Sample records for electronic structure cohesive

  1. Electronic effects on melting: Comparison of aluminum cluster anions and cations

    NASA Astrophysics Data System (ADS)

    Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng; Jarrold, Martin F.; Aguado, Andrés; López, José M.

    2009-07-01

    Heat capacities have been measured as a function of temperature for aluminum cluster anions with 35-70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and "disordered" roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts.

  2. Density functional studies of the defect-induced electronic structure modifications in bilayer boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-05-01

    The van der Waals interaction-corrected density functional theory is used in this study to investigate the formation, energetic stability, and inter-layer cohesion in bilayer hexagonal boronitrene. The effect of inter-layer separation on the electronic structure is systematically investigated. The formation and energetic stability of intrinsic defects are also investigated at the equilibrium inter-layer separation. It is found that nonstoichiometric defects, and their complexes, that induce excess nitrogen or excess boron, in each case, are relatively more stable in the atmosphere that corresponds to the excess atomic species. The modifications of the electronic structure due to formation of complexes are also investigated. It is shown that van der Waals density functional theory gives an improved description of the cohesive properties but not the electronic structure in bilayer boronitrene compared to other functionals. We identify energetically favourable topological defects that retain the energy gap in the electronic structure, and discuss their implications for band gap engineering in low-n layer boronitrene insulators. The relative strengths and weaknesses of the functionals in predicting the properties of bilayer boronitrene are also discussed.

  3. Systematics of Structural, Phase Stability, and Cohesive Properties of η'-Cu6(Sn,In)5 Compounds Occurring in In-Sn/Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Ramos, S. B.; González Lemus, N. V.; Deluque Toro, C. E.; Cabeza, G. F.; Fernández Guillermet, A.

    2017-07-01

    Motivated by the high solubility of In in ( mC44) η'-Cu6Sn5 compound as well as the occurrence of an In-doped η'-intermetallic in the microstructure of Cu/In-Sn/Cu solder joints, a theoretical study has been carried out to investigate the various physical effects of incorporating In at Sn Wyckoff sites of the binary η'-phase. Systematic ab initio calculations using the projected augmented wave method and Vienna Ab initio Simulation Package were used to determine the composition dependence of the structural and cohesive properties of η'-Cu6(Sn,In)5 compounds, compared with those expected from the binary end-member compounds Cu6Sn5 and Cu6In5. The molar volume shows significant deviations from Vegard's law. The predicted composition dependence of the cohesive properties is discussed using two complementary approaches, viz. a valence-electron density approach as well as a bond-number approach, both accounting for the roughly linear dependence of the cohesive energy on the In content. A microscopic interpretation for this general trend is given in terms of the key contributions to chemical bonding in this class of compounds, namely Cu d-electron overlap and hybridization of Cu d-states with In and Sn p-electron states. Moreover, a crystallographic site approach is developed to accurately establish the phase-stabilizing effect of incorporating In at specific Wyckoff positions of the ( mC44) η'-Cu6Sn5 structure.

  4. Cohesion enhancing effect of magnesium in aluminum grain boundary: A first-principles determination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Shengjun; Freeman, Arthur J.; Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208

    2012-06-04

    The effect of magnesium on grain boundary cohesion in aluminum was investigated by means of first-principles calculations using the Rice-Wang model [Rice and Wang, Mater. Sci. Eng. A 107, 23 (1989)]. It is demonstrated that magnesium is a cohesion enhancer with a potency of -0.11 eV/atom. It is further determined through electronic structure and bonding character analysis that the cohesion enhancing property of magnesium is due to a charge transfer mechanism which is unusually strong and overcomes the negative result of the size effect mechanism. Consistent with experimental results, this work clarifies the controversy and establishes that Mg segregation doesmore » not contribute to stress corrosion cracking in Al alloys.« less

  5. Quantum Mechanical Metric for Internal Cohesion in Cement Crystals

    PubMed Central

    Dharmawardhana, C. C.; Misra, A.; Ching, Wai-Yim

    2014-01-01

    Calcium silicate hydrate (CSH) is the main binding phase of Portland cement, the single most important structural material in use worldwide. Due to the complex structure and chemistry of CSH at various length scales, the focus has progressively turned towards its atomic level comprehension. We study electronic structure and bonding of a large subset of the known CSH minerals. Our results reveal a wide range of contributions from each type of bonding, especially hydrogen bonding, which should enable critical analysis of spectroscopic measurements and construction of realistic C-S-H models. We find the total bond order density (TBOD) as the ideal overall metric for assessing crystal cohesion of these complex materials and should replace conventional measures such as Ca:Si ratio. A rarely known orthorhombic phase Suolunite is found to have higher cohesion (TBOD) in comparison to Jennite and Tobermorite, which are considered the backbone of hydrated Portland cement. PMID:25476741

  6. Super heavy element Copernicium: Cohesive and electronic properties revisited

    NASA Astrophysics Data System (ADS)

    Gyanchandani, Jyoti; Mishra, Vinayak; Dey, G. K.; Sikka, S. K.

    2018-01-01

    First principles scalar relativistic (SR) calculations with and without including the spin orbit (SO) interactions have been performed for solid Copernicium (Cn) to determine its ground state equilibrium structure, volume, bulk modulus, pressure derivative of the bulk modulus, density of states and band structure. Both SR and SR+SO calculations have been performed with 6p levels treated as part of core electrons and also as part of valence electrons. These calculations have been performed for the rhombohedral, BCT, FCC, HCP, BCC and SC structures. Results have been compared with the results for Hg which is lighter homologue of Cn in the periodic table. We find hcp to be the stable crystal structure at SR level of theory and also at SR+SO level of theory when the 6p electrons are treated as part of core electrons. With 6p as part of valence electrons, SR+SO level of computations, however, yield bcc structure to be the most stable structure. Equilibrium volume (V0) of the most stable crystal structure at SR level of theory viz. hcp structure is 188.66 a.u.3whereas its value for the bcc structure, the equilibrium ground state structure at SR+SO level of theory is 165.71 a.u.3 i.e a large change due to relativistic effects is seen. The density of states at Fermi level is much smaller in Cn than in Hg, making it a poorer metal than mercury. In addition the cohesive energy of Cn is computed to be almost two times that of Hg for SR+SO case.

  7. Interface structure and mechanics between graphene and metal substrates: a first-principles study

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Buehler, Markus J.

    2010-12-01

    Graphene is a fascinating material not only for technological applications, but also as a test bed for fundamental insights into condensed matter physics due to its unique two-dimensional structure. One of the most intriguing issues is the understanding of the properties of graphene and various substrate materials. In particular, the interfaces between graphene and metal substrates are of critical importance in applications of graphene in integrated electronics, as thermal materials, and in electromechanical devices. Here we investigate the structure and mechanical interactions at a graphene-metal interface through density functional theory (DFT)-based calculations. We focus on copper (111) and nickel (111) surfaces adhered to a monolayer of graphene, and find that their cohesive energy, strength and electronic structure correlate directly with their atomic geometry. Due to the strong coupling between open d-orbitals, the nickel-graphene interface has a much stronger cohesive energy with graphene than copper. We also find that the interface cohesive energy profile features a well-and-shoulder shape that cannot be captured by simple pair-wise models such as the Lennard-Jones potential. Our results provide a detailed understanding of the interfacial properties of graphene-metal systems, and help to predict the performance of graphene-based nanoelectronics and nanocomposites. The availability of structural and energetic data of graphene-metal interfaces could also be useful for the development of empirical force fields for molecular dynamics simulations.

  8. Structural and electronic properties of GaAs and GaP semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rani, Anita; Kumar, Ranjan

    2015-05-15

    The Structural and Electronic properties of Zinc Blende phase of GaAs and GaP compounds are studied using self consistent SIESTA-code, pseudopotentials and Density Functional Theory (DFT) in Local Density Approximation (LDA). The Lattice Constant, Equillibrium Volume, Cohesive Energy per pair, Compressibility and Band Gap are calculated. The band gaps calcultated with DFT using LDA is smaller than the experimental values. The P-V data fitted to third order Birch Murnaghan equation of state provide the Bulk Modulus and its pressure derivatives. Our Structural and Electronic properties estimations are in agreement with available experimental and theoretical data.

  9. Study of iridium silicide monolayers using density functional theory

    NASA Astrophysics Data System (ADS)

    Popis, Minh D.; Popis, Sylvester V.; Oncel, Nuri; Hoffmann, Mark R.; ćakır, Deniz

    2018-02-01

    In this study, we investigated physical and electronic properties of possible two-dimensional structures formed by Si (silicon) and Ir (iridium). To this end, different plausible structures were modeled by using density functional theory and the cohesive energies calculated for the geometry of optimized structures, with the lowest equilibrium lattice constants. Among several candidate structures, we identified three mechanically (via elastic constants and Young's modulus), dynamically (via phonon calculations), and thermodynamically stable iridium silicide monolayer structures. The lowest energy structure has a chemical formula of Ir2Si4 (called r-IrSi2), with a rectangular lattice (Pmmn space group). Its cohesive energy was calculated to be -0.248 eV (per IrSi2 unit) with respect to bulk Ir and bulk Si. The band structure indicates that the Ir2Si4 monolayer exhibits metallic properties. Other stable structures have hexagonal (P-3m1) and tetragonal (P4/nmm) cell structures with 0.12 and 0.20 eV/f.u. higher cohesive energies, respectively. Our calculations showed that Ir-Si monolayers are reactive. Although O2 molecules exothermically dissociate on the surface of the free-standing iridium silicide monolayers with large binding energies, H2O molecules bind to the monolayers with a rather weak interaction.

  10. Cohesive properties of (Cu,Ni)-(In,Sn) intermetallics: Database, electron-density correlations and interpretation of bonding trends

    NASA Astrophysics Data System (ADS)

    Ramos, S. B.; González Lemus, N. V.; Cabeza, G. F.; Fernández Guillermet, A.

    2016-06-01

    This paper presents a systematic and comparative study of the composition and volume dependence of the cohesive properties for a large group of Me-X intermetallic phases (IPs) with Me=Cu,Ni and X=In,Sn, which are of interest in relation with the design of lead-free soldering (LFS) alloys. The work relies upon a database with total-energy versus volume information developed by using projected augmented waves (PAW) calculations. In previous papers by the current authors it was shown that these results account satisfactorily for the direct and indirect experimental data available. In the present work, the database is further expanded to investigate the composition dependence of the volume (V0), and the composition and volume dependence of the bulk modulus (B0) and cohesive energy (Ecoh). On these bases, an analysis is performed of the systematic effects of replacing Cu by Ni in several Me-X phases (Me=Cu,Ni and X=In,Sn) reported as stable and metastable, as well as various hypothetical compounds involved in the thermodynamic modeling of IPs using the Compound-Energy Formalism. Moreover, it is shown that the cohesion-related quantities (B0/V0)½ and (Ecoh½/V0) can be correlated with a parameter expressing the number of valence electrons per unit volume. These findings are compared in detail with related relations involving the Miedema empirical electron density at the boundary of the Wigner-Seitz cell. In view of the co-variation of the cohesive properties, Ecoh is selected as a key property and its composition and structure dependence is examined in terms of a theoretical view of the bonding which involves the hybridization of the d-states of Cu or Ni with the s and p-states of In or Sn, for this class of compounds. In particular, a comparative analysis is performed of the DOS of various representative, iso-structural Me-X compounds. Various effects of relevance to understand the consequences of replacing Cu by Ni in LFS alloys are highlighted and explained microscopically for the first time.

  11. Role of interatomic bonding in the mechanical anisotropy and interlayer cohesion of CSH crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dharmawardhana, C.C.; Misra, A.; Aryal, S.

    2013-10-15

    Atomic scale properties of calcium silicate hydrate (CSH), the main binding phase of hardened Portland cement, are not well understood. Over a century of intense research has identified almost 50 different crystalline CSH minerals which are mainly categorized by their Ca/Si ratio. The electronic structure and interatomic bonding in four major CSH crystalline phases with structures close to those found in hardened cement are investigated via ab initio methods. Our result reveals the critical role of hydrogen bonding and importance of specifying precise locations for water molecules. Quantitative analysis of contributions from different bond types to the overall cohesion showsmore » that while the Si-O covalent bonds dominate, the hydrogen bonding and Ca-O bonding are also very significant. Calculated results reveal the correlation between bond topology and interlayer cohesion. The overall bond order density (BOD) is found to be a more critical measure than the Ca/Si ratio in classifying different CSH crystals.« less

  12. Structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 phases from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Li, K.; Wei, C. H.; Han, W. D.; Zhou, N. G.

    2018-06-01

    The structural, electronic, elastic, and thermodynamic properties of CaSi, Ca2Si, and CaSi2 are systematically investigated by using first-principles calculations method based on density functional theory (DFT). The calculated formation enthalpies and cohesive energies show that CaSi2 possesses the greatest structural stability and CaSi has the strongest alloying ability. The structural stability of the three phases is compared according to electronic structures. Further analysis on electronic structures indicates that the bonding of these phases exhibits the combinations of metallic, covalent, and ionic bonds. The elastic constants are calculated, and the bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and anisotropy factor of polycrystalline materials are deduced. Additionally, the thermodynamic properties were theoretically predicted and discussed.

  13. Boltzmann transport properties of ultra thin-layer of h-CX monolayers

    NASA Astrophysics Data System (ADS)

    Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh

    2018-04-01

    Structural, electronic and thermoelectric properties of monolayer h-CX (X= Al, As, B, Bi, Ga, In, P, N, Sb and Tl) have been computed using density functional theory (DFT). The structural, electronic band structure, phonon dispersion curves and thermoelectric properties have been investigated. h-CGa and h-CTl show the periodically lattice vibrations and h-CB and h-CIn show small imaginary ZA frequencies. Thermoelectric properties are obtained using BoltzTrap code with the constant relaxation time (τ) approximation such as electronic, thermal and electrical conductivity calculated for various temperatures. The results indicate that h-CGa, h-CIn, h-CTl and h-CAl have direct band gaps with minimum electronic thermal and electrical conductivity while h-CB and h-CN show the high electronic thermal and electrical conductivity with highest cohesive energy.

  14. Structural and electronic properties of rectangular CdTe nanowire: A DST study

    NASA Astrophysics Data System (ADS)

    Khan, Md. Shahzad; Bhatia, Manjeet; Srivastava, Anurag

    2018-05-01

    CdTe rectangular nanowire of different diameter in zinc-blende phase is investigated using density functional theory. Enhancement of diameter increased stability and improved electronic qualities suitable for device purpose applications. Cohesive energy per atom enhanced on enlarging diameter advocating the stability. Large diameter nanowire (22.62Å) exhibits bandgap of 1.21eV and electronic effective mass is observed to be 0.51me. The bonding between Cd-Te atoms are predominantly observed as covalent assuring its inertness towards moisture.

  15. Theoretical calculations of structural, electronic, and elastic properties of CdSe1-x Te x : A first principles study

    NASA Astrophysics Data System (ADS)

    M, Shakil; Muhammad, Zafar; Shabbir, Ahmed; Muhammad Raza-ur-rehman, Hashmi; M, A. Choudhary; T, Iqbal

    2016-07-01

    The plane wave pseudo-potential method was used to investigate the structural, electronic, and elastic properties of CdSe1-x Te x in the zinc blende phase. It is observed that the electronic properties are improved considerably by using LDA+U as compared to the LDA approach. The calculated lattice constants and bulk moduli are also comparable to the experimental results. The cohesive energies for pure CdSe and CdTe binary and their mixed alloys are calculated. The second-order elastic constants are also calculated by the Lagrangian theory of elasticity. The elastic properties show that the studied material has a ductile nature.

  16. Cohesion in Online Student Teams versus Traditional Teams

    ERIC Educational Resources Information Center

    Hansen, David E.

    2016-01-01

    Researchers have found that the electronic methods in use for online team communication today increase communication quality in project-based work situations. Because communication quality is known to influence group cohesion, the present research examined whether online student project teams are more cohesive than traditional teams. We tested…

  17. First principles calculations of the magnetic and hyperfine properties of Fe/N/Fe and Fe/O/Fe multilayers in the ground state of cohesive energy

    NASA Astrophysics Data System (ADS)

    dos Santos, A. V.; Samudio Pérez, C. A.; Muenchen, D.; Anibele, T. P.

    2015-01-01

    The ground state properties of Fe/N/Fe and Fe/O/Fe multilayers were investigated using the first principles calculations. The calculations were performed using the Linearized Augmented Plane Wave (LAPW) method implemented in the Wien2k code. A supercell consisting of one layer of nitride (or oxide) between two layers of Fe in the bcc structure was used to model the structure of the multilayer. The research in new materials also stimulated theoretical and experimental studies of iron-based nitrides due to their variety of structural and magnetic properties for the potential applications as in high strength steels and for high corrosion resistance. It is obvious from many reports that magnetic iron nitrides such as γ-Fe4N and α-Fe16N2 have interesting magnetic properties, among these a high magnetisation saturation and a high density crimp. However, although Fe-N films and multilayers have many potential applications, they can be produced in many ways and are being extensively studied from the theoretical point of view there is no detailed knowledge of their electronic structure. Clearly, efforts to understand the influence of the nitrogen atoms on the entire electronic structure are needed as to correctly interpret the observed changes in the magnetic properties when going from Fe-N bulk compounds to multilayer structures. Nevertheless, the N atoms are not solely responsible for electronics alterations in solid compounds. Theoretical results showed that Fe4X bulk compounds, where X is a variable atom with increasing atomic number (Z), the nature of bonding between X and adjacent Fe atoms changes from more covalent to more ionic and the magnetic moments of Fe also increase for Z=7, i.e. N. This is an indicative that atoms with a Z number higher than 7, i.e., O, can produce several new alterations in the entire magnetic properties of Fe multilayers. This paper presents the first results of an ab-initio electronic structure calculations, performed for Fe-N and Fe-O multilayers. Firstly, the formation energy and the cohesive energy of the multilayers are discussed. For optimised values, the cohesive energy of the multilayers to obtain the lattice parameters at the equilibrium ground state was used, i.e. a new methodology for this calculus was applied. Secondly, the magnetic properties and hyperfine interactions (magnetic field, electric field gradient and the isomer shift) of the iron atoms of the multilayers are discussed.

  18. The use of analytical surface tools in the fundamental study of wear. [atomic nature of wear

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Various techniques and surface tools available for the study of the atomic nature of the wear of materials are reviewed These include chemical etching, x-ray diffraction, electron diffraction, scanning electron microscopy, low-energy electron diffraction, Auger emission spectroscopy analysis, electron spectroscopy for chemical analysis, field ion microscopy, and the atom probe. Properties of the surface and wear surface regions which affect wear, such as surface energy, crystal structure, crystallographic orientation, mode of dislocation behavior, and cohesive binding, are discussed. A number of mechanisms involved in the generation of wear particles are identified with the aid of the aforementioned tools.

  19. The Impact of Electronic Health Records and Teamwork on Diabetes Care Quality

    PubMed Central

    Graetz, Ilana; Huang, Jie; Brand, Richard; Shortell, Stephen M.; Rundall, Thomas G.; Bellows, Jim; Hsu, John; Jaffe, Marc; Reed, Mary E.

    2016-01-01

    Objective Evidence of the impact Electronic Health Records (EHR) on clinical outcomes remains mixed. The impact EHRs likely depends on the organizational context in which they are used. We focus on one aspect of the organizational context: cohesion of primary care teams. We examined whether team cohesion among primary care team members changed the association of EHR use and changes in clinical outcomes for patients with diabetes. Study Design We combined provider-reported primary care team cohesion with lab values for patients with diabetes collected during the staggered EHR implementation (2005–2009). We used multivariate regression models with patient-level fixed effects to assess whether team cohesion levels changed the association between outpatient EHR use and clinical outcomes for patients with diabetes. Subjects 80,611 patients with diabetes mellitus. Measures Changes in hemoglobin A1c (HbA1c) and low-density lipoprotein cholesterol (LDL-C) Results For HbA1c, EHR use was associated with an average decrease of 0.11% for patients with higher cohesion primary care teams compared with a decrease of 0.08% for patients with lower cohesion teams (difference 0.02% in HbA1c, 95%CI: 0.01–0.03). For LDL-C, EHR use was associated with a decrease of 2.15 mg/dL for patients with higher cohesion primary teams compared with a decrease of 1.42 mg/dL for patients with lower cohesion teams (difference 0.73 mg/dL, 95%CI: 0.41–1.11 mg/dL). Conclusions Patients cared for by higher cohesion primary care teams experienced modest but statistically significantly greater EHR-related health outcome improvements, compared with patients cared for by providers practicing in lower cohesion teams. PMID:26671699

  20. First-Principles Study of the Electronic Structure and Bonding Properties of X8C46 and X8B6C40 (X: Li, Na, Mg, Ca) Carbon Clathrates

    NASA Astrophysics Data System (ADS)

    KoleŻyński, Andrzej; Szczypka, Wojciech

    2016-03-01

    Results from theoretical analysis of the crystal structure, electronic structure, and bonding properties of C46 and B6C40 carbon clathrates doped with selected alkali and alkaline earth metals cations (Li, Na, Mg, Ca) are presented. The ab initio calculations were performed by means of the WIEN2k package (full potential linearized augmented plane wave method (FP-LAPW) within density functional theory (DFT)) with PBESol and modified Becke-Johnson exchange-correlation potentials used in geometry optimization and electronic structure calculations, respectively. The bonding properties were analyzed by applying Bader's quantum theory of atoms in molecules formalism to the topological properties of total electron density obtained from ab initio calculations. Analysis of the results obtained (i.a. equilibrium geometry, equation of state, cohesive energy, band structure, density of states—both total and projected on to particular atoms, and topological properties of bond critical points and net charges of topological atoms) is presented in detail.

  1. Bond-order potential for magnetic body-centered-cubic iron and its transferability

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Shen; Mrovec, M.; Vitek, V.

    2016-06-01

    We derived and thoroughly tested a bond-order potential (BOP) for body-centered-cubic (bcc) magnetic iron that can be employed in atomistic calculations of a broad variety of crystal defects that control structural, mechanical, and thermodynamic properties of this technologically important metal. The constructed BOP reflects correctly the mixed nearly free electron and covalent bonding arising from the partially filled d band as well as the ferromagnetism that is actually responsible for the stability of the bcc structure of iron at low temperatures. The covalent part of the cohesive energy is determined within the tight-binding bond model with the Green's function of the Schrödinger equation determined using the method of continued fractions terminated at a sufficient level of the moments of the density of states. This makes the BOP an O (N ) method usable for very large numbers of particles. Only d d bonds are included explicitly, but the effect of s electrons on the covalent energy is included via their screening of the corresponding d d bonds. The magnetic part of the cohesive energy is included using the Stoner model of itinerant magnetism. The repulsive part of the cohesive energy is represented, as in any tight-binding scheme, by an empirical formula. Its functional form is physically justified by studies of the repulsion in face-centered-cubic (fcc) solid argon under very high pressure where the repulsion originates from overlapping s and p closed-shell electrons just as it does from closed-shell s electrons in transition metals squeezed into the ion core under the influence of the large covalent d bonding. Testing of the transferability of the developed BOP to environments significantly different from those of the ideal bcc lattice was carried out by studying crystal structures and magnetic states alternative to the ferromagnetic bcc lattice, vacancies, divacancies, self-interstitial atoms (SIAs), paths continuously transforming the bcc structure to different less symmetric structures and phonons. The results of these calculations are compared with either experiments or calculations based on the density functional theory (DFT), and they all show very good agreement. Importantly, the lowest energy configuration of SIAs agrees with DFT calculations that show that it is an exception within bcc transition metals controlled by magnetism. Moreover, the migration energy of interstitials is significantly lower than that of vacancies, which is essential for correct analysis of the effects of irradiation. Finally, the core structure and glide of ½ <111 > screw dislocations that control the plastic flow in single crystals of bcc metals was explored. The results fully agree with available DFT based studies and with experimental observations of the slip geometry of bcc iron at low temperatures.

  2. Study of the physical properties of Ge-S-Ga glassy alloy

    NASA Astrophysics Data System (ADS)

    Rana, Anjli; Sharma, Raman

    2018-05-01

    In the present work, we have studied the effect of Ga doping on the physical properties of Ge20S80-xGax glassy alloy. The basic physical parameters which have important role in determining the structure and strength of the material viz. average coordination number, lone-pair electrons, mean bond energy, glass transition temperature, electro negativity, probabilities for bond distribution and cohesive energy have been computed theoretically for Ge-S-Ga glassy alloy. Here, the glass transition temperature and mean bond energy have been investigated using the Tichy-Ticha approach. The cohesive energy has been calculated by using chemical bond approach (CBA) method. It has been found that while average coordination number increases, all the other parameters decrease with the increase in Ga content in Ge-S-Ga system.

  3. Study of interaction in silica glass via model potential approach

    NASA Astrophysics Data System (ADS)

    Mann, Sarita; Rani, Pooja

    2016-05-01

    Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO2 (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO2 has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=-21.92eV/molecule) to appropriately describe the structure of silica.

  4. First-principles study of Al2Sm intermetallic compound on structural, mechanical properties and electronic structure

    NASA Astrophysics Data System (ADS)

    Lin, Jingwu; Wang, Lei; Hu, Zhi; Li, Xiao; Yan, Hong

    2017-02-01

    The structural, thermodynamic, mechanical and electronic properties of cubic Al2Sm intermetallic compound are investigated by the first-principles method on the basis of density functional theory. In light of the strong on-site Coulomb repulsion between the highly localized 4f electrons of Sm atoms, the local spin density approximation approach paired with additional Hubbard terms is employed to achieve appropriate results. Moreover, to examine the reliability of this study, the experimental value of lattice parameter is procured from the analysis of the TEM image and diffraction pattern of Al2Sm phase in the AZ31 alloy to verify the authenticity of the results originated from the computational method. The value of cohesive energy reveals Al2Sm to be a stable in absolute zero Kelvin. According to the stability criteria, the subject of this work is mechanically stable. Afterward, elastic moduli are deduced by performing Voigt-Reuss-Hill approximation. Furthermore, elastic anisotropy and anisotropy of sound velocity are discussed. Finally, the calculation of electronic density of states is implemented to explore the underlying mechanism of structural stability.

  5. Investigating the settling dynamics of cohesive silt particles with particle-resolving simulations

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Xiao, Heng; Sun, Honglei

    2018-01-01

    The settling of cohesive sediment is ubiquitous in aquatic environments, and the study of the settling process is important for both engineering and environmental reasons. In the settling process, the silt particles show behaviors that are different from non-cohesive particles due to the influence of inter-particle cohesive force. For instance, the flocs formed in the settling process of cohesive silt can loosen the packing, and thus the structural densities of cohesive silt beds are much smaller than that of non-cohesive sand beds. While there is a consensus that cohesive behaviors depend on the characteristics of sediment particles (e.g., Bond number, particle size distribution), little is known about the exact influence of these characteristics on the cohesive behaviors. In addition, since the cohesive behaviors of the silt are caused by the inter-particle cohesive forces, the motions of and the contacts among silt particles should be resolved to study these cohesive behaviors in the settling process. However, studies of the cohesive behaviors of silt particles in the settling process based on particle-resolving approach are still lacking. In the present work, three-dimensional settling process is investigated numerically by using CFD-DEM (Computational Fluid Dynamics-Discrete Element Method). The inter-particle collision force, the van der Waals force, and the fluid-particle interaction forces are considered. The numerical model is used to simulate the hindered settling process of silt based on the experimental setup in the literature. The results obtained in the simulations, including the structural densities of the beds, the characteristic lines, and the particle terminal velocity, are in good agreement with the experimental observations in the literature. To the authors' knowledge, this is the first time that the influences of non-dimensional Bond number and particle polydispersity on the structural densities of silt beds have been investigated separately. The results demonstrate that the cohesive behavior of silt in the settling process is attributed to both the cohesion among silt particles themselves and the particle polydispersity. To guide to the macro-scale modeling of cohesive silt sedimentation, the collision frequency functions obtained in the numerical simulations are also presented based on the micromechanics of particles. The results obtained by using CFD-DEM indicate that the binary collision theory over-estimated the particle collision frequency in the flocculation process at high solid volume fraction.

  6. Effect of transition metal impurities on the strength of grain boundaries in vanadium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xuebang; Kong, Xiang-Shan; You, Yu-Wei

    2016-09-07

    Effects of 3d (Ti-Ni), 4d (Zr-Pd), and 5d (Hf-Pt) transition metal impurities on strength of two representative vanadium grain boundaries (GBs), symmetric Σ3(111) and asymmetric Σ5(210), were studied by first-principles calculations within the framework of the Rice-Wang thermodynamic model and within the computational tensile test. The desirable elements to increase the GB cohesion were predicted based on their segregation and strengthening behaviors across the different GB sites. It reveals that the elements Ti, Zr, Hf, Nb, and Ta are good choices for the GB cohesion enhancers. In addition, the GB strengthening by solutes is sensitive to the GB structures. Themore » elements Cr, Mn, Fe, Co, and Ni decrease the GB strength of the Σ3(111) GB but they can increase the cohesion of the Σ5(210) GB. Furthermore, the origin of Ti-induced change of the GB strength was uncovered by analyzing the atomic bonds and electronic structures as well as the tensile strength. This work provides a theoretical guidance to screen promising alloying elements in V-based materials with improved resistance to GB decohesion and also helps us to understand the formation mechanism of Ti-rich precipitates in the V-Cr-Ti alloys under neutron or ion irradiation environments.« less

  7. Global expression for representing cohesive-energy curves. II

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert; Ferrante, John

    1993-01-01

    Schlosser et al. (1991) showed that the R dependence of the cohesive energy of partially ionic solids may be characterized by a two-term energy relationship consisting of a Coulomb term arising from the charge transfer, delta-Z, and a scaled universal energy function, E*(a *), which accounts for the partially covalent character of the bond and for repulsion between the atomic cores for small R; a* is a scaled length. In the paper by Schlosser et al., the normalized cohesive-energy curves of NaCl-structure alkali-halide crystals were generated with this expression. In this paper we generate the cohesive-energy curves of several families of partially ionic solids with different crystal structures and differing degrees of ionicity. These include the CsCl-structure Cs halides, and the Tl and Ag halides, which have weaker ionic bonding than the alkali halides, and which have the CsCl and NaCl structures, respectively. The cohesive-energy-curve parameters are then used to generate theoretical isothermal compression curves for the Li, Na, K, Cs, and Ag halides. We find good agreement with the available experimental compression data.

  8. New two-dimensional boron nitride allotropes with attractive electronic and optical properties

    NASA Astrophysics Data System (ADS)

    Shahrokhi, Masoud; Mortazavi, Bohayra; Berdiyorov, Golibjon R.

    2017-03-01

    Using first principles calculations, structural, electronic and optical properties of five new 2D boron nitride (BN) allotropes have been studied. The results exhibit that the cohesive energy for all these five new allotrope is positive such as all these systems are stable; therefore, it is possible to synthesize these structures in experiments. It is found that the band gap of all new 2D BN allotropes is smaller than the h-BN sheet. In our calculations the dielectric tensor is derived within the random phase approximation (RPA). Specifically, the dielectric function, refraction index and the loss function, of the 2D BN allotropes are calculated for both parallel and perpendicular electric field polarizations. The results show that the optical spectra are anisotropic along these two polarizations. The results obtained from our calculations are beneficial to practical applications of these 2D BN allotropes in optoelectronics and electronics.

  9. Symmetry and novelty in the electronic and geometric structure of nanoalloys:. the case of Ag27Cu7

    NASA Astrophysics Data System (ADS)

    Ortigoza, M. Alcántara; Rahman, T. S.

    2008-04-01

    Nanoparticles of bimetallic alloys have been shown to possess composition dependent characteristics which distinguish themselves from the corresponding bulk alloys. Taking the 34-atom nanoalloy of Ag and Cu (Ag27Cu7), we show using first principles electronic structure calculations that this core-shell alloy indeed has perfect D5h symmetry and consists of only 6 non-equivalent (2 Cu and 4 Ag) atoms. Analysis of the interatomic bond lengths and detailed electronic structure further reveal that the Cu atoms play a major role in controlling the characteristics of the nanoalloy. The higher cohesive energy, together with shorter bond length for Cu, compared to Ag, conspire to produce a hierarchy in the relative strengths of the Ag - Cu, Ag - Ag, and Cu - Cu bonds and corresponding interatomic bond lengths, point to the uniqueness in the characteristics of this nanoalloy. Charge density plots of Ag27Cu7 provide further insights into the relative strengths of the various interatomic bonds.

  10. Micromechanical cohesion force between gas hydrate particles measured under high pressure and low temperature conditions.

    PubMed

    Lee, Bo Ram; Sum, Amadeu K

    2015-04-07

    To prevent hydrate plugging conditions in the transportation of oil/gas in multiphase flowlines, one of the key processes to control is the agglomeration/deposition of hydrate particles, which are determined by the cohesive/adhesive forces. Previous studies reporting measurements of the cohesive/adhesive force between hydrate particles used cyclopentane hydrate particles in a low-pressure micromechanical force apparatus. In this study, we report the cohesive forces of particles measured in a new high-pressure micromechanical force (MMF) apparatus for ice particles, mixed (methane/ethane, 74.7:25.3) hydrate particles (Structure II), and carbon dioxide hydrate particles (Structure I). The cohesive forces are measured as a function of the contact time, contact force, temperature, and pressure, and determined from pull-off measurements. For the measurements performed of the gas hydrate particles in the gas phase, the determined cohesive force is about 30-35 mN/m, about 8 times higher than the cohesive force of CyC5 hydrates in the liquid CyC5, which is about 4.3 mN/m. We show from our results that the hydrate structure (sI with CO2 hydrates and sII with CH4/C2H6 hydrates) has no influence on the cohesive force. These results are important in the deposition of a gas-dominated system, where the hydrate particles formed in the liquid phase can then stick to the hydrate deposited in the wall exposed to the gas phase.

  11. Factors associated with low neighborhood cohesion among women living with HIV impacted by social-structural inequities in British Columbia.

    PubMed

    Closson, Kalysha; Palmer, Alexis K; Collins, Alexandra B; Salters, Kate; Zhang, Wendy; Montaner, Julio S G; Hogg, Robert S; Parashar, Surita

    2018-03-01

    Built and social environments, including one's perception of their environment, are important determinants of health. The intersection of gender and HIV status may complicate the role of neighborhood cohesion in safety, personal well-being, and health outcomes for populations impacted by social and structural inequities. Among women in particular, social cohesion within the neighborhood they reside in may have a greater influence on health outcomes compared to their male counterparts. We sought to examine perception of neighborhood cohesion (validated scale with a range 0-100, with higher scores indicating higher perceived neighborhood cohesion) among women living with HIV, impacted by social-structural inequities, receiving combination antiretroviral therapy, and enrolled in the Longitudinal Investigations into Supportive Ancillary health services (LISA) study in British Columbia, Canada. Cross-sectional data on neighborhood cohesion and socio-demographic data were collected in an interviewer-administered survey. Of the 1,000 LISA participants interviewed, 908 (including 249 women and 659 men) had complete data for the variables of interest. At the bivariate level, women had worse perceived neighborhood cohesion scores compared to men (median: 56 [95% CI: 44-66] vs. 60 [95% CI: 47-71]). Multivariable model results indicated that for women living with HIV in our sample, greater neighborhood cohesion scores were positively associated with stable housing (β coefficient = 7.85; 95% CI: 3.61, 12.10, p < 0.001), and negatively associated with greater perceived HIV stigma (β coefficient = -1.19; 95% CI: -2.24 to-0.15; p = 0.025). The results illustrate the gendered nature of experiencing built and social environments, and highlight the need for women-centred interventions to address the social determinants of HIV burden associated with negative perceptions of neighborhood cohesion.

  12. Ab initio investigation of the structural and electronic properties of the MgFBrxCl1-x quaternary alloy

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Alidoosti, Mohammad

    2014-11-01

    In the present work, we have performed first principles calculations to study the structural and electronic properties of the MgFBrxCl1-x quaternary alloys using the pseudo-potential plane wave approach within the framework of density functional theory. By using the optimized initial parameters, we have obtained the physical quantities such as equilibrium lattice constants a and c, cohesive energy and band gap and then fitted the results by a quadratic expression for all x compositions. The results of bulk modulus exhibit nearly linear concentration dependence (LCD) but other quantities show nonlinear dependence. Finally, we have calculated the total and angular momentum decomposed (partial) density of states and determined the contributions of different orbitals of each atoms.

  13. STRUCTURAL DIVERSITY IN SOLID STATE CHEMISTRY:A Story of Squares and Triangles

    NASA Astrophysics Data System (ADS)

    Lee, Stephen

    1996-10-01

    A simple method for calculating the electronic energy of extended solids is discussed in this review. This method is based on the Huckel or tight-binding theory in which an explicit pairwise repulsion is added to the generally attractive forces of the partially filled valence electron bands. An expansion based on the power moments of the electronic density of states is discussed, and the structural energy difference theorem is reviewed. The repulsive energy is found to vary linearly with the second power moment of the electronic density of states. These results are then used to show why there is such a diversity of structure in the solid state. The elemental structures of the main group are rationalized by the above methods. It is the third and fourth power moments (which correspond in part to triangles and squares of bonded atoms) that account for much of the elemental structures of the main group elements of the periodic table. This serves as an introduction to further rationalizations of transition for noble metal alloy, binary and ternary telluride and selenide, and other intermetallic structures.Thus a cohesive picture of both covalent and metallic bonding is presented in this review, illustrating the importance of atomic orbitals and their overlap integrals.

  14. Wear and interfacial transport of material

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1975-01-01

    Bonding across the interface for two solids in contact and the subsequent transfer of material from one surface to another is a direct result of the interfacial bonds being stronger than the cohesive bonds in either of the two solids. Surface tools such as LEED, Auger emission spectroscopy, field ion microscopy, and the atom probe are used to examine adhesive contacts and to determine the direction, nature, quantity of material transfer and properties of the solids which effect transfer and wear. The electronic nature, cohesive binding energies, surface structure, lattice disregistry and distribution of species in surface layers are all found to effect adhesion and transfer or transport for clean surfaces in solid state contact. The influence of adsorbed and reacted surface films from fractions of a monolayer to multilayer reactive films are considered. It is shown that even fractions of a monolayer of surface active species such as oxygen and sulfur can markedly inhibit adhesion and transport.

  15. Fast determination of structurally cohesive subgroups in large networks

    PubMed Central

    Sinkovits, Robert S.; Moody, James; Oztan, B. Tolga; White, Douglas R.

    2016-01-01

    Structurally cohesive subgroups are a powerful and mathematically rigorous way to characterize network robustness. Their strength lies in the ability to detect strong connections among vertices that not only have no neighbors in common, but that may be distantly separated in the graph. Unfortunately, identifying cohesive subgroups is a computationally intensive problem, which has limited empirical assessments of cohesion to relatively small graphs of at most a few thousand vertices. We describe here an approach that exploits the properties of cliques, k-cores and vertex separators to iteratively reduce the complexity of the graph to the point where standard algorithms can be used to complete the analysis. As a proof of principle, we apply our method to the cohesion analysis of a 29,462-vertex biconnected component extracted from a 128,151-vertex co-authorship data set. PMID:28503215

  16. Model of cohesive properties and structural phase transitions in non-metallic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majewski, J.A.; Vogl, P.

    1986-01-01

    We have developed a simple, yet microscopic and universal model for cohesive properties of solids. This model explains the physical mechanisms determining the chemical and predicts semiquantitatively static and dynamic cohesive properties. It predicts a substantial softening of the long-wavelength transverse optical phonons across the pressure induced phase transition from the zincblenda to rocksalt structure in II-VI compounds. The origin of this softening is shown to be closely related to ferroelectricity.

  17. On the identification of cohesive parameters for printed metal-polymer interfaces

    NASA Astrophysics Data System (ADS)

    Heinrich, Felix; Langner, Hauke H.; Lammering, Rolf

    2017-05-01

    The mechanical behavior of printed electronics on fiber reinforced composites is investigated. A methodology based on cohesive zone models is employed, considering interfacial strengths, stiffnesses and critical strain energy release rates. A double cantilever beam test and an end notched flexure test are carried out to experimentally determine critical strain energy release rates under fracture modes I and II. Numerical simulations are performed in Abaqus 6.13 to model both tests. Applying the simulations, an inverse parameter identification is run to determine the full set of cohesive parameters.

  18. On the calculation of the energies of dissociation, cohesion, vacancy formation, electron attachment, and the ionization potential of small metallic clusters containing a monovacancy

    NASA Astrophysics Data System (ADS)

    Pogosov, V. V.; Reva, V. I.

    2017-09-01

    In terms of the model of stable jellium, self-consistent calculations of spatial distributions of electrons and potentials, as well as of energies of dissociation, cohesion, vacancy formation, electron attachment, and ionization potentials of solid clusters of Mg N , Li N (with N ≤ 254 ) and of clusters containing a vacancy ( N ≥ 12) have been performed. The contribution of a monovacancy to the energy of the cluster and size dependences of its characteristics and of asymptotics have been discussed. Calculations have been performed using a SKIT-3 cluster at Glushkov Institute of Cybernetics, National Academy of Sciences, Ukraine (Rpeak = 7.4 Tflops).

  19. The association between EHRs and care coordination varies by team cohesion.

    PubMed

    Graetz, Ilana; Reed, Mary; Shortell, Stephen M; Rundall, Thomas G; Bellows, Jim; Hsu, John

    2014-02-01

    To examine whether primary care team cohesion changes the association between using an integrated outpatient-inpatient electronic health record (EHR) and clinician-rated care coordination across delivery sites. Self-administered surveys of primary care clinicians in a large integrated delivery system, collected in 2005 (N=565), 2006 (N=678), and 2008 (N=626) during the staggered implementation of an integrated EHR (2005-2010), including validated questions on team cohesion. Using multivariable regression, we examined the combined effect of EHR use and team cohesion on three dimensions of care coordination across delivery sites: access to timely and complete information, treatment agreement, and responsibility agreement. Among clinicians working in teams with higher cohesion, EHR use was associated with significant improvements in reported access to timely and complete information (53.5 percent with EHR vs. 37.6 percent without integrated-EHR), agreement on treatment goals (64.3 percent vs. 50.6 percent), and agreement on responsibilities (63.9 percent vs. 55.2 percent, all p<.05). We found no statistically significant association between use of the integrated-EHR and reported care coordination in less cohesive teams. The association between EHR use and reported care coordination varied by level of team cohesion. EHRs may not improve care coordination in less cohesive teams. © Health Research and Educational Trust.

