membrane-embedded complexes requires lipid-soluble quinones (e.g. menaquionone or ubiquinone). The sources or biosynthetic pathways required to obtain these electron carriers within C. trachomatis are poorly understood. The 1.58Å crystal structure of C. trachomatis hypothetical protein CT263 presented here supports a role in quinone biosynthesis. Although CT263 lacks sequence-based functional annotation, the crystal structure of CT263 displays striking structural similarity to 5′-methylthioadenosine nucleosidase (MTAN) enzymes. Although CT263 lacks the active site-associated dimer interface found in prototypical MTANs, co-crystal structures with product (adenine) or substrate (5′-methylthioadenosine) indicate that the canonical active site residues are conserved. Enzymatic characterization of CT263 indicates that the futalosine pathway intermediate 6-amino-6-deoxyfutalosine (kcat/Km = 1.8 × 103 m−1 s−1), but not the prototypical MTAN substrates (e.g. S-adenosylhomocysteine and 5′-methylthioadenosine), is hydrolyzed. Bioinformatic analyses of the chlamydial proteome also support the futalosine pathway toward the synthesis of menaquinone in Chlamydiaceae. This report provides the first experimental support for quinone synthesis in Chlamydia. Menaquinone synthesis provides another target for agents to combat C. trachomatis infection. PMID:25253688
Electron/proton spectrometer certification documentation analyses
NASA Technical Reports Server (NTRS)
Gleeson, P.
1972-01-01
A compilation of analyses generated during the development of the electron-proton spectrometer for the Skylab program is presented. The data documents the analyses required by the electron-proton spectrometer verification plan. The verification plan was generated to satisfy the ancillary hardware requirements of the Apollo Applications program. The certification of the spectrometer requires that various tests, inspections, and analyses be documented, approved, and accepted by reliability and quality control personnel of the spectrometer development program.
Flower-like NiO structures: Controlled hydrothermal synthesis and electrochemical characteristic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Hui; Chen, Xuan; Key Laboratory of Advanced Functional Materials, Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, Xinjiang
Graphical abstract: Flower-like porous NiO was obtained via thermal decomposition of the precursor prepared by a hydrothermal process using hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results of electrochemical measurements demonstrated that the flower-like porous NiO has high capacity (340 F g{sup −1}) with excellent cycling performance as electrode materials of electrochemical capacitors (ECs), which may be attributed to the unique microstrcture of NiO. Data analyses indicated that NiO with novel porousmore » structure attractive for practical and large-scale applications in electrochemical capacitors. Display Omitted Highlights: ► Synthesis and characterization of NiO with novel porous structure is presented in this work. ► The electrochemical performance of product was examined. ► NiO with excellent performance as electrode materials may be due to the unique microstrcture. ► NiO with novel porous structure attractive for practical with high capacity (340 F g{sup −1}). -- Abstract: Flower-like porous NiO was obtained by thermal decomposition of the precursor prepared by a hydrothermal process with hexamethylenetetramine and polyethylene glycol as hydrolysis-controlling agent and surfactant, respectively. The morphology and microstructure of as-synthesized NiO were characterized by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The resulting structures of NiO exhibited porous like petal building blocks. The electrochemical measurements’ results demonstrated that flower-like porous NiO has high capacity (340 F g{sup −1}) with excellent cycling performance as electrode materials for electrochemical capacitors, which may be attributed to the unique structure of NiO. The results indicated that NiO with novel porous structure has been attractive for practical and large-scale applications in electrochemical capacitors.« less
The track structure in condensed matter
NASA Astrophysics Data System (ADS)
Kaplan, I. G.
1995-11-01
The physical stage of track formation in a condensed phase is discussed. For interaction of charged particles with condensed molecular media its most important specific features are: (a) the continuous oscillator strength distribution with the broak peak in the energy range 21-22 eV attributed to the collective plasmon-type state; (b) the lowering of ionization potential compared to a gas phase. These specific features must be taken into account for simulation of track structures. The great difference in mass and charge for a electron and heavy ions cause a qualitative difference in their track structures. We analyse the structure of heavy ion tracks and prove the impossibility to use the LET as a universal characteristic for the radiation action of different ions.
Crystalline solution series and order-disorder within the natrolite mineral group
Ross, M.; Flohr, M.J.K.; Ross, D.R.
1992-01-01
Electron microprobe and X-ray analyses were made of natrolite, tetranatrolite, gonnardite, and thomsonite from the Magnet Cove alkaline igneous complex, Arkansas, and of selected specimens from the U.S. National Museum. This information and data from the literature indicate that natrolite, mesolite, scolecite, edingtonite, and tetraedingtonite show only small deviations from the ideal stoichiometry. In contrast, gonnardite, tetranatrolite, and thomsonite show large deviations from the ideal end-member compositions and compose three crystalline series. The structures of the natrolite minerals are defined by combining each of the three types of framework structures with various combinations of channel-occupying polyhedra. Various polysomatic series can be constructed by combining slices of two basic structures to form new hybrid structures. -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Yang; Ramanathan, Arvind; Glover, Karen
BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 angstrom sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron electron resonance electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1 domains.more » Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Lastly, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.« less
Integrated Design of Undepressed Collector for Low Power Gyrotron
NASA Astrophysics Data System (ADS)
Kumar, Anil; Goswami, Uttam K.; Poonia, Sunita; Singh, Udaybir; Kumar, Nitin; Alaria, M. K.; Bera, A.; Khatun, Hasina; Sinha, A. K.
2011-06-01
A 42 GHz, 200 kW continuous wave (CW) gyrotron, operating at TE03 mode is under development for the electron cyclotron resonance plasma heating of the Indian TOKAMAK system. The gyrotron is made up of an undepressed collector. The undepressed collector is simple to design and cost effective. In this paper, a detailed design study of the undepressed collector for the 42 GHz gyrotron is presented. The EGUN code is used to analyze the spent electron beam trajectory for the maximum spread to reduce the power loading on the collector surface. To achieve wall loading ≤1 kW/cm2, a collector with a length of 800 mm and a radius of 42.5 mm is designed. The design also includes the three magnet systems around the collector for maximum and uniform beam spread. The thermal and the structural analyses are done using the ANSYS code to optimize the collector structure and dimensions with tolerance.
Multi-excitonic emission from Stranski-Krastanov GaN/AlN quantum dots inside a nanoscale tip
NASA Astrophysics Data System (ADS)
Mancini, L.; Moyon, F.; Houard, J.; Blum, I.; Lefebvre, W.; Vurpillot, F.; Das, A.; Monroy, E.; Rigutti, L.
2017-12-01
Single-dot time-resolved micro-photoluminescence spectroscopy and correlated electron tomography (ET) have been performed on self-assembled GaN/AlN quantum dots isolated within a field-emission nanoscale tip by focused ion beam (FIB). Despite the effect of the FIB, the system conserves the capability of emitting light through multi-excitonic complexes. The optical spectroscopy data have then been correlated with the electronic structure and lifetime parameters that could be extracted using the structural parameters obtained by ET via a 6 band k.p model. A biexciton-exciton cascade could be identified and thoroughly analysed. The biexciton-exciton states exhibit a non-negligible polarization component along the [0001] polar crystal axis, indicating a significant valence band mixing, while the relationship between exciton energy and biexciton binding energy is consistent with a hybrid character of the biexciton.
Optical properties of boron-group (V) hexagonal nanowires: DFT investigation
NASA Astrophysics Data System (ADS)
Santhibhushan, B.; Soni, Mahesh; Srivastava, Anurag
2017-07-01
The paper presents structural, electronic and optical properties of boron-group V hexagonal nanowires (h-NW) within the framework of density functional theory. The h-NW of boron-group V compounds with an analogous diameter of 12 Å have been designed in (1 1 1) plane. Stability analysis performed through formation energies reveal that, the stability of these structures decreases with increasing atomic number of the group V element. The band nature predicts that these nanowires are good electrical conductors. Optical behaviour of the nanowires has been analysed through absorption coefficient, reflectivity, refractive index, optical conductivity and electron energy loss spectrum (EELS), that are computed from the frequency-dependent complex dielectric function. The analysis reveals high reactivity of BP and BAs h-NWs to the incident light especially in the IR and visible ranges, and the optical transparency of BN h-NW in the visible and UV ranges.
Charge dynamics in the colossal magnetoresistance pyrochlore Tl2Mn2O7
NASA Astrophysics Data System (ADS)
Okamura, H.; Koretsune, T.; Matsunami, M.; Kimura, S.; Nanba, T.; Imai, H.; Shimakawa, Y.; Kubo, Y.
2001-11-01
Optical conductivity data [σ(ω)] of the colossal magnetoresistance (CMR) pyrochlore Tl2Mn2O7 are presented as functions of temperature (T) and external magnetic field (B). Upon cooling and upon applying B near the Curie temperature, where the CMR manifests itself, σ(ω) shows a clear transition from an insulatorlike to a metallic electronic structure as evidenced by the emergence of a pronounced Drude-like component below ~0.2 eV. Analyses on the σ(ω) spectra show that both T- and B-induced evolutions of the electronic structure are very similar to each other, and that they are universally related to the development of macroscopic magnetization (M). In particular, the effective carrier density obtained from σ(ω) scales with M2 over wide ranges of T and B. The contributions to the CMR from the carrier effective mass and scattering time are also evaluated from the data.
Magnetic behavior study of samarium nitride using density functional theory
NASA Astrophysics Data System (ADS)
Som, Narayan N.; Mankad, Venu H.; Dabhi, Shweta D.; Patel, Anjali; Jha, Prafulla K.
2018-02-01
In this work, the state-of-art density functional theory is employed to study the structural, electronic and magnetic properties of samarium nitride (SmN). We have performed calculation for both ferromagnetic and antiferromagnetic states in rock-salt phase. The calculated results of optimized lattice parameter and magnetic moment agree well with the available experimental and theoretical values. From energy band diagram and electronic density of states, we observe a half-metallic behaviour in FM phase of rock salt SmN in while metallicity in AFM I and AFM III phases. We present and discuss our current understanding of the possible half-metallicity together with the magnetic ordering in SmN. The calculated phonon dispersion curves shows dynamical stability of the considered structures. The phonon density of states and Eliashberg functional have also been analysed to understand the superconductivity in SmN.
NASA Astrophysics Data System (ADS)
Köse, Hilal; Karaal, Şeyma; Aydın, Ali Osman; Akbulut, Hatem
2015-11-01
Free standing zinc oxide (ZnO) and multiwalled carbon nanotube (MWCNT) nanocomposite materials are prepared by a sol gel technique giving a new high capacity anode material for lithium ion batteries. Free-standing ZnO/MWCNT nanocomposite anodes with two different chelating agent additives, triethanolamine (TEA) and glycerin (GLY), yield different electrochemical performances. Field emission gun scanning electron microscopy (FEG-SEM), energy dispersive X-ray spectrometer (EDS), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) analyses reveal the produced anode electrodes exhibit a unique structure of ZnO coating on the MWCNT surfaces. Li-ion cell assembly using a ZnO/MWCNT/GLY free-standing anode and Li metal cathode possesses the best discharge capacity, remaining as high as 460 mAh g-1 after 100 cycles. This core-shell structured anode can offer increased energy storage and performance over conventional anodes in Li-ion batteries.
NASA Astrophysics Data System (ADS)
ben Rguiga, N.; Álvarez-Serrano, I.; López, M. L.; Chérif, W.; Alonso, J. A.
2018-02-01
A mild hydrothermal method was adapted to prepare the SrMn_{1-x}CoxO_{3-δ} (0 ≤ x ≤ 0.2) compounds. They showed hexagonal-4H perovskite-type structure with space group P63/mmc, and cell parameters a ˜ 5.45 and c ˜ 9.08 Å, as deduced from X-ray and neutron diffraction data. The mean atomic concentrations indicated global stoichiometries close to the nominal ones whereas electron microscopy analyses pointed out to heterogeneity at the nanoscale. The characterization of the electrical response by means of impedance measurements, suggested a semiconductor behavior mainly ascribed to bulk contributions. Relaxation and conduction processes were analyzed. The materials showed mixed electronic-ionic conduction above ˜ 400 K, when ionic conduction between intergrains becomes favored. Microstructural homogeneity was revealed as the key factor controlling the electrical response.
Transmission electron microscopy of AlGaAs/GaAs quantum cascade laser structures.
Walther, T; Krysa, A B
2017-12-01
Quantum cascade lasers can be efficient infrared radiation sources and consist of several hundreds of very thin layers arranged in stacks that are repeated periodically. Both the thicknesses of the individual layers as well as the period lengths need to be monitored to high precision. Different transmission electron microscopy methods have been combined to analyse AlGaAs/GaAs quantum cascade laser structures in cross-section. We found a small parabolic variation of the growth rate during deposition, affecting the stack periodicity and a reduced aluminium content of the AlGaAs barriers, whereas their widths as well as those of the GaAs quantum wells agreed with the nominal values within one atomic layer. Growth on an offcut substrate led to facets and steps at the interfaces. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.
Structural complexity and wide application of two-dimensional S/O type antimonene
NASA Astrophysics Data System (ADS)
Li, T. T.; He, C.; Zhang, W. X.
2018-05-01
Inspired by stable two-dimensional antimonene phases, two new allotropes (S/O and tricycle) antimonenes have been predicted by first-principles calculations in this paper. S/O type antimonene possesses remarkably thermodynamical and dynamical stability, which are comparable to that of buckled type antimonene. The results indicate that S/O type antimonene is a direct band gap semiconductor with a band gap of 2.314 eV and the electronic properties could be effectively tuned by the in-plane strain. In order to explore the potential application, the mechanical properties and optical properties of S/O type antimonene are also extensively studied. It is found the S/O type antimonene is an anisotropic material by the method of analyzing the linear Poisson's ratios and the phonon band structure. These systematical analyses show that S/O type antimonene is a new 2D material with tunable electronic properties, excellent mechanical and optical properties.
NASA Astrophysics Data System (ADS)
van Aken, P. A.; Sharp, T. G.; Seifert, F.
The analysis of the extended energy-loss fine structure (EXELFS) of the Si K-edge for sixfold-coordinated Si in synthetic stishovite and fourfold-coordinated Si in natural α-quartz is reported by using electron energy-loss spectroscopy (EELS) in combination with transmission electron microscopy (TEM). The stishovite Si K-edge EXELFS spectra were measured as a time-dependent series to document irradiation-induced amorphization. The amorphization was also investigated through the change in Si K- and O K-edge energy-loss near edge structure (ELNES). For α-quartz, in contrast to stishovite, electron irradiation-induced vitrification, verified by selected area electron diffraction (SAED), produced no detectable changes of the EXELFS. The Si K-edge EXELFS were analysed with the classical extended X-ray absorption fine structure (EXAFS) treatment and compared to ab initio curve-waved multiple-scattering (MS) calculations of EXAFS spectra for stishovite and α-quartz. Highly accurate information on the local atomic environment of the silicon atoms during the irradiation-induced amorphization of stishovite is obtained from the EXELFS structure parameters (Si-O bond distances, coordination numbers and Debye-Waller factors). The mean Si-O bond distance R and mean Si coordination number N changes from R=0.1775 nm and N=6 for stishovite through a disordered intermediate state (R 0.172 nm and N 5) to R 0.167 nm and N 4.5 for a nearly amorphous state similar to α-quartz (R=0.1609 nm and N=4). During the amorphization process, the Debye-Waller factor (DWF) passes through a maximum value of as it changes from for sixfold to for fourfold coordination of Si. This increase in Debye-Waller factor indicates an increase in mean-square relative displacement (MSRD) between the central silicon atom and its oxygen neighbours that is consistent with the presence of an intermediate structural state with fivefold coordination of Si. The distribution of coordination states can be estimated by modelling the amorphization as a decay process. Using the EXELFS data for amorphization, a new method is developed to derive the relative amounts of Si coordinations in high-pressure minerals with mixed coordination. For the radiation-induced amorphization process of stishovite the formation of a transitory structure with Si largely in fivefold coordination is deduced.
Respiratory interactions of soil bacteria with (semi)conductive iron-oxide minerals.
Kato, Souichiro; Nakamura, Ryuhei; Kai, Fumiyoshi; Watanabe, Kazuya; Hashimoto, Kazuhito
2010-12-01
Pure-culture studies have shown that dissimilatory metal-reducing bacteria are able to utilize iron-oxide nanoparticles as electron conduits for reducing distant terminal acceptors; however, the ecological relevance of such energy metabolism is poorly understood. Here, soil microbial communities were grown in electrochemical cells with acetate as the electron donor and electrodes (poised at 0.2 V versus Ag/AgCl) as the electron acceptors in the presence and absence of iron-oxide nanoparticles, and respiratory current generation and community structures were analysed. Irrespective of the iron-oxide species (hematite, magnetite or ferrihydrite), the supplementation with iron-oxide minerals resulted in large increases (over 30-fold) in current, while only a moderate increase (∼10-fold) was observed in the presence of soluble ferric/ferrous irons. During the current generation, insulative ferrihydrite was transformed into semiconductive goethite. Clone-library analyses of 16S rRNA gene fragments PCR-amplified from the soil microbial communities revealed that iron-oxide supplementation facilitated the occurrence of Geobacter species affiliated with subsurface clades 1 and 2. We suggest that subsurface-clade Geobacter species preferentially thrive in soil by utilizing (semi)conductive iron oxides for their respiration. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
RELEC Mission: Relativistic Electron Precipitation and TLE study on-board small spacecraft
NASA Astrophysics Data System (ADS)
Svertilov, Sergey
The main goal of RELEC mission is studying of magnetosphere relativistic electron precipitation and its acting on the upper Atmosphere as well as transient luminous events (TLE) observation in wide range of electromagnetic spectrum. The RELEC set of instruments includes two identical detectors of X- and gamma-rays of high temporal resolution and sensitivity (DRGE-1 & DRGE-2), three axe directed detectors of energetic electrons and protons DRGE-3, UV TLE imager MTEL, UV detector DUV, low-frequency analyser LFA, radio-frequency analyser RFA, module of electronics intended for commands and data collection BE. During the RELEC mission following experiments will be provided: - simultaneous observations of energetic electron & proton flux (energy range ~0.1-10.0 MeV and low-frequency (~0.1-10 kHz) electromagnetic wave field intensity variations with high temporal resolution (~1 ms); - fine time structure (~1 mcs) measurements of transient atmospheric events in UV, X- and gamma rays with a possibility of optical imaging with resolution of ~km in wide FOV; - measurements of electron flux pitch-angle distribution in dynamical range from ~0.1 up to 105 part/cm2s; - monitoring of charge and neutral background particles in different areas of near-Earth space. Now the all RELEC instruments are installed on-board small spacecraft manufactured by Lavochkin space corporation. The launch is scheduled on May, 2014 as by-pass mission with Meteor spacecraft. The RELEC mission orbit is planned to be quasi-circular solar-synchronous with about 700 km height. The total volume of transmitted data is about 1.2 Gbyte per day.
Ghavidelaghdam, Elham; Shahverdizadeh, Gholam Hossein; Motameni Tabatabai, Javad; Mirtamizdoust, Babak
2018-04-01
Nano structure of a lead (II) coordination polymer [Pb 2 (C 2 Cl 3 O 2 ) 2 (NO 3 ) 2 (C l2 H 8 N 2 ) 2 ] n (1), has been synthesized by a sonochemical method in different concentrations. The nano particles were characterized by scanning electron microscopy (SEM) X-ray powder diffraction (XRD), FT-IR spectroscopy and elemental analyses. The thermal stability of nano structure is closely investigated via thermal gravimetric (TGA), and compared with crystalline structure. The compounds are then heated to 600 °C to produce PbO nano particles. The resulting PbO is characterized through XRD and SEM analyses. Concentration of initial reagents effects on size and morphology of nano-structured compound 1 have been studied and show that low concentrations of initial reagents decreased particles size and leaded to uniform nano particles morphology. The photoluminescence properties of the prepared compound, as crystalline and as nanoparticles, have been investigated. The result showed a good correlation between the size and emission wavelength. Copyright © 2017. Published by Elsevier B.V.
Structural and thermoelectric properties of zintl-phase CaLiPn (Pn=As, Sb, Bi)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandran, Anoop K.; Gudelli, Vijay Kumar; Sreeparvathy, P.C.
First-principles calculations were carried out to study the structural, mechanical, dynamical and transport properties of zintl phase materials CaLiPn (Pn=As, Sb and Bi). We have used two different approaches to solve the system based on density functional theory. The plane wave pseudopotential approach has been used to study the structural and dynamical properties whereas, full potential linear augment plane wave method is used to examine the electronic structure, mechanical and thermoelectric properties. The calculated ground-state properties agree quite well with experimental values. The computed electronic structure shows the investigated compounds to be direct band gap semiconductors. Further, we have calculatedmore » the thermoelectric properties of all the investigated compounds for both the carriers at various temperatures. We found a high thermopower for both the carriers, especially n-type doping to be more favourable, which enabled us to predict that CaLiPn might have promising applications as a good thermoelectric material. Further, the phonon dispersion curves of the investigated compounds showed flat phonon modes and we also find lower optical and acoustic modes to cut each other at the lower frequency range, which further indicate the investigated compounds to possess reasonably low thermal conductivity. We have also analysed the low value of the thermal conductivity through the empirical relations and discussions are presented here. - Highlights: • Electronic band structure and chemical bonding. • Single crystalline elastic constants and poly crystalline elastic moduli. • Thermoelectric properties of zintl phase. • Lattice dynamics and phonon density of states.« less
Iba Techniques to Study Renaissance Pottery Techniques
NASA Astrophysics Data System (ADS)
Bouquillon, A.; Castaing, J.; Salomon, J.; Zucchiatti, A.; Lucarelli, F.; Mando, P. A.; Prati, P.; Lanterna, G.; Vaccari, M. G.
2001-09-01
The application of Ion Beam Analysis, associated to Scanning Electron Microscopy is examined in connection with an extensive program on structural and chemical analyses of glazed terracotta's from the Italian Renaissance, launched by a French-Italian collaboration in the framework of the European COST-G1 scientific action. The objectives of the collaboration are reviewed. The compatibility of data from different specimen and various laboratories are discussed. Examples of the PIXE and statistical analyses on some artefacts of the "Robbiesche" type, supplied by the Louvre Museum of Paris and the Opificio delle Pietre Dure of Florence, are given to illustrate the performances of IBA in this particular field.
Postflight analysis for Delta Program Mission no. 113: COS-B Mission
NASA Technical Reports Server (NTRS)
1976-01-01
On 8 August 1975, the COS-B spacecraft was launched successfully from the Western Test Range (Delta Program Mission No. 113). The launch vehicle was a three stage Extended Long Tank Delta DSV-3P-11B vehicle. Postflight analyses performed in connection with flight are presented. Vehicle trajectory, stage performance, vehicle reliability and the propulsion, guidance, flight control, electronics, mechanical and structural systems are evaluated.
Shebl, Magdy
2008-09-01
A tetradentate N2O2 donor Schiff base ligand, H2L, was synthesized by the condensation of 4,6-diacetylresorcinol with benzylamine. The structure of the ligand was elucidated by elemental analyses, IR, 1H NMR, electronic and mass spectra. Reaction of the Schiff base ligand with nickel(II), cobalt(II), iron(III), cerium(III), vanadyl(IV) and uranyl(VI) ions in 1:2 molar ratio afforded binuclear metal complexes. Also, reaction of the ligand with several copper(II) salts, including Cl-, NO3-, AcO-, ClO4- and SO42- afforded different metal complexes that reflect the non-coordinating or weakly coordinating power of the ClO(4)(-) anion as compared to the strongly coordinating power of SO42- and Cl- anions. Characterization and structure elucidation of the prepared complexes were achieved by elemental and thermal analyses, IR, 1H NMR, electronic, mass and ESR spectra as well as magnetic susceptibility measurements. The metal complexes exhibited different geometrical arrangements such as square planar, octahedral, square pyramidal and pentagonal bipyramidal arrangements. The variety in the geometrical arrangements depends on the nature of both the anion and the metal ion.
Uranium association with iron-bearing phases in mill tailings from Gunnar, Canada.
Othmane, Guillaume; Allard, Thierry; Morin, Guillaume; Sélo, Madeleine; Brest, Jessica; Llorens, Isabelle; Chen, Ning; Bargar, John R; Fayek, Mostafa; Calas, Georges
2013-11-19
The speciation of uranium was studied in the mill tailings of the Gunnar uranium mine (Saskatchewan, Canada), which operated in the 1950s and 1960s. The nature, quantification, and spatial distribution of uranium-bearing phases were investigated by chemical and mineralogical analyses, fission track mapping, electron microscopy, and X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopies at the U LIII-edge and Fe K-edge. In addition to uranium-containing phases from the ore, uranium is mostly associated with iron-bearing minerals in all tailing sites. XANES and EXAFS data and transmission electron microscopy analyses of the samples with the highest uranium concentrations (∼400-700 mg kg(-1) of U) demonstrate that uranium primarily occurs as monomeric uranyl ions (UO2(2+)), forming inner-sphere surface complexes bound to ferrihydrite (50-70% of the total U) and to a lesser extent to chlorite (30-40% of the total U). Thus, the stability and mobility of uranium at the Gunnar site are mainly influenced by sorption/desorption processes. In this context, acidic pH or alkaline pH with the presence of UO2(2+)- and/or Fe(3+)-complexing agents (e.g., carbonate) could potentially solubilize U in the tailings pore waters.
NASA Astrophysics Data System (ADS)
Zhao, Chunjiang; Wu, Huarui
2017-03-01
Density functional theory calculations are carried out to study the adsorption of mercury and arsenic on Pdn (n = 1-6) supported on pyridine-like nitrogen doped graphene (PNG). Owing to the promising sensitivity in trace amounts of atoms or molecules, PNG can be acted as micro-sensor for sensing heavy metals in agriculture soils. Through the analyses of structural and electronic properties of pristine PNG and Pd atom decorated PNG, we find that the most favorable adsorption site for Pd atom is the vacancy site. The analyses of structural and electronic properties reveal that the Pd atom or clusters can enhance the reactivity for Hg and AsH3 adsorption on PNG. The adsorption ability of Hg on Pdn decorated PNG is found to be related to the d-band center (εd) of the Pdn, in which the closer εd of Pdn to the Fermi level, the higher adsorption strength for Hg on Pdn decorated PNG. Moreover, the charge transfer between Pdn and arsenic may constitute arsenic adsorption on Pdn decorated PNG. Further design of highly efficient carbon based sorbents for heavy metals removal should be focused on tailoring εd of adsorbed metals.
Structural, vibrational and luminescence properties of the (1−x)CaWO{sub 4}−xCdWO{sub 4} system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taoufyq, A.; Laboratoire Matériaux et Environnement LME, Faculté des Sciences, Université Ibn Zohr, BP 8106, Cité Dakhla, Agadir, Maroc; CEA/DEN, Département d’Études des Réacteurs, Laboratoire Dosimétrie Capteurs Instrumentation, CEA Cadarache, 13108, Saint-Paul-lez-Durance
2014-11-15
In the present work, we investigate the structural, microstructural, vibrational and luminescence properties of the system (1−x)CaWO{sub 4}−xCdWO{sub 4} with x ranging between 0 and 1. Polycrystalline samples were elaborated using a coprecipitation technique followed by thermal treatment at 1000 °C. The samples were then characterized using X-ray diffraction, scanning electron microscopy, Raman spectroscopy and luminescence analyses. X-ray diffraction profile analyses using Rietveld method showed that two kinds of solid solutions Ca{sub 1−x}Cd{sub x}WO{sub 4} having scheelite and wolframite structures, with respectively tetragonal and monoclinic crystal cells, were observed, with a biphasic system for compositions x=0.6 and 0.7. The scanningmore » electron microscopy experiments showed a complex evolution of morphologies and crystallite sizes as x increased. The vibration modes of Raman spectra were characteristic of composition-dependent disordered solid solutions with decreasing wavenumbers as x increased. Luminescence experiments were performed under UV-laser light irradiation. The energies of emission bands increased linearly with cadmium composition x. The integrated intensity of luminescence reached a maximum value for the substituted wolframite phase with composition x=0.8. - Graphical abstract: Luminescence on UV excitation (364.5 nm) of (1−x)CaWO{sub 4−x}CdWO{sub 4} system, elaborated from coprecipitation technique at 1000 °C, with 0« less
NASA Astrophysics Data System (ADS)
Rančić, Milica P.; Trišović, Nemanja P.; Milčić, Miloš K.; Ajaj, Ismail A.; Marinković, Aleksandar D.
2013-10-01
The electronic structure of 5-arylidene-2,4-thiazolidinediones has been studied by using experimental and theoretical methodology. The theoretical calculations of the investigated 5-arylidene-2,4-thiazolidinediones have been performed by the use of quantum chemical methods. The calculated 13C NMR chemical shifts and NBO atomic charges provide an insight into the influence of such a structure on the transmission of electronic substituent effects. Linear free energy relationships (LFERs) have been further applied to their 13C NMR chemical shifts. The correlation analyses for the substituent-induced chemical shifts (SCS) have been performed with σ using SSP (single substituent parameter), field (σF) and resonance (σR) parameters using DSP (dual substituent parameter), as well as the Yukawa-Tsuno model. The presented correlations account satisfactorily for the polar and resonance substituent effects operative at Cβ, and C7 carbons, while reverse substituent effect was found for Cα. The comparison of correlation results for the investigated molecules with those obtained for seven structurally related styrene series has indicated that specific cross-interaction of phenyl substituent and groups attached at Cβ carbon causes increased sensitivity of SCS Cβ to the resonance effect with increasing of electron-accepting capabilities of the group present at Cβ.
Mechanical design principles of a mitotic spindle.
Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François
2014-12-18
An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.
On the origin of planarity in Al5- and Al5 clusters: The importance of a four-center peripheral bond
NASA Astrophysics Data System (ADS)
Geske, Grant D.; Boldyrev, Alexander I.; Li, Xi; Wang, Lai-Sheng
2000-10-01
Ab initio calculations were combined with anion photoelectron spectroscopy to unravel the structural origin of Al5 and Al5-. Well-resolved photoelectron spectra of Al5- were obtained and compared to theoretical calculations performed at various levels of theory. It was shown that the best agreement between the experimental and theoretical data is for a planar C2v structure. Analyses of the electronic structure and molecular orbitals revealed that the planarity in Al5 and Al5- are due to the presence of a four-center peripheral bond that is common in a whole family of planar pentaatomic species recently uncovered.
Macromolecular metal carboxylates
NASA Astrophysics Data System (ADS)
Dzhardimalieva, G. I.; Pomogailo, A. D.
2008-03-01
Data on the synthesis and physicochemical studies of salts of mono- or dibasic unsaturated carboxylic acids and unsaturated metal oxo-carboxylates are generalised and described systematically. The structures and properties of the COO group in various compounds and characteristic features of the structures of carboxylate complexes are analysed. The main routes and kinetics of polymerisation transformations of unsaturated metal carboxylates are considered. The attention is focused on the effect of the metal ion on the monomer reactivity and the polymer morphology and structure. The possibility of stereochemical control of radical polymerisation of unsaturated metal carboxylates is demonstrated. The electronic, magnetic, optical, absorption and thermal properties of metal (co)polymers and nanocomposites and their main applications are considered.
NASA Astrophysics Data System (ADS)
Arjunan, V.; Saravanan, I.; Marchewka, Mariusz K.; Mohan, S.
Experimental FTIR and FT-Raman spectroscopic analysis of 2-chloro-4-methyl-3-nitropyridine (2C4M3NP) and 2-chloro-6-methylpyridine (2C6MP) have been performed. A detailed quantum chemical calculations have been carried out using B3LYP and B3PW91 methods with 6-311++G** and cc-pVTZ basis sets. Conformation analysis was carried for 2C4M3NP and 2C6MP. The temperature dependence of thermodynamic properties has been analysed. The atomic charges, electronic exchange interaction and charge delocalisation of the molecule have been performed by natural bond orbital (NBO) analysis. Molecular electrostatic surface potential (MESP), total electron density distribution and frontier molecular orbitals (FMOs) are constructed at B3LYP/6-311++G** level to understand the electronic properties. The charge density distribution and site of chemical reactivity of the molecules have been obtained by mapping electron density isosurface with electrostatic potential surfaces (ESP). The electronic properties, HOMO and LUMO energies were measured by time-dependent TD-DFT approach.
Martin, Jessica L; Cao, Sheng; Maldonado, Jose O; Zhang, Wei; Mansky, Louis M
2016-09-15
The Gag protein is the main retroviral structural protein, and its expression alone is usually sufficient for production of virus-like particles (VLPs). In this study, we sought to investigate-in parallel comparative analyses-Gag cellular distribution, VLP size, and basic morphological features using Gag expression constructs (Gag or Gag-YFP, where YFP is yellow fluorescent protein) created from all representative retroviral genera: Alpharetrovirus, Betaretrovirus, Deltaretrovirus, Epsilonretrovirus, Gammaretrovirus, Lentivirus, and Spumavirus. We analyzed Gag cellular distribution by confocal microscopy, VLP budding by thin-section transmission electron microscopy (TEM), and general morphological features of the VLPs by cryogenic transmission electron microscopy (cryo-TEM). Punctate Gag was observed near the plasma membrane for all Gag constructs tested except for the representative Beta- and Epsilonretrovirus Gag proteins. This is the first report of Epsilonretrovirus Gag localizing to the nucleus of HeLa cells. While VLPs were not produced by the representative Beta- and Epsilonretrovirus Gag proteins, the other Gag proteins produced VLPs as confirmed by TEM, and morphological differences were observed by cryo-TEM. In particular, we observed Deltaretrovirus-like particles with flat regions of electron density that did not follow viral membrane curvature, Lentivirus-like particles with a narrow range and consistent electron density, suggesting a tightly packed Gag lattice, and Spumavirus-like particles with large envelope protein spikes and no visible electron density associated with a Gag lattice. Taken together, these parallel comparative analyses demonstrate for the first time the distinct morphological features that exist among retrovirus-like particles. Investigation of these differences will provide greater insights into the retroviral assembly pathway. Comparative analysis among retroviruses has been critically important in enhancing our understanding of retroviral replication and pathogenesis, including that of important human pathogens such as human T-cell leukemia virus type 1 (HTLV-1) and HIV-1. In this study, parallel comparative analyses have been used to study Gag expression and virus-like particle morphology among representative retroviruses in the known retroviral genera. Distinct differences were observed, which enhances current knowledge of the retroviral assembly pathway. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Govender, G.; Moolla, S.
2018-07-01
Low-frequency ion-acoustic waves are analysed on the ion time-scale, in a three-component electron-ion space plasma. The solitary waves propagate in the positive x direction relative to an ambient magnetic field ěc {B}_0 which forms static background for a configuration consisting of cool fluid ions and both warm and hot Boltzmann-distributed electrons with temperatures T_{ic}, T_{ew} and T_{eh}, respectively. We derive linear dispersion relation for the waves by introducing first-order density, pressure and velocity perturbations into the ion fluid equations. Additionally, the variation in the nonlinear structure of the waves are investigated by carrying out a full parametric analysis utilising our numerical code. Our results reveal that ion-acoustic waves exhibit well-defined nonlinear spikes at speeds of M≥ 2.25 and an electric field amplitude of E_0=0.85. It is also shown that low wave speeds (M≤ 2), higher densities of the hot electrons, antiparallel drifting of the cool fluid ions, and increased ion temperatures all lead to significant dispersive effects. The ion-acoustic plasma waves featured in this paper have forms that are consistent with those classified as the type-A and type-B broadband electrostatic noise (BEN) observed in the data obtained from earlier satellite missions.
Characterization of konjac glucomannan-gelatin IPN physical hydrogel scaffold
NASA Astrophysics Data System (ADS)
Chen, Xiliang; Chen, Qinghua; Yan, Tingting; Liu, Jinkun
2017-06-01
A novel IPN hydrogel scaffold is prepared by freeze-drying method, in which konjac galactomannan (KGM) and gelatin are physically crosslinked respectively. This scaffold is thermostable, and the structure of this scaffold is analysed by scanning electron microscope, Fourier transform infrared spectrum, and X-ray diffraction method. The FT-IR results show that hydrogen bonds are formed between KGM and gelatin molecules, which hinder the formation of their respective crosslinking. This is consistent with the XRD results that the crystallinity gets lower in the IPN gels compared with pure gelatin and KGM gels. The morphologies of freeze-dried hydrogels are observed by SEM and the mechanical properties of the scaffolds are tested to analyse the relationship between the structures and properties. Although this novel IPN hydrogel is physical gel, it shows rubber-like performance as chemical gels. And it is nontoxic, so it can be used as the scaffold for cartilage tissue engineering that embedded in human bodies.
Feng, Yujie; Yu, Yanling; Wang, Xin; Qu, Youpeng; Li, Dongmei; He, Weihua; Kim, Byung Hong
2011-01-01
A microbial consortium with a high cellulolytic activity was enriched to degrade raw corn stover powder (RCSP). This consortium degraded more than 51% of non-sterilized RCSP or 81% of non-sterilized filter paper within 8 days at 40°C under facultative anoxic conditions. Cellulosome-like structures were observed in scanning electron micrographs (SEM) of RCSP degradation residue. The high cellulolytic activity was maintained during 40 subcultures in a medium containing cellulosic substrate. Small ribosomal gene sequence analyses showed the consortium contains uncultured and cultured bacteria with or without cellulolytic activities. Among these bacteria, some are anaerobic others aerobic. Analyses of the culture filtrate showed a typical anoxic polysaccharide fermentation during the culturing process. Reducing sugar concentration increased at early stage followed by various fermentation products that were consumed at the late stage. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Linping; School of Physics Science and Technology, Xinjiang University, Urumqi 830046; Jing, Qun
2015-09-21
As potential candidates for deep-UV nonlinear optical (NLO) crystals, borosilicates and borogermanates, which contain NLO-active groups such as B-O, Si-O, and Ge-O groups, have fascinated many material scientists' research enthusiasm. In this paper, the electronic structures and optical properties of two isostructural noncentrosymmetric crystals LaBRO{sub 5} (R = Si and Ge) have been studied by the first-principles method. Combined with the analyses of the SHG-density and the localized electron-density difference, contributions of the constituent tetrahedra to the total NLO responses are investigated. Eventually, BO{sub 4} and GeO{sub 4} groups give nearly equal contributions to the SHG effect of LaBGeO{sub 5}, but formore » LaBSiO{sub 5}, SiO{sub 4} groups express stronger SHG response than that of BO{sub 4}. Such interesting conclusion is consistent with the distortion index analyses and dipole moment.« less
NASA Astrophysics Data System (ADS)
Afzalian Mend, Behnaz; Delavar, Mahmoud; Darroudi, Majid
2017-04-01
The hexagonal CdO nano-particles (CdO-NPs) was prepared using new nano Cd coordination polymer, [Cd(NO3)(bipy)(pzca)]n (1) as a precursor, through direct calcination process at 500 °C. The precursor (1) was synthesized by sonochemical method. The new nano compound (1) was characterized by IR spectroscopy, elemental analyses, X-ray powder diffraction (XRD), transmission electron microscopy (TEM) and thermal gravimetric analyses. The structure of nano coordination polymer was determined by comparing the XRD pattern of nano and single-crystal of compound (1). The nano CdO was characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). In addition, the activity and efficiency of nano CdO as an anti-cancer drug was studied on cancer cells with different concentration. The results shows that the viability of cancer cells reduced above 2 μg/mL of CdO-NPs concentration.
Solar energy conversion with photon-enhanced thermionic emission
NASA Astrophysics Data System (ADS)
Kribus, Abraham; Segev, Gideon
2016-07-01
Photon-enhanced thermionic emission (PETE) converts sunlight to electricity with the combined photonic and thermal excitation of charge carriers in a semiconductor, leading to electron emission over a vacuum gap. Theoretical analyses predict conversion efficiency that can match, or even exceed, the efficiency of traditional solar thermal and photovoltaic converters. Several materials have been examined as candidates for radiation absorbers and electron emitters, with no conclusion yet on the best set of materials to achieve high efficiency. Analyses have shown the complexity of the energy conversion and transport processes, and the significance of several loss mechanisms, requiring careful control of material properties and optimization of the device structure. Here we survey current research on PETE modeling, materials, and device configurations, outline the advances made, and stress the open issues and future research needed. Based on the substantial progress already made in this young topic, and the potential of high conversion efficiency based on theoretical performance limits, continued research in this direction is very promising and may yield a competitive technology for solar electricity generation.
NASA Technical Reports Server (NTRS)
Putnam, T. W.; Burcham, F. W., Jr.; Andries, M. G.; Kelly, J. B.
1985-01-01
The NASA highly integrated digital electronic control (HIDEC) program is structured to conduct flight research into the benefits of integrating an aircraft flight control system with the engine control system. A brief description of the HIDEC system installed on an F-15 aircraft is provided. The adaptive engine control system (ADECS) mode is described in detail, together with simulation results and analyses that show the significant excess thrust improvements achievable with the ADECS mode. It was found that this increased thrust capability is accompanied by reduced fan stall margin and can be realized during flight conditions where engine face distortion is low. The results of analyses and simulations also show that engine thrust response is improved and that fuel consumption can be reduced. Although the performance benefits that accrue because of airframe and engine control integration are being demonstrated on an F-15 aircraft, the principles are applicable to advanced aircraft such as the advanced tactical fighter and advanced tactical aircraft.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting
An anti-adhesion surface with a water contact angle of 167° was fabricated on aluminium samples of rubber plastic moulds by electrolysis plasma treatment using mixed electrolytes of C{sub 6}H{sub 5}O{sub 7}(NH{sub 4}){sub 3} and Na{sub 2}SO{sub 4}, followed by fluorination. To optimise the fabrication conditions, several important processing parameters such as the discharge voltage, discharge time, concentrations of supporting electrolyte and stearic acid ethanol solution were examined systematically. Using scanning electron microscopy (SEM) to analyse surfaces morphology, micrometer scale pits, and protrusions were found on the surface, with numerous nanometer mastoids contained in the protrusions. These binary micro/nano-scale structures, whichmore » are similar to the micro-structures of soil-burrowing animals, play a critical role in achieving low adhesion properties. Otherwise, the anti-adhesion behaviours of the resulting samples were analysed by the atomic force microscope (AFM), Fourier-transform infrared spectrophotometer (FTIR), electrons probe micro-analyzer (EPMA), optical contact angle meter, digital Vickers microhardness (Hv) tester, and electronic universal testing. The results show that the electrolysis plasma treatment does not require complex processing parameters, using a simple device, and is an environment-friendly and effective method. Under the optimised conditions, the contact angle (CA) for the modified anti-adhesion surface is up to 167°, the sliding angle (SA) is less than 2°, roughness of the sample surface is only 0.409μm. Moreover, the adhesion force and H{sub v} are 0. 9KN and 385, respectively.« less
Field-Flow Fractionation of Carbon Nanotubes and Related Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
John P. Selegue
During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitoredmore » the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.« less
Soliman, Saied M; Barakat, Assem
2016-12-06
Intermolecular interactions play a vital role in crystal structures. Therefore, we conducted a topological study, using Hirshfeld surfaces and atom in molecules (AIM) analysis, to decompose and analyze, respectively, the different intermolecular interactions in six hydrazone-diacetyl platinum(II) complexes. Using AIM and natural bond orbital (NBO) analyses, we determined the type, nature, and strength of the interactions. All the studied complexes contain C-H⋯O interactions, and the presence of bond critical points along the intermolecular paths underlines their significance. The electron densities (ρ(r)) at the bond critical points (0.0031-0.0156 e/a₀³) fall within the typical range for H-bonding interactions. Also, the positive values of the Laplacian of the electron density (∇²ρ(r)) revealed the depletion of electronic charge on the interatomic path, another characteristic feature of closed-shell interactions. The ratios of the absolute potential energy density to the kinetic energy density (| V (r)|/ G (r)) and ρ(r) are highest for the O2⋯H15-N3 interaction in [Pt(COMe)₂(2-pyCMe=NNH₂)] (1); hence, this interaction has the highest covalent character of all the O⋯H intermolecular interactions. Interestingly, in [Pt(COMe)₂(H₂NN=CMe-CMe=NNH₂)] (3), there are significant N-H⋯Pt interactions. Using the NBO method, the second-order interaction energies, E (2) , of these interactions range from 3.894 to 4.061 kJ/mol. Furthermore, the hybrid Pt orbitals involved in these interactions are comprised of d xy , d xz , and s atomic orbitals.
Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses
Kurta, Ruslan P.; Donatelli, Jeffrey J.; Yoon, Chun Hong; ...
2017-10-12
We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates frommore » the expected perfect icosahedral symmetry. Lastly, our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.« less
Weber, Katharina; Erdem, Özlen F; Bill, Eckhard; Weyhermüller, Thomas; Lubitz, Wolfgang
2014-06-16
A series of four [S2Ni(μ-S)2FeCp*Cl] compounds with different tetradentate thiolate/thioether ligands bound to the Ni(II) ion is reported (Cp* = C5Me5). The {S2Ni(μ-S)2Fe} core of these compounds resembles structural features of the active site of [NiFe] hydrogenases. Detailed analyses of the electronic structures of these compounds by Mössbauer and electron paramagnetic resonance spectroscopy, magnetic measurements, and density functional theory calculations reveal the oxidation states Ni(II) low spin and Fe(II) high spin for the metal ions. The same electronic configurations have been suggested for the Cred1 state of the C-cluster [NiFeu] subsite in carbon monoxide dehydrogenases (CODH). The Ni-Fe distance of ∼3 Å excludes a metal-metal bond between nickel and iron, which is in agreement with the computational results. Electrochemical experiments show that iron is the redox active site in these complexes, performing a reversible one-electron oxidation. The four complexes are discussed with regard to their similarities and differences both to the [NiFe] hydrogenases and the C-cluster of Ni-containing CODH.
NASA Technical Reports Server (NTRS)
Uchida, Hinako; Righter, Kevin; Lavina, Barbara; Nowell, Matthew M.; Wright, Stuart I.; Downs, Robert T.; Yang, Hexiong
2007-01-01
A magnesium vanadate spinel crystal, ideally MgV2O4, synthesized at 1 bar, 1200 C and equilibrated under FMQ + 1.3 log f(sub o2) condition, was investigated using single-crystal X-ray diffraction, electron microprobe, and electron backscatter (EBSD). The initial X-ray structure refinements gave tetrahedral and octahedral site occupancies, along with the presence of 0.053 apfu Mg at an interstitial octahedral site . Back-scattered electron (BSE) images and electron microprobe analyses revealed the existence of an Mg-rich phase in the spinel matrix, which was too small (less than or equal to 3microns) for an accurate chemical determination. The EBSD analysis combined with X-ray energy dispersive spectroscop[y (XEDS) suggested that the Mg-rich inclusions are periclase oriented coherently with the spinel matrix. The final structure refinements were optimized by subtracting the X-ray intensity contributions (approx. 9%) of periclase reflections, which eliminated the interstitial Mg. This study provides insight into possible origins of refined interstitial cations reported in the the literature for spinel, and points to the difficulty of using only X-ray diffraction data to distinguish a spinel with interstitial cations from one with coherently oriented MgO inclusions.
Missing dimer defects investigated by adsorption of nitric oxide (NO) on silicon (100) 2 × 1
NASA Astrophysics Data System (ADS)
Sasse, A. G. B. M.; Kleinherenbrink, P. M.; Van Silfhout, A.
This paper describes a study concerning the interaction of nitric oxide (NO) with the clean Si(100)2×1 surface in ultra-high vacuum at room temperature. Differential reflectometry (DR) in the photon energy range of 2.4-4.4 eV. Auger electron spectroscopy (AES) and low energy electron diffraction (LEED) have been used to investigate the chemisorption of NO on Si(100)2×1. With this combination of techniques it is possible to make an analysis of the geometric and electronic structure and chemical composition of the surface layer. The aim of the present study was to explain the experimental results of the adsorption of NO on the clean Si(100)2×1 at 300 K. Analysing the electronic and geometric structure of a simplified stepped 2×1 reconstructed Si(100) surface and of the NO molecule in combination with the use of Woodward-Hoffmann rules (WHR) we were able to model a surface defect specific adsorption mechanism. Surface defects such as missing dimer defects seem to play an important role in the adsorption mechanism of NO on the silicon surface. The experimental results are consistent with this developed model. We also suggest a relation between the missing dimer defects and the number of steps on the silicon surface.
Coarsening behaviour of M23C6 carbides in creep-resistant steel exposed to high temperatures
NASA Astrophysics Data System (ADS)
Godec, M.; Skobir Balantič, D. A.
2016-07-01
High operating temperatures can have very deleterious effects on the long-term performance of high-Cr, creep-resistant steels used, for example, in the structural components of power plants. For the popular creep-resistant steel X20CrMoV12.1 we analysed the processes of carbide growth using a variety of analytical techniques: transmission electron microscopy (TEM) and diffraction (TED), scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The evolution of the microstructure after different aging times was the basis for a much better understanding of the boundary-migration processes and the growth of the carbides. We present an explanation as to why some locations are preferential for this growth, and using EBSD we were able to define the proper orientational relationship between the carbides and the matrix.
González-Robles, Arturo; Lares-Villa, Fernando; Lares-Jiménez, Luis Fernando; Omaña-Molina, Maritza; Salazar-Villatoro, Lizbeth; Martínez-Palomo, Adolfo
2015-10-01
Additional morphological features of Balamuthia mandrillaris observed by light and electron microscopy are reported. Trophozoites were extremely pleomorphic: their cell shapes ranged from rounded to elongated and sometimes they appeared exceptionally stretched out and branched. By transmission electron microscopy it was possible to observe two different cytoplasmic areas, the ectoplasm and the endoplasm and often sections of rough endoplasmic reticulum were found in the transition zone. The cytoplasm was very fibrogranular and most of the organelles typically found in eukaryotic cells were observed. A particular finding was the presence of numerous mitochondria with a different structure from those of other free-living amoebae. The observations reported here may reinforce the morphological knowledge of this amoeba and provide a background for further analyses. Copyright © 2015 Elsevier Inc. All rights reserved.
Hannemann, Frank; Guyot, Arnaud; Zöllner, Andy; Müller, Jürgen J; Heinemann, Udo; Bernhardt, Rita
2009-07-01
Dipole moments of proteins arise from helical dipoles, hydrogen bond networks and charged groups at the protein surface. High protein dipole moments were suggested to contribute to the electrostatic steering between redox partners in electron transport chains of respiration, photosynthesis and steroid biosynthesis, although so far experimental evidence for this hypothesis was missing. In order to probe this assumption, we changed the dipole moment of the electron transfer protein adrenodoxin and investigated the influence of this on protein-protein interactions and electron transfer. In bovine adrenodoxin, the [2Fe-2S] ferredoxin of the adrenal glands, a dipole moment of 803 Debye was calculated for a full-length adrenodoxin model based on the Adx(4-108) and the wild type adrenodoxin crystal structures. Large distances and asymmetric distribution of the charged residues in the molecule mainly determine the observed high value. In order to analyse the influence of the resulting inhomogeneous electric field on the biological function of this electron carrier the molecular dipole moment was systematically changed. Five recombinant adrenodoxin mutants with successively reduced dipole moment (from 600 to 200 Debye) were analysed for their redox properties, their binding affinities to the redox partner proteins and for their function during electron transfer-dependent steroid hydroxylation. None of the mutants, not even the quadruple mutant K6E/K22Q/K24Q/K98E with a dipole moment reduced by about 70% showed significant changes in the protein function as compared with the unmodified adrenodoxin demonstrating that neither the formation of the transient complex nor the biological activity of the electron transfer chain of the endocrine glands was affected. This is the first experimental evidence that the high dipole moment observed in electron transfer proteins is not involved in electrostatic steering among the proteins in the redox chain.
Positron lifetime calculation for the elements of the periodic table.
Campillo Robles, J M; Ogando, E; Plazaola, F
2007-04-30
Theoretical positron lifetime values have been calculated systematically for most of the elements of the periodic table. Self-consistent and non-self-consistent schemes have been used for the calculation of the electronic structure in the solid, as well as different parametrizations for the positron enhancement factor and correlation energy. The results obtained have been studied and compared with experimental data, confirming the theoretical trends. As is known, positron lifetimes in bulk show a periodic behaviour with atomic number. These calculations also confirm that monovacancy lifetimes follow the same behaviour. The effects of enhancement factors used in calculations have been commented upon. Finally, we have analysed the effects that f and d electrons have on positron lifetimes.
Photogeneration of hydrogen from water by a robust dye-sensitized photocathode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, B.; Das, A. K.; Marquard, S.
2016-11-15
We report here on a novel photocathode with a “donor-dye-catalyst” assembly structure for water reduction. The photoelectrocatalytic performance of the photocathode under mild conditions, with a photocurrent of -56 μA/cm2 and a Faradaic yield of 53%, is superior relative to other reported photocathodes with surface attached molecular catalysts. Detailed electron transfer analyses, based on transient absorption measurements, show that the successful application of this photocathode originates mainly from the slow back electron transfer following light excitation. The results also demonstrate that addition of the long-chain assembly to the macro-mesoporous electrode surface plays a fundamental role in providing sufficient catalyst formore » water reduction.« less
Synthesis, characterisation and DFT studies of three Schiff bases derived from histamine
NASA Astrophysics Data System (ADS)
Touafri, Lasnouni; Hellal, Abdelkader; Chafaa, Salah; Khelifa, Abdellah; Kadri, Abdelaziz.
2017-12-01
In this paper, we report first, the synthesis and characterisation of three Schiff bases derived from histamine by condensation of histamine with various aldehydes. Then, we present a detailed DFT study based on B3LYP/6-31G(d,p) of geometrical structures and electronic properties of these compounds. The study was extended to the HOMO-LUMO analysis to calculate the energy gap (Δ), Ionisation potential (I), Electron Affinity (A), Global Hardness (η), Chemical Potential (μ), Electrophilicity (ω), Electronegativity (χ) and Polarisability (α). The calculated HOMO and LUMO energy reveals that the charge transfers occurring within the molecule. On the basis of vibration analyses, the thermodynamic properties of the titles compound were also calculated.
Farkas, Viktor; Jákli, Imre; Tóth, Gábor K; Perczel, András
2016-09-19
Both far- and near-UV electronic circular dichroism (ECD) spectra have bands sensitive to thermal unfolding of Trp and Tyr residues containing proteins. Beside spectral changes at 222 nm reporting secondary structural variations (far-UV range), L b bands (near-UV range) are applicable as 3D-fold sensors of protein's core structure. In this study we show that both L b (Tyr) and L b (Trp) ECD bands could be used as sensors of fold compactness. ECD is a relative method and thus requires NMR referencing and cross-validation, also provided here. The ensemble of 204 ECD spectra of Trp-cage miniproteins is analysed as a training set for "calibrating" Trp↔Tyr folded systems of known NMR structure. While in the far-UV ECD spectra changes are linear as a function of the temperature, near-UV ECD data indicate a non-linear and thus, cooperative unfolding mechanism of these proteins. Ensemble of ECD spectra deconvoluted gives both conformational weights and insight to a protein folding↔unfolding mechanism. We found that the L b 293 band is reporting on the 3D-structure compactness. In addition, the pure near-UV ECD spectrum of the unfolded state is described here for the first time. Thus, ECD folding information now validated can be applied with confidence in a large thermal window (5≤T≤85 °C) compared to NMR for studying the unfolding of Trp↔Tyr residue pairs. In conclusion, folding propensities of important proteins (RNA polymerase II, ubiquitin protein ligase, tryptase-inhibitor etc.) can now be analysed with higher confidence. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The Structural Architecture of an Infectious Mammalian Prion Using Electron Cryomicroscopy.
Vázquez-Fernández, Ester; Vos, Matthijn R; Afanasyev, Pavel; Cebey, Lino; Sevillano, Alejandro M; Vidal, Enric; Rosa, Isaac; Renault, Ludovic; Ramos, Adriana; Peters, Peter J; Fernández, José Jesús; van Heel, Marin; Young, Howard S; Requena, Jesús R; Wille, Holger
2016-09-01
The structure of the infectious prion protein (PrPSc), which is responsible for Creutzfeldt-Jakob disease in humans and bovine spongiform encephalopathy, has escaped all attempts at elucidation due to its insolubility and propensity to aggregate. PrPSc replicates by converting the non-infectious, cellular prion protein (PrPC) into the misfolded, infectious conformer through an unknown mechanism. PrPSc and its N-terminally truncated variant, PrP 27-30, aggregate into amorphous aggregates, 2D crystals, and amyloid fibrils. The structure of these infectious conformers is essential to understanding prion replication and the development of structure-based therapeutic interventions. Here we used the repetitive organization inherent to GPI-anchorless PrP 27-30 amyloid fibrils to analyze their structure via electron cryomicroscopy. Fourier-transform analyses of averaged fibril segments indicate a repeating unit of 19.1 Å. 3D reconstructions of these fibrils revealed two distinct protofilaments, and, together with a molecular volume of 18,990 Å3, predicted the height of each PrP 27-30 molecule as ~17.7 Å. Together, the data indicate a four-rung β-solenoid structure as a key feature for the architecture of infectious mammalian prions. Furthermore, they allow to formulate a molecular mechanism for the replication of prions. Knowledge of the prion structure will provide important insights into the self-propagation mechanisms of protein misfolding.
NASA Astrophysics Data System (ADS)
Ansari, S. M.; Suryawanshi, S. R.; More, M. A.; Sen, Debasis; Kolekar, Y. D.; Ramana, C. V.
2018-06-01
We report on the field-emission properties of structure-morphology controlled nano-CoFe2O4 (CFO) synthesized via a simple and low-temperature chemical method. Structural analyses indicate that the spongy-CFO (approximately, 2.96 nm) is nano-structured, spherical, uniformly-distributed, cubic-structured and porous. Field emission studies reveal that CFO exhibit low turn-on field (4.27 V/μm) and high emission current-density (775 μA/cm2) at a lower applied electric field of 6.80 V/μm. In addition, extremely good emission current stability is obtained at a pre-set value of 1 μA and high emission spot-density over large area (2 × 2 cm2) suggesting the applicability of these materials for practical applications in vacuum micro-/nano-electronics.
Sola, Daniel; Paulés, Daniel; Grima, Lorena
2017-01-01
Laser-induced breakdown spectroscopy (LIBS) is applied to characterize the formation of porous hydroxyapatite layers on the surface of 0.8CaSiO3-0.2Ca3(PO4)2 biocompatible eutectic glass immersed in simulated body fluid (SBF). Compositional and structural characterization analyses were also conducted by field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDX), and micro-Raman spectroscopy. PMID:29211006
Analysis and Characterization of the Mechanical Structure for the I-Tracker of the Mu2e Experiment
NASA Astrophysics Data System (ADS)
De Lorenzis, L.; Grancagnolo, F.; L'Erario, A.; Maffezzoli, A.; Miccoli, A.; Rella, S.; Spedicato, M.; Zavarise, G.
2014-03-01
The design of a tracking detector for electrons in a magnetic field consisting of a drift chamber is discussed. The chosen materials for its construction must be light to minimize the effects of the subatomic particles interactions with the chamber walls. Low-density materials and very thin wall thicknesses are therefore needed. From a mechanical engineering point of view, it is important to analyse the drift chamber structure and define the conditions to which it is subject in terms of both mechanical loads and geometric constraints. The analysis of the structural response of the drift chamber has been performed through the Finite Element Method (FEM) as implemented in the commercial software ANSYS and its interface for the analysis for composite structures ACP (Ansys Composite Pre/Post).
Thermal phase transition behavior of lipid layers on a single human corneocyte cell.
Imai, Tomohiro; Nakazawa, Hiromitsu; Kato, Satoru
2013-09-01
We have improved the selected area electron diffraction method to analyze the dynamic structural change in a single corneocyte cell non-invasively stripped off from human skin surface. The improved method made it possible to obtain reliable diffraction images to trace the structural change in the intercellular lipid layers on a single corneocyte cell during heating from 24°C to 100°C. Comparison of the results with those of synchrotron X-ray diffraction experiments on human stratum corneum sheets revealed that the intercellular lipid layers on a corneocyte cell exhibit essentially the same thermal phase transitions as those in a stratum corneum sheet. These results suggest that the structural features of the lipid layers are well preserved after the mechanical stripping of the corneocyte cell. Moreover, electron diffraction analyses of the thermal phase transition behaviors of the corneocyte cells that had the lipid layers with different distributions of orthorhombic and hexagonal domains at 24°C suggested that small orthorhombic domains interconnected with surrounding hexagonal domains transforms in a continuous manner into new hexagonal domains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Meng, Jianbing; Dong, Xiaojuan; Wei, Xiuting; Yin, Zhanmin
2014-03-01
Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The results show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jianbing, E-mail: jianbingmeng@126.com; Dong, Xiaojuan; Wei, Xiuting
Hard anti-adhesion surfaces, with low roughness and wear resistance, on aluminium substrates of rubber plastic moulds were fabricated via a new coupling method of liquid plasma and electrochemical machining. With the aid of liquid plasma thermal polishing and electrochemical anodic dissolution, micro/nano-scale binary structures were prepared as the base of the anti-adhesion surfaces. The anti-adhesion behaviours of the resulting aluminium surfaces were analysed by a surface roughness measuring instrument, a scanning electron microscope (SEM), a Fourier-transform infrared spectrophotometer (FTIR), an X-ray diffractometer (XRD), an optical contact angle meter, a digital Vickers micro-hardness (Hv) tester, and electronic universal testing. The resultsmore » show that, after the liquid plasma and electrochemical machining, micro/nano-scale binary structures composed of micro-scale pits and nano-scale elongated boss structures were present on the sample surfaces. As a result, the anti-adhesion surfaces fabricated by the above coupling method have good anti-adhesion properties, better wear resistance and lower roughness.« less
Patel, Rajkumar; Kim, Jinkyu; Lee, Chang Soo; Kim, Jong Hak
2014-12-01
We synthesized a novel polycarbonate Z-r-polyethylene glycol (PCZ-r-PEG) copolymer by solution polycondensation. Successful synthesis of PCZ-r-PEG copolymer was confirmed by Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), and transmission electron microscopy (TEM). PCZ-r-PEG copolymer was used as a structure-directing agent for fabrication of mesoporous thin film containing a titanium dioxide (TiO2) layer. To control the porosity of the resultant inorganic layer, the ratio of titanium(IV) isopropoxide (TTIP) to PCZ-r-PEG copolymer was varied. The structure and porosity of the resulting mesoporous films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses. Mesoporous TiO2 films fabricated on an F-doped tin oxide (FTO) surface were used as photoanodes for quasi-solid-state dye-sensitized solar cells (qssDSSCs). The highest efficiency achieved was 3.3% at 100 mW/cm2 for a film thickness of 750 nm, which is high considering the thickness of TiO2 film, indicating the importance of the structure-directing agent.
Keratitis-associated fungi form biofilms with reduced antifungal drug susceptibility.
Zhang, Xiaoyan; Sun, Xuguang; Wang, Zhiqun; Zhang, Yang; Hou, Wenbo
2012-11-21
To investigate the biofilm-forming capacity of Fusarium solani, Cladosporium sphaerospermum, and Acremonium implicatum, and the activities of antifungal agents against the three keratitis-associated fungi. The architecture of biofilms was analyzed using scanning electron microscopy and confocal scanning laser microscopy (CSLM). Susceptibility against six antifungal drugs was measured using the CLSI M38-A method and XTT reduction assay. Time course analyses of CSLM revealed that biofilm formation occurred in an organized fashion through four distinct developmental phases: adhesion, germling formation, microcolony formation, and biofilm maturation. Scanning electron microscopy revealed that mature biofilms displayed a complex three-dimensional structure, consisting of coordinated network of hyphal structures glued by the extracellular matrix (ECM). The antifungal susceptibility testing demonstrated a time-dependent decrease in efficacy for all six antifungal agents as the complexity of fungal hyphal structures developed. Natamycin (NAT), amphotericin B (AMB), and NAT were the most effective against F. solani, C. sphaerospermum, and A. implicatum biofilm, respectively. Corneal isolates of F. solani, C. sphaerospermum, and A. implicatum could produce biofilms that were resistant to antifungal agents in vitro.
Łaszcz, A; Katcki, J; Ratajczak, J; Tang, Xiaohui; Dubois, E
2006-10-01
Very thin erbium silicide layers have been used as source and drain contacts to n-type Si in low Schottky barrier MOSFETs on silicon-on-insulator substrates. Erbium silicide is formed by a solid-state reaction between the metal and silicon during annealing. The influence of annealing temperature (450 degrees C, 525 degrees C and 600 degrees C) on the formation of an erbium silicide layer in the Pt/Er/Si/SiO(2)/Si structure was analysed by means of cross-sectional transmission electron microscopy. The Si grains/interlayer formed at the interface and the presence of Si grains within the Er-related layer constitute proof that Si reacts with Er in the presence of a Pt top layer in the temperature range 450-600 degrees C. The process of silicide formation in the Pt/Er/Si structure differs from that in the Er/Si structure. At 600 degrees C, the Pt top layer vanishes and a (Pt-Er)Si(x) system is formed.
Gallium Oxide Nanostructures for High Temperature Sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chintalapalle, Ramana V.
Gallium oxide (Ga 2O 3) thin films were produced by sputter deposition by varying the substrate temperature (T s) in a wide range (T s=25-800 °C). The structural characteristics and electronic properties of Ga 2O 3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga 2O 3 films. XRD and SEM analyses indicate that the Ga 2O 3 films grown at lower temperatures were amorphous while those grown at T s≥500more » oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga 2O 3 films at T s=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga 2O 3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga 2O 3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga 2O 3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga 2O 3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga 2O 3 films compared to intrinsic Ga 2O 3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.« less
Tailoring Silica-alumina Supported Pt-Pd As Poison Tolerant Catalyst For Aromatics Hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yanzhe; Gutierrez, Oliver Y.; Haller, Gary L.
2013-08-01
The tailoring of the physicochemical and catalytic properties of mono- and bimetallic Pt-Pd catalysts supported on amorphous silica-alumina is studied. Electron energy loss spectroscopy and extended X-ray absorption fine structure analyses indicated that bimetallic Pt-Pd and relatively large monometallic Pd particles were formed, whereas the X-ray absorption near edge structure provided direct evidence for the electronic deficiency of the Pt atoms. The heterogeneous distribution of metal particles was also shown by high resolution transmission electron microscopy. The average structure of the bimetallic particles (Pt-rich core and Pd-rich shell) and the presence of Pd particles led to surface Pd enrichment, whichmore » was independently shown by IR spectra of adsorbed CO. The specific metal distribution, average size, and surface composition of the Pt-Pd particles depend to a large extent on the metal precursors. In the presence of NH3 ligands, Pt-Pd particles with a fairly homogeneous bulk and surface metal distribution were formed. Also high Lewis acid site concentration of the carrier leads to more homogeneous bimetallic particles. All catalysts were active for the hydrogenation of tetralin in the absence and presence of quinoline and dibenzothiophene (DBT). Monometallic Pt catalysts had the highest hydrogenation activity in poison-free and quinoline-containing feed. When DBT was present, bimetallic Pt-Pd catalysts with the most homogenous metal distribution showed the highest activity. The higher resistance of bimetallic catalysts towards sulfur poisoning compared to their monometallic Pt counterparts results from the weakened metal-sulfur bond on the electron deficient Pt atoms. Thus, increasing the fraction of electron deficient Pt on the surface of the bimetallic particles increases the efficiency of the catalyst in the presence of sulfur.« less
Zhu, Xueying; Cui, Peng; Zhang, Dongju; Liu, Chengbu
2011-07-28
By performing density functional theory calculations, we have studied the synthesis mechanism, electronic structure, and catalytic reactivity of a pyridinium-based ionic liquid, 1-ethylpyridinium trifluoroacetate ([epy](+)[CF(3)COO](-)). It is found that the synthesis of the pyridinium salt follows a S(N)2 mechanism. The electronic structural analyses show that multiple H bonds are generally involved in the pyridinium-based ionic liquid, which may play a decisive role for stabilizing the ionic liquid. The cation-anion interaction mainly involves electron transfer between the lone pair of the oxygen atom in the anion and the antibonding orbital of the C*-H bond (C* denotes the carbon atom at the ortho-position of nitrogen atom in the cation). This present work has also given clearly the catalytic mechanism of [epy](+)[CF(3)COO](-) toward to the Diels-Alder (D-A) reaction of acrylonitrile with 2-methyl-1,3-butadiene. Both the cation and anion are shown to play important roles in promoting the D-A reaction. The cation [epy](+), as a Lewis acid, associates the C≡N group by C≡N···H H bond to increase the polarity of the C═C double bond in acrylonitrile, while the anion CF(3)COO(-) links with the methyl group in 2-methyl-1,3-butadiene by C-H···O H bond, which weakens the electron-donating capability of methyl and thereby lowers the energy barrier of the D-A reaction. The present results are expected to provide valuable information for the design and application of pyridinium-based ionic liquids. © 2011 American Chemical Society
Vaney, Jean-Baptiste; Delaizir, Gaëlle; Wiendlocha, Bartlomiej; Tobola, Janusz; Alleno, Eric; Piarristeguy, Andrea; Gonçalves, Antonio Pereira; Gendarme, Christine; Malaman, Bernard; Dauscher, Anne; Candolfi, Christophe; Lenoir, Bertrand
2017-02-20
We report on the influence of Se substitution on the electronic band structure and thermoelectric properties (5-523 K) of the solid solution α-As 2 Te 3-x Se x (0 ≤ x ≤ 1.5). All of the polycrystalline compounds α-As 2 Te 3-x Se x crystallize isostructurally in the monoclinic space group C2/m (No. 12, Z = 4). Regardless of the Se content, chemical analyses performed by scanning electron microscopy and electron probe microanalysis indicate a good chemical homogeneity, with only minute amounts of secondary phases for some compositions. In agreement with electronic band structure calculations, neutron powder diffraction suggests that Se does not randomly substitute for Te but exhibits a site preference. These theoretical calculations further predict a monotonic increase in the band gap energy with the Se content, which is confirmed experimentally by absorption spectroscopy measurements. Increasing x up to x = 1.5 leaves unchanged both the p-type character and semiconducting nature of α-As 2 Te 3 . The electrical resistivity and thermopower gradually increase with x as a result of the progressive increase in the band gap energy. Despite the fact that α-As 2 Te 3 exhibits very low lattice thermal conductivity κ L , the substitution of Se for Te further lowers κ L to 0.35 W m -1 K -1 at 300 K. The compositional dependence of the lattice thermal conductivity closely follows classical models of phonon alloy scattering, indicating that this decrease is due to enhanced point-defect scattering.
NASA Astrophysics Data System (ADS)
Almeida, Michell O.; Barros, Daiane A. S.; Araujo, Sheila C.; Faria, Sergio H. D. M.; Maltarollo, Vinicius G.; Honorio, Kathia M.
2017-09-01
Cancer cells can expand to other parts of body through blood system and nodes from a mechanism known as metastasis. Due to the large annual growth of cancer cases, various biological targets have been studied and related to this disorder. A very interesting target related to cancer is human epidermal growth factor receptor 2 (HER2). In this study, we analyzed the main intermolecular interactions between a drug used in the cancer treatment (5-fluorouracil) and HER2. Molecular modeling methods were also employed to assess the molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM and HOMO-LUMO energies of 5-FU. From the docking simulations it was possible to analyze the interactions that occur between some residues in the binding site of HER2 and 5-FU. To validate the choice of basis set that was used in the NBO and QTAIM analyses, theoretical calculations were performed to obtain FT-IR and UV/Vis spectra, and the theoretical results are consistent with the experimental data, showing that the basis set chosen is suitable. For the maximum λ from the theoretical calculation (254.89 nm) of UV/Vis, the electronic transition from HOMO to LUMO occurs at 4.89 eV. From NBO analyses, we observed interactions between Asp863 and 5-FU, i.e. the orbitals with high transfer of electrons are LP O15 (donor NBO) and BD* (π) N1-H10 (acceptor NBO), being that the value of this interaction is 7.72 kcal/mol. Results from QTAIM indicate one main intermolecular H bond, which is necessary to stabilize the complex formed between the ligands and the biological target. Therefore, this study allowed a careful evaluation on the main structural, spectroscopic and electronic properties involved in the interaction between 5-FU and HER2, an important biological complex related to the cancer treatment.
NASA Astrophysics Data System (ADS)
Wahnón, P.; Tablero, C.
2002-04-01
A metallic isolated band in the middle of the band gap of several III-V semiconductors has been predicted as photovoltaic materials with the possibility of providing substantially enhanced efficiencies. We have investigated the electronic band structures and lattice constants of GanAsmM and GanPmM with M=Sc, Ti, V, and Cr, to identify whether this isolated band is likely to exist by means of accurate calculations. For this task, we use the SIESTA program, an ab initio periodic density-functional method, fully self consistent in the local-density approximation. Norm-conserving, nonlocal pseudopotentials and confined linear combination of atomic orbitals have been used. We have carried out a case study of GanAsmTi and GanPmTi energy-band structure including analyses of the effect of the basis set, fine k-point mesh to ensure numerical convergence, structural parameters, and generalized gradient approximation for exchange and correlation corrections. We find the isolated intermediate band when one Ti atom replaces the position of one As (or P) atom in the crystal structure. For this kind of compound we show that the intermediate band relative position inside the band gap and width are sensitive to the dynamic relaxation of the crystal and the size of the basis set.
Zhao, Shen; Li, Yuanyuan; Liu, Deyu; ...