  20. Structural neighbourhood conditions, social cohesion and psychological distress in the Netherlands.

    PubMed

    Erdem, Özcan; Prins, Richard G; Voorham, Toon A J J; van Lenthe, Frank J; Burdorf, Alex

    2015-12-01

    Neighbourhood inequalities in psychological distress are well reported, but underlying mechanisms remain poorly understood. The main purposes of this study were to investigate associations between structural neighbourhood conditions and psychological distress, and to explore the potential mediating role of neighbourhood social cohesion. Cross-sectional questionnaire study on a random sample of 18,173 residents aged ≥ 16 years (response 49%) from the four largest cities in the Netherlands. Psychological distress was measured with the Kessler Psychological Distress Scale (K10). Structural environmental factors under study were neighbourhood socio-economic status (SES), neighbourhood green, urbanity and home maintenance. Neighbourhood social cohesion was measured by five statements and aggregated to the neighbourhood level by using ecometrics methodology. Multilevel linear regression analysis was used to investigate associations of neighbourhoods characteristics with psychological distress, adjusted for individual level characteristics. High neighbourhood SES and neighbourhood social cohesion were associated with decreased psychological distress. Adjusted for individual level characteristics and neighbourhood SES, only neighbourhood social cohesion remained significantly associated with psychological distress. Neighbourhood social cohesion accounted for 38% of the differences in the association between neighbourhood SES and psychological distress. High neighbourhood social cohesion is significantly associated with decreased psychological distress among residents of the four largest cities in the Netherlands. Reducing neighbourhood inequalities in psychological distress may require increasing social interactions among neighbourhood residents. © The Author 2015. Published by Oxford University Press on behalf of the European Public Health Association. All rights reserved.

  1. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  2. An examination of the relationship between athlete leadership and cohesion using social network analysis.

    PubMed

    Loughead, Todd M; Fransen, Katrien; Van Puyenbroeck, Stef; Hoffmann, Matt D; De Cuyper, Bert; Vanbeselaere, Norbert; Boen, Filip

    2016-11-01

    Two studies investigated the structure of different athlete leadership networks and its relationship to cohesion using social network analysis. In Study 1, we examined the relationship between a general leadership quality network and task and social cohesion as measured by the Group Environment Questionnaire (GEQ). In Study 2, we investigated the leadership networks for four different athlete leadership roles (task, motivational, social and external) and their association with task and social cohesion networks. In Study 1, the results demonstrated that the general leadership quality network was positively related to task and social cohesion. The results from Study 2 indicated positive correlations between the four leadership networks and task and social cohesion networks. Further, the motivational leadership network emerged as the strongest predictor of the task cohesion network, while the social leadership network was the strongest predictor of the social cohesion network. The results complement a growing body of research indicating that athlete leadership has a positive association with cohesion.

  3. The effect of boron concentration on the structure and elastic properties of Ru-Ir alloys: first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zhou, Zhaobo; Hu, Riming; Zhou, Xiaolong; Yu, Jie; Liu, Manmen

    2018-04-01

    The Phase stability, electronic structure, elastic properties and hardness of Ru-Ir alloys with different B concentration were investigated by first principles calculations. The calculated formation enthaplies and cohesive energies show that these compounds are all thermodynamically stable. Information on electronic structure indicates that they possess metallic characteristic and Ru-Ir-B alloys were composed of the Ru-B and Ir-B covalent bond. The elastic properties were calculated, which included bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and hardness. The calculated results reveal that the plastic of Ru-Ir-B alloys increase with the increase of the content of B atoms, but the hardness of Ru-Ir-B alloys have no substantial progress with the increase of the content of B atoms. However, it is interesting that the hardness of the Ru-Ir-B compound was improved obviously as the B content was higher than 18 atoms because of a phase structure transition.

  4. Social Network Influences on Adolescent Substance Use: Disentangling Structural Equivalence from Cohesion

    PubMed Central

    Fujimoto, Kayo; Valente, Thomas W.

    2012-01-01

    This study investigates two contagion mechanisms of peer influence based on direct communication (cohesion) versus comparison through peers who occupy similar network positions (structural equivalence) in the context of adolescents' drinking alcohol and smoking. To date, the two contagion mechanisms have been considered observationally inseparable, but this study attempts to disentangle structural equivalence from cohesion as a contagion mechanism by examining the extent to which the transmission of drinking and smoking behaviors attenuates as a function of social distance (i.e., from immediate friends to indirectly connected peers). Using the U.S. Add Health data consisting of a nationally representative sample of American adolescents (Grades 7-12), this study measured peer risk-taking up to four steps away from the adolescent (friends of friends of friends of friends) using a network exposure model. Peer influence was tested using a logistic regression model of alcohol drinking and cigarette smoking. Results indicate that influence based on structural equivalence tended to be stronger than influence based on cohesion in general, and that the magnitude of the effect decreased up to three steps away from the adolescent (friends of friends of friends). Further analysis indicated that structural equivalence acted as a mechanism of contagion for drinking and cohesion acted as one for smoking. These results indicate that the two transmission mechanisms with differing network proximities can differentially affect drinking and smoking behaviors in American adolescents. PMID:22475405

  5. Relationship between the cohesion of guest particles on the flow behaviour of interactive mixtures.

    PubMed

    Mangal, Sharad; Gengenbach, Thomas; Millington-Smith, Doug; Armstrong, Brian; Morton, David A V; Larson, Ian

    2016-05-01

    In this study, we aimed to investigate the effects cohesion of small surface-engineered guest binder particles on the flow behaviour of interactive mixtures. Polyvinylpyrrolidone (PVP) - a model pharmaceutical binder - was spray-dried with varying l-leucine feed concentrations to create small surface-engineered binder particles with varying cohesion. These spray-dried formulations were characterised by their particle size distribution, morphology and cohesion. Interactive mixtures were produced by blending these spray-dried formulations with paracetamol. The resultant blends were visualised under scanning electron microscope to confirm formation of interactive mixtures. Surface coverage of paracetamol by guest particles as well as the flow behaviour of these mixtures were examined. The flow performance of interactive mixtures was evaluated using measurements of conditioned bulk density, basic flowability energy, aeration energy and compressibility. With higher feed l-leucine concentrations, the surface roughness of small binder particles increased, while their cohesion decreased. Visual inspection of the SEM images of the blends indicated that the guest particles adhered to the surface of paracetamol resulting in effective formation of interactive mixtures. These images also showed that the low-cohesion guest particles were better de-agglomerated that consequently formed a more homogeneous interactive mixture with paracetamol compared with high-cohesion formulations. The flow performance of interactive mixtures changed as a function of the cohesion of the guest particles. Interactive mixtures with low-cohesion guest binder particles showed notably improved bulk flow performance compared with those containing high-cohesion guest binder particles. Thus, our study suggests that the cohesion of guest particles dictates the flow performance of interactive mixtures. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  6. The Electronic Structure of Transition Metal Coated Fullerenes

    NASA Astrophysics Data System (ADS)

    Patton, David C.; Pederson, Mark R.; Kaxiras, Efthimios

    1998-03-01

    Clusters composed of fullerene molecules with an outer shell of transition metal atoms in the composition C_60M_62 (M being a transition metal) have been produced with laser vaporisation techniques(F. Tast, N. Malinowski, S. Frank, M. Heinebrodt, I.M.L. Billas, and T. P. Martin, Z. Phys D 40), 351 (1997).. We have studied several of these very large systems with a parallel version of the all-electron NRLMOL cluster code. Optimized geometries of the metal encased fullerenes C_60Ti_62 and C_60V_62 are presented along with their HOMO-LUMO gaps, electron affinities, ionization energies, and cohesive energies. We compare the stability of these clusters to relaxed met-car structures (e.g. Ti_8C_12) and to relaxed rocksalt metal-carbide fragments (TiC)n with n=8 and 32. In addition to metal-coated fullerenes we consider the possibility of a trilayered structure consisting of a small shell of metal atoms enclosed by a metal coated fullerene. The nature of bonding in these systems is analyzed by studying the electronic charge distributions.

  7. An experimental and theoretical investigation into the electronically excited states of para-benzoquinone

    NASA Astrophysics Data System (ADS)

    Jones, D. B.; Limão-Vieira, P.; Mendes, M.; Jones, N. C.; Hoffmann, S. V.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Ingólfsson, O.; Lima, M. A. P.; Brunger, M. J.

    2017-05-01

    We report on a combination of experimental and theoretical investigations into the structure of electronically excited para-benzoquinone (pBQ). Here synchrotron photoabsorption measurements are reported over the 4.0-10.8 eV range. The higher resolution obtained reveals previously unresolved pBQ spectral features. Time-dependent density functional theory calculations are used to interpret the spectrum and resolve discrepancies relating to the interpretation of the Rydberg progressions. Electron-impact energy loss experiments are also reported. These are combined with elastic electron scattering cross section calculations performed within the framework of the independent atom model-screening corrected additivity rule plus interference (IAM-SCAR + I) method to derive differential cross sections for electronic excitation of key spectral bands. A generalized oscillator strength analysis is also performed, with the obtained results demonstrating that a cohesive and reliable quantum chemical structure and cross section framework has been established. Within this context, we also discuss some issues associated with the development of a minimal orbital basis for the single configuration interaction strategy to be used for our high-level low-energy electron scattering calculations that will be carried out as a subsequent step in this joint experimental and theoretical investigation.

  8. Communicative Skills Acquisition: A Recommended Resource.

    ERIC Educational Resources Information Center

    Lang, Margaret

    Communication in written and oral discourse can be enhanced by cohesive devices, linguistic structures independent of grammar. One cohesive device is that of enumeration or listing. In French, the means of expressing enumeration include such structures as: "avant...puis.../d'une part...d'autre part.../enfin.../ensuite..." and in idiolectal use,…

  9. Estimation of Enthalpy of Formation of Liquid Transition Metal Alloys: A Modified Prescription Based on Macroscopic Atom Model of Cohesion

    NASA Astrophysics Data System (ADS)

    Raju, Subramanian; Saibaba, Saroja

    2016-09-01

    The enthalpy of formation Δo H f is an important thermodynamic quantity, which sheds significant light on fundamental cohesive and structural characteristics of an alloy. However, being a difficult one to determine accurately through experiments, simple estimation procedures are often desirable. In the present study, a modified prescription for estimating Δo H f L of liquid transition metal alloys is outlined, based on the Macroscopic Atom Model of cohesion. This prescription relies on self-consistent estimation of liquid-specific model parameters, namely electronegativity ( ϕ L) and bonding electron density ( n b L ). Such unique identification is made through the use of well-established relationships connecting surface tension, compressibility, and molar volume of a metallic liquid with bonding charge density. The electronegativity is obtained through a consistent linear scaling procedure. The preliminary set of values for ϕ L and n b L , together with other auxiliary model parameters, is subsequently optimized to obtain a good numerical agreement between calculated and experimental values of Δo H f L for sixty liquid transition metal alloys. It is found that, with few exceptions, the use of liquid-specific model parameters in Macroscopic Atom Model yields a physically consistent methodology for reliable estimation of mixing enthalpies of liquid alloys.

  10. Size effects on the structural, electronic, and optical properties of (5,0) finite-length carbon nanotube: An ab-initio electronic structure study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali; Hashemifar, S. Javad

    2016-07-07

    We use density functional computations to study the zero temperature structural, electronic, magnetic, and optical properties of (5,0) finite carbon nanotubes (FCNT), with length in the range of 4–44 Å. It is found that the structural and electronic properties of (5,0) FCNTs, in the ground state, converge at a length of about 30 Å, while the excited state properties exhibit long-range edge effects. We discuss that curvature effects enhance energy gap of FCNTs, in contrast to the known trend in the periodic limit. It is seen that compensation of curvature effects in two special small sizes may give rise to spontaneous magnetization.more » The obtained cohesive energies provide some insights into the effects of environment on the growth of FCNTs. The second-order difference of the total energies reveals an important magic size of about 15 Å. The optical and dynamical magnetic responses of the FCNTs to polarized electromagnetic pulses are studied by time dependent density functional theory. The results show that the static and dynamic magnetic properties mainly come from the edge carbon atoms. The optical absorption properties are described in terms of local field effects and characterized by Casida linear response method.« less

  11. Simultaneously Enhancing the Cohesion and Electrical Conductivity of PEDOT:PSS Conductive Polymer Films using DMSO Additives.

    PubMed

    Lee, Inhwa; Kim, Gun Woo; Yang, Minyang; Kim, Taek-Soo

    2016-01-13

    Conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) has attracted significant attention as a hole transport and electrode layer that substitutes metal electrodes in flexible organic devices. However, its weak cohesion critically limits the reliable integration of PSS in flexible electronics, which highlights the importance of further investigation of the cohesion of PSS. Furthermore, the electrical conductivity of PSS is insufficient for high current-carrying devices such as organic photovoltaics (OPVs) and organic light emitting diodes (OLEDs). In this study, we improve the cohesion and electrical conductivity through adding dimethyl sulfoxide (DMSO), and we demonstrate the significant changes in the properties that are dependent on the wt % of DMSO. In particular, with the addition of 3 wt % DMSO, the maximum enhancements for cohesion and electrical conductivity are observed where the values increase by 470% and 6050%, respectively, due to the inter-PEDOT bridging mechanism. Furthermore, when OLED devices using the PSS films are fabricated using the 3 wt % DMSO, the display exhibits 18% increased current efficiency.

  12. Sisters Unbound Is Required for Meiotic Centromeric Cohesion in Drosophila melanogaster

    PubMed Central

    Krishnan, Badri; Thomas, Sharon E.; Yan, Rihui; Yamada, Hirotsugu; Zhulin, Igor B.; McKee, Bruce D.

    2014-01-01

    Regular meiotic chromosome segregation requires sister centromeres to mono-orient (orient to the same pole) during the first meiotic division (meiosis I) when homologous chromosomes segregate, and to bi-orient (orient to opposite poles) during the second meiotic division (meiosis II) when sister chromatids segregate. Both orientation patterns require cohesion between sister centromeres, which is established during meiotic DNA replication and persists until anaphase of meiosis II. Meiotic cohesion is mediated by a conserved four-protein complex called cohesin that includes two structural maintenance of chromosomes (SMC) subunits (SMC1 and SMC3) and two non-SMC subunits. In Drosophila melanogaster, however, the meiotic cohesion apparatus has not been fully characterized and the non-SMC subunits have not been identified. We have identified a novel Drosophila gene called sisters unbound (sunn), which is required for stable sister chromatid cohesion throughout meiosis. sunn mutations disrupt centromere cohesion during prophase I and cause high frequencies of non-disjunction (NDJ) at both meiotic divisions in both sexes. SUNN co-localizes at centromeres with the cohesion proteins SMC1 and SOLO in both sexes and is necessary for the recruitment of both proteins to centromeres. Although SUNN lacks sequence homology to cohesins, bioinformatic analysis indicates that SUNN may be a structural homolog of the non-SMC cohesin subunit stromalin (SA), suggesting that SUNN may serve as a meiosis-specific cohesin subunit. In conclusion, our data show that SUNN is an essential meiosis-specific Drosophila cohesion protein. PMID:25194162

  13. Power Structure in the Peer Group: The Role of Classroom Cohesion and Hierarchy in Peer Acceptance and Rejection of Victimized and Aggressive Students

    ERIC Educational Resources Information Center

    Martín Babarro, Javier; Díaz-Aguado, María José; Martínez Arias, Rosario; Steglich, Christian

    2017-01-01

    This study addresses the interacting effects of classroom cohesion and hierarchy on the relationships between victimization and aggression with peer acceptance and rejection. Classroom cohesion and hierarchy were constructed from friendship nominations. Multilevel analysis conducted in a sample of seventh- and eighth-grade students from the…

  14. Effect of Sb content on the physical properties of Ge-Se-Te chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Vashist, Priyanka; Anjali, Patial, Balbir Singh; Thakur, Nagesh

    2018-05-01

    In the present study, the bulk as-(Se80Te20)94-xGe6Sbx (x = 0, 1, 2, 4, 6, 8) glasses were synthesized using melt quenching technique. The physical properties viz coordination number, lone pair of electrons, number of constraints, glass transition temperature, mean bond energy, cohesive energy, electro-negativity and average heat of atomization of the investigated composition are reported and discussed. It is inferred that on increasing Sb content; average coordination number, average number of constraints, mean bond energy, cohesive energy and glass transition temperature increases but lone pair of electrons, average heat of atomization and deviation of stoichiometry decreases.

  15. Neutral and charged gallium clusters: structures, physical properties and implications for the melting features

    NASA Astrophysics Data System (ADS)

    Núñez, Sara; López, José M.; Aguado, Andrés

    2012-09-01

    We report the putative Global Minimum (GM) structures and electronic properties of GaN+, GaN and GaN- clusters with N = 13-37 atoms, obtained from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ an exchange-correlation functional which accounts for van der Waals dispersion interactions (vdW-DFT). We find a wide diversity of structural motifs within the located GM, including decahedral, polyicosahedral, polytetrahedral and layered structures. The GM structures are also extremely sensitive to the number of electrons in the cluster, so that the structures of neutral and charged clusters differ for most sizes. The main magic numbers (clusters with an enhanced stability) are identified and interpreted in terms of electronic and geometric shell closings. The theoretical results are consistent with experimental abundance mass spectra of GaN+ and with photoelectron spectra of GaN-. The size dependence of the latent heats of melting, the shape of the heat capacity peaks, and the temperature dependence of the collision cross-sections, all measured for GaN+ clusters, are properly interpreted in terms of the calculated cohesive energies, spectra of configurational excitations, and cluster shapes, respectively. The transition from ``non-melter'' to ``magic-melter'' behaviour, experimentally observed between Ga30+ and Ga31+, is traced back to a strong geometry change. Finally, the higher-than-bulk melting temperatures of gallium clusters are correlated with a more typically metallic behaviour of the clusters as compared to the bulk, contrary to previous theoretical claims.We report the putative Global Minimum (GM) structures and electronic properties of GaN+, GaN and GaN- clusters with N = 13-37 atoms, obtained from first-principles density functional theory structural optimizations. The calculations include spin polarization and employ an exchange-correlation functional which accounts for van der Waals dispersion interactions (vdW-DFT). We find a wide diversity of structural motifs within the located GM, including decahedral, polyicosahedral, polytetrahedral and layered structures. The GM structures are also extremely sensitive to the number of electrons in the cluster, so that the structures of neutral and charged clusters differ for most sizes. The main magic numbers (clusters with an enhanced stability) are identified and interpreted in terms of electronic and geometric shell closings. The theoretical results are consistent with experimental abundance mass spectra of GaN+ and with photoelectron spectra of GaN-. The size dependence of the latent heats of melting, the shape of the heat capacity peaks, and the temperature dependence of the collision cross-sections, all measured for GaN+ clusters, are properly interpreted in terms of the calculated cohesive energies, spectra of configurational excitations, and cluster shapes, respectively. The transition from ``non-melter'' to ``magic-melter'' behaviour, experimentally observed between Ga30+ and Ga31+, is traced back to a strong geometry change. Finally, the higher-than-bulk melting temperatures of gallium clusters are correlated with a more typically metallic behaviour of the clusters as compared to the bulk, contrary to previous theoretical claims. Electronic supplementary information (ESI) available: Atomic coordinates (in xyz format and Å units) and point group symmetries for the global minimum structures reported in this paper. See DOI: 10.1039/c2nr31222k

  16. Colchicine promotes a change in chromosome structure without loss of sister chromatid cohesion in prometaphase I-arrested bivalents.

    PubMed

    Rodríguez, E M; Parra, M T; Rufas, J S; Suja, J A

    2001-12-01

    In somatic cells colchicine promotes the arrest of cell division at prometaphase, and chromosomes show a sequential loss of sister chromatid arm and centromere cohesion. In this study we used colchicine to analyse possible changes in chromosome structure and sister chromatid cohesion in prometaphase I-arrested bivalents of the katydid Pycnogaster cucullata. After silver staining we observed that in colchicine-arrested prometaphase I bivalents, and in contrast to what was found in control bivalents, sister kinetochores appeared individualised and sister chromatid axes were completely separated all along their length. However, this change in chromosome structure occurred without loss of sister chromatid arm cohesion. We also employed the MPM-2 monoclonal antibody against mitotic phosphoproteins on control and colchicine-treated spermatocytes. In control metaphase I bivalents this antibody labelled the tightly associated sister kinetochores and the interchromatid domain. By contrast, in colchicine-treated prometaphase I bivalents individualised sister kinetochores appeared labelled, but the interchromatid domain did not show labelling. These results support the notion that MPM-2 phosphoproteins, probably DNA topoisomerase IIalpha, located in the interchromatid domain act as "chromosomal staples" associating sister chromatid axes in metaphase I bivalents. The disappearance of these chromosomal staples would induce a change in chromosome structure, as reflected by the separation of sister kinetochores and sister axes, but without a concomitant loss of sister chromatid cohesion.

  17. On the inapplicability of electron-hopping models for the organic semiconductor Phenyl-C61-butyric Acid Methyl Ester (PCBM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gajdos, Fruzsina; Oberhofer, Harald; Dupuis, Michel

    2013-03-21

    Phenyl-C61-butyric Acid Methyl Ester (PCBM) is one of the most popular semiconductors in organic photovoltaic cells, but the electron transport mechanism in the microcrystalline domains of this material as well as its preferred packing structure remains unclear. Here we use density functional theory to calculate electronic coupling matrix elements, reorganization energies and activation energies for available experimental and model crystal structures. We find that the picture of an excess electron hopping from one fullerene to another does not apply for any of the crystalline phases, rendering traditional rate equations inappropriate. We also find that the cohesive energy increases in themore » order body-centred-cubic < hexagonal < simple cubic < monoclinic < triclinic, independently on the type of dispersion correction used. Our results indicate that the electron-ion dynamics needs to be solved explicitly in order to obtain a realistic description of charge transfer in this material. M.D. was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES), Division of Chemical Sciences, Geosciences and Biosciences. PNNL is a multiprogram national laboratory operated for DOE by Battelle.« less

  18. Applying the Coupled-Cluster Ansatz to Solids and Surfaces in the Thermodynamic Limit

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas; Liao, Ke; Tsatsoulis, Theodoros; Hummel, Felix; Grüneis, Andreas

    2018-04-01

    Modern electronic structure theories can predict and simulate a wealth of phenomena in surface science and solid-state physics. In order to allow for a direct comparison with experiment, such ab initio predictions have to be made in the thermodynamic limit, substantially increasing the computational cost of many-electron wave-function theories. Here, we present a method that achieves thermodynamic limit results for solids and surfaces using the "gold standard" coupled cluster ansatz of quantum chemistry with unprecedented efficiency. We study the energy difference between carbon diamond and graphite crystals, adsorption energies of water on h -BN, as well as the cohesive energy of the Ne solid, demonstrating the increased efficiency and accuracy of coupled cluster theory for solids and surfaces.

  19. Pds5 regulators segregate cohesion and condensation pathways in Saccharomyces cerevisiae.

    PubMed

    Tong, Kevin; Skibbens, Robert V

    2015-06-02

    Cohesins are required both for the tethering together of sister chromatids (termed cohesion) and subsequent condensation into discrete structures-processes fundamental for faithful chromosome segregation into daughter cells. Differentiating between cohesin roles in cohesion and condensation would provide an important advance in studying chromatin metabolism. Pds5 is a cohesin-associated factor that is essential for both cohesion maintenance and condensation. Recent studies revealed that ELG1 deletion suppresses the temperature sensitivity of pds5 mutant cells. However, the mechanisms through which Elg1 may regulate cohesion and condensation remain unknown. Here, we report that ELG1 deletion from pds5-1 mutant cells results in a significant rescue of cohesion, but not condensation, defects. Based on evidence that Elg1 unloads the DNA replication clamp PCNA from DNA, we tested whether PCNA overexpression would similarly rescue pds5-1 mutant cell cohesion defects. The results indeed reveal that elevated levels of PCNA rescue pds5-1 temperature sensitivity and cohesion defects, but do not rescue pds5-1 mutant cell condensation defects. In contrast, RAD61 deletion rescues the condensation defect, but importantly, neither the temperature sensitivity nor cohesion defects exhibited by pds5-1 mutant cells. In combination, these findings reveal that cohesion and condensation are separable pathways and regulated in nonredundant mechanisms. These results are discussed in terms of a new model through which cohesion and condensation are spatially regulated.

  20. Neighborhoods and Mental Health: Exploring Ethnic Density, Poverty, and Social Cohesion among Asian Americans and Latinos

    PubMed Central

    Hong, Seunghye; Zhang, Wei; Walton, Emily

    2014-01-01

    This study examines the associations of neighborhood ethnic density and poverty with social cohesion and self-rated mental health among Asian Americans and Latinos. Path analysis is employed to analyze data from the 2002–2003 National Latino and Asian American Study (NLAAS) and the 2000 U.S. Census (N=2095 Asian Americans living in N=259 neighborhoods; N=2554 Latinos living in N=317 neighborhoods). Findings reveal that neighborhood ethnic density relates to poor mental health in both groups. Social cohesion partially mediates that structural relationship, but is positively related to ethnic density among Latinos and negatively related to ethnic density among Asian Americans. Although higher neighborhood poverty is negatively associated with mental health for both groups, the relationship does not hold in the path models after accounting for social cohesion and covariates. Furthermore, social cohesion fully mediates the association between neighborhood poverty and mental health among Latinos. This study highlights the necessity of reconceptualizing existing theories of social relationships to reflect complex and nuanced mechanisms linking neighborhood structure and mental health for diverse racial and ethnic groups. PMID:24769491

  1. Using Electronic Messaging to Improve the Quality of Instruction.

    ERIC Educational Resources Information Center

    Zack, Michael H.

    1995-01-01

    Qualitative and quantitative data from business students using electronic mail and computer conferencing showed these methods enabled the instructor to be more accessible and responsive; greater class cohesion developed, and perceived quality of the course and instructor effectiveness increased. (SK)

  2. Cohesin-interacting protein WAPL-1 regulates meiotic chromosome structure and cohesion by antagonizing specific cohesin complexes

    PubMed Central

    Crawley, Oliver; Barroso, Consuelo; Testori, Sarah; Ferrandiz, Nuria; Silva, Nicola; Castellano-Pozo, Maikel; Jaso-Tamame, Angel Luis; Martinez-Perez, Enrique

    2016-01-01

    Wapl induces cohesin dissociation from DNA throughout the mitotic cell cycle, modulating sister chromatid cohesion and higher-order chromatin structure. Cohesin complexes containing meiosis-specific kleisin subunits govern most aspects of meiotic chromosome function, but whether Wapl regulates these complexes remains unknown. We show that during C. elegans oogenesis WAPL-1 antagonizes binding of cohesin containing COH-3/4 kleisins, but not REC-8, demonstrating that sensitivity to WAPL-1 is dictated by kleisin identity. By restricting the amount of chromosome-associated COH-3/4 cohesin, WAPL-1 controls chromosome structure throughout meiotic prophase. In the absence of REC-8, WAPL-1 inhibits COH-3/4-mediated cohesion, which requires crossover-fated events formed during meiotic recombination. Thus, WAPL-1 promotes functional specialization of meiotic cohesin: WAPL-1-sensitive COH-3/4 complexes modulate higher-order chromosome structure, while WAPL-1-refractory REC-8 complexes provide stable cohesion. Surprisingly, a WAPL-1-independent mechanism removes cohesin before metaphase I. Our studies provide insight into how meiosis-specific cohesin complexes are regulated to ensure formation of euploid gametes. DOI: http://dx.doi.org/10.7554/eLife.10851.001 PMID:26841696

  3. A social network analysis of social cohesion in a constructed pride: implications for ex situ reintroduction of the African lion (Panthera leo).

    PubMed

    Abell, Jackie; Kirzinger, Morgan W B; Gordon, Yvonne; Kirk, Jacqui; Kokeŝ, Rae; Lynas, Kirsty; Mandinyenya, Bob; Youldon, David

    2013-01-01

    Animal conservation practices include the grouping of captive related and unrelated individuals to form a social structure which is characteristic of that species in the wild. In response to the rapid decline of wild African lion (Panthera leo) populations, an array of conservational strategies have been adopted. Ex situ reintroduction of the African lion requires the construction of socially cohesive pride structures prior to wild release. This pilot study adopted a social network theory approach to quantitatively assess a captive pride's social structure and the relationships between individuals within them. Group composition (who is present in a group) and social interaction data (social licking, greeting, play) was observed and recorded to assess social cohesion within a released semi-wild pride. UCINET and SOCPROG software was utilised to represent and analyse these social networks. Results indicate that the pride is socially cohesive, does not exhibit random associations, and the role of socially influential keystone individuals is important for maintaining social bondedness within a lion pride. These results are potentially informative for the structure of lion prides, in captivity and in the wild, and could have implications for captive and wild-founder reintroductions.

  4. Structure of the Pds5-Scc1 Complex and Implications for Cohesin Function.

    PubMed

    Muir, Kyle W; Kschonsak, Marc; Li, Yan; Metz, Jutta; Haering, Christian H; Panne, Daniel

    2016-03-08

    Sister chromatid cohesion is a fundamental prerequisite to faithful genome segregation. Cohesion is precisely regulated by accessory factors that modulate the stability with which the cohesin complex embraces chromosomes. One of these factors, Pds5, engages cohesin through Scc1 and is both a facilitator of cohesion, and, conversely also mediates the release of cohesin from chromatin. We present here the crystal structure of a complex between budding yeast Pds5 and Scc1, thus elucidating the molecular basis of Pds5 function. Pds5 forms an elongated HEAT repeat that binds to Scc1 via a conserved surface patch. We demonstrate that the integrity of the Pds5-Scc1 interface is indispensable for the recruitment of Pds5 to cohesin, and that its abrogation results in loss of sister chromatid cohesion and cell viability. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Selectivity assessment of DB-200 and DB-VRX open-tubular capillary columns.

    PubMed

    Kiridena, W; Koziola, W W; Poole, C F

    2001-10-12

    The solvation parameter model is used to study the influence of composition and temperature on the selectivity of two poly(siloxane) stationary phases used for open-tubular capillary column gas chromatography. The poly(methyltrifluoropropyldimethylsiloxane) stationary phase, DB-200, has low cohesion, intermediate dipolarity/polarizability, low hydrogen-bond basicity, no hydrogen-bond acidity, and repulsive electron lone pair interactions. The DB-VRX stationary phase has low cohesion, low dipolarity/polarizability, low hydrogen-bond basicity and no hydrogen-bond acidity and no capacity for electron lone pair interactions. The selectivity of the two stationary phases is complementary to those in a database of 11 stationary phase chemistries determined under the same experimental conditions.

  6. Validation of French and German versions of a Perceived Neighborhood Social Cohesion Questionnaire among young Swiss males, and its relationship with substance use.

    PubMed

    Dupuis, Marc; Studer, Joseph; Henchoz, Yves; Deline, Stéphane; Baggio, Stéphanie; N'Goran, Alexandra; Mohler-Kuo, Meichun; Gmel, Gerhard

    2016-02-01

    This study main purpose was the validation of both French and German versions of a Perceived Neighborhood Social Cohesion Questionnaire. The sample group comprised 5065 Swiss men from the "Cohort Study on Substance Use Risk Factors." Multigroup Confirmatory factor analysis showed that a three-factor model fits the data well, which substantiates the generalizability of Perceived Neighborhood Social Cohesion Questionnaire factor structure, regardless of the language. The Perceived Neighborhood Social Cohesion Questionnaire demonstrated excellent homogeneity (α = 95) and split-half reliability (r = .96). The Perceived Neighborhood Social Cohesion Questionnaire was sensitive to community size and participants' financial situation, confirming that it also measures real social conditions. Finally, weak but frequent correlations between Perceived Neighborhood Social Cohesion Questionnaire and alcohol, cigarette, and cannabis dependence were measured. © The Author(s) 2014.

  7. Mode I Cohesive Law Characterization of Through-Crack Propagation in a Multidirectional Laminate

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.; Davila, Carlos G.; Leone, Frank A.; Awerbuch, Jonathan; Tan, Tein-Min

    2014-01-01

    A method is proposed and assessed for the experimental characterization of through-the-thickness crack propagation in multidirectional composite laminates with a cohesive law. The fracture toughness and crack opening displacement are measured and used to determine a cohesive law. Two methods of computing fracture toughness are assessed and compared. While previously proposed cohesive characterizations based on the R-curve exhibit size effects, the proposed approach results in a cohesive law that is a material property. The compact tension specimen configuration is used to propagate damage while load and full-field displacements are recorded. These measurements are used to compute the fracture toughness and crack opening displacement from which the cohesive law is characterized. The experimental results show that a steady-state fracture toughness is not reached. However, the proposed method extrapolates to steady-state and is demonstrated capable of predicting the structural behavior of geometrically-scaled specimens.

  8. 49 CFR 229.305 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... cohesion. Component means an electronic element, device, or appliance (including hardware or software) that... and software version, is documented and maintained through the life-cycle of the products in use. Executive software means software common to all installations of a given electronic product. It generally is...

  9. 49 CFR 229.305 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... cohesion. Component means an electronic element, device, or appliance (including hardware or software) that... and software version, is documented and maintained through the life-cycle of the products in use. Executive software means software common to all installations of a given electronic product. It generally is...

  10. 49 CFR 229.305 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... cohesion. Component means an electronic element, device, or appliance (including hardware or software) that... and software version, is documented and maintained through the life-cycle of the products in use. Executive software means software common to all installations of a given electronic product. It generally is...

  11. First principle study of electronic nanoscale structure of In x Ga1- x P with variable size, shape and alloying percentage

    NASA Astrophysics Data System (ADS)

    Hussein, M. T.; Kasim, T.; Abdulsattar, M. A.

    2013-11-01

    In present work, we investigate electronic properties of alloying percentage of In x Ga1- x P compound with different sizes of superlattice large unit cell (LUC) method with 8, 16, 54, and 64 nanocrystals core atoms. The size and type of alloying compound are varied so that it can be tuned to a required application. To determine properties of indium gallium phosphide nanocrystals density functional theory at the generalized-gradient approximation level coupled with LUC method is used to simulate electronic structure of zinc blende indium gallium phosphide nanocrystals that have dimensions around 2-2.8 nm. The calculated properties include lattice constant, energy gap, valence band width, cohesive energy, density of states (DOS) etc. Results show that laws that are applied at microscale alloying percentage are no more applicable at the present nanoscale. Results also show that size, shape and quantum effects are strong. Many properties fluctuate at nanoscale while others converge to definite values. DOS summarizes many of the above quantities.

  12. Revealing the Hidden Relationship by Sparse Modules in Complex Networks with a Large-Scale Analysis

    PubMed Central

    Jiao, Qing-Ju; Huang, Yan; Liu, Wei; Wang, Xiao-Fan; Chen, Xiao-Shuang; Shen, Hong-Bin

    2013-01-01

    One of the remarkable features of networks is module that can provide useful insights into not only network organizations but also functional behaviors between their components. Comprehensive efforts have been devoted to investigating cohesive modules in the past decade. However, it is still not clear whether there are important structural characteristics of the nodes that do not belong to any cohesive module. In order to answer this question, we performed a large-scale analysis on 25 complex networks with different types and scales using our recently developed BTS (bintree seeking) algorithm, which is able to detect both cohesive and sparse modules in the network. Our results reveal that the sparse modules composed by the cohesively isolated nodes widely co-exist with the cohesive modules. Detailed analysis shows that both types of modules provide better characterization for the division of a network into functional units than merely cohesive modules, because the sparse modules possibly re-organize the nodes in the so-called cohesive modules, which lack obvious modular significance, into meaningful groups. Compared with cohesive modules, the sizes of sparse ones are generally smaller. Sparse modules are also found to have preferences in social and biological networks than others. PMID:23762457

  13. Are diverse societies less cohesive? Testing contact and mediated contact theories.

    PubMed

    McKenna, Sarah; Lee, Eunro; Klik, Kathleen A; Markus, Andrew; Hewstone, Miles; Reynolds, Katherine J

    2018-01-01

    Previous research has demonstrated that there is a negative relationship between ethnic diversity in a local community and social cohesion. Often the way social cohesion is assessed, though, varies across studies and only some aspects of the construct are included (e.g., trust). The current research explores the relationship between diversity and social cohesion across a number of indicators of social cohesion including neighbourhood social capital, safety, belonging, generalized trust, and volunteering. Furthermore, social psychological theories concerning the role of positive contact and its impact on feelings of threat are investigated. Using a sample of 1070 third generation 'majority' Australians and structural equation modelling (SEM), findings suggest ethnic diversity is related to positive intergroup contact, and that contact showed beneficial impacts for some indicators of social cohesion both directly and indirectly through reducing perceived threat. When interethnic contact and perceived threat are included in the model there is no direct negative effect between diversity and social cohesion. The theoretical implications of these findings are outlined including the importance of facilitating opportunities for positive contact in diverse communities.

  14. Perceived Social Cohesion, Frequency of Going Out, and Depressive Symptoms in Older Adults

    PubMed Central

    Choi, Namkee G.; Kim, Jinseok; DiNitto, Diana M.; Marti, C. Nathan

    2015-01-01

    Objective: To examine both cross-sectional and longitudinal relationships between older adults’ perceptions of social cohesion in their community and depressive symptoms and the potential mediating effect of the frequency of going outside one’s home/building. Method: Using two waves (T1 and T2) of the National Health and Aging Trend Study (n = 5,326), gender-stratified structural equation models were estimated to determine direct and indirect effects of perceived social cohesion on depressive symptoms. Results: At T1, both perceived cohesion and frequency of going out were directly associated with depressive symptoms; however, perceived cohesion predicted frequency of going out only for women. At T2, only frequency of going out was directly associated with depressive symptoms, although perceived cohesion predicted frequency of going out for both genders. T1 perceived cohesion did not predict T2 depressive symptoms. T1 depressive symptoms were the strongest predictor of T2 depressive symptoms. Conclusion: The findings underscore the importance of enhancing the social environment in promoting mental health in late life through active aging. PMID:28138478

  15. Perceived Social Cohesion, Frequency of Going Out, and Depressive Symptoms in Older Adults: Examination of Longitudinal Relationships.

    PubMed

    Choi, Namkee G; Kim, Jinseok; DiNitto, Diana M; Marti, C Nathan

    2015-01-01

    Objective: To examine both cross-sectional and longitudinal relationships between older adults' perceptions of social cohesion in their community and depressive symptoms and the potential mediating effect of the frequency of going outside one's home/building. Method: Using two waves (T1 and T2) of the National Health and Aging Trend Study ( n = 5,326), gender-stratified structural equation models were estimated to determine direct and indirect effects of perceived social cohesion on depressive symptoms. Results: At T1, both perceived cohesion and frequency of going out were directly associated with depressive symptoms; however, perceived cohesion predicted frequency of going out only for women. At T2, only frequency of going out was directly associated with depressive symptoms, although perceived cohesion predicted frequency of going out for both genders. T1 perceived cohesion did not predict T2 depressive symptoms. T1 depressive symptoms were the strongest predictor of T2 depressive symptoms. Conclusion: The findings underscore the importance of enhancing the social environment in promoting mental health in late life through active aging.

  16. Are diverse societies less cohesive? Testing contact and mediated contact theories

    PubMed Central

    Lee, Eunro; Klik, Kathleen A.; Markus, Andrew; Hewstone, Miles; Reynolds, Katherine J.

    2018-01-01

    Previous research has demonstrated that there is a negative relationship between ethnic diversity in a local community and social cohesion. Often the way social cohesion is assessed, though, varies across studies and only some aspects of the construct are included (e.g., trust). The current research explores the relationship between diversity and social cohesion across a number of indicators of social cohesion including neighbourhood social capital, safety, belonging, generalized trust, and volunteering. Furthermore, social psychological theories concerning the role of positive contact and its impact on feelings of threat are investigated. Using a sample of 1070 third generation ‘majority’ Australians and structural equation modelling (SEM), findings suggest ethnic diversity is related to positive intergroup contact, and that contact showed beneficial impacts for some indicators of social cohesion both directly and indirectly through reducing perceived threat. When interethnic contact and perceived threat are included in the model there is no direct negative effect between diversity and social cohesion. The theoretical implications of these findings are outlined including the importance of facilitating opportunities for positive contact in diverse communities. PMID:29596501

  17. Elongational rheology and cohesive fracture of photo-oxidated LDPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolón-Garrido, Víctor H., E-mail: victor.h.rolongarrido@tu-berlin.de; Wagner, Manfred H.

    2014-01-15

    It was found recently that low-density polyethylene (LDPE) samples with different degrees of photo-oxidation represent an interesting system to study the transition from ductile to cohesive fracture and the aspects of the cohesive rupture in elongational flow. Sheets of LDPE were subjected to photo-oxidation in the presence of air using a xenon lamp to irradiate the samples for times between 1 day and 6 weeks. Characterisation methods included Fourier transform infrared spectroscopy, solvent extraction method, and rheology in shear and uniaxial extensional flows. Linear viscoelasticity was increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by themore » carbonyl index, acid and aldehydes groups, and gel fraction. The molecular stress function model was used to quantify the experimental data, and the nonlinear model parameter β was found to be correlated with the gel content. The uniaxial data showed that the transition from ductile to cohesive fracture was shifted to lower elongational rates, the higher the gel content was. From 2 weeks photo-oxidation onwards, cohesive rupture occurred at every strain rate investigated. The true strain and true stress at cohesive fracture as well as the energy density applied to the sample up to fracture were analyzed. At low gel content, rupture was mainly determined by the melt fraction while at high gel content, rupture occurred predominantly in the gel structure. The strain at break was found to be independent of strain rate, contrary to the stress at break and the energy density. Thus, the true strain and not the stress at break or the energy density was found to be the relevant physical quantity to describe cohesive fracture behavior of photo-oxidated LDPE. The equilibrium modulus of the gel structures was correlated with the true strain at rupture. The stiffer the gel structure, the lower was the deformation tolerated before the sample breaks.« less

  18. Cohesive Laws for Analyzing Through-Crack Propagation in Cross Ply Laminates

    NASA Technical Reports Server (NTRS)

    Bergan, Andrew C.; Davila, Carlos G.

    2015-01-01

    The laminate cohesive approach (LCA) is a methodology for the experimental characterization of cohesive through-the-thickness damage propagation in fiber-reinforced polymer matrix composites. LCA has several advantages over other existing approaches for cohesive law characterization, including: visual measurements of crack length are not required, structural effects are accounted for, and LCA can be applied when the specimen is too small to achieve steady-state fracture. In this work, the applicability of this method is investigated for two material systems: IM7/8552, a conventional prepreg, and AS4/VRM34, a non-crimp fabric cured using an out-of-autoclave process. The compact tension specimen configuration is used to propagate stable Mode I damage. Trilinear cohesive laws are characterized using the fracture toughness and the notch tip opening displacement. Test results are compared for the IM7/8552 specimens with notches machined by waterjet and by wire slurry saw. It is shown that the test results are nearly identical for both notch tip preparations methods, indicating that significant specimen preparation time and cost savings can be realized by using the waterjet to notch the specimen instead of the wire slurry saw. The accuracy of the cohesive laws characterized herein are assessed by reproducing the structural response of the test specimens using computational methods. The applicability of the characterization procedure for inferring lamina fracture toughness is also discussed.

  19. Electronic Structure of Actinides under Pressure

    NASA Astrophysics Data System (ADS)

    Johansson, Borje

    2006-03-01

    The series of heavy radioactive elements known as the actinides all have similar elemental properties. However, when the volume per atom in the condensed phase is illustrated as a function of atomic number, perhaps the most dramatic anomaly in the periodic table becomes apparent. The atomic volume of americium is almost 50% larger than it is for the preceding element plutonium. For the element after americium, curium, the atomic volume is very close to that of americium. The same holds also for the next elements berkelium and californium. Accordingly from americium and onwards the actinides behave very similar to the corresponding rare-earth elements - a second lanthanide series of metallic elements can be identified. This view is strongly supported by the fact that all these elements adopt the dhcp structure, a structure typical for the lanthanides. The reason for this behavior is found in the behavior of the 5f electrons. For the earlier actinides, up to and including plutonium, the 5f electrons form metallic states and contribute most significantly to the bonding. In Np and Pu they even dominate the bonding, while all of a sudden they become localized in Am, very much like the 4f electrons in the lanthanide series, and contribute no longer to the cohesion. This withdrawal of 5f bonding gives rise to the large volume expansion between plutonium and americium. This difference between the light and heavy actinide suggests that it would be most worthwhile to strongly compress the transplutonium elements, thereby forcing the individual 5f electron wave functions into strong contact with each other (overlap). Recently high pressure experiments have been performed for americium and curium and dramatic crystal structure changes have been observed. These results and other high pressure data will be discussed in relation to the basic electronic structure of these elements.

  20. BinTree Seeking: A Novel Approach to Mine Both Bi-Sparse and Cohesive Modules in Protein Interaction Networks

    PubMed Central

    Shen, Hong-Bin

    2011-01-01

    Modern science of networks has brought significant advances to our understanding of complex systems biology. As a representative model of systems biology, Protein Interaction Networks (PINs) are characterized by a remarkable modular structures, reflecting functional associations between their components. Many methods were proposed to capture cohesive modules so that there is a higher density of edges within modules than those across them. Recent studies reveal that cohesively interacting modules of proteins is not a universal organizing principle in PINs, which has opened up new avenues for revisiting functional modules in PINs. In this paper, functional clusters in PINs are found to be able to form unorthodox structures defined as bi-sparse module. In contrast to the traditional cohesive module, the nodes in the bi-sparse module are sparsely connected internally and densely connected with other bi-sparse or cohesive modules. We present a novel protocol called the BinTree Seeking (BTS) for mining both bi-sparse and cohesive modules in PINs based on Edge Density of Module (EDM) and matrix theory. BTS detects modules by depicting links and nodes rather than nodes alone and its derivation procedure is totally performed on adjacency matrix of networks. The number of modules in a PIN can be automatically determined in the proposed BTS approach. BTS is tested on three real PINs and the results demonstrate that functional modules in PINs are not dominantly cohesive but can be sparse. BTS software and the supporting information are available at: www.csbio.sjtu.edu.cn/bioinf/BTS/. PMID:22140454

  1. A new three-phase heterocrystal catalysts and their superior treatment efficiency for tetracycline

    NASA Astrophysics Data System (ADS)

    Wang, Feng-Rui; Sun, Hui-Ping; Wang, Yan; Liu, Jin-Ku; Fang, Yi; Wang, Jian-Dong

    An easy recyclable and interesting Ag3PO4@Pt@TiO2 (APTP) three-phase heterocrystal chains were self-assembled by the cohesive action and chemical construction of polyvinylpyrrolidone (PVP). We found that a new electron-hole transmission path has been built via the rematch of the band structure of Ag3PO4, Pt and TiO2 which extends the light absorption and promoted the electron-hole separation to treat the antibiotic residues in the water. Based on the thorough investigations, a new catalytic material was provided for antibiotics degradation. The catalytic activity of APTP toward the degradation of tetracycline solution was enhanced by 166.67% and the stability increased remarkably compared with pure Ag3PO4 through the integration of different functional components.

  2. The structural, electronic, magnetic and optical properties of the half-metallic binary alloys ZCl3 (Z=Be, Mg, Ca, Sr): A first-principles study

    NASA Astrophysics Data System (ADS)

    Song, Jun-Tao; Zhang, Jian-Min

    2018-06-01

    The investigations of the electronic and magnetic properties show the binary Heusler alloys ZCl3 (Z = Be, Mg, Ca, Sr) are half-metallic (HM) ferromagnets with an integer magnetic moment (Mt) of 1 μB /f.u.. The alloy BeCl3 is thermodynamic meta-stable, while other alloys are thermodynamic stable according to their cohesive energies and formation energies. Moreover, wide HM regions for alloys ZCl3 (Z = Be, Mg, Ca, Sr) show their HM characters are robust when the lattices are expanded or compressed under uniform and tetragonal strains. Finally, some optical properties are analyzed in detail, such as the dielectric function, the absorption coefficient, the refractive index and the extinction coefficient.

  3. Neighborhoods and mental health: exploring ethnic density, poverty, and social cohesion among Asian Americans and Latinos.

    PubMed

    Hong, Seunghye; Zhang, Wei; Walton, Emily

    2014-06-01

    This study examines the associations of neighborhood ethnic density and poverty with social cohesion and self-rated mental health among Asian Americans and Latinos. Path analysis is employed to analyze data from the 2002-2003 National Latino and Asian American Study (NLAAS) and the 2000 U.S. Census (N = 2095 Asian Americans living in N = 259 neighborhoods; N = 2554 Latinos living in N = 317 neighborhoods). Findings reveal that neighborhood ethnic density relates to poor mental health in both groups. Social cohesion partially mediates that structural relationship, but is positively related to ethnic density among Latinos and negatively related to ethnic density among Asian Americans. Although higher neighborhood poverty is negatively associated with mental health for both groups, the relationship does not hold in the path models after accounting for social cohesion and covariates. Furthermore, social cohesion fully mediates the association between neighborhood poverty and mental health among Latinos. This study highlights the necessity of reconceptualizing existing theories of social relationships to reflect complex and nuanced mechanisms linking neighborhood structure and mental health for diverse racial and ethnic groups. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Impact of Pb content on the physical parameters of Se-Te-Pb system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjali,; Sharma, Raman; Thakur, Nagesh

    2015-05-15

    In the present study, we have investigated the impact of Pb content on the physical parameters in Se-Te-Pb system via average coordination number, constraints, the fraction of floppy modes, cross-linking density, lone pairs electrons, heat of atomization, mean bond energy, cohesive energy and electronegativity. The bulk samples have been prepared by using melt quenching technique. X-ray diffraction pattern of various samples indicates the amorphous nature of investigated glassy alloys. It is observed that average coordination number, average number of constraints and cross-linking density increase with Pb content. However, lone-pair electrons, floppy modes, average heat of atomization, cohesive energy and meanmore » bond energy are found to decrease with Pb atomic percentage.« less

  5. Rotational Failure of Rubble-pile Bodies: Influences of Shear and Cohesive Strengths

    NASA Astrophysics Data System (ADS)

    Zhang, Yun; Richardson, Derek C.; Barnouin, Olivier S.; Michel, Patrick; Schwartz, Stephen R.; Ballouz, Ronald-Louis

    2018-04-01

    The shear and cohesive strengths of a rubble-pile asteroid could influence the critical spin at which the body fails and its subsequent evolution. We present results using a soft-sphere discrete element method to explore the mechanical properties and dynamical behaviors of self-gravitating rubble piles experiencing increasing rotational centrifugal forces. A comprehensive contact model incorporating translational and rotational friction and van der Waals cohesive interactions is developed to simulate rubble-pile asteroids. It is observed that the critical spin depends strongly on both the frictional and cohesive forces between particles in contact; however, the failure behaviors only show dependence on the cohesive force. As cohesion increases, the deformation of the simulated body prior to disruption is diminished, the disruption process is more abrupt, and the component size of the fissioned material is increased. When the cohesive strength is high enough, the body can disaggregate into similar-size fragments, which could be a plausible mechanism to form asteroid pairs or active asteroids. The size distribution and velocity dispersion of the fragments in high-cohesion simulations show similarities to the disintegrating asteroid P/2013 R3, indicating that this asteroid may possess comparable cohesion in its structure and experience rotational fission in a similar manner. Additionally, we propose a method for estimating a rubble pile’s friction angle and bulk cohesion from spin-up numerical experiments, which provides the opportunity for making quantitative comparisons with continuum theory. The results show that the present technique has great potential for predicting the behaviors and estimating the material strengths of cohesive rubble-pile asteroids.

  6. A Social Network Analysis of Social Cohesion in a Constructed Pride: Implications for Ex Situ Reintroduction of the African Lion (Panthera leo)

    PubMed Central

    Abell, Jackie; Kirzinger, Morgan W. B.; Gordon, Yvonne; Kirk, Jacqui; Kokeŝ, Rae; Lynas, Kirsty; Mandinyenya, Bob; Youldon, David

    2013-01-01

    Animal conservation practices include the grouping of captive related and unrelated individuals to form a social structure which is characteristic of that species in the wild. In response to the rapid decline of wild African lion (Panthera leo) populations, an array of conservational strategies have been adopted. Ex situ reintroduction of the African lion requires the construction of socially cohesive pride structures prior to wild release. This pilot study adopted a social network theory approach to quantitatively assess a captive pride’s social structure and the relationships between individuals within them. Group composition (who is present in a group) and social interaction data (social licking, greeting, play) was observed and recorded to assess social cohesion within a released semi-wild pride. UCINET and SOCPROG software was utilised to represent and analyse these social networks. Results indicate that the pride is socially cohesive, does not exhibit random associations, and the role of socially influential keystone individuals is important for maintaining social bondedness within a lion pride. These results are potentially informative for the structure of lion prides, in captivity and in the wild, and could have implications for captive and wild-founder reintroductions. PMID:24376544

  7. The effect of the averaged structural and energetic features on the cohesive energy of nanocrystals

    NASA Astrophysics Data System (ADS)

    Ali Safaei

    2010-03-01

    The size dependency of the cohesive energy of nanocrystals is obtained in terms of their averaged structural and energetic properties, which are in direct proportion with their cohesive energies. The significance of the effect of the geometrical shape of nanoparticles on their thermal stability has been discussed. The model has been found to have good prediction for the case of Cu and Al nanoparticles, with sizes in the ranges of 1-22 nm and 2-22 nm, respectively. Defining a new parameter, named as the surface-to-volume energy-contribution ratio, the relative thermal stabilities of different nanoclusters and their different surface-crystalline faces are discussed and compared to the molecular dynamic (MD) simulation results of copper nanoclusters. Finally, based on the size dependency of the cohesive energy, a formula for the size-dependent diffusion coefficient has been presented which includes the structural and energetic effects. Using this formula, the faster-than-expected interdiffusion/alloying of Au(core)-Ag(shell) nanoparticles with the core-shell structure, the Au-core diameter of 20 nm and the Ag-shell thickness of 2.91 nm, has been discussed and the calculated diffusion coefficient has been found to be consistent with its corresponding experimental value.

  8. ROCC, a conserved region in cohesin's Mcd1 subunit, is essential for the proper regulation of the maintenance of cohesion and establishment of condensation

    PubMed Central

    Eng, Thomas; Guacci, Vincent; Koshland, Doug

    2014-01-01

    Cohesin helps orchestrate higher-order chromosome structure, thereby promoting sister chromatid cohesion, chromosome condensation, DNA repair, and transcriptional regulation. To elucidate how cohesin facilitates these diverse processes, we mutagenized Mcd1p, the kleisin regulatory subunit of budding yeast cohesin. In the linker region of Mcd1p, we identified a novel evolutionarily conserved 10–amino acid cluster, termed the regulation of cohesion and condensation (ROCC) box. We show that ROCC promotes cohesion maintenance by protecting a second activity of cohesin that is distinct from its stable binding to chromosomes. The existence of this second activity is incompatible with the simple embrace mechanism of cohesion. In addition, we show that the ROCC box is required for the establishment of condensation. We provide evidence that ROCC controls cohesion maintenance and condensation establishment through differential functional interactions with Pds5p and Wpl1p. PMID:24966169

  9. Roles of the sister chromatid cohesion apparatus in gene expression, development, and human syndromes

    PubMed Central

    Dorsett, Dale

    2006-01-01

    The sister chromatid cohesion apparatus mediates physical pairing of duplicated chromosomes. This pairing is essential for appropriate distribution of chromosomes into the daughter cells upon cell division. Recent evidence shows that the cohesion apparatus, which is a significant structural component of chromosomes during interphase, also affects gene expression and development. The Cornelia de Lange (CdLS) and Roberts/SC phocomelia (RBS/SC) genetic syndromes in humans are caused by mutations affecting components of the cohesion apparatus. Studies in Drosophila suggest that effects on gene expression are most likely responsible for developmental alterations in CdLS. Effects on chromatid cohesion are apparent in RBS/SC syndrome, but data from yeast and Drosophila point to the likelihood that changes in expression of genes located in heterochromatin could contribute to the developmental deficits. PMID:16819604

  10. Cohesive detachment of an elastic pillar from a dissimilar substrate

    NASA Astrophysics Data System (ADS)

    Fleck, N. A.; Khaderi, S. N.; McMeeking, R. M.; Arzt, E.

    The adhesion of micron-scale surfaces due to intermolecular interactions is a subject of intense interest spanning electronics, biomechanics and the application of soft materials to engineering devices. The degree of adhesion is sensitive to the diameter of micro-pillars in addition to the degree of elastic mismatch between pillar and substrate. Adhesion-strength-controlled detachment of an elastic circular cylinder from a dissimilar substrate is predicted using a Dugdale-type of analysis, with a cohesive zone of uniform tensile strength emanating from the interface corner. Detachment initiates when the opening of the cohesive zone attains a critical value, giving way to crack formation. When the cohesive zone size at crack initiation is small compared to the pillar diameter, the initiation of detachment can be expressed in terms of a critical value Hc of the corner stress intensity. The estimated pull-off force is somewhat sensitive to the choice of stick/slip boundary condition used on the cohesive zone, especially when the substrate material is much stiffer than the pillar material. The analysis can be used to predict the sensitivity of detachment force to the size of pillar and to the degree of elastic mismatch between pillar and substrate.

  11. First-principles calculations of stability, electronic and elastic properties of the precipitates present in 7055 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Huang, Cheng; Shao, Hongbang; Ma, Yunlong; Huang, Yuanchun; Xiao, Zhengbing

    2018-04-01

    The structural stability, electronic structures and elastic properties of the strengthening precipitates, namely Al3Zr, MgZn2, Al2CuMg and Al2Cu, present in 7055 aluminum alloy were investigated by the first-principles calculations based on density functional theory (DFT). The optimized structural parameters are in good agreement with literature values available. It is found that Al3Zr has the strongest alloying ability and structural stability, while for MgZn2, its structural stability is the worst. The calculated electronic results indicate that covalent bonding is the dominant cohesion of Al3Zr, whereas the fractional ionic interactions coexisting with metallic bonding are found in MgZn2, Al2CuMg and Al2Cu. The elastic constants Cij of these precipitates were calculated, and the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and universal elastic anisotropy were derived. It is suggested that MgZn2 is ductile, whereas Al3Zr, Al2CuMg and Al2Cu are brittle, and the elastic anisotropies of them increase in the following sequence: Al3Zr

  12. Neighborhood Social Cohesion as a Mediator of Neighborhood Conditions on Mothers' Engagement in Physical Activity: Results From the Geographic Research on Wellbeing Study.

    PubMed

    Yuma-Guerrero, Paula J; Cubbin, Catherine; von Sternberg, Kirk

    2017-12-01

    The purpose of this study was to determine if social cohesion mediates the effects of neighborhood and household-level socioeconomic status (SES), perceptions of neighborhood safety, and access to parks on mothers' engagement in physical activity (PA). Secondary analyses were conducted on cross-sectional data from The Geographic Research on Wellbeing (GROW) study. GROW includes survey data from a diverse sample of 2,750 California mothers. Structural equation modeling was used to test a conceptual multilevel mediation model, proposing social cohesion as a mediator of known predictors of PA. Social cohesion fully mediated the pathway from perceived neighborhood safety to mothers' PA. Social cohesion also mediated the significant relationship between neighborhood SES and PA; however, this mediation finding was not practically significant when considered in the context of the full model. Household SES was significantly positively related to both social cohesion and PA. Park access contributed significantly to social cohesion but not directly to PA Social cohesion did not significantly mediate relationships between park access or household SES and PA. There is a need for public health interventions to improve engagement in PA among individuals and neighborhoods with lower levels of socioeconomic resources. Interventions that create social cohesion within neighborhoods may have positive effects on mothers' PA, particularly in neighborhoods perceived as unsafe.

  13. Universal binding energy relation for cleaved and structurally relaxed surfaces.

    PubMed

    Srirangarajan, Aarti; Datta, Aditi; Gandi, Appala Naidu; Ramamurty, U; Waghmare, U V

    2014-02-05

    The universal binding energy relation (UBER), derived earlier to describe the cohesion between two rigid atomic planes, does not accurately capture the cohesive properties when the cleaved surfaces are allowed to relax. We suggest a modified functional form of UBER that is analytical and at the same time accurately models the properties of surfaces relaxed during cleavage. We demonstrate the generality as well as the validity of this modified UBER through first-principles density functional theory calculations of cleavage in a number of crystal systems. Our results show that the total energies of all the relaxed surfaces lie on a single (universal) energy surface, that is given by the proposed functional form which contains an additional length-scale associated with structural relaxation. This functional form could be used in modelling the cohesive zones in crack growth simulation studies. We find that the cohesive law (stress-displacement relation) differs significantly in the case where cracked surfaces are allowed to relax, with lower peak stresses occurring at higher displacements.

  14. Cohesive energy and structural parameters of binary oxides of groups IIA and IIIB from diffusion quantum Monte Carlo

    DOE PAGES

    Santana, Juan A.; Krogel, Jaron T.; Kent, Paul R. C.; ...

    2016-05-03

    We have applied the diffusion quantum Monte Carlo (DMC) method to calculate the cohesive energy and the structural parameters of the binary oxides CaO, SrO, BaO, Sc 2O 3, Y 2O 3 and La 2O 3. The aim of our calculations is to systematically quantify the accuracy of the DMC method to study this type of metal oxides. The DMC results were compared with local and semi-local Density Functional Theory (DFT) approximations as well as with experimental measurements. The DMC method yields cohesive energies for these oxides with a mean absolute deviation from experimental measurements of 0.18(2) eV, while withmore » local and semi-local DFT approximations the deviation is 3.06 and 0.94 eV, respectively. For lattice constants, the mean absolute deviation in DMC, local and semi-local DFT approximations, are 0.017(1), 0.07 and 0.05 , respectively. In conclusion, DMC is highly accurate method, outperforming the local and semi-local DFT approximations in describing the cohesive energies and structural parameters of these binary oxides.« less

  15. Group cohesion and social support of the nurses in a special unit and a general unit in Korea.

    PubMed

    Ko, Yu Kyung

    2011-07-01

    To identify the degree of group cohesion and social support of nurses in special and general units in hospitals in Korea, and to compare group cohesion and social support between the two groups. The level of commitment nurses have to their organizations has been shown to correlate with work group cohesion and social support. The participants were 1751 nurses who were working in Korean hospitals. Data were collected using a structured questionnaire and were analysed using SAS. The statistical methods included: descriptive statistics, t-test, anova and Pearson's correlation coefficients. Group cohesion of nurses on special wards was significantly higher than for nurses on general wards. No significant difference was found between types of units in terms of social support. The degree of group cohesion was significantly different in terms of the respondents' clinical experience, position, religion, job satisfaction, number of supportive superiors and number of supportive peers. A statistically significant correlation was found between group cohesion scores and degree of social support. Hospital management can accomplish their goals more effectively through knowledge of the level of group cohesion, superior support and peer support for nursing staff in accordance with unit specialty. © 2011 The Author. Journal compilation © 2011 Blackwell Publishing Ltd.

  16. Coagulation of particles in Saturn's rings - Measurements of the cohesive force of water frost

    NASA Technical Reports Server (NTRS)

    Hatzes, A. P.; Bridges, F.; Lin, D. N. C.; Sachtjen, S.

    1991-01-01

    Experimental data are presented on the sticking force of water ice particles which are indicative of the role that the cohesive properties of such particles could play in the dynamics of Saturn ring particles. Sticking forces are dependent on particle impact velocities; a 'Velcro' model is devised to describe the surface structure involved in sticking. The data indicate that below the critical impact velocity of about 0.03 cm/sec, particle cohesion always occurs. Due to the optical depth of micron-sized grains in the Saturn rings, particles are hypothesized to be coated with a layer of frost which will render cohesion an important ring-dynamics process.

  17. All Together Now: Measuring Staff Cohesion in Special Education Classrooms

    PubMed Central

    Kratz, Hilary E.; Locke, Jill; Piotrowski, Zinnia; Ouellette, Rachel R.; Xie, Ming; Stahmer, Aubyn C.; Mandell, David S.

    2015-01-01

    This study sought to validate a new measure, the Classroom Cohesion Survey (CCS), designed to examine the relationship between teachers and classroom assistants in autism support classrooms. Teachers, classroom assistants, and external observers showed good inter-rater agreement on the CCS and good internal consistency for all scales. Simple factor structures were found for both teacher- and classroom assistant–rated scales, with one-factor solutions for both scales. Paired t tests revealed that on average, classroom assistants rated classroom cohesion stronger than teachers. The CCS may be an effective tool for measuring cohesion between classroom staff and may have an important impact on various clinical and implementation outcomes in school settings. PMID:26213443

  18. Predicting the equilibrium solubility of solid polycyclic aromatic hydrocarbons and dibenzothiophene using a combination of MOSCED plus molecular simulation or electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Phifer, Jeremy R.; Cox, Courtney E.; da Silva, Larissa Ferreira; Nogueira, Gabriel Gonçalves; Barbosa, Ana Karolyne Pereira; Ley, Ryan T.; Bozada, Samantha M.; O'Loughlin, Elizabeth J.; Paluch, Andrew S.

    2017-06-01

    Methods to predict the equilibrium solubility of non-electrolyte solids are important for the design of novel separation processes. Here we demonstrate how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here SMD or SM8, can be used to predict parameters for the MOdified Separation of Cohesive Energy Density (MOSCED) method. The method is applied to the solutes naphthalene, anthracene, phenanthrene, pyrene and dibenzothiophene, compounds of interested to the petroleum industry and for environmental remediation. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. Comparing to a total of 422 non-aqueous and 193 aqueous experimental solubilities, we find the proposed method is able to well correlate the data. The use of MOSCED is additionally advantageous as it is a solubility parameter-based method useful for intuitive solvent selection and formulation.

  19. [Structural and functional organization of centromeres in plant chromosomes].

    PubMed

    Silkova, O G; Loginova, D B

    2014-12-01

    The centromere is a specific chromosomal locus that forms the protein complex and kinetochore, maintains sister chromatid cohesion, controls chromosome attachment to the spindle, and coordinates chromosome movement during mitosis and meiosis. Defective centromere assembly or its dysfunction causes cell cycle arrest, structural abnormalities of the chromosomes, and aneuploidy. This review collects the data on the structure, functions, and epigenetic modification of centromeric chromatin, the structure and functions of the kinetochore, and sister chromatid cohesion. Taken together, these data provide insight into the specific architecture and functioning of the centromere during chromosome division and segregation in plants.

  20. On the Theory and Numerical Simulation of Cohesive Crack Propagation with Application to Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Rudraraju, Siva Shankar; Garikipati, Krishna; Waas, Anthony M.; Bednarcyk, Brett A.

    2013-01-01

    The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.

  1. Structural evolution study of 1-2 nm gold clusters

    NASA Astrophysics Data System (ADS)

    Beltrán, M. R.; Suárez Raspopov, R.; González, G.

    2011-12-01

    We have explored lowest energy minima structures of gold atom clusters both, charged and neutral (Aun^{ν}νn with n = 20, 28, 34, 38, 55, 75, 101, 146, 147, 192, 212 atoms and ν = 0, ±1). The structures have been obtained from first principles generalized gradient approximation, density functional theory (DFT) calculations based on norm-conserving pseudopotentials and numerical atomic basis sets. We have found two new disordered or defective isomers lower in energy than their ordered counterparts for n = 101, 147. The purpose of this work is to systematically study the difference between the electronic properties of the two lowest ordered and disordered isomers for each size. Our results agree with previous first principle calculations and with some recent experimental results (Au20 and Au101). For each case we report total energies, binding energies, ionization potentials, electron affinities, density of states, highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps, Housdorff chirality measure index and their simulated image in a high resolution transmission electron microscopy (HRTEM). The calculated properties of the two low lying (ordered and disordered) isomers show clear differences as to be singled out in a suitable experimental setting. An extensive discussion on the evolution with size of the cohesive energy, the ionization potentials, the electron affinities, the HOMO-LUMO gaps and their index of chirality to determine the crossover between them is given.

  2. Individual and family strengths: an examination of the relation to disease management and metabolic control in youth with type 1 diabetes.

    PubMed

    Mackey, Eleanor Race; Hilliard, Marisa E; Berger, Sarah Shafer; Streisand, Randi; Chen, Rusan; Holmes, Clarissa

    2011-12-01

    We examined the association of youths' positive qualities, family cohesion, disease management, and metabolic control in Type 1 diabetes. Two-hundred fifty-seven youth-parent dyads completed the Family Cohesion subscale of the Family Environment Scale, the Diabetes Behavior Rating Scale, 24-hour diabetes interview, and youth completed the Positive Qualities subscale of the Youth Self Report (YSR-PQ). Structural equation modeling demonstrated that YSR-PQ scores were associated with metabolic control mediated by associations with more family cohesion and better disease management. That is, youth with higher YSR-PQ scores had more cohesive families, better disease management, and, indirectly, better metabolic control. Family cohesion was indirectly associated with better metabolic control mediated by its association with better disease management, but not mediated by its association with YSR-PQ scores. Youth who reported more positive qualities, as measured by the YSR-PQ subscale, had better disease management and metabolic control through the association with more family cohesion. However, the current results did not support an alternative hypothesis that cohesive families display better diabetes management mediated by higher YSR-PQ scores.

  3. Cavitation transition in the energy landscape: Distinct tensile yielding behavior in strongly and weakly attractive systems.

    PubMed

    Altabet, Y Elia; Fenley, Andreia L; Stillinger, Frank H; Debenedetti, Pablo G

    2018-03-21

    Particles with cohesive interactions display a tensile instability in the energy landscape at the Sastry density ρ S . The signature of this tensile limit is a minimum in the landscape equation of state, the pressure-density relationship of inherent structures sampled along a liquid isotherm. Our previous work [Y. E. Altabet, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys. 145, 211905 (2016)] revisited the phenomenology of Sastry behavior and found that the evolution of the landscape equation of state with system size for particles with interactions typical of molecular liquids indicates the presence of an athermal first-order phase transition between homogeneous and fractured inherent structures, the latter containing several large voids. Here, we study how this tensile limit manifests itself for different interparticle cohesive strengths and identify two distinct regimes. Particles with sufficiently strong cohesion display an athermal first-order phase transition, consistent with our prior characterization. Weak cohesion also displays a tensile instability. However, the landscape equation of state for this regime is independent of system size, suggesting the absence of a first-order phase transition. An analysis of the voids suggests that yielding in the energy landscape of weakly cohesive systems is associated with the emergence of a highly interconnected network of small voids. While strongly cohesive systems transition from exclusively homogeneous to exclusively fractured configurations at ρ S in the thermodynamic limit, this interconnected network develops gradually, starting at ρ S , even at infinite system size.

  4. Cavitation transition in the energy landscape: Distinct tensile yielding behavior in strongly and weakly attractive systems

    NASA Astrophysics Data System (ADS)

    Altabet, Y. Elia; Fenley, Andreia L.; Stillinger, Frank H.; Debenedetti, Pablo G.

    2018-03-01

    Particles with cohesive interactions display a tensile instability in the energy landscape at the Sastry density ρS. The signature of this tensile limit is a minimum in the landscape equation of state, the pressure-density relationship of inherent structures sampled along a liquid isotherm. Our previous work [Y. E. Altabet, F. H. Stillinger, and P. G. Debenedetti, J. Chem. Phys. 145, 211905 (2016)] revisited the phenomenology of Sastry behavior and found that the evolution of the landscape equation of state with system size for particles with interactions typical of molecular liquids indicates the presence of an athermal first-order phase transition between homogeneous and fractured inherent structures, the latter containing several large voids. Here, we study how this tensile limit manifests itself for different interparticle cohesive strengths and identify two distinct regimes. Particles with sufficiently strong cohesion display an athermal first-order phase transition, consistent with our prior characterization. Weak cohesion also displays a tensile instability. However, the landscape equation of state for this regime is independent of system size, suggesting the absence of a first-order phase transition. An analysis of the voids suggests that yielding in the energy landscape of weakly cohesive systems is associated with the emergence of a highly interconnected network of small voids. While strongly cohesive systems transition from exclusively homogeneous to exclusively fractured configurations at ρS in the thermodynamic limit, this interconnected network develops gradually, starting at ρS, even at infinite system size.

  5. Structural, elastic and electronic properties of typical NdMgT4 (T = Co, Ni, Cu) alloys from ab initio calculation

    NASA Astrophysics Data System (ADS)

    Wang, Na; Zhang, Wei-bing; Tang, Bi-yu; Gao, Hai-Tao; He, En-jie; Wang, Lei

    2018-07-01

    The crystal structure, elastic and magnetic properties of important ternary Mg-based alloys NdMgT4 (T = Co, Ni, Cu) have been studied using reliable ab initio calculations. Both cohesive energy and charge density difference suggest that three alloys have good structural stability with the order: NdMgCo4 > NdMgNi4 > NdMgCu4. It shows that NdMgCo4 alloy has magnetic moments with the Co atoms being the main contribution, which is also in agreement with the calculated electronic structures. We find that NdMgT4 (T = Co, Ni, Cu) alloys are all ductile materials with bulk-to-shear modulus (B/G) values higher than 1.75. The trends of calculated values for the shear moduli Cs and C44 are consistent with that of shear modulus G and young's modulus E, proving that NdMgT4 (T = Co, Ni, Cu) alloys exhibit good plasticity with the trend: NdMgNi4 > NdMgCu4 > NdMgCo4. These calculated results give the basis guidance for the design of rare earth-magnesium-transition metal (R-Mg-T) alloys with improved mechanical properties.

  6. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data

    PubMed Central

    Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke; Le, Tam; Takeuchi, Ichiro; Tateyama, Yoshitaka; Yamazaki, Hisatsugu

    2018-01-01

    Abstract Increasing attention has been paid to materials informatics approaches that promise efficient and fast discovery and optimization of functional inorganic materials. Technical breakthrough is urgently requested to advance this field and efforts have been made in the development of materials descriptors to encode or represent characteristics of crystalline solids, such as chemical composition, crystal structure, electronic structure, etc. We propose a general representation scheme for crystalline solids that lifts restrictions on atom ordering, cell periodicity, and system cell size based on structural descriptors of directly binned Voronoi-tessellation real feature values and atomic/chemical descriptors based on the electronegativity of elements in the crystal. Comparison was made vs. radial distribution function (RDF) feature vector, in terms of predictive accuracy on density functional theory (DFT) material properties: cohesive energy (CE), density (d), electronic band gap (BG), and decomposition energy (Ed). It was confirmed that the proposed feature vector from Voronoi real value binning generally outperforms the RDF-based one for the prediction of aforementioned properties. Together with electronegativity-based features, Voronoi-tessellation features from a given crystal structure that are derived from second-nearest neighbor information contribute significantly towards prediction. PMID:29707064

  7. A general representation scheme for crystalline solids based on Voronoi-tessellation real feature values and atomic property data.

    PubMed

    Jalem, Randy; Nakayama, Masanobu; Noda, Yusuke; Le, Tam; Takeuchi, Ichiro; Tateyama, Yoshitaka; Yamazaki, Hisatsugu

    2018-01-01

    Increasing attention has been paid to materials informatics approaches that promise efficient and fast discovery and optimization of functional inorganic materials. Technical breakthrough is urgently requested to advance this field and efforts have been made in the development of materials descriptors to encode or represent characteristics of crystalline solids, such as chemical composition, crystal structure, electronic structure, etc. We propose a general representation scheme for crystalline solids that lifts restrictions on atom ordering, cell periodicity, and system cell size based on structural descriptors of directly binned Voronoi-tessellation real feature values and atomic/chemical descriptors based on the electronegativity of elements in the crystal. Comparison was made vs. radial distribution function (RDF) feature vector, in terms of predictive accuracy on density functional theory (DFT) material properties: cohesive energy (CE), density ( d ), electronic band gap (BG), and decomposition energy (Ed). It was confirmed that the proposed feature vector from Voronoi real value binning generally outperforms the RDF-based one for the prediction of aforementioned properties. Together with electronegativity-based features, Voronoi-tessellation features from a given crystal structure that are derived from second-nearest neighbor information contribute significantly towards prediction.

  8. The Evolution of Networks in Extreme and Isolated Environment

    NASA Technical Reports Server (NTRS)

    Johnson, Jeffrey C.; Boster, James S.; Palinkas, Lawrence A.

    2000-01-01

    This article reports on the evolution of network structure as it relates to the formal and informal aspects of social roles in well bounded, isolated groups. Research was conducted at the Amundsen-Scott South Pole Station over a 3-year period. Data was collected on crewmembers' networks of social interaction and personal advice over each of the 8.5-month winters during a time of complete isolation. In addition, data was collected on informal social role structure (e.g., instrumental leadership, expressive leadership). It was hypothesized that development and maintenance of a cohesive group structure was related to the presence of and group consensus on various informal social roles. The study found that core-periphery structures (i.e., reflecting cohesion) in winter-over groups were associated with the presence of critically important informal social roles (e.g., expressive leadership) and high group consensus on such informal roles. On the other hand, the evolution of clique structures (i.e., lack of cohesion) were associated with the absence of critical roles and a lack of consensus on these roles, particularly the critically important role of instrumental leader.

  9. Ensemble characterization of an intrinsically disordered FG-Nup peptide and its F>A mutant in DMSO-d6.

    PubMed

    Reid, Korey M; Sunanda, Punnepalli; Raghothama, S; Krishnan, V V

    2017-11-01

    Intrinsically disordered proteins (IDP) lack a well-defined 3D-structure under physiological conditions, yet, the inherent disorder represented by an ensemble of conformation plays a critical role in many cellular and regulatory processes. Nucleoporins, or Nups, are the proteins found in the nuclear pore complex (NPC). The central pore of the NPC is occupied by Nups, which have phenylalanine-glycine domain repeats and are intrinsically disordered, and therefore are termed FG-Nups. These FG-domain repeats exhibit differing cohesiveness character and differ from least (FG) to most (GLFG) cohesive. The designed FG-Nup is a 25 AA model peptide containing a noncohesive FG-motif flanked by two cohesive GLFG-motifs (WT peptide). Complete NMR-based ensemble characterization of this peptide along with a control peptide with an F>A substitution (MU peptide) are discussed. Ensemble characterization of the NMR-determined models suggests that both the peptides do not have consistent secondary structures and continue to be disordered. Nonetheless, the role of cohesive elements mediated by the GLFG motifs is evident in the WT ensemble of structures that are more compact than the MU peptide. The approach presented here allows an alternate way to investigate the specific roles of distinct amino acid motifs that translate into the long-range organization of the ensemble of structures and in general on the nature of IDPs. © 2017 Wiley Periodicals, Inc.

  10. Electronic structure and aromaticity of large-scale hexagonal graphene nanoflakes.

    PubMed

    Hu, Wei; Lin, Lin; Yang, Chao; Yang, Jinlong

    2014-12-07

    With the help of the recently developed SIESTA-pole (Spanish Initiative for Electronic Simulations with Thousands of Atoms) - PEXSI (pole expansion and selected inversion) method [L. Lin, A. García, G. Huhs, and C. Yang, J. Phys.: Condens. Matter 26, 305503 (2014)], we perform Kohn-Sham density functional theory calculations to study the stability and electronic structure of hydrogen passivated hexagonal graphene nanoflakes (GNFs) with up to 11,700 atoms. We find the electronic properties of GNFs, including their cohesive energy, edge formation energy, highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap, edge states, and aromaticity, depend sensitively on the type of edges (armchair graphene nanoflakes (ACGNFs) and zigzag graphene nanoflakes (ZZGNFs)), size and the number of electrons. We observe that, due to the edge-induced strain effect in ACGNFs, large-scale ACGNFs' edge formation energy decreases as their size increases. This trend does not hold for ZZGNFs due to the presence of many edge states in ZZGNFs. We find that the energy gaps E(g) of GNFs all decay with respect to 1/L, where L is the size of the GNF, in a linear fashion. But as their size increases, ZZGNFs exhibit more localized edge states. We believe the presence of these states makes their gap decrease more rapidly. In particular, when L is larger than 6.40 nm, we find that ZZGNFs exhibit metallic characteristics. Furthermore, we find that the aromatic structures of GNFs appear to depend only on whether the system has 4N or 4N + 2 electrons, where N is an integer.

  11. Social Cohesion Among Sex Workers and Client Condom Refusal in a Canadian Setting: Implications for Structural and Community-Led Interventions.

    PubMed

    Argento, Elena; Duff, Putu; Bingham, Brittany; Chapman, Jules; Nguyen, Paul; Strathdee, Steffanie A; Shannon, Kate

    2016-06-01

    Community empowerment can be a powerful determinant of HIV risk among sex workers (SWs). This study modeled the impact of social cohesion on client condom refusal among SWs in Vancouver. Longitudinal data were drawn from a prospective cohort of SWs (2010-2013). Lippman and colleagues' Social Cohesion Scale measured SWs' connectedness (i.e., perception of mutual aid, trust, support). Multivariable logistic regression examined the independent effect of social cohesion on client condom refusal. Of 654 SWs, 22 % reported baseline client condom refusal and 34 % over 3 years. The baseline median social cohesion score was 24 (IQR 20-29, range 4-45). In the final confounding model, for every one-point increase in the social cohesion score, average odds of condom refusal decreased by 3 % (AOR 0.97; 95 % CI 0.95-0.99). Community empowerment can have a direct protective effect on HIV risk. These findings highlight the need for a legal framework that enables collectivization and SW-led efforts in the HIV response.

  12. Family Rituals and Quality of Life in Children With Cancer and Their Parents: The Role of Family Cohesion and Hope

    PubMed Central

    Crespo, Carla; Canavarro, M. Cristina; Kazak, Anne E.

    2015-01-01

    Objective Family rituals are associated with adaptive functioning in pediatric illness, including quality of life (QoL). This article explores the role of family cohesion and hope as mediators of this association in children with cancer and their parents. Methods Portuguese children with cancer (N = 389), on- and off-treatment, and one of their parents completed self-report measures. Structural equation modeling was used to examine direct and indirect links between family rituals and QoL. Results When children and parents reported higher levels of family rituals, they also reported more family cohesion and hope, which were linked to better QoL. At the dyadic level, children’s QoL was related to parents’ family rituals through the child’s family cohesion. This model was valid across child’s age-group, treatment status, and socioeconomic status. Conclusions Family rituals are important in promoting QoL in pediatric cancer via family cohesion and hope individually and via family cohesion in terms of parent–child interactions. PMID:25775914

  13. Social Cohesion Among Sex Workers and Client Condom Refusal in a Canadian Setting: Implications for Structural and Community-Led Interventions

    PubMed Central

    Argento, Elena; Duff, Putu; Bingham, Brittany; Chapman, Jules; Nguyen, Paul; Strathdee, Steffanie A.

    2015-01-01

    Community empowerment can be a powerful determinant of HIV risk among sex workers (SWs). This study modeled the impact of social cohesion on client condom refusal among SWs in Vancouver. Longitudinal data were drawn from a prospective cohort of SWs (2010–2013). Lippman and colleagues’ Social Cohesion Scale measured SWs’ connectedness (i.e., perception of mutual aid, trust, support). Multivariable logistic regression examined the independent effect of social cohesion on client condom refusal. Of 654 SWs, 22 % reported baseline client condom refusal and 34 % over 3 years. The baseline median social cohesion score was 24 (IQR 20–29, range 4–45). In the final confounding model, for every one-point increase in the social cohesion score, average odds of condom refusal decreased by 3 % (AOR 0.97; 95 % CI 0.95–0.99). Community empowerment can have a direct protective effect on HIV risk. These findings highlight the need for a legal framework that enables collectivization and SW-led efforts in the HIV response. PMID:26499335

  14. Social embeddedness as a mechanism for linking social cohesion to well-being among older adults: moderating effect of gender

    PubMed Central

    Momtaz, Yadollah Abolfathi; Haron, Sharifah Azizah; Ibrahim, Rahimah; Hamid, Tengku Aizan

    2014-01-01

    Background The positive effect of social cohesion on well-being in older adults has been well documented. However, relatively few studies have attempted to understand the mechanisms by which social cohesion influences well-being. The main aim of the current study is to identify social pathways in which social cohesion may contribute to well-being. Methods The data for this study (taken from 1,880 older adults, aged 60 years and older) were drawn from a national survey conducted during 2008–2009. The survey employed a two-stage stratified sampling process for data collection. Structural equation modeling was used to test mediating and moderating analyses. Results The proposed model documented a good fit to the data (GFI =98; CFI =0.99; RMSEA =0.04). The findings from bootstrap analysis and the Sobel test revealed that the impact of social cohesion on well-being is significantly mediated by social embeddedness (Z=5.62; P<0.001). Finally, the results of a multigroup analysis test showed that social cohesion influences well-being through the social embeddedness mechanism somewhat differently for older men than women. Conclusion The findings of this study, in addition to supporting the importance of neighborhood social cohesion for the well-being of older adults, also provide evidence that the impact of social cohesion towards well-being is mediated through the mechanism of social embeddedness. PMID:24904206

  15. Social embeddedness as a mechanism for linking social cohesion to well-being among older adults: moderating effect of gender.