2017-08-07
In this paper we describe a multimodal exploration of the atomic structure and chemical state of silica-supported palladium nanocluster catalysts during the hydrogenation of ethylene in operando conditions that variously transform the metallic phases between hydride and carbide speciations. The work exploits a microreactor that allows combined multiprobe investigations by high-resolution transmission electron microscopy (HR-TEM), X-ray absorption fine structure (XAFS), and microbeam IR (μ-IR) analyses on the catalyst under operando conditions. The work specifically explores the reaction processes that mediate the interconversion of hydride and carbide phases of the Pd clusters in consequence to changes made in the composition ofmore » the gas-phase reactant feeds, their stability against coarsening, the reversibility of structural/compositional transformations, and the role that oligomeric/waxy byproducts (here forming under hydrogen-limited reactant compositions) might play in modifying activity. The results provide new insights into structural features of the chemistry/mechanisms of Pd catalysis during the selective hydrogenation of acetylene in ethylene—a process simplified here in the use of binary ethylene/hydrogen mixtures. Finally, these explorations, performed in operando conditions, provide new understandings of structure–activity relationships for Pd catalysis in regimes that actively transmute important attributes of electronic and atomic structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shen; Li, Yuanyuan; Liu, Deyu
In this paper we describe a multimodal exploration of the atomic structure and chemical state of silica-supported palladium nanocluster catalysts during the hydrogenation of ethylene in operando conditions that variously transform the metallic phases between hydride and carbide speciations. The work exploits a microreactor that allows combined multiprobe investigations by high-resolution transmission electron microscopy (HR-TEM), X-ray absorption fine structure (XAFS), and microbeam IR (μ-IR) analyses on the catalyst under operando conditions. The work specifically explores the reaction processes that mediate the interconversion of hydride and carbide phases of the Pd clusters in consequence to changes made in the composition ofmore » the gas-phase reactant feeds, their stability against coarsening, the reversibility of structural/compositional transformations, and the role that oligomeric/waxy byproducts (here forming under hydrogen-limited reactant compositions) might play in modifying activity. The results provide new insights into structural features of the chemistry/mechanisms of Pd catalysis during the selective hydrogenation of acetylene in ethylene—a process simplified here in the use of binary ethylene/hydrogen mixtures. Finally, these explorations, performed in operando conditions, provide new understandings of structure–activity relationships for Pd catalysis in regimes that actively transmute important attributes of electronic and atomic structures.« less
2012-01-01
Background Mollusc shells are commonly investigated using high-resolution imaging techniques based on cryo-fixation. Less detailed information is available regarding the light-optical properties. Sea shells of Haliotis pulcherina were embedded for polishing in defined orientations in order to investigate the interface between prismatic calcite and nacreous aragonite by standard materialographic methods. A polished thin section of the interface was prepared with a defined thickness of 60 μm for quantitative birefringence analysis using polarized light and LC-PolScope microscopy. Scanning electron microscopy images were obtained for comparison. In order to study structural-mechanical relationships, nanoindentation experiments were performed. Results Incident light microscopy revealed a super-structure in semi-transparent regions of the polished cross-section under a defined angle. This super-structure is not visible in transmitted birefringence analysis due to the blurred polarization of small nacre platelets and numerous organic interfaces. The relative orientation and homogeneity of calcite prisms was directly identified, some of them with their optical axes exactly normal to the imaging plane. Co-oriented "prism colonies" were identified by polarized light analyses. The nacreous super-structure was also visualized by secondary electron imaging under defined angles. The domains of the super-structure were interpreted to consist of crystallographically aligned platelet stacks. Nanoindentation experiments showed that mechanical properties changed with the same periodicity as the domain size. Conclusions In this study, we have demonstrated that insights into the growth mechanisms of nacre can be obtained by conventional light-optical methods. For example, we observed super-structures formed by co-oriented nacre platelets as previously identified using X-ray Photo-electron Emission Microscopy (X-PEEM) [Gilbert et al., Journal of the American Chemical Society 2008, 130:17519–17527]. Polarized optical microscopy revealed unprecedented super-structures in the calcitic shell part. This bears, in principle, the potential for in vivo studies, which might be useful for investigating the growth modes of nacre and other shell types. PMID:22967319
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Honglin; Tang, Zheng; Zhu, Ziqiang
2016-07-14
The production of H{sub 2} through water splitting to make the reaction process economical and friendly has attracted a lot attention. In this work, we synthesized the novel well-defined nanostructured WS{sub 2}/MoS{sub 2} composite for using as the electrocatalyst of hydrogen evolution. The final obtained nanoslice/nanopetal nanostructured WS{sub 2}/MoS{sub 2} composite possessed massive active sites that originated from its well-defined hierarchical structure with densely stacked MoS{sub 2} nanopetals. The synthesized composite exhibited significantly enhanced hydrogen evolution reaction (HER) activity and clearly superior to the pristine MoS{sub 2}/WS{sub 2}. With the purpose to give a theoretical explanation of the corresponding enhancementmore » mechanism, the first-principles investigation based on the density functional theory was further employed to survey the electronic properties of different structures. Charge density difference and Bader charge analyses revealed that electrons could directional transfer from WS{sub 2} to MoS{sub 2} and provided an “electron-rich” environment, which was beneficial to the improvement of HER efficiency. These analytical methods will necessarily offer new angles to explain the enhancement mechanism of HER processes regarding the interaction between WS{sub 2} and MoS{sub 2}, which can accurately elucidate the reason why composite structure exhibits a better HER performance based on the experimental results.« less
Tsai, Chi-Lin; Tainer, John A
2018-01-01
[Fe-S] clusters are essential cofactors in all domains of life. They play many biological roles due to their unique abilities for electron transfer and conformational control. Yet, producing and analyzing Fe-S proteins can be difficult and even misleading if not done anaerobically. Due to unique redox properties of [Fe-S] clusters and their oxygen sensitivity, they pose multiple challenges and can lose enzymatic activity or cause their component proteins to be structurally disordered due to [Fe-S] cluster oxidation and loss in air. Here we highlight tested protocols and strategies enabling efficient and stable [Fe-S] protein production, purification, crystallization, X-ray diffraction data collection, and structure determination. From multiple high-resolution anaerobic crystal structures, we furthermore analyze exemplary data defining [Fe-S] clusters, substrate entry, and product exit for the functional oxidation states of type II molybdo-bis(molybdopterin guanine dinucleotide) (Mo-bisMGD) enzymes. Notably, these enzymes perform electron shuttling between quinone pools and specific substrates to catalyze respiratory metabolism. The identified structure-activity relationships for this enzyme class have broad implications germane to perchlorate environments on Earth and Mars extending to an alternative mechanism underlying metabolic origins for the evolution of the oxygen atmosphere. Integrated structural analyses of type II Mo-bisMGD enzymes unveil novel distinctive shared molecular mechanisms for dynamic control of substrate entry and product release gated by hydrophobic residues. Collective findings support a prototypic model for type II Mo-bisMGD enzymes including insights for a fundamental molecular mechanistic understanding of selectivity and regulation by a conformationally gated channel with general implications for [Fe-S] cluster respiratory enzymes. © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Hao; Lee, H. S.; Sarahan, M. C.
Grain boundaries (GBs) in complex oxides such as perovskites have been shown to readily accommodate nonstoichiometry changing the electrostatic potential at the boundary plane and effectively controlling material properties such as capacitance, magnetoresistance and superconductivity. Understanding and quantifying exactly how variations in atomic scale nonstoichiometry at the boundary plane extend to the practical mesoscale operating length of the system is therefore critical for improving the overall properties. Bicrystals of SrTiO 3 were fabricated to provide the model GB model structures that are analysed in this paper. We show that statistical analysis of aberration-corrected scanning transmission electron microscope images acquired frommore » a large area of GB is an effective routine to understanding the variation in boundary structure that occurs to accommodate nonstoichiometry. In the case of the SrTiO 3 22.6° Σ13 (510)/[100] GB analysed here, the symmetric atomic structures observed from a micron-long GB can be categorized as two different competing structural arrangements, with and without a rigid-body translation along the boundary plane. How this quantified experimental approach can provide direct insights into the GB energetics is further confirmed from the first principles density functional theory, and the effect of nonstoichiometry in determining the GB energies is quantified.« less
Analysis of variability in additive manufactured open cell porous structures.
Evans, Sam; Jones, Eric; Fox, Pete; Sutcliffe, Chris
2017-06-01
In this article, a novel method of analysing build consistency of additively manufactured open cell porous structures is presented. Conventionally, methods such as micro computed tomography or scanning electron microscopy imaging have been applied to the measurement of geometric properties of porous material; however, high costs and low speeds make them unsuitable for analysing high volumes of components. Recent advances in the image-based analysis of open cell structures have opened up the possibility of qualifying variation in manufacturing of porous material. Here, a photogrammetric method of measurement, employing image analysis to extract values for geometric properties, is used to investigate the variation between identically designed porous samples measuring changes in material thickness and pore size, both intra- and inter-build. Following the measurement of 125 samples, intra-build material thickness showed variation of ±12%, and pore size ±4% of the mean measured values across five builds. Inter-build material thickness and pore size showed mean ranges higher than those of intra-build, ±16% and ±6% of the mean material thickness and pore size, respectively. Acquired measurements created baseline variation values and demonstrated techniques suitable for tracking build deviation and inspecting additively manufactured porous structures to indicate unwanted process fluctuations.
Direct observation of multiple rotational stacking faults coexisting in freestanding bilayer MoS2.
Li, Zuocheng; Yan, Xingxu; Tang, Zhenkun; Huo, Ziyang; Li, Guoliang; Jiao, Liying; Liu, Li-Min; Zhang, Miao; Luo, Jun; Zhu, Jing
2017-08-16
Electronic properties of two-dimensional (2D) MoS 2 semiconductors can be modulated by introducing specific defects. One important type of defect in 2D layered materials is known as rotational stacking fault (RSF), but the coexistence of multiple RSFs with different rotational angles was not directly observed in freestanding 2D MoS 2 before. In this report, we demonstrate the coexistence of three RSFs with three different rotational angles in a freestanding bilayer MoS 2 sheet as directly observed using an aberration-corrected transmission electron microscope (TEM). Our analyses show that these RSFs originate from cracks and dislocations within the bilayer MoS 2 . First-principles calculations indicate that RSFs with different rotational angles change the electronic structures of bilayer MoS 2 and produce two new symmetries in their bandgaps and offset crystal momentums. Therefore, employing RSFs and their coexistence is a promising route in defect engineering of MoS 2 to fabricate suitable devices for electronics, optoelectronics, and energy conversion.
Baba, Takashi; Campbell, J. Larry; Le Blanc, J. C. Yves; Baker, Paul R. S.; Hager, James W.; Thomson, Bruce A.
2017-01-01
Collision-induced dissociation (CID) is the most common tool for molecular analysis in mass spectrometry to date. However, there are difficulties associated with many applications because CID does not provide sufficient information to permit details of the molecular structures to be elucidated, including post-translational-modifications in proteomics, as well as isomer differentiation in metabolomics and lipidomics. To face these challenges, we are developing fast electron-based dissociation devices using a novel radio-frequency ion trap (i.e., a branched ion trap). These devices have the ability to perform electron capture dissociation (ECD) on multiply protonated peptide/proteins; in addition, the electron impact excitation of ions from organics (EIEIO) can be also performed on singly charged molecules using such a device. In this article, we review the development of this technology, in particular on how reaction speed for EIEIO analyses on singly charged ions can be improved. We also overview some unique, recently reported applications in both lipidomics and glycoproteomics. PMID:28630811
Baba, Takashi; Campbell, J Larry; Le Blanc, J C Yves; Baker, Paul R S; Hager, James W; Thomson, Bruce A
2017-01-01
Collision-induced dissociation (CID) is the most common tool for molecular analysis in mass spectrometry to date. However, there are difficulties associated with many applications because CID does not provide sufficient information to permit details of the molecular structures to be elucidated, including post-translational-modifications in proteomics, as well as isomer differentiation in metabolomics and lipidomics. To face these challenges, we are developing fast electron-based dissociation devices using a novel radio-frequency ion trap ( i.e. , a branched ion trap). These devices have the ability to perform electron capture dissociation (ECD) on multiply protonated peptide/proteins; in addition, the electron impact excitation of ions from organics (EIEIO) can be also performed on singly charged molecules using such a device. In this article, we review the development of this technology, in particular on how reaction speed for EIEIO analyses on singly charged ions can be improved. We also overview some unique, recently reported applications in both lipidomics and glycoproteomics.
1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag
Islam, Shahidul; Haque, Asadul; Bui, Ha Hong
2016-01-01
Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS) cured up to 365 days. The void ratio-logarithm of pressure (e-logσ′) behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis. PMID:28773415
1-D Compression Behaviour of Acid Sulphate Soils Treated with Alkali-Activated Slag.
Islam, Shahidul; Haque, Asadul; Bui, Ha Hong
2016-04-15
Improvements of soft soils by mechanically mixing cementitious additives have been widely practised for construction of infrastructure. Mixing of additives improves strength and compressibility properties of soils through the development of soil structure. This study investigates the 1-D compression behaviour of alkali-activated slag treated acid sulphate soils (ASS) cured up to 365 days. The void ratio-logarithm of pressure (e-logσ') behaviour of treated ASS, including the destructuration behaviour, with additive contents and curing time have been analysed. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses have been undertaken to explain the observed variations of the 1-D compression behaviour. This paper presents the results of these analyses in view of obtaining an insight into the 1-D compression behaviour of treated ASS with the help of mineralogical analysis.
Ghasemlou, Mehran; Khodaiyan, Faramarz; Oromiehie, Abdulrasoul
2011-11-01
The rheological properties of kefiran film-forming solutions, as well as the structural characterisation of the resulting films, were investigated as a function of various plasticizer types. The behaviours of the storage (G') and loss (G″) moduli as a function of frequency were typical of gel-like material, with the G' higher than the G″. Kefiran-based films, which may find application as edible films, were prepared by a casting and solvent-evaporation method. Possible interaction between the adjacent chains in the kefiran polymer and various plasticizers was proven by Fourier-transform infrared spectroscopy (FT-IR). The crystallinity of plasticized kefiran film was also analysed using X-ray diffraction (XRD); this revealed an amorphous-crystalline structure. These results were explained by the film's microstructure, which was analysed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The present study has helped determine possible interactions of kefiran, plasticizer and water molecules in determining film properties. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Averill, Robert D.
1992-01-01
The conceptual design and structural analysis for the Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Instrument are provided. SAFIRE, which is an international effort, is proposed for the Earth Observing Systems (EOS) program for atmospheric ozone studies. A concept was developed which meets mission requirements and is the product of numerous parametric studies and design/analysis iterations. Stiffness, thermal stability, and weight constraints led to a graphite/epoxy composite design for the optical bench and supporting struts. The structural configuration was determined by considering various mounting arrangements of the optical, cryo, and electronic components. Quasi-static, thermal, modal, and dynamic response analyses were performed, and the results are presented for the selected configuration.
Ortega, Joaquín; Martín-Benito, Jaime; Zürcher, Thomas; Valpuesta, José M.; Carrascosa, José L.; Ortín, Juan
2000-01-01
Influenza virus ribonucleoproteins (RNPs) were reconstituted in vivo from cloned cDNAs expressing the three polymerase subunits, the nucleoprotein (NP), and short template RNAs. The structure of purified RNPs was studied by electron microscopy and image processing. Circular and elliptic structures were obtained in which the NP and the polymerase complex could be defined. Comparison of the structure of RNPs of various lengths indicated that each NP monomer interacts with approximately 24 nucleotides. The analysis of the amplification of RNPs with different lengths showed that those with the highest replication efficiency contained an even number of NP monomers, suggesting that the NP is incorporated as dimers into newly synthesized RNPs. PMID:10590102
The Scottish Structural Proteomics Facility: targets, methods and outputs
Oke, Muse; Carter, Lester G.; Johnson, Kenneth A.; Liu, Huanting; McMahon, Stephen A.; Yan, Xuan; Kerou, Melina; Weikart, Nadine D.; Kadi, Nadia; Sheikh, Md. Arif; Schmelz, Stefan; Dorward, Mark; Zawadzki, Michal; Cozens, Christopher; Falconer, Helen; Powers, Helen; Overton, Ian M.; van Niekerk, C. A. Johannes; Peng, Xu; Patel, Prakash; Garrett, Roger A.; Prangishvili, David; Botting, Catherine H.; Coote, Peter J.; Dryden, David T. F.; Barton, Geoffrey J.; Schwarz-Linek, Ulrich; Challis, Gregory L.; Taylor, Garry L.; White, Malcolm F.
2010-01-01
The Scottish Structural Proteomics Facility was funded to develop a laboratory scale approach to high throughput structure determination. The effort was successful in that over 40 structures were determined. These structures and the methods harnessed to obtain them are reported here. This report reflects on the value of automation but also on the continued requirement for a high degree of scientific and technical expertise. The efficiency of the process poses challenges to the current paradigm of structural analysis and publication. In the 5 year period we published ten peer-reviewed papers reporting structural data arising from the pipeline. Nevertheless, the number of structures solved exceeded our ability to analyse and publish each new finding. By reporting the experimental details and depositing the structures we hope to maximize the impact of the project by allowing others to follow up the relevant biology. Electronic supplementary material The online version of this article (doi:10.1007/s10969-010-9090-y) contains supplementary material, which is available to authorized users. PMID:20419351
Transmission Electron Microscopy of Magnetite Plaquettes in Orgueil
NASA Technical Reports Server (NTRS)
Chan, Q. H. S.; Han, J.; Zolensky, M.
2016-01-01
Magnetite sometimes takes the form of a plaquette - barrel-shaped stack of magnetite disks - in carbonaceous chondrites (CC) that show evidence of aqueous alteration. The asymmetric nature of the plaquettes caused Pizzarello and Groy to propose magnetite plaquettes as a naturally asymmetric mineral that can indroduce symmetry-breaking in organic molecules. Our previous synchrotron X-ray computed microtomography (SXRCT) and electron backscatter diffraction (EBSD) analyses of the magnetite plaquettes in fifteen CCs indicate that magnetite plaquettes are composed of nearly parallel discs, and the crystallographic orientations of the discs change around a rotational axis normal to the discs surfaces. In order to further investigate the nanostructures of magnetite plaquettes, we made two focused ion beam (FIB) sections of nine magnetite plaquettes from a thin section of CI Orgueil for transmission electron microscope (TEM) analysis. The X-ray spectrum imaging shows that the magnetite discs are purely iron oxide Fe3O4 (42.9 at% Fe and 57.1 at% O), which suggest that the plaquettes are of aqueous origin as it is difficult to form pure magnetite as a nebular condensate. The selected area electron diffraction (SAED) patterns acquired across the plaquettes show that the magnetite discs are single crystals. SEM and EBSD analyses suggest that the planar surfaces of the magnetite discs belong to the {100} planes of the cubic inverse spinel structure, which are supported by our TEM observations. Kerridge et al. suggested that the epitaxial relationship between magnetite plaquette and carbonate determines the magnetite face. However, according to our TEM observation, the association of magnetite with porous networks of phyllosilicate indicates that the epitaxial relationship with carbonate is not essential to the formation of magnetite plaquettes. It was difficult to determine the preferred rotational orientation of the plaquettes due to the symmetry of the cubic structure, however, we are able to observe small but consistent rotational orientation across several discs within a plaquette.
Cosmidis, J; Benzerara, K; Gheerbrant, E; Estève, I; Bouya, B; Amaghzaz, M
2013-03-01
Micrometer-sized spherical and rod-shaped forms have been reported in many phosphorites and often interpreted as microbes fossilized by apatite, based on their morphologic resemblance with modern bacteria inferred by scanning electron microscopy (SEM) observations. This interpretation supports models involving bacteria in the formation of phosphorites. Here, we studied a phosphatic coprolite of Paleocene age originating from the Ouled Abdoun phosphate basin (Morocco) down to the nanometer-scale using focused ion beam milling, transmission electron microscopy (TEM), and scanning transmission x-ray microscopy (STXM) coupled with x-ray absorption near-edge structure spectroscopy (XANES). The coprolite, exclusively composed of francolite (a carbonate-fluroapatite), is formed by the accumulation of spherical objects, delimited by a thin envelope, and whose apparent diameters are between 0.5 and 3 μm. The envelope of the spheres is composed of a continuous crown dense to electrons, which measures 20-40 nm in thickness. It is surrounded by two thinner layers that are more porous and transparent to electrons and enriched in organic carbon. The observed spherical objects are very similar with bacteria encrusting in hydroxyapatite as observed in laboratory experiments. We suggest that they are Gram-negative bacteria fossilized by francolite, the precipitation of which started within the periplasm of the cells. We discuss the role of bacteria in the fossilization mechanism and propose that they could have played an active role in the formation of francolite. This study shows that ancient phosphorites can contain fossil biological subcellular structures as fine as a bacterial periplasm. Moreover, we demonstrate that while morphological information provided by SEM analyses is valuable, the use of additional nanoscale analyses is a powerful approach to help inferring the biogenicity of biomorphs found in phosphorites. A more systematic use of this approach could considerably improve our knowledge and understanding of the microfossils present in the geological record. © 2012 Blackwell Publishing Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
liu, feng
This theoretical project has been carried out in close interaction with the experimental project at UW-Madison under the same title led by PI Max Lagally and co-PI Mark Eriksson. Extensive computational studies have been performed to address a broad range of topics from atomic structure, stability, mechanical property, to electronic structure, optoelectronic and transport properties of various nanoarchitectures in the context of Si and other solid nanomembranes. These have been done by using combinations of different theoretical and computational approaches, ranging from first-principles calculations and molecular dynamics (MD) simulations to finite-element (FE) analyses and continuum modeling.
NASA Technical Reports Server (NTRS)
1976-01-01
The feasibility of using porous composite materials (Kevlar, Doweave, and Leno Weave) as lightweight, efficient laminar flow control (LFC) surface materials is compared to the metallic 319L stainless Dynapore surfaces and electron beam drilled composite surfaces. Areas investigated include: (1) selection of the LFC-suitable surface materials, structural materials, and fabrication techniques for the LFC aircraft skins; (2) aerodynamic static air flow test results in terms of pressure drop through the LFC panel and the corresponding effective porosity; (3) structural design definition and analyses of the panels, and (4) contamination effects on static drop and effective porosity. Conclusions are presented and discussed.
Shi, Bitao; Bourne, Jennifer; Harris, Kristen M
2011-03-01
Serial section electron microscopy (ssEM) is rapidly expanding as a primary tool to investigate synaptic circuitry and plasticity. The ultrastructural images collected through ssEM are content rich and their comprehensive analysis is beyond the capacity of an individual laboratory. Hence, sharing ultrastructural data is becoming crucial to visualize, analyze, and discover the structural basis of synaptic circuitry and function in the brain. We devised a web-based management system called SynapticDB (http://synapses.clm.utexas.edu/synapticdb/) that catalogues, extracts, analyzes, and shares experimental data from ssEM. The management strategy involves a library with check-in, checkout and experimental tracking mechanisms. We developed a series of spreadsheet templates (MS Excel, Open Office spreadsheet, etc) that guide users in methods of data collection, structural identification, and quantitative analysis through ssEM. SynapticDB provides flexible access to complete templates, or to individual columns with instructional headers that can be selected to create user-defined templates. New templates can also be generated and uploaded. Research progress is tracked via experimental note management and dynamic PDF forms that allow new investigators to follow standard protocols and experienced researchers to expand the range of data collected and shared. The combined use of templates and tracking notes ensures that the supporting experimental information is populated into the database and associated with the appropriate ssEM images and analyses. We anticipate that SynapticDB will serve future meta-analyses towards new discoveries about the composition and circuitry of neurons and glia, and new understanding about structural plasticity during development, behavior, learning, memory, and neuropathology.
Romier, Christophe; James, Nicole; Birck, Catherine; Cavarelli, Jean; Vivarès, Christian; Collart, Martine A; Moras, Dino
2007-05-18
General transcription factor TFIID plays an essential role in transcription initiation by RNA polymerase II at numerous promoters. However, understanding of the assembly and a full structural characterization of this large 15 subunit complex is lacking. TFIID subunit TAF(II)5 has been shown to be present twice in this complex and to be critical for the function and assembly of TFIID. Especially, the TAF(II)5 N-terminal domain is required for its incorporation within TFIID and immuno-labelling experiments carried out by electron microscopy at low resolution have suggested that this domain might homodimerize, possibly explaining the three-lobed architecture of TFIID. However, the resolution at which the electron microscopy (EM) analyses were conducted is not sufficient to determine whether homodimerization occurs or whether a more intricate assembly implying other subunits is required. Here we report the X-ray structures of the fully evolutionary conserved C-terminal sub-domain of the TAF(II)5 N terminus, from yeast and the mammalian parasite Encephalitozoon cuniculi. This sub-domain displays a novel fold with specific surfaces having conserved physico-chemical properties that can form protein-protein interactions. Although a crystallographic dimer implying one of these surfaces is present in one of the crystal forms, several biochemical analyses show that this sub-domain is monomeric in solution, even at various salt conditions and in presence of different divalent cations. Consequently, the N-terminal sub-domain of the TAF(II)5 N terminus, which is homologous to a dimerization motif but has not been fully conserved during evolution, was studied by analytical ultracentrifugation and yeast genetics. Our results show that this sub-domain dimerizes at very high concentration but is neither required for yeast viability, nor for incorporation of two TAF(II)5 molecules within TFIID and for the assembly of this complex. Altogether, although our results do not argue in favour of a homodimerization of the TAF(II)5 N-terminal domain, our structural analyses suggest a role for this domain in assembly of TFIID and its related complexes SAGA, STAGA, TFTC and PCAF.
Yoo, Changho
2017-01-01
The degree of CO2 activation can be tuned by incorporating a distinct electronic coordination environment at the nickel center. A mononuclear nickel carboxylate species (Ni–CO2, 3) and a dinuclear nickel–iron carboxylate species (Ni–CO2–Fe, 5) were prepared. The structure of 3 reveals a rare η1-κC binding mode of CO2, while that of 5 shows bridging CO2 binding (μ2-κC:κ2 O,O′) between the nickel and iron, presented as the first example of a nickel-μ-CO2-iron species. The structural analyses of 3 and 5 based on XRD and DFT data reveal a higher degree of CO2 activation in 5, imparted by the additional interaction with an iron ion. PMID:28616135
Chloroplast evolution, structure and functions
Jensen, Poul Erik
2014-01-01
In this review, we consider a selection of recent advances in chloroplast biology. These include new findings concerning chloroplast evolution, such as the identification of Chlamydiae as a third partner in primary endosymbiosis, a second instance of primary endosymbiosis represented by the chromatophores found in amoebae of the genus Paulinella, and a new explanation for the longevity of captured chloroplasts (kleptoplasts) in sacoglossan sea slugs. The controversy surrounding the three-dimensional structure of grana, its recent resolution by tomographic analyses, and the role of the CURVATURE THYLAKOID1 (CURT1) proteins in supporting grana formation are also discussed. We also present an updated inventory of photosynthetic proteins and the factors involved in the assembly of thylakoid multiprotein complexes, and evaluate findings that reveal that cyclic electron flow involves NADPH dehydrogenase (NDH)- and PGRL1/PGR5-dependent pathways, both of which receive electrons from ferredoxin. Other topics covered in this review include new protein components of nucleoids, an updated inventory of the chloroplast proteome, new enzymes in chlorophyll biosynthesis and new candidate messengers in retrograde signaling. Finally, we discuss the first successful synthetic biology approaches that resulted in chloroplasts in which electrons from the photosynthetic light reactions are fed to enzymes derived from secondary metabolism. PMID:24991417
Machado, Camila Maria Longo; Zorzeto, Tatiane Queiroz; Bianco, Juares E Romero; Rosa, Renata Giardini; Genari, Selma Candelaria; Joazeiro, Paulo Pinto; Verinaud, Liana
2009-04-01
On the basis of transmission electron microscopy observations in tumor cell lines, oncologists have made innumerous diagnostic and therapeutical progresses. Following this path, the UNICAMP immunopathologies laboratory established the NG97 cell line derived from a human astrocytoma grade III, which when injected to the athymic nude mouse flank developed a grade IV astrocytoma. In this study, we focused on ultrastructural characterization of the NG97 cells after being recovered from xenotransplant (NG97ht). These cells in culture were assayed by two different electron microscopy procedures to characterize ultrastructures related to grade IV astrocytomas and to observe their structures through cell subcultivation. Additionally, comparative morphological descriptions of different cell passages in these technical procedures could be a useful tool for improving electron microscopy cell lineage protocols. Results from many cell passage observations showed ultrastructural similarities, which suggest malignant and glioblastoma phenotypes. In the first procedure, NG97ht cells were harvested and then incorporated into agarose before subjecting them to electron microscopy protocols, whereas in the second one, monolayer cells grew first on cover slides. Comparison among protocols revealed that organelles, cytoplasmatic extensions, spatial conformation of filopodia, and cell attachment to substrate were more preserved in the second procedure. Furthermore, in this latter procedure, a unique ellipsoidal structure was observed, which was already described when dealing with gliosarcoma cell line elsewhere. Therefore, these analyses demonstrated a morphological characterization of a new NG97ht cell line using electron transmission microscopy. Moreover, it has been shown that the second procedure provides more detailed information compared with the first.
Serrano-Aroca, Ángel; Deb, Sanjukta
2017-01-01
Micrometer length tubes of graphene oxide (GO) with irregular form were synthesised following facile and green metal complexation reactions. These materials were obtained by crosslinking of GO with calcium, zinc or strontium chlorides at three different temperatures (24, 34 and 55°C) using distilled water as solvent for the compounds and following a remarkably simple and low-cost synthetic method, which employs no hazardous substances and is conducted without consumption of thermal or sonic energy. These irregular continuous GO networks showed a very particular interconnected structure by Field Emission Scanning Electron Microscopy with Energy-Disperse X-Ray Spectroscopy for elemental analysis and High-resolution Transmission Electron Microscopy with Scanning Transmission Electron Microscope Dark Field Imaging, and were analysed by Raman Spectroscopy. To demonstrate the potential use of these 3D GO networks as reinforcement materials for biomedical applications, two composites of calcium alginate with irregular tubes of GO and with single GO nanosheets were prepared with the same amount of GO and divalent atoms and analysed. Thus, the dynamic-mechanical modulus of the composites synthesised with the 3D crosslinked GO networks showed a very significant mechanical improvement due to marked microstructural changes confirmed by confocal microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy.
NASA Astrophysics Data System (ADS)
Handley, Kim M.; Turner, Sue J.; Campbell, Kathleen A.; Mountain, Bruce W.
2008-08-01
Exopolymeric substances (EPS) are an integral component of microbial biofilms; however, few studies have addressed their silicification and preservation in hot-spring deposits. Through comparative analyses with the use of a range of microscopy techniques, we identified abundant EPS significant to the textural development of spicular, microstromatolitic, siliceous sinter at Champagne Pool, Waiotapu, New Zealand. Examination of biofilms coating sinter surfaces by confocal laser scanning microscopy (CLSM), environmental scanning electron microscopy (ESEM), cryo-scanning electron microscopy (cryo-SEM), and transmission electron microscopy (TEM) revealed contraction of the gelatinous EPS matrix into films (approximately 10 nm thick) or fibrillar structures, which is common in conventional SEM analyses and analogous to products of naturally occurring desiccation. Silicification of fibrillar EPS contributed to the formation of filamentous sinter. Matrix surfaces or dehydrated films templated sinter laminae (nanometers to microns thick) that, in places, preserved fenestral voids beneath. Laminae of similar thickness are, in general, common to spicular geyserites. This is the first report to demonstrate EPS templation of siliceous stromatolite laminae. Considering the ubiquity of biofilms on surfaces in hot-spring environments, EPS silicification studies are likely to be important to a better understanding of the origins of laminae in other modern and ancient stromatolitic sinters, and EPS potentially may serve as biosignatures in extraterrestrial rocks.
Deb, Sanjukta
2017-01-01
Micrometer length tubes of graphene oxide (GO) with irregular form were synthesised following facile and green metal complexation reactions. These materials were obtained by crosslinking of GO with calcium, zinc or strontium chlorides at three different temperatures (24, 34 and 55°C) using distilled water as solvent for the compounds and following a remarkably simple and low-cost synthetic method, which employs no hazardous substances and is conducted without consumption of thermal or sonic energy. These irregular continuous GO networks showed a very particular interconnected structure by Field Emission Scanning Electron Microscopy with Energy-Disperse X-Ray Spectroscopy for elemental analysis and High-resolution Transmission Electron Microscopy with Scanning Transmission Electron Microscope Dark Field Imaging, and were analysed by Raman Spectroscopy. To demonstrate the potential use of these 3D GO networks as reinforcement materials for biomedical applications, two composites of calcium alginate with irregular tubes of GO and with single GO nanosheets were prepared with the same amount of GO and divalent atoms and analysed. Thus, the dynamic-mechanical modulus of the composites synthesised with the 3D crosslinked GO networks showed a very significant mechanical improvement due to marked microstructural changes confirmed by confocal microscopy, differential scanning calorimetry and Fourier transform infrared spectroscopy. PMID:28934354
A Density Functional Theory Study of New Boron Nanotubes
NASA Astrophysics Data System (ADS)
Chen, Zhao-Hua; Xie, Zun
2017-11-01
Using first-principles calculations, a series of new boron nanotubes (BNTs), which show various electronic properties, were theoretically predicted. Stable nanotubes with various chiral vectors and diameters can be formed by rolling up the boron sheet with relative stability [H. Tang and S. I. Beigi, Phys. Rev. B 82, 115412 (2010).]. By increasing the diameter for BNT, the stability is enhanced. The calculated density of states and band structures demonstrate that all the predicted BNTs are metallic, regardless of their diameter and chirality. The multicentre chemical bonds of the relatively stable boron sheet and BNTs are analysed using the deformation electron density. Within our study, the BNTs all have metallic conductive characteristics, in addition to having a low effective quality and high carrier concentration, which are very good nanoconductive material properties and could be combined to form high-power electrodes for lithium-ion batteries such as those used in many modern electronics.
Salehi, Samie; Saljooghi, Amir Shokooh; Izadyar, Mohammad
2016-10-01
Elemental iron is essential for cellular growth and homeostasis but it is potentially toxic to the cells and tissues. Excess iron can contribute in tumor initiation and tumor growth. Obviously, in iron overload issues using an iron chelator in order to reduce iron concentration seems to be vital. This study presents the density functional theory calculations of the electronic structure and equilibrium constant for iron-deferasirox (Fe-DFX) complexes in the gas phase, water and DMSO. A comprehensive study was performed to investigate the Deferasirox-iron complexes in chelation therapy. Calculation was performed in CAMB3LYP/6-31G(d,p) to get the optimized structures for iron complexes in high and low spin states. Natural bond orbital and quantum theory of atoms in molecules analyses was carried out with B3LYP/6-311G(d,p) to understand the nature of complex bond character and electronic transition in complexes. Electrostatic potential effects on the complexes were evaluated using the CHelpG calculations. The results indicated that higher affinity for Fe(III) is not strictly a function of bond length but also the degree of Fe-X (X=O,N) covalent bonding. Based on the quantum reactivity parameters which have been investigated here, it is possible reasonable design of the new chelators to improve the chelator abilities. Copyright © 2016 Elsevier Ltd. All rights reserved.
On diamond, graphitic and amorphous carbons in primitive extraterrestrial solar system materials
NASA Technical Reports Server (NTRS)
Rietmeijer, Frans J. M.
1990-01-01
Carbon is among the most abundant elements in the universe and carbon chemistry in meteorites and comets is an important key to understanding many Solar System and interstellar processes. Yet, the mineralogical properties and interrelations between various structural forms of elemental carbon remain ambiguous. Crystalline elemental carbons include rhombohedral graphite, hexagonal graphite, cubic diamond, hexagonal diamond (i.e., lonsdaleite or carbon-2H) and chaoite. Elemental carbon also occurs as amorphous carbon and poorly graphitized (or turbostratic) carbon but of all the forms of elemental carbon only graphite is stable under physical conditions that prevail in small Solar System bodies and in the interstellar medium. The recent discovery of cubic diamond in carbonaceous chondrites and hexagonal diamond in chondritic interplanetary dust particles (IDPs) have created a renewed interest in the crystalline elemental carbons that were not formed by shock processes on a parent body. Another technique, Raman spectroscopy, confirms a widespread occurrence of disordered graphite in the Allende carbonaceous chondrite and in chondritic IDPs. Elemental carbons have also been identified by their characteristic K-edge features in electron energy loss spectra (EELS). However, the spectroscopic data do not necessarily coincide with those obtained by selected area electron diffraction (SAED). In order to interpret these data in terms of rational crystalline structures, it may be useful to consider the principles underlying electron diffraction and spectroscopic analyses. Electron diffraction depends on electron scattering, on the type of atom and the distance between atoms in a crystal lattice. Spectroscopic data are a function of the type of atom and the energy of bonds between atoms. Also, SAED is a bulk sampling technique when compared to techniques such as Raman spectroscopy or EELS. Thus, it appears that combined analyses provide contradictory results and that amorphous, or short-range ordered, carbon identified by conventional TEM imaging and SAED may show evidence for sp(3) bonds in EELS spectra. It is suggested that complex, nanometer-scale, mineralogical interrelations are common to all elemental carbons irrespective of their origin. The subsequent thermal history, or energy balance, will determine the ultimate microstructure.