    PubMed

    Momtaz, Yadollah Abolfathi; Haron, Sharifah Azizah; Ibrahim, Rahimah; Hamid, Tengku Aizan

    2014-01-01

    The positive effect of social cohesion on well-being in older adults has been well documented. However, relatively few studies have attempted to understand the mechanisms by which social cohesion influences well-being. The main aim of the current study is to identify social pathways in which social cohesion may contribute to well-being. The data for this study (taken from 1,880 older adults, aged 60 years and older) were drawn from a national survey conducted during 2008-2009. The survey employed a two-stage stratified sampling process for data collection. Structural equation modeling was used to test mediating and moderating analyses. The proposed model documented a good fit to the data (GFI =98; CFI =0.99; RMSEA =0.04). The findings from bootstrap analysis and the Sobel test revealed that the impact of social cohesion on well-being is significantly mediated by social embeddedness (Z=5.62; P<0.001). Finally, the results of a multigroup analysis test showed that social cohesion influences well-being through the social embeddedness mechanism somewhat differently for older men than women. The findings of this study, in addition to supporting the importance of neighborhood social cohesion for the well-being of older adults, also provide evidence that the impact of social cohesion towards well-being is mediated through the mechanism of social embeddedness.

  16. Variational calculation of ground-state energy of iron atoms and condensed matter in strong magnetic fields. [at neutron star surfaces

    NASA Technical Reports Server (NTRS)

    Flowers, E. G.; Ruderman, M. A.; Lee, J.-F.; Sutherland, P. G.; Hillebrandt, W.; Mueller, E.

    1977-01-01

    Variational calculations of the binding energies of iron atoms and condensed matter in strong magnetic fields (greater than 10 to the 12th gauss). These calculations include the electron exchange energy. The cohesive energy of the condensed matter, which is the difference between these two binding energies, is of interest in pulsar theories and in the description of the surfaces of neutron stars. It is found that the cohesive energy ranges from 2.6 keV to 8.0 keV.

  17. The Relationship between Organizational Citizenship Behavior, Group Cohesiveness and Workplace Deviance Behavior of Turkish Teachers

    ERIC Educational Resources Information Center

    Apaydin, Çigdem; Sirin, Hüseyin

    2016-01-01

    This study aims to develop a structural model for organizational citizenship behavior, group cohesiveness and workplace deviance behavior. The study group consists of 639 Turkish teachers working in primary and secondary public schools. In the study, the "Organizational Citizenship Behavior Scale" and the "Group Cohesiveness…

  18. A cohesive-frictional force field (CFFF) for colloidal calcium-silicate-hydrates

    NASA Astrophysics Data System (ADS)

    Palkovic, Steven D.; Yip, Sidney; Büyüköztürk, Oral

    2017-12-01

    Calcium-silicate-hydrate (C-S-H) gel is a cohesive-frictional material that exhibits strength asymmetry in compression and tension and normal-stress dependency of the maximum shear strength. Experiments suggest the basic structural component of C-S-H is a colloidal particle with an internal layered structure. These colloids form heterogeneous assemblies with a complex pore network at the mesoscale. We propose a cohesive-frictional force field (CFFF) to describe the interactions in colloidal C-S-H materials that incorporates the strength anisotropy fundamental to the C-S-H molecular structure that has been omitted from recent mesoscale models. We parameterize the CFFF from reactive force field simulations of an internal interface that controls mechanical performance, describing the behavior of thousands of atoms through a single effective pair interaction. We apply the CFFF to study the mesoscale elastic and Mohr-Coulomb strength properties of C-S-H with varying polydispersity and packing density. Our results show that the consideration of cohesive-frictional interactions lead to an increase in stiffness, shear strength, and normal-stress dependency, while also changing the nature of local deformation processes. The CFFF and our coarse-graining approach provide an essential connection between nanoscale molecular interactions and macroscale continuum behavior for hydrated cementitious materials.

  19. Molecular Self-Assembly in a Poorly Screened Environment: F4TCNQ on Graphene/BN

    PubMed Central

    2015-01-01

    We report a scanning tunneling microscopy and noncontact atomic force microscopy study of close-packed 2D islands of tetrafluorotetracyanoquinodimethane (F4TCNQ) molecules at the surface of a graphene layer supported by boron nitride. While F4TCNQ molecules are known to form cohesive 3D solids, the intermolecular interactions that are attractive for F4TCNQ in 3D are repulsive in 2D. Our experimental observation of cohesive molecular behavior for F4TCNQ on graphene is thus unexpected. This self-assembly behavior can be explained by a novel solid formation mechanism that occurs when charged molecules are placed in a poorly screened environment. As negatively charged molecules coalesce, the local work function increases, causing electrons to flow into the coalescing molecular island and increase its cohesive binding energy. PMID:26482218

  20. Microstructure and Properties of Thermally Sprayed Functionally Graded Coatings for Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Ivosevic, M.; Knight, R.; Kalidindi, S. R.; Palmese, G. R.; Sutter, J. K.

    2003-01-01

    The use of polymer matrix composites (PMCs) in the gas flow path of advanced turbine engines offers significant benefits for aircraft engine performance but their useful lifetime is limited by their poor erosion resistance. High velocity oxy-fuel (HVOF) sprayed polymer/cermet functionally graded (FGM) coatings are being investigated as a method to address this technology gap by providing erosion and oxidation protection to polymer matrix composites. The FGM coating structures are based on a polyimide matrix filled with varying volume fractions of WC-Co. The graded coating architecture was produced using a combination of internal and external feedstock injection, via two computer-controlled powder feeders and controlled substrate preheating. Porosity, coating thickness and volume fraction of the WC-Co filler retained in the coatings were determined using standard metallographic techniques and computer image analysis. The pull-off strength (often referred to as the adhesive strength) of the coatings was evaluated according to the ASTM D 4541 standard test method, which measured the greatest normal tensile force that the coating could withstand. Adhesive/cohesive strengths were determined for three different types of coating structures and compared based on the maximum indicated load and the surface area loaded. The nature and locus of the fractures were characterized according to the percent of adhesive and/or cohesive failure, and the tested interfaces and layers involved were analyzed by Scanning Electron Microscopy.

  1. First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-07-01

    We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.

  2. Progress and opportunities in EELS and EDS tomography.

    PubMed

    Collins, Sean M; Midgley, Paul A

    2017-09-01

    Electron tomography using energy loss and X-ray spectroscopy in the electron microscope continues to develop in rapidly evolving and diverse directions, enabling new insight into the three-dimensional chemistry and physics of nanoscale volumes. Progress has been made recently in improving reconstructions from EELS and EDS signals in electron tomography by applying compressed sensing methods, characterizing new detector technologies in detail, deriving improved models of signal generation, and exploring machine learning approaches to signal processing. These disparate threads can be brought together in a cohesive framework in terms of a model-based approach to analytical electron tomography. Models incorporate information on signal generation and detection as well as prior knowledge of structures in the spectrum image data. Many recent examples illustrate the flexibility of this approach and its feasibility for addressing challenges in non-linear or limited signals in EELS and EDS tomography. Further work in combining multiple imaging and spectroscopy modalities, developing synergistic data acquisition, processing, and reconstruction approaches, and improving the precision of quantitative spectroscopic tomography will expand the frontiers of spatial resolution, dose limits, and maximal information recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Resilience and Vulnerability to the Psychological Harm From Flooding: The Role of Social Cohesion.

    PubMed

    Greene, Giles; Paranjothy, Shantini; Palmer, Stephen R

    2015-09-01

    We examined the role of social cohesion as a component of vulnerability and resilience to the psychological distress of flooding. A survey collected data from 2238 individuals living in flood-affected areas of England (South Yorkshire and Worcestershire) in 2007. We used Bayesian structural equation modeling to assess factors relating to the latent variables of resilience (years in area, family nearby, and social cohesion) and vulnerability (disruption of essential services, flood risk, and previous flood experience). Flooding was strongly associated with poor mental health; however, resilience factors (associated with the ability to cope with natural disasters), but not vulnerability, were strongly associated with a reduction in psychological distress. Resilience and social cohesion were important influences on the risk of developing poor mental health following flooding. Increasing resilience of communities by strengthening social cohesion through measures that increase civic participation and changing land use should be considered as potentially inexpensive and effective defenses against avoidable mental harm that will result from increased climate instability.

  4. Network topology for the formation of solvated electrons in binary CaO–Al2O3 composition glasses

    PubMed Central

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J. K. Richard; Benmore, Chris J.

    2013-01-01

    Glass formation in the CaO–Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO–Al2O3 glasses using combined density functional theory–reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O–Ca and O–Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al–O is stronger than that of Ca–O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71–74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass. PMID:23723350

  5. Network topology for the formation of solvated electrons in binary CaO-Al2O3 composition glasses.

    PubMed

    Akola, Jaakko; Kohara, Shinji; Ohara, Koji; Fujiwara, Akihiko; Watanabe, Yasuhiro; Masuno, Atsunobu; Usuki, Takeshi; Kubo, Takashi; Nakahira, Atsushi; Nitta, Kiyofumi; Uruga, Tomoya; Weber, J K Richard; Benmore, Chris J

    2013-06-18

    Glass formation in the CaO-Al2O3 system represents an important phenomenon because it does not contain typical network-forming cations. We have produced structural models of CaO-Al2O3 glasses using combined density functional theory-reverse Monte Carlo simulations and obtained structures that reproduce experiments (X-ray and neutron diffraction, extended X-ray absorption fine structure) and result in cohesive energies close to the crystalline ground states. The O-Ca and O-Al coordination numbers are similar in the eutectic 64 mol % CaO (64CaO) glass [comparable to 12CaO·7Al2O3 (C12A7)], and the glass structure comprises a topologically disordered cage network with large-sized rings. This topologically disordered network is the signature of the high glass-forming ability of 64CaO glass and high viscosity in the melt. Analysis of the electronic structure reveals that the atomic charges for Al are comparable to those for Ca, and the bond strength of Al-O is stronger than that of Ca-O, indicating that oxygen is more weakly bound by cations in CaO-rich glass. The analysis shows that the lowest unoccupied molecular orbitals occurs in cavity sites, suggesting that the C12A7 electride glass [Kim SW, Shimoyama T, Hosono H (2011) Science 333(6038):71-74] synthesized from a strongly reduced high-temperature melt can host solvated electrons and bipolarons. Calculations of 64CaO glass structures with few subtracted oxygen atoms (additional electrons) confirm this observation. The comparable atomic charges and coordination of the cations promote more efficient elemental mixing, and this is the origin of the extended cage structure and hosted solvated (trapped) electrons in the C12A7 glass.

  6. Effect of Cohesion Uncertainty of Granular Materials on the Kinematics of Scaled Models of Fold-and-Thrust Belts

    NASA Astrophysics Data System (ADS)

    Nilfouroushan, F.; Pysklywec, R.; Cruden, S.

    2009-05-01

    Cohesionless or very low cohesion granular materials are widely used in analogue/physical models to simulate brittle rocks in the upper crust. Selection of materials with appropriate cohesion values in such models is important for the simulation of the dynamics of brittle rock deformation in nature. Uncertainties in the magnitude of cohesion (due to measurement errors, extrapolations at low normal stresses, or model setup) in laboratory experiments can possibly result in misinterpretation of the styles and mechanisms of deformation in natural fold-and thrust belts. We ran a series of 2-D numerical models to investigate systematically the effect of cohesion uncertainties on the evolution of models of fold-and-thrust belts. The analyses employ SOPALE, a geodynamic code based on the arbitrary Lagrangian-Eulerian (ALE) finite element method. Similar to analogue models, the material properties of sand and transparent silicone (PDMS) are used to simulate brittle and viscous behaviors of upper crustal rocks. The suite of scaled brittle and brittle-viscous numerical experiments have the same initial geometry but the cohesion value of the brittle layers is increased systematically from 0 to 100 Pa. The stress and strain distribution in different sets of models with different cohesion values are compared and analyzed. The kinematics and geometry of thrust wedges including the location and number of foreland- and hinterland- verging thrust faults, pop-up structures, tapers and topography are also explored and their sensitivity to cohesion value is discussed.

  7. The Impact of African American Parents’ Racial Discrimination Experiences and Perceived Neighborhood Cohesion on their Racial Socialization Practices

    PubMed Central

    English, Devin; Busby, Danielle R.; Lambert, Sharon F.; Harrison, Aubrey; Stock, Michelle L.; Gibbons, Frederick X.

    2016-01-01

    Parental racial socialization is a parenting tool used to prepare African American adolescents for managing racial stressors. While it is known that parents’ racial discrimination experiences affect the racial socialization messages they provide, little is known about the influence of factors that promote supportive and communal parenting, such as perceived neighborhood cohesion. In cohesive neighborhoods, neighbors may help parents address racial discrimination by monitoring youth and conveying racial socialization messages; additionally, the effect of neighborhood cohesion on parents’ racial socialization may differ for boys and girls because parents socialize adolescents about race differently based on expected encounters with racial discrimination. Therefore, the current study examines how parents’ perception of neighborhood cohesion and adolescents’ gender moderate associations between parents’ racial discrimination experiences and the racial socialization messages they deliver to their adolescents. Participants were a community sample of 608 African American adolescents (54 % girls; mean age = 15.5) and their primary caregivers (86 % biological mothers; mean age = 42.0). Structural equation modeling indicated that parental racial discrimination was associated with more promotion of mistrust messages for boys and girls in communities with low neighborhood cohesion. In addition, parental racial discrimination was associated with more cultural socialization messages about racial pride and history for boys in neighborhoods with low neighborhood cohesion. The findings suggest that parents’ racial socialization messages are influenced by their own racial discrimination experiences and the cohesiveness of the neighborhood; furthermore, the content of parental messages delivered varies based on adolescents’ gender. PMID:27189721

  8. Structure determination in 55-atom Li-Na and Na-K nanoalloys.

    PubMed

    Aguado, Andrés; López, José M

    2010-09-07

    The structure of 55-atom Li-Na and Na-K nanoalloys is determined through combined empirical potential (EP) and density functional theory (DFT) calculations. The potential energy surface generated by the EP model is extensively sampled by using the basin hopping technique, and a wide diversity of structural motifs is reoptimized at the DFT level. A composition comparison technique is applied at the DFT level in order to make a final refinement of the global minimum structures. For dilute concentrations of one of the alkali atoms, the structure of the pure metal cluster, namely, a perfect Mackay icosahedron, remains stable, with the minority component atoms entering the host cluster as substitutional impurities. At intermediate concentrations, the nanoalloys adopt instead a core-shell polyicosahedral (p-Ih) packing, where the element with smaller atomic size and larger cohesive energy segregates to the cluster core. The p-Ih structures show a marked prolate deformation, in agreement with the predictions of jelliumlike models. The electronic preference for a prolate cluster shape, which is frustrated in the 55-atom pure clusters due to the icosahedral geometrical shell closing, is therefore realized only in the 55-atom nanoalloys. An analysis of the electronic densities of states suggests that photoelectron spectroscopy would be a sufficiently sensitive technique to assess the structures of nanoalloys with fixed size and varying compositions.

  9. The Development of Narrative Productivity, Syntactic Complexity, Referential Cohesion and Event Content in Four- to Eight-Year-Old Finnish Children

    ERIC Educational Resources Information Center

    Mäkinen, Leena; Loukusa, Soile; Nieminen, Lea; Leinonen, Eeva; Kunnari, Sari

    2014-01-01

    This study focuses on the development of narrative structure and the relationship between narrative productivity and event content. A total of 172 Finnish children aged between four and eight participated. Their picture-elicited narrations were analysed for productivity, syntactic complexity, referential cohesion and event content. Each measure…

  10. Children's loneliness, sense of coherence, family climate, and hope: developmental risk and protective factors.

    PubMed

    Sharabi, Adi; Levi, Uzi; Margalit, Malka

    2012-01-01

    The study examined the contributions of individual and familial variables for the prediction of loneliness as a developmental risk and the sense of coherence as a protective factor. The sample consisted of 287 children from grades 5-6. Their loneliness, sense of coherence, hope, effort, and family climate were assessed. Separate hierarchical multiple regression analyses revealed that family cohesion and children's hope contributed to the explanation of the risk and protective outcomes. Yet, the contribution of the family adaptability was not significant. Cluster analysis of the family climate dimensions (i.e., cohesion and adaptability) was performed to clarify the interactive roles of family adaptability together with family cohesion. The authors identified 4 separate family profiles: Children in the 2 cohesive families' clusters (Cohesive Structured Families and Cohesive Adaptable Families) reported the lowest levels of loneliness and the highest levels of personal strengths. Children within rigid and noncohesive family cluster reported the highest levels of loneliness and the lowest levels of children's sense of coherence. The unique role of the family flexibility within nonsupportive family systems was demonstrated. The results further clarified the unique profiles' characteristics of the different family clusters and their adjustment indexes in terms of loneliness and personal strengths.

  11. Family Rituals and Quality of Life in Children With Cancer and Their Parents: The Role of Family Cohesion and Hope.

    PubMed

    Santos, Susana; Crespo, Carla; Canavarro, M Cristina; Kazak, Anne E

    2015-08-01

    Family rituals are associated with adaptive functioning in pediatric illness, including quality of life (QoL). This article explores the role of family cohesion and hope as mediators of this association in children with cancer and their parents. Portuguese children with cancer (N = 389), on- and off-treatment, and one of their parents completed self-report measures. Structural equation modeling was used to examine direct and indirect links between family rituals and QoL. When children and parents reported higher levels of family rituals, they also reported more family cohesion and hope, which were linked to better QoL. At the dyadic level, children's QoL was related to parents' family rituals through the child's family cohesion. This model was valid across child's age-group, treatment status, and socioeconomic status. Family rituals are important in promoting QoL in pediatric cancer via family cohesion and hope individually and via family cohesion in terms of parent-child interactions. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Correlation of the fragility of metallic liquids with the high temperature structure, volume, and cohesive energy

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, A. K.; Pueblo, C. E.; Dai, R.; Johnson, M. L.; Ashcraft, R.; Van Hoesen, D.; Sellers, M.; Kelton, K. F.

    2017-04-01

    The thermal expansion coefficients, structure factors, and viscosities of twenty-five equilibrium and supercooled metallic liquids have been measured using an electrostatic levitation (ESL) facility. The structure factor was measured at the Advanced Photon Source, Argonne, using the ESL. A clear connection between liquid fragility and structural and volumetric changes at high temperatures is established; the observed changes are larger for the more fragile liquids. It is also demonstrated that the fragility of metallic liquids is determined to a large extent by the cohesive energy and is, therefore, predictable. These results are expected to provide useful guidance in the future design of metallic glasses.

  13. Electron microscopic observations of human sperm whole-mounts after extraction for nuclear matrix and intermediate filaments (NM-IF).

    PubMed

    Markova, Maya Dyankova

    2004-10-01

    The extraction for nuclear matrix and intermediate filaments (NM-IF) is used to reveal, isolate and study these highly resistant structures in different cell types. We applied for the first time this chemical dissection to human spermatozoa and observed them as whole-mounts by unembedded electron microscopy. The general appearance of NM-IF extracted sperm cells was preserved, showing the intermediate filament-like properties of their cytoskeletal components. In most heads, a network was observed in subacrosomal position, consisting of hubs interconnected by filaments. It seemed to be overlaid on another, finer network. The neck retained its integrity, allowing observations of the three-dimensional structure of the segmented columns. More distally, axoneme and outer dense fibres were covered by submitochondrial cytoskeleton in the middle piece and fibrous sheath in the principal piece, with the annulus usually detached from the fibrous sheath. End piece microtubules were retained in most cells and showed a tendency of cohesion, remaining in a parallel bundle or forming flat sheets. In conclusion, our results provided additional structural details of human sperm cytoskeleton and demonstrated the advantages of combining different methodological approaches in ultrastructural research.

  14. Molecular Self-Assembly in a Poorly Screened Environment: F 4TCNQ on Graphene/BN

    DOE PAGES

    Tsai, Hsin-Zon; Omrani, Arash A.; Coh, Sinisa; ...

    2015-10-20

    Here we report a scanning tunneling microscopy and noncontact atomic force microscopy study of close-packed 2D islands of tetrafluoro-tetracyanoquinodimethane (F 4TCNQ) molecules at the surface of a graphene layer supported by boron nitride. While F 4TCNQ molecules are known to form cohesive 3D solids, the intermolecular interactions that are attractive for F 4TCNQ in 3D are repulsive in 2D. Our experimental observation of cohesive molecular behavior for F 4TCNQ on graphene is thus unexpected. This self-assembly behavior can be explained by a novel solid formation mechanism that occurs when charged molecules are placed in a poorly screened environment. As negativelymore » charged molecules coalesce, the local work function increases, causing electrons to flow into the coalescing molecular island and increase its cohesive binding energy.« less

  15. Describing a Strongly Correlated Model System with Density Functional Theory.

    PubMed

    Kong, Jing; Proynov, Emil; Yu, Jianguo; Pachter, Ruth

    2017-07-06

    The linear chain of hydrogen atoms, a basic prototype for the transition from a metal to Mott insulator, is studied with a recent density functional theory model functional for nondynamic and strong correlation. The computed cohesive energy curve for the transition agrees well with accurate literature results. The variation of the electronic structure in this transition is characterized with a density functional descriptor that yields the atomic population of effectively localized electrons. These new methods are also applied to the study of the Peierls dimerization of the stretched even-spaced Mott insulator to a chain of H 2 molecules, a different insulator. The transitions among the two insulating states and the metallic state of the hydrogen chain system are depicted in a semiquantitative phase diagram. Overall, we demonstrate the capability of studying strongly correlated materials with a mean-field model at the fundamental level, in contrast to the general pessimistic view on such a feasibility.

  16. Combining MOSCED with molecular simulation free energy calculations or electronic structure calculations to develop an efficient tool for solvent formulation and selection

    NASA Astrophysics Data System (ADS)

    Cox, Courtney E.; Phifer, Jeremy R.; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T.; O'Loughlin, Elizabeth J.; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T.; Paluch, Andrew S.

    2017-02-01

    Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.

  17. Combining MOSCED with molecular simulation free energy calculations or electronic structure calculations to develop an efficient tool for solvent formulation and selection.

    PubMed

    Cox, Courtney E; Phifer, Jeremy R; Ferreira da Silva, Larissa; Gonçalves Nogueira, Gabriel; Ley, Ryan T; O'Loughlin, Elizabeth J; Pereira Barbosa, Ana Karolyne; Rygelski, Brett T; Paluch, Andrew S

    2017-02-01

    Solubility parameter based methods have long been a valuable tool for solvent formulation and selection. Of these methods, the MOdified Separation of Cohesive Energy Density (MOSCED) has recently been shown to correlate well the equilibrium solubility of multifunctional non-electrolyte solids. However, before it can be applied to a novel solute, a limited amount of reference solubility data is required to regress the necessary MOSCED parameters. Here we demonstrate for the solutes methylparaben, ethylparaben, propylparaben, butylparaben, lidocaine and ephedrine how conventional molecular simulation free energy calculations or electronic structure calculations in a continuum solvent, here the SMD or SM8 solvation model, can instead be used to generate the necessary reference data, resulting in a predictive flavor of MOSCED. Adopting the melting point temperature and enthalpy of fusion of these compounds from experiment, we are able to predict equilibrium solubilities. We find the method is able to well correlate the (mole fraction) equilibrium solubility in non-aqueous solvents over four orders of magnitude with good quantitative agreement.

  18. Interaction between BDNF rs6265 Met allele and low family cohesion is associated with smaller left hippocampal volume in pediatric bipolar disorder.

    PubMed

    Zeni, Cristian Patrick; Mwangi, Benson; Cao, Bo; Hasan, Khader M; Walss-Bass, Consuelo; Zunta-Soares, Giovana; Soares, Jair C

    2016-01-01

    Genetic and environmental factors are implicated in the onset and evolution of pediatric bipolar disorder, and may be associated to structural brain abnormalities. The aim of our study was to assess the impact of the interaction between the Brain-Derived Neurotrophic Factor (BDNF) rs6265 polymorphism and family functioning on hippocampal volumes of children and adolescents with bipolar disorder, and typically-developing controls. We evaluated the family functioning cohesion subscale using the Family Environment Scale-Revised, genotyped the BDNF rs6265 polymorphism, and performed structural brain imaging in 29 children and adolescents with bipolar disorder, and 22 healthy controls. We did not find significant differences between patients with BD or controls in left or right hippocampus volume (p=0.44, and p=0.71, respectively). However, we detected a significant interaction between low scores on the cohesion subscale and the presence of the Met allele at BNDF on left hippocampal volume of patients with bipolar disorder (F=3.4, p=0.043). None of the factors independently (BDNF Val66Met, cohesion scores) was significantly associated with hippocampal volume differences. small sample size, cross-sectional study. These results may lead to a better understanding of the impact of the interaction between genes and environment factors on brain structures associated to bipolar disorder and its manifestations. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Structure of Franciscan complex in the Stanley Mountain window, Southern Coast ranges, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korsch, R.J.

    1982-11-01

    Three sets of deformational events are recognized in the Franciscan Complex of the Stanley Mt. area, S. Coast ranges, California. First, in pre-melange time, shortening of the relatively cohesive sequence of interbedded graywacke and mudstone formed isoclinal folds and an axial-plane slaty cleavage. Second, fragmentation of the once cohesive sequence, probably over a considerable period of time, produced the configuration now considered a melange. Third, after the melange developed, the Franciscan Complex was deformed along with the surrounding upper Mesozoic Great Valley sequence into the Stanley Mt. antiform. In the cohesive Upper Cretaceous Carrie Creek Formation, macroscopic and mesoscopic foldsmore » have 2 predominant orientations. The less cohesive Franciscan Complex attempted to fold, as shown by the distribution of shear foliations on stereographic projections, but lack of lithologic continuity and slip along previously formed shear fractures prevents the recognition of macroscopic folds. Hence, in the Franciscan Complex of the Stanley Mt. window, several lines of evidence show that the melange structure is tectonic in origin, not just a tectonic imprint superimposed upon already chaotic rocks of sedimentary origin (olistostromes). 43 references.« less

  20. Study of Electronic Structure, Thermal Conductivity, Elastic and Optical Properties of α, β, γ-Graphyne

    PubMed Central

    Hou, Xun; Xie, Zhongjing; Li, Chunmei; Li, Guannan; Chen, Zhiqian

    2018-01-01

    In recent years, graphyne was found to be the only 2D carbon material that has both sp and sp2 hybridization. It has received significant attention because of its great potential in the field of optoelectronics, which arises due to its small band gap. In this study, the structural stability, electronic structure, elasticity, thermal conductivity and optical properties of α, β, γ-graphynes were investigated using density functional theory (DFT) systematically. γ-graphyne has the largest negative cohesive energy and thus the most stable structure, while the β-graphyne comes 2nd. Both β and γ-graphynes have sp-sp, sp-sp2 and sp2-sp2 hybridization bonds, of which γ-graphyne has shorter bond lengths and thus larger Young’s modulus. Due to the difference in acetylenic bond in the structure cell, the effect of strain on the electronic structure varies between graphynes: α-graphyne has no band gap and is insensitive to strain; β-graphyne’s band gap has a sharp up-turn at 10% strain, while γ-graphyne’s band gap goes up linearly with the strain. All the three graphynes exhibit large free carrier concentration and these free carriers have small effective mass, and both free carrier absorption and intrinsic absorption are found in the light absorption. Based on the effect of strain, optical properties of three structures are also analyzed. It is found that the strain has significant impacts on their optical properties. In summary, band gap, thermal conductivity, elasticity and optical properties of graphyne could all be tailored with adjustment on the amount of acetylenic bonds in the structure cell. PMID:29370070

  1. Study of Electronic Structure, Thermal Conductivity, Elastic and Optical Properties of α, β, γ-Graphyne.

    PubMed

    Hou, Xun; Xie, Zhongjing; Li, Chunmei; Li, Guannan; Chen, Zhiqian

    2018-01-25

    In recent years, graphyne was found to be the only 2D carbon material that has both sp and sp² hybridization. It has received significant attention because of its great potential in the field of optoelectronics, which arises due to its small band gap. In this study, the structural stability, electronic structure, elasticity, thermal conductivity and optical properties of α, β, γ-graphynes were investigated using density functional theory (DFT) systematically. γ-graphyne has the largest negative cohesive energy and thus the most stable structure, while the β-graphyne comes 2nd. Both β and γ-graphynes have sp-sp, sp-sp² and sp²-sp² hybridization bonds, of which γ-graphyne has shorter bond lengths and thus larger Young's modulus. Due to the difference in acetylenic bond in the structure cell, the effect of strain on the electronic structure varies between graphynes: α-graphyne has no band gap and is insensitive to strain; β-graphyne's band gap has a sharp up-turn at 10% strain, while γ-graphyne's band gap goes up linearly with the strain. All the three graphynes exhibit large free carrier concentration and these free carriers have small effective mass, and both free carrier absorption and intrinsic absorption are found in the light absorption. Based on the effect of strain, optical properties of three structures are also analyzed. It is found that the strain has significant impacts on their optical properties. In summary, band gap, thermal conductivity, elasticity and optical properties of graphyne could all be tailored with adjustment on the amount of acetylenic bonds in the structure cell.

  2. Armchair and zigzag nanoribbons of gold and silver: A DFT study

    NASA Astrophysics Data System (ADS)

    Kapoor, Pooja; Sharma, Munish; Kumar, Ashok; Ahluwalia, P. K.

    2018-04-01

    This paper presents the results from a DFT-based computational study of structural and electronic properties of zigzag and armchair edge shaped nanoribbons of gold and silver in hexagonal phase. The cohesive energy of the considered nanoribbons are found to be more than the corresponding 2D counterpart, thereby, suggesting Au and Ag nanoribbons to be more stable in 1D as compared to 2D. All nanoribbons are found to be metallic with a modulation in quantum ballistic conductance with length and edge type of the nanoribbon. Au nanoribbons are found to have higher conductance than Ag nanoribbon. There is increase in conductance with increase in length of nanoribbon.

  3. The Impact of African American Parents' Racial Discrimination Experiences and Perceived Neighborhood Cohesion on their Racial Socialization Practices.

    PubMed

    Saleem, Farzana T; English, Devin; Busby, Danielle R; Lambert, Sharon F; Harrison, Aubrey; Stock, Michelle L; Gibbons, Frederick X

    2016-07-01

    Parental racial socialization is a parenting tool used to prepare African American adolescents for managing racial stressors. While it is known that parents' racial discrimination experiences affect the racial socialization messages they provide, little is known about the influence of factors that promote supportive and communal parenting, such as perceived neighborhood cohesion. In cohesive neighborhoods, neighbors may help parents address racial discrimination by monitoring youth and conveying racial socialization messages; additionally, the effect of neighborhood cohesion on parents' racial socialization may differ for boys and girls because parents socialize adolescents about race differently based on expected encounters with racial discrimination. Therefore, the current study examines how parents' perception of neighborhood cohesion and adolescents' gender moderate associations between parents' racial discrimination experiences and the racial socialization messages they deliver to their adolescents. Participants were a community sample of 608 African American adolescents (54 % girls; mean age = 15.5) and their primary caregivers (86 % biological mothers; mean age = 42.0). Structural equation modeling indicated that parental racial discrimination was associated with more promotion of mistrust messages for boys and girls in communities with low neighborhood cohesion. In addition, parental racial discrimination was associated with more cultural socialization messages about racial pride and history for boys in neighborhoods with low neighborhood cohesion. The findings suggest that parents' racial socialization messages are influenced by their own racial discrimination experiences and the cohesiveness of the neighborhood; furthermore, the content of parental messages delivered varies based on adolescents' gender.

  4. Stress of home life and gender role socializations, family cohesion, and symptoms of anxiety and depression.

    PubMed

    Anyan, Frederick; Hjemdal, Odin

    2017-04-05

    This cross-sectional study investigated the relation of sociocultural prescriptions of gender role socializations to differences in stress at home and to anxiety and depressive symptoms for adolescent girls and boys, with family cohesion as a mediator. A total of 244 boys and 285 girls aged 13-17 years recruited from Accra, Ghana completed the Short Mood Feeling Questionnaire, Spielberger State Anxiety Inventory, Stress of Home Life and Family Cohesion self-report scales in April 2015. In each sample, two mediation analyses were conducted using Structural Equation Modelling. Exposure to stress at home that was perceived to result from sociocultural prescriptions of gender role norms largely accounted for anxiety and depressive symptoms among girls, whereas this relation was non-significant among boys. Significant indirect relations through low family cohesion to anxiety symptoms were observed for girls and boys but not to depressive symptoms for boys. These findings suggest that differences in gender role socializations at home may account for individual differences in associations between exposure to stress at home and anxiety and depressive symptoms as well as explain the differential indirect relations through low family cohesion. Improving family cohesion while reducing stress at home may contribute to reducing stress and thus anxiety and depressive symptoms.

  5. Contrastive Analyses of Organizational Structures and Cohesive Elements in English, Spanish (ESL) and Chinese (ESL) Students' Writing in Narrative and Expository Modes.

    ERIC Educational Resources Information Center

    Norment, Nathaniel, Jr.

    A study examined the differences and similarities in the relationship between the organization of written English produced by native Chinese, English, and Spanish speaking adult college students when they wrote in the narrative and expository modes. Specifically, the study explored the kinds of cohesive devices that operated in the English text…

  6. Bedform development in mixed sand-mud: The contrasting role of cohesive forces in flow and bed

    NASA Astrophysics Data System (ADS)

    Baas, Jaco H.; Davies, Alan G.; Malarkey, Jonathan

    2013-01-01

    The majority of subaqueous sediment on Earth consists of mixtures of cohesive clay and cohesionless sand and silt, but the role of cohesion on the development and stability of sedimentary bedforms is poorly understood. The results of new laboratory flume experiments on bedform development in cohesive, mixed sand-mud beds are compared with the results of previous experiments in which cohesive forces in high concentration clay flows dominated bedform development. Even though both series of mixed sand-mud experiments were conducted at similar flow velocities, the textural and structural properties of the bedforms were sufficiently different to permit the designation of key criteria for identifying bedform generation under cohesive flows against bedform generation on cohesive substrates. These criteria are essential for improving bedform size predictions in sediment transport modelling in modern sedimentary environments and for the reconstruction of depositional processes in the geological record. The current ripples developing on the cohesive, mixed sand-mud beds, with bed mud fractions of up to 18%, were significantly smaller than equivalent bedforms in noncohesive sand. Moreover, the bedform height showed a stronger inversely proportional relationship with initial bed mud fraction than the bedform wavelength. This is in contrast with the bedforms developing under the cohesive clay flows, which tend to increase in size with increasing suspended clay concentration until the flow turbulence is fully suppressed. Selective removal of clay from the mixed beds, i.e., clay winnowing, was found to be an important process, with 82-100% clay entrained into suspension after 2 h of bedform development. This winnowing process led to the development of a sand-rich armouring layer. This armouring layer is inferred to have protected the underlying mixed sand-mud from prolonged erosion, and in conjunction with strong cohesive forces in the bed may have caused the smaller size of the bedforms. Winnowing was less efficient for the bedforms developing under the cohesive clay flows, where bedforms consisting of muddy sand were more characteristic. The winnowed sand was also found to heal irregularly scoured topography, thus reestablishing classic quasitriangular bedform shapes. In cohesive flows, the bedforms had more variable shapes, and the healing process was confined to lower transitional plug flows in which strong turbulence is only present close to the sediment bed. Furthermore, the bedforms on the cohesive beds tended to form angle-of-repose cross lamination, whereas low angle cross lamination was more common in bedforms under cohesive flows. In general terms, erosional bedforms prevail when cohesive forces in the bed dominate bedform dynamics, whereas depositional bedforms prevail when cohesive forces in the flow dominate bedform dynamics. Empirical relationships between the proportion of cohesive mud in the mixed sand-mud bed and the development rate and size of the bedforms are defined for future use in field and laboratory studies.

  7. Cohesive Energies of Some Transition Metal Compounds Using Embedded Clusters

    NASA Astrophysics Data System (ADS)

    Press, Mehernosh Rustom

    The molecular-clusters approach to electronic structure calculation is especially well-suited to the study of properties that depend primarily on the local environment of a system, especially those with no translational symmetry, e.g. systems with defects and structural deformations. The presence of the rest of the crystal environment can be accounted for approximately by embedding the cluster in a self-consistent crystal potential. This thesis makes a contribution in the area of investigating the capability of embedded molecular-clusters to yield reliable bulk structural properties. To this end, an algorithm for calculating the cohesive energies of clusters within the discrete-variational X(,(alpha)) LCAO-MO formulation is set up and verified on simple solids: Li, Na, Cu and LiF. We then use this formulation to study transition metal compounds, for which the interesting physics lies in local lattice defects, foreign impurities and structural deformations. In a self -consistent calculation of the lattice energies and stability of defect clusters in wustite, Fe(,1-x)O, corner-sharing aggregates of the 4:1 defect are identified as the most stable defect configurations due to efficient compensation of the cluster charge. The intercalation properties of layered-transition-metal-dichalcogenides continues to be a fertile experimental working area, backed by comparatively little theoretical study. We find that intercalation of ZrS(,2) with Na perturbs the valence energy level structure sufficiently to induce a more ionic Zr-S bond, a narrowing of the optical gap and filling of the lowest unoccupied host lattice orbitals with the electron donated by Na. Fe - intercalation in ZrS(,2) is accommodated via a strong Fe-S bond, impurity-like band levels in the optical gap of the host and hybridization-driven compression and lowering of the conduction band energy levels. The piezoelectric cuprous halides, CuCl and CuBr, exhibit a host of intriguing properties due to a filled and very active d('10) shell at the Fermi energy. A self-consistent calculation via energy minimization of the internal strain in these compounds shows both Cu-halide bonds to be very rigid with little charge delocalization under strain. Piezoelectric response is calculated in terms of effective charges and quadrupolar moments, e(,T) and (DELTA)Q.

  8. Simulation of fatigue damage in ferroelectric polycrystals under mechanical/electrical loading

    NASA Astrophysics Data System (ADS)

    Kozinov, S.; Kuna, M.

    2018-07-01

    The reliability of smart-structures made of ferroelectric ceramics is essentially reduced by the formation of cracks under the action of external electrical and/or mechanical loading. In the current research a numerical model for low-cycle fatigue in ferroelectric mesostructures is proposed. In the finite element simulations a combination of two user element routines is utilized. The first one is used to model a micromechanical ferroelectric domain switching behavior inside the grains. The second one is used to simulate fatigue damage of grain boundaries by a cohesive zone model (EMCCZM) based on an electromechanical cyclic traction-separation law (TSL). For numerical simulations a scanning electron microscope image of the ceramic's grain structure was digitalized and meshed. The response of this mesostructure to cyclic electrical or mechanical loading is systematically analyzed. As a result of the simulations, the distribution of electric potential, field, displacement and polarization as well as mechanical stresses and deformations inside the grains are obtained. At the grain boundaries, the formation and evolution of damage are analyzed until final failure and induced degradation of electric permittivity. It is found that the proposed model correctly mimics polycrystalline behavior during poling processes and progressive damage under cyclic electromechanical loading. To the authors' knowledge, it is the first model and numerical analysis of ferroelectric polycrystals taking into account both domain reorientation and cohesive modeling of intergranular fracture. It can help to understand failure mechanisms taking place in ferroelectrics during fatigue processes.

  9. Perceptions as the crucial link? The mediating role of neighborhood perceptions in the relationship between the neighborhood context and neighborhood cohesion.

    PubMed

    Laméris, Joran; Hipp, John R; Tolsma, Jochem

    2018-05-01

    This study examines the effects of neighborhood racial in-group size, economic deprivation and the prevalence of crime on neighborhood cohesion among U.S. whites. We explore to what extent residents' perceptions of their neighborhood mediate these macro-micro relationships. We use a recent individual-level data set, the American Social Fabric Study (2012/2013), enriched with contextual-level data from the U.S. Census Bureau (2010) and employ multi-level structural equation models. We show that the racial in-group size is positively related to neighborhood cohesion and that neighborhood cohesion is lower in communities with a high crime rate. Individuals' perceptions of the racial in-group size partly mediate the relationship between the objective racial in-group size and neighborhood cohesion. Residents' perceptions of unsafety from crime also appear to be a mediating factor, not only for the objective crime rate but also for the objective racial in-group size. This is in line with our idea that racial stereotypes link racial minorities to crime whereby neighborhoods with a large non-white population are perceived to be more unsafe. Residents of the same neighborhood differ in how they perceive the degree of economic decay of the neighborhood and this causes them to evaluate neighborhood cohesion differently, however perceptions of neighborhood economic decay do not explain the link between the objective neighborhood context and neighborhood cohesion. Copyright © 2018. Published by Elsevier Inc.

  10. Ab initio study of structural and mechanical property of solid molecular hydrogens

    NASA Astrophysics Data System (ADS)

    Ye, Yingting; Yang, Li; Yang, Tianle; Nie, Jinlan; Peng, Shuming; Long, Xinggui; Zu, Xiaotao; Du, Jincheng

    2015-06-01

    Ab initio calculations based on density functional theory (DFT) were performed to investigate the structural and the elastic properties of solid molecular hydrogens (H2). The influence of molecular axes of H2 on structural relative stabilities of hexagonal close-packed (hcp) and face-centered cubic (fcc) structured hydrogen molecular crystals were systematically investigated. Our results indicate that for hcp structures, disordered hydrogen molecule structure is more stable, while for fcc structures, Pa3 hydrogen molecular crystal is most stable. The cohesive energy of fcc H2 crystal was found to be lower than hcp. The mechanical properties of fcc and hcp hydrogen molecular crystals were obtained, with results consistent with previous theoretical calculations. In addition, the effects of zero point energy (ZPE) and van der Waals (vdW) correction on the cohesive energy and the stability of hydrogen molecular crystals were systematically studied and discussed.