Kern, P; Müller, Y; Patscheider, J; Michler, J
2006-11-30
Electrolytically deposited amorphous TiO2 films on steel are remarkably sensitive to electron beam (e-beam) irradiation at moderate energies at 20 keV, resulting in controlled local oxide reduction and crystallization, opening the possibility for local topographical, chemical, and structural modifications within a biocompatible, amorphous, and semiconducting matrix. The sensitivity is shown to vary significantly with the annealing temperature of as-deposited films. Well-defined irradiation conditions in terms of probe current IP (5 microA) and beam size were achieved with an electron probe microanalyzer. As shown by atomic force and optical microscopy, micro-Raman spectroscopy, wavelength-dispersive X-ray (WDX), and Auger analyses, e-beam exposure below 1 Acm-2 immediately leads to electron-stimulated oxygen desorption, resulting in a well-defined volume loss primarily limited to the irradiated zone under the electron probe and in a blue color shift in this zone because of the presence of Ti2O3. Irradiation at 5 Acm(-2) (IP = 5 microA) results in local crystallization into anatase phase within 1 s of exposure and in reduction to TiO after an extended exposure of 60 s. Further reduction to the metallic state could be observed after 60 s of exposure at approximately 160 Acm(-2). The local reduction could be qualitatively sensed with WDX analysis and Auger line scans. An estimation of the film temperature in the beam center indicates that crystallization occurs at less than 150 degrees C, well below the atmospheric crystallization temperature of the present films. The high e-beam sensitivity in combination with the well-defined volume loss from oxygen desorption allows for precise electron lithographic topographical patterning of the present oxides. Irradiation effects leading to the observed reduction and crystallization phenomena under moderate electron energies are discussed.
STRUCTURAL ANALYSIS OF THE COMBUSTION SYNTHESIZED Y3+ DOPED CERIA (Ce0.9Y0.1O1.95)
NASA Astrophysics Data System (ADS)
Jeyanthi, C. Esther; Siddheswaran, R.; Kumar, Pushpendra; Mangalaraja, R. V.; Siva Shankar, V.; Rajarajan, K.
2013-07-01
Y3+ doped CeO2 nanopowders (Ce0.9Y0.1O1.95, abbreviated as YDC) were synthesized by citrate-nitrate-auto combustion process using cerium nitrate hexahydrate, yttrium nitrate hexahydrate and citric acid. The as-synthesized powders were calcined at 700°C and converted into dense bodies followed by sintering at 1200°C. The microstructure of the synthesized powders and sintered bodies were examined by scanning electron microscopy (SEM). The surface morphology of the nanoparticles and clusters were also analysed by transmission electron microscopy (TEM). The particles size of the YDC was found to be in the range from 10 to 30 nm, which is in good agreement with the crystallite size calculated from X-ray peak broadening method. Also, the X-ray diffraction confirmed that the Ce0.9Y0.1O1.95 crystallizes as the cubic fluorite structure of pure ceria. The optical absorption by functional molecules, impurities and oxygen vacancies were analysed by FTIR and Raman spectroscopic studies. From the FTIR spectrum, the absorption peak found at 530 cm-1 is attributed to the vibrations of metal-oxygen bonds. The characteristic Raman peak was found to be 468 cm-1, and the minute absorption of oxygen vacancies were observed in the region 500-640 cm-1.
Lime-pozzolana mortars in Roman catacombs: composition, structures and restoration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez-Moral, Sergio; Luque, Luis; Canaveras, Juan-Carlos
Analyses of microsamples collected from Roman catacombs and samples of lime-pozzolana mortars hardened in the laboratory display higher contents in carbonated binder than other subaerial Roman monuments. The measured environmental data inside the Saint Callistus and Domitilla catacombs show a constant temperature of 15-17 deg C, a high CO{sub 2} content (1700 to 3500 ppm) and a relative humidity close to 100%. These conditions and particularly the high CO{sub 2} concentration speed-up the lime calcitization roughly by 500% and reduce the cationic diffusion to form hydrous calcium aluminosilicates. The structure of Roman catacomb mortars shows (i) coarser aggregates and thickermore » beds on the inside, (ii) thin, smoothed, light and fine-grained external surfaces with low content of aggregates and (iii) paintings and frescoes on the outside. The observed high porosity of the mortars can be attributed to cracking after drying linked with the high binder content. Hardened lime lumps inside the binder denote low water/mortar ratios for slaking. The aggregate tephra pyroclasts rich in aluminosilicate phases with accessorial amounts of Ba, Sr, Rb, Cu and Pb were analysed through X-ray diffraction (XRD), electron microprobe analysis (EMPA) and also by environmental scanning electron microscopy (ESEM) to identify the size and distribution of porosity. Results support procedures using local materials, special mortars and classic techniques for restoration purposes in hypogeal backgrounds.« less
Graham, M Elise; Gratzer, Paul F; Bezuhly, Michael; Hong, Paul
2016-10-01
Reconstruction of cartilage defects in the head and neck can require harvesting of autologous cartilage grafts, which can be associated with donor site morbidity. To overcome this limitation, tissue-engineering approaches may be used to generate cartilage grafts. The objective of this study was to decellularize and characterize human nasoseptal cartilage with the aim of generating a biological scaffold for cartilage tissue engineering. Laboratory study using nasoseptal cartilage. Remnant human nasoseptal cartilage specimens were collected and subjected to a novel decellularization treatment. The decellularization process involved several cycles of enzymatic detergent treatments. For characterization, decellularized and fresh (control) specimens underwent histological, biochemical, and mechanical analyses. Scanning electron microscopy and biocompatibility assay were also performed. The decellularization process had minimal effect on glycosaminoglycan content of the cartilage extracellular matrix. Deoxyribonucleic acid (DNA) analysis revealed the near-complete removal of genomic DNA from decellularized tissues. The effectiveness of the decellularization process was also confirmed on histological and scanning electron microscopic analyses. Mechanical testing results showed that the structural integrity of the decellularized tissue was maintained, and biocompatibility was confirmed. Overall, the current decellularization treatment resulted in significant reduction of genetic/cellular material with preservation of the underlying extracellular matrix structure. This decellularized material may serve as a potential scaffold for cartilage tissue engineering. N/A. Laryngoscope, 126:2226-2231, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Development of core-shell coaxially electrospun composite PCL/chitosan scaffolds.
Surucu, Seda; Turkoglu Sasmazel, Hilal
2016-11-01
This study was related to combining of synthetic Poly (ε-caprolactone) (PCL) and natural chitosan polymers to develop three dimensional (3D) PCL/chitosan core-shell scaffolds for tissue engineering applications. The scaffolds were fabricated with coaxial electrospinning technique and the characterizations of the samples were done by thickness and contact angle (CA) measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-Ray Photoelectron Spectroscopy (XPS) analyses, mechanical and PBS absorption and shrinkage tests. The average inter-fiber diameter values were calculated for PCL (0.717±0.001μm), chitosan (0.660±0.007μm) and PCL/chitosan core-shell scaffolds (0.412±0.003μm), also the average inter-fiber pore size values exhibited decreases of 66.91% and 61.90% for the PCL and chitosan scaffolds respectively, compared to PCL/chitosan core-shell ones. XPS analysis of the PCL/chitosan core-shell structures exhibited the characteristic peaks of PCL and chitosan polymers. The cell culture studies (MTT assay, Confocal Laser Scanning Microscope (CLSM) and SEM analyses) carried out with L929 ATCC CCL-1 mouse fibroblast cell line proved that the biocompatibility performance of the scaffolds. The obtained results showed that the created micro/nano fibrous structure of the PCL/chitosan core-shell scaffolds in this study increased the cell viability and proliferation on/within scaffolds. Copyright © 2016 Elsevier B.V. All rights reserved.
Structural characterization of the P1+ intermediate state of the P-cluster of nitrogenase.
Keable, Stephen M; Zadvornyy, Oleg A; Johnson, Lewis E; Ginovska, Bojana; Rasmussen, Andrew J; Danyal, Karamatullah; Eilers, Brian J; Prussia, Gregory A; LeVan, Axl X; Raugei, Simone; Seefeldt, Lance C; Peters, John W
2018-05-02
Nitrogenase is the enzyme that reduces atmospheric dinitrogen (N 2 ) to ammonia (NH 3 ) in biological systems. It catalyzes a series of single-electron transfers from the donor iron protein (Fe protein) to the molybdenum-iron protein (MoFe protein) that contains the iron-molybdenum cofactor (FeMo-co) sites where N 2 is reduced to NH 3 The [8Fe-7S] P-cluster in the MoFe protein functions in nitrogenase catalysis as an intermediate electron carrier between the external electron donor, the Fe protein, and the FeMo-co sites of the MoFe protein. Previous work has revealed that the P-cluster undergoes redox dependent structural changes and that the transition from the all-ferrous resting (P N ) state to the two electron oxidized P 2+ state is accompanied by protein serince hydroxyl and backbone amide ligation to Fe. In this work, the MoFe protein was poised at defined potentials with redox mediators in an electrochemical cell, and the three distinct structural states of the P-cluster (P 2+ , P 1+ , and P N ) were characterized by X-ray crystallography and confirmed by computational analysis. These analyses revealed that the three oxidation states differ in coordination implicating that the P 1+ state retains the serine hydroxyl coordination but lacks the backbone amide coordination observed in the P 2+ states. These results provide a complete picture of the redox-dependent ligand rearrangements of the three P-cluster redox states. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Halim, Shimaa Abdel; Ibrahim, Magdy A.
2017-02-01
New derivative of heteroannulated chromone identified as 5-methyl-8H-benzo[h]chromeno[2,3-b][1,6]naphthyridine-6(5H),8-dione (5, MBCND) was easily and efficiently synthesized from DBU catalyzed condensation reaction of 2-aminochromone-3-carboxaldehyde (1) with 4-hydroxy-1-methylquinolin-2(1H)-one (2). The same product 5 was isolated from condensation reaction of aldeyde 1 with 3-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-3-oxopropanoic acid (3) or ethyl 4-(4-hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-2,4-dioxobutanoate (4). Structure of compound (5, MBCND) was deduced based on their elemental analyses and spectral data (IR, 1H NMR and mass spectra). Density Functional Theory (DFT) calculations at the B3LYP/6-311G (d,p) level of theory have been carried out to investigate the equilibrium geometry of the novel compound (5, MBCND). Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, the dipole moment, theoretical study of the electronic structure, nonlinear optical properties (NLO), and natural bonding orbital (NBO) analysis and orientation have been performed and discussed. Also the electronic absorption spectra were measured in polar (methanol) as well as non polar (dioxane) solvents and the assignment of the observed bands has been discussed by TD-DFT calculations. The correspondences between calculated and experimental transitions energies are satisfactory.
NASA Astrophysics Data System (ADS)
Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian
2015-04-01
Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O40/- clusters. The measured PES spectra of B4O4- exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4- (2A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4- (2B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O40/- clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O40/- clusters. This work is the first experimental study on a molecular system with an o-bond.
NASA Astrophysics Data System (ADS)
Marchetti, Barbara; Karsili, Tolga N. V.; Cipriani, Maicol; Hansen, Christopher S.; Ashfold, Michael N. R.
2017-07-01
The near ultraviolet spectroscopy and photodissociation dynamics of two families of asymmetrically substituted thiophenols (2- and 3-YPhSH, with Y = F and Me) have been investigated experimentally (by H (Rydberg) atom photofragment translational spectroscopy) and by ab initio electronic structure calculations. Photoexcitation in all cases populates the 11ππ* and/or 11πσ* excited states and results in S-H bond fission. Analyses of the experimentally obtained total kinetic energy release (TKER) spectra yield the respective parent S-H bond strengths, estimates of ΔE(A ˜ -X ˜ ), the energy splitting between the ground (X ˜ ) and first excited (A ˜ ) states of the resulting 2-(3-)YPhS radicals, and reveal a clear propensity for excitation of the C-S in-plane bending vibration in the radical products. The companion theory highlights roles for both geometric (e.g., steric effects and intramolecular H-bonding) and electronic (i.e., π (resonance) and σ (inductive)) effects in determining the respective parent minimum energy geometries, and the observed substituent and position-dependent trends in S-H bond strength and ΔE(A ˜ -X ˜ ). 2-FPhSH shows some clear spectroscopic and photophysical differences. Intramolecular H-bonding ensures that most 2-FPhSH molecules exist as the syn rotamer, for which the electronic structure calculations return a substantial barrier to tunnelling from the photoexcited 11ππ* state to the 11πσ* continuum. The 11ππ* ← S0 excitation spectrum of syn-2-FPhSH thus exhibits resolved vibronic structure, enabling photolysis studies with a greater parent state selectivity. Structure apparent in the TKER spectrum of the H + 2-FPhS products formed when exciting at the 11ππ* ← S0 origin is interpreted by assuming unintended photoexcitation of an overlapping resonance associated with syn-2-FPhSH(v33 = 1) molecules. The present data offer tantalising hints that such out-of-plane motion influences non-adiabatic coupling in the vicinity of a conical intersection (between the 11πσ* and ground state potentials at extended S-H bond lengths) and thus the electronic branching in the eventual radical products.
Luquet, Gilles; Salomé, Murielle; Ziegler, Andreas; Paris, Céline; Percot, Aline; Dauphin, Yannicke
2016-11-01
During premolt, crayfish develop deposits of calcium ions, called gastroliths, in their stomach wall. The stored calcium is used for the calcification of parts of the skeleton regularly renewed for allowing growth. Structural and molecular analyses of gastroliths have been primarily performed on three crayfish species, Orconectes virilis, Procambarus clarkii, and more recently, Cherax quadricarinatus. We have performed high-resolution analyses of gastroliths from the native noble crayfish, Astacus astacus, focusing on the microstructure, the mineralogical and elemental composition and distribution in a comparative perspective. Field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) observations showed a classical layered microstructure composed of 200-nm diameter granules aligned along fibers. These granules are themselves composed of agglomerated nanogranules of 50nm-mean diameters. Denser regions of bigger fused granules are also present. Micro-Raman spectroscopy show that if A. astacus gastroliths, similarly to the other analyzed gastroliths, are mainly composed of amorphous calcium carbonate (ACC), they are also rich in amorphous calcium phosphate (ACP). The presence of a carotenoid pigment is also observed in A. astacus gastrolith contrary to C. quadricarinatus. Energy-dispersive X-ray spectroscopy (EDX) analyses demonstrate the presence of minor elements such as Mg, Sr, Si and P. The distribution of this last element is particularly heterogeneous. X-ray absorption near edge structure spectroscopy (XANES) reveals an alternation of layers more or less rich in phosphorus evidenced in the mineral phase as well as in the organic matrix in different molecular forms. Putative functions of the different P-comprising molecules are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.
Martian dunite NWA 2737: Integrated spectroscopic analyses of brown olivine
NASA Astrophysics Data System (ADS)
Pieters, Carle M.; Klima, Rachel L.; Hiroi, Takahiro; Dyar, M. Darby; Lane, Melissa D.; Treiman, Allan H.; Noble, Sarah K.; Sunshine, Jessica M.; Bishop, Janice L.
2008-06-01
A second Martian meteorite has been identified that is composed primarily of heavily shocked dunite, Northwest Africa (NWA) 2737. This meteorite has several similarities to the Chassigny dunite cumulate, but the olivine is more Mg rich and, most notably, is very dark and visually brown. Carefully coordinated analyses of NWA 2737 whole-rock and olivine separates were undertaken using visible and near-infrared reflectance, midinfrared emission and reflectance, and Mössbauer spectroscopic studies of the same samples along with detailed petrography, chemistry, scanning electron microscopy, and transmission electron microscopy analyses. Midinfrared spectra of this sample indicate that the olivine is fully crystalline and that its molecular structure remains intact. The unusual color and spectral properties that extend from the visible through the near-infrared part of the spectrum are shown to be due to nanophase metallic iron particles dispersed throughout the olivine during a major shock event on Mars. Although a minor amount of Fe3+ is present, it cannot account for the well-documented unusual optical properties of Martian meteorite NWA 2737. Perhaps unique to the Martian environment, this ``brown'' olivine exhibits spectral properties that can potentially be used to remotely explore the pressure-temperature history of surface geology as well as assess surface composition.
NASA Astrophysics Data System (ADS)
Mariani, Elisabetta; Kaercher, Pamela; Mecklenburgh, Julian; Wheeler, John
2016-04-01
Perovskite minerals form an important mineral group that has applications in Earth science and emerging alternative energy technologies, however crystallographic quantification of these minerals with electron backscatter diffraction (EBSD) is not accurate due to pseudosymmetry problems. The silicate perovskite Bridgmanite, (Mg,Fe)SiO3, is understood to be the dominant phase in the Earth's lower mantle. Gaining insight into its physical and rheological properties is therefore vital to understand the dynamics of the Earth's deep interior. Rock deformation experiments on analogue perovskite phases, for example (Ca,Sr)TiO3, combined with quantitative microstructural analyses of the recovered samples by EBSD, yield datasets that can reveal what deformation mechanisms may dominate the flow of perovskite in the lower mantle. Additionally, perovskite structures have important technological applications as new, suitable cathodes for the operation of more efficient and environmentally-friendly solid oxide fuel cells (SOFC). In recent years they have also been recognised as a potential substitute for silicon in the next generation of photovoltaic cells for the construction of economic and energy efficient solar panels. EBSD has the potential to be a valuable tool for the study of crystal orientations achieved in perovskite substrates as crystal alignment has a direct control on the properties of these materials. However, perovskite structures currently present us with challenges during the automated indexing of Kikuchi bands in electron backscatter diffraction patterns (EBSPs). Such challenges are represented by the pseudosymmetric character of perovskites, where atoms are subtly displaced (0.005 nm to 0.05 nm) from their higher symmetry positions. In orthorhombic Pbnm perovskites, for example, pseudosymmetry may be evaluated from the c/a unit cell parameter ratio, which is very close to 1. Two main types of distortions from the higher symmetry structure are recognised: a tilt and a deformation of the anion octahedron. These distortions may occur together. Common misidentifications observed in EBSD data are [100] and [001] seen as equivalent solutions, whereby these dyad symmetry axes are misidentified as tetrad axes of the cubic symmetry. In this study we investigate methods that could be applied to the EBSP automated indexing algorithm to solve the pseudosymmetry problem in perovskite structures. Attention is given to subtle angular deviations between bands and to differences in pseudosymmetric Kikuchi patterns.
A new orthorhombic ground-state phase and mechanical strengths of ternary B2CO compound
NASA Astrophysics Data System (ADS)
Yan, Haiyan; Zhang, Meiguang; Wei, Qun; Zhang, Yun
2018-06-01
A novel orthorhombic oI16 structure, formed by strong covalent sp2-sp3 Bsbnd C and Bsbnd O bonds, was identified as to be the thermodynamic ground-state phase for B2CO compound by using an unbiased structure searching method. The energy of this new oI16 phase is considerably lower than all those of previously proposed candidates, and it is dynamically stable at atmosphere pressure through the phonon calculations. The evidences of the indirect semiconducting and chemical bonding nature are manifested by the electronic structure calculations and AIM analyses. The pronounced elastic anisotropy of oI16 structure has been revealed by the calculated distributions of elastic moduli along different crystal orientations. The calculated stress-strain relations of oI16 structure disclose its common hard nature but with an extended ductility.
Ichikawa, Muneyoshi; Liu, Dinan; Kastritis, Panagiotis L.; Basu, Kaustuv; Hsu, Tzu Chin; Yang, Shunkai; Bui, Khanh Huy
2017-01-01
Cilia are ubiquitous, hair-like appendages found in eukaryotic cells that carry out functions of cell motility and sensory reception. Cilia contain an intriguing cytoskeletal structure, termed the axoneme that consists of nine doublet microtubules radially interlinked and longitudinally organized in multiple specific repeat units. Little is known, however, about how the axoneme allows cilia to be both actively bendable and sturdy or how it is assembled. To answer these questions, we used cryo-electron microscopy to structurally analyse several of the repeating units of the doublet at sub-nanometre resolution. This structural detail enables us to unambiguously assign α- and β-tubulins in the doublet microtubule lattice. Our study demonstrates the existence of an inner sheath composed of different kinds of microtubule inner proteins inside the doublet that likely stabilizes the structure and facilitates the specific building of the B-tubule. PMID:28462916
Manning, Phillip L; Morris, Peter M; McMahon, Adam; Jones, Emrys; Gize, Andy; Macquaker, Joe H S; Wolff, George; Thompson, Anu; Marshall, Jim; Taylor, Kevin G; Lyson, Tyler; Gaskell, Simon; Reamtong, Onrapak; Sellers, William I; van Dongen, Bart E; Buckley, Mike; Wogelius, Roy A
2009-10-07
An extremely well-preserved dinosaur (Cf. Edmontosaurus sp.) found in the Hell Creek Formation (Upper Cretaceous, North Dakota) retains soft-tissue replacement structures and associated organic compounds. Mineral cements precipitated in the skin apparently follow original cell boundaries, partially preserving epidermis microstructure. Infrared and electron microprobe images of ossified tendon clearly show preserved mineral zonation, with silica and trapped carbon dioxide forming thin linings on Haversian canals within apatite. Furthermore, Fourier transform infrared spectroscopy (FTIR) of materials recovered from the skin and terminal ungual phalanx suggests the presence of compounds containing amide groups. Amino acid composition analyses of the mineralized skin envelope clearly differ from the surrounding matrix; however, intact proteins could not be obtained using protein mass spectrometry. The presence of endogenously derived organics from the skin was further demonstrated by pyrolysis gas chromatography mass spectrometry (Py-GCMS), indicating survival and presence of macromolecules that were in part aliphatic (see the electronic supplementary material).
Manning, Phillip L.; Morris, Peter M.; McMahon, Adam; Jones, Emrys; Gize, Andy; Macquaker, Joe H. S.; Wolff, George; Thompson, Anu; Marshall, Jim; Taylor, Kevin G.; Lyson, Tyler; Gaskell, Simon; Reamtong, Onrapak; Sellers, William I.; van Dongen, Bart E.; Buckley, Mike; Wogelius, Roy A.
2009-01-01
An extremely well-preserved dinosaur (Cf. Edmontosaurus sp.) found in the Hell Creek Formation (Upper Cretaceous, North Dakota) retains soft-tissue replacement structures and associated organic compounds. Mineral cements precipitated in the skin apparently follow original cell boundaries, partially preserving epidermis microstructure. Infrared and electron microprobe images of ossified tendon clearly show preserved mineral zonation, with silica and trapped carbon dioxide forming thin linings on Haversian canals within apatite. Furthermore, Fourier transform infrared spectroscopy (FTIR) of materials recovered from the skin and terminal ungual phalanx suggests the presence of compounds containing amide groups. Amino acid composition analyses of the mineralized skin envelope clearly differ from the surrounding matrix; however, intact proteins could not be obtained using protein mass spectrometry. The presence of endogenously derived organics from the skin was further demonstrated by pyrolysis gas chromatography mass spectrometry (Py-GCMS), indicating survival and presence of macromolecules that were in part aliphatic (see the electronic supplementary material). PMID:19570788
High spin state driven magnetism and thermoelectricity in Mn doped topological insulator Bi2Se3
NASA Astrophysics Data System (ADS)
Maurya, V. K.; Dong, C. L.; Chen, C. L.; Asokan, K.; Patnaik, S.
2018-06-01
We report on the synthesis, and structural - magnetic characterizations of Mn doped Bi2Se3 towards achieving a magnetically doped topological insulator. High quality single crystals of MnxBi2-xSe3 (x = 0, 0.03, 0.05, 0.1) are grown and analysed by X-ray diffraction (XRD), Low Energy Electron Diffraction (LEED), Scanning electron microscopy (SEM), and X-ray absorption near-edge structure spectroscopy (XANES). Magnetic properties of these samples under ZFC-FC protocol and isothermal magnetization confirm ferromagnetic correlation above x = 0.03 value. XANES measurements confirm that the dopant Mn is in Mn2+ state. This is further reconfirmed to be in high spin state by fitting magnetic data with Brillouin function for J = 5/2. Both Hall and Seebeck measurements indicate a sign change of charge carriers above x = 0.03 value of Mn doping. We propose Mn doped Bi2Se3 to be a potential candidate for electromagnetic and thermoelectric device applications involving topological surface states.
NASA Astrophysics Data System (ADS)
Bakri, Badis; Driss, Zied; Berri, Saadi; Khenata, Rabah
2017-12-01
In this work, the structural, electronic and optical properties of fluoroperovskite ABF3 (A = K, Na; B = Mg, Zn) were studied using two different approaches: the full-potential linearized augmented plane wave method and the pseudo-potential plane wave scheme in the frame of generalized gradient approximation features such as the lattice constant, bulk modulus and its pressure derivative are reported. The ground state properties of these compounds such as the equilibrium lattice constant and the bulk modulus are in good agreement with the experimental results. The first principles calculations were performed to study the electronic structures of ABF3(A = K, Na; B = Mg, Zn) compounds and the results indicated that these four compounds are indirect band gap insulators. The optical properties are analysed and the source of some peaks in the spectra is discussed. Besides, the dielectric function, refractive index and extinction coefficient for radiation up to 25 eV have also been reported and discussed.
Luminescent properties under X-ray excitation of Ba(1-x)PbxWO4 disordered solid solution
NASA Astrophysics Data System (ADS)
Bakiz, B.; Hallaoui, A.; Taoufyq, A.; Benlhachemi, A.; Guinneton, F.; Villain, S.; Ezahri, M.; Valmalette, J.-C.; Arab, M.; Gavarri, J.-R.
2018-02-01
A series of polycrystalline barium-lead tungstate Ba1-xPbxWO4 with 0 ≤ x ≤ 1 was synthesized using a classical solid-state method with thermal treatment at 1000 °C. These materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Raman (FT-Raman) spectroscopy. X-ray diffraction profile analyses were performed using Rietveld method. These materials crystallized in the scheelite tetragonal structure and behaved as quasi ideal solid solution. Raman spectroscopy confirmed the formation of the solid solution. Structural distortions were evidenced in X-ray diffraction profiles and in vibration Raman spectra. The scanning electron microscopy experiments showed large and rounded irregular grains. Luminescence experiments were performed under X-ray excitation. The luminescence emission profiles have been interpreted in terms of four Gaussian components, with a major contribution of blue emission. The integrated intensity of luminescence reached a maximum value in the composition range x = 0.3-0.6, in relation with distortions of crystal lattice.
NASA Astrophysics Data System (ADS)
Zhang, Su; Song, Peng; Yang, Zhongxi; Wang, Qi
2018-03-01
Mesoporous In2O3 nanoparticles were successfully synthesized via a facile, template free, and low-cost hydrothermal method. Their morphology and structure were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal and thermogravimetry analysis (DSC-TG), and N2 adsorption-desorption analyses. The results reveal that mesoporous In2O3 nanoparticles with a size range of 40-60 nm, possess plenty of pores, and average pore size is about 5 nm. Importantly, the mesoporous structure, large specific surface area, and small size endow the mesoporous In2O3 nanoparticles with highly sensing performance for formaldehyde detection. The response value to 10 ppm HCHO is 20 at an operating temperature of 280 °C, and the response and recovery time are 4 and 8 s, respectively. It is expected that the mesoporous In2O3 nanoparticles with large specific surface area and excellent sensing properties will become a promising functional material in monitoring and detecting formaldehyde.
Synthesis of porous SnO2 nanocubes via selective leaching and enhanced gas-sensing properties
NASA Astrophysics Data System (ADS)
Li, Yining; Wei, Qi; Song, Peng; Wang, Qi
2016-01-01
Porous micro-/nanostructures are of great interest in many current and emerging areas of technology. In this paper, porous SnO2 nanocubes have been successfully fabricated via a selective leaching strategy using CoSn(OH)6 as precursor. The structure and morphology of as-prepared samples were investigated by several techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric and differential scanning calorimeter analysis (TGDSC), transmission electron microscopy (TEM) and N2 adsorptiondesorption analyses. On the basis of those characterizations, the mechanism for the formation of porous SnO2 nanocubes has been proposed. Owing to the well-defined and uniform porous structures, porous SnO2 nanocubes possessing more adsorbent amount of analytic gas and accelerate the transmission speed so as to enhance the gas-sensing properties. Gas sensing investigation showed that the sensor based on porous SnO2 nanocubes exhibited high response, short responserecovery times and good selectivity to ethanol gas.
Two in one: making electron and ion measurements using a single MCP in future top hat instruments.
NASA Astrophysics Data System (ADS)
Bedington, Robert; Saito, Yoshifumi
To allow for the reduced use of spacecraft resources in future missions, we are developing techniques to enable both electrons and ions to be measured in a single top hat instrument. Top hat energy analyser instruments typically analyse charged particles from a few eV to a few tens keV. They consist of an electrostatic, energy-analyser section and a detector. MCPs (micro-channel plates) are the most commonly used detectors, because of their high sensitivity and strong heritage in space instrumentation. To detect the lowest energies of charged particles, a pre-accelerating bias potential is applied to the front surface of the MCP, however this voltage cannot be altered quickly without drastically affecting the detector response. Any instrument that detects both electrons and ions, will therefore typically use two detectors (with fixed voltages)—one for electrons, one for ions, and will often use two separate energy analysers. Significant resource savings are available however if just a single MCP can be used. This can be achieved by having incoming ions (and optionally incoming electrons also) impact a secondary electron emitting material, and thus release secondary electrons to be detected by a positively biased (electron-detecting) MCP. Unlike MCPs, the electrostatic, energy-analyser sections are able to have their voltages cycled extremely rapidly, so that they can be made to sample electrons and then ions in quick succession with minimal design changes required. Two secondary electron conversion methods are being investigated: ultra-thin carbon foils, and dynodes. Using carbon foils in front of the MCPs, incoming ions can be detected by the secondary electrons they release, while incoming electrons pass straight through them. Using dynodes all incoming particles can be converted to secondary electrons before detection. The challenges include finding materials with uniform electron emission responses for the desired energies and particles, managing electric fields and scattered primary electrons. Experiments pertaining to this research will be discussed. These investigations are being pursued as prototype developments for the SCOPE mission for use on the EISA (Electron & Ion Spectrum Analyzer) instrument.
NASA Astrophysics Data System (ADS)
Manikandan, M.; Rajeswarapalanichamy, R.; Iyakutti, K.
2018-03-01
First-principles calculations based on density functional theory was performed to analyse the structural stability of transition metal carbides TMC (TM = Ru, Rh, Pd, Os, Ir, Pt). It is observed that zinc-blende phase is the most stable one for these carbides. Pressure-induced structural phase transition from zinc blende to NiAs phase is predicted at the pressures of 248.5 GPa, 127 GPa and 142 GPa for OsC, IrC and PtC, respectively. The electronic structure reveals that RuC exhibits a semiconducting behaviour with an energy gap of 0.7056 eV. The high bulk modulus values of these carbides indicate that these metal carbides are super hard materials. The high B/G value predicts that the carbides are ductile in their most stable phase.
Detection of environmentally persistent free radicals at a superfund wood treating site.
dela Cruz, Albert Leo N; Gehling, William; Lomnicki, Slawomir; Cook, Robert; Dellinger, Barry
2011-08-01
Environmentally persistent free radicals (EPFRs) have previously been observed in association with combustion-generated particles and airborne PM(2.5) (particulate matter, d < 2.5um). The purpose of this study was to determine if similar radicals were present in soils and sediments at Superfund sites. The site was a former wood treating facility containing pentachlorophenol (PCP) as a major contaminant. Both contaminated and noncontaminated (just outside the contaminated area) soil samples were collected. The samples were subjected to the conventional humic substances (HS) extraction procedure. Electron paramagnetic resonance (EPR) spectroscopy was used to measure the EPFR concentrations and determine their structure for each sample fraction. Analyses revealed a ∼30× higher EPFR concentration in the PCP contaminated soils (20.2 × 10(17) spins/g) than in the noncontaminated soil (0.7 × 10(17) spins/g). Almost 90% of the EPFR signal originated from the minerals/clays/humins fraction. GC-MS analyses revealed ∼6500 ppm of PCP in the contaminated soil samples and none detected in the background samples. Inductively coupled plasma-atomic emission spectrophotometry (ICP-AES) analyses revealed ∼7× higher concentrations of redox-active transition metals, in the contaminated soils than the noncontaminated soil. Vapor phase and liquid phase dosing of the clays/minerals/humins fraction of the soil with PCP resulted in an EPR signal identical to that observed in the contaminated soil, strongly suggesting the observed EPFR is pentachlorophenoxyl radical. Chemisorption and electron transfer from PCP to transition metals and other electron sinks in the soil are proposed to be responsible for EPFR formation.
Optical analysis of high power free electron laser resonators
NASA Astrophysics Data System (ADS)
Knapp, C. E.; Viswanathan, V. K.; Appert, Q. D.; Bender, S. C.; McVey, B. D.
1987-06-01
The first part of this paper briefly describes the optics code used at Los Alamos National Laboratory to do optical analyses of various components of a free electron laser. The body of the paper then discusses the recent results in modeling low frequency gratings and ripple on the surfaces of liquid-cooled mirrors. The ripple is caused by structural/thermal effects in the mirror surface due to heating by optical absorption in high power resonators. Of interest is how much ripple can be permitted before diffractive losses or optical mode distortions become unacceptable. Preliminary work is presented involving classical diffraction problems to support the ripple study. The limitations of the techniques are discussed and the results are compared to experimental results where available.
NASA Astrophysics Data System (ADS)
Grigonis, R.; Derevyanko, Nadezhda A.; Ishchenko, Aleksandr A.; Sirutkaitis, V. A.
2001-11-01
The relaxation times τ of the bleached states of polymethine dyes absorbing light in the 750 — 850-nm are determined by the direct pump — probe method. The effect of the dye structure and the solvent type on the relaxation time is discussed. The role of different intra- and intermolecular interactions in the relaxation of excited electronic states of the dyes is analysed. Polymethine dyes are found (with τ=11 — 75 ps) that are promising for passive mode locking in Cr3+:LiCaAlF6, Cr3+:KZnF3, and Cr3+:LiSrAlF6 crystal lasers.
Micromorphology of trichomes of Thymus malyi (Lamiaceae).
Marin, M; Koko, V; Duletić-Lausević, S; Marin, P D
2008-12-01
Micromorphological, ultrastructural and morphometric investigations of the trichomes of Thymus malyi were carried out using a light microscope, a scanning electron microscope and a transmission electron microscope. Unbranched non-glandular trichomes, peltate and capitate glandular trichomes were described. The leaves of Thymus malyi bear non-glandular and glandular trichomes on both sides. Estimates of the volume density (i.e. their volume fraction per unit volume) of non-glandular trichomes were higher as compared to volume density of peltate and capitate glandular trichomes. Estimates of the number of these trichomes per area on sections showed that the capitate trichomes were the most abundant. Ultrastructural analyses of cell inner structure have shown numerous mitochondria, big nuclei and plastids with lipid globules and starch grains.
Synthesis of noble metal/carbon nanotube composites in supercritical methanol.
Sun, Zhenyu; Fu, Lei; Liu, Zhimin; Han, Buxing; Liu, Yunqi; Du, Jimin
2006-03-01
A simple and efficient route has been employed to deposit noble metal nanoparticles (Pt, Ru, Pt-Ru, Rh, Ru-Sn) onto carbon nanotubes (CNTs) in supercritical methanol solution. In this method, the inorganic metallic salts acted as metal precursors, and methanol as solvent as well as reductant for the precursors. The as-prepared nanocomposites were structurally and morphologically characterized by X-ray diffraction spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy, and X-ray photoelectron spectroscopy analyses. It was demonstrated that the CNTs were decorated by crystalline metal nanoparticles with uniform sizes and a narrow particle size distribution. The size and loading content of the nanoparticles on CNTs could be tuned by manipulating reaction parameters. Furthermore, the formation mechanism of the composites was also discussed.
Park, HaJeung; González, Àlex L; Yildirim, Ilyas; Tran, Tuan; Lohman, Jeremy R; Fang, Pengfei; Guo, Min; Disney, Matthew D
2015-06-23
Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide repeat expansion of r(AUUCU) within intron 9 of the ATXN10 pre-mRNA. The RNA causes disease by a gain-of-function mechanism in which it inactivates proteins involved in RNA biogenesis. Spectroscopic studies showed that r(AUUCU) repeats form a hairpin structure; however, there were no high-resolution structural models prior to this work. Herein, we report the first crystal structure of model r(AUUCU) repeats refined to 2.8 Å and analysis of the structure via molecular dynamics simulations. The r(AUUCU) tracts adopt an overall A-form geometry in which 3 × 3 nucleotide (5')UCU(3')/(3')UCU(5') internal loops are closed by AU pairs. Helical parameters of the refined structure as well as the corresponding electron density map on the crystallographic model reflect dynamic features of the internal loop. The computational analyses captured dynamic motion of the loop closing pairs, which can form single-stranded conformations with relatively low energies. Overall, the results presented here suggest the possibility for r(AUUCU) repeats to form metastable A-from structures, which can rearrange into single-stranded conformations and attract proteins such as heterogeneous nuclear ribonucleoprotein K (hnRNP K). The information presented here may aid in the rational design of therapeutics targeting this RNA.