  11. Social Cohesion, Structural Holes, and a Tale of Two Measures

    NASA Astrophysics Data System (ADS)

    Latora, V.; Nicosia, V.; Panzarasa, P.

    2013-05-01

    In the social sciences, the debate over the structural foundations of social capital has long vacillated between two positions on the relative benefits associated with two types of social structures: closed structures, rich in third-party relationships, and open structures, rich in structural holes and brokerage opportunities. In this paper, we engage with this debate by focusing on the measures typically used for formalising the two conceptions of social capital: clustering and effective size. We show that these two measures are simply two sides of the same coin, as they can be expressed one in terms of the other through a simple functional relation. Building on this relation, we then attempt to reconcile closed and open structures by proposing a new measure, Simmelian brokerage, that captures opportunities of brokerage between otherwise disconnected cohesive groups of contacts. Implications of our findings for research on social capital and complex networks are discussed.

  12. Crystal growth, structure and characterization of p-Toluidinium picrate

    NASA Astrophysics Data System (ADS)

    Muthu, K.; Meenakshisundaram, Subbiah

    2012-08-01

    p-Toluidinium picrate (PTP), is a proton transfer complex of 2,4,6-trinitrophenol as an electron acceptor with p-toluidine as electron donor, crystallizing in the monoclinic system with four molecules in the unit cell (space group P21/c). The vibrational patterns of the organic crystal PTP in comparison with that of the parent compound clearly evidences the complex formation. Loss of hydroxyl proton at O1 leading to specific electron delocalization around C1 is observed. Crystallographic data are reported as a=12.9304(6) Å, b=15.7176(7) Å, c=7.5403(4) Å, β=101.837(5)°. The crystalline cohesion is achieved by N-H…O and C-H…O hydrogen bonds and the ions are linked into three dimensional network. Intermolecular hydrogen bonding between nitrogen of p-toluidine and phenolate ion of picric acid results in charge transfer. A sharp endotherm in the DSC curve, no decomposition up to the melting point and poor absorbance in the visible region indicate the suitability of the material for potential applications.

  13. Barossa Night: cohesion in the British Army officer corps.

    PubMed

    Bury, Patrick

    2017-06-01

    Contrasting the classical explanation of military group cohesion as sustained by interpersonal bonds, recent scholars have highlighted the importance of ritualized communication, training and drills in explaining effective military performance in professional armies. While this has offered a welcome addition to the cohesion literature and a novel micro-sociological method of examining cohesion, its primary evidential base has been combat groups. Indeed, despite their prominent role in directing operations over the past decade, the British Army's officer corps has received relatively little attention from sociologists during this period. No attempt has been made to explain cohesion in the officer corps. Using a similar method to recent cohesion scholars, this paper seeks to address this imbalance by undertaking a micro-sociology of one ritual in particular: 'Barossa Night' in the Royal Irish Regiment. Firstly, it draws on the work of Durkheim to examine how cohesion amongst the officer corps is created and sustained through a dense array of practises during formal social rituals. It provides evidence that the use of rituals highlights that social solidarity is central to understanding officer cohesion. Secondly, following Hockey's work on how private soldiers negotiate order, the paper shows how this solidarity in the officer corps is based on a degree of negotiated order and the need to release organizational tensions inherent in a strictly hierarchical rank structure. It highlights how the awarding of gallantry medals can threaten this negotiated order and fuel deviancy. In examining this behaviour, the paper shows that even amongst an officer class traditionally viewed as the elite upholders of organizational discipline, the negotiation of rank and hierarchy can be fluid. How deviant behaviour is later accepted and normalized by senior officers indicates that negotiated order is as important to understanding cohesion in the British Army's officer corps as it is amongst private soldiers. © London School of Economics and Political Science 2016.

  14. Effective scheme to determine accurate defect formation energies and charge transition levels of point defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Yao, Cang Lang; Li, Jian Chen; Gao, Wang; Tkatchenko, Alexandre; Jiang, Qing

    2017-12-01

    We propose an effective method to accurately determine the defect formation energy Ef and charge transition level ɛ of the point defects using exclusively cohesive energy Ecoh and the fundamental band gap Eg of pristine host materials. We find that Ef of the point defects can be effectively separated into geometric and electronic contributions with a functional form: Ef=χ Ecoh+λ Eg , where χ and λ are dictated by the geometric and electronic factors of the point defects (χ and λ are defect dependent). Such a linear combination of Ecoh and Eg reproduces Ef with an accuracy better than 5% for electronic structure methods ranging from hybrid density-functional theory (DFT) to many-body random-phase approximation (RPA) and experiments. Accordingly, ɛ is also determined by Ecoh/Eg and the defect geometric/electronic factors. The identified correlation is rather general for monovacancies and interstitials, which holds in a wide variety of semiconductors covering Si, Ge, phosphorenes, ZnO, GaAs, and InP, and enables one to obtain reliable values of Ef and ɛ of the point defects for RPA and experiments based on semilocal DFT calculations.

  15. Theoretical Prediction of an Antimony-Silicon Monolayer (penta-Sb2Si): Band Gap Engineering by Strain Effect

    NASA Astrophysics Data System (ADS)

    Morshedi, Hosein; Naseri, Mosayeb; Hantehzadeh, Mohammad Reza; Elahi, Seyed Mohammad

    2018-04-01

    In this paper, using a first principles calculation, a two-dimensional structure of silicon-antimony named penta-Sb2Si is predicted. The structural, kinetic, and thermal stabilities of the predicted monolayer are confirmed by the cohesive energy calculation, phonon dispersion analysis, and first principles molecular dynamic simulation, respectively. The electronic properties investigation shows that the pentagonal Sb2Si monolayer is a semiconductor with an indirect band gap of about 1.53 eV (2.1 eV) from GGA-PBE (PBE0 hybrid functional) calculations which can be effectively engineered by employing external biaxial compressive and tensile strain. Furthermore, the optical characteristics calculation indicates that the predicted monolayer has considerable optical absorption and reflectivity in the ultraviolet region. The results suggest that a Sb2Si monolayer has very good potential applications in new nano-optoelectronic devices.

  16. Half-metallicity and tetragonal distortion in semi-Heusler alloy FeCrSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H. M., E-mail: smilehhm@163.com; Luo, S. J.; Yao, K. L.

    2014-01-28

    Full-potential linearized augmented plane wave methods are carried out to investigate the electronic structures and magnetic properties in semi-Heusler alloy FeCrSe. Results show that FeCrSe is half-metallic ferromagnet with the half-metallic gap 0.31 eV at equilibrium lattice constant. Calculated total magnetic moment of 2.00μ{sub B} per formula unit follows the Slater-Pauling rule quite well. Two kinds of structural changes are used to investigate the sensitivity of half-metallicity. It is found that the half-metallicity can be retained when lattice constant is changed by −4.56% to 3.52%, and the results of tetragonal distortion indicate the half-metallicity can be kept at the range ofmore » c/a ratio from 0.85 to 1.20. The Curie temperature, cohesive energy, and heat of formations of FeCrSe are also discussed.« less

  17. Near transferable phenomenological n-body potentials for noble metals

    NASA Astrophysics Data System (ADS)

    Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David

    2017-09-01

    We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.

  18. Near transferable phenomenological n-body potentials for noble metals.

    PubMed

    Pontikis, Vassilis; Baldinozzi, Gianguido; Luneville, Laurence; Simeone, David

    2017-09-06

    We present a semi-empirical model of cohesion in noble metals with suitable parameters reproducing a selected set of experimental properties of perfect and defective lattices in noble metals. It consists of two short-range, n-body terms accounting respectively for attractive and repulsive interactions, the former deriving from the second moment approximation of the tight-binding scheme and the latter from the gas approximation of the kinetic energy of electrons. The stability of the face centred cubic versus the hexagonal compact stacking is obtained via a long-range, pairwise function of customary use with ionic pseudo-potentials. Lattice dynamics, molecular statics, molecular dynamics and nudged elastic band calculations show that, unlike previous potentials, this cohesion model reproduces and predicts quite accurately thermodynamic properties in noble metals. In particular, computed surface energies, largely underestimated by existing empirical cohesion models, compare favourably with measured values, whereas predicted unstable stacking-fault energy profiles fit almost perfectly ab initio evaluations from the literature. All together the results suggest that this semi-empirical model is nearly transferable.

  19. Drosophila PLP assembles pericentriolar clouds that promote centriole stability, cohesion and MT nucleation.

    PubMed

    Roque, Helio; Saurya, Saroj; Pratt, Metta B; Johnson, Errin; Raff, Jordan W

    2018-02-01

    Pericentrin is a conserved centrosomal protein whose dysfunction has been linked to several human diseases. It has been implicated in many aspects of centrosome and cilia function, but its precise role is unclear. Here, we examine Drosophila Pericentrin-like-protein (PLP) function in vivo in tissues that form both centrosomes and cilia. Plp mutant centrioles exhibit four major defects: (1) They are short and have subtle structural abnormalities; (2) They disengage prematurely, and so overduplicate; (3) They organise fewer cytoplasmic MTs during interphase; (4) When forming cilia, they fail to establish and/or maintain a proper connection to the plasma membrane-although, surprisingly, they can still form an axoneme-like structure that can recruit transition zone (TZ) proteins. We show that PLP helps assemble "pericentriolar clouds" of electron-dense material that emanate from the central cartwheel spokes and spread outward to surround the mother centriole. We propose that the partial loss of these structures may largely explain the complex centriole, centrosome and cilium defects we observe in Plp mutant cells.

  20. Sociometric network structure and its association with methamphetamine use norms among homeless youth

    PubMed Central

    Barman-Adhikari, Anamika; Begun, Stephanie; Rice, Eric; Yoshioka-Maxwell, Amanda; Perez-Portillo, Andrea

    2016-01-01

    Homeless youths' social networks are consistently linked with their substance use. Social networks influence behavior through several mechanisms, especially social norms. This study used sociometric analyses to understand whether social norms of drug use behaviors are clustered in network structures and whether these perceived norms (descriptive and injunctive) influence youths' drug use behaviors. An event-based approach was used to delineate boundaries of the two sociometric networks of homeless youth, one in Los Angeles, CA (n = 160) and the other in Santa Monica, CA (n = 130). Network characteristics included centrality (i.e., popularity) and cohesiveness (location in dense subnetworks). The primary outcome was recent methamphetamine use. Results revealed that both descriptive and injunctive norms influenced methamphetamine use. Network cohesion was found to be associated with perception of both descriptive and injunctive norms in both networks, however in opposite directions. Network interventions therefore might be effective if designed to capitalize on social influence that naturally occurs in cohesive parts of networks. PMID:27194667

  1. Electronic properties and structural phase transition in A4 [M4O4] (A=Li, Na, K and Rb; M=Ag and Cu): A first principles study

    NASA Astrophysics Data System (ADS)

    Umamaheswari, R.; Yogeswari, M.; Kalpana, G.

    2013-02-01

    Self-consistent scalar relativistic band structure calculations for AMO (A=Li, Na, K and Rb; M=Ag and Cu) compounds have been performed using the tight-binding linear muffin-tin orbital (TB-LMTO) method within the local density approximation (LDA). At ambient conditions, these compounds are found to crystallize in tetragonal KAgO-type structure with two different space group I-4m2 and I4/mmm. Nowadays, hypothetical structures are being considered to look for new functional materials. AMO compounds have stoichiometry similar to eight-electron half-Heusler materials of type I-I-VI which crystallizes in cubic (C1b) MgAgAs-type structure with space group F-43m. For all these compounds, by interchanging the positions of atoms in the hypothetical cubic structure, three phases (α, β and γ) are formed. The energy-volume relation for these compounds in tetragonal KAgO-type structure and cubic α, β and γ phases of related structure have been obtained. Under ambient conditions these compounds are more stable in tetragonal KAgO-type (I4/mmm) structure. The total energies calculated within the atomic sphere approximation (ASA) were used to determine the ground state properties such as equilibrium lattice parameters, c/a ratio, bulk modulus, cohesive energy and are compared with the available experimental results. The results of the electronic band structure calculations at ambient condition show that LiCuO and NaMO are indirect band gap semiconductors whereas KMO and RbMO are direct band gap semiconductors. At high pressure the band gap decreases and the phenomenon of band overlap metallization occur. Also these compounds undergo structural phase transition from tetragonal I-4m2 phase to cubic α-phase and transition pressures were calculated.

  2. Family Cohesion, Stigma, and Quality of Life in Dyads of Children With Epilepsy and Their Parents.

    PubMed

    Mendes, Teresa P; Crespo, Carla A; Austin, Joan K

    2017-07-01

    To examine the mediating role of stigma on the links between family cohesion and quality of life (QoL) in children with epilepsy and their parents. Participants were 192 families attending three Portuguese public hospitals. Children and parents completed self-report measures of family cohesion, stigma, QoL, and health-related QoL (HRQoL). Neurologists assessed clinical variables. Structural equation modeling within the framework of the actor-partner interdependence model was used. The final model showed a good fit to the data, explaining 43% and 35% of the QoL outcomes of children and parents, respectively. Family cohesion was positively linked to QoL outcomes, directly for children and parents, and indirectly for children only, by way of negative links with perceived stigma. At the dyadic level, parents' perceptions of family cohesion were positively associated with children's HRQoL. A routine screening of those patients experiencing poorer HRQoL should include the assessment of family relationships and stigma. © The Author 2017. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  3. The Dyadic Effects of Family Cohesion and Communication on Health-Related Quality of Life: The Moderating Role of Sex.

    PubMed

    Lim, Jung-Won; Shon, En-Jung

    Spouses' ability to care for survivors can be particularly challenging because patients and spouses are interdependent and mutually influence one another. Family functioning such as family cohesion and communication may play a primary role in improving the health-related quality of life (HRQOL) of couples, given that cancer can influence family dynamics. The aims of this study were to investigate the mediating effect of family communication on the relationship between family cohesion and HRQOL and examine the moderating effect of sex on this relationship among cancer survivor-spouse dyads. A total of 91 cancer survivors with a diagnosis of breast, colorectal, or prostate cancer and their spouses were recruited from the University Hospital Registry in Cleveland, Ohio. The dyadic data were analyzed using structural equation modeling with the actor-partner interdependence mediation model. Findings demonstrated that the spouses' own perceived family communication mediated the associations between their own family cohesion and physical HRQOL and between the survivors' family cohesion and physical HRQOL. The spouse actor effects between family communication and HRQOL significantly differed by sex. Enhancing family cohesion and communication within the family can improve the spouses' HRQOL. Findings regarding sex differences serve as a rationale for gender-based approaches to improving HRQOL in survivorship care in the family context. Couple- and/or family-based interventions should be designed to enhance family cohesion and improve family communication skills for effective adjustments within couples and families. Supportive care within the family context can be promoted to address the diverse challenges of survivorship care.

  4. [The importance of neighborhood social cohesion and social capital for the well being of older adults in the community].

    PubMed

    Cramm, J M; van Dijk, H M; Nieboer, A P

    2013-04-01

    We aimed to investigate whether social capital (obtaining support through indirect ties such as from neighbors) and social cohesion (interdependencies among neighbors) within neighborhoods positively affect the well-being of older adults. This cross-sectional study included 945/1440 (66 % response rate) independently living older adults (aged >70 years) in Rotterdam. We fitted a hierarchical random-effects model to account for the hierarchical structure of the study design: 945 older adults (level 1) nested in 72 neighborhoods (level 2). Univariate analyses showed that being born in the Netherlands, house ownership, education, income, social capital of individuals, neighborhood security, neighborhood services, neighborhood social capital, and neighborhood social cohesion were significantly related to the well-being of older adults. Multilevel analyses showed that social capital of individuals, neighborhood services, neighborhood social capital, and neighborhood social cohesion predicted the well-being of older adults. Single and poor older adults reported lower well-being than did better-off and married older adults. However, the effects of marital status and income were mediated by neighborhood services, social capital, and social cohesion. Neighborhood services, social capital and social cohesion may act as buffer against the adverse effects of being single and poor on the well-being of older adults. The results of this study support the importance of social capital of individuals, as well as social capital within the neighborhood and social cohesion within the neighborhood for well-being of older adults. The well-being of older adults may also be enhanced through the improvement of quality of neighborhood services.

  5. The importance of neighborhood social cohesion and social capital for the well being of older adults in the community.

    PubMed

    Cramm, Jane M; van Dijk, Hanna M; Nieboer, Anna P

    2013-02-01

    We aimed to investigate whether social capital (obtaining support through indirect ties such as from neighbors) and social cohesion (interdependencies among neighbors) within neighborhoods positively affect the well being of older adults. This cross-sectional study included 945 of 1,440 (66% response rate) independently living older adults (aged ≥70 years) in Rotterdam. We fitted a hierarchical random effects model to account for the hierarchical structure of the study design: 945 older adults (Level 1) nested in 72 neighborhoods (Level 2). Univariate analyses showed that being born in the Netherlands, house ownership, education, income, social capital of individuals, neighborhood security, neighborhood services, neighborhood social capital, and neighborhood social cohesion were significantly related to the well being of older adults. Multilevel analyses showed that social capital of individuals, neighborhood services, neighborhood social capital, and neighborhood social cohesion predicted the well being of older adults. Single and poor older adults reported lower well being than did better off and married older adults. However, the effects of marital status and income were mediated by neighborhood services, social capital, and social cohesion. Neighborhood services, social capital, and social cohesion may act as buffer against the adverse effects of being single and poor on the well being of older adults. The results of this study support the importance of social capital of individuals, as well as social capital within the neighborhood and social cohesion within the neighborhood for well being of older adults. The well being of older adults may also be enhanced through the improvement of quality of neighborhood services.

  6. A study on structure, morphology, optical properties, and photocatalytic ability of SrTiO3/TiO2 granular composites

    NASA Astrophysics Data System (ADS)

    Thi Mai Oanh, Le; Xuan Huy, Nguyen; Thi Thuy Phuong, Doan; Danh Bich, Do; Van Minh, Nguyen

    2018-03-01

    (1-x)SrTiO3-xTiO2 granular composites with x=0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 were synthesized by sol-gel process. Structure, morphology, optical properties, and photocatalytic activity were investigated in detail using x-ray diffraction (XRD) analysis, Raman scattering, field-emission scanning electron microscopy (FE-SEM), Transmission Electron Microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectra, and photoluminescence (PL). XRD analysis showed the formation of single phase for parent phases and the present of two component phases in all composites without any impurity. A tight cohesion between TiO2 and SrTiO3 (STO) at grain boundary region was inferred from lattice parameter change of STO. Moreover, FE-SEM images revealed a granular structure of composite in which SrTiO3 particles were surrounded by smaller TiO2 nanoparticles. As TiO2 concentration increased, absorption edge firstly shifted to the left for composite with x=0.3 and then shifted gradually to the right with further increasing of TiO2 content from 30 mol% to 80 mol%. Composites exhibited a stronger photocatalytic activity than parent phases, with the highest efficiency at 50 mol% of TiO2. PL analysis result showed that the recombination rate of photogenerated electron-hole pairs decreased in composite sample, which partly explained the enhanced photocatalytic property.

  7. Ab Initio Study of the Electronic Structure, Elastic Properties, Magnetic Feature and Thermodynamic Properties of the Ba2NiMoO6 Material

    NASA Astrophysics Data System (ADS)

    Deluque Toro, C. E.; Mosquera Polo, A. S.; Gil Rebaza, A. V.; Landínez Téllez, D. A.; Roa-Rojas, J.

    2018-04-01

    We report first-principles calculations of the elastic properties, electronic structure and magnetic behavior performed over the Ba2NiMoO6 double perovskite. Calculations are carried out through the full-potential linear augmented plane-wave method within the framework of the Density Functional Theory (DFT) with exchange and correlation effects in the Generalized Gradient and Local Density Approximations, including spin polarization. The elastic properties calculated are bulk modulus (B), the elastic constants (C 11, C 12 and C 44), the Zener anisotropy factor (A), the isotropic shear modulus (G), the Young modulus (Y) and the Poisson ratio (υ). Structural parameters, total energies and cohesive properties of the perovskite are studied by means of minimization of internal parameters with the Murnaghan equation, where the structural parameters are in good agreement with experimental data. Furthermore, we have explored different antiferromagnetic configurations in order to describe the magnetic ground state of this compound. The pressure and temperature dependence of specific heat, thermal expansion coefficient, Debye temperature and Grüneisen parameter were calculated by DFT from the state equation using the quasi-harmonic model of Debye. A specific heat behavior C V ≈ C P was found at temperatures below T = 400 K, with Dulong-Petit limit values, which is higher than those, reported for simple perovskites.

  8. The Roles of Perceived Neighborhood Disorganization, Social Cohesion, and Social Control in Urban Thai Adolescents' Substance Use and Delinquency.

    PubMed

    Byrnes, Hilary F; Miller, Brenda A; Chamratrithirong, Aphichat; Rhucharoenpornpanich, Orratai; Cupp, Pamela K; Atwood, Katharine A; Fongkaew, Warunee; Rosati, Michael J; Chookhare, Warunee

    2013-08-06

    Substance use and delinquency in Thai adolescents are growing public health concerns. Research has linked neighborhood characteristics to these outcomes, with explanations focused on neighborhood disorganization, social cohesion, and social control. This study examines the independent associations of these neighborhood constructs with Thai adolescents' substance use and delinquency, through peer deviance, to determine which neighborhood aspects are particularly important. Families (N=420) with adolescents aged 13-14 were randomly selected from 7 districts in Bangkok, Thailand. Structural equation modeling showed that adolescents', but not parents', perceptions of greater disorganization were related to increased rates of both minor and serious delinquency. Surprisingly, greater neighborhood cohesion was related to greater minor delinquency. Peer deviance was unrelated to neighborhood variables. Findings can inform prevention strategies for Thai adolescents, as results suggest that neighborhoods are important for adolescent behaviors regardless of culture. Further work should help communities make use of social cohesion to benefit residents.

  9. The Roles of Perceived Neighborhood Disorganization, Social Cohesion, and Social Control in Urban Thai Adolescents’ Substance Use and Delinquency

    PubMed Central

    Byrnes, Hilary F.; Miller, Brenda A.; Chamratrithirong, Aphichat; Rhucharoenpornpanich, Orratai; Cupp, Pamela K.; Atwood, Katharine A.; Fongkaew, Warunee; Rosati, Michael J.; Chookhare, Warunee

    2011-01-01

    Substance use and delinquency in Thai adolescents are growing public health concerns. Research has linked neighborhood characteristics to these outcomes, with explanations focused on neighborhood disorganization, social cohesion, and social control. This study examines the independent associations of these neighborhood constructs with Thai adolescents’ substance use and delinquency, through peer deviance, to determine which neighborhood aspects are particularly important. Families (N=420) with adolescents aged 13–14 were randomly selected from 7 districts in Bangkok, Thailand. Structural equation modeling showed that adolescents’, but not parents’, perceptions of greater disorganization were related to increased rates of both minor and serious delinquency. Surprisingly, greater neighborhood cohesion was related to greater minor delinquency. Peer deviance was unrelated to neighborhood variables. Findings can inform prevention strategies for Thai adolescents, as results suggest that neighborhoods are important for adolescent behaviors regardless of culture. Further work should help communities make use of social cohesion to benefit residents. PMID:24465060

  10. Teammate Prosocial and Antisocial Behaviors Predict Task Cohesion and Burnout: The Mediating Role of Affect.

    PubMed

    Al-Yaaribi, Ali; Kavussanu, Maria

    2017-06-01

    The manner in which teammates behave toward each other when playing sport could have important achievement-related consequences. However, this issue has received very little research attention. In this study, we investigated whether (a) prosocial and antisocial teammate behaviors predict task cohesion and burnout, and (b) positive and negative affect mediates these relationships. In total, 272 (M age  = 21.86, SD = 4.36) team-sport players completed a multisection questionnaire assessing the aforementioned variables. Structural equation modeling indicated that prosocial teammate behavior positively predicted task cohesion and negatively predicted burnout, and these relationships were mediated by positive affect. The reverse pattern of relationships was observed for antisocial teammate behavior which negatively predicted task cohesion and positively predicted burnout, and these relationships were mediated by negative affect. Our findings underscore the importance of promoting prosocial and reducing antisocial behaviors in sport and highlight the role of affect in explaining the identified relationships.

  11. Modeling and simulation of the debonding process of composite solid propellants

    NASA Astrophysics Data System (ADS)

    Feng, Tao; Xu, Jin-sheng; Han, Long; Chen, Xiong

    2017-07-01

    In order to study the damage evolution law of composite solid propellants, the molecular dynamics particle filled algorithm was used to establish the mesoscopic structure model of HTPB(Hydroxyl-terminated polybutadiene) propellants. The cohesive element method was employed for the adhesion interface between AP(Ammonium perchlorate) particle and HTPB matrix and the bilinear cohesive zone model was used to describe the mechanical response of the interface elements. The inversion analysis method based on Hooke-Jeeves optimization algorithm was employed to identify the parameters of cohesive zone model(CZM) of the particle/binder interface. Then, the optimized parameters were applied to the commercial finite element software ABAQUS to simulate the damage evolution process for AP particle and HTPB matrix, including the initiation, development, gathering and macroscopic crack. Finally, the stress-strain simulation curve was compared with the experiment curves. The result shows that the bilinear cohesive zone model can accurately describe the debonding and fracture process between the AP particles and HTPB matrix under the uniaxial tension loading.

  12. High Current Density, Long Life Cathodes for High Power RF Sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ives, Robert Lawrence; Collins, George; Falce, Lou

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for themore » technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.« less

  13. Microgravity Experiments to Evaluate Electrostatic Forces in Controlling Cohesion and Adhesion of Granular Materials

    NASA Technical Reports Server (NTRS)

    Marshall, J.; Weislogel, M.; Jacobson, T.

    1999-01-01

    The bulk behavior of dispersed, fluidized, or undispersed stationary granular systems cannot be fully understood in terms of adhesive/cohesive properties without understanding the role of electrostatic forces acting at the level of the grains themselves. When grains adhere to a surface, or come in contact with one another in a stationary bulk mass, it is difficult to measure the forces acting on the grains, and the forces themselves that induced the cohesion and adhesion are changed. Even if a single grain were to be scrutinized in the laboratory, it might be difficult, perhaps impossible, to define the distribution and character of surface charging and the three-dimensional relationship that charges (electrons, holes) have to one another. The hypothesis that we propose to test in microgravity (for dielectric materials) is that adhesion and cohesion of granular matter are mediated primarily by dipole forces that do not require the presence of a net charge; in fact, nominally electrically neutral materials should express adhesive and cohesive behavior when the neutrality results from a balance of positive and negative charge carriers. Moreover, the use of net charge alone as a measure of the electrical nature of grain-to-grain relationships within a granular mass may be misleading. We believe that the dipole forces arise from the presence of randomly-distributed positive and negative fixed charge carriers on grains that give rise to a resultant dipole moment. These dipole forces have long-range attraction. Random charges are created whenever there is triboelectrical activity of a granular mass, that is, whenever the grains experience contact/separation sequences or friction.

  14. Structural, electronic properties and stability of metatitanic acid (H 2TiO 3) nanotubes

    NASA Astrophysics Data System (ADS)

    Enyashin, A. N.; Denisova, T. A.; Ivanovskii, A. L.

    2009-12-01

    Quite recently, metatitanic acid (H 2TiO 3) has been successfully prepared, which extended the family of known titanic acids H 2Ti nO 2n+1 ( n = 2, 3 and 4). Here the atomic models for nanotubes (NTs) of metatitanic acid are designed and their cohesive and electronic properties are considered depending on their chirality and radii by means of density-functional theory-tight-binding (DFTB) method. Our main findings are that the proposed H 2TiO 3 tubes are stable and that all these NTs will be the insulators (independently from their chirality and the diameters) with forbidden gaps at about ˜4.6 eV. We have found also that aforementioned properties of predicted H 2TiO 3 NTs are very similar with those of recently prepared fabricated nanotubes of polytitanic acids; thus, it is possible to expect that the proposed H 2TiO 3 tubular materials may be fabricated.

  15. Orthogonal polynomial projectors for the Projector Augmented Wave (PAW) formalism.

    NASA Astrophysics Data System (ADS)

    Holzwarth, N. A. W.; Matthews, G. E.; Tackett, A. R.; Dunning, R. B.

    1998-03-01

    The PAW method for density functional electronic structure calculations developed by Blöchl(Phys. Rev. B 50), 17953 (1994) and also used by our group(Phys. Rev. B 55), 2005 (1997) has numerical advantages of a pseudopotential technique while retaining the physics of an all-electron formalism. We describe a new method for generating the necessary set of atom-centered projector and basis functions, based on choosing the projector functions from a set of orthogonal polynomials multiplied by a localizing weight factor. Numerical benefits of the new scheme result from having direct control of the shape of the projector functions and from the use of a simple repulsive local potential term to eliminate ``ghost state" problems, which can haunt calculations of this kind. We demonstrate the method by calculating the cohesive energies of CaF2 and Mo and the density of states of CaMoO4 which shows detailed agreement with LAPW results over a 66 eV range of energy including upper core, valence, and conduction band states.

  16. Influence of ultraviolet irradiation on data retention characteristics in resistive random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, K.; Ohmi, K.; Tottori University Electronic Display Research Center, 101 Minami4-chome, Koyama-cho, Tottori-shi, Tottori 680-8551

    With increasing density of memory devices, the issue of generating soft errors by cosmic rays is becoming more and more serious. Therefore, the irradiation resistance of resistance random access memory (ReRAM) to cosmic radiation has to be elucidated for practical use. In this paper, we investigated the data retention characteristics of ReRAM against ultraviolet irradiation with a Pt/NiO/ITO structure. Soft errors were confirmed to be caused by ultraviolet irradiation in both low- and high-resistance states. An analysis of the wavelength dependence of light irradiation on data retention characteristics suggested that electronic excitation from the valence to the conduction band andmore » to the energy level generated due to the introduction of oxygen vacancies caused the errors. Based on a statistically estimated soft error rates, the errors were suggested to be caused by the cohesion and dispersion of oxygen vacancies owing to the generation of electron-hole pairs and valence changes by the ultraviolet irradiation.« less

  17. A brief review of vaccination coverage in immunization registries.

    PubMed

    Goldstein, Neal D; Maiese, Brett A

    2011-01-01

    Immunization registries are effective electronic tools for assessing vaccination coverage, but are only as good as the information reported to them. This review summarizes studies through August 2010 on vaccination coverage in registries and identifies key characteristics of successful registries. Based on the current state of registries, paper-based charts combined with electronic registry reporting provide the most cohesive picture of coverage. To ultimately supplant paper charts, registries must exhibit increased coverage and participation.

  18. Failure modes and conditions of a cohesive, spherical body due to YORP spin-up

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Masatoshi

    2015-12-01

    This paper presents transition of the failure mode of a cohesive, spherical body due to The Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) spin-up. On the assumption that the distribution of materials in the body is homogeneous, failed regions first appearing in the body at different spin rates are predicted by comparing the yield condition of an elastic stress in the body. It is found that as the spin rate increases, the locations of the failed regions move from the equatorial surface to the central region. To avoid such failure modes, the body should have higher cohesive strength. The results by this model are consistent with those by a plastic finite element model. Then, this model and a two-layered-cohesive model first proposed by Hirabayashi et al. are used to classify possible evolution and disruption of a spherical body. There are three possible pathways to disruption. First, because of a strong structure, failure of the central region is dominant and eventually leads to a breakup into multiple components. Secondly, a weak surface and a weak interior make the body oblate. Thirdly, a strong internal core prevents the body from failing and only allows surface shedding. This implies that observed failure modes may highly depend on the internal structure of an asteroid, which could provide crucial information for giving constraints on the physical properties.

  19. Large space systems technology, 1981. [conferences

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1982-01-01

    A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems. Specifically, program status, structures, materials, and analyses, and control of large space systems are addressed.

  20. Alternatives for joining Si wafers to strain-accommodating Cu for high-power electronics

    NASA Astrophysics Data System (ADS)

    Faust, Nicholas; Messler, Robert W.; Khatri, Subhash

    2001-10-01

    Differences in the coefficients of thermal expansion (CTE) between silicon wafers and underlying copper electrodes have led to the use of purely mechanical dry pressure contacts for primary electrical and thermal connections in high-power solid-state electronic devices. These contacts are limited by their ability to dissipate I2R heat from within the device and by their thermal fatigue life. To increase heat dissipation and effectively deal with the CTE mismatch, metallurgical bonding of the silicon to a specially-structured, strain-accommodating copper electrode has been proposed. This study was intended to seek alternative methods for and demonstrate the feasibility of bonding Si to structured Cu in high-power solid-state devices. Three different but fundamentally related fluxless approaches identified and preliminarily assessed were: (1) conventional Sn-Ag eutectic solder; (2) a new, commercially-available active solder based on the Sn-Ag eutectic; and (3) solid-liquid interdiffusion bonding using the Au-In system. Metallurgical joints were made with varying quality levels (according to nonde-structive ultrasonic C-scan mapping, SEM, and electron microprobe) using each approach. Mechanical shear testing resulted in cohesive failure within the Si or the filler alloys. The best approach, in which eutectic Sn-Ag solder in pre-alloyed foil form was employed on Si and Cu substrates metallized (from the substrate outward) with Ti, Ni and Au, exhibited joint thermal conduction 74% better than dry pressure contacts.

  1. The Associations and Correlations Between Self-reported Health and Neighborhood Cohesion and Disorder in a Community-dwelling U.S. Chinese Population.

    PubMed

    Dong, XinQi; Bergren, Stephanie M

    2017-08-01

    Characteristics of neighborhood have been found to be associated with physical and psychological health status of older adults, especially in relationship to social dynamics like cohesion and disorder. This study aims to examine correlations and associations between sociodemographic characteristics, self-reported health status, cohesion, and disorder among Chinese older adults in the greater Chicago area. The Population Study of Chinese Elderly in Chicago is a cross-sectional, population-based study with community-dwelling Chinese older adults aged 60 and older, recruited through a community-based participatory research approach. Cohesion was measured through six questions; disorder was measured through eight questions. Correlation and regression analyses were conducted using SAS. Among 3,158 participants enrolled in the study, 92.3% reported any neighborhood cohesion; 69.8% reported any neighborhood disorder. After controlling for age, sex, education, income, marital status, living arrangement, number of children, years in the community, years in the United States, country of origin, language preference, and location, a higher level of cohesion is associated with higher quality of life (odds ratio [OR]: 1.25, 95% confidence interval [CI]: 1.13, 1.39) and a higher level of disorder is associated with lower overall health status (OR: 0.97, 95% CI: 0.95, 0.99) and lower quality of life (OR: 0.96, 95% CI: 0.95, 0.98). Our findings suggest that neighborhood cohesion and neighborhood disorder are correlated to the health of U.S. Chinese older adults. Future longitudinal research should examine the relationship between community characteristics, both structural and social, and health-related outcomes. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells

    PubMed Central

    Kang, Jungseog; Chaudhary, Jaideep; Dong, Hui; Kim, Soonjoung; Brautigam, Chad A.; Yu, Hongtao

    2011-01-01

    Human Shugoshin 1 (Sgo1) protects centromeric sister-chromatid cohesion during prophase and prevents premature sister-chromatid separation. Heterochromatin protein 1 (HP1) has been proposed to protect centromeric sister-chromatid cohesion by directly targeting Sgo1 to centromeres in mitosis. Here we show that HP1α is targeted to mitotic centromeres by INCENP, a subunit of the chromosome passenger complex (CPC). Biochemical and structural studies show that both HP1–INCENP and HP1–Sgo1 interactions require the binding of the HP1 chromo shadow domain to PXVXL/I motifs in INCENP or Sgo1, suggesting that the INCENP-bound, centromeric HP1α is incapable of recruiting Sgo1. Consistently, a Sgo1 mutant deficient in HP1 binding is functional in centromeric cohesion protection and localizes normally to centromeres in mitosis. By contrast, INCENP or Sgo1 mutants deficient in HP1 binding fail to localize to centromeres in interphase. Therefore, our results suggest that HP1 binding by INCENP or Sgo1 is dispensable for centromeric cohesion protection during mitosis of human cells, but might regulate yet uncharacterized interphase functions of CPC or Sgo1 at the centromeres. PMID:21346195

  3. Cohesive phase-field fracture and a PDE constrained optimization approach to fracture inverse problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tupek, Michael R.

    2016-06-30

    In recent years there has been a proliferation of modeling techniques for forward predictions of crack propagation in brittle materials, including: phase-field/gradient damage models, peridynamics, cohesive-zone models, and G/XFEM enrichment techniques. However, progress on the corresponding inverse problems has been relatively lacking. Taking advantage of key features of existing modeling approaches, we propose a parabolic regularization of Barenblatt cohesive models which borrows extensively from previous phase-field and gradient damage formulations. An efficient explicit time integration strategy for this type of nonlocal fracture model is then proposed and justified. In addition, we present a C++ computational framework for computing in- putmore » parameter sensitivities efficiently for explicit dynamic problems using the adjoint method. This capability allows for solving inverse problems involving crack propagation to answer interesting engineering questions such as: 1) what is the optimal design topology and material placement for a heterogeneous structure to maximize fracture resistance, 2) what loads must have been applied to a structure for it to have failed in an observed way, 3) what are the existing cracks in a structure given various experimental observations, etc. In this work, we focus on the first of these engineering questions and demonstrate a capability to automatically and efficiently compute optimal designs intended to minimize crack propagation in structures.« less

  4. Game changer: the topology of creativity.

    PubMed

    de Vaan, Mathijs; Stark, David; Vedres, Balazs

    2015-01-01

    This article examines the sociological factors that explain why some creative teams are able to produce game changers--cultural products that stand out as distinctive while also being critically recognized as outstanding. The authors build on work pointing to structural folding--the network property of a cohesive group whose membership overlaps with that of another cohesive group. They hypothesize that the effects of structural folding on game changing success are especially strong when overlapping groups are cognitively distant. Measuring social distance separately from cognitive distance and distinctiveness independently from critical acclaim, the authors test their hypothesis about structural folding and cognitive diversity by analyzing team reassembly for 12,422 video games and the career histories of 139,727 video game developers. When combined with cognitive distance, structural folding channels and mobilizes a productive tension of rules, roles, and codes that promotes successful innovation. In addition to serving as pipes and prisms, network ties are also the source of tools and tensions.

  5. Fractographic study of the behavior of different ceramic veneers on full coverage crowns in relation to supporting core materials

    PubMed Central

    Agustín-Panadero, Rubén; Román-Rodriguez, Juan L.; Solá-Ruíz, María F.; Granell-Ruíz, María; Fons-Font, Antonio

    2013-01-01

    Objectives: To observe porcelain veneer behavior of zirconia and metal-ceramic full coverage crowns when subjected to compression testing, comparing zirconia cores to metal cores. Study Design: The porcelain fracture surfaces of 120 full coverage crowns (60 with a metal core and 60 with a zirconia core) subjected to static load (compression) testing were analyzed. Image analysis was performed using macroscopic processing with 8x and 12x enlargement. Five samples from each group were prepared and underwent scanning electron microscope (SEM) analysis in order to make a fractographic study of fracture propagation in the contact area and composition analysis in the most significant areas of the specimen. Results: Statistically significant differences in fracture type (cohesive or adhesive) were found between the metal-ceramic and zirconia groups: the incidence of adhesive fracture was seen to be greater in metal-ceramic groups (92%) and cohesive fracture was more frequent in zirconium oxide groups (72%). The fracture propagation pattern was on the periphery of the contact area in the full coverage crown restorations selected for fractographic study. Conclusions: The greater frequency of cohesive fracture in restorations with zirconia cores indicates that their behavior is inadequate compared to metal-ceramic restorations and that further research is needed to improve their clinical performance. Key words:Zirconia, zirconium oxide, fractography, composition, porcelain veneers, fracture, cohesive, adhesive. PMID:24455092

  6. Effects of Coating Materials and Processing Conditions on Flow Enhancement of Cohesive Acetaminophen Powders by High-Shear Processing With Pharmaceutical Lubricants.

    PubMed

    Wei, Guoguang; Mangal, Sharad; Denman, John; Gengenbach, Thomas; Lee Bonar, Kevin; Khan, Rubayat I; Qu, Li; Li, Tonglei; Zhou, Qi Tony

    2017-10-01

    This study has investigated the surface coating efficiency and powder flow improvement of a model cohesive acetaminophen powder by high-shear processing with pharmaceutical lubricants through 2 common equipment, conical comil and high-shear mixer. Effects of coating materials and processing parameters on powder flow and surface coating coverage were evaluated. Both Carr's index and shear cell data indicated that processing with the lubricants using comil or high-shear mixer substantially improved the flow of the cohesive acetaminophen powder. Flow improvement was most pronounced for those processed with 1% wt/wt magnesium stearate, from "cohesive" for the V-blended sample to "easy flowing" for the optimally coated sample. Qualitative and quantitative characterizations demonstrated a greater degree of surface coverage for high-shear mixing compared with comilling; nevertheless, flow properties of the samples at the corresponding optimized conditions were comparable between 2 techniques. Scanning electron microscopy images demonstrated different coating mechanisms with magnesium stearate or l-leucine (magnesium stearate forms a coating layer and leucine coating increases surface roughness). Furthermore, surface coating with hydrophobic magnesium stearate did not retard the dissolution kinetics of acetaminophen. Future studies are warranted to evaluate tableting behavior of such dry-coated pharmaceutical powders. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Sociometric network structure and its association with methamphetamine use norms among homeless youth.