Park, HaJeung; González, Àlex L.; Yildirim, Ilyas; Tran, Tuan; Lohman, Jeremy R.; Fang, Pengfei; Guo, Min; Disney, Matthew D.
2016-01-01
Spinocerebellar ataxia type 10 (SCA10) is caused by a pentanucleotide repeat expansion of r(AUUCU) within intron 9 of the ATXN10 pre-mRNA. The RNA causes disease by a gain-of-function mechanism in which it inactivates proteins involved in RNA biogenesis. Spectroscopic studies showed that r(AUUCU) repeats form a hairpin structure; however, there were no high-resolution structural models prior to this work. Herein, we report the first crystal structure of model r(AUUCU) repeats refined to 2.8 Å and analysis of the structure via molecular dynamics simulations. The r(AUUCU) tracts adopt an overall A-form geometry in which 3 × 3 nucleotide 5′UCU3′/3′UCU5′ internal loops are closed by AU pairs. Helical parameters of the refined structure as well as the corresponding electron density map on the crystallographic model reflect dynamic features of the internal loop. The computational analyses captured dynamic motion of the loop closing pairs, which can form single-stranded conformations with relatively low energies. Overall, the results presented here suggest the possibility for r(AUUCU) repeats to form metastable A-from structures, which can rearrange into single-stranded conformations and attract proteins such as heterogeneous nuclear ribonucleoprotein K (hnRNP K). The information presented here may aid in the rational design of therapeutics targeting this RNA. PMID:26039897
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Weili; Xu, Shanshan S.; Yan, Bo
Recently the applications of two-dimensional (2D) materials have been broadened by engineering their mechanical, electronic, and optical properties through either lateral or vertical hybridization. Along with this line, we report the successful design and fabrication of a novel triphasic 2D material by vertically stacking lateral 2H-/1T'-molybdenum disulfide (MoS 2) heterostructures on graphene with the assistance of supercritical carbon dioxide. This triphasic structure is experimentally shown to significantly enhance the photocurrent densities for hydrogen evolution reactions. First-principles theoretical analyses reveal that the improved photoresponse should be ascribed to the beneficial band alignments of the triphasic heterostructure. More specifically, electrons can efficientlymore » hop to the 1T'-MoS 2 phase via the highly conductive graphene layer as a result of their strong vertical interfacial electronic coupling. Subsequently, the electrons acquired on the 1T'-MoS 2 phase are exploited to fill the photoholes on the photo-excited 2H-MoS 2 phase through the lateral heterojunction structure, thereby suppressing the recombination process of the photo-induced charge carriers on the 2H-MoS 2 phase. This novel triphasic concept promises to open a new avenue to widen the molecular design of 2D hybrid materials for photonics-based energy conversion applications.« less
Cui, Weili; Xu, Shanshan S.; Yan, Bo; ...
2017-05-11
Recently the applications of two-dimensional (2D) materials have been broadened by engineering their mechanical, electronic, and optical properties through either lateral or vertical hybridization. Along with this line, we report the successful design and fabrication of a novel triphasic 2D material by vertically stacking lateral 2H-/1T'-molybdenum disulfide (MoS 2) heterostructures on graphene with the assistance of supercritical carbon dioxide. This triphasic structure is experimentally shown to significantly enhance the photocurrent densities for hydrogen evolution reactions. First-principles theoretical analyses reveal that the improved photoresponse should be ascribed to the beneficial band alignments of the triphasic heterostructure. More specifically, electrons can efficientlymore » hop to the 1T'-MoS 2 phase via the highly conductive graphene layer as a result of their strong vertical interfacial electronic coupling. Subsequently, the electrons acquired on the 1T'-MoS 2 phase are exploited to fill the photoholes on the photo-excited 2H-MoS 2 phase through the lateral heterojunction structure, thereby suppressing the recombination process of the photo-induced charge carriers on the 2H-MoS 2 phase. This novel triphasic concept promises to open a new avenue to widen the molecular design of 2D hybrid materials for photonics-based energy conversion applications.« less
2014-01-01
A facile synthesis of a styrylpyridinium salt (SbQ)/montmorillonite (MMT) via cationic exchange interactions between styrylpyridinium species (specifically SbQ) and MMT platelets is reported in this work. The SbQ-MMT solutions were irradiated under ultraviolet (UV) light for a specific time to obtain the cross-linked SbQ-MMT materials. Scanning electron microscopy and atomic force microscopy analyses revealed the structures and morphologies of MMT and modified MMT. X-ray diffraction and transmission electron microscope analyses indicated that the basal spacing increased from 1.24 to 1.53 nm compared with the pristine MMT, which proved that SbQ had interacted with MMT. Thermal gravimetric analysis curves showed that the amount of SbQ in the MMT interlayers was 35.71 meq/100 g. Fourier transform infrared spectroscopy also confirmed the intercalation of SbQ species into MMT interlayers, and UV spectroscopy was used to follow up the cross-linking of SbQ-MMT. This novel material has potential applications in drug delivery, and it can also be used as an additive to improve the mechanical properties of polymers. PMID:25170328
The crystallization behavior of amorphous Ge2Sb2Te5 films induced by a multi-pulsed nanosecond laser
NASA Astrophysics Data System (ADS)
Fan, T.; Liu, F. R.; Li, W. Q.; Guo, J. C.; Wang, Y. H.; Sun, N. X.; Liu, F.
2017-09-01
In this paper, accumulated crystallization of amorphous Ge2Sb2Te5 (a-GST) films induced by a multi-pulsed nanosecond (ns) excimer laser was investigated by x-ray diffraction (XRD), atomic force microscopy, field-emission scanning electron microscopy, x-ray photoelectron spectroscopy (XPS) and a spectrophotometer. XRD analyses revealed that detectable crystallization was firstly observed in the preferred orientation (200), followed by the orientations (220) and (111) after two pulses. Optical contrast, determined by crystallinity as well as surface roughness, was found to retain a linear relation within the first three pulses. A layered growth mechanism from the top surface to the interior of a-GST films was used to explain the crystallization behavior induced by the multi-pulse ns laser. XPS analyses for bond rearrangement and electronic structure further suggested that the crystallization process was performed by generating new bonds of Ge-Te and Sb-Te after laser irradiations. This paper presents the potential of multi-level devices and tunable thermal emitters based on controllable crystallization of phase-change materials.
Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime
2016-01-01
Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P42/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres. PMID:26840318
Guillén-Bonilla, Héctor; Flores-Martínez, Martín; Rodríguez-Betancourtt, Verónica-María; Guillen-Bonilla, Alex; Reyes-Gómez, Juan; Gildo-Ortiz, Lorenzo; de la Luz Olvera Amador, María; Santoyo-Salazar, Jaime
2016-01-30
Bystromite (MgSb2O6) nanorods were prepared using a colloidal method in the presence of ethylenediamine, after a calcination step at 800 °C in static air. From X-ray powder diffraction analyses, a trirutile-type structure with lattice parameters a = 4.64 Å and c = 9.25 Å and space group P4₂/mnm was identified. Using scanning electron microscopy (SEM), microrods with sizes from 0.2 to 1.6 μm were observed. Transmission electron microscopy (TEM) analyses revealed that the nanorods had a length of ~86 nm and a diameter ~23.8 nm. The gas-sensing properties of these nanostructures were tested using pellets elaborated with powders of the MgSb2O6 oxide (calcined at 800 °C) at temperatures 23, 150, 200, 250 and 300 °C. The pellets were exposed to different concentrations of carbon monoxide (CO) and propane (C3H8) at these temperatures. The results showed that the MgSb2O6 nanorods possess excellent stability and high sensitivity in these atmospheres.
Yang, Manman; Wang, Zongyuan; Wang, Wei; Liu, Chang-Jun
2014-01-01
Argon glow discharge has been employed as a cheap, environmentally friendly, and convenient electron source for simultaneous reduction of HAuCl4 and PdCl2 on the anodic aluminum oxide (AAO) substrate. The thermal imaging confirms that the synthesis is operated at room temperature. The reduction is conducted with a short time (30 min) under the pressure of approximately 100 Pa. This room-temperature electron reduction operates in a dry way and requires neither hydrogen nor extra heating nor chemical reducing agent. The analyses using X-ray photoelectron spectroscopy (XPS) confirm all the metallic ions have been reduced. The characterization with X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) shows that AuPd alloyed nanoparticles are formed. There also exist some highly dispersed Au and Pd monometallic particles that cannot be detected by XRD and transmission electron microscopy (TEM) because of their small particle sizes. The observed AuPd alloyed nanoparticles are spherical with an average size of 14 nm. No core-shell structure can be observed. The room-temperature electron reduction can be operated in a larger scale. It is an easy way for the synthesis of AuPd alloyed nanoparticles.
Computational research on lithium ion battery materials
NASA Astrophysics Data System (ADS)
Tang, Ping
Crystals of LiFePO4 and related materials have recently received a lot of attention due to their very promising use as cathodes in rechargeable lithium ion batteries. This thesis studied the electronic structures of FePO 4 and LiMPO4, where M=Mn, Fe, Co and Ni within the framework of density-functional theory. The first study compared the electronic structures of the LiMPO 4 and FePO4 materials in their electrochemically active olivine form, using the LAPW (linear augmented plane wave) method [1]. A comparison of results for various spin configurations suggested that the ferromagnetic configuration can serve as a useful approximation for studying general features of these systems. The partial densities of states for the LiMPO4 materials are remarkably similar to each other, showing the transition metal 3d states forming narrow bands above the O 2p band. By contrast, in absence of Li, the majority spin transition metal 3d states are well-hybridized with the O 2p band in FePO4. The second study compared the electronic structures of FePO4 in several crystal structures including an olivine, monoclinic, quartz-like, and CrVO4-like form [2,3]. For this work, in addition to the LAPW method, PAW (Projector Augmented Wave) [4], and PWscf (plane-wave pseudopotential) [5] methods were used. By carefully adjusting the computational parameters, very similar results were achieved for the three independent computational methods. Results for the relative stability of the four crystal structures are reported. In addition, partial densities of state analyses show qualitative information about the crystal field splittings and bond hybridizations and help rationalize the understanding of the electrochemical and stability properties of these materials.
Recent progress in structural biology: lessons from our research history.
Nitta, Ryo; Imasaki, Tsuyoshi; Nitta, Eriko
2018-05-16
The recent 'resolution revolution' in structural analyses of cryo-electron microscopy (cryo-EM) has drastically changed the research strategy for structural biology. In addition to X-ray crystallography and nuclear magnetic resonance spectroscopy, cryo-EM has achieved the structural analysis of biological molecules at near-atomic resolution, resulting in the Nobel Prize in Chemistry 2017. The effect of this revolution has spread within the biology and medical science fields affecting everything from basic research to pharmaceutical development by visualizing atomic structure. As we have used cryo-EM as well as X-ray crystallography since 2000 to elucidate the molecular mechanisms of the fundamental phenomena in the cell, here we review our research history and summarize our findings. In the first half of the review, we describe the structural mechanisms of microtubule-based motility of molecular motor kinesin by using a joint cryo-EM and X-ray crystallography method. In the latter half, we summarize our structural studies on transcriptional regulation by X-ray crystallography of in vitro reconstitution of a multi-protein complex.
Chemical analysis applied to the radiation sterilization of solid ketoprofen
NASA Astrophysics Data System (ADS)
Colak, S.; Maquille, A.; Tilquin, B.
2006-01-01
The aim of this work is to investigate the feasibility of radiation sterilization of ketoprofen from a chemical point of view. Although irradiated ketoprofen has already been studied in the literature [Katusin-Razem et al., Radiat. Phys. Chem. 73 111-116 (2005)], new results, on the basis of electron spin resonance (ESR) measurements and the use of hyphenated techniques (GC-MS and LC-MS), are obtained. The ESR spectra of irradiated ketoprofen consists of four unresolved resonance peaks and the mean G-value of ketoprofen is found to be 4 +/- 0.9 nmoles/J, which is very small. HPLC-UV analyses indicate that no significant loss of ketoprofen is detected after irradiation. LC-MS-MS analyses show that the structures of the non-volatile final products are similar to ketoprofen. Benzaldehyde is detected in the irradiated samples after dynamic-extraction GC-MS. The analyses show that ketoprofen is radioresistant and therefore might be radiosterilized.
NASA Astrophysics Data System (ADS)
Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.; Yang, Haifeng
2015-11-01
Tapentadol is a novel opioid pain reliever drug with a dual mechanism of action, having potency between morphine and tramadol. Quantum chemical calculations have been carried out for tapentadol hydrochloride (TAP.Cl) to determine the properties. The geometry is optimised and the structural properties of the compound were determined from the optimised geometry by B3LYP method using 6-311++G(d,p), 6-31G(d,p) and cc-pVDZ basis sets. FT-IR and FT-Raman spectra are recorded in the solid phase in the region of 4000-400 and 4000-100 cm-1, respectively. Frontier molecular orbital energies, LUMO-HOMO energy gap, ionisation potential, electron affinity, electronegativity, hardness and chemical potential are also calculated. The stability of the molecule arising from hyperconjugative interactions and charge delocalisation has been analysed using NBO analysis. The 1H and 13C nuclear magnetic resonance chemical shifts of the molecule are analysed.
Bruland, Philipp; Doods, Justin; Storck, Michael; Dugas, Martin
2017-01-01
Data dictionaries provide structural meta-information about data definitions in health information technology (HIT) systems. In this regard, reusing healthcare data for secondary purposes offers several advantages (e.g. reduce documentation times or increased data quality). Prerequisites for data reuse are its quality, availability and identical meaning of data. In diverse projects, research data warehouses serve as core components between heterogeneous clinical databases and various research applications. Given the complexity (high number of data elements) and dynamics (regular updates) of electronic health record (EHR) data structures, we propose a clinical metadata warehouse (CMDW) based on a metadata registry standard. Metadata of two large hospitals were automatically inserted into two CMDWs containing 16,230 forms and 310,519 data elements. Automatic updates of metadata are possible as well as semantic annotations. A CMDW allows metadata discovery, data quality assessment and similarity analyses. Common data models for distributed research networks can be established based on similarity analyses.
Yang, Xinhe; Huang, Mingjun; Qin, Caiqin; Lv, Bangyu; Mao, Qingli; Liu, Zhonghua
2017-08-01
The crude tea polysaccharides (CTPS) from Qingzhuan brick tea(QZBT) were extracted and fractionated to afford two fractions, namely TPS-1 and TPS-2. Analyses were conducted concerning the structural characterization and antioxidant activities of these samples. Component analysis revealed that the carbohydrate, uronic acid, protein and polyphenol contents of these samples differed significantly. Fourier transform infrared analysis showed that these samples showed similar characteristic absorption peaks for polysaccharides. Ultraviolet-visible spectroscopy, circular dichroism, scanning electron microscopy and thermogravimetric analyses indicated that there were considerable differences in the presence of protein, surface features, conformational characteristics and thermodynamic behaviors. For antioxidant activities in vitro, CTPS, TPS-1 and TPS-2 exhibited concentration-dependent antioxidant activities, with TPS-2 showing significantly higher antioxidant activity than CTPS and TPS-1. These results provide a scientific and strong foundation for the use of tea polysaccharides(TPS) from QZBT and further research towards the relationships between the characteristics and antioxidant activities of TPS. Copyright © 2017 Elsevier B.V. All rights reserved.
Arjunan, V; Devi, L; Subbalakshmi, R; Rani, T; Mohan, S
2014-09-15
The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO's, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; El-Megharbel, Samy M.; Hussien, M. A.; Hamza, Reham Z.; Al-Omar, Mohamed A.; Naglah, Ahmed M.; Afifi, Walid M.; Kobeasy, Mohamed I.
2017-02-01
New binuclear chromium (III) niacinamide compound with chemical formula [Cr2(Nic)(Cl)6(H2O)4]·H2O was obtained upon the reaction of chromium (III) chloride with niacinamide (Nic) in methanol solvent at 60 °C. The proposed structure was discussed with the help of microanalytical analyses, conductivity, spectroscopic (FT-IR and UV-vis.), magnetic calculations, thermogravimetric analyses (TG/TGA), and morphological studies (X-ray of solid powder and scan electron microscopy. The infrared spectrum of free niacinamide in comparison with its chromium (III) compound indicated that the chelation mode occurs via both nitrogen atoms of pyridine ring and primary -NH2 group. The efficiency of chromium (III) niacinamide compound in decreasing of glucose level of blood and HbA1c in case of diabetic rats was checked. The ameliorating gluconeogenic enzymes, lipid profile and antioxidant defense capacities are considered as an indicator of the efficiency of new chromium (III) compound as antidiabetic drug model.
Cryo-Electron Tomography of Rubella Virus
Battisti, Anthony J.; Yoder, Joshua D.; Plevka, Pavel; Winkler, Dennis C.; Mangala Prasad, Vidya; Kuhn, Richard J.; Frey, Teryl K.; Steven, Alasdair C.
2012-01-01
Rubella virus is the only member of the Rubivirus genus within the Togaviridae family and is the causative agent of the childhood disease known as rubella or German measles. Here, we report the use of cryo-electron tomography to examine the three-dimensional structure of rubella virions and compare their structure to that of Ross River virus, a togavirus belonging the genus Alphavirus. The ectodomains of the rubella virus glycoproteins, E1 and E2, are shown to be organized into extended rows of density, separated by 9 nm on the viral surface. We also show that the rubella virus nucleocapsid structure often forms a roughly spherical shell which lacks high density at its center. While many rubella virions are approximately spherical and have dimensions similar to that of the icosahedral Ross River virus, the present results indicate that rubella exhibits a large degree of pleomorphy. In addition, we used rotation function calculations and other analyses to show that approximately spherical rubella virions lack the icosahedral organization which characterizes Ross River and other alphaviruses. The present results indicate that the assembly mechanism of rubella virus, which has previously been shown to differ from that of the alphavirus assembly pathway, leads to an organization of the rubella virus structural proteins that is different from that of alphaviruses. PMID:22855483
Rodríguez Ortega, P G; Montejo, M; Márquez, F; López González, J J
2015-07-01
A thorough DFT and MM study of the conformational landscape, molecular and electronic structures of (-)-S-anabasine is reported aimed to reveal the mechanism controlling its conformational preference. Although the conformational flexibility and diversity of this system is quite extensive, only two structures are populated both in gas-phase and solution (CCl4 and DMSO). NBO-aided electronic structure analyses performed for the eight conformers representing minima in the potential energy surface of (-)-S-anabasine indicate that both steric and electrostatic factors are determinant in the conformational distribution of the sample in gas phase. Nonetheless, hyperconjugative effects are the key force tipping the balance in the conformational equilibrium between the two main rotamers. Increasing the polarity of the medium (using the IEF-PCM formalism) barely affect the conformational energy profile, although a slight increase in the theoretical population of those structures more affected by electrostatic interactions is predicted. The validity of the theoretical models and calculated conformers populations are endorsed by the accurate reproduction of the IR and VCD spectra (recorded in pure liquid and in CCl4 solution) of the sample (that have been firstly recorded and assigned in the present work) which are consistent with the occurrence of a 2:1 conformational ratio. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Jia-Rui; Wu, Shao-Yi; Hong, Jian; Liu, Shi-Nan; Song, Min-Xian; Teng, Bao-Hua; Wu, Ming-He
2017-11-01
The local structures and electron paramagnetic resonance (EPR) parameters for Cu2+ in 59B2O3-10K2O-(30-x)ZnO-xBaO-1CuO (BKZBC) glasses are theoretically investigated with distinct modifier BaO concentrations x (= 0, 6, 12, 18, 24 and 30 mol %). The ? clusters are found to undergo the relative tetragonal elongations of about 13.5 and 5.0% at zero and higher BaO concentrations. The concentration dependences of the measured d-d transition bands, g factors and A// are suitably reproduced from the Fourier type functions or sign functions of the relevant quantities with x by using only six adjustable parameters. The features of the EPR parameters and the local structures of Cu2+ are analysed in a consistent way by considering the differences in the local ligand field strength and electronic cloud admixtures around Cu2+ under addition of Ba2+ with the highest ionicity and polarisability. The present theoretical studies would be helpful to the researches on the structures, optical and EPR properties for the similar potassium barium zinc borate glasses containing copper with variation concentration of modifier BaO.
Gaudon, M; Apheceixborde, A; Ménétrier, M; Le Nestour, A; Demourgues, A
2009-10-05
Zinc/cobalt aluminates with spinel-type structure were prepared by a polymeric route, leading to a pure phase with controlled grain size. The prepared pigments were characterized by powder X-ray diffraction Rietveld analyses in order to determine structural features, scanning electron microscopy for morphological investigation, helium pycnometry and (27)Al MAS NMR in order to highlight the occurrence of defects inside the structure, and UV-visible-near-IR spectroscopy to identify electronic transitions responsible for the compounds' color. The green-blue coloration of these pigments is known to be dependent on the sample thermal history. Here, for the first time, the Zn(1-x)Co(x)Al(2)O(4) color is newly interpreted. The pigment is green once synthesized at low temperature (i.e., with diminution of the pigment grain size); this variation was attributed to the appearance of a new absorption band located at about 500 nm, linked to a complex network feature involving Co ions in octahedral sites as well as oxygen and cationic vacancies. Hence, this work shows the possibility of easily getting a nonstoichiometric network with an abnormal cationic distribution from "chimie douce" processes with moderate synthesis temperature, and so various colorations for the same composition.
Cryo-electron tomography of rubella virus.
Battisti, Anthony J; Yoder, Joshua D; Plevka, Pavel; Winkler, Dennis C; Prasad, Vidya Mangala; Kuhn, Richard J; Frey, Teryl K; Steven, Alasdair C; Rossmann, Michael G
2012-10-01
Rubella virus is the only member of the Rubivirus genus within the Togaviridae family and is the causative agent of the childhood disease known as rubella or German measles. Here, we report the use of cryo-electron tomography to examine the three-dimensional structure of rubella virions and compare their structure to that of Ross River virus, a togavirus belonging the genus Alphavirus. The ectodomains of the rubella virus glycoproteins, E1 and E2, are shown to be organized into extended rows of density, separated by 9 nm on the viral surface. We also show that the rubella virus nucleocapsid structure often forms a roughly spherical shell which lacks high density at its center. While many rubella virions are approximately spherical and have dimensions similar to that of the icosahedral Ross River virus, the present results indicate that rubella exhibits a large degree of pleomorphy. In addition, we used rotation function calculations and other analyses to show that approximately spherical rubella virions lack the icosahedral organization which characterizes Ross River and other alphaviruses. The present results indicate that the assembly mechanism of rubella virus, which has previously been shown to differ from that of the alphavirus assembly pathway, leads to an organization of the rubella virus structural proteins that is different from that of alphaviruses.
Pérez-Huerta, Alberto; Dauphin, Yannicke
2016-02-01
The structure and composition of the eggshells of two commercial species (guinea fowl and greylag goose) have been studied. Thin sections and scanning electron microcopy show the similarity of the overall structure, but the relative thickness of the layers differs in these two taxa. Atomic force microscopy shows that the different layers are composed of rounded, heterogeneous granules, the diameter of which is between 50 and 100 nm, with a thin cortex. Infrared data and thermogravimetric analyses show that both eggshells are made of calcite, but differing on the quality and quantity when the organic component is considered. Chemical maps show that chemical element distribution is not uniform within a sample, and differs between the species, but with low magnesium content. Electron back scattered diffraction confirms the eggshells are calcite, but the microtexture strongly differs between the two species. Based on the chemical-structural differences, a species-specific biological control on the biomineralization is found, despite the rapid formation of an eggshell. Overall results indicate that to estimate the quality of eggshells, such as resistance to breakage, is not a straightforward process because of the high complexity of avian eggshell biomineralization. Copyright © 2015 Elsevier GmbH. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grygiel, C.; Lebius, H.; Bouffard, S.
2012-01-15
The high energy density of electronic excitations due to the impact of swift heavy ions can induce structural modifications in materials. We present an x-ray diffractometer called ALIX (''Analyse en Ligne sur IRRSUD par diffraction de rayons X''), which has been set up at the low-energy beamline (IRRadiation SUD - IRRSUD) of the Grand Accelerateur National d'Ions Lourds facility, to allow the study of structural modification kinetics as a function of the ion fluence. The x-ray setup has been modified and optimized to enable irradiation by swift heavy ions simultaneously to x-ray pattern recording. We present the capability of ALIXmore » to perform simultaneous irradiation-diffraction by using energy discrimination between x-rays from diffraction and from ion-target interaction. To illustrate its potential, results of sequential or simultaneous irradiation-diffraction are presented in this article to show radiation effects on the structural properties of ceramics. Phase transition kinetics have been studied during xenon ion irradiation of polycrystalline MgO and SrTiO{sub 3}. We have observed that MgO oxide is radiation-resistant to high electronic excitations, contrary to the high sensitivity of SrTiO{sub 3}, which exhibits transition from the crystalline to the amorphous state during irradiation. By interpreting the amorphization kinetics of SrTiO{sub 3}, defect overlapping models are discussed as well as latent track characteristics. Together with a transmission electron microscopy study, we conclude that a single impact model describes the phase transition mechanism.« less
Studies of Al-Ti Alloys by SEM
NASA Astrophysics Data System (ADS)
Yildiz, K.; Atici, Y.; Keşlİ Oǧlu, K.; Yaşar, E.
2007-04-01
Al-Ti (1, 2 wt. %) alloys were investigated by Scanning Electron Microscopy (SEM). SEM observations and energy-dispersive x-ray analyses (EDX) showed that the phase structure of Al-Ti (1 %) alloy at 165 μm/s is composed of Al matrix and C, Ni, Fe and Si particles and the Al-Ti (1 %) alloys at 16 and 8 μm/s have only the Al matrix and C particles. It was also found that the Al-Ti (2 %) form the Al matrix and intermetallic TiAl.
Enhanced saturation of sputtered amorphous SiN film frameworks using He- and Ne-Penning effects
NASA Astrophysics Data System (ADS)
Sugimoto, Iwao; Nakano, Satoko; Kuwano, Hiroki
1994-06-01
Optical emission spectroscopy reveals that helium and neon gases enhance the nitridation reactivity of the nitrogen plasma by Penning effects during magnetron sputtering of the silicon target. These excited nitrogen plasmas promote the saturation of frameworks of the resultant silicon nitride films. X-ray photoelectron spectroscopy, electron spin resonance, and x-ray diffraction analyses provide insight into the structure of these films, and thermal desorption mass spectroscopy reveals the behavior of volatile species in these films.
A first principles study on newly proposed (Ca/Sr/Ba)Fe2Bi2 compounds with their parent compounds
NASA Astrophysics Data System (ADS)
Sundareswari, M.; Jayalakshmi, D. S.; Viswanathan, E.
2016-02-01
The structural, electronic, bonding and magnetic properties of newly proposed iron-based compounds viz., CaFe2Bi2, SrFe2Bi2, BaFe2Bi2 with their Fermi surface topology are reported here for the first time by means of first principles calculation. All these properties of newly proposed compounds are compared and analysed along with their respective parent compounds namely (Ca,Sr,Ba)Fe2As2.
NASA Astrophysics Data System (ADS)
Singh, J. B.; Molénat, G.; Sundararaman, M.; Banerjee, S.; Saada, G.; Veyssière, P.; Couret, A.
2006-01-01
Processes by which deformation spreads throughout a lamellar TiAl alloy have been investigated by in situ tensile experiments performed at room temperature in a transmission electron microscope. Several situations are found and analysed in which dislocations cross the ?/a2 interfaces and the a2 lamellae - the hard phase of the structure. Conditions by which strain transfer can be elastically mediated across sufficiently thin a2 lamellae are discussed.
NASA Astrophysics Data System (ADS)
Nikiforov, V. G.; Lobkov, Vladimir S.
2006-10-01
The parameters of the femtosecond vibration—rotation molecular dynamics of liquid acetonitrile CH3CN, trimethylacetonitrile (CH3)3CCN, propionitrile CH3CH2CN, fluoroform CHF3, and chloroform CHCl3 are found by analysing the ultrafast optical Kerr effect. The influence of the molecular structure on the features of rotational (diffusion and libration) motions is studied. It is shown that the distribution of libration frequencies is described by the Maxwell distribution.
Xiao, Jie; Khan, Munirah; Singh, Archana; Suljoti, Edlira; Spiccia, Leone; Aziz, Emad F
2015-03-01
Changes in the local electronic structure of the Mn 3d orbitals of a Mn catalyst derived from a dinuclear Mn(III) complex during the water oxidation cycle were investigated ex situ by X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) analyses. Detailed information about the Mn 3d orbitals, especially the local HOMO-LUMO gap on Mn sites revealed by RIXS analyses, indicated that the enhancement in catalytic activity (water oxidation) originated from the narrowing of the local HOMO-LUMO gap when electrical voltage and visible light illumination were applied simultaneously to the Mn catalytic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanical design principles of a mitotic spindle
Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François
2014-01-01
An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This ‘pushing’ mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length. DOI: http://dx.doi.org/10.7554/eLife.03398.001 PMID:25521247
S192 multispectral scanner channel 13 electromechanical noise investigation ECP-166
NASA Technical Reports Server (NTRS)
Koumjian, H.
1975-01-01
A review is presented of all data on the multispectral scanner having to do with low frequency noise. The noise is component-induced, either mechanical or electrical or a combination of both. To assist in understanding the source of the noise, several dynamic analyses both structural and electrical were made and are reported. A review is presented of structural resonance test data obtained with the use of an accelerometer and strain gage sensors. Results of an analysis of the natural frequencies of the Dewar leads is included along with an analysis of the S192 cooler and its supporting structure. Other topics discussed include electronic stability of the forward signal, automatic gain control, and the offset control feedback loops as well as the preamplifier which utilized on integrator feedback circuit.
Electron beam diagnostic system using computed tomography and an annular sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmer, John W.; Teruya, Alan T.
2015-08-11
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less
Electron beam diagnostic system using computed tomography and an annular sensor
Elmer, John W.; Teruya, Alan T.
2014-07-29
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
Structural and thermoelectric properties of zintl-phase CaLiPn (Pn=As, Sb, Bi)
NASA Astrophysics Data System (ADS)
Chandran, Anoop K.; Gudelli, Vijay Kumar; Sreeparvathy, P. C.; Kanchana, V.
2016-11-01
First-principles calculations were carried out to study the structural, mechanical, dynamical and transport properties of zintl phase materials CaLiPn (Pn=As, Sb and Bi). We have used two different approaches to solve the system based on density functional theory. The plane wave pseudopotential approach has been used to study the structural and dynamical properties whereas, full potential linear augment plane wave method is used to examine the electronic structure, mechanical and thermoelectric properties. The calculated ground-state properties agree quite well with experimental values. The computed electronic structure shows the investigated compounds to be direct band gap semiconductors. Further, we have calculated the thermoelectric properties of all the investigated compounds for both the carriers at various temperatures. We found a high thermopower for both the carriers, especially n-type doping to be more favourable, which enabled us to predict that CaLiPn might have promising applications as a good thermoelectric material. Further, the phonon dispersion curves of the investigated compounds showed flat phonon modes and we also find lower optical and acoustic modes to cut each other at the lower frequency range, which further indicate the investigated compounds to possess reasonably low thermal conductivity. We have also analysed the low value of the thermal conductivity through the empirical relations and discussions are presented here.
Zhang, Ruixin; Yang, Huaixin; Guo, Cong; Tian, Huanfang; Shi, Honglong; Chen, Genfu; Li, Jianqi
2016-12-19
Microstructural analyses based on aberration-corrected scanning transmission electron microscopy (STEM) observations demonstrate that low-dimensional Cs x Bi 4 Te 6 materials, known to be a novel thermoelectric and superconducting system, contain notable structural channels that go directly along the b axis, which can be partially filled by atom clusters depending on the thermal treatment process. We successfully prepared two series of Cs x Bi 4 Te 6 single-crystalline samples using two different sintering processes. The Cs x Bi 4 Te 6 samples prepared using an air-quenching method show superconductivity at approximately 4 K, while the Cs x Bi 4 Te 6 with the same nominal compositions prepared by slowly cooling are nonsuperconductors. Moreover, atomic structural investigations of typical samples reveal that the structural channels are often empty in superconducting materials; thus, we can represent the superconducting phase as Cs 1-y Bi 4 Te 6 with considering the point defects in the Cs layers. In addition, the channels in the nonsuperconducting crystals are commonly partially occupied by triplet Bi clusters. Moreover, the average structures for these two phases are also different in their monoclinic angles (β), which are estimated to be 102.3° for superconductors and 100.5° for nonsuperconductors.
Questions on unusual Mimivirus-like structures observed in human cells.
Lusi, Elena Angela; Maloney, Dan; Caicci, Federico; Guarascio, Paolo
2017-01-01
Background: Mimiviruses or giant viruses that infect amoebas have the ability to retain the Gram stain, which is usually used to colour bacteria. There is some evidence suggesting that Mimiviruses can also infect human cells. Guided by these premises, we performed a routine Gram stain on a variety of human specimens to see if we could detect the same Gram positive blue granules that identify Mimiviruses in the amoebas. Methods: We analysed 24 different human specimens (liver, brain, kidney, lymph node and ovary) using Gram stain histochemistry, electron microscopy immunogold, high resolution mass spectrometry and protein identification. Results: We detected in the human cells Gram positive granules that were distinct from bacteria. The fine blue granules displayed the same pattern of the Gram positive granules that diagnose Mimiviruses in the cytoplasm of the amoebas. Electron microscopy confirmed the presence of human Mimiviruses-like structures and mass spectrometry identified histone H4 peptides, which had the same footprints as giant viruses. However, some differences were noted: the Mimivirus-like structures identified in the human cells were ubiquitous and manifested a distinct mammalian retroviral antigenicity. Conclusions: Our main hypotheses are that the structures could be either giant viruses having a retroviral antigenicity or ancestral cellular components having a viral origin. However, other possible alternatives have been proposed to explain the nature and function of the newly identified structures.
Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop
2012-07-01
A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emül, Y.; Department of Software Engineering, Cumhuriyet University, 58140 Sivas; Erbahar, D.
2015-08-14
Analyses of the local crystal and electronic structure in the vicinity of Fe{sup 3+} centers in perovskite KMgF{sub 3} crystal have been carried out in a comprehensive manner. A combination of density functional theory (DFT) and a semi-empirical superposition model (SPM) is used for a complete analysis of all Fe{sup 3+} centers in this study for the first time. Some quantitative information has been derived from the DFT calculations on both the electronic structure and the local geometry around Fe{sup 3+} centers. All of the trigonal (K-vacancy case, K-Li substitution case, and normal trigonal Fe{sup 3+} center case), FeF{sub 5}Omore » cluster, and tetragonal (Mg-vacancy and Mg-Li substitution cases) centers have been taken into account based on the previously suggested experimental and theoretical inferences. The collaboration between the experimental data and the results of both DFT and SPM calculations provides us to understand most probable structural model for Fe{sup 3+} centers in KMgF{sub 3}.« less
T he Faint Drifting Decameter Radio Bursts From The Solar Corona
NASA Astrophysics Data System (ADS)
Briand, C.; Zaslavsky, A.; Lecacheux, A.; Zarka, P.; Maksimovic, M.; Mangeney, A.
2007-01-01
The radio observations of solar corona at decameter wavelengths reveal the presence of numerous faint, frequency drifting structures. We analyse observations performed on July 13th , 2002 with the DSP wideband spectrometer instrument implemented at the UTR-2 radiote- lescope. The main characteristics of these structures are statistically studied. Three populations of bursts are iden- tifies. The largest one presents negative frequency drifts of about -0.89 MHz.s-1 and a lifetime extending up to 11 sec (median value 2.72 sec). A second one shows positive frequency drifts of about +0.95 MHz.s-1 and a life- time extending up to 3 sec. The last population consists in structures with very small frequency drifts of about -0.1 MHz.s-1 and a shorter lifetime (about 1 sec). Assuming that those emissions are the signature of elec- tron beams propagating through the solar corona, we deduce that they have a velocity of about 3-5 times the electron thermal velocity. A new mechanism is proposed to explain the formation of plasma waves with such low beam velocity: spatially localized, temporal fluctuations of the electron distribution function width (heating).
NASA Astrophysics Data System (ADS)
Tripathi, Ravishankar Nath; Verma, Aneet Kumar; Rahul, Vishwakarma, S. R.
2011-10-01
Cadmium selenide (CdSe) thin films deposited by means of electron beam evaporation technique under high vacuum ˜10 -5 torr on ultrasonically cleaned glass substrate. Using stating materials of various compositions of cadmium and selenium using formula Cd 1- x Se x where x is orbitory constant having value 0.20≤ x ≤0.40 here we take less value of x for the creation of anion vacancy in thin films. In present work the structural properties have been studies using XRD technique and found that starting materials and thin films both are polycrystalline in nature having hexagonal structure. Here we study the effect of composition ratio Cd/Se in starting material and its prepared thin films on its grain size and lattice parameter. From the analysis of X-Ray diffractogram found that lattice parameter and grain size both are decreases with increasing Cd/Se ratio in thin films as well as in starting material the preferred orientation in thin films along (100) plane. The surface morphology was studied using SEM characterization and found that films are smooth and homogeneous. The films have been analysed for optical band gap and absorbed a direct band gap.
NASA Astrophysics Data System (ADS)
Park, Y.; Eriksson, N.; Newell, R.; Keiser, D. D.; Sohn, Y. H.
2016-11-01
Eutectoid decomposition of γ-phase (cI2) into α-phase (oC4) and γ‧-phase (tI6) during the hot isostatic pressing (HIP) of the U-10 wt% Mo (U10Mo) alloy was investigated using monolithic fuel plate samples consisting of U10Mo fuel alloy, Zr diffusion barrier and AA6061 cladding. The decomposition of the γ-phase was observed because the HIP process is carried out near the eutectoid temperature, 555 °C. Initially, a cellular structure, consisting of γ‧-phase surrounded by α-phase, developed from the destabilization of the γ-phase. The cellular structure further developed into an alternating lamellar structure of α- and γ‧-phases. Using scanning electron microscopy and transmission electron microscopy, qualitative and quantitative microstructural analyses were carried out to identify the phase constituents, and elucidate the microstructural development based on time-temperature-transformation diagram of the U10Mo alloy. The destabilization of γ -phase into α- and γ‧-phases would be minimized when HIP process was carried out with rapid ramping/cooling rate and dwell temperature higher than 560 °C.
Ferro, Yves; Fernandez, Nicolas; Allouche, Alain; Linsmeier, Christian
2013-01-09
We herein investigate the interaction of beryllium with a graphene sheet and in a bilayer of graphite by means of periodic DFT calculations. In all cases, we find the beryllium atoms to be more weakly bonded on graphene than in the bilayer. Be(2) forms both magnetic and non-magnetic structures on graphene depending on the geometrical configuration of adsorption. We find that the stability of the Be/bilayer system increases with the size of the beryllium clusters inserted into the bilayer of graphite. We also find a charge transfer from beryllium to the graphite layers. All these results are analysed in terms of electronic structure.
Properties of nanocrystalline Si layers embedded in structure of solar cell
NASA Astrophysics Data System (ADS)
Jurečka, Stanislav; Imamura, Kentaro; Matsumoto, Taketoshi; Kobayashi, Hikaru
2017-12-01
Suppression of spectral reflectance from the surface of solar cell is necessary for achieving a high energy conversion efficiency. We developed a simple method for forming nanocrystalline layers with ultralow reflectance in a broad range of wavelengths. The method is based on metal assisted etching of the silicon surface. In this work, we prepared Si solar cell structures with embedded nanocrystalline layers. The microstructure of embedded layer depends on the etching conditions. We examined the microstructure of the etched layers by a transmission electron microscope and analysed the experimental images by statistical and Fourier methods. The obtained results provide information on the applied treatment operations and can be used to optimize the solar cell forming procedure.
NASA Astrophysics Data System (ADS)
Badalkhani-Khamseh, Farideh; Bahrami, Aidin; Ebrahim-Habibi, Azadeh; Hadipour, Nasser L.
2017-09-01
This study explains some electronic and structural parameters of niacin (NA) encapsulation into PAMAM-G1 dendrimer using DFT calculations. Optimized structural geometries, interaction energies, NMR, NBO, and AIM analyses, in accordance with experiment, revealed that the stability of G1@NA complex can be attributed to the five intermolecular hydrogen bonds formed between the functional groups of G1 and NA. Because of nearing to the experimental results, all the calculations repeated again using a self-consistent reaction field (SCRF) and the polarizable continuum model (PCM) to address the implicit solvent effects and the obtained results were in line with the calculations in gas phase.
DNA G-Wire Formation Using an Artificial Peptide is Controlled by Protease Activity.
Usui, Kenji; Okada, Arisa; Sakashita, Shungo; Shimooka, Masayuki; Tsuruoka, Takaaki; Nakano, Shu-Ichi; Miyoshi, Daisuke; Mashima, Tsukasa; Katahira, Masato; Hamada, Yoshio
2017-11-16
The development of a switching system for guanine nanowire (G-wire) formation by external signals is important for nanobiotechnological applications. Here, we demonstrate a DNA nanostructural switch (G-wire <--> particles) using a designed peptide and a protease. The peptide consists of a PNA sequence for inducing DNA to form DNA-PNA hybrid G-quadruplex structures, and a protease substrate sequence acting as a switching module that is dependent on the activity of a particular protease. Micro-scale analyses via TEM and AFM showed that G-rich DNA alone forms G-wires in the presence of Ca 2+ , and that the peptide disrupted this formation, resulting in the formation of particles. The addition of the protease and digestion of the peptide regenerated the G-wires. Macro-scale analyses by DLS, zeta potential, CD, and gel filtration were in agreement with the microscopic observations. These results imply that the secondary structure change (DNA G-quadruplex <--> DNA/PNA hybrid structure) induces a change in the well-formed nanostructure (G-wire <--> particles). Our findings demonstrate a control system for forming DNA G-wire structures dependent on protease activity using designed peptides. Such systems hold promise for regulating the formation of nanowire for various applications, including electronic circuits for use in nanobiotechnologies.
NASA Astrophysics Data System (ADS)
Maidur, Shivaraj R.; Jahagirdar, Jitendra R.; Patil, Parutagouda Shankaragouda; Chia, Tze Shyang; Quah, Ching Kheng
2018-01-01
We report synthesis, characterizations, structure-property relationships, and third-order nonlinear optical studies for two new chalcone derivatives, (2E)-1-(anthracen-9-yl)-3-(4-bromophenyl)prop-2-en-1-one (Br-ANC) and (2E)-1-(anthracen-9-yl)-3-(4-chlorophenyl)prop-2-en-1-one (Cl-ANC). These derivatives were crystallized in the centrosymmetric monoclinic P21/c crystal structure. The intermolecular interactions of both the crystals were visualized by Hirshfeld surface analyses (HSA). The crystals are thermally stable up to their melting points (180.82 and 191.16 °C for Cl-ANC and Br-ANC, respectively). The geometry optimizations, FT-IR spectra, 1H and 13C NMR spectra, electronic absorption spectra, electronic transitions, and HOMO-LUMO energy gaps were studied by Density Functional Theory (DFT) at B3LYP/6-311+G(d, p) level. The theoretical results provide excellent agreement with experimental findings. The electric dipole moments, static polarizabilities, molecular electrostatic potentials (MEP) and global chemical reactivity descriptors (GCRD) were also theoretically computed. The materials exhibited good nonlinear absorption (NLA), nonlinear refraction (NLR) and optical limiting (OL) behavior under diode-pumped solid-state (DPSS) continuous wave (CW) laser excitation (532 nm and 200 mW). The NLO parameters such as NLA coefficient (β∼10-5 cmW-1), NLR index (n2∼10-10 cm2 W-1) and third-order NLO susceptibilities (χ(3) ∼10-7 esu) were measured. Further, we estimated one-photon and two-photon figures of merit, which satisfy the demands (W > 1 and T < 1) for all-optical switching. Thus, the present chalcone derivatives with anthracene moiety are potential materials for OL and optical switching applications.
Hatami, Mehdi
2018-06-01
Poly(amic acid), the precursor of polyimide (PI), was used for the preparation of PI/CeO 2 nanocomposites (NC)s by ultrasonic assisted technique via insertion of the surface modified CeO 2 nanoparticles (NP)s into PI matrix. In the preparation stages, in the first, the modifications of CeO 2 NPs by using hexadecyltrimethoxysilane (HDTMS) as a binder were targeted using ultrasonic waves. In the second step, newly designed PI structure was formed from the sonochemical imidization process as a molecular hook. In this step two different reactions were occurred. The acetic acid elimination reaction in the main chain of macromolecule, and the acetylation reaction in the side chains of poly(amic acid) were accomplished. By acetylation process the hook structure was created for trapping of the modified nanoparticles. In the final step the preparation of PI NCs were achieved by sonochemical process. The structural and thermal properties of pure PI and PI/CeO 2 NCs were studied by several techniques such as fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and thermal analyses. FT-IR and 1 H NMR spectra confirmed the success in preparation of PI matrix. The FE-SEM, TEM, and AFM analyses showed the uniform distribution of CeO 2 NPs in PI matrix. The XRD patterns of NCs show the presence of crystalline CeO 2 NPs in amorphous PI matrix. The thermal analysis results reveal that, with increases in the content of CeO 2 NPs in PI matrix, the thermally stability factors of samples were improved. Copyright © 2018 Elsevier B.V. All rights reserved.
Ding, Li-Ping; Shao, Peng; Lu, Cheng; Zhang, Fang-Hui; Ding, Lei; Yuan, Tao Li
2016-08-17
The structure and bonding nature of neutral and negatively charged BxAlyH2 (x + y = 7, 8, 9) clusters are investigated with the aid of previously published experimental photoelectron spectra combined with the present density functional theory calculations. The comparison between the experimental photoelectron spectra and theoretical simulated spectra helps to identify the ground state structures. The accuracy of the obtained ground state structures is further verified by calculating their adiabatic electron affinities and vertical detachment energies and comparing them against available experimental data. The results show that the structures of BxAlyH2 transform from three-dimensional to planar structures as the number of boron atoms increases. Moreover, boron atoms tend to bind together forming Bn units. The hydrogen atoms prefer to bind with boron atoms rather than aluminum atoms. The analyses of the molecular orbital on the ground state structures further support the abovementioned results.
Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)
David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R
2014-12-16
Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.
Matsumiya, Y; Murata, N; Tanabe, E; Kubota, K; Kubo, M
2010-06-01
To degrade ether-type polyurethane (ether-PUR), ether-PUR-degrading micro-organism was isolated. Moreover, ether-PUR-degrading mechanisms were analysed using model compounds of ether-PUR. A fungus designated as strain PURDK2, capable of changing the configuration of ether-PUR, has been isolated. This isolated fungus was identified as Alternaria sp. Using a scanning electron microscope, the grid structure of ether-PUR was shown to be melted and disrupted by the fungus. The degradation of ether-PUR by the fungus was analysed, and the ether-PUR was degraded by the fungus by about 27.5%. To analyse the urethane-bond degradation by the fungus, a degraded product of ethylphenylcarbamate was analysed using GC/MS. Aniline and ethanol were detected by degradation with the supernatant, indicating that the fungus secreted urethane-bond-degrading enzyme(s). PURDK2 also degraded urea bonds when diphenylmethane-4,4'-dibutylurea was used as a substrate. The enzyme(s) from PURDK2 degraded urethane and urea bonds to convert the high molecular weight structure of ether-PUR to small molecules; and then the fungus seems to use the small molecules as an energy source. Ether-PUR-degrading fungus, strain PURDK2, was isolated, and the urethane- and urea-bonds-degrading enzymes from strain PURDK2 could contribute to the material recycling of ether-PUR.
Mukherjee, Prabuddha; Lim, Sung Jun; Wrobel, Tomasz P; Bhargava, Rohit; Smith, Andrew M
2016-08-31
Nanocrystals composed of mixed chemical domains have diverse properties that are driving their integration in next-generation electronics, light sources, and biosensors. However, the precise spatial distribution of elements within these particles is difficult to measure and control, yet profoundly impacts their quality and performance. Here we synthesized a unique series of 42 different quantum dot nanocrystals, composed of two chemical domains (CdS:CdSe), arranged in 7 alloy and (core)shell structural classes. Chemometric analyses of far-field Raman spectra accurately classified their internal structures from their vibrational signatures. These classifications provide direct insight into the elemental arrangement of the alloy as well as an independent prediction of fluorescence quantum yield. This nondestructive, rapid approach can be broadly applied to greatly enhance our capacity to measure, predict and monitor multicomponent nanomaterials for precise tuning of their structures and properties.
Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus
Mangala Prasad, Vidya
2017-01-01
Viral infections during pregnancy are a significant cause of infant morbidity and mortality. Of these, rubella virus infection is a well-substantiated example that leads to miscarriages or severe fetal defects. However, structural information about the rubella virus has been lacking due to the pleomorphic nature of the virions. Here we report a helical structure of rubella virions using cryo-electron tomography. Sub-tomogram averaging of the surface spikes established the relative positions of the viral glycoproteins, which differed from the earlier icosahedral models of the virus. Tomographic analyses of in vitro assembled nucleocapsids and virions provide a template for viral assembly. Comparisons of immature and mature virions show large rearrangements in the glycoproteins that may be essential for forming the infectious virions. These results present the first known example of a helical membrane-enveloped virus, while also providing a structural basis for its assembly and maturation pathway. PMID:28575072
Assembly, maturation and three-dimensional helical structure of the teratogenic rubella virus.
Mangala Prasad, Vidya; Klose, Thomas; Rossmann, Michael G
2017-06-01
Viral infections during pregnancy are a significant cause of infant morbidity and mortality. Of these, rubella virus infection is a well-substantiated example that leads to miscarriages or severe fetal defects. However, structural information about the rubella virus has been lacking due to the pleomorphic nature of the virions. Here we report a helical structure of rubella virions using cryo-electron tomography. Sub-tomogram averaging of the surface spikes established the relative positions of the viral glycoproteins, which differed from the earlier icosahedral models of the virus. Tomographic analyses of in vitro assembled nucleocapsids and virions provide a template for viral assembly. Comparisons of immature and mature virions show large rearrangements in the glycoproteins that may be essential for forming the infectious virions. These results present the first known example of a helical membrane-enveloped virus, while also providing a structural basis for its assembly and maturation pathway.
Zhao, Dan; Cheng, Wen-Dan; Zhang, Hao; Hang, Shu-Ping; Fang, Ming
2008-07-28
The structural, optical, and electronic properties of two rare-earth molybdenum borate compounds, LnMoBO(6) (Ln = La, Ce), have been investigated by means of single-crystal X-ray diffraction, elemental analyses, and spectral measurements, as well as calculations of energy band structures, density of states, and optical response functions by the density functional method. The title compounds, which crystallize in monoclinic space group P2(1)/c, possess a similar network of interconnected [Ce(2)(MoO(4))(2)](2+) chains and [BO(2)](-) wavy chains. Novel 1D molybdenum oxide chains are contained in their three-dimensional (3D) networks. The calculated results of crystal energy band structure by the density functional theory (DFT) method show that the solid-state compound LaMoBO(6) is a semiconductor with indirect band gaps.
Anatomy of a Visible Light Activated Photocatalyst for Water Splitting
Phivilay, Somphonh Peter; Roberts, Charles; Gamalski, Andrew; ...
2018-06-08
The supported mixed oxide (Rh 2-yCr yO 3)/(Ga 1-xZn x)(N 1-xO x) photocatalyst, highly active for splitting of H 2O, was extensively characterized for its bulk and surface properties with the objective of developing fundamental structure-photoactivity relationships. Raman and UV-vis spectroscopy revealed that the molecular and electronic structures, respectively, of the oxynitride (Ga 1-xZn x)(N 1-xO x) support are not perturbed by the deposition of the (Rh 2-yCr yO 3) NPs. Photoluminescence (PL) spectroscopy, however, showed that the oxynitride (Ga 1-xZn x)(N 1-xO x) support is the source of excited electrons/holes and the (Rh 2-yCr yO 3) NPs greatly reducemore » the undesirable recombination of photoexcited electron/holes by acting as efficient electron traps as well as increase the lifetimes of the excitons. High Resolution-XPS and High Sensitivity-LEIS surface analyses reveal that the surfaces of the (Rh 2-yCr yO 3) NPs consist of Rh +3 and Cr +3 mixed oxide species. In Situ AP-XPS help to reveal that the Rh+3 and surface N atoms are involved in water splitting. Dispersed RhOx species on the (Ga 1-xZn x)(N 1-xO x) support and on CrO x NPs were found to be the photocatalytic active sites for H 2 generation and N and Zn sites from the (Ga 1-xZn x)(N 1-xO x) support are the photocatalytic active site for O 2 generation. The current investigation establishes the fundamental structure-photoactivity relationships of these visible light activated photocatalysts.« less
Anatomy of a Visible Light Activated Photocatalyst for Water Splitting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phivilay, Somphonh Peter; Roberts, Charles; Gamalski, Andrew
The supported mixed oxide (Rh 2-yCr yO 3)/(Ga 1-xZn x)(N 1-xO x) photocatalyst, highly active for splitting of H 2O, was extensively characterized for its bulk and surface properties with the objective of developing fundamental structure-photoactivity relationships. Raman and UV-vis spectroscopy revealed that the molecular and electronic structures, respectively, of the oxynitride (Ga 1-xZn x)(N 1-xO x) support are not perturbed by the deposition of the (Rh 2-yCr yO 3) NPs. Photoluminescence (PL) spectroscopy, however, showed that the oxynitride (Ga 1-xZn x)(N 1-xO x) support is the source of excited electrons/holes and the (Rh 2-yCr yO 3) NPs greatly reducemore » the undesirable recombination of photoexcited electron/holes by acting as efficient electron traps as well as increase the lifetimes of the excitons. High Resolution-XPS and High Sensitivity-LEIS surface analyses reveal that the surfaces of the (Rh 2-yCr yO 3) NPs consist of Rh +3 and Cr +3 mixed oxide species. In Situ AP-XPS help to reveal that the Rh+3 and surface N atoms are involved in water splitting. Dispersed RhOx species on the (Ga 1-xZn x)(N 1-xO x) support and on CrO x NPs were found to be the photocatalytic active sites for H 2 generation and N and Zn sites from the (Ga 1-xZn x)(N 1-xO x) support are the photocatalytic active site for O 2 generation. The current investigation establishes the fundamental structure-photoactivity relationships of these visible light activated photocatalysts.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suleman, N.K.
1994-12-01
A major long-term goal of the Materials Division at the NASA Langley Research Center is the characterization of new high-performance materials that have potential applications in the aircraft industry, and in space. The materials used for space applications are often subjected to a harsh and potentially damaging radiation environment. The present study constitutes the application of a novel technique to obtain reliable data for ascertaining the molecular basis for the resilience and durability of materials that have been exposed to simulated space radiations. The radiations of greatest concern are energetic electrons and protons, as well as galactic cosmic rays. Presently,more » the effects of such radiation on matter are not understood in their entirety. It is clear however, that electron radiation causes ionization and homolytic bond rupture, resulting in the formation of paramagnetic spin centers in the polymer matrices of the structural materials. Since the detection and structure elucidation of paramagnetic species are most readily accomplished using Electron Paramagnetic Resonance (EPR) Spectroscopy, the NASA LaRC EPR system was brought back on-line during the 1991 ASEE term. The subsequent 1992 ASEE term was devoted to the adaptation of the EPR core system to meet the requirements for EPR Imaging (EPRI), which provides detailed information on the spatial distribution of paramagnetic species in bulk media. The present (1994) ASEE term was devoted to the calibration of this EPR Imaging system, as well as to the application of this technology to study the effects of electron irradiation on Ultem(exp R), a high performance polymer which is a candidate for applications in aerospace. The Ultem was exposed to a dose of 2.4 x 10(exp 9) Rads (1-MeV energy/electron) at the LaRC electron accelerator facility. Subsequently, the exposed specimens were stored in liquid nitrogen, until immediately prior to analyses by EPRI.« less
Sarkar, A; Kerr, J B; Cairns, E J
2013-07-22
Carbon-supported Pt@Au "core-shell" nanoparticles with varying surface concentration of platinum atoms have been synthesized using a novel redox-mediated synthesis approach. The synthesis technique allows for a selective deposition of platinum atoms on the surface of prefabricated gold nanoparticles. Energy dispersive spectroscopic analyses in a scanning electron microscope reveal that the platinum to gold atomic ratios are close to the nominal values, validating the synthesis scheme. X-ray diffraction data indicate an un-alloyed structure. The platinum to gold surface atomic ratio determined from cyclic voltammetry and copper under-potential deposition experiments reveal good agreement with the calculated values at low platinum concentration. However, there is an increase in non-uniformity in the deposition process upon increasing the platinum concentration. Koutecky-Levich analysis of the samples indicates a transition of the total number of electrons transferred (n) in the electrochemical oxygen reduction reaction from two to four electrons upon increasing the surface concentration of platinum atoms. Furthermore, the data indicate that isolated platinum atoms can reduce molecular oxygen but via a two-electron route. Moreover, successful four-electron reduction of molecular oxygen requires clusters of platinum atoms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yun, Hui-Jun; Lee, Yun-Ji; Yoo, Seung-Jin; Chung, Dae Sung; Kim, Yun-Hi; Kwon, Soon-Ki
2013-09-23
We describe herein the synthesis of novel donor-acceptor conjugated polymers with dithienobenzodithiophenes (DTBDT) as the electron donor and 2,1,3-benzothiadiazole as the electron acceptor for high-performance organic photovoltaics (OPVs). We studied the effects of strategically inserting thiophene into the DTBDT as a substituent on the skeletal structure on the opto-electronic performances of fabricated devices. From UV/Vis absorption, electrochemical, and field-effect transistor analyses, we found that the thiophene-containing DTBDT derivative can substantially increase the orbital overlap area between adjacent conjugated chains and thus dramatically enhance charge-carrier mobility up to 0.55 cm(2) V(-1) s(-1). The outstanding charge-transport characteristics of this polymer allowed the realization of high-performance organic solar cells with a power conversion efficiency (PCE) of 5.1 %. Detailed studies on the morphological factors that enable the maximum PCE of the polymer solar cells are discussed along with a hole/electron mobility analysis based on the space-charge-limited current model. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lerner, Thomas R.; Burden, Jemima J.; Nkwe, David O.; Pelchen-Matthews, Annegret; Domart, Marie-Charlotte; Durgan, Joanne; Weston, Anne; Jones, Martin L.; Peddie, Christopher J.; Carzaniga, Raffaella; Florey, Oliver; Marsh, Mark; Gutierrez, Maximiliano G.
2017-01-01
ABSTRACT The processes of life take place in multiple dimensions, but imaging these processes in even three dimensions is challenging. Here, we describe a workflow for 3D correlative light and electron microscopy (CLEM) of cell monolayers using fluorescence microscopy to identify and follow biological events, combined with serial blockface scanning electron microscopy to analyse the underlying ultrastructure. The workflow encompasses all steps from cell culture to sample processing, imaging strategy, and 3D image processing and analysis. We demonstrate successful application of the workflow to three studies, each aiming to better understand complex and dynamic biological processes, including bacterial and viral infections of cultured cells and formation of entotic cell-in-cell structures commonly observed in tumours. Our workflow revealed new insight into the replicative niche of Mycobacterium tuberculosis in primary human lymphatic endothelial cells, HIV-1 in human monocyte-derived macrophages, and the composition of the entotic vacuole. The broad application of this 3D CLEM technique will make it a useful addition to the correlative imaging toolbox for biomedical research. PMID:27445312
Aagaard, Lise; Stenver, Doris Irene; Hansen, Ebba Holme
2008-10-01
To explore the organisational structure and processes of the Danish and Australian spontaneous ADR reporting systems with a view to how information is generated about new ADRs. The Danish and Australian spontaneous ADR reporting systems. Qualitative analyses of documentary material, descriptive interviews with key informants, and observations were made. We analysed the organisational structure of the Danish and Australian ADR reporting systems with respect to structures and processes, including information flow and exchange of ADR data. The analysis was made based on Scott's adapted version of Leavitt's diamond model, with the components: goals/tasks, social structure, technology and participants, within a surrounding environment. The main differences between the systems were: (1) PARTICIPANTS: Outsourcing of ADR assessments to the pharmaceutical companies complicates maintenance of scientific skills within the Danish Medicines Agency (DKMA), as it leaves the handling of spontaneous ADR reports purely administrative within the DKMA, and the knowledge creation process remains with the pharmaceutical companies, while in Australia senior scientific staff work with evaluation of the ADR report; (2) Goals/tasks: In Denmark, resources are targeted at evaluating Periodic Safety Update Reports (PSUR) submitted by the companies, while the resources in Australia are focused on single case assessment resulting in faster and more proactive medicine surveillance; (3) Social structure: Discussions between scientific staff about ADRs take place in Australia, while the Danish system primarily focuses on entering and forwarding ADR data to the relevant pharmaceutical companies; (4) Technology: The Danish system exchanges ADR data electronically with pharmaceutical companies and the other EU countries, while Australia does not have a system for electronic exchange of ADR data; and (5) ENVIRONMENT: The Danish ADR system is embedded in the routines of cooperation within European pharmacovigilance network while the Australian system is acting alone, although they communicate with other systems. The two systems differ with regard to reporting requirements, report handling, resources being spent and information exchange with the environment. In Denmark, learning about ADRs primarily takes place in the safety divisions of the pharmaceutical companies and the authorities have no control over the knowledge creation process. In Australia, more learning and control of the knowledge is present than in Denmark.
Suzuki, Tatsuo; Zhang, Jingping; Miyazawa, Shoko; Liu, Qian; Farzan, Michael R.; Yao, Wei-Dong
2011-01-01
Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. However, their molecular identities remain elusive. Further, how they interact with the well-established signaling specialization, the postsynaptic density (PSD), is poorly understood. We previously detected a number of conventional PSD proteins in detergent-resistant membranes (DRMs). Here, we have performed LC-MS/MS (liquid chromatography coupled with tandem mass spectrometry) analyses on postsynaptic membrane rafts and PSDs. Our comparative analysis identified an extensive overlap of protein components in the two structures. This overlapping could be explained, at least partly, by a physical association of the two structures. Meanwhile, a significant number of proteins displayed biased distributions to either rafts or PSDs, suggesting distinct roles for the two postsynaptic specializations. Using biochemical and electron microscopic methods, we directly detected membrane raft-PSD complexes. In vitro reconstitution experiments indicated that the formation of raft-PSD complexes was not due to the artificial reconstruction of once-solubilized membrane components and PSD structures, supporting that these complexes occurred in vivo. Taking together, our results provide evidence that postsynaptic membrane rafts and PSDs may be physically associated. Such association could be important in postsynaptic signal integration, synaptic function, and maintenance. PMID:21797867
Analysing and Rationalising Molecular and Materials Databases Using Machine-Learning
NASA Astrophysics Data System (ADS)
de, Sandip; Ceriotti, Michele
Computational materials design promises to greatly accelerate the process of discovering new or more performant materials. Several collaborative efforts are contributing to this goal by building databases of structures, containing between thousands and millions of distinct hypothetical compounds, whose properties are computed by high-throughput electronic-structure calculations. The complexity and sheer amount of information has made manual exploration, interpretation and maintenance of these databases a formidable challenge, making it necessary to resort to automatic analysis tools. Here we will demonstrate how, starting from a measure of (dis)similarity between database items built from a combination of local environment descriptors, it is possible to apply hierarchical clustering algorithms, as well as dimensionality reduction methods such as sketchmap, to analyse, classify and interpret trends in molecular and materials databases, as well as to detect inconsistencies and errors. Thanks to the agnostic and flexible nature of the underlying metric, we will show how our framework can be applied transparently to different kinds of systems ranging from organic molecules and oligopeptides to inorganic crystal structures as well as molecular crystals. Funded by National Center for Computational Design and Discovery of Novel Materials (MARVEL) and Swiss National Science Foundation.
NASA Astrophysics Data System (ADS)
Chang, Fei; Jiao, Mingzhi; Xu, Quan; Deng, Baoqing; Hu, Xuefeng
2018-03-01
A series of mesoporous iron-titanium-containing silica Fe-TiO2-SBA15 (FTS) were constructed via a facile one-pot hydrothermal route and subsequently characterized by X-ray diffraction patterns, UV-vis diffuse reflection spectroscopy, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, and X-ray energy dispersion spectroscopy. By analyses, these samples possessed ordered two-dimensional hexagonal mesoporous structures, mainly involving mixed dual-phases of anatase and rutile TiO2, like commercial titania P25. The UV-vis diffuse reflection spectra demonstrated the presence of Fe species that was further confirmed by the X-ray photoelectron spectra and X-ray energy dispersion spectrum. The existence of Fe species in form of Fe3+ cations played an important role on the phase composition and electronic structure of these samples. With structural and morphological merits, these samples exhibited relatively high photocatalytic efficiency toward the degradation of dye methylene blue (MB) and reduction of Cr(VI) under visible-light irradiation, comparing with P25. In addition, among all candidates, the sample with a Fe/Si molar ratio of 0.03 showed the highest catalytic performance under optimal conditions, especially in the coexistence of both MB and Cr(VI), revealing an obviously synergistic effect when the consumption of both contaminants occurred. Finally, a primary catalytic mechanism was speculated on basis of active species capture experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zheng; Li, Zhilin; Institute of Carbon Fibers and Composites, Beijing University of Chemical Technology, Beijing 100029
Graphical abstract: The MWCNT/Ni-B catalyst has been successfully prepared by an electroless deposition process. The Ni-B nanoparticles on the supporter are amorphous and are well-distributed. The catalytic conversion towards hydrogenation of styrene shows excellent catalytic activity of the obtained materials. Highlights: Black-Right-Pointing-Pointer A two-step treatment of MWCNTs enabled the homogeneous growth of Ni-B nanoparticles. Black-Right-Pointing-Pointer Ni-B nanoparticles were amorphous with an average size of 60 nm. Black-Right-Pointing-Pointer There were electron transfer between Ni and B. Black-Right-Pointing-Pointer The catalyst had excellent catalytic activity towards hydrogenation of styrene. -- Abstract: Nickel-boron (Ni-B) nanoparticles supported on multi-walled carbon nanotubes (MWCNTs) were successfully synthesizedmore » through an electroless deposition process using the plating bath with sodium borohydride as a reducing agent. The structural and morphological analyses using field-emission scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy have shown that the Ni-B nanoparticles deposited on the sidewalls of MWCNTs are fine spheres comprised of amorphous structure with the morphologically unique fine-structure like flowers, and homogenously dispersed with a narrow particle size distribution centered at around 60 nm diameter. The catalytic activity of MWCNT/Ni-B nanoparticles was evaluated with respect to hydrogenation of styrene. The hydrogenation catalyzed by MWCNT-supported Ni-B nanoparticles has been found to make styrene selectively converted into ethylbenzene. The highest conversion reaches 99.8% under proper reaction conditions, which demonstrates the high catalytic activity of MWCNT/Ni-B nanoparticles.« less
Magneto-optical properties of BaCryFe12-yO19 (0.0 ≤ y ≤ 1.0) hexaferrites
NASA Astrophysics Data System (ADS)
Asiri, S.; Güner, S.; Korkmaz, A. D.; Amir, Md.; Batoo, K. M.; Almessiere, M. A.; Gungunes, H.; Sözeri, H.; Baykal, A.
2018-04-01
In this study, nanocrystalline BaCryFe12-yO19 (0.0 ≤ y ≤ 1.0) hexaferrite powders were prepared by sol-gel auto combustion method and the effect of Cr3+ ion substitution on morphology, structure, optic and magnetic properties of Barium hexaferrite were investigated. X-ray powder diffraction (XRD) analyses confirmed the purity of all samples. The XRD data shows that the average crystallite size lies between 60.95 nm and 50.10 nm and same was confirmed by Transmission electron microscopy. Transmission electron and scanning electron microscopy analyses presented the hexagonal morphology of all products. The characteristic hysteresis (σ-H) curves proved the ferromagnetic feature of as grown nanoparticle samples. Specific saturation magnetization (σs) drops from 46.59 to 34.89 emu/g with increasing Cr content while the coercive field values lie between 770 and 1652 Oe. The large magnitude of the magnetocrystalline (intrinsic) anisotropy field, (Ha) between 11.0 and 12.6 kOe proves that all products are magnetically hard. The energy band gap values decrease from 2.0 eV to 1.84 eV with increasing Cr content. From 57Fe Mössbauer spectroscopy, the variation in line width, isomer shift, quadrupole splitting and hyperfine magnetic field values were determined and discussed.
NASA Astrophysics Data System (ADS)
Naseri, Mahmoud Goodarz; Halimah, M. K.; Dehzangi, Arash; Kamalianfar, Ahmad; Saion, Elias B.; Majlis, Burhanuddin Y.
2014-03-01
This study reports the simple synthesis of MFe2O4 (where M=Zn, Mn and Co) nanostructures by a thermal treatment method, followed by calcination at various temperatures from 723 to 873 K. Poly(vinyl pyrrolidon) (PVP) was used as a capping agent to stabilize the particles and prevent them from agglomeration. The pyrolytic behaviors of the polymeric precursor were analyzed by use of simultaneous thermo-gravimetry analyses (TGA) and derivative thermo-gravimetry (DTG) analyses. The characterization studies were conducted by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fourier transform infrared spectroscopy (FT-IR) confirmed the presence of metal oxide bands for all the calcined samples. Magnetic properties were demonstrated by a vibrating sample magnetometer (VSM), which displayed that the calcined samples exhibited different types of magnetic behavior. The present study also substantiated that magnetic properties of ferrite nanoparticles prepared by the thermal treatment method, from viewing microstructures of them, can be explained as the results of the two important factors: cation distribution and impurity phase of α-Fe2O3. These two factors are subcategory of the preparation method which is related to macrostructure of ferrite. Electron paramagnetic resonance (EPR) spectroscopy showed the existence of unpaired electrons ZnFe2O4 and MnFe2O4 nanoparticles while it did not exhibit resonance signal for CoFe2O4 nanoparticles.
The Rovibronic Spectra of the Cyclopentadienyl Radical
NASA Astrophysics Data System (ADS)
Sharma, Ketan; Miller, Terry A.; Stanton, John F.; Nesbitt, David
2017-06-01
Cyclopentadienyl (Cp) radical has been subject to numerous studies for the greater part of half a century. Experimental work has involved photo-electron spectroscopy, laser induced fluorescence excitation and emission, infrared absorption spectroscopy, and recently rotationally resolved spectra in the CH stretch region taken at JILA. Even more theoretical works appear in the literature, but substantial advances in computation have occurred since their completion. Cp's highly symmetric (D_{5h}) structure and doubly degenerate electronic ground (˜{X}^2E_1^{''}), which is subject to linear Jahn-Teller distortion, have been a great motivation for work on it. We have commenced new computational work to obtain a broad understanding of the electronic, vibrational, and rotational, i.e. rovibronic, structure of the Cp radical as revealed by its spectra, with particular emphasis on the new infrared spectra. The goal is to guide experiments and their analyses and reconcile results from spectroscopy and quantum chemistry calculations. T. Ichino, et al. J. Chem. Phys. 129, 084310 (2008) L. Yu, S. C. Foster, J. M. Williamson, M. C. Heaven and T. A. Miller J. Phys. Chem. 92, 4263 (1988) B. E. Applegate, A. J. Bezant and T. A. Miller J. Chem. Phys 114, 4869 (2001) D. Leicht, M. Kaufmann, G. Schwaab, and M. Havenith J. Chem. Phys. 145, 7 (2016), 074304.
Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Nakasako, Masayoshi
2014-11-17
Coherent X-ray diffraction imaging (CXDI) is a lensless imaging technique that is suitable for visualizing the structures of non-crystalline particles with micrometer to sub-micrometer dimensions from material science and biology. One of the difficulties inherent to CXDI structural analyses is the reconstruction of electron density maps of specimen particles from diffraction patterns because saturated detector pixels and a beam stopper result in missing data in small-angle regions. To overcome this difficulty, the dark-field phase-retrieval (DFPR) method has been proposed. The DFPR method reconstructs electron density maps from diffraction data, which are modified by multiplying Gaussian masks with an observed diffraction pattern in the high-angle regions. In this paper, we incorporated Friedel centrosymmetry for diffraction patterns into the DFPR method to provide a constraint for the phase-retrieval calculation. A set of model simulations demonstrated that this constraint dramatically improved the probability of reconstructing correct electron density maps from diffraction patterns that were missing data in the small-angle region. In addition, the DFPR method with the constraint was applied successfully to experimentally obtained diffraction patterns with significant quantities of missing data. We also discuss this method's limitations with respect to the level of Poisson noise in X-ray detection.
Big biomedical data and cardiovascular disease research: opportunities and challenges.