    PubMed

    Barman-Adhikari, Anamika; Begun, Stephanie; Rice, Eric; Yoshioka-Maxwell, Amanda; Perez-Portillo, Andrea

    2016-07-01

    Homeless youths' social networks are consistently linked with their substance use. Social networks influence behavior through several mechanisms, especially social norms. This study used sociometric analyses to understand whether social norms of drug use behaviors are clustered in network structures and whether these perceived norms (descriptive and injunctive) influence youths' drug use behaviors. An event-based approach was used to delineate boundaries of the two sociometric networks of homeless youth, one in Los Angeles, CA (n = 160) and the other in Santa Monica, CA (n = 130). Network characteristics included centrality (i.e., popularity) and cohesiveness (location in dense subnetworks). The primary outcome was recent methamphetamine use. Results revealed that both descriptive and injunctive norms influenced methamphetamine use. Network cohesion was found to be associated with perception of both descriptive and injunctive norms in both networks, however in opposite directions. Network interventions therefore might be effective if designed to capitalize on social influence that naturally occurs in cohesive parts of networks. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Validating Experimental Bedform Dynamics on Cohesive Sand-Mud Beds in the Dee Estuary

    NASA Astrophysics Data System (ADS)

    Baas, Jaco H.; Baker, Megan; Hope, Julie; Malarkey, Jonathan; Rocha, Renata

    2014-05-01

    Recent laboratory experiments and field measurements have shown that small quantities of cohesive clay, and in particular 'sticky' biological polymers, within a sandy substrate dramatically reduce the development rate of sedimentary bedforms, with major implications for sediment transport rate calculations and process interpretations from the sedimentary record. FURTHER INFORMATION Flow and sediment transport predictions from sedimentary structures found in modern estuaries and within estuarine geological systems are impeded by an almost complete lack of process-based knowledge of the behaviour of natural sediments that consist of mixtures of cohesionless sand and biologically-active cohesive mud. Indeed, existing predictive models are largely based on non-organic cohesionless sands, despite the fact that mud, in pure form or mixed with sand, is the most common sediment on Earth and also the most biologically active interface across a range of Earth-surface environments, including rivers and shallow seas. The multidisciplinary COHBED project uses state-of-the-art laboratory and field technologies to measure the erosional properties of mixed cohesive sediment beds and the formation and stability of sedimentary bedforms on these beds, integrating the key physical and biological processes that govern bed evolution. The development of current ripples on cohesive mixed sediment beds was investigated as a function of physical control on bed cohesion versus biological control on bed cohesion. These investigations included laboratory flume experiments in the Hydrodynamics Laboratory (Bangor University) and field experiments in the Dee estuary (at West Kirby near Liverpool). The flume experiments showed that winnowing of fine-grained cohesive sediment, including biological stabilisers, is an important process affecting the development rate, size and shape of the cohesive bedforms. The ripples developed progressively slower as the kaolin clay fraction in the sandy substrate bed was increased. The same result was obtained for xanthan gum, which is a proxy for biological polymers produced by microphytobenthos. Yet, the xanthan gum was several orders more effective in slowing down ripple development than kaolin clay, suggesting that the cohesive forces for biological polymers are much higher than for clay minerals, and that sedimentological process models should refocus on biostabilisation processes. The first results of the field experiments show that the winnowing of fines from developing ripples and the slowing down of current ripple development in mixed cohesive sediment is mimicked on intertidal flats in the Dee estuary. In particular, these field data revealed that current ripples in cohesive sediment are smaller with more two-dimensional crestlines than in non-cohesive sand. The wider implications of these findings will be discussed. COHBED Project Team (NERC): Alan Davies (Bangor University); Daniel Parsons, Leiping Ye (University of Hull); Jeffrey Peakall (University of Leeds); Dougal Lichtman, Louise O'Boyle, Peter Thorne (NOC Liverpool); Sarah Bass, Andrew Manning, Robert Schindler (University of Plymouth); Rebecca Aspden, Emma Defew, Julie Hope, David Paterson (University of St Andrews)

  9. Arabidopsis CHROMOSOME TRANSMISSION FIDELITY 7 (AtCTF7/ECO1) is required for DNA repair, mitosis and meiosis

    PubMed Central

    Bolaños-Villegas, Pablo; Yang, Xiaohui; Wang, Huei-Jing; Juan, Chien-Ta; Chuang, Min-Hsiang; Makaroff, Christopher A; Jauh, Guang-Yuh

    2013-01-01

    The proper transmission of DNA in dividing cells is crucial for the survival of eukaryotic organisms. During cell division, faithful segregation of replicated chromosomes requires their tight attachment, known as sister chromatid cohesion, until anaphase. Sister chromatid cohesion is established during S-phase in a process requiring an acetyltransferase that in yeast is known as Establishment of cohesion 1 (Eco1). Inactivation of Eco1 typically disrupts chromosome segregation and homologous recombination-dependent DNA repair in dividing cells, ultimately resulting in lethality. We report here the isolation and detailed characterization of two homozygous T-DNA insertion mutants for the Arabidopsis thaliana Eco1 homolog, CHROMOSOME TRANSMISSION FIDELITY 7/ESTABLISHMENT OF COHESION 1 (CTF7/ECO1), called ctf7-1 and ctf7-2. Mutants exhibited dwarfism, poor anther development and sterility. Analysis of somatic tissues by flow cytometry, scanning electron microscopy and quantitative real-time PCR identified defects in DNA repair and cell division, including an increase in the area of leaf epidermal cells, an increase in DNA content and the upregulation of genes involved in DNA repair including BRCA1 and PARP2. No significant change was observed in the expression of genes that influence entry into the endocycle. Analysis of meiocytes identified changes in chromosome morphology and defective segregation; the abundance of chromosomal-bound cohesion subunits was also reduced. Transcript levels for several meiotic genes, including the recombinase genes DMC1 and RAD51C and the S-phase licensing factor CDC45 were elevated in mutant anthers. Taken together our results demonstrate that Arabidopsis CTF7/ECO1 plays important roles in the preservation of genome integrity and meiosis. PMID:23750584

  10. Developing Team Cohesion: A Quasi-Field Experiment

    DTIC Science & Technology

    2004-03-01

    social cohesion and task cohesion which may be very different and often produced opposite effects. Carless and Depaola (2000) defined task cohesion as... Social cohesion was defined as the motivation to develop and retain social interaction within the group. Whether cohesion is studied as one construct...that task cohesion and social cohesion have differing effects on performance. Mullen and Cooper (1994) showed that task cohesion had a positive

  11. ASEAN.

    PubMed

    1989-03-01

    The Association of Southeast Asian Nations (ASEAN) was established in 1967 to strengthen regional cohesion and self-reliance while emphasizing social, economic, and cultural cooperation and development. Its member states include Brunei Darussalam, Indonesia, Malaysia, the Philippines, Singapore, and Thailand. ASEAN encompasses a population of 321.2 million, with an average annual growth rate of 2.1%. Its gross domestic product was US$196 billion in 1987, with a per capita GDP of $621 and an annual growth rate of 5.8%. A striking characteristic of ASEAN is its wide diversity in terms of race (Malay, Thai, Chinese, Indian), culture, languages, and religion. Although ASEAN has gradually developed a number of formal consultative meetings and committees, it has only a limited permanent structure. Decisions are made by consensus or through informal, ad hoc consultations. The periodic meetings of the 6 foreign ministers constitute the principal decision-making body. The ASEAN nations are mainly committed to market and export-oriented economic growth strategies. Except for Singapore, the ASEAN economies are heavily agricultural, producing primarily rice. In the modern sector, all of the economies (except for Singapore's) are heavily reliant on basic industries, but high-technology manufacturing (e.g., electronic components) is becoming more important. ASEAN has demonstrated a remarkable ability to put aside historical disputes and limited economic complementarity to concentrate on issues of common interest. All 6 member nations have made preservation and enhancement of regional cohesion through ASEAN a foreign policy priority.

  12. Structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the quaternary Heusler compound FeCrRuSi: A first-principles study.

    PubMed

    Wang, Xiaotian; Khachai, Houari; Khenata, Rabah; Yuan, Hongkuan; Wang, Liying; Wang, Wenhong; Bouhemadou, Abdelmadjid; Hao, Liyu; Dai, Xuefang; Guo, Ruikang; Liu, Guodong; Cheng, Zhenxiang

    2017-11-23

    In this paper, we have investigated the structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the equiatomic quaternary Heusler (EQH) compound FeCrRuSi using the density functional theory (DFT) and the quasi-harmonic Debye model. Our results reveal that FeCrRuSi is a half-metallic material (HMM) with a total magnetic moment of 2.0 μ B in agreement with the well-known Slater-Pauling rule M t  = Z t  - 24. Furthermore, the origin of the half-metallic band gap in FeCrRuSi is well studied through a schematic diagram of the possible d-d hybridization between Fe, Cr and Ru elements. The half-metallic behavior of FeCrRuSi can be maintained in a relatively wide range of variations of the lattice constant (5.5-5.8 Å) under uniform strain and the c/a ratio (0.96-1.05) under tetragonal distortion. The calculated phonon dispersion, cohesive and formation energies, and mechanical properties reveal that FeCrRuSi is stable with an EQH structure. Importantly, the compound of interest has been prepared and is found to exist in an EQH type structure with the presence of some B2 disorder. Moreover, the thermodynamic properties, such as the thermal expansion coefficient α, the heat capacity C V , the Grüneisen constant γ, and the Debye temperature Θ D are calculated.

  13. Drosophila PLP assembles pericentriolar clouds that promote centriole stability, cohesion and MT nucleation

    PubMed Central

    Pratt, Metta B.; Johnson, Errin

    2018-01-01

    Pericentrin is a conserved centrosomal protein whose dysfunction has been linked to several human diseases. It has been implicated in many aspects of centrosome and cilia function, but its precise role is unclear. Here, we examine Drosophila Pericentrin-like-protein (PLP) function in vivo in tissues that form both centrosomes and cilia. Plp mutant centrioles exhibit four major defects: (1) They are short and have subtle structural abnormalities; (2) They disengage prematurely, and so overduplicate; (3) They organise fewer cytoplasmic MTs during interphase; (4) When forming cilia, they fail to establish and/or maintain a proper connection to the plasma membrane—although, surprisingly, they can still form an axoneme-like structure that can recruit transition zone (TZ) proteins. We show that PLP helps assemble “pericentriolar clouds” of electron-dense material that emanate from the central cartwheel spokes and spread outward to surround the mother centriole. We propose that the partial loss of these structures may largely explain the complex centriole, centrosome and cilium defects we observe in Plp mutant cells. PMID:29425198

  14. Semi-metallic Be5C2 monolayer global minimum with quasi-planar pentacoordinate carbons and negative Poisson's ratio.

    PubMed

    Wang, Yu; Li, Feng; Li, Yafei; Chen, Zhongfang

    2016-05-03

    Designing new materials with novel topological properties and reduced dimensionality is always desirable for material innovation. Here we report the design of a two-dimensional material, namely Be5C2 monolayer on the basis of density functional theory computations. In Be5C2 monolayer, each carbon atom binds with five beryllium atoms in almost the same plane, forming a quasi-planar pentacoordinate carbon moiety. Be5C2 monolayer appears to have good stability as revealed by its moderate cohesive energy, positive phonon modes and high melting point. It is the lowest-energy structure with the Be5C2 stoichiometry in two-dimensional space and therefore holds some promise to be realized experimentally. Be5C2 monolayer is a gapless semiconductor with a Dirac-like point in the band structure and also has an unusual negative Poisson's ratio. If synthesized, Be5C2 monolayer may find applications in electronics and mechanics.

  15. Enriched adhesion of talc/ZnO nanocomposites on cotton fabric assisted by aloe-vera for bio-medical application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selvakumar, D.; Yogamalar, N. R.; Jayavel, R., E-mail: rjvel@annauniv.edu

    Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in themore » synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application.« less

  16. Enriched adhesion of talc/ZnO nanocomposites on cotton fabric assisted by aloe-vera for bio-medical application

    NASA Astrophysics Data System (ADS)

    Selvakumar, D.; Thenammai, A. N.; Yogamalar, N. R.; Hemamalini, R.; Jayavel, R.

    2015-06-01

    Synthesis and characterization of talc/ZnO nanocomposites with the assistance of aloe-vera are investigated by structural and morphological studies. The crystal structure and the phase analysis of ZnO and talc are characterized and confirmed by X-ray diffraction (XRD) analysis. The average crystallite size estimation from the Scherrer formula and the particle size analysis clearly predicts that the size of the ZnO declines when aloe-vera is used as a capping molecule in comparison to the commercially available ZnO. The reduced crystallite size of ZnO renders a stable cohesion with the talc composition and the presence of distinct functional group pyridines/ammonia in the synthesized nanocomposites enriches the good adhesion between the as-synthesized material and cotton fabric. The adhesion and homogeneous distribution of talc/ZnO nanocomposites on the cotton fabric are inferred from the scanning electron microscopy (SEM) results. The basic studies and characterizations would pave way for futuristic bio-medical application.

  17. The Role of Glottal Surface Adhesion on Vocal Folds Biomechanics

    PubMed Central

    Bhattacharya, Pinaki; Siegmund, Thomas

    2014-01-01

    The airway surface liquid (ASL) is a very thin mucus layer and covers the vocal fold (VF) surface. Adhesion mediated by the ASL occurs during phonation as the VFs separate after collision. Such adhesion is hypothesized to determine voice quality and health. However, biomechanical insights into the adhesive processes during VF oscillation are lacking. Here, a computational study is reported on self-sustained VF vibration involving contact and adhesion. The VF structural model and the glottal airflow are considered fully three-dimensional. The mechanical behavior of the ASL is described through a constitutive traction–separation law where mucosal cohesive strength, cohesive energy and rupture length enter. Cohesive energy values considered are bound below by the cohesive energy of water at standard temperature and pressure. Cohesive strength values considered are bound above by prior reported data on the adhesive strength of mucosal surface of rat small intestine. This model introduces a mechanical length scale into the analysis. The sensitivity of various aspects of VF dynamics such as flow-declination rate, VF separation under adhesive condition and formation of multiple local fluid bridges is determined in relation to specific ASL adhesive properties. It is found that for the ASL considered here, the characteristics of the VF separation process are of debond type. Instabilities lead to the breakup of the bond area into several smaller bond patches. Such finding is consistent with in-vivo observations. PMID:25034504

  18. Elevated intracellular pH appears in aged oocytes and causes oocyte aneuploidy associated with the loss of cohesion in mice

    PubMed Central

    Cheng, Jin-Mei; Li, Jian; Tang, Ji-Xin; Chen, Su-Ren; Deng, Shou-Long; Jin, Cheng; Zhang, Yan; Wang, Xiu-Xia; Zhou, Chen-Xi; Liu, Yi-Xun

    2016-01-01

    ABSTRACT Increases in the aneuploidy rate caused by the deterioration of cohesion with increasing maternal age have been well documented. However, the molecular mechanism for the loss of cohesion in aged oocytes remains unknown. In this study, we found that intracellular pH (pHi) was elevated in aged oocytes, which might disturb the structure of the cohesin ring to induce aneuploidy. We observed for the first time that full-grown germinal vesicle (GV) oocytes displayed an increase in pHi with advancing age in CD1 mice. Furthermore, during the in vitro oocyte maturation process, the pHi was maintained at a high level, up to ∼7.6, in 12-month-old mice. Normal pHi is necessary to maintain protein localization and function. Thus, we put forward a hypothesis that the elevated oocyte pHi might be related to the loss of cohesion and the increased aneuploidy in aged mice. Through the in vitro alkalinization treatment of young oocytes, we observed that the increased pHi caused an increase in the aneuploidy rate and the sister inter-kinetochore (iKT) distance associated with the strength of cohesion and caused a decline in the cohesin subunit SMC3 protein level. Young oocytes with elevated pHi exhibited substantially the increase in chromosome misalignment. PMID:27472084

  19. Keratinocyte cytoskeletal roles in cell sheet engineering

    PubMed Central

    2013-01-01

    Background There is an increasing need to understand cell-cell interactions for cell and tissue engineering purposes, such as optimizing cell sheet constructs, as well as for examining adhesion defect diseases. For cell-sheet engineering, one major obstacle to sheet function is that cell sheets in suspension are fragile and, over time, will contract. While the role of the cytoskeleton in maintaining the structure and adhesion of cells cultured on a rigid substrate is well-characterized, a systematic examination of the role played by different components of the cytoskeleton in regulating cell sheet contraction and cohesion in the absence of a substrate has been lacking. Results In this study, keratinocytes were cultured until confluent and cell sheets were generated using dispase to remove the influence of the substrate. The effects of disrupting actin, microtubules or intermediate filaments on cell-cell interactions were assessed by measuring cell sheet cohesion and contraction. Keratin intermediate filament disruption caused comparable effects on cell sheet cohesion and contraction, when compared to actin or microtubule disruption. Interfering with actomyosin contraction demonstrated that interfering with cell contraction can also diminish cell cohesion. Conclusions All components of the cytoskeleton are involved in maintaining cell sheet cohesion and contraction, although not to the same extent. These findings demonstrate that substrate-free cell sheet biomechanical properties are dependent on the integrity of the cytoskeleton network. PMID:23442760

  20. Structure and vibrational spectra of low-energy silicon clusters

    NASA Astrophysics Data System (ADS)

    Sieck, A.; Porezag, D.; Frauenheim, Th.; Pederson, M. R.; Jackson, K.

    1997-12-01

    We have identified low-energy structures of silicon clusters with 9 to 14 atoms using a nonorthogonal tight-binding method (TB) based on density-functional theory (DF). We have further investigated the resulting structures with an accurate all-electron first-principles technique. The results for cohesive energies, cluster geometries, and highest occupied to lowest unoccupied molecular orbital (HOMO-LUMO) gaps show an overall good agreement between DF-TB and self-consistent-field (SCF) DF theory. For Si9 and Si14, we have found equilibrium structures, whereas for Si11, Si12, and Si13, we present clusters with energies close to that of the corresponding ground-state structure recently proposed in the literature. The bonding scheme of clusters in this size range is different from the bulk tetrahedral symmetry. The most stable structures, characterized by low energies and large HOMO-LUMO gaps, have similar common subunits. To aid in their experimental identification, we have computed the full vibrational spectra of the structures, along with the Raman activities, IR intensities, and static polarizabilities, using SCF-DF theory within the local-density approximation (LDA). This method has already been successfully applied to the determination of Raman and IR spectra of silicon clusters with 3-8, 10, 13, 20, and 21 atoms.

  1. GeAs and SiAs monolayers: Novel 2D semiconductors with suitable band structures

    NASA Astrophysics Data System (ADS)

    Zhou, Liqin; Guo, Yu; Zhao, Jijun

    2018-01-01

    Two dimensional (2D) materials provide a versatile platform for nanoelectronics, optoelectronics and clean energy conversion. Based on first-principles calculations, we propose a novel kind of 2D materials - GeAs and SiAs monolayers and investigate their atomic structure, thermodynamic stability, and electronic properties. The calculations show that monolayer GeAs and SiAs sheets are energetically and dynamically stable. Their small interlayer cohesion energies (0.191 eV/atom for GeAs and 0.178 eV/atom for SiAs) suggest easy exfoliation from the bulk solids that exist in nature. As 2D semiconductors, GeAs and SiAs monolayers possess band gap of 2.06 eV and 2.50 eV from HSE06 calculations, respectively, while their band gap can be further engineered by the number of layers. The relatively small and anisotropic carrier effective masses imply fast electric transport in these 2D semiconductors. In particular, monolayer SiAs is a direct gap semiconductor and a potential photocatalyst for water splitting. These theoretical results shine light on utilization of monolayer or few-layer GeAs and SiAs materials for the next-generation 2D electronics and optoelectronics with high performance and satisfactory stability.

  2. DELINQUENCY AND THE STRUCTURE OF ADOLESCENT PEER GROUPS*

    PubMed Central

    Kreager, Derek A.; Rulison, Kelly; Moody, James

    2010-01-01

    Gangs and group-level processes were once central phenomena for criminological theory and research. By the mid-1970's, however, gang research was primarily displaced by studies of individual behavior using randomized self-report surveys, a shift that also removed groups from the theoretical foreground. In this project, we return to the group level to test competing theoretical claims about delinquent group structure. We use network-based clustering methods to identify 897 friendship groups in two ninth grade cohorts of 27 Pennsylvania and Iowa schools. We then relate group-level measures of delinquency and drinking to network measures of group size, friendship reciprocity, transitivity, structural cohesion, stability, average popularity, and network centrality. We find significant negative correlations between group delinquency and all of our network measures, suggesting that delinquent groups are less solidary and less central to school networks than non-delinquent groups. Further analyses, however, reveal that these correlations are primarily explained by other group characteristics, such as gender composition and socioeconomic status. Drinking behaviors, on the other hand, show net positive associations with most of the network measures, suggesting that drinking groups have higher status and are more internally cohesive than non-drinking groups. Our findings shed light on a longstanding criminological debate by suggesting that any structural differences between delinquent and non-delinquent groups may be attributable to other attributes coincidental with delinquency. In contrast, drinking groups appear to provide peer contexts of greater social capital and cohesion. PMID:21572969

  3. Supercritical CO2 fluid-foaming of polymers to increase porosity: a method to improve the mechanical and biocompatibility characteristics for use as a potential alternative to allografts in impaction bone grafting?

    PubMed

    Tayton, Edward; Purcell, M; Aarvold, A; Smith, J O; Kalra, S; Briscoe, A; Shakesheff, K; Howdle, S M; Dunlop, D G; Oreffo, R O C

    2012-05-01

    Disease transmission, availability and cost of allografts have resulted in significant efforts to find an alternative for use in impaction bone grafting (IBG). Recent studies identified two polymers with both structural strength and biocompatibility characteristics as potential replacements. The aim of this study was to assess whether increasing the polymer porosity further enhanced the mechanical and cellular compatibility characteristics for use as an osteogenic biomaterial alternative to allografts in IBG. Solid and porous poly(DL-lactide) (P(DL)LA) and poly(DL-lactide-co-glycolide) (P(DL)LGA) scaffolds were produced via melt processing and supercritical CO(2) foaming, and the differences characterized using scanning electron microscopy (SEM). Mechanical testing included milling and impaction, with comparisons made using a shear testing rig as well as a novel agitation test for cohesion. Cellular compatibility tests for cell number, viability, and osteogenic differentiation using WST-1 assays, fluorostaining, and ALP assays were determined following 14 day culture with skeletal stem cells. SEM showed excellent porosity throughout both of the supercritical-foam-produced polymer scaffolds, with pores between 50 and 200 μm. Shear testing showed that the porous polymers exceeded the shear strength of allograft controls (P<0.001). Agitation testing showed greater cohesion between the particles of the porous polymers (P<0.05). Cellular studies showed increased cell number, viability, and osteogenic differentiation on the porous polymers compared to solid block polymers (P<0.05). The use of supercritical CO(2) to generate porous polymeric biodegradable scaffolds significantly improves the cellular compatibility and cohesion observed compared to non-porous counterparts, without substantial loss of mechanical shear strength. These improved characteristics are critical for clinical translation as a potential osteogenic composite for use in IBG. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Investigation on the cohesive silt/clay-particle sediment via the coupled CFD-DEM simulations

    NASA Astrophysics Data System (ADS)

    Xu, S.; Sun, H.; Sun, R.

    2017-12-01

    Sedimentation of silt/clay particles happens ubiquitously in nature and engineering field. There have been abundant studies focusing on the settling velocity of the cohesive particles, while studies on the sediment deposited from silt/clay irregular particles, including the vertical concentration profile of sediment and the various forces among the deposited particles are still lacking. This paper aims to investigate the above topics by employing the CFD-DEM (Computational Fluid Dynamics-Discrete Element Method) simulations. In this work, we simulate the settling of the mono- and poly- dispersed silt/clay particles and mainly study the characteristics of the deposited cohesive sediment. We use the bonded particles to simulate the irregular silt/clay aggregates at the initial state and utilize the van der Waals force for all micro-particles to consider the cohesive force among silt/clay particles. The interparticle collision force and the fluid-particle interaction forces are also considered in our numerical model. The value of the mean structural density of cohesive sediment obtained from simulations is in good agreement with the previous research, and it is obviously smaller than no-cohesive sediment because of the existence of the silt/clay flocs. Moreover, the solid concentration of sediment increases with the growth of the depth. It is because the silt/clay flocs are more easily to break up due to the gradually increased submerged gravity of the deposited particles along the depth. We also obtain the noncontacted cohesive force and contact force profiles during the sedimentation and the self-weight consolidation process. The study of the concentration profile and the forces among silt/clay sediment will help to give an accurate initial condition for calculating the speed of the reconsolidation process by employing the artificial loads, which is necessary for practical designs of the land reclamation projects.

  5. Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts

    PubMed Central

    Piccolo, Laurent; Li, Z. Y.; Demiroglu, Ilker; Moyon, Florian; Konuspayeva, Zere; Berhault, Gilles; Afanasiev, Pavel; Lefebvre, Williams; Yuan, Jun; Johnston, Roy L.

    2016-01-01

    Heterogeneous catalysis, which is widely used in the chemical industry, makes a great use of supported late-transition-metal nanoparticles, and bimetallic catalysts often show superior catalytic performances as compared to their single metal counterparts. In order to optimize catalyst efficiency and discover new active combinations, an atomic-level understanding and control of the catalyst structure is desirable. In this work, the structure of catalytically active AuRh bimetallic nanoparticles prepared by colloidal methods and immobilized on rutile titania nanorods was investigated using aberration-corrected scanning transmission electron microscopy. Depending on the applied post-treatment, different types of segregation behaviours were evidenced, ranging from Rh core – Au shell to Janus via Rh ball – Au cup configuration. The stability of these structures was predicted by performing density-functional-theory calculations on unsupported and titania-supported Au-Rh clusters; it can be rationalized from the lower surface and cohesion energies of Au with respect to Rh, and the preferential binding of Rh with the titania support. The bulk-immiscible AuRh/TiO2 system can serve as a model to understand similar supported nanoalloy systems and their synergistic behaviour in catalysis. PMID:27739480

  6. Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2011-01-01

    This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling fracture processes. These issues include: why cohesive laws of different shapes can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along the cohesive zone length needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) which is defined by the area under the traction-separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile in determining the critical remote applied load.

  7. Modeling of sheet metal fracture via cohesive zone model and application to spot welds

    NASA Astrophysics Data System (ADS)

    Wu, Joseph Z.

    Even though the cohesive zone model (CZM) has been widely used to analyze ductile fracture, it is not yet clearly understood how to calibrate the cohesive parameters including the specific work of separation (the work of separation per unit crack area) and the peak stress. A systematic approach is presented to first determine the cohesive values for sheet metal and then apply the calibrated model to various structure problems including the failure of spot welds. Al5754-0 was chosen for this study since it is not sensitive to heat treatment so the effect of heat-affected-zone (HAZ) can be ignored. The CZM has been applied to successfully model both mode-I and mode-III fracture for various geometries including Kahn specimens, single-notch specimens, and deep double-notch specimens for mode-I and trouser specimens for mode-III. The mode-I fracture of coach-peel spot-weld nugget and the mixed-mode fracture of nugget pull-out have also been well simulated by the CZM. Using the mode-I average specific work of separation of 13 kJ/m2 identified in a previous work and the mode-III specific work of separation of 38 kJ/m 2 found in this thesis, the cohesive peak stress has been determined to range from 285 MPa to 600 MPa for mode-I and from 165 MPa to 280 MPa for mode-III, depending on the degree of plastic deformation. The uncertainty of these cohesive values has also been examined. It is concluded that, if the specific work of separation is a material constant, the peak stress changes with the degree of plastic deformation and is therefore geometry-dependent.

  8. Scalable properties of metal clusters: A comparative study of modern exchange-correlation functionals

    NASA Astrophysics Data System (ADS)

    Koitz, Ralph; Soini, Thomas M.; Genest, Alexander; Trickey, S. B.; Rösch, Notker

    2012-07-01

    The performance of eight generalized gradient approximation exchange-correlation (xc) functionals is assessed by a series of scalar relativistic all-electron calculations on octahedral palladium model clusters Pdn with n = 13, 19, 38, 55, 79, 147 and the analogous clusters Aun (for n up through 79). For these model systems, we determined the cohesive energies and average bond lengths of the optimized octahedral structures. We extrapolate these values to the bulk limits and compare with the corresponding experimental values. While the well-established functionals BP, PBE, and PW91 are the most accurate at predicting energies, the more recent forms PBEsol, VMTsol, and VT{84}sol significantly improve the accuracy of geometries. The observed trends are largely similar for both Pd and Au. In the same spirit, we also studied the scalability of the ionization potentials and electron affinities of the Pd clusters, and extrapolated those quantities to estimates of the work function. Overall, the xc functionals can be classified into four distinct groups according to the accuracy of the computed parameters. These results allow a judicious selection of xc approximations for treating transition metal clusters.

  9. It is Time to Rescind Don’t Ask, Don’t Tell

    DTIC Science & Technology

    2009-04-02

    cohesion and that in turn would affect accomplishing the mission. A study done at UC, Davis, makes a distinction between social cohesion and task...cohesion.22 Social cohesion is the nature and quality of emotional bonds of friendship, closeness, etc. and task cohesion is a shared commitment among...studies of cohesion and performance it is task cohesion, not social cohesion or group pride that drives group performance. Professor MacCoun also

  10. First-principles study on structure stabilities of α-S and Na-S battery systems

    NASA Astrophysics Data System (ADS)

    Momida, Hiroyoshi; Oguchi, Tamio

    2014-03-01

    To understand microscopic mechanisms of charge and discharge reactions in Na-S batteries, there has been increasing needs to study fundamental atomic and electronic structures of elemental S as well as that of Na-S phases. The most stable form of S is known to be an orthorhombic α-S crystal at ambient temperature and pressure, and α-S consists of puckered S8 rings which crystallize in space group Fddd . In this study, the crystal structure of α-S is examined by using first-principles calculations with and without the van der Waals interaction corrections of Grimme's method, and results clearly show that the van der Waals interactions between the S8 rings have crucial roles on cohesion of α-S. We also study structure stabilities of Na2S, NaS, NaS2, and Na2S5 phases with reported crystal structures. Using calculated total energies of the crystal structure models, we estimate discharge voltages assuming discharge reactions from 2Na+ xS -->Na2Sx, and discharge reactions in Na/S battery systems are discussed by comparing with experimental results. This work was partially supported by Elements Strategy Initiative for Catalysts and Batteries (ESICB) of Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan.

  11. Is cohesin required for spindle-pole-body/centrosome cohesion?

    PubMed Central

    Jin, Hui; Avey, Martin

    2012-01-01

    Centrosomes are microtubule-organizing centers that nucleate spindle microtubules during cell division. In budding yeast, the centrosome, often referred to as the spindle pole body, shares structural components with the centriole, the central core of the animal centrosome. The parental centrosome is duplicated when DNA replication takes place. Like sister chromatids tethered together by cohesin, duplicated centrosomes are linked and then separate to form the bipolar spindle necessary for chromosome segregation. Recent studies have shown that cohesin is also localized to the animal centrosome and is perhaps directly involved in engaging paired centrioles. Here we discuss the potential role of cohesin in mediating spindle-pole-body cohesion in the context of yeast meiosis. We propose that the coordination of chromosome segregation with centrosome cohesion and duplication is mediated by the antagonistic interaction between the Aurora kinase and the Polo kinase and that the role of cohesin in centrosome regulation appears to be indirect in budding yeast. PMID:22482005

  12. Cohesive Laws and Progressive Damage Analysis of Composite Bonded Joints, a Combined Numerical/Experimental Approach

    NASA Technical Reports Server (NTRS)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2015-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations, in agreement with experimental tests, indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  13. Simulation of anisotropic fracture behaviour of polycrystalline round blank tungsten using cohesive zone model

    NASA Astrophysics Data System (ADS)

    Mahler, Michael; Gaganidze, Ermile; Aktaa, Jarir

    2018-04-01

    The experimental observation of anisotropic fracture behaviour of round blank polycrystalline tungsten was simulated using finite element (FE) method in combination with cohesive zone model. Experiments in the past had shown that due to the anisotropic microstructure the fracture toughness varies by factor of about two for different orientations. The reason is the crack propagation direction, which is - in some orientations - not the typical crack propagation direction for mode I fracture. In some directions the crack is not growing perpendicular to the crack opening tensile load. Nevertheless, in the present paper, the microstructure is modelled by FE mesh including cohesive zone elements which mimic grain boundaries (GB). This is based on the assumption that GB's are the weakest links in the structure. The use of the correct parameters to describe the fracture process allows the description of the observed experimental orientation dependent fracture toughness.

  14. Assessing the Role of Capping Molecules in Controlling Aggregative Growth of Gold Nanoparticles in Heated Solution.

    PubMed

    Cheng, Han-Wen; Schadt, Mark J; Zhong, Chuan-Jian

    2016-01-01

    This report describes findings of an investigation of the role of capping molecules in the size growth in the aggregative growth of pre-formed small-sized gold nanoparticles capped with alkanethiolate monolayers toward monodispersed larger sizes. The size controllability depends on the thiolate chain length and concentration in the thermal solution. The size evolution in solution at different concentrations of alkanethiols is analyzed in relation to adsorption isotherms and cohesive energy. The size dependence on thiolate chain length is also analyzed by considering the cohesive energy of the capping molecules, revealing the importance of cohesive energy in the capping structure. Theoretical and experimental comparisons of the surface plasmonic resonance optical properties have also provided new insights into the mechanism, thus enabling the exploitation of size-dependent nanoscale properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Effective Simulation of Delamination in Aeronautical Structures Using Shells and Cohesive Elements

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.; Camanho, Pedro P.; Turon, Albert

    2007-01-01

    A cohesive element for shell analysis is presented. The element can be used to simulate the initiation and growth of delaminations between stacked, non-coincident layers of shell elements. The procedure to construct the element accounts for the thickness offset by applying the kinematic relations of shell deformation to transform the stiffness and internal force of a zero-thickness cohesive element such that interfacial continuity between the layers is enforced. The procedure is demonstrated by simulating the response and failure of the Mixed Mode Bending test and a skin-stiffener debond specimen. In addition, it is shown that stacks of shell elements can be used to create effective models to predict the inplane and delamination failure modes of thick components. The results indicate that simple shell models can retain many of the necessary predictive attributes of much more complex 3D models while providing the computational efficiency that is necessary for design.

  16. Meiosis in male Drosophila

    PubMed Central

    McKee, Bruce D.; Yan, Rihui; Tsai, Jui-He

    2012-01-01

    Meiosis entails sorting and separating both homologous and sister chromatids. The mechanisms for connecting sister chromatids and homologs during meiosis are highly conserved and include specialized forms of the cohesin complex and a tightly regulated homolog synapsis/recombination pathway designed to yield regular crossovers between homologous chromatids. Drosophila male meiosis is of special interest because it dispenses with large segments of the standard meiotic script, particularly recombination, synapsis and the associated structures. Instead, Drosophila relies on a unique protein complex composed of at least two novel proteins, SNM and MNM, to provide stable connections between homologs during meiosis I. Sister chromatid cohesion in Drosophila is mediated by cohesins, ring-shaped complexes that entrap sister chromatids. However, unlike other eukaryotes Drosophila does not rely on the highly conserved Rec8 cohesin in meiosis, but instead utilizes two novel cohesion proteins, ORD and SOLO, which interact with the SMC1/3 cohesin components in providing meiotic cohesion. PMID:23087836

  17. The Tie that Binds: Building Discourse Communities and Group Cohesion through Computer-Based Conferences.

    ERIC Educational Resources Information Center

    Selfe, Cynthia L.; Eilola, J. Daniel

    1988-01-01

    Discussion of the use of electronic conferencing to form a discourse community focuses on a case study of student consultants working in a microcomputer lab supporting writing courses at Michigan Technological University. The formulation of a group identity, as well as group values, goals, and expectations are discussed. (16 references) (LRW)

  18. Missing: Electronic Feedback in Egyptian EFL Essay Writing Classes

    ERIC Educational Resources Information Center

    Seliem, Soheir; Ahmed, Abdelhamid

    2009-01-01

    EFL essay writing is considered one of the most important academic courses in the teacher education programmes that should help develop students' skills to write cohesively and coherently. Teachers' feedback plays a crucial role in improving and enhancing the quality of students' written essays. The aim of the current study was to shed light on…

  19. A thermodynamically consistent discontinuous Galerkin formulation for interface separation

    DOE PAGES

    Versino, Daniele; Mourad, Hashem M.; Dávila, Carlos G.; ...

    2015-07-31

    Our paper describes the formulation of an interface damage model, based on the discontinuous Galerkin (DG) method, for the simulation of failure and crack propagation in laminated structures. The DG formulation avoids common difficulties associated with cohesive elements. Specifically, it does not introduce any artificial interfacial compliance and, in explicit dynamic analysis, it leads to a stable time increment size which is unaffected by the presence of stiff massless interfaces. This proposed method is implemented in a finite element setting. Convergence and accuracy are demonstrated in Mode I and mixed-mode delamination in both static and dynamic analyses. Significantly, numerical resultsmore » obtained using the proposed interface model are found to be independent of the value of the penalty factor that characterizes the DG formulation. By contrast, numerical results obtained using a classical cohesive method are found to be dependent on the cohesive penalty stiffnesses. The proposed approach is shown to yield more accurate predictions pertaining to crack propagation under mixed-mode fracture because of the advantage. Furthermore, in explicit dynamic analysis, the stable time increment size calculated with the proposed method is found to be an order of magnitude larger than the maximum allowable value for classical cohesive elements.« less

  20. Meiotic Cohesin SMC1β Provides Prophase I Centromeric Cohesion and Is Required for Multiple Synapsis-Associated Functions

    PubMed Central

    Biswas, Uddipta; Wetzker, Cornelia; Lange, Julian; Christodoulou, Eleni G.; Seifert, Michael; Beyer, Andreas; Jessberger, Rolf

    2013-01-01

    Cohesin subunit SMC1β is specific and essential for meiosis. Previous studies showed functions of SMC1β in determining the axis-loop structure of synaptonemal complexes (SCs), in providing sister chromatid cohesion (SCC) in metaphase I and thereafter, in protecting telomere structure, and in synapsis. However, several central questions remained unanswered and concern roles of SMC1β in SCC and synapsis and processes related to these two processes. Here we show that SMC1β substantially supports prophase I SCC at centromeres but not along chromosome arms. Arm cohesion and some of centromeric cohesion in prophase I are provided by non-phosphorylated SMC1α. Besides supporting synapsis of autosomes, SMC1β is also required for synapsis and silencing of sex chromosomes. In absence of SMC1β, the silencing factor γH2AX remains associated with asynapsed autosomes and fails to localize to sex chromosomes. Microarray expression studies revealed up-regulated sex chromosome genes and many down-regulated autosomal genes. SMC1β is further required for non-homologous chromosome associations observed in absence of SPO11 and thus of programmed double-strand breaks. These breaks are properly generated in Smc1β−/− spermatocytes, but their repair is delayed on asynapsed chromosomes. SMC1α alone cannot support non-homologous associations. Together with previous knowledge, three main functions of SMC1β have emerged, which have multiple consequences for spermatocyte biology: generation of the loop-axis architecture of SCs, homologous and non-homologous synapsis, and SCC starting in early prophase I. PMID:24385917

  1. STRESS AND FAILURE ANALYSIS OF RAPIDLY ROTATING ASTEROID (29075) 1950 DA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Masatoshi; Scheeres, Daniel J., E-mail: masatoshi.hirabayashi@colorado.edu

    Rozitis et al. recently reported that near-Earth asteroid (29075) 1950 DA, whose bulk density ranges from 1.0 g cm{sup –3} to 2.4 g cm{sup –3}, is a rubble pile and requires a cohesive strength of at least 44-76 Pa to keep from failing due to its fast spin period. Since their technique for giving failure conditions required the averaged stress over the whole volume, it discarded information about the asteroid's failure mode and internal stress condition. This paper develops a finite element model and revisits the stress and failure analysis of 1950 DA. For the modeling, we do not consider material hardening andmore » softening. Under the assumption of an associated flow rule and uniform material distribution, we identify the deformation process of 1950 DA when its constant cohesion reaches the lowest value that keeps its current shape. The results show that to avoid structural failure the internal core requires a cohesive strength of at least 75-85 Pa. It suggests that for the failure mode of this body, the internal core first fails structurally, followed by the surface region. This implies that if cohesion is constant over the whole volume, the equatorial ridge of 1950 DA results from a material flow going outward along the equatorial plane in the internal core, but not from a landslide as has been hypothesized. This has additional implications for the likely density of the interior of the body.« less

  2. Cohesive Energy-Lattice Constant and Bulk Modulus-Lattice Constant Relationships: Alkali Halides, Ag Halides, Tl Halides

    NASA Technical Reports Server (NTRS)

    Schlosser, Herbert

    1992-01-01

    In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.

  3. Influence of solvent parameters on structure of polyhydroxybutyrate films

    NASA Astrophysics Data System (ADS)

    Olkhov, A. A.; Iordanskii, A. L.

    2012-07-01

    The polarity of dissolvent increases the perfection of a crystal structure and decrease the amount of amorphous phase of polyhydroxybutyrate (PHB). It is shown, that the amount of a defective crystal phase in films PHB is directly proportional to magnitude of cohesive energy of dissolvent.

  4. Drinking water biofilm cohesiveness changes under chlorination or hydrodynamic stress.

    PubMed

    Mathieu, L; Bertrand, I; Abe, Y; Angel, E; Block, J C; Skali-Lami, S; Francius, G

    2014-05-15

    Attempts at removal of drinking water biofilms rely on various preventive and curative strategies such as nutrient reduction in drinking water, disinfection or water flushing, which have demonstrated limited efficiency. The main reason for these failures is the cohesiveness of the biofilm driven by the physico-chemical properties of its exopolymeric matrix (EPS). Effective cleaning procedures should break up the matrix and/or change the elastic properties of bacterial biofilms. The aim of this study was to evaluate the change in the cohesive strength of two-month-old drinking water biofilms under increasing hydrodynamic shear stress τw (from ∼0.2 to ∼10 Pa) and shock chlorination (applied concentration at T0: 10 mg Cl2/L; 60 min contact time). Biofilm erosion (cell loss per unit surface area) and cohesiveness (changes in the detachment shear stress and cluster volumes measured by atomic force microscopy (AFM)) were studied. When rapidly increasing the hydrodynamic constraint, biofilm removal was found to be dependent on a dual process of erosion and coalescence of the biofilm clusters. Indeed, 56% of the biofilm cells were removed with, concomitantly, a decrease in the number of the 50-300 μm(3) clusters and an increase in the number of the smaller (i.e., <50 μm(3)) and larger (i.e., >600 μm(3)) ones. Moreover, AFM evidenced the strengthening of the biofilm structure along with the doubling of the number of contact points, NC, per cluster volume unit following the hydrodynamic disturbance. This suggests that the compactness of the biofilm exopolymers increases with hydrodynamic stress. Shock chlorination removed cells (-75%) from the biofilm while reducing the volume of biofilm clusters. Oxidation stress resulted in a decrease in the cohesive strength profile of the remaining drinking water biofilms linked to a reduction in the number of contact points within the biofilm network structure in particular for the largest biofilm cluster volumes (>200 μm(3)). Changes in the cohesive strength of drinking water biofilms subsequent to cleaning/disinfection operations call into question the effectiveness of cleaning-in-place procedures. The combined alternating use of oxidation and shear stress sequences needs to be investigated as it could be an important adjunct to improving biofilm removal/reduction procedures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Cohesion as a Command Emphasis Item

    DTIC Science & Technology

    2010-03-01

    of the notion of cohesion— social cohesion . Social cohesion is the affective bonding between members; or to expound further, the interpersonal...team to achieve that goal. 3 Members with high task cohesion do not necessarily share high social cohesion . The reason this distinction is...important is due to the fact that when thinking in terms of cohesion, most leaders think of it in terms of social cohesion . Unfortunately, studies of the

  6. Influence of axial tensile strain on the electronic and structural properties as well as NO gas sensitivity and reactivity of C-doped SW-BNNTs

    NASA Astrophysics Data System (ADS)

    Roohi, Hossein; Maleki, Layla

    2017-11-01

    The insulating character of BNNTs strongly imposes a great restriction on their applicability in nano-electronic devices. Therefore, it is desirable to find the practical routes for reducing the H-L gap. In this work, we demonstrate that the structural and electronic properties of the C-doped SW-BNNT can be significantly engineered and tuned by applying the axial tensile strain. Defect formation energies, cohesive energies, dipole moments, NBO charges, and global reactivity descriptors for un-doped SW-BNNT and C1-3-doped SW-BNNTs are calculated upon the axial strain. The B3LYP/6-31 +G(d) calculated H-L gap for five C-doped SW-BNNTs are expected to be smaller than that of un-doped SW-BNNT. At 10% axial tensile strain, CB NT is a suitable conductance with a 1.947 eV H-L gap. The decrease in the H-L gap for 2C-doped CN,B (-0.839 eV) NT within 15% strain is greater than 1C- and 3C-doped SW-BNNTs. In the second part of this work, reactivity and the sensitivity of strained C1-2-doped SW-BNNTs toward NO gas were evaluated at M06-2X/6-31 ++G(d,p) level of theory. Optimized structures, molecular graphs, adsorption energies (AE), dispersion corrected AEs, H-L gap, NBO charges, charge transfer values, density of states and electrostatic potentials were calculated. The strained C1-doped SW-BNNTs showed an increased ability for the sensitivity and adsorption of NO molecule, as compared with unstrained doped SW-BNNT. In general, the CN,B NTs have practically less potential for the adsorption of NO molecule than CB and CN ones.

  7. Fesbnd X (X = B, N) binary compounds: First-principles calculations of electronic structures, theoretic hardness and magnetic properties

    NASA Astrophysics Data System (ADS)

    Hui, Liangliang; Xie, Zhongjing; Li, Chunmei; Chen, Zhi-Qian

    2018-04-01

    The first-principles calculations are implemented to investigate the electronic structures, theoretic hardness and magnetic properties of iron borides and nitrides with four different crystal systems containing hexagonal (FeB2, ε-Fe3N), tetragonal (Fe2B, α″-Fe16N2), orthorhombic (α-FeB, θ-Fe3B, ζ-Fe2N), and cubic (zb-FeN, rs-FeN, γ‧-Fe4N, γ-Fe23B6) phase. The calculated lattice parameters using RPBE meet well with the experimental results. The cohesive energy and formation enthalpy values indicate the Fesbnd X (X = B, N) binary compounds are thermodynamically stable. Meanwhile, the h-FeB2 is most difficult phase for experimental synthesis among these interstitial compounds. Moreover, magnetic properties are discussed and show that the mean magnetic moments of o-Fe3B and c-Fe23B6 with the values of 2.227 μB and 2.256 μB per iron atom are approaching to that of pure iron (2.32 μB) while the c-Fe4N and t-Fe16N2 with the values of 2.51 and 2.48 μB are beyond that of pure α-Fe. The c-FeN phase shows nonmagnetic in zb-style while rs-type shows antiferromagnetic with a value of 2.52 μB. Furthermore, the average bonding length and Mulliken population combined with electronic structures are also analysed in this paper which provide that strong Fesbnd X and Xsbnd X covalent bonds are responsible for high hardness. Finally, the theoretic hardness of Xsbnd X, Fesbnd X and Fesbnd Fe bonds is predicted by semi empirical hardness theory.

  8. Cohesion and coordination effects on transition metal surface energies

    NASA Astrophysics Data System (ADS)

    Ruvireta, Judit; Vega, Lorena; Viñes, Francesc

    2017-10-01

    Here we explore the accuracy of Stefan equation and broken-bond model semiempirical approaches to obtain surface energies on transition metals. Cohesive factors are accounted for either via the vaporization enthalpies, as proposed in Stefan equation, or via cohesive energies, as employed in the broken-bond model. Coordination effects are considered including the saturation degree, as suggested in Stefan equation, employing Coordination Numbers (CN), or as the ratio of broken bonds, according to the bond-cutting model, considering as well the square root dependency of the bond strength on CN. Further, generalized coordination numbers CN bar are contemplated as well, exploring a total number of 12 semiempirical formulations on the three most densely packed surfaces of 3d, 4d, and 5d Transition Metals (TMs) displaying face-centered cubic (fcc), body-centered cubic (bcc), or hexagonal close-packed (hcp) crystallographic structures. Estimates are compared to available experimental surface energies obtained extrapolated to zero temperature. Results reveal that Stefan formula cohesive and coordination dependencies are only qualitative suited, but unadvised for quantitative discussion, as surface energies are highly overestimated, favoring in addition the stability of under-coordinated surfaces. Broken-bond cohesion and coordination dependencies are a suited basis for quantitative comparison, where square-root dependencies on CN to account for bond weakening are sensibly worse. An analysis using Wulff shaped averaged surface energies suggests the employment of broken-bond model using CN to gain surface energies for TMs, likely applicable to other metals.

  9. The impact of social support, unit cohesion, and trait resilience on PTSD in treatment-seeking military personnel with PTSD: The role of posttraumatic cognitions.

    PubMed

    Zang, Yinyin; Gallagher, Thea; McLean, Carmen P; Tannahill, Hallie S; Yarvis, Jeffrey S; Foa, Edna B

    2017-03-01

    The personal resources of social support, unit cohesion, and trait resilience have been found to be associated with posttraumatic stress disorder (PTSD) severity among military personnel. However, the underlying mechanisms of these relationships are unclear. We hypothesized that negative posttraumatic cognitions, which are associated with PTSD, mediate the relationships between these personal resources and PTSD. The relationship between PTSD symptom severity and a latent factor comprised of social support, unit cohesion, and trait resilience was evaluated using cross-sectional data from 366 treatment-seeking active duty military personnel with PTSD following deployments to or near Iraq or Afghanistan. Structural equation modeling (SEM) was used to test whether posttraumatic cognitions mediated this relationship. The SEM model indicated that (1) a robust latent variable named personal resources (indicated by social support, unit cohesion, and trait resilience) was negatively associated with PTSD severity; (2) personal resources were negatively associated with negative posttraumatic cognitions; (3) negative posttraumatic cognitions fully mediated the association between personal resources and PTSD severity. The final SEM mediation model showed a highly satisfactory fit [χ 2 (22) = 16.344, p = 0.798; χ 2 /df = 0.743; CFI = 1; RMSEA = 0.000]. These findings suggest that among active duty military personnel seeking treatment for PTSD, personal resources (social support, unit cohesion, and trait resilience) may mitigate PTSD severity by reducing negative posttraumatic cognitions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Cohesive fracture of elastically heterogeneous materials: An integrative modeling and experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Neng; Xia, Shuman

    2017-01-01

    A combined modeling and experimental effort is made in this work to examine the cohesive fracture mechanisms of heterogeneous elastic solids. A two-phase laminated composite, which mimics the key microstructural features of many tough engineering and biological materials, is selected as a model material system. Theoretical and finite element analyses with cohesive zone modeling are performed to study the effective fracture resistance of the heterogeneous material associated with unstable crack propagation and arrest. A crack-tip-position controlled algorithm is implemented in the finite element analysis to overcome the inherent instability issues resulting from crack pinning and depinning at local heterogeneities. Systematic parametric studies are carried out to investigate the effects of various material and geometrical parameters, including the modulus mismatch ratio, phase volume fraction, cohesive zone size, and cohesive law shape. Concurrently, a novel stereolithography-based three-dimensional (3D) printing system is developed and used for fabricating heterogeneous test specimens with well-controlled structural and material properties. Fracture testing of the specimens is performed using the tapered double-cantilever beam (TDCB) test method. With optimal material and geometrical parameters, heterogeneous TDCB specimens are shown to exhibit enhanced effective fracture energy and effective fracture toughness than their homogeneous counterparts, which is in good agreement with the modeling predictions. The integrative computational and experimental study presented here provides a fundamental mechanistic understanding of the fracture mechanisms in brittle heterogeneous materials and sheds light on the rational design of tough materials through patterned heterogeneities.

  11. Implications of Integrating Women into the Marine Corps Infantry

    DTIC Science & Technology

    2015-12-01

    findings and implications from our study. Research on Cohesion In general, prior research demonstrates that more cohesive groups perform better than less...woman in the group ,1 but the optimal proportion of women for group cohesion is not clear from the existing research . Finally, there are cohesion...that integration might have on group cohesion. This is for good reason: research on group cohesion has demonstrated that cohesion has a direct rela

  12. Key Skills for Science Learning: The Importance of Text Cohesion and Reading Ability

    ERIC Educational Resources Information Center

    Hall, Sophie Susannah; Maltby, John; Filik, Ruth; Paterson, Kevin B.

    2016-01-01

    To explore the importance of text cohesion, we conducted two experiments. We measured online (reading times) and offline (comprehension accuracy) processes for texts that were high and low cohesion. In study one (n?=?60), we manipulated referential cohesion using noun repetition (high cohesion) and synonymy (low cohesion). Students showed enhanced…

  13. Social Cohesion as the Goal: Can Social Cohesion Be Directly Pursued?

    ERIC Educational Resources Information Center

    Koonce, Kelly A.

    2011-01-01

    This article establishes an understanding of social cohesion in general and discusses organizations and activities that are known to promote social cohesion before introducing organizations that claim to work toward social cohesion as one of their main priorities. The Council of Europe's Directorate General of Social Cohesion represents a…

  14. Bacteroides gingivalis-Actinomyces viscosus cohesive interactions as measured by a quantitative binding assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarz, S.; Ellen, R.P.; Grove, D.A.

    1987-10-01

    There is limited evidence, mostly indirect, to suggest that the adherence of Bacteroides gingivalis to teeth may be enhanced by the presence of gram-positive dental plaque bacteria like Actinomyces viscosus. The purpose of this study was to carry out direct quantitative assessments of the cohesion of B gingivalis and A. viscosus by using an in vitro assay modeled on the natural sequence in which these two species colonize the teeth. The assay allowed comparisons to be made of the adherence of /sup 3/H-labeled B. gingivalis 2561 and 381 to saliva-coated hydroxyapatite beads (S-HA) and A. viscosus WVU627- or T14V-coated S-HAmore » (actinobeads) in equilibrium and kinetics binding studies. A series of preliminary binding studies with 3H-labeled A. viscosus and parallel studies by scanning electron microscopy with unlabeled A. viscosus were conducted to establish a protocol by which actinobeads suitable for subsequent Bacteroides adherence experiments could be prepared. By scanning electron microscopy, the actinobeads had only small gaps of exposed S-HA between essentially irreversibly bound A. viscosus cells. Furthermore, B. gingivalis cells appeared to bind preferentially to the Actinomyces cells instead of the exposed S-HA. B. gingivalis binding to both S-HA and actinobeads was saturable with at least 2 X 10(9) to 3 X 10(9) cells per ml, and equilibrium with saturating concentrations was reached within 10 to 20 min. B. gingivalis always bound in greater numbers to the actinobeads than to S-HA. These findings provide direct measurements supporting the concept that cohesion with dental plaque bacteria like A. viscosus may foster the establishment of B. gingivalis on teeth by enhancing its adherence.« less

  15. Understanding the difference in cohesive energies between alpha and beta tin in DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Legrain, Fleur; Manzhos, Sergei, E-mail: mpemanzh@nus.edu.sg

    2016-04-15

    The transition temperature between the low-temperature alpha phase of tin to beta tin is close to the room temperature (T{sub αβ} = 13{sup 0}C), and the difference in cohesive energy of the two phases at 0 K of about ΔE{sub coh} =0.02 eV/atom is at the limit of the accuracy of DFT (density functional theory) with available exchange-correlation functionals. It is however critically important to model the relative phase energies correctly for any reasonable description of phenomena and technologies involving these phases, for example, the performance of tin electrodes in electrochemical batteries. Here, we show that several commonly used andmore » converged DFT setups using the most practical and widely used PBE functional result in ΔE{sub coh} ≈0.04 eV/atom, with different types of basis sets and with different models of core electrons (all-electron or pseudopotentials of different types), which leads to a significant overestimation of T{sub αβ}. We show that this is due to the errors in relative positions of s and p –like bands, which, combined with different populations of these bands in α and β Sn, leads to overstabilization of alpha tin. We show that this error can be effectively corrected by applying a Hubbard +U correction to s –like states, whereby correct cohesive energies of both α and β Sn can be obtained with the same computational scheme. We quantify for the first time the effects of anharmonicity on ΔE{sub coh} and find that it is negligible.« less

  16. Sociocultural and psychological determinants in migrants for noncompliance with occlusion therapy for amblyopia.

    PubMed

    Tjiam, Angela M; Akcan, Hilal; Ziylan, Fatma; Vukovic, Elizabet; Loudon, Sjoukje E; Looman, Caspar W N; Passchier, Jan; Simonsz, Huibert J

    2011-12-01

    Compliance with occlusion therapy for amblyopia in children is low when their parents have a low level of education, speak Dutch poorly, or originate from another country. We determined how sociocultural and psychological determinants affect compliance. Included were amblyopic children between the ages of 3 and 6, living in low socio-economic status (SES) areas. Compliance with occlusion therapy was measured electronically. Their parents completed an oral questionnaire, based on the "Social Position & Use of Social Services by Migrants and Natives" questionnaire that included demographics and questions on issues like education, employment, religion and social contacts. Parental fluency in Dutch was rated on a five-point scale. Regression analysis was used to describe the relationship between the level of compliance and sociocultural and psychological determinants. Data from 45 children and their parents were analyzed. Mean electronically measured compliance was 56 ± 44 percent. Children whose parents had close contact with their neighbors or who were highly dependent on their family demonstrated low levels of compliance. Children of parents who were members of a club and who had positive conceptualizations of Dutch society showed high levels of compliance. Poor compliance was also associated with low income, depression, and when patching interfered with the child's outdoor activity. Religion was not associated with compliance. Poor compliance with occlusion therapy seems correlated with indicators of social cohesion. High social cohesion at micro level, i.e., family, neighbors and friends, and low social cohesion on macro level, i.e., Dutch society, are associated with noncompliance. However, such parents tend to speak Dutch poorly, so it is difficult to determine its actual cause.

  17. Numerical modelling of collapsing volcanic edifices

    NASA Astrophysics Data System (ADS)

    Costa, Ana; Marques, Fernando; Kaus, Boris

    2017-04-01

    The flanks of Oceanic Volcanic Edifice's (OVEs) can occasionally become unstable. If that occurs, they can deform in two different modes: either slowly along localization failure zones (slumps) or catastrophically as debris avalanches. Yet the physics of this process is incompletely understood, and the role of factors such as the OVE's strength (viscosity, cohesion, friction angle), dimensions, geometry, and existence of weak layers remain to be addressed. Here we perform numerical simulations to study the interplay between viscous and plastic deformation on the gravitational collapse of an OVE (diffuse deformation vs. localization of failure along discrete structures). We focus on the contribution of the edifice's strength parameters for the mode of deformation, as well as on the type of basement. Tests were performed for a large OVE (7.5 km high, 200 km long) and either purely viscous (overall volcano edifice viscosities between 1019-1023 Pa.s), or viscoplastic rheology (within a range of cohesion and friction angle values). Results show that (a) for a strong basement (no slip basal boundary condition), the deformation pattern suggests wide/diffuse "listric" deformation within the volcanic edifice, without the development of discrete plastic failure zones; (b) for a weak basement (free slip basal boundary condition), rapid collapse of the edifice through the propagation of plastic failure structures within the edifice occurs. Tests for a smaller OVE (4.5 km by 30 km) show that failure localization along large-scale listric structures occurs more readily for different combinations of cohesion and friction angles. In these tests, high cohesion values combined with small friction angles lead to focusing of deformation along a narrower band. Tests with a weak layer underlying part of the volcanic edifice base show deformation focused along discrete structures mainly dipping towards the distal sector of the volcano. These tests for a small OVE constitute a promising basis for the study of a currently active slump in the SE flank of Pico Island (Azores, Portugal). We will also address the effect of lithospheric flexure, and discuss initial 3D modelling results.

  18. Intravirion cohesion of matrix protein M1 with ribonucleocapsid is a prerequisite of influenza virus infectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhirnov, O.P., E-mail: zhirnov@inbox.ru; Manykin, A.A.; Rossman, J.S.

    Influenza virus has two major structural modules, an external lipid envelope and an internal ribonucleocapsid containing the genomic RNA in the form of the ribonucleoprotein (RNP) complex, both of which are interlinked by the matrix protein M1. Here we studied M1-RNP cohesion within virus exposed to acidic pH in vitro. The effect of acidification was dependent on the cleavage of the surface glycoprotein HA. Acidic pH caused a loss of intravirion RNP-M1 cohesion and activated RNP polymerase activity in virus with cleaved HA (HA1/2) but not in the uncleaved (HA0) virus. The in vitro acidified HA1/2 virus rapidly lost infectivitymore » whereas the HA0 one retained infectivity, following activation by trypsin, suggesting that premature activation and release of the RNP is detrimental to viral infectivity. Rimantadine, an inhibitor of the M2 ion channel, was found to protect the HA1/2 virus interior against acidic disintegration, confirming that M2-dependent proton translocation is essential for the intravirion RNP release and suggesting that the M2 ion channel is only active in virions with cleaved HA. Acidic treatment of both HA0 and HA1/2 influenza viruses induces formation of spikeless bleb-like protrusion of ~25 nm in diameter on the surface of the virion, though only the HA1/2 virus was permeable to protons and permitted RNP release. It is likely that this bleb corresponds to the M2-enriched and M1-depleted focus arising from pinching off of the virus during the completion of budding. Cooperatively, the data suggest that the influenza virus has an asymmetric structure where the M1-mediated organization of the RNP inside the virion is a prerequisite for infectious entry into target cell. - Highlights: • The influenza A virus has a novel asymmetric internal structure. • The structure is largely maintained by M1-RNP cohesion within the virion. • This asymmetry plays an important role during viral entry, facilitating virus uncoating and the initiation of a productive infection.« less

  19. Zebrafish collagen XII is present in embryonic connective tissue sheaths (fascia) and basement membranes.

    PubMed

    Bader, Hannah L; Keene, Douglas R; Charvet, Benjamin; Veit, Guido; Driever, Wolfgang; Koch, Manuel; Ruggiero, Florence

    2009-01-01

    Connective tissues ensure the cohesion of the tissues of the body, but also form specialized structures such as tendon and bone. Collagen XII may enhance the stability of connective tissues by bridging collagen fibrils, but its function is still unclear. Here, we used the zebrafish model to visualize its expression pattern in the whole organism. The zebrafish col12a1 gene is homologous to the small isoform of the tetrapod col12a1 gene. In agreement with the biochemical data reported for the small isoform, the zebrafish collagen XII alpha1 chain was characterized as a collagenase sensitive band migrating at approximately 200 kDa. Using newly generated polyclonal antibodies and anti-sense probes, we performed a comprehensive analysis of its expression in developing zebrafish. Collagen XII exhibited a much broader expression pattern than previously thought: it was ubiquitously expressed in the connective tissue sheaths (fascia) that encase the tissues and organs of the body. For example, it was found in sclera, meninges, epimysia and horizontal and vertical myosepta. Collagen XII was also detected in head mesenchyme, pharyngeal arches and within the spinal cord, where it was first expressed within and then at the lateral borders of the floor plate and at the dorsal midline. Furthermore, double immunofluorescence staining with laminin and immunogold electron microscopy revealed that collagen XII is associated with basement membranes. These data suggest that collagen XII is implicated in tissue cohesion by stabilizing fascia and by linking fascia to basement membranes.

  20. Application of Tight-Binding Method in Atomistic Simulation of Covalent Materials

    NASA Astrophysics Data System (ADS)

    Isik, Ahmet

    1994-05-01

    The primary goal of this thesis is to develop and apply molecular dynamics simulation methods to elemental and binary covalent materials (Si, C, SiC) based on the tight-binding (TB) model of atomic cohesion in studies of bulk and deformation properties far from equilibrium. A second purpose is to compare results with those obtained using empirical interatomic potential functions in order to elucidate the applicability of models of interatomic interactions which do not take into account explicitly electronic structure effects. We have calculated the former by using a basis set consisting of four atomic orbitals, one for the s state and three for the p states, constructing a TB Hamiltonian in the usual Slater-Koster parametrization, and diagonalizing the Hamiltonian matrix at the origin of the Brillouin zone. For the repulsive part of the energy we employ a function in the form of inverse power law with screening which is then fitted to the bulk modulus and lattice parameter of several stable polytypes, results calculated by ab initio methods in the literature. Three types of applications have been investigated to demonstrate the utility of the present TB models and their advantages relative to empirical potentials. In the case of Si we show the calculated cohesive energy agrees to within a few percent with the ab initio local-density approximation (LDA) results. In addition, for clusters up to 10 atoms we find most of the energies and equilibrium structures to be in good agreement with LDA results (the failure of the empirical potential of Stillinger and Weber (SW) is well known). In the case of C clusters our TB model gives ring and chain structures which have been found both experimentally and by LDA calculations. In the second application we have applied our TB model of Si to investigate the core structure and energetics of partial dislocations on the glide plane and reconstruction antiphase defect (APD). For the 90^circ partial we show that the TB description gives the correct asymetric reconstruction previously found by LDA. For the 30^circ partial, TB gives better bond angles in the dislocation core. For the APD we have obtained a binding energy and activation for migration which are somewhat larger than the SW values, but the conclusion remains that APD is a low-energy defect which should be quite mobile. In the third application we formulate a simple TB model for SiC where the coefficients of the two-center integrals in Si-C interactions are taken to be simple averages of Si-Si and C-C integrals. Fitting is done on two polytypes, zincblende and rocksalt structures, and a simulated annealing procedure is used. The TB results are found in good agreement with LDA and experimental results in the cohesive energy, acoustic phonon modes, and elastic constants. (Abstract shortened by UMI.).

  1. About the Office of Grants Administration

    Cancer.gov

    OGA supports grants and cooperative agreements awarded to scientific institutions, small businesses, and individuals to help build, maintain, and enhance a cohesive and comprehensive cancer research agenda. Learn more about OGA and its program structure.

  2. An examination of the rheology of flocculated clay suspensions

    NASA Astrophysics Data System (ADS)

    Spearman, Jeremy

    2017-04-01

    A dense cohesive sediment suspension, sometimes referred to as fluid mud, is a thixotropic fluid with a true yield stress. Current rheological formulations struggle to reconcile the structural dynamics of cohesive sediment suspensions with the equilibrium behaviour of these suspensions across the range of concentrations and shear. This paper is concerned with establishing a rheological framework for the range of sediment concentrations from the yield point to Newtonian flow. The shear stress equation is based on floc fractal theory, put forward by Mills and Snabre (1988). This results in a Casson-like rheology equation. Additional structural dynamics is then added, using a theory on the self-similarity of clay suspensions proposed by Coussot (1995), giving an equation which has the ability to match the equilibrium and time-dependent viscous rheology of a wide range of suspensions of different concentration and mineralogy.

  3. Fracture of a composite reinforced by unidirectional fibers

    NASA Astrophysics Data System (ADS)

    Hasanov, F. F.

    2014-11-01

    An elastic medium weakened by a periodic system of circular holes filled with homogeneous elastic fibers whose surface is coated with a homogeneous film is considered. A fracture model for a medium with a periodic structure is proposed, which is based on an analysis of the fracture zone near the crack tip. It is assumed that the fracture zone is a layer of finite length containing a material with partially broken bonds between separate structural elements (end zone). The fracture zone is considered as part of the crack. The bonds between crack faces in the end zone are modeled by applying the cohesive forces caused by the presence of bonds to the crack surface. An analysis of the limit equilibrium of shear cracks in the end zone of the model is performed on the basis of a nonlocal fracture criterion together with a force condition for the motion of crack tip and a deformation condition for determining the motion of faces of end-zone cracks. In the analysis, relationships between the cohesive forces and the shear of crack faces are established, the stress state near the crack is assessed with account of external loading, cohesive forces, and fiber arrangement, and the critical external loads as functions of geometric parameters of the composite are determined.

  4. Synthesis of an Al-Mn-Based Alloy Containing In Situ-Formed Quasicrystals and Evaluation of Its Mechanical and Corrosion Properties

    NASA Astrophysics Data System (ADS)

    Naglič, Iztok; Samardžija, Zoran; Delijić, Kemal; Kobe, Spomenka; Leskovar, Blaž; Markoli, Boštjan

    2018-05-01

    An Al-Mn alloy with additions of copper, magnesium, and silicon was prepared and cast into a copper mold. It contains in situ-formed icosahedral quasicrystals (iQCs), as confirmed by electron backscatter diffraction. The aim of this work is to present the mechanical and corrosion properties of this alloy and compare its properties with some conventional commercial materials. The compressive strength and compressive yield strength were 751 MPa and 377 MPa, while the compressive fracture strain was 19%. It was observed that intensive shearing caused the final fracture of the specimens and the fractured iQC dendrites still showed cohesion with the α-Al matrix. The polarization resistance and corrosion rate of the artificially aged alloy were 7.30 kΩ and 1.2 μm/year. The evaluated properties are comparable to conventional, discontinuously reinforced aluminum metal-matrix composites and structural wrought aluminum alloys.

  5. Hybrid Hydroxyapatite Nanoparticle Colloidal Gels are Injectable Fillers for Bone Tissue Engineering

    PubMed Central

    Gu, Zhen; Jamal, Syed; Detamore, Michael S.

    2013-01-01

    Injectable bone fillers have emerged as an alternative to the invasive surgery often required to treat bone defects. Current bone fillers may benefit from improvements in dynamic properties such as shear thinning during injection and recovery of material stiffness after placement. Negatively charged inorganic hydroxyapatite (HAp) nanoparticles (NPs) were assembled with positively charged organic poly(d,l-lactic-co-glycolic acid) (PLGA) NPs to create a cohesive colloidal gel. This material is held together by electrostatic forces that may be disrupted by shear to facilitate extrusion, molding, or injection. Scanning electron micrographs of the dried colloidal gels showed a well-organized, three-dimensional porous structure. Rheology tests revealed that certain colloidal gels could recover after being sheared. Human umbilical cord mesenchymal stem cells were also highly viable when seeded on the colloidal gels. HAp/PLGA NP colloidal gels offer an attractive scheme for injectable filling and regeneration of bone tissue. PMID:23815275

  6. Acculturation, enculturation, and symptoms of depression in Hispanic youth: the roles of gender, Hispanic cultural values, and family functioning.

    PubMed

    Lorenzo-Blanco, Elma I; Unger, Jennifer B; Baezconde-Garbanati, Lourdes; Ritt-Olson, Anamara; Soto, Daniel

    2012-10-01

    The risk for depression increases as Hispanic youth acculturate to U.S. society. This association is stronger for Hispanic girls than boys. To better understand the influence of culture and family on depressive symptoms, we tested a process-oriented model of acculturation, cultural values, and family functioning. The data came from Project RED, which included 1,922 Hispanic students (53 % girls; 86 % were 14 years old; and 84 % were U.S. born) from Southern California. We used data from 9th to 11th grade to test the influence of acculturation-related experiences on depressive symptoms over time. Multi-group structural equation analysis suggested that both family conflict and cohesion were linked with depressive symptoms. Hispanic cultural values were associated with family cohesion and conflict but the strength and direction of these relationships varied across cultural values and gender. For girls and boys, familismo and respeto were associated with higher family cohesion and lower family conflict. Moreover, gender roles were linked with higher family cohesion in girls but not in boys. These results indicate that improving family functioning will be beneficial for boys' and girls' psychological well-being. This may be achieved by promoting familismo and respeto for boys and girls and by promoting traditional gender roles for girls.

  7. HIV Stigma Mediates the Association Between Social Cohesion and Consistent Condom Use Among Female Sex Workers Living with HIV in the Dominican Republic.

    PubMed

    Carrasco, Maria Augusta; Nguyen, Trang Q; Barrington, Clare; Perez, Martha; Donastorg, Yeycy; Kerrigan, Deanna

    2018-07-01

    Evidence indicates that social cohesion is a successful strategy to improve consistent condom use (CCU) among female sex workers. However, the individual and layered or combined effect that various types of overlapping stigmas may have on CCU between female sex workers living with HIV and their clients and steady partners has not been analyzed. Drawing on the Abriendo Puertas cohort of female sex workers living with HIV in the Dominican Republic, we used structural equation modeling to test the hypothesis that both HIV stigma and sex work stigma mediate the association between social cohesion and CCU and that they have a layered effect. The results indicated that HIV stigma mediated the association between social cohesion and CCU with clients and partners, while sex work-related stigma did not. There was no evidence of a layered HIV stigma and sex work stigma effect, which may be due to methodological limitations to handle highly correlated latent variables. Findings highlight the need to address internalized HIV stigma within the context of community-based approaches to enhance their HIV prevention impact. This will help to reduce the risk of HIV re-infection with a new distinct HIV viral strain, STI infection, and onward HIV transmission among female sex workers living with HIV.

  8. Acculturation, Enculturation, and Symptoms of Depression in Hispanic Youth: The Roles of Gender, Hispanic Cultural Values, and Family Functioning

    PubMed Central

    Unger, Jennifer B.; Baezconde-Garbanati, Lourdes; Ritt-Olson, Anamara; Soto, Daniel

    2015-01-01

    The risk for depression increases as Hispanic youth acculturate to U.S. society. This association is stronger for Hispanic girls than boys. To better understand the influence of culture and family on depressive symptoms, we tested a process-oriented model of acculturation, cultural values, and family functioning. The data came from Project RED, which included 1,922 Hispanic students (53 % girls; 86 % were 14 years old; and 84 % were U.S. born) from Southern California. We used data from 9th to 11th grade to test the influence of acculturation-related experiences on depressive symptoms over time. Multi-group structural equation analysis suggested that both family conflict and cohesion were linked with depressive symptoms. Hispanic cultural values were associated with family cohesion and conflict but the strength and direction of these relationships varied across cultural values and gender. For girls and boys, familismo and respeto were associated with higher family cohesion and lower family conflict. Moreover, gender roles were linked with higher family cohesion in girls but not in boys. These results indicate that improving family functioning will be beneficial for boys’ and girls’ psychological well-being. This may be achieved by promoting familismo and respeto for boys and girls and by promoting traditional gender roles for girls. PMID:22627624

  9. Machine learnt bond order potential to model metal-organic (Co-C) heterostructures.

    PubMed

    Narayanan, Badri; Chan, Henry; Kinaci, Alper; Sen, Fatih G; Gray, Stephen K; Chan, Maria K Y; Sankaranarayanan, Subramanian K R S

    2017-11-30

    A fundamental understanding of the inter-relationships between structure, morphology, atomic scale dynamics, chemistry, and physical properties of mixed metallic-covalent systems is essential to design novel functional materials for applications in flexible nano-electronics, energy storage and catalysis. To achieve such knowledge, it is imperative to develop robust and computationally efficient atomistic models that describe atomic interactions accurately within a single framework. Here, we present a unified Tersoff-Brenner type bond order potential (BOP) for a Co-C system, trained against lattice parameters, cohesive energies, equation of state, and elastic constants of different crystalline phases of cobalt as well as orthorhombic Co 2 C derived from density functional theory (DFT) calculations. The independent BOP parameters are determined using a combination of supervised machine learning (genetic algorithms) and local minimization via the simplex method. Our newly developed BOP accurately describes the structural, thermodynamic, mechanical, and surface properties of both the elemental components as well as the carbide phases, in excellent accordance with DFT calculations and experiments. Using our machine-learnt BOP potential, we performed large-scale molecular dynamics simulations to investigate the effect of metal/carbon concentration on the structure and mechanical properties of porous architectures obtained via self-assembly of cobalt nanoparticles and fullerene molecules. Such porous structures have implications in flexible electronics, where materials with high electrical conductivity and low elastic stiffness are desired. Using unsupervised machine learning (clustering), we identify the pore structure, pore-distribution, and metallic conduction pathways in self-assembled structures at different C/Co ratios. We find that as the C/Co ratio increases, the connectivity between the Co nanoparticles becomes limited, likely resulting in low electrical conductivity; on the other hand, such C-rich hybrid structures are highly flexible (i.e., low stiffness). The BOP model developed in this work is a valuable tool to investigate atomic scale processes, structure-property relationships, and temperature/pressure response of Co-C systems, as well as design organic-inorganic hybrid structures with a desired set of properties.

  10. Hydrogen storage in lithium hydride: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Banger, Suman; Nayak, Vikas; Verma, U. P.

    2018-04-01

    First principles calculations have been carried out to analyze structural stability of lithium hydride (LiH) in NaCl phase using the full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory (DFT). Calculations have been extended to physiosorbed H-atom compounds LiH·H2, LiH·3H2 and LiH·4H2. The obtained results are discussed in the paper. The results for LiH are in excellent agreement with earlier reported data. The obtained direct energy band gap of LiH is 3.0 eV which is in excellent agreement with earlier reported theoretical band gap. The electronic band structure plots of the hydrogen adsorbed compounds show metallic behavior. The elastic constants, anisotropy factor, shear modulus, Young's modulus, Poisson's ratio and cohesive energies of all the compounds are calculated. Calculation of the optical spectra such as the real and imaginary parts of dielectric function, optical reflectivity, absorption coefficient, optical conductivity, refractive index, extinction coefficient and electron energy loss are performed for the energy range 0-15 eV. The obtained results for LiH·H2, LiH·3H2 and LiH·4H2, are reported for the first time. This study has been made in search of materials for hydrogen storage. It is concluded that LiH is a promising material for hydrogen storage.

  11. Economics, Work, and Mental Health: Implications for Primary Prevention.

    ERIC Educational Resources Information Center

    Cahill, Janet

    Recent research on the impact of economics on mental and physical health has raised fundamental questions about structural elements in the macro-economy and their role in creating stress. This paper reviews and integrates these sometimes conflicting findings into a cohesive model. Structural elements of our current economic system are identified…

  12. Improvement of Progressive Damage Model to Predicting Crashworthy Composite Corrugated Plate

    NASA Astrophysics Data System (ADS)

    Ren, Yiru; Jiang, Hongyong; Ji, Wenyuan; Zhang, Hanyu; Xiang, Jinwu; Yuan, Fuh-Gwo

    2018-02-01

    To predict the crashworthy composite corrugated plate, different single and stacked shell models are evaluated and compared, and a stacked shell progressive damage model combined with continuum damage mechanics is proposed and investigated. To simulate and predict the failure behavior, both of the intra- and inter- laminar failure behavior are considered. The tiebreak contact method, 1D spot weld element and cohesive element are adopted in stacked shell model, and a surface-based cohesive behavior is used to capture delamination in the proposed model. The impact load and failure behavior of purposed and conventional progressive damage models are demonstrated. Results show that the single shell could simulate the impact load curve without the delamination simulation ability. The general stacked shell model could simulate the interlaminar failure behavior. The improved stacked shell model with continuum damage mechanics and cohesive element not only agree well with the impact load, but also capture the fiber, matrix debonding, and interlaminar failure of composite structure.

  13. Experimental Study and Fractal Analysis on the Anisotropic Performance of Explosively Welded Interfaces of 304 Stainless Steel/245 Carbon Steel

    NASA Astrophysics Data System (ADS)

    Fu, Yanshu; Qiu, Yaohui; Li, Yulong

    2018-03-01

    The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.

  14. Experimental Study and Fractal Analysis on the Anisotropic Performance of Explosively Welded Interfaces of 304 Stainless Steel/245 Carbon Steel

    NASA Astrophysics Data System (ADS)

    Fu, Yanshu; Qiu, Yaohui; Li, Yulong

    2018-05-01

    The mechanical anisotropy of an explosive welding composite plate made of 304 stainless steel/245 steel was studied through shear experiments performed on explosively welded wavy interfaces along several orientation angles. The results indicated that the strength and the fracture energy of samples significantly varied with the orientation angles. The fracture surfaces of all samples were observed using a scanning electron microscope and through three-dimensional structure microscopy. The periodic features of all the fracture surfaces were clearly shown in different fracture modes. The fractal dimension of the fracture surfaces was calculated based on the fractal geometry by the box-counting method in MATLAB. The cohesive element model was used to analyze the fracture energy according to the physical dependence of the fractal dimension on thermodynamic entropy and interface separation energy. The fracture energy was an exponential function of the fractal dimension value, which was in good agreement with the experimental results. All results were validated for effective use in the application of anisotropy analysis to the welded interface and structural optimization of explosively welded composite plates.

  15. Family factors associated with auto-aggressiveness in adolescents in Croatia.

    PubMed

    Tripković, Mara; Francisković, Tanja; Grgić, Neda; Ercegović, Nela; Graovac, Mirjana; Zecević, Iva

    2013-12-01

    The aim of this research is to look into the roles of families' social situation and cohesion in adolescent auto-aggressiveness in Croatia. The research was conducted on a sample of Zagreb high school students which encompassed 701 pupils of both genders aged 14-19. The basic demographic data were obtained using the Structured Demographic and Family Data Questionnaire. Auto-aggressiveness was tested using a section of the Report on Youth Aged 11-18 and the Scale of Auto-destructiveness--SAD, whereas the family cohesion was tested with the Family Adaptability and Cohesion Evaluation Scales FACES III. The obtained results show differences according to the gender: girls are more prone to auto-aggressiveness than boys (t = -3.385, df = 565, p = 0.001) and girls more often show symptoms of destructiveness (t = -3.809, df = 637, p < 0.001) and anxiety (t = -6.562, df = 640, p < 0.001), while boys show pronounced aggressiveness (t = 2.655, df = 653, p = 0.008). Significant family factors associated with auto-aggressiveness are parents' marital status (chi2 = 18.039, df = 4, p = 0.001), their financial situation (F(2.548) = 4.604, p = 0.010), alcoholic father (chi2 = 9.270, df = 2, p = 0.010), mentally ill mother (t = 5.264, df = 541, p < 0.001), as well as mentally ill father (t = 4.744, df = 529, p < 0.001), and corporal punishment by mother (F(2.542) = 8.132, p < 0.001) or father (F(2.530) = 5.341, p = 0.005). Adolescents from split families show more auto-aggressiveness. Family cohesion appears to be considerably associated with auto-aggressiveness and the adolescents that see their families as less cohesive have more mental problems (chi2 = 29.98, df = 2, p < 0.001). There is a connection between auto-destructive behavior in adolescents and family factors. Knowledge of family's social situation and cohesion may help understand, prevent and treat auto-aggressiveness in adolescents.

  16. Residential road traffic noise and general mental health in youth: The role of noise annoyance, neighborhood restorative quality, physical activity, and social cohesion as potential mediators.

    PubMed

    Dzhambov, Angel; Tilov, Boris; Markevych, Iana; Dimitrova, Donka

    2017-12-01

    Given the ubiquitous nature of both noise pollution and mental disorders, their alleged association has not escaped the spotlight of public health research. The effect of traffic noise on mental health is probably mediated by other factors, which have not been elucidated sufficiently. Herein, we aimed to disentangle the pathways linking road traffic noise to general mental health in Bulgarian youth, with a focus on several candidate mediators - noise annoyance, perceived restorative quality of the living environment, physical activity, and neighborhood social cohesion. A cross-sectional sample was collected in October - December 2016 in the city of Plovdiv, Bulgaria. It consisted of 399 students aged 15-25years, recruited from two high schools and three universities. Road traffic noise exposure (L den ) was derived from the strategic noise map of Plovdiv. Mental health was measured with the 12-item form of the General Health Questionnaire (GHQ-12). Noise annoyance, perceived restorative quality of the living environment, commuting and leisure time physical activity, and neighborhood social cohesion were assessed using validated questionnaires. Analyses were based on linear regression mediation models and a structural equation modeling (SEM) to account for the hypothesized interdependencies between candidate mediators. Results showed that higher noise exposure was associated with worse mental health only indirectly. More specifically, tests of the single and parallel mediation models indicated independent indirect paths through noise annoyance, social cohesion, and physical activity. In addition, the SEM revealed that more noise annoyance was associated with less social cohesion, and in turn with worse mental health; noise annoyance was also associated with lower neighborhood restorative quality, thereby with less social cohesion and physical activity, and in turn with worse mental health. However, causality could not be established. Further research is warranted to expand our still limited understanding of these person-environment interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. [Fractographic analysis of clinically failed anterior all ceramic crowns].

    PubMed

    DU, Qian; Zhou, Min-bo; Zhang, Xin-ping; Zhao, Ke

    2012-04-01

    To identify the site of crack initiation and propagation path of clinically failed all ceramic crowns by fractographic analysis. Three clinically failed anterior IPS Empress II crowns and two anterior In-Ceram alumina crowns were retrieved. Fracture surfaces were examined using both optical stereo and scanning electron microscopy. Fractographic theory and fracture mechanics principles were applied to disclose the damage characteristics and fracture mode. All the crowns failed by cohesive failure within the veneer on the labial surface. Critical crack originated at the incisal contact area and propagated gingivally. Porosity was found within the veneer because of slurry preparation and the sintering of veneer powder. Cohesive failure within the veneer is the main failure mode of all ceramic crown. Veneer becomes vulnerable when flaws are present. To reduce the chances of chipping, multi-point occlusal contacts are recommended, and layering and sintering technique of veneering layer should also be improved.

  18. AB INITIO STUDY OF GRAIN BOUNDARY PROPERTIES OF TUNGSTEN ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Kurtz, Richard J.

    2012-04-17

    Density functional theory was employed to investigate the grain boundary (GB) property of W-TM alloys (TM: fifth and sixth row transition metals). GB strengthening was found for Hf, Ta, Nb, Ru, Re, Os and Ir for 27{l_brace}525{r_brace} and to a lesser degree for 11{l_brace}323{r_brace}. Lower valence solutes strengthen the GB at certain substitutional sites, while higher valence elements enforce it at other positions. For 3{l_brace}112{r_brace}, the alloys exhibit reduced cleavage energies. Hence, allowing with TMs increases the GB cohesion more effectively for large-angle GBs whose cleavage energy is, in general, inherently lower than the low-angle ones. Electron density analysis elucidatesmore » the mechanism of charge addition or depletion of the GB bonding region upon TM substitution at various positions leading to stronger or weaker intergranular cohesion, respectively.« less

  19. Effects of directional migration on prisoner's dilemma game in a square domain

    NASA Astrophysics Data System (ADS)

    Cheng, Hongyan; Dai, Qionglin; Li, Haihong; Qian, Xiaolan; Zhang, Mei; Yang, Junzhong

    2013-04-01

    We introduce a new migration rule, the directional migration, into evolutionary prisoner's dilemma games defined in a square domain with periodic boundary conditions. We find that cooperation can be enhanced to a much higher level than the case in the absence of migration. Additionally, the presence of the directional migration has profound impact on the population structure: the directional migration drives individuals to form a number of dense clusters which resembles social cohesion. The evolutionary game theory incorporating the directional migration can reproduce some real characteristics of populations in human society and may shed light on the problem of social cohesion.

  20. Energy Characteristics of Small Metal Clusters Containing Vacancies

    NASA Astrophysics Data System (ADS)

    Reva, V. I.; Pogosov, V. V.

    2018-02-01

    Self-consistent calculations of spatial distributions of electrons, potentials, and energies of dissociation, cohesion, vacancy formation, and electron attachment, as well as the ionization potential of solid Al N , Na N clusters ( N ≥ 254), and clusters containing a vacancy ( N ≥ 12) have been performed using a model of stable jellium. The contribution of a monovacancy to the energy of the cluster, the size dependences of the characteristics, and their asymptotic forms have been considered. The calculations have been performed on the SKIT-3 cluster at the Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine (Rpeak = 7.4 Tflops).

  1. Erbium ion implantation into diamond - measurement and modelling of the crystal structure.

    PubMed

    Cajzl, Jakub; Nekvindová, Pavla; Macková, Anna; Malinský, Petr; Sedmidubský, David; Hušák, Michal; Remeš, Zdeněk; Varga, Marián; Kromka, Alexander; Böttger, Roman; Oswald, Jiří

    2017-02-22

    Diamond is proposed as an extraordinary material usable in interdisciplinary fields, especially in optics and photonics. In this contribution we focus on the doping of diamond with erbium as an optically active centre. In the theoretical part of the study based on DFT simulations we have developed two Er-doped diamond structural models with 0 to 4 carbon vacancies in the vicinity of the Er atom and performed geometry optimizations by the calculation of cohesive energies and defect formation energies. The theoretical results showed an excellent agreement between the calculated and experimental cohesive energies for the parent diamond. The highest values of cohesive energies and the lowest values of defect formation energies were obtained for models with erbium in the substitutional carbon position with 1 or 3 vacancies in the vicinity of the erbium atom. From the geometry optimization the structural model with 1 vacancy had an octahedral symmetry whereas the model with 3 vacancies had a coordination of 10 forming a trigonal structure with a hexagonal ring. In the experimental part, erbium doped diamond crystal samples were prepared by ion implantation of Er + ions using ion implantation fluences ranging from 1 × 10 14 ions per cm 2 to 5 × 10 15 ions per cm 2 . The experimental results revealed a high degree of diamond structural damage after the ion implantation process reaching up to 69% of disordered atoms in the samples. The prepared Er-doped diamond samples annealed at the temperatures of 400, 600 and 800 °C in a vacuum revealed clear luminescence, where the 〈110〉 cut sample has approximately 6-7 times higher luminescence intensity than the 〈001〉 cut sample with the same ion implantation fluence. The reported results are the first demonstration of the Er luminescence in the single crystal diamond structure for the near-infrared spectral region.

  2. Geometrical and Structural Asperities on Fault Surfaces

    NASA Astrophysics Data System (ADS)

    Sagy, A.; Brodsky, E. E.; van der Elst, N.; Agosta, F.; di Toro, G.; Collettini, C.

    2007-12-01

    Earthquake dynamics are strongly affected by fault zone structure and geometry. Fault surface irregularities and the nearby structure control the rupture nucleation and propagation, the fault strength, the near-field stress orientations and the hydraulic properties. New field observations demonstrate the existence of asperities in faults as displayed by topographical bumps on the fault surface and hardening of the internal structure near them. Ground-based LIDAR measurements on more than 30 normal and strike slip faults in different lithologies demonstrate that faults are not planar surfaces and roughness is strongly dependent on fault displacement. In addition to the well-understood roughness exemplified by abrasive striations and fracture segmentation, we found semi-elliptical topographical bumps with wavelengths of a few meters. In many faults the bumps are not spread equally on the surface and zones can be bumpier than others. The bumps are most easily identified on faults with total displacement of dozens to hundreds of meters. Smaller scale roughness on these faults is smoothed by abrasive processes. A key site in southern Oregon shows that the topographic bumps are closely tied to the internal structure of the fault zone. At this location, we combine LiDAR data with detailed structural analysis of the fault zone embedded in volcanic rocks. Here the bumps correlate with an abrupt change in the width of the cohesive cataclasite layer that is exposed under a thin ultracataclasite zone. In most of the exposures the cohesive layer thickness is 10-20 cm. However, under protruding bumps the layer is always thickened and the width can locally exceed one meter. Field and microscopic analyses show that the layer contains grains with dimensions ranging from less than 10 μ up to a few centimeters. There is clear evidence of internal flow, rotation and fracturing of the grains in the layer. X-Ray diffraction measurements of samples from the layer show that the bulk mineralogy is identical to that of the host rock, although thin section analysis suggests that some alteration and secondary mineralization of the grains also occurs. We infer that the cohesiveness of the layer is a consequence of repacking and cementation similar to deformation bands in granular material. By comparing the thickness of the cohesive layer on several secondary faults in this fault area we found that the average thickness of the layer increases with total slip. The correlation is nonlinear and the thickening rate decreases with increasing slip. We conclude that granular flow decreasing with increasing slip and thus the deformation is continually localized.

  3. A square-force cohesion model and its extraction from bulk measurements

    NASA Astrophysics Data System (ADS)

    Liu, Peiyuan; Lamarche, Casey; Kellogg, Kevin; Hrenya, Christine

    2017-11-01

    Cohesive particles remain poorly understood, with order of magnitude differences exhibited for prior, physical predictions of agglomerate size. A major obstacle lies in the absence of robust models of particle-particle cohesion, thereby precluding accurate prediction of the behavior of cohesive particles. Rigorous cohesion models commonly contain parameters related to surface roughness, to which cohesion shows extreme sensitivity. However, both roughness measurement and its distillation into these model parameters are challenging. Accordingly, we propose a ``square-force'' model, where cohesive force remains constant until a cut-off separation. Via DEM simulations, we demonstrate validity of the square-force model as surrogate of more rigorous models, when its two parameters are selected to match the two key quantities governing dense and dilute granular flows, namely maximum cohesive force and critical cohesive energy, respectively. Perhaps more importantly, we establish a method to extract the parameters in the square-force model via defluidization, due to its ability to isolate the effects of the two parameters. Thus, instead of relying on complicated scans of individual grains, determination of particle-particle cohesion from simple bulk measurements becomes feasible. Dow Corning Corporation.

  4. Description of new dry granular materials of variable cohesion and friction coefficient: Implications for laboratory modeling of the brittle crust

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M. M.; Bulois, C.; Mourgues, R.; Galland, O.; Legland, J.-B.; Gruber, C.

    2016-08-01

    Cohesion and friction coefficient are fundamental parameters for scaling brittle deformation in laboratory models of geological processes. However, they are commonly not experimental variable, whereas (1) rocks range from cohesion-less to strongly cohesive and from low friction to high friction and (2) strata exhibit substantial cohesion and friction contrasts. This brittle paradox implies that the effects of brittle properties on processes involving brittle deformation cannot be tested in laboratory models. Solving this paradox requires the use of dry granular materials of tunable and controllable brittle properties. In this paper, we describe dry mixtures of fine-grained cohesive, high friction silica powder (SP) and low-cohesion, low friction glass microspheres (GM) that fulfill this requirement. We systematically estimated the cohesions and friction coefficients of mixtures of variable proportions using two independent methods: (1) a classic Hubbert-type shear box to determine the extrapolated cohesion (C) and friction coefficient (μ), and (2) direct measurements of the tensile strength (T0) and the height (H) of open fractures to calculate the true cohesion (C0). The measured values of cohesion increase from 100 Pa for pure GM to 600 Pa for pure SP, with a sub-linear trend of the cohesion with the mixture GM content. The two independent cohesion measurement methods, from shear tests and tension/extensional tests, yield very similar results of extrapolated cohesion (C) and show that both are robust and can be used independently. The measured values of friction coefficients increase from 0.5 for pure GM to 1.05 for pure SP. The use of these granular material mixtures now allows testing (1) the effects of cohesion and friction coefficient in homogeneous laboratory models and (2) testing the effect of brittle layering on brittle deformation, as demonstrated by preliminary experiments. Therefore, the brittle properties become, at last, experimental variables.

  5. Measuring team cohesion: observations from the science.

    PubMed

    Salas, Eduardo; Grossman, Rebecca; Hughes, Ashley M; Coultas, Chris W

    2015-05-01

    The aim of this study was to review literature relevant to cohesion measurement, explore developing measurement approaches, and provide theoretical and practical recommendations for optimizing cohesion measurement. Cohesion is essential for team effectiveness and performance, leading researchers to focus attention on understanding how to enhance it. However, cohesion is inconsistently defined and measured, making it difficult to compare findings across studies and limiting the ability to advance science and practice. We reviewed empirical research through which we uncovered specific information about cohesion's conceptualization, measurement, and relationships with performance, culminating in a set of current trends from which we provide suggestions and possible solutions to guide future efforts and help the field converge toward greater consistency. Cohesion demonstrates more significant relationships with performance when conceptualized using social and task (but not other) dimensions and when analyses are performed at the team level. Cohesion is inherently temporal, yet researchers rarely measure cohesion at multiple points during the life of a team. Finally, cohesion matters in large, dynamic collectives, complicating measurement. However, innovative and unobtrusive methodologies are being used, which we highlight. Practitioners and researchers are encouraged to define cohesion with task and social subdimensions and to measure with behavioral and attitudinal operationalizations. Individual and team-oriented items are recommended, though team-level analyses are most effective. Innovative/unobtrusive methods should be further researched to enable cohesion measurement longitudinally and in large, dynamic collectives. By applying our findings and conclusions, researchers and practitioners will be more likely to find consistent, reliable, and significant cohesion-to-performance relationships. This work is not subject to U.S. copyright restrictions.

  6. Mechanics of fold-and-thrust belts and accretionary wedges Cohesive Coulomb theory

    NASA Technical Reports Server (NTRS)

    Dahlen, F. A.; Suppe, J.; Davis, D.

    1984-01-01

    A self-consistent theory for the mechanics of thin-skinned accretionary Coulomb wedges is developed and applied to the active fold-and-thrust belt of western Taiwan. The state of stress everywhere within a critical wedge is determined by solving the static equilibrium equations subject to the appropriate boundary conditions. The influence of wedge cohesion, which gives rise to a concave curvature of the critical topographic surface and affects the orientation of the principal stresses and Coulomb fracture within the wedge, is considered. The shape of the topographic surface and the angles at which thrust faults step up from the basal decollement in the Taiwanese belt is analyzed taking into account the extensive structural and fluid-pressure data available there. It is concluded that the gross geometry and structure of the Taiwan wedge are consistent with normal laboratory frictional and fracture strengths of sedimentary rocks.

  7. Density-functional formulation of the generalized pseudopotential theory. III. Transition-metal interatomic potentials

    NASA Astrophysics Data System (ADS)

    Moriarty, John A.

    1988-08-01

    The first-principles, density-functional version of the generalized pseudopotential theory (GPT) developed in papers I and II of this series [Phys. Rev. B 16, 2537 (1977); 26, 1754 (1982)] for empty- and filled-d-band metals is here extended to pure transition metals with partially filled d bands. The present focus is on a rigorous, real-space expansion of the bulk total energy in terms of widely transferable, structure-independent interatomic potentials, including both central-force pair interactions and angular-force triplet and quadruplet interactions. To accomplish this expansion, a specialized set of starting equations is derived from the basic local-density formalism for a pure metal, including refined expansions for the exchange-correlation terms and a simplified yet accurate representation of the cohesive energy. The parent pseudo-Green's-function formalism of the GPT is then used to develop these equations in a plane-wave, localized-d-state basis. In this basis, the cohesive energy divides quite naturally into a large volume component and a smaller structural component. The volume component,which includes all one-ion intra-atomic energy contributions, already gives a good description of the cohesion in lowest order. The structural component is expanded in terms of weak interatomic matrix elements and gives rise to a multi-ion series which establishes the interatomic potentials. Special attention is focused on the dominant d-electron contributions to this series and complete formal results for the two-ion, three-ion, and four-ion d-state potentials (vd2, vd3, and vd4) are derived. In addition, a simplified model is used to demonstrate that while vd3 can be of comparable importance to vd2, vd4 is inherently small and the series is rapidly convergent beyond three-ion interactions. Analytic model forms are also derived for vd2 and vd3 in the case of canonical d bands. In this limit, vd2 is purely attractive and varies with interatomic distance as r-10, while vd3 is weak and attractive for almost empty or filled d bands and maximum in strength and repulsive for half-filled d bands. Full first-principles expressions are then developed for the total two-ion and three-ion potentials and implemented for all 20 3d and 4d transition metals. The first-principles potentials qualitatively display all of the trends predicted by the model results, but they also reflect additional effects, including long-range hybridization tails which must be suitably screened in real-space calculations. Finally, illustrative application of the first-principles potentials is made to the calculation of the [100] phonon spectrum for V and Cr, where the importance of three-ion angular forces is explicitly demonstrated.

  8. Structural stability of characteristic interface for NiTi/Nb Nanowire: First-Principle study

    NASA Astrophysics Data System (ADS)

    Li, G. F.; Zheng, H. Z.; Shu, X. Y.; Peng, P.

    2016-01-01

    Compared with some other conventional interface models, the interface of NiTi(211)/Nb(220) in NiTiNb metal nanocomposite had been simulated and analyzed carefully. Results show that only several interface models, i.e., NiTi(100)/Nb(100)(Ni⃡Nb), NiTi(110)/Nb(110) and NiTi(211)/Nb(220), can be formed accordingly with their negative formation enthalpy. Therein the cohesive energy Δ E and Griffith rupture work W of NiTi(211)/Nb(220) interface model are the lowest among them. Density of states shows that there exists only one electronic bonding peak for NiTi(211)/Nb(220) interface model at -2.5 eV. Electron density difference of NiTi(211)/ Nb(220) shows that the Nb-Nb, Nb-Ti and Nb-Ni bonding characters seem like so peaceful as a fabric twisting every atom, which is different from conventional metallic bonding performance. Such appearance can be deduced that the metallic bonding between Nb-Nb, Nb-Ti and Nb-Ni in NiTi(211)/Nb(220) may be affected by its nanostructure called nanometer size effect. Thus, our findings open an avenue for detailed and comprehensive studies of nanocomposite.

  9. Effects of text cohesion on comprehension and retention of colorectal cancer screening information: a preliminary study.

    PubMed

    Liu, Chiung-Ju; Rawl, Susan M

    2012-01-01

    Increasing readability of written cancer prevention information is a fundamental step to increasing awareness and knowledge of cancer screening. Instead of readability formulas, the present study focused on text cohesion, which is the degree to which the text content ties together. The purpose of this study was to examine the effect of text cohesion on reading times, comprehension, and retention of colorectal cancer prevention information. English-speaking adults (50 years of age or older) were recruited from local communities. Participants were randomly assigned to read colorectal cancer prevention subtopics presented at 2 levels of text cohesion: from higher cohesion to lower cohesion, or vice versa. Reading times, word recognition, text comprehension, and recall were assessed after reading. Two weeks later, text comprehension and recall were reassessed. Forty-two adults completed the study, but five were lost to follow up. Higher text cohesion showed a significant effect on reading times and text comprehension but not on word recognition and recall. The effect of text cohesion was not found on text comprehension and recall after 2 weeks. Increasing text cohesion facilitates reading speed and comprehension of colorectal cancer prevention information. Further research on the effect of text cohesion is warranted.

  10. Social cohesion matters in health.

    PubMed

    Chuang, Ying-Chih; Chuang, Kun-Yang; Yang, Tzu-Hsuan

    2013-10-28

    The concept of social cohesion has invoked debate due to the vagueness of its definition and the limitations of current measurements. This paper attempts to examine the concept of social cohesion, develop measurements, and investigate the relationship between social cohesion and individual health. This study used a multilevel study design. The individual-level samples from 29 high-income countries were obtained from the 2000 World Value Survey (WVS) and the 2002 European Value Survey. National-level social cohesion statistics were obtained from Organization of Economic Cooperation and Development datasets, World Development Indicators, and Asian Development Bank key indicators for the year 2000, and from aggregating responses from the WVS. In total 47,923 individuals were included in this study. The factor analysis was applied to identify dimensions of social cohesion, which were used as entities in the cluster analysis to generate a regime typology of social cohesion. Then, multilevel regression models were applied to assess the influences of social cohesion on an individual's self-rated health. Factor analysis identified five dimensions of social cohesion: social equality, social inclusion, social development, social capital, and social diversity. Then, the cluster analysis revealed five regimes of social cohesion. A multi-level analysis showed that respondents in countries with higher social inclusion, social capital, and social diversity were more likely to report good health above and beyond individual-level characteristics. This study is an innovative effort to incorporate different aspects of social cohesion. This study suggests that social cohesion was associated with individual self-rated after controlling individual characteristics. To achieve further advancement in population health, developed countries should consider policies that would foster a society with a high level of social inclusion, social capital, and social diversity. Future research could focus on identifying possible pathways by which social cohesion influences various health outcomes.

  11. Social Cohesion, Social Participation, and HIV Related Risk among Female Sex Workers in Swaziland

    PubMed Central

    Fonner, Virginia A.; Kerrigan, Deanna; Mnisi, Zandile; Ketende, Sosthenes; Kennedy, Caitlin E.; Baral, Stefan

    2014-01-01

    Social capital is important to disadvantaged groups, such as sex workers, as a means of facilitating internal group-related mutual aid and support as well as access to broader social and material resources. Studies among sex workers have linked higher social capital with protective HIV-related behaviors; however, few studies have examined social capital among sex workers in sub-Saharan Africa. This cross-sectional study examined relationships between two key social capital constructs, social cohesion among sex workers and social participation of sex workers in the larger community, and HIV-related risk in Swaziland using respondent-driven sampling. Relationships between social cohesion, social participation, and HIV-related risk factors were assessed using logistic regression. HIV prevalence among the sample was 70.4% (223/317). Social cohesion was associated with consistent condom use in the past week (adjusted odds ratio [AOR]  = 2.25, 95% confidence interval [CI]: 1.30–3.90) and was associated with fewer reports of social discrimination, including denial of police protection. Social participation was associated with HIV testing (AOR = 2.39, 95% CI: 1.36–4.03) and using condoms with non-paying partners (AOR = 1.99, 95% CI: 1.13–3.51), and was inversely associated with reported verbal or physical harassment as a result of selling sex (AOR = 0.55, 95% CI: 0.33–0.91). Both social capital constructs were significantly associated with collective action, which involved participating in meetings to promote sex worker rights or attending HIV-related meetings/ talks with other sex workers. Social- and structural-level interventions focused on building social cohesion and social participation among sex workers could provide significant protection from HIV infection for female sex workers in Swaziland. PMID:24498125

  12. Informal assistance to urban families and the risk of household food insecurity.

    PubMed

    King, Christian

    2017-09-01

    Food insecurity is a persistent social problem affecting one out of eight households in the United States. While evidence shows that public assistance programs (formal assistance) are effective in reducing food insecurity, there is more limited evidence documenting how informal support, through social capital, affects food insecurity. To examine the role of informal support (through instrumental social support, social cohesion, social control, and social participation) on food insecurity transitions using longitudinal data of a sample of disadvantaged urban mothers from the Fragile Families and Child Wellbeing Study. In addition, the study examines whether these associations vary by participation in the Supplemental Nutrition Assistance Program (SNAP) using interaction terms. The sample includes 2481 mothers of children between ages three and five. The analysis uses unadjusted and adjusted logistic regressions. Interaction terms are included to examine formal and informal support. In addition, the analysis uses structural equation modeling to examine direct and indirect associations of the informal support variables on food insecurity. Social support and social cohesion reduce the risk of food insecurity, reduce the risk of remaining food insecure, and reduce the risk of becoming food insecure. Social control has an indirect effect on food insecurity, which is mainly through social cohesion. Social participation also has an indirect effect through social support and social cohesion. SNAP participation for mothers with little to no informal support did not reduce the risk of food insecurity. Instead of focusing on improving the food access of households, interventions should be expanded to the neighborhood level. Building social capital for low-income residents would increase the cohesiveness of their neighborhoods and their access to social support, which would increase the availability of resources to prevent or overcome food insecurity and other hardships. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Social cohesion, social participation, and HIV related risk among female sex workers in Swaziland.

    PubMed

    Fonner, Virginia A; Kerrigan, Deanna; Mnisi, Zandile; Ketende, Sosthenes; Kennedy, Caitlin E; Baral, Stefan

    2014-01-01

    Social capital is important to disadvantaged groups, such as sex workers, as a means of facilitating internal group-related mutual aid and support as well as access to broader social and material resources. Studies among sex workers have linked higher social capital with protective HIV-related behaviors; however, few studies have examined social capital among sex workers in sub-Saharan Africa. This cross-sectional study examined relationships between two key social capital constructs, social cohesion among sex workers and social participation of sex workers in the larger community, and HIV-related risk in Swaziland using respondent-driven sampling. Relationships between social cohesion, social participation, and HIV-related risk factors were assessed using logistic regression. HIV prevalence among the sample was 70.4% (223/317). Social cohesion was associated with consistent condom use in the past week (adjusted odds ratio [AOR] = 2.25, 95% confidence interval [CI]: 1.30-3.90) and was associated with fewer reports of social discrimination, including denial of police protection. Social participation was associated with HIV testing (AOR = 2.39, 95% CI: 1.36-4.03) and using condoms with non-paying partners (AOR = 1.99, 95% CI: 1.13-3.51), and was inversely associated with reported verbal or physical harassment as a result of selling sex (AOR = 0.55, 95% CI: 0.33-0.91). Both social capital constructs were significantly associated with collective action, which involved participating in meetings to promote sex worker rights or attending HIV-related meetings/ talks with other sex workers. Social- and structural-level interventions focused on building social cohesion and social participation among sex workers could provide significant protection from HIV infection for female sex workers in Swaziland.

  14. Game Playing Techniques in Secondary School Counseling Groups

    ERIC Educational Resources Information Center

    Messing, Jeffrey; Elliott, Jacob J.

    1971-01-01

    Games are described as techniques for structuring a group situation to assist in acquiring cohesiveness. Discussed briefly are the Who Am I Game," the Lemon Game," the Face the Wall Game," and Would This Person Game." (Author/CJ)

  15. Characterization of Structural Rebuilding and Shear Migration in Cementitious Materials in Consideration of Thixotropy

    NASA Astrophysics Data System (ADS)

    Qian, Ye

    Characterization of structural rebuilding and shear migration in cementitious materials in consideration of thixotropy Ye Qian From initial contact with water until hardening, and deterioration, cement and concrete materials are subjected to various chemical and physical transformations and environmental impacts. This thesis focuses on the properties during the fresh state, shortly after mixing until the induction period. During this period flow history, including shearing and resting, and hydration both play big roles in determining the rheological properties. The rheological properties of cement and concrete not only affect the casting and pumping process, but also very critical for harden properties and durability properties. Compared with conventional concrete, self-consolidating concrete (SCC) can introduce many advantages in construction application. These include readiness to apply, decreasing labor necessary for casting, and enhancing hardened properties. However, challenges still remain, such as issues relating to formwork pressure and multi-layer casting. Each of these issues is closely related to the property of thixotropy. From the microstructural point of view, thixotropy is described as structural buildup (flocculation) under rest and breakdown (deflocculation) under flow. For SCC, as well as other concrete systems, it is about balancing sufficient flowability during casting and rate of structural buildup after placement for the application at hand. For instance, relating to the issue of SCC formwork, it is ideal for the material to be highly flowable to achieve rapid casting, but then exhibit high rate of structural buildup to reduce formwork pressure. This can reduce the cost of formwork and reduce the risk of formwork failure. It is apparent that accurately quantifying the two aspects of thixotropy, i.e. structuration and destructuration, is key to tackling these challenges in field application. Thus, the overall objective of my doctoral study is to improve quantification of key parameters tied to thixotropy that we have identified to be important: static yield stress, cohesion and degree of shear-induced particle migration. The two main contributions are as follows: Firstly, I quantified structuration of fresh paste and mortar systems by measuring static yield stress. After an extensive review of various rheological methods to probe viscoelastic properties of yield stress fluids, I selected, developed, and implemented a creep recovery protocol. Creep results were supplemented by low-amplitude oscillatory shear results, and supported that the measured static yield stress corresponds to the solid-liquid transition. This improved quantification of static yield stress can help better understand the effect of mix composition on SCC formwork pressure development, as well as static segregation and stability. Since the static yield stress is measured before the structure is broken down, the effects of sand migration are eliminated. This study also analyzed effects of other supplementary cementitous materials such as nanoclay and fly ash. Results showed that nanoclay effectively increases static yield stress and structuration rate, while fly ash decreases static yield stress. To complement this investigation, I studied cohesion using the probe tack test, as cohesion is widely cited to be closely related to formwork pressure. I verified that probe tack test is a quick and useful method to measure static cohesion. Results showed that nanoclay increased cohesion dramatically while fly ash did not have an apparent effect on cohesion. Secondly, I developed an empirical model to fit the stress decay process under constant shear rate, For mortar systems, the stress decay can be attributed to two mechanisms: colloidal destructuration and sand migration. Such a model could be used to characterize particle migration and dynamic segregation, a critical issue for casting applications. In addition, shear induced particle migration is a widely recognized challenge in characterizing mortars and concretes through shear rheological methods. Therefore this model can help determine the range of shear rates within which migration can be minimized to guide the design of protocols for dynamic rheological characterization and to ultimately develop design strategies to minimize mitigation. Compared with currently existing methods, this model provides a faster approach to quantify the sand migration process, including kinetics.

  16. Pds5 regulators segregate cohesion and condensation pathways in Saccharomyces cerevisiae

    PubMed Central

    Tong, Kevin; Skibbens, Robert V.

    2015-01-01

    Cohesins are required both for the tethering together of sister chromatids (termed cohesion) and subsequent condensation into discrete structures—processes fundamental for faithful chromosome segregation into daughter cells. Differentiating between cohesin roles in cohesion and condensation would provide an important advance in studying chromatin metabolism. Pds5 is a cohesin-associated factor that is essential for both cohesion maintenance and condensation. Recent studies revealed that ELG1 deletion suppresses the temperature sensitivity of pds5 mutant cells. However, the mechanisms through which Elg1 may regulate cohesion and condensation remain unknown. Here, we report that ELG1 deletion from pds5-1 mutant cells results in a significant rescue of cohesion, but not condensation, defects. Based on evidence that Elg1 unloads the DNA replication clamp PCNA from DNA, we tested whether PCNA overexpression would similarly rescue pds5-1 mutant cell cohesion defects. The results indeed reveal that elevated levels of PCNA rescue pds5-1 temperature sensitivity and cohesion defects, but do not rescue pds5-1 mutant cell condensation defects. In contrast, RAD61 deletion rescues the condensation defect, but importantly, neither the temperature sensitivity nor cohesion defects exhibited by pds5-1 mutant cells. In combination, these findings reveal that cohesion and condensation are separable pathways and regulated in nonredundant mechanisms. These results are discussed in terms of a new model through which cohesion and condensation are spatially regulated. PMID:25986377

  17. A two-field modified Lagrangian formulation for robust simulations of extrinsic cohesive zone models

    NASA Astrophysics Data System (ADS)

    Cazes, F.; Coret, M.; Combescure, A.

    2013-06-01

    This paper presents the robust implementation of a cohesive zone model based on extrinsic cohesive laws (i.e. laws involving an infinite initial stiffness). To this end, a two-field Lagrangian weak formulation in which cohesive tractions are chosen as the field variables along the crack's path is presented. Unfortunately, this formulation cannot model the infinite compliance of the broken elements accurately, and no simple criterion can be defined to determine the loading-unloading change of state at the integration points of the cohesive elements. Therefore, a modified Lagrangian formulation using a fictitious cohesive traction instead of the classical cohesive traction as the field variable is proposed. Thanks to this change of variable, the cohesive law becomes an increasing function of the equivalent displacement jump, which eliminates the problems mentioned previously. The ability of the proposed formulations to simulate fracture accurately and without field oscillations is investigated through three numerical test examples.

  18. Social cohesion and self-rated health: The moderating effect of neighborhood physical disorder.

    PubMed

    Bjornstrom, Eileen E S; Ralston, Margaret L; Kuhl, Danielle C

    2013-12-01

    Using data from the Los Angeles Family and Neighborhood Survey and its companion datasets, we examined how neighborhood disorder, perceived danger and both individually perceived and contextually measured neighborhood social cohesion are associated with self-rated health. Results indicate that neighborhood disorder is negatively associated with health and the relationship is explained by perceived cohesion and danger, which are both also significant predictors of health. Further, individually perceived cohesion emerges as a more important explanation of self-rated health than neighborhood-level social cohesion. Finally, neighborhood disorder and perceived cohesion interact to influence health, such that cohesion is especially beneficial when residents live in neighborhoods characterized by low to moderate disorder; once disorder is at high levels, cohesion no longer offers protection against poor health. We interpret our findings as they relate to prior research on neighborhoods, psychosocial processes, and health, and discuss their implications for intervention efforts that address disorder in urban communities.

  19. Linking family cohesion and flexibility with expressed emotion, family burden and psychological distress in caregivers of patients with psychosis: A path analytic model.

    PubMed

    Koutra, Katerina; Simos, Panagiotis; Triliva, Sofia; Lionis, Christos; Vgontzas, Alexandros N

    2016-06-30

    The present study aimed to evaluate a path analytic model accounting for caregivers' psychological distress that takes into account perceived family cohesion and flexibility, expressed emotion and caregiver's burden associated with the presence of mental illness in the family. 50 first-episode and 50 chronic patients diagnosed with schizophrenia or bipolar disorder (most recent episode manic severe with psychotic features) recruited from the Inpatient Psychiatric Unit of the University Hospital of Heraklion, Crete, Greece, and their family caregivers participated in the study. Family functioning was assessed in terms of cohesion and flexibility (FACES-IV), expressed emotion (FQ), family burden (FBS) and caregivers' psychological distress (GHQ-28). Structural equation modelling was used to evaluate the direct and indirect effects of family dynamics on caregivers' psychological distress. The results showed that neither family cohesion nor family flexibility exerted significant direct effects on caregivers' psychological distress. Instead, the effect of flexibility was mediated by caregivers' criticism and family burden indicating an indirect effect on caregivers' psychological distress. These results apply equally to caregivers of first episode and chronic patients. Family interventions aiming to improve dysfunctional family interactions by promoting awareness of family dynamics could reduce the burden and improve the emotional well-being of family caregivers. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Challenges in Modelling of Lightning-Induced Delamination; Effect of Temperature-Dependent Interfacial Properties

    NASA Technical Reports Server (NTRS)

    Naghipour, P.; Pineda, E. J.; Arnold, S.

    2014-01-01

    Lightning is a major cause of damage in laminated composite aerospace structures during flight. Due to the dielectric nature of Carbon fiber reinforced polymers (CFRPs), the high energy induced by lightning strike transforms into extreme, localized surface temperature accompanied with a high-pressure shockwave resulting in extensive damage. It is crucial to develop a numerical tool capable of predicting the damage induced from a lightning strike to supplement extremely expensive lightning experiments. Delamination is one of the most significant failure modes resulting from a lightning strike. It can be extended well beyond the visible damage zone, and requires sophisticated techniques and equipment to detect. A popular technique used to model delamination is the cohesive zone approach. Since the loading induced from a lightning strike event is assumed to consist of extreme localized heating, the cohesive zone formulation should additionally account for temperature effects. However, the sensitivity to this dependency remains unknown. Therefore, the major focus point of this work is to investigate the importance of this dependency via defining various temperature dependency profiles for the cohesive zone properties, and analyzing the corresponding delamination area. Thus, a detailed numerical model consisting of multidirectional composite plies with temperature-dependent cohesive elements in between is subjected to lightning (excessive amount of heat and pressure) and delamination/damage expansion is studied under specified conditions.

  1. Molecular interactions in nanocellulose assembly

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yoshiharu

    2017-12-01

    The contribution of hydrogen bonds and the London dispersion force in the cohesion of cellulose is discussed in the light of the structure, spectroscopic data, empirical molecular-modelling parameters and thermodynamics data of analogue molecules. The hydrogen bond of cellulose is mainly electrostatic, and the stabilization energy in cellulose for each hydrogen bond is estimated to be between 17 and 30 kJ mol-1. On average, hydroxyl groups of cellulose form hydrogen bonds comparable to those of other simple alcohols. The London dispersion interaction may be estimated from empirical attraction terms in molecular modelling by simple integration over all components. Although this interaction extends to relatively large distances in colloidal systems, the short-range interaction is dominant for the cohesion of cellulose and is equivalent to a compression of 3 GPa. Trends of heat of vaporization of alkyl alcohols and alkanes suggests a stabilization by such hydroxyl group hydrogen bonding to be of the order of 24 kJ mol-1, whereas the London dispersion force contributes about 0.41 kJ mol-1 Da-1. The simple arithmetic sum of the energy is consistent with the experimental enthalpy of sublimation of small sugars, where the main part of the cohesive energy comes from hydrogen bonds. For cellulose, because of the reduced number of hydroxyl groups, the London dispersion force provides the main contribution to intermolecular cohesion. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  2. [Psychometric properties of the third version of family adaptability and cohesion evaluation scales (FACES-III): a study of peruvian adolescents].

    PubMed

    Bazo-Alvarez, Juan Carlos; Bazo-Alvarez, Oscar Alfredo; Aguila, Jeins; Peralta, Frank; Mormontoy, Wilfredo; Bennett, Ian M

    2016-01-01

    Our aim was to evaluate the psychometric properties of the FACES-III among Peruvian high school students. This is a psychometric cross-sectional study. A probabilistic sampling was applied, defined by three stages: stratum one (school), stratum two (grade) and cluster (section). The participants were 910 adolescent students of both sexes, between 11 and 18 years of age. The instrument was also the object of study: the Olson's FACES-III. The analysis included a review of the structure / construct validity of the measure by factor analysis and assessment of internal consistency (reliability). The real-cohesion scale had moderately high reliability (Ω=.85) while the real-flexibility scale had moderate reliability (Ω=.74). The reliability found for the ideal-cohesion was moderately high (Ω=.89) like for the scale of ideal-flexibility (Ω=.86). Construct validity was confirmed by the goodness of fit of a two factor model (cohesion and flexibility) with 10 items each [Adjusted goodness of fit index (AGFI) = 0.96; Expected Cross Validation Index (ECVI) = 0.87; Normed fit index (NFI) = 0.93; Goodness of fit index (GFI) = 0.97; Root mean square error of approximation (RMSEA) = 0.06]. FACES-III has sufficient reliability and validity to be used in Peruvian adolescents for the purpose of group or individual assessment.

  3. The birth of an infant decreases group spacing in a zoo-housed lowland gorilla group (Gorilla gorilla gorilla).

    PubMed

    Kurtycz, Laura M; Shender, Marisa A; Ross, Stephen R

    2014-01-01

    Changes in group composition can alter the behavior of social animals such as gorillas. Although gorilla births are presumed to affect group spacing patterns, there is relatively little data about how these events affect gorilla group cohesion. We investigated how members of a western lowland gorilla group (n = 6) at Lincoln Park Zoo (Chicago, IL, USA) spaced themselves prior to and after the birth of an infant, to investigate changes in group cohesion. Gorillas were housed in an indoor-outdoor enclosure in which access to the outdoors was permitted when temperatures exceeded 5°C. We recorded spatial locations of each group member using 30-min group scans on tablet computers with an electronic map interface, as well as noting their access to outdoor areas. Data from the 4 months following the birth was compared to a control period corresponding to early pregnancy. We measured distances between all possible group dyads for each scan and subsequently calculated a mean distance between all group members. An ANOVA revealed that access to the outdoors had no effect on group spacing (F(1,56) = 0.066, P = 0.799). However, the presence of an infant resulted in a significant reduction in inter-individual distance (F(1,56) = 23.988, P = 0.000), decreasing inter-individual spacing by 12.5%. This information helps characterize the behavioral impact of a new birth on captive gorilla social structure and could potentially inform future management of breeding gorilla groups. © 2014 Wiley Periodicals, Inc.

  4. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes.

    PubMed

    Bestembayeva, Aizhan; Kramer, Armin; Labokha, Aksana A; Osmanović, Dino; Liashkovich, Ivan; Orlova, Elena V; Ford, Ian J; Charras, Guillaume; Fassati, Ariberto; Hoogenboom, Bart W

    2015-01-01

    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∼5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins, and is therefore not well understood. Here, we show that stiffness topography with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel.

  5. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    PubMed Central

    Labokha, Aksana A.; Osmanović, Dino; Liashkovich, Ivan; Orlova, Elena V.; Ford, Ian J.; Charras, Guillaume; Fassati, Ariberto; Hoogenboom, Bart W.

    2014-01-01

    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ~5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC1. Whilst the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized2-5, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins5,6, and is therefore not well understood. Here, we show that stiffness topography7 with sharp atomic force microscopy tips can generate nanoscale cross sections of the NPC. The cross sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy2-5. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport, and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel. PMID:25420031

  6. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes

    NASA Astrophysics Data System (ADS)

    Bestembayeva, Aizhan; Kramer, Armin; Labokha, Aksana A.; Osmanović, Dino; Liashkovich, Ivan; Orlova, Elena V.; Ford, Ian J.; Charras, Guillaume; Fassati, Ariberto; Hoogenboom, Bart W.

    2015-01-01

    The nuclear pore complex (NPC) is the gate for transport between the cell nucleus and the cytoplasm. Small molecules cross the NPC by passive diffusion, but molecules larger than ∼5 nm must bind to nuclear transport receptors to overcome a selective barrier within the NPC. Although the structure and shape of the cytoplasmic ring of the NPC are relatively well characterized, the selective barrier is situated deep within the central channel of the NPC and depends critically on unstructured nuclear pore proteins, and is therefore not well understood. Here, we show that stiffness topography with sharp atomic force microscopy tips can generate nanoscale cross-sections of the NPC. The cross-sections reveal two distinct structures, a cytoplasmic ring and a central plug structure, which are consistent with the three-dimensional NPC structure derived from electron microscopy. The central plug persists after reactivation of the transport cycle and resultant cargo release, indicating that the plug is an intrinsic part of the NPC barrier. Added nuclear transport receptors accumulate on the intact transport barrier and lead to a homogenization of the barrier stiffness. The observed nanomechanical properties in the NPC indicate the presence of a cohesive barrier to transport and are quantitatively consistent with the presence of a central condensate of nuclear pore proteins in the NPC channel.

  7. Carbon phosphide monolayers with superior carrier mobility

    NASA Astrophysics Data System (ADS)

    Wang, Gaoxue; Pandey, Ravindra; Karna, Shashi P.

    2016-04-01

    Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics.Two dimensional (2D) materials with a finite band gap and high carrier mobility are sought after materials from both fundamental and technological perspectives. In this paper, we present the results based on the particle swarm optimization method and density functional theory which predict three geometrically different phases of the carbon phosphide (CP) monolayer consisting of sp2 hybridized C atoms and sp3 hybridized P atoms in hexagonal networks. Two of the phases, referred to as α-CP and β-CP with puckered or buckled surfaces are semiconducting with highly anisotropic electronic and mechanical properties. More remarkably, they have the lightest electrons and holes among the known 2D semiconductors, yielding superior carrier mobility. The γ-CP has a distorted hexagonal network and exhibits a semi-metallic behavior with Dirac cones. These theoretical findings suggest that the binary CP monolayer is a yet unexplored 2D material holding great promise for applications in high-performance electronics and optoelectronics. Electronic supplementary information (ESI) available: Fig. S1 cohesive energy and structure of the CP monolayer with various stoichiometric compositions obtained using CALYPSO, Fig. S2 history of CALYPSO steps and structure of the CP monolayer, Fig. S3 phonon dispersion with DFT-D2 functional, Fig. S4 band structure for β-CP using the DFT-PBE and DFT-D2 functional forms, Fig. S5 strain energy curves, Fig. S6 projected band structure for α-CP, Fig. S7 projected band structure for β-CP, Fig. S8 projected band structure for γ-CP, Fig. S9 band structures obtained with the GGA-PBE and HSE06 functional; Table S1 lattice parameters with the DFT-D2 functional form; Video S1 AIMD simulation of α-CP at 300 K, Video S2 AIMD simulation of β-CP at 300 K, Video S3 AIMD simulation of γ-CP at 300 K. See DOI: 10.1039/c6nr00498a

  8. Supporting students' learning in the domain of computer science

    NASA Astrophysics Data System (ADS)

    Gasparinatou, Alexandra; Grigoriadou, Maria

    2011-03-01

    Previous studies have shown that students with low knowledge understand and learn better from more cohesive texts, whereas high-knowledge students have been shown to learn better from texts of lower cohesion. This study examines whether high-knowledge readers in computer science benefit from a text of low cohesion. Undergraduate students (n = 65) read one of four versions of a text concerning Local Network Topologies, orthogonally varying local and global cohesion. Participants' comprehension