Denaxas, Spiros C; Morley, Katherine I
2015-07-01
Electronic health records (EHRs), data generated and collected during normal clinical care, are increasingly being linked and used for translational cardiovascular disease research. Electronic health record data can be structured (e.g. coded diagnoses) or unstructured (e.g. clinical notes) and increasingly encapsulate medical imaging, genomic and patient-generated information. Large-scale EHR linkages enable researchers to conduct high-resolution observational and interventional clinical research at an unprecedented scale. A significant amount of preparatory work and research, however, is required to identify, obtain, and transform raw EHR data into research-ready variables that can be statistically analysed. This study critically reviews the opportunities and challenges that EHR data present in the field of cardiovascular disease clinical research and provides a series of recommendations for advancing and facilitating EHR research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Xiao; Wang, Hao; Yi, Qinghua
2015-11-16
Due to the different emission mechanism between fluorescent carbon dots and semiconductor quantum dots (QDs), it is of interest to explore the potential emission in hetero-structured carbon dots/semiconducting QDs. Herein, we design carbon dots coated CdTe QDs (CDQDs) and investigate their inherent emission. We demonstrate switchable emission for the hetero-interactions of the CDQDs. Optical analyses indicate electron transfer between the carbon dots and the CdTe QDs. A heterojunction electron process is proposed as the driving mechanism based on N atom protonation of the carbon dots. This work advances our understanding of the interaction mechanism of the heterostructured CDQDs and benefitsmore » the future development of optoelectronic nanodevices with new functionalities.« less
Tannin bark Melalauca cajuputi powell (gelam) as green corrosion inhibitor of mild steel
NASA Astrophysics Data System (ADS)
Talib, Nur Atiqah Abu; Zakaria, Sarani; Hua, Chia Chin; Othman, Norinsan Kamil
2014-09-01
Tannin was extracted from gelam bark and used to produce corrosion inhibitor for mild steel. Tannin was extracted from gelam bark using 70% aqueous acetone for 6 hour. Tannin powder was characterization using fourier transform infrared spectroscopy to analyse chemical component in tannin and Scanning electron microscope (SEM) for tannin physical structure. The tannin effect on the corrosion inhibition of mild steel has been investigated in 1Mol HCl solution for 6 hour followed ASTM. The weight loss method were applied to study the mild steel corrosion behavior in the present and absend of different concentration of tannin (250, 300, 350)ppm. Tannin act good inhibitor as corrosion inhibitor for mild steel in acid medium. Surface morphology of carbon steel with and without inhibitor was investigated by scanning electron microscopy.
Iancu, Violeta; Hla, Saw-Wai
2006-01-01
Single chlorophyll-a molecules, a vital resource for the sustenance of life on Earth, have been investigated by using scanning tunneling microscope manipulation and spectroscopy on a gold substrate at 4.6 K. Chlorophyll-a binds on Au(111) via its porphyrin unit while the phytyl-chain is elevated from the surface by the support of four CH3 groups. By injecting tunneling electrons from the scanning tunneling microscope tip, we are able to bend the phytyl-chain, which enables the switching of four molecular conformations in a controlled manner. Statistical analyses and structural calculations reveal that all reversible switching mechanisms are initiated by a single tunneling-electron energy-transfer process, which induces bond rotation within the phytyl-chain. PMID:16954201
Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices
Hubertus J. J. van Dam
2016-04-27
Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of noninteracting particles, is the workhorse of the theory. The particular form of the Kohn-Sham wave function admits only idempotent one-electron density matrices whereas wave functions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept and introducing a suitable dot product as well as a probability density, a noninteracting system can be chosen that can represent the one-electron density matrix of any system, even one with fractionalmore » occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. This produces energy levels that are akin to Hartree-Fock orbital energies such that conventional analyses based on Koopmans' theorem are available. Lastly, this system is convenient in formalisms that depend on creation and annihilation operators as they are trivially applied to single-determinant wave functions.« less
Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure
NASA Astrophysics Data System (ADS)
Brockt, C.; Jeckelmann, E.
2017-02-01
We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model. We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure. Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations are obtained for limiting cases.
C2x: A tool for visualisation and input preparation for CASTEP and other electronic structure codes
NASA Astrophysics Data System (ADS)
Rutter, M. J.
2018-04-01
The c2x code fills two distinct roles. Its first role is in acting as a converter between the binary format .check files from the widely-used CASTEP [1] electronic structure code and various visualisation programs. Its second role is to manipulate and analyse the input and output files from a variety of electronic structure codes, including CASTEP, ONETEP and VASP, as well as the widely-used 'Gaussian cube' file format. Analysis includes symmetry analysis, and manipulation arbitrary cell transformations. It continues to be under development, with growing functionality, and is written in a form which would make it easy to extend it to working directly with files from other electronic structure codes. Data which c2x is capable of extracting from CASTEP's binary checkpoint files include charge densities, spin densities, wavefunctions, relaxed atomic positions, forces, the Fermi level, the total energy, and symmetry operations. It can recreate .cell input files from checkpoint files. Volumetric data can be output in formats useable by many common visualisation programs, and c2x will itself calculate integrals, expand data into supercells, and interpolate data via combinations of Fourier and trilinear interpolation. It can extract data along arbitrary lines (such as lines between atoms) as 1D output. C2x is able to convert between several common formats for describing molecules and crystals, including the .cell format of CASTEP. It can construct supercells, reduce cells to their primitive form, and add specified k-point meshes. It uses the spglib library [2] to report symmetry information, which it can add to .cell files. C2x is a command-line utility, so is readily included in scripts. It is available under the GPL and can be obtained from http://www.c2x.org.uk. It is believed to be the only open-source code which can read CASTEP's .check files, so it will have utility in other projects.
Wang, Kang; Wang, Ying-Jin; Li, Da-Zhi; Ou, Ting; Zhao, Xiao-Yun; Zhai, Hua-Jin
2016-04-14
The structural and electronic properties and chemical bonding of binary Be2O2 and Si2O2 clusters have been studied using quantum chemical calculations at the B3LYP level. For the Be2O2 cluster, the potential energy surface is probed by unbiased structural searches and the global-minimum structure was established using the B3LYP calculations, complemented by PBE0 and single-point CCSD(T) calculations for top isomers. The perfectly planar D2h Be2O2 ((1)Ag) global minimum is well defined, being at least 3.64 eV lower in energy than alternative structures at the CCSD(T)//B3LYP/aug-cc-pVTZ level. Chemical bonding analyses show that D2h Be2O2 and Si2O2 clusters possess the rhombic four-center four-electron (4c-4e) π bond, that is, the o-bond, a conception derived from electron-deficient boron oxide clusters lately. Furthermore, the Be2O2 and Si2O2 clusters also exhibit rhombic 4c-4e σ bonds, both for the radial and tangential σ frameworks (σr and σt). The σt framework is classified as an o-bond only formally, due to the secondary contribution from the Be/Si s component. The three-fold (π, σr, and σt) o-bonds in Be2O2 and Si2O2 are considered to resemble the three-fold aromaticity in all-metal Al4(2-) dianions. A 4c-4e o-bond makes use of four O 2p electrons, which would otherwise be two lone-pairs, for a delocalized and completely bonding orbital, as well as a residual nonbonding orbital. Three-fold o-bonds thus greatly stabilize the binary Be2O2 and Si2O2 clusters. We anticipate that the bonding concept should be applicable to additional molecular systems, including those with larger heterocyclic rings.
Fingerprint-Based Structure Retrieval Using Electron Density
Yin, Shuangye; Dokholyan, Nikolay V.
2010-01-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. PMID:21287628
Fingerprint-based structure retrieval using electron density.
Yin, Shuangye; Dokholyan, Nikolay V
2011-03-01
We present a computational approach that can quickly search a large protein structural database to identify structures that fit a given electron density, such as determined by cryo-electron microscopy. We use geometric invariants (fingerprints) constructed using 3D Zernike moments to describe the electron density, and reduce the problem of fitting of the structure to the electron density to simple fingerprint comparison. Using this approach, we are able to screen the entire Protein Data Bank and identify structures that fit two experimental electron densities determined by cryo-electron microscopy. Copyright © 2010 Wiley-Liss, Inc.
Almeida, Michell O; Barros, Daiane A S; Araujo, Sheila C; Faria, Sergio H D M; Maltarollo, Vinicius G; Honorio, Kathia M
2017-09-05
Cancer cells can expand to other parts of body through blood system and nodes from a mechanism known as metastasis. Due to the large annual growth of cancer cases, various biological targets have been studied and related to this disorder. A very interesting target related to cancer is human epidermal growth factor receptor 2 (HER2). In this study, we analyzed the main intermolecular interactions between a drug used in the cancer treatment (5-fluorouracil) and HER2. Molecular modeling methods were also employed to assess the molecular structure, spectroscopic properties (FTIR and UV-Vis), NBO, QTAIM and HOMO-LUMO energies of 5-FU. From the docking simulations it was possible to analyze the interactions that occur between some residues in the binding site of HER2 and 5-FU. To validate the choice of basis set that was used in the NBO and QTAIM analyses, theoretical calculations were performed to obtain FT-IR and UV/Vis spectra, and the theoretical results are consistent with the experimental data, showing that the basis set chosen is suitable. For the maximum λ from the theoretical calculation (254.89nm) of UV/Vis, the electronic transition from HOMO to LUMO occurs at 4.89eV. From NBO analyses, we observed interactions between Asp863 and 5-FU, i.e. the orbitals with high transfer of electrons are LP O 15 (donor NBO) and BD* (π) N 1 -H 10 (acceptor NBO), being that the value of this interaction is 7.72kcal/mol. Results from QTAIM indicate one main intermolecular H bond, which is necessary to stabilize the complex formed between the ligands and the biological target. Therefore, this study allowed a careful evaluation on the main structural, spectroscopic and electronic properties involved in the interaction between 5-FU and HER2, an important biological complex related to the cancer treatment. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lorenz, P.; Bayer, L.; Ehrhardt, M.; Zimmer, K.; Engisch, L.
2015-03-01
Micro- and nanostructures exhibit a growing commercial interest where a fast, cost-effective, and large-area production is attainable. Laser methods have a great potential for the easy fabrication of surface structures into flexible polymer foils like polyimide (PI). In this study two different concepts for the structuring of polymer foils using a KrF excimer laser were tested and compared: the laser-induced ablation and the laser-induced shock wave structuring. The direct front side laser irradiation of these polymers allows the fabrication of different surface structures. For example: The low laser fluence treatment of PI results in nano-sized cone structures where the cone density can be controlled by the laser parameters. This allows inter alia the laser fabrication of microscopic QR code and high-resolution grey-tone images. Furthermore, the laser treatment of the front side of the polymer foil allows the rear side structuring due to a laserinduced shock wave. The resultant surface structures were analysed by optical and scanning electron microscopy (SEM) as well as white light interferometry (WLI).
Rives, Arnaud; Baglai, Iaroslav; Barthes, Cécile; Saffon-Merceron, Nathalie; Saquet, Alix; Voitenko, Zoia; Volovenko, Yulian
2015-01-01
Ideally C s-/C 2v-symmetric chromophores, constituted by two electro-active groups conjugated through the carbo-mer of the cyclohexa-1,3-diene core, are selectively prepared by the SnCl2-mediated reduction of tailored hexaoxy-[6]pericyclynes: in the latter substrates, one of the 1,4-dioxybut-2-yne edges is “chemically locked” by two CF3 substituents preventing complete reduction to the corresponding aromatic carbo-benzenic core, which is expected to be more “π-insulating” between the electro-active ends. The bis-trifluoromethylated carbo-cyclohexadiene products are also shown to be significantly stabilized with respect to their bis-phenylated analogues. Their structural (crystal X-ray diffraction analyses), spectroscopical (NMR and UV-vis spectra), physio-optical (dichromism in solution) and electrochemical (cyclic voltammograms) properties are compared on the basis of the electron-donating/electron-withdrawing nature of the substituents. These properties are also compared with those of their aromatic carbo-benzene and flexible carbo-n-butadiene counterparts. PMID:29560201
Olalekan, Temitope E; Adejoro, Isaiah A; VanBrecht, Bernardus; Watkins, Gareth M
2015-03-15
New Schiff bases derived from p-methoxysalicylaldehyde and 2-(methylthiomethyl)anilines (substituted with methyl, methoxy, nitro) were synthesized and characterized by elemental analyses, FT-IR, NMR, electronic spectra and quantum chemical calculations. X-ray crystallography of two compounds showed the solid structures are stabilized by intramolecular and intermolecular H-bonds. The effect of OH⋯N interaction between the phenolic hydrogen and imine nitrogen on the proton and carbon NMR shifts, and the role of CH⋯O and CH⋯S contacts are discussed. The bond lengths and angles, (1)H and (13)C NMR data, E(LUMO-HOMO), dipole moments and polarizability of the compounds were predicted by density functional theory, DFT (B3LYP/6-31G∗∗) method. The experimental geometric parameters and the NMR shifts were compared with the calculated values, which gave good correlations. The electronic effects of aryl ring substituents (methyl, methoxy and nitro) on the properties of the resulting compounds, such as the color, NMR shifts, electronic spectra and the calculated energy band gaps, dipole moments and polarizability are discussed. Increase in electron density shifted the phenolic proton resonance to lower fields. The methoxy-substituted compound has a small dipole moment and subsequent large polarizability value. Highest polarity was indicated by the nitro compound which also showed high polarizability due to its larger size. The energy gaps obtained from E(LUMO-HOMO) calculations suggest these compounds may have applications as organic semiconducting materials. Copyright © 2014 Elsevier B.V. All rights reserved.
Analytical SuperSTEM for extraterrestrial materials research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, J P; Dai, Z R
2009-09-08
Electron-beam studies of extraterrestrial materials with significantly improved spatial resolution, energy resolution and sensitivity are enabled using a 300 keV SuperSTEM scanning transmission electron microscope with a monochromator and two spherical aberration correctors. The improved technical capabilities enable analyses previously not possible. Mineral structures can be directly imaged and analyzed with single-atomic-column resolution, liquids and implanted gases can be detected, and UV-VIS optical properties can be measured. Detection limits for minor/trace elements in thin (<100 nm thick) specimens are improved such that quantitative measurements of some extend to the sub-500 ppm level. Electron energy-loss spectroscopy (EELS) can be carried outmore » with 0.10-0.20 eV energy resolution and atomic-scale spatial resolution such that variations in oxidation state from one atomic column to another can be detected. Petrographic mapping is extended down to the atomic scale using energy-dispersive x-ray spectroscopy (EDS) and energy-filtered transmission electron microscopy (EFTEM) imaging. Technical capabilities and examples of the applications of SuperSTEM to extraterrestrial materials are presented, including the UV spectral properties and organic carbon K-edge fine structure of carbonaceous matter in interplanetary dust particles (IDPs), x-ray elemental maps showing the nanometer-scale distribution of carbon within GEMS (glass with embedded metal and sulfides), the first detection and quantification of trace Ti in GEMS using EDS, and detection of molecular H{sub 2}O in vesicles and implanted H{sub 2} and He in irradiated mineral and glass grains.« less
Gowda, Vasantha; Laitinen, Risto S; Telkki, Ville-Veikko; Larsson, Anna-Carin; Antzutkin, Oleg N; Lantto, Perttu
2016-12-06
The molecular, crystal, and electronic structures as well as spectroscopic properties of a mononuclear heteroleptic lanthanum(iii) complex with diethyldithiocarbamate and 1,10-phenanthroline ligands (3 : 1) were studied by solid-state 13 C and 15 N cross-polarisation (CP) magic-angle-spinning (MAS) NMR, X-ray diffraction (XRD), and first principles density functional theory (DFT) calculations. A substantially different powder XRD pattern and 13 C and 15 N CP-MAS NMR spectra indicated that the title compound is not isostructural to the previously reported analogous rare earth complexes with the space group P2 1 /n. Both 13 C and 15 N CP-MAS NMR revealed the presence of six structurally different dithiocarbamate groups in the asymmetric unit cell, implying a non-centrosymmetric packing arrangement of molecules. This was supported by single-crystal X-ray crystallography showing that the title compound crystallised in the triclinic space group P1[combining macron]. In addition, the crystal structure also revealed that one of the dithiocarbamate ligands has a conformational disorder. NMR chemical shift calculations employing the periodic gauge including projector augmented wave (GIPAW) approach supported the assignment of the experimental 13 C and 15 N NMR spectra. However, the best correspondences were obtained with the structure where the atomic positions in the X-ray unit cell were optimised at the DFT level. The roles of the scalar and spin-orbit relativistic effects on NMR shielding were investigated using the zeroth-order regular approximation (ZORA) method with the outcome that already the scalar relativistic level qualitatively reproduces the experimental chemical shifts. The electronic properties of the complex were evaluated based on the results of the natural bond orbital (NBO) and topology of the electron density analyses. Overall, we apply a multidisciplinary approach acquiring comprehensive information about the solid-state structure and the metal-ligand bonding of the heteroleptic lanthanum complex.
Zheng, Ming; Chen, Fang-Yuan; Tian, Jia-Nan; Pan, Qing-Jiang
2018-04-02
To provide deep insight into cation-cation interactions (CCIs) involving hexavalent actinyl species that are major components in spent nuclear fuel and pose important implications for the effective removal of radiotoxic pollutants in the environment, a series of homo- and heterobimetallic actinide complexes supported by cyclopentadienyl (Cp) and polypyrrolic macrocycle (H 4 L) ligands were systematically investigated using relativistic density functional theory. The metal sort in both parts of (THF)(H 2 L)(OAn VI O) and (An') III Cp 3 from U to Np to Pu, as well as the substituent bonding to Cp from electron-donating Me to H to electron-withdrawing Cl, SiH 3 , and SiMe 3 , was changed. Over 0.70 electrons are unraveled to transfer from the electron-rich U III to the electron-deficient An VI of the actinyl moiety, leading to a more stable An V -U IV isomer; in contrast, uranylneptunium and uranylplutonium complexes behave as electron-resonance structures between VI-III and V-IV. These were further corroborated by geometrical and electronic structures. The energies of CCIs (i.e., O exo -An' bonds) were calculated to be -19.6 to -41.2 kcal/mol, affording those of OUO-Np (-23.9 kcal/mol) and OUO-Pu (-19.6 kcal/mol) with less electron transfer (ET) right at the low limit. Topological analyses of the electron density at the O exo -An' bond critical points demonstrate that the CCIs are ET or dative bonds in nature. A positive correlation has been built between the CCIs' strength and corresponding ET amount. It is concluded that the CCIs of O exo -An' are driven by the electrostatic attraction between the actinyl oxo atom (negative) and the actinide ion (positive) and enhanced by their ET. Finally, experimental syntheses of (THF)(H 2 L)(OU VI O)(An') III Cp 3 (An' = U and Np) were well reproduced by thermodynamic calculations that yielded negative free energies in a tetrahydrofuran solution but a positive one for their uranylplutonium analogue, which was synthetically inaccessible. So, our thermodynamics would provide implications for the synthetic possibility of other theoretically designed bimetallic actinide complexes.
Influence of strain on dislocation core in silicon
NASA Astrophysics Data System (ADS)
Pizzagalli, L.; Godet, J.; Brochard, S.
2018-05-01
First principles, density functional-based tight binding and semi-empirical interatomic potentials calculations are performed to analyse the influence of large strains on the structure and stability of a 60? dislocation in silicon. Such strains typically arise during the mechanical testing of nanostructures like nanopillars or nanoparticles. We focus on bi-axial strains in the plane normal to the dislocation line. Our calculations surprisingly reveal that the dislocation core structure largely depends on the applied strain, for strain levels of about 5%. In the particular case of bi-axial compression, the transformation of the dislocation to a locally disordered configuration occurs for similar strain magnitudes. The formation of an opening, however, requires larger strains, of about 7.5%. Furthermore, our results suggest that electronic structure methods should be favoured to model dislocation cores in case of large strains whenever possible.
Structural diversity of supercoiled DNA
Irobalieva, Rossitza N.; Fogg, Jonathan M.; Catanese, Daniel J.; Sutthibutpong, Thana; Chen, Muyuan; Barker, Anna K.; Ludtke, Steven J.; Harris, Sarah A.; Schmid, Michael F.; Chiu, Wah; Zechiedrich, Lynn
2015-01-01
By regulating access to the genetic code, DNA supercoiling strongly affects DNA metabolism. Despite its importance, however, much about supercoiled DNA (positively supercoiled DNA, in particular) remains unknown. Here we use electron cryo-tomography together with biochemical analyses to investigate structures of individual purified DNA minicircle topoisomers with defined degrees of supercoiling. Our results reveal that each topoisomer, negative or positive, adopts a unique and surprisingly wide distribution of three-dimensional conformations. Moreover, we uncover striking differences in how the topoisomers handle torsional stress. As negative supercoiling increases, bases are increasingly exposed. Beyond a sharp supercoiling threshold, we also detect exposed bases in positively supercoiled DNA. Molecular dynamics simulations independently confirm the conformational heterogeneity and provide atomistic insight into the flexibility of supercoiled DNA. Our integrated approach reveals the three-dimensional structures of DNA that are essential for its function. PMID:26455586
Structural diversity of supercoiled DNA
NASA Astrophysics Data System (ADS)
Irobalieva, Rossitza N.; Fogg, Jonathan M.; Catanese, Daniel J.; Sutthibutpong, Thana; Chen, Muyuan; Barker, Anna K.; Ludtke, Steven J.; Harris, Sarah A.; Schmid, Michael F.; Chiu, Wah; Zechiedrich, Lynn
2015-10-01
By regulating access to the genetic code, DNA supercoiling strongly affects DNA metabolism. Despite its importance, however, much about supercoiled DNA (positively supercoiled DNA, in particular) remains unknown. Here we use electron cryo-tomography together with biochemical analyses to investigate structures of individual purified DNA minicircle topoisomers with defined degrees of supercoiling. Our results reveal that each topoisomer, negative or positive, adopts a unique and surprisingly wide distribution of three-dimensional conformations. Moreover, we uncover striking differences in how the topoisomers handle torsional stress. As negative supercoiling increases, bases are increasingly exposed. Beyond a sharp supercoiling threshold, we also detect exposed bases in positively supercoiled DNA. Molecular dynamics simulations independently confirm the conformational heterogeneity and provide atomistic insight into the flexibility of supercoiled DNA. Our integrated approach reveals the three-dimensional structures of DNA that are essential for its function.
NASA Astrophysics Data System (ADS)
Hattori, Katsumi; Hirooka, Shinji; Han, Peng
2016-04-01
The ionospheric anomalies possibly associated with large earthquakes have been reported by many researchers. In this paper, Total Electron Content (TEC) and tomography analyses have been applied to investigate the spatial and temporal distributions of ionospheric electron density prior to the 2011 Off the Pacific Coast of Tohoku earthquake (Mw9.0). Results show significant TEC enhancements and an interesting three dimensional structure prior to the main shock. As for temporal TEC changes, the TEC value increases 3-4 days before the earthquake remarkably, when the geomagnetic condition was relatively quiet. In addition, the abnormal TEC enhancement area in space was stalled above Japan during the period. Tomographic results show that three dimensional distribution of electron density decreases around 250 km altitude above the epicenter (peak is located just the east-region of the epicenter) and increases the mostly entire region between 300 and 400 km.
TEMPy: a Python library for assessment of three-dimensional electron microscopy density fits.
Farabella, Irene; Vasishtan, Daven; Joseph, Agnel Praveen; Pandurangan, Arun Prasad; Sahota, Harpal; Topf, Maya
2015-08-01
Three-dimensional electron microscopy is currently one of the most promising techniques used to study macromolecular assemblies. Rigid and flexible fitting of atomic models into density maps is often essential to gain further insights into the assemblies they represent. Currently, tools that facilitate the assessment of fitted atomic models and maps are needed. TEMPy (template and electron microscopy comparison using Python) is a toolkit designed for this purpose. The library includes a set of methods to assess density fits in intermediate-to-low resolution maps, both globally and locally. It also provides procedures for single-fit assessment, ensemble generation of fits, clustering, and multiple and consensus scoring, as well as plots and output files for visualization purposes to help the user in analysing rigid and flexible fits. The modular nature of TEMPy helps the integration of scoring and assessment of fits into large pipelines, making it a tool suitable for both novice and expert structural biologists.
NASA Astrophysics Data System (ADS)
Sapori, Daniel; Kepenekian, Mikaël; Pedesseau, Laurent; Katan, Claudine; Even, Jacky
2016-03-01
Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed.Quantum confinement as well as high frequency ε∞ and static εs dielectric profiles are described for nanoplatelets of halide inorganic perovskites CsPbX3 (X = I, Br, Cl) and hybrid organic-inorganic perovskites (HOP) in two-dimensional (2D) and three-dimensional (3D) structures. 3D HOP are currently being sought for their impressive photovoltaic ability. Prior to this sudden popularity, 2D HOP materials were driving intense activity in the field of optoelectronics. Such developments have been enriched by the recent ability to synthesize colloidal nanostructures of controlled sizes of 2D and 3D HOP. This raises the need to achieve a thorough description of the electronic structure and dielectric properties of these systems. In this work, we go beyond the abrupt dielectric interface model and reach the atomic scale description. We examine the influence of the nature of the halogen and of the cation on the band structure and dielectric constants. Similarly, we survey the effect of dimensionality and shape of the perovskite. In agreement with recent experimental results, we show an increase of the band gap and a decrease of ε∞ when the size of a nanoplatelet reduces. By inspecting 2D HOP, we find that it cannot be described as a simple superposition of independent inorganic and organic layers. Finally, the dramatic impact of ionic contributions on the dielectric constant εs is analysed. Electronic supplementary information (ESI) available: Complementary results on the electronic structure and dielectric constants of CsPbX3 and CH3NH3PbX3 (X = I, Br, Cl). See DOI: 10.1039/c5nr07175e
Positron Annihilation Measurements of High Temperature Superconductors
NASA Astrophysics Data System (ADS)
Jung, Kang
1995-01-01
The temperature dependence of positron annihilation parameters has been measured for basic YBCO, Dy-doped, and Pr-doped superconducting compounds. The physical properties, such as crystal structure, electrical resistance, and critical temperature, have been studied for all samples. In the basic YBCO and Dy-doped samples, the defect -related lifetime component tau_{2 } was approximately constant from room temperature to above the critical temperature and then showed a step -like decrease in the temperature range 90K { ~} 40K. No significant temperature dependence was found in the short- and long-lifetime components, tau_{1} and tau_{3}. The x-ray diffraction data showed that the crystal structure of these two samples was almost the same. These results indicated that the electronic structure changed below the critical temperature. No transition was observed in the Pr-doped YBCO sample. The advanced computer program "PFPOSFIT" for positron lifetime analysis was modified to run on the UNIX system of the University of Utah. The destruction of superconductivity with Pr doping may be due to mechanisms such as hole filling or hole localization of the charge carriers and may be related to the valence state of the Pr ion. One-parameter analyses like the positron mean lifetime parameter and the Doppler line shape parameter S also have been studied. It was found that a transition in Doppler line shape parameter S was associated with the superconducting transition temperature in basic YBCO, Dy -doped, and 0.5 Pr-doped samples, whereas no transition was observed in the nonsuperconducting Pr-doped sample. The Doppler results indicate that the average electron momentum at the annihilation sites increases as temperature is lowered across the superconducting transition range and that electronic structure change plays an important role in high temperature superconductivity.
Aquaporin-0 Targets Interlocking Domains to Control the Integrity and Transparency of the Eye Lens
Lo, Woo-Kuen; Biswas, Sondip K.; Brako, Lawrence; Shiels, Alan; Gu, Sumin; Jiang, Jean X.
2014-01-01
Purpose. Lens fiber cell membranes contain aquaporin-0 (AQP0), which constitutes approximately 50% of the total fiber cell membrane proteins and has a dual function as a water channel protein and an adhesion molecule. Fiber cell membranes also develop an elaborate interlocking system that is required for maintaining structural order, stability, and lens transparency. Herein, we used an AQP0-deficient mouse model to investigate an unconventional adhesion role of AQP0 in maintaining a normal structure of lens interlocking protrusions. Methods. The loss of AQP0 in AQP0−/− lens fibers was verified by Western blot and immunofluorescence analyses. Changes in membrane surface structures of wild-type and AQP0−/− lenses at age 3 to 12 weeks were examined with scanning electron microscopy. Preferential distribution of AQP0 in wild-type fiber cell membranes was analyzed with immunofluorescence and immunogold labeling using freeze-fracturing transmission electron microscopy. Results. Interlocking protrusions in young differentiating fiber cells developed normally but showed minor abnormalities at approximately 50 μm deep in the absence of AQP0 in all ages studied. Strikingly, protrusions in maturing fiber cells specifically underwent uncontrolled elongation, deformation, and fragmentation, while cells still retained their overall shape. Later in the process, these changes eventually resulted in fiber cell separation, breakdown, and cataract formation in the lens core. Immunolabeling at the light microscopy and transmission electron microscopy levels demonstrated that AQP0 was particularly enriched in interlocking protrusions in wild-type lenses. Conclusions. This study suggests that AQP0 exerts its primary adhesion or suppression role specifically to maintain the normal structure of interlocking protrusions that is critical to the integrity and transparency of the lens. PMID:24458158
Epitaxial thin films of Dirac semimetal antiperovskite Cu3PdN
NASA Astrophysics Data System (ADS)
Quintela, C. X.; Campbell, N.; Shao, D. F.; Irwin, J.; Harris, D. T.; Xie, L.; Anderson, T. J.; Reiser, N.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.
2017-09-01
The growth and study of materials showing novel topological states of matter is one of the frontiers in condensed matter physics. Among this class of materials, the nitride antiperovskite Cu3PdN has been proposed as a new three-dimensional Dirac semimetal. However, the experimental realization of Cu3PdN and the consequent study of its electronic properties have been hindered due to the difficulty of synthesizing this material. In this study, we report fabrication and both structural and transport characterization of epitaxial Cu3PdN thin films grown on (001)-oriented SrTiO3 substrates by reactive magnetron sputtering and post-annealed in NH3 atmosphere. The structural properties of the films, investigated by x-ray diffraction and scanning transmission electron microscopy, establish single phase Cu3PdN exhibiting cube-on-cube epitaxy (001)[100]Cu3PdN||(001)[100]SrTiO3. Electrical transport measurements of as-grown samples show metallic conduction with a small temperature coefficient of the resistivity of 1.5 × 10-4 K-1 and a positive Hall coefficient. Post-annealing in NH3 results in the reduction of the electrical resistivity accompanied by the Hall coefficient sign reversal. Using a combination of chemical composition analyses and ab initio band structure calculations, we discuss the interplay between nitrogen stoichiometry and magneto-transport results in the framework of the electronic band structure of Cu3PdN. Our successful growth of thin films of antiperovskite Cu3PdN opens the path to further investigate its physical properties and their dependence on dimensionality, strain engineering, and doping.
Worldwide Protein Data Bank validation information: usage and trends.
Smart, Oliver S; Horský, Vladimír; Gore, Swanand; Svobodová Vařeková, Radka; Bendová, Veronika; Kleywegt, Gerard J; Velankar, Sameer
2018-03-01
Realising the importance of assessing the quality of the biomolecular structures deposited in the Protein Data Bank (PDB), the Worldwide Protein Data Bank (wwPDB) partners established Validation Task Forces to obtain advice on the methods and standards to be used to validate structures determined by X-ray crystallography, nuclear magnetic resonance spectroscopy and three-dimensional electron cryo-microscopy. The resulting wwPDB validation pipeline is an integral part of the wwPDB OneDep deposition, biocuration and validation system. The wwPDB Validation Service webserver (https://validate.wwpdb.org) can be used to perform checks prior to deposition. Here, it is shown how validation metrics can be combined to produce an overall score that allows the ranking of macromolecular structures and domains in search results. The ValTrends DB database provides users with a convenient way to access and analyse validation information and other properties of X-ray crystal structures in the PDB, including investigating trends in and correlations between different structure properties and validation metrics.
Worldwide Protein Data Bank validation information: usage and trends
Horský, Vladimír; Gore, Swanand; Svobodová Vařeková, Radka; Bendová, Veronika
2018-01-01
Realising the importance of assessing the quality of the biomolecular structures deposited in the Protein Data Bank (PDB), the Worldwide Protein Data Bank (wwPDB) partners established Validation Task Forces to obtain advice on the methods and standards to be used to validate structures determined by X-ray crystallography, nuclear magnetic resonance spectroscopy and three-dimensional electron cryo-microscopy. The resulting wwPDB validation pipeline is an integral part of the wwPDB OneDep deposition, biocuration and validation system. The wwPDB Validation Service webserver (https://validate.wwpdb.org) can be used to perform checks prior to deposition. Here, it is shown how validation metrics can be combined to produce an overall score that allows the ranking of macromolecular structures and domains in search results. The ValTrendsDB database provides users with a convenient way to access and analyse validation information and other properties of X-ray crystal structures in the PDB, including investigating trends in and correlations between different structure properties and validation metrics. PMID:29533231
Sub-nanometer milling of layered materials by a focused Helium Ion Beam
NASA Astrophysics Data System (ADS)
Zhang, Hongzhou; Fox, Daniel; Zhou, Yangbo; O'Connell, Robert
2014-03-01
The modification of the structure and geometry of materials at the nanoscale can be used to tailor their properties. A controllable process which can achieve this is required for the development of next generation nano-devices. We used the highly focused beam of helium ions in a helium ion microscope (HIM) to fabricate nanostructures within various layered materials such as graphene, MoS2, TiO2 and Mn2O3. Arbitrary patterns can be defined in order to produce structures such as nanoribbons. The edge configuration of atoms in such structures plays a large role in defining their properties. High resolution transmission electron microscopy (TEM) and scanning-TEM (STEM) were used to analyse the structure of the materials after milling. The direct milling of the materials by the helium ions means this approach is suitable for a wide range of nanomaterials. Complex structures can be realized via sophisticated beam control. This also results in the ability to mill along different directions in a crystal, producing edges with different configurations.
Bernadac, A.; Wu, L.-F.; Santini, C.-L.; Vidaud, C.; Sturgis, J. N.; Menguy, N.; Bergam, P.; Nicoletti, C.; Xiao, T.
2012-01-01
Spinae are tubular surface appendages broadly found in Gram-negative bacteria. Little is known about their architecture, function or origin. Here, we report structural characterization of the spinae from marine bacteria Roseobacter sp. YSCB. Electron cryo-tomography revealed that a single filament winds into a hollow flared base with progressive change to a cylinder. Proteinase K unwound the spinae into proteolysis-resistant filaments. Thermal treatment ripped the spinae into ribbons that were melted with prolonged heating. Circular dichroism spectroscopy revealed a dominant beta-structure of the spinae. Differential scanning calorimetry analyses showed three endothermic transformations at 50–85°C, 98°C and 123°C, respectively. The heating almost completely disintegrated the spinae, abolished the 98°C transition and destroyed the beta-structure. Infrared spectroscopy identified the amide I spectrum maximum at a position similar to that of amyloid fibrils. Therefore, the spinae distinguish from other bacterial appendages, e.g. flagella and stalks, in both the structure and mechanism of assembly. PMID:23230515
Suzuki; Yoshino; Nishida; Ohkita; Tsuji
2000-09-08
A series of 1,3,5-trithianes 1-3 having diarylmethylene units were designed as novel electron donors giving highly colored cationic species upon oxidation. They were prepared along with the dithiane and dithiazine derivatives 4-6 by the reactions of lithiated heterocycles with diaryl ketones followed by dehydration. Voltammetric analyses indicate that a large structural change and/or transannular bonding are induced during their electrochemical oxidation. Mono(diarylmethylene) derivative 1a exhibits electrochromism with vivid change in color from faintly yellow to deep blue with concomitant rotation around the exocyclic bond. Both of the strongly colored salts obtained upon oxidation of 2,4-bis- and 2,4,6-tris(diarylmethylene)-1,3,5-trithianes (2aa and 3) consist of the dications with a 1,2,4-trithiane ring, suggesting the easy skeletal rearrangement of the transannular dications with a trithiabicylo[3.1.0]hexane ring. Upon reduction of these salts were obtained bright yellow 12 and 13, respectively, with high electron-donating properties due to the tetraarylbutadiene-type conjugation, thus giving another class of electrochromic compounds.
Submolecular resolution in scanning probe images of Sn-phthalocyanines on Cu(1 0 0) using metal tips
NASA Astrophysics Data System (ADS)
Buchmann, Kristof; Hauptmann, Nadine; Foster, Adam S.; Berndt, Richard
2017-10-01
Single Sn-phthalocyanine (SnPc) molecules adsorb on Cu(1 0 0) with the Sn ion above (Sn-up) or below (Sn-down) the molecular plane. Here we use a combination of atomic force microscopy (AFM), scanning tunnelling microscopy (STM) and first principles calculations to understand the adsorption configuration and origin of observed contrast of molecules in the Sn-down state. AFM with metallic tips images the pyrrole nitrogen atoms in these molecules as attractive features while STM reveals a chirality of the electronic structure of the molecules close to the Fermi level E_F, which is not observed in AFM. Using density functional theory calculations, the origin of the submolecular contrast is analysed and, while the electrostatic forces turn out to be negligible, the van der Waals interaction between the phenyl rings of SnPc and the substrate deform the molecule, push the pyrrole nitrogen atoms away from the substrate and thus induce the observed submolecular contrast. Simulated STM images reproduce the chirality of the electronic structure near E_F.
Developments In Electronic Speckle Pattern Interferometry For Automotive Vibration Analysis.
NASA Astrophysics Data System (ADS)
Davies, Jeremy C.; Buckberry, Clive H.; Jones, Julian D. C.; Pannell, Chris N.
1989-01-01
The incorporation of monomode fibre optics into an argon ion powered Electronic Speckle Pattern Interferometer (ESPI) is reported. The system, consisting of an optics assembly linked to the laser and a CCD camera transceiver, flexibly connected by 40m of monomode fibre optic cable to the optics, has been used to analyse the modal behaviour of structures up to 5m X 3m X 2m in size. Phase modulation of the reference beam in order to operate in a heterodyne mode has been implemented using a piezo-electric crystal operating on the monomode fibre. A new mode of operation - sequential time-average subtraction - and the results of a new processing algorithm are also reported. Their implementation enables speckle free, time-average vibration maps to be generated in real-time on large, unstable structures. Example results for a four cylinder power unit, a vehicle body shell component and an engine oil pan are included. In all cases the analysis was conducted in a general workshop environment without the need for vibration isolation facilities.
Arjunan, V; Jayaprakash, A; Carthigayan, K; Periandy, S; Mohan, S
2013-05-01
Experimental and theoretical quantum chemical studies were carried out on 4-hydroxybenzohydrazide (4HBH) and 4-aminobenzohydrazide (4ABH) using FTIR and FT-Raman spectral data. The structural characteristics and vibrational spectroscopic analysis were carried performed by quantum chemical methods with the hybrid exchange-correlation functional B3LYP using 6-31G(**), 6-311++G(**) and aug-cc-pVDZ basis sets. The most stable conformer of the title compounds have been determined from the analysis of potential energy surface. The stable molecular geometries, electronic and thermodynamic parameters, IR intensities, harmonic vibrational frequencies, depolarisation ratio and Raman intensities have been computed. Molecular electrostatic potential and frontier molecular orbitals were constructed to understand the electronic properties. The potential energy distributions (PEDs) were calculated to explain the mixing of fundamental modes. The theoretical geometrical parameters and the fundamental frequencies were compared with the experimental. The interactions of hydroxy and amino group substitutions on the characteristic vibrations of the ring and hydrazide group have been analysed. Copyright © 2013 Elsevier B.V. All rights reserved.
Modified band alignment effect in ZnO/Cu2O heterojunction solar cells via Cs2O buffer insertion
NASA Astrophysics Data System (ADS)
Eom, Kiryung; Lee, Dongyoon; Kim, Seunghwan; Seo, Hyungtak
2018-02-01
The effects of a complex buffer layer of cesium oxide (Cs2O) on the photocurrent response in oxide heterojunction solar cells (HSCs) were investigated. A p-n junction oxide HSC was fabricated using p-type copper (I) oxide (Cu2O) and n-type zinc oxide (ZnO); the buffer layer was inserted between the Cu2O and fluorine-doped tin oxide (FTO). Ultraviolet-visible (UV-vis) and x-ray and ultraviolet photoelectron spectroscopy analyses were performed to characterize the electronic band structures of cells, both with and without this buffer layer. In conjunction with the measured band electronic structures, the significantly improved visible-range photocurrent spectra of the buffer-inserted HSC were analyzed in-depth. As a result, the 1 sun power conversion efficiency was increased by about three times by the insertion of buffer layer. The physicochemical origin of the photocurrent enhancement was mainly ascribed to the increased photocarrier density in the buffer layer and modified valence band offset to promote the effective hole transfer at the interface to FTO on the band-alignment model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jiarui, E-mail: jrhuang@mail.anhu.edu.cn; Xu, Xiaojuan; Gu, Cuiping, E-mail: cpgu2008@mail.anhu.edu.cn
Graphical abstract: -- Abstract: Nanoflake-based flower-like and hollow microsphere-like hydrated tungsten oxide architectures were selectively synthesized by acidic precipitation of sodium tungstate solution at mild temperature. Several techniques, such as X-ray diffraction, scanning electron microscopy, thermogravimetric-differential thermalgravimetric analysis, transmission electron microscopy, and Brunauer–Emmett–Teller N{sub 2} adsorption–desorption analyses, were used to characterize the structure and morphology of the products. The experimental results show that the nanoflake-based flower-like and hollow sphere-like WO{sub 3}·H{sub 2}O architectures can be obtained by changing the concentration of sodium tungstate solution. The possible formation process based on the aggregation–recrystallization mechanism is proposed. The corresponding tungsten oxide three-dimensionalmore » architectures were obtained after calcination at 450 °C. Finally, the obtained WO{sub 3} three-dimensional architectures were used as photocatalyst in the experiments. Compared with WO{sub 3} microflowers, the as-prepared WO{sub 3} hollow microspheres exhibit superior photocatalytic property on photocatalytic decomposition of Rhodamine B due to their hollow porous hierarchical structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Yang; Ramanathan, Arvind; Glover, Karen
BECN1 is essential for autophagy, a critical eukaryotic cellular homeostasis pathway. Here in this study, we delineate a highly conserved BECN1 domain located between previously characterized BH3 and coiled-coil domains and elucidate its structure and role in autophagy. The 2.0 Å sulfur-single-wavelength anomalous dispersion X-ray crystal structure of this domain demonstrates that its N-terminal half is unstructured while its C-terminal half is helical; hence, we name it the flexible helical domain (FHD). Circular dichroism spectroscopy, double electron–electron resonance–electron paramagnetic resonance, and small-angle X-ray scattering (SAXS) analyses confirm that the FHD is partially disordered, even in the context of adjacent BECN1more » domains. Molecular dynamic simulations fitted to SAXS data indicate that the FHD transiently samples more helical conformations. FHD helicity increases in 2,2,2-trifluoroethanol, suggesting it may become more helical upon binding. Finally, cellular studies show that conserved FHD residues are required for starvation-induced autophagy. Thus, the FHD likely undergoes a binding-associated disorder-to-helix transition, and conserved residues critical for this interaction are essential for starvation-induced autophagy.« less
Roman-Lopez, J; Correcher, V; Garcia-Guinea, J; Rivera, T; Lozano, I B
2014-01-01
The luminescence (cathodoluminescence and thermoluminescence) properties of natural bones (Siberian mammoth and adult elephant), commercial hydroxyapatite and collagen were analyzed. Chemical analyses of the natural bones were determined using by Electron Probe Micro-Analysis (EMPA). Structural, molecular and thermal characteristics were determined by X-ray Diffraction (XRD), Raman spectroscopy and Differential Thermal and Thermogravimetric analysis (DTA-TG). Cathodoluminescence (CL) spectra of natural bones and collagen showed similar intense broad bands at 440 and 490 nm related to luminescence of the tetrahedral anion [Formula: see text] or structural defects. A weaker luminescence exhibited at 310 nm could be attributed to small amount of rare earth elements (REEs). Four luminescent bands at 378, 424, 468 and 576 nm were observed in the commercial hydroxyapatite (HAP). Both natural bones and collagen samples exhibited natural thermoluminescence (NTL) with well-defined glow curves whereas that the induced thermoluminescence (ITL) only appears in the samples of commercial hydroxyapatite and collagen. Additional explanations for the TL anomalous fading of apatite, as a crucial difficulty performing dosimetry and dating, are also considered. Copyright © 2013 Elsevier B.V. All rights reserved.
Biosynthesis of coenzyme Q in eukaryotes.
Kawamukai, Makoto
2016-01-01
Coenzyme Q (CoQ) is a component of the electron transport chain that participates in aerobic cellular respiration to produce ATP. In addition, CoQ acts as an electron acceptor in several enzymatic reactions involving oxidation-reduction. Biosynthesis of CoQ has been investigated mainly in Escherichia coli and Saccharomyces cerevisiae, and the findings have been extended to various higher organisms, including plants and humans. Analyses in yeast have contributed greatly to current understanding of human diseases related to CoQ biosynthesis. To date, human genetic disorders related to mutations in eight COQ biosynthetic genes have been reported. In addition, the crystal structures of a number of proteins involved in CoQ synthesis have been solved, including those of IspB, UbiA, UbiD, UbiX, UbiI, Alr8543 (Coq4 homolog), Coq5, ADCK3, and COQ9. Over the last decade, knowledge of CoQ biosynthesis has accumulated, and striking advances in related human genetic disorders and the crystal structure of proteins required for CoQ synthesis have been made. This review focuses on the biosynthesis of CoQ in eukaryotes, with some comparisons to the process in prokaryotes.
NASA Astrophysics Data System (ADS)
Mahbooba, Zaynab; West, Harvey; Harrysson, Ola; Wojcieszynski, Andrzej; Dehoff, Ryan; Nandwana, Peeyush; Horn, Timothy
2017-03-01
In additive manufacturing, microstructural control is feasible via processing parameter alteration. However, the window for parameter variation for certain materials, such as Ti-6Al-4V, is limited, and alternative methods must be employed to customize microstructures. Grain refinement and homogenization in cast titanium alloys has been demonstrated through the addition of hypoeutectic concentrations of boron. This work explores the influence of 0.00 wt.%, 0.25 wt.%, 0.50 wt.%, and 1.0 wt.% boron additions on the microstructure and bulk mechanical properties of Ti-6Al-4V samples fabricated in an Arcam A2 electron beam melting (EBM) system with commercial processing parameters for Ti-6Al-4V. Analyses of EBM fabricated Ti-6Al-4V + B indicate that the addition of 0.25-1.0 wt.% boron progressively refines the grain structure, and it improves hardness and elastic modulus. Despite a reduction in size, the β grain structure remained columnar as a result of directional heat transfer during EBM fabrication.
NASA Astrophysics Data System (ADS)
García, Gregorio; Navarro, Amparo; Granadino-Roldán, José Manuel; Garzón, Andrés; Ruiz, Tomás Peña; Fernández-Liencres, Maria Paz; Melguizo, Manuel; Peñas, Antonio; Pongor, Gábor; Eőri, János; Fernández-Gómez, Manuel
2010-08-01
The molecular structure of 2-hydroxy-styrene has been investigated at DFT (B3LYP, mPW1PW91) and MP2 levels with an assortment of Pople's and Dunning's basis sets within the isolated molecule approximation. The presence of intramolecular hydrogen bonds has been theoretically characterized through a topological analysis of the electron density according to the Atom-In-Molecules, AIM, theory. The conformational equilibrium has been pursued by means of an analysis of the hydroxyl-phenyl and vinyl-phenyl internal rotation barriers. This analysis also allowed getting an insight into the effects governing the torsion barriers and the preferred conformations. A twofold scheme has been used for this goal, i.e. the total electronic energy changes and the natural bonding orbital, NBO, schemes. The vibrational spectrum was recorded and then calculated at DFT-B3LYP/6-31G∗ and cc-pVTZ levels. Two scaling methods, SQMFF and linear scaling, have been applied on the theoretical spectrum in order to analyse the experimental one. The results point out that at least three different conformers coexist at room temperature.
Gutiérrez, Manuel; Llobera, Andreu; Vila-Planas, Jordi; Capdevila, Fina; Demming, Stefanie; Büttgenbach, Stephanus; Mínguez, Santiago; Jiménez-Jorquera, Cecilia
2010-07-01
A multiparametric system able to classify red and white wines according to the grape varieties and for analysing some specific parameters is presented. The system, known as hybrid electronic tongue, consists of an array of electrochemical microsensors and a colorimetric optofluidic system. The array of electrochemical sensors is composed of six ISFETs based sensors, a conductivity sensor, a redox potential sensor and two amperometric electrodes, an Au microelectrode and a microelectrode for sensing electrochemical oxygen demand. The optofluidic system is entirely fabricated in polymer technology and comprises a hollow structure, air mirrors, microlenses and self-alignment structures. The data obtained from these sensors has been treated with multivariate advanced tools; Principal Component Analysis (PCA), for the patterning recognition and classification of wine samples, and Partial-Least Squares (PLS) regression, for quantification of several chemical and optical parameters of interest in wine quality. The results have demonstrated the utility of this system for distinguishing the samples according to the grape variety and year vintage and for quantifying several sample parameters of interest in wine quality control.
NASA Astrophysics Data System (ADS)
Roy, Harrison; Hamlow, Lucas; Lee, Justin; Rodgers, M. T.; Berden, Giel; Oomens, Jos
2016-06-01
The chemical and structural diversity and the extent of post-transcriptional modification of RNA is remarkable! Presently, there are 142 different naturally-occurring and many more synthetically modified nucleosides known. Uridine (Urd) is the most commonly modified nucleoside among those that occur naturally, but has also been an important target for synthesis and development of modified nucleosides for pharmaceutical applications. Indeed, modified nucleosides are of pharmaceutical interest due to their bioactivities. In particular, 5-bromouridine (br5Urd) has been shown to exhibit antiviral activity to human immunodeficiency virus and has been used in RNA labeling studies. Halogenation is a common modification employed in pharmaceutical studies that enables systematic variation is the electronic properties of the molecule of interest due to the availability of halogen substituents that vary in size, dipole moment, polarizability, and electron withdrawing properties. In order to elucidate the influence of 5-halogenation on the intrinsic gas-phase structure and stability on the protonated form of Urd, synergistic spectroscopic and theoretical studies of the protonated forms of the 5-halouridines are performed here, where x5Urd = 5-fluorouridine (f5Urd), 5-chlorouridine (cl5Urd), br5Urd, and 5-iodouridine (i5Urd). Infrared multiple photon dissociation (IRMPD) action spectra of the protonated forms of the 5-halouridines, [x5Urd+H]+, are measured over the IR fingerprint region using the FELIX free electron laser and the hydrogen stretching region using an OPO/OPA laser from 3300-3800 wn. Complementary electronic structure calculations are performed to determine the stable low-energy conformations available to these species and to predict their IR spectra. Comparative analyses of the measured IRMPD spectra and predicted IR spectra are performed to elucidate the preferred sites of protonation, and the low-energy tautomeric conformations that are populated by electrospray ionization to be determined. Comparisons among these systems and to results previously reported for the protonated form of uridine, [Urd+H]+, provides insight into the impact of the 5-halogen substituent on the structures and IR signatures.
Tian, Wen-Juan; Zhao, Li-Juan; Chen, Qiang; Ou, Ting; Xu, Hong-Guang; Zheng, Wei-Jun; Zhai, Hua-Jin; Li, Si-Dian
2015-04-07
Gas-phase anion photoelectron spectroscopy (PES) is combined with global structural searches and electronic structure calculations at the hybrid Becke 3-parameter exchange functional and Lee-Yang-Parr correlation functional (B3LYP) and single-point coupled-cluster with single, double, and perturbative triple excitations (CCSD(T)) levels to probe the structural and electronic properties and chemical bonding of the B4O4 (0/-) clusters. The measured PES spectra of B4O4 (-) exhibit a major band with the adiabatic and vertical detachment energies (ADE and VDE) of 2.64 ± 0.10 and 2.81 ± 0.10 eV, respectively, as well as a weak peak with the ADE and VDE of 1.42 ± 0.08 and 1.48 ± 0.08 eV. The former band proves to correspond to the Y-shaped global minimum of Cs B4O4 (-) ((2)A″), with the calculated ADE/VDE of 2.57/2.84 eV at the CCSD(T) level, whereas the weak band is associated with the second lowest-energy, rhombic isomer of D2h B4O4 (-) ((2)B2g) with the predicted ADE/VDE of 1.43/1.49 eV. Both anion structures are planar, featuring a B atom or a B2O2 core bonded with terminal BO and/or BO2 groups. The same Y-shaped and rhombic structures are also located for the B4O4 neutral cluster, albeit with a reversed energy order. Bonding analyses reveal dual three-center four-electron (3c-4e) π hyperbonds in the Y-shaped B4O4 (0/-) clusters and a four-center four-electron (4c-4e) π bond, that is, the so-called o-bond in the rhombic B4O4 (0/-) clusters. This work is the first experimental study on a molecular system with an o-bond.
NASA Astrophysics Data System (ADS)
Roudjane, Mourad; Codd, Terrance Joseph; Chen, Ming-Wei; Tran, Henry; Melnik, Dmitry G.; Miller, Terry A.; Stanton, John F.
2015-06-01
The vibronic structure of the tilde{A}-tilde{X} electronic spectrum of NO_3 has been observed using both room-temperature and jet-cooled samples. A recent analysis of this structure is consistent with the Jahn-Teller effect (JTE) in the e^' ν_3 vibrational mode (N-O stretch) being quite strong while the JTE in the e^' ν_4 mode (O-N-O) bend) is rather weak. Electronic structure calculations qualitatively predict these results but the calculated magnitude of the JTE is quantitatively inconsistent with the spectral analysis. Rotationally resolved spectra have been obtained for over a dozen vibronic bands of the tilde{A}-tilde{X} electronic transition in NO_3. An analysis of these spectra should provide considerably more experimental information about the JTE in the tilde{A} state of NO_3 as the rotational structure should be quite sensitive to the geometric distortion of the molecule due to the JTE. This talk will focus upon the parallel bands, which terminate on tilde{A} state levels of a''_1 vibronic symmetry, which were the subject of a preliminary analysis reported at this meeting in 2014. We have now recorded the rotational structure of over a half-dozen parallel bands and have completed analysis on the 3^1_0 and 3^1_0 4^1_0 transitions with several other bands being reasonably well understood. Two general conclusions emerge from this work. (i) All the spectral bands show evidence of perturbations which can reasonably be assumed to result from interactions of the observed tilde{A} state levels with high vibrational levels of the tilde{X} state. The perturbations range from severe in some bands to quite modest in others. (ii) Analyses of observed spectra, insofar as the perturbations permit, have all been performed with an oblate symmetric top model including only additional spin-rotation effects. This result is, of course, consistent with an effective, undistorted geometry for NO_3 of D3h symmetry on the rotational timescale.
NASA Astrophysics Data System (ADS)
Habermann, D.; Götte, T.; Meijer, J.; Stephan, A.; Richter, D. K.; Niklas, J. R.
2000-03-01
The rare-earth element (REE) distribution in natural apatite is analysed by micro-PIXE, cathodoluminescence (CL) microscopy and spectroscopy and electron spin resonance (ESR) spectroscopy. The micro-PIXE analyses of an apatite crystal from Cerro de Mercado (Mexico) and the summary of 20 analyses of six francolite (conodonts of Triassic age) samples indicate that most of the REEs are enriched in apatite and francolite comparative to average shale standard (NASC). The analyses of fossil francolite revealing the REE-distribution not to be in balance with the REE-distribution of seawater and fish bone debris. Strong inhomogenous lateral REE-distribution in fossil conodont material is shown by CL-mapping and most probably not being a vital effect. Therefore, the resulting REE-signal from fossil francolite is the sum of vital and post-mortem incorporation. The necessary charge compensation for the substitution of divalent Ca by trivalent REE being done by different kind of electron defects and defect ions.
Role of phi cells and the endodermis under salt stress in Brassica oleracea.
Fernandez-Garcia, N; Lopez-Perez, L; Hernandez, M; Olmos, E
2009-01-01
Phi cell layers were discovered in the 19th century in a small number of species, including members of the Brassicaceae family. A mechanical role was first suggested for this structure; however, this has never been demonstrated. The main objective of the present work was to analyse the ultrastructure of phi cells, their influence on ion movement from the cortex to the stele, and their contribution to salt stress tolerance in Brassica oleracea. Transmission electron microscopy and X-ray microanalysis studies were used to analyse the subcellular structure and distribution of ions in phi cells and the endodermis under salt stress. Ion movement was analysed using lanthanum as an apoplastic tracer. The ultrastructural results confirm that phi cells are specialized cells showing cell wall ingrowths in the inner tangential cell walls. X-ray microanalysis confirmed a build-up of sodium. Phi thickenings were lignified and lanthanum moved periplasmically at this level. To the best of our knowledge, this is the first study reporting the possible role of the phi cells as a barrier controlling the movement of ions from the cortex to the stele. Therefore, the phi cell layer and endodermis seem to be regulating ion transport in Brassica oleracea under salt stress.
Fukuda, Yohta; Tse, Ka Man; Nakane, Takanori; Nakatsu, Toru; Suzuki, Mamoru; Sugahara, Michihiro; Inoue, Shigeyuki; Masuda, Tetsuya; Yumoto, Fumiaki; Matsugaki, Naohiro; Nango, Eriko; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Murphy, Michael E P; Inoue, Tsuyoshi; Iwata, So; Mizohata, Eiichi
2016-03-15
Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes.
NASA Astrophysics Data System (ADS)
Kirner, Sabrina V.; Wirth, Thomas; Sturm, Heinz; Krüger, Jörg; Bonse, Jörn
2017-09-01
The chemical characteristics of two different types of laser-induced periodic surface structures (LIPSS), so-called high and low spatial frequency LIPSS (HSFL and LSFL), formed upon irradiation of titanium surfaces by multiple femtosecond laser pulses in air (30 fs, 790 nm, 1 kHz), are analyzed by various optical and electron beam based surface analytical techniques, including micro-Raman spectroscopy, energy dispersive X-ray analysis, X-ray photoelectron spectroscopy, and Auger electron spectroscopy. The latter method was employed in a high-resolution mode being capable of spatially resolving even the smallest HSFL structures featuring spatial periods below 100 nm. In combination with an ion sputtering technique, depths-resolved chemical information of superficial oxidation processes was obtained, revealing characteristic differences between the two different types of LIPSS. Our results indicate that a few tens of nanometer shallow HSFL are formed on top of a ˜150 nm thick graded superficial oxide layer without sharp interfaces, consisting of amorphous TiO2 and partially crystallized Ti2O3. The larger LSFL structures with periods close to the irradiation wavelength originate from the laser-interaction with metallic titanium. They are covered by a ˜200 nm thick amorphous oxide layer, which consists mainly of TiO2 (at the surface) and other titanium oxide species of lower oxidation states underneath.
NASA Astrophysics Data System (ADS)
Faizan, Mohd; Alam, Mohammad Jane; Afroz, Ziya; Rodrigues, Vítor Hugo Nunes; Ahmad, Shabbir
2018-03-01
The present work is focused on the crystal structure, vibrational spectroscopy and DFT calculations of hydrogen bonded 2,3-pyrazinedicorboxylic acid and 2-amino-4-hydroxy-6-methylpyrimidine (PDCA-.AHMP+) crystal. The crystal structure has been determined using single crystal X-ray diffraction analysis which shows that the crystal belongs to monoclinic space group P21/n. The PDCA-.AHMP+ crystal has been characterized by FTIR, FT-Raman and FT-NMR spectroscopic techniques. The FTIR and FT-Raman spectra of the complex have unique spectroscopic feature as compared with those of the starting material to confirm salt formation. The theoretical vibrational studies have been performed to understand the modes of the vibrations of asymmetric unit of the complex by DFT methods. Hirschfeld surface and 2D fingerprint plots analyses were carried out to investigate the intermolecular interactions and its contribution in the building of PDCA-.AHMP+ crystal. The experimental and simulated 13C and 1H NMR studies have assisted in structural analysis of PDCA-.AHMP+ crystal. The electronic spectroscopic properties of the complex were explored by the experimental as well as theoretical electronic spectra simulated using TD-DFT/IEF-PCM method at B3LYP/6-311++G (d,p) level of theory. In addition, frontier molecular orbitals, molecular electrostatic potential map (MEP) and nonlinear optical (NLO) properties using DFT method have been also presented.
Otaki, Hiroki; Yagi, Kiyoshi; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Sugita, Yuji
2016-10-06
An accurate theoretical prediction of the vibrational spectrum of polypeptides remains to be a challenge due to (1) their conformational flexibility and (2) non-negligible anharmonic effects. The former makes the search for conformers that contribute to the spectrum difficult, and the latter requires an expensive, quantum mechanical calculation for both electrons and vibrations. Here, we propose a new theoretical approach, which implements an enhanced conformational sampling by the replica-exchange molecular dynamics method, a structural clustering to identify distinct conformations, and a vibrational structure calculation by the second-order vibrational quasi-degenerate perturbation theory (VQDPT2). A systematic mode-selection scheme is developed to reduce the cost of VQDPT2 and the generation of a potential energy surface by the electronic structure calculation. The proposed method is applied to a pentapeptide, SIVSF-NH 2 , for which the infrared spectrum has recently been measured in the gas phase with high resolution in the OH and NH stretching region. The theoretical spectrum of the lowest energy conformer is obtained with a mean absolute deviation of 11.2 cm -1 from the experimental spectrum. Furthermore, the NH stretching frequencies of the five lowest energy conformers are found to be consistent with the literature values measured for small peptides with a similar secondary structure. Therefore, the proposed method is a promising way to analyze the vibrational spectrum of polypeptides.
Origins of contrasting copper coordination geometries in crystalline copper sulfate pentahydrate.
Ruggiero, Michael T; Erba, Alessandro; Orlando, Roberto; Korter, Timothy M
2015-12-14
Metal-aqua ion ([M(H2O)n](X+)) formation is a fundamental step in mechanisms that are central to enzymatic and industrial catalysis. Past investigations of such ions have yielded a wealth of information regarding their properties, however questions still exist involving the exact structures of these complexes. A prominent example of this is hexaaqua copper(II) ([Cu(H2O)6](2+)), with the solution versus gas-phase configurations under debate. The differences are often attributed to the intermolecular interactions between the bulk solvent and the aquated complex, resulting in structures stabilized by extended hydrogen-bonding networks. Yet solution phase systems are difficult to study due to the lack of atomic-level positional details. Crystalline solids are ideal models for comparative study, as they contain fixed structures that can be fully characterized using diffraction techniques. Here, crystalline copper sulfate pentahydrate (CuSO4·5H2O), which contains two unique copper-water geometries, was studied in order to elucidate the origin of these contrasting hydrated metal envrionments. A combination of solid-state density functional theory and low-temperature X-ray diffraction was used to probe the electronic origins of this phenomenon. This was accomplished through implementation of crystal orbital overlap population and crystal orbital Hamiltonian population analyses into a developmental version of the CRYSTAL14 software. These new computational methods help highlight the delicate interplay between electronic structure and metal-water geometries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xing; Hou, Gao-Lei; Wang, Xuefeng
2016-04-21
[Ni(dddt) 2] – (dddt = 5,6-dihydro-1,4-dithiine-2,3-dithiolate) and [Ni(edo) 2] – (edo = 5,6-dihydro-1,4-dioxine-2,3-dithiolate) are two donor-type nickel bis(dithiolene) complexes, with the tendency of donating low binding energy electrons. These two structurally similar complexes differ only with respect to the outer atoms in the ligand framework where the former has four S atoms while the latter has four O atoms. Herein, we report a negative ion photoelectron spectroscopy (NIPES) study on these two complexes to probe electronic structures of the anions and their corresponding neutrals. The NIPE spectra exhibit the adiabatic electron detachment energy (ADE) or, equivalently, the electron affinity (EA)more » of the neutral [Ni(L) 2] 0 to be relatively low for this type complexes, 2.780 and 2.375 eV for L = dddt and edo, respectively. The 0.4 eV difference in ADEs shows significant substitution effect for sulfur in dddt by oxygen in edo, i.e., noninnocence of the ligands, which has decreased the electronic stability of [Ni(edo) 2] – by lowering its electron binding energy by ~0.4 eV. The observed substitution effect on gas-phase EA values correlates well with the measured redox potentials for [Ni(dddt) 2] –/0 and [Ni(edo) 2] –/0 in solutions. The singlet-triplet splitting (ΔE ST) of [Ni(dddt) 2] 0 and [Ni(edo) 2] 0 is also determined from the spectra to be 0.57 and 0.53 eV, respectively. Accompanying DFT calculations and molecular orbital (MO) composition analyses show significant ligand contributions to the redox MOs and allow the components of the orbitals involved in each electronic transition and spectral assignments to be identified.« less
NASA Astrophysics Data System (ADS)
Kanerva, M.; Koerselman, J. R.; Revitzer, H.; Johansson, L.-S.; Sarlin, E.; Rautiainen, A.; Brander, T.; Saarela, O.
2014-06-01
Spacecraft include sensitive electronics that must be protected against radiation from the space environment. Hybrid laminates consisting of tungsten layers and carbon- fibre-reinforced epoxy composite are a potential solution for lightweight, efficient, and protective enclosure material. Here, we analysed six different surface treatments for tungsten foils in terms of the resulting surface tension components, composition, and bonding strength with epoxy. A hydrofluoric-nitric-sulfuric-acid method and a diamond-like carbon-based DIARC® coating were found the most potential surface treatments for tungsten foils in this study.
As-received microstructure of a SiC/Ti-15-3 composite
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Hull, David R.; Leonhardt, Todd A.
1988-01-01
A silicon carbide fiber reinforced titanium (Ti-15V-3Cr-3Sn-3Al) composite is metallographically examined. Several methods for examining composite materials are investigated and documented. Polishing techniques for this material are described. An interference layering method is developed to reveal the structure of the fiber, the reaction zone, and various phases within the matrix. Microprobe and transmission electron microscope (TEM) analyses are performed on the fiber/matrix interface. A detailed description of the fiber distribution as well as the microstructure of the fiber and matrix are presented.
A New Technique for Preserving the Form of Artificially Inflated Endophalli of Bees.
Dutra, A L; Oliveira, R
2017-04-01
We present a simple technique for keeping the form of artificially expanded endophalli in bees (Hymenoptera). Endophalli were inflated using the introduction of low melting-point agarose from a syringe inserted in the anterior opening of the metasoma. Under refrigeration, the endophalli kept their expanded shape for up to three days allowing the description of structure, morphometric analyses, and examination of the external sculpturing of the cuticle under scanning electron microscope. The technique provides new possibilities for the study of functional morphology, sexual selection, and reconstruction of bee phylogeny.
Mechanical properties of Al-Cu alloy-SiC composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anggara, B. S., E-mail: anggorobs1960@yahoo.com; Handoko, E.; Soegijono, B.
The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to getmore » better quality of back to back hardness Vickers of Al-Cu alloys.« less
Mechanical properties of Al-Cu alloy-SiC composites
NASA Astrophysics Data System (ADS)
Anggara, B. S.; Handoko, E.; Soegijono, B.
2014-09-01
The synthesis of aluminum (Al) alloys, Al-Cu, from mixture 96.2 % Al and 3.8 % Cu has been prepared by melting process at a temperature of 1200°C. The adding 12.5 wt% up to 20 wt% of SiC on Al-Cu alloys samples has been investigated. The structure analyses were examined by X-Ray Diffractometer (XRD) and scanning electron microscope (SEM). Moreover, the morphology of Al-Cu alloys has been seen as structure in micrometer range. The hardness was measured by hardness Vickers method. According to the results, it can be assumed that the 15 wt% of SiC content is prefer content to get better quality of back to back hardness Vickers of Al-Cu alloys.
Aslan, Mikail; Davis, Jack B A; Johnston, Roy L
2016-03-07
The global optimisation of small bimetallic PdCo binary nanoalloys are systematically investigated using the Birmingham Cluster Genetic Algorithm (BCGA). The effect of size and composition on the structures, stability, magnetic and electronic properties including the binding energies, second finite difference energies and mixing energies of Pd-Co binary nanoalloys are discussed. A detailed analysis of Pd-Co structural motifs and segregation effects is also presented. The maximal mixing energy corresponds to Pd atom compositions for which the number of mixed Pd-Co bonds is maximised. Global minimum clusters are distinguished from transition states by vibrational frequency analysis. HOMO-LUMO gap, electric dipole moment and vibrational frequency analyses are made to enable correlation with future experiments.
Zhu, Hucheng; Chen, Chunmei; Liu, Junjun; Sun, Bin; Wei, Guangzheng; Li, Yan; Zhang, Jinwen; Yao, Guangmin; Luo, Zengwei; Xue, Yongbo; Zhang, Yonghui
2015-07-01
Eight polyprenylated spirocyclic acylphloroglucinol derivatives (PSAPs), hyperascyrones A-H, were isolated from the aerial parts of Hypericum ascyron Linn., together with six known analogs. Their structures were established by spectroscopic analyses including HRESIMS, 1D and 2D NMR, and their absolute configurations were determined by electronic circular dichroism calculations (ECD, Gaussian 09). Structures of previously reported tomoeones C, D, G, and H were revised. Hyperascyrones A-H were evaluated for their cytotoxic and anti-HIV-1 activities, with hyperascyrones C and G exhibiting significant cytotoxicities against HL-60 cell lines with IC50 values of 4.22 and 8.36 μM, respectively. In addition, the chemotaxonomic significance of these compounds was also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Semantic Technologies for Re-Use of Clinical Routine Data.
Kreuzthaler, Markus; Martínez-Costa, Catalina; Kaiser, Peter; Schulz, Stefan
2017-01-01
Routine patient data in electronic patient records are only partly structured, and an even smaller segment is coded, mainly for administrative purposes. Large parts are only available as free text. Transforming this content into a structured and semantically explicit form is a prerequisite for querying and information extraction. The core of the system architecture presented in this paper is based on SAP HANA in-memory database technology using the SAP Connected Health platform for data integration as well as for clinical data warehousing. A natural language processing pipeline analyses unstructured content and maps it to a standardized vocabulary within a well-defined information model. The resulting semantically standardized patient profiles are used for a broad range of clinical and research application scenarios.
Effect of ion irradiation on the surface, structural and mechanical properties of brass
NASA Astrophysics Data System (ADS)
Ahmad, Shahbaz; Bashir, Shazia; Ali, Nisar; Umm-i-Kalsoom; Yousaf, Daniel; Faizan-ul-Haq; Naeem, Athar; Ahmad, Riaz; Khlaeeq-ur-Rahman, M.
2014-04-01
Modifications to the surface, structural and mechanical properties of brass after ion irradiation have been investigated. Brass targets were bombarded by carbon ions of 2 MeV energy from a Pelletron linear accelerator for various fluences ranging from 56 × 1012 to 26 × 1013 ions/cm2. A scanning electron microscope and X-ray diffractometer were utilized to analyze the surface morphology and crystallographic structure respectively. To explore the mechanical properties e.g., yield stress, ultimate tensile strength and microhardness of irradiated brass, an universal tensile testing machine and Vickers microhardness tester were used. Scanning electron microscopy results revealed an irregular and randomly distributed sputter morphology for a lower ion fluence. With increasing ion fluence, the incoherently shaped structures were transformed into dendritic structures. Nano/micro sized craters and voids, along with the appearance of pits, were observed at the maximum ion fluence. From X-ray diffraction results, no new phases were observed to be formed in the brass upon irradiation. However, a change in the peak intensity and higher and lower angle shifting were observed, which represents the generation of ion-induced defects and stresses. Analyses confirmed modifications in the mechanical properties of irradiated brass. The yield stress, ultimate tensile strength and hardness initially decreased and then increased with increasing ion fluence. The changes in the mechanical properties of irradiated brass are well correlated with surface and crystallographic modifications and are attributed to the generation, augmentation, recombination and annihilation of the ion-induced defects.
Chen, I-Li; Wei, Yu-Chen; Lu, Kueih-Tzu; Chen, Tsan-Yao; Hu, Chi-Chang; Chen, Jin-Ming
2015-10-07
Binary oxides with atomic ratios of Ru/Ti = 90/10, 70/30, and 50/50 were fabricated using H2O2-oxidative precipitation with the assistance of a cetyltrimethylammonium bromide (CTAB) template, followed by a thermal treatment at 200 °C. The characteristics of electron structure and local structure extracted from X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM) analyses indicate that incorporation of Ti into the RuO2 lattice produces not only the local structural distortion of the RuO6 octahedra in (Ru-Ti)O2 with an increase in the central Ru-Ru distance but also a local crystallization of RuO2. Among the three binary oxides studied, (Ru70-Ti30)O2 exhibits a capacitance improvement of about 1.4-fold relative to the CTAB-modified RuO2, mainly due to the enhanced crystallinity of the distorted RuO6 structure rather than the surface area effect. Upon increasing the extent of Ti doping, the deteriorated supercapacitive performance of (Ru50-Ti50)O2 results from the formation of localized nano-clusters of TiO2 crystallites. These results provide insight into the important role of Ti doping in RuO2 that boosts the pseudocapacitive performance for RuO2-based supercapacitors. The present result is crucial for the design of new binary oxides for supercapacitor applications with extraordinary performance.
NASA Astrophysics Data System (ADS)
Zhu, Yanlong; Hamlow, Lucas; He, Chenchen; Gao, Juehan; Oomens, Jos; Rodgers, M. T.
2016-06-01
The local structures of DNA and RNA are influenced by protonation, deprotonation and noncovalent interactions with cations. In order to determine the effects of Na+ cationization on the gas-phase structures of 2'-deoxycytidine, [dCyd+Na]+, and cytidine, [Cyd+Na]+, infrared multiple photon dissociation (IRMPD) action spectra of these sodium cationized nucleosides are measured over the range extending from 500 to 1850 wn using the FELIX free electron laser. Complementary electronic structure calculations are performed to determine the stable low-energy conformations of these complexes. Geometry optimizations, frequency analyses, and IR spectra of these species are determined at the B3LYP/6-311+G(d,p) level of theory. Single-point energies are calculated at the B3LYP/6-311+G(2d,2p) level of theory to determine the relative stabilities of these conformations. Comparison of the measure IRMPD action spectra and computed linear IR spectra enable the conformations accessed in the experiments to be elucidated. For both cytosine nucleosides, tridentate binding of the Na+ cation to the O2, O4' and O5' atoms of the nucleobase and sugar is observed. Present results for the sodium cationized nucleosides are compared to results for the analogous protonated forms of these nucleosides to elucidate the effects of multiple chelating interactions with the sodium cation vs. hydrogen bonding interactions in the protonated systems on the structures and stabilities of these nucleosides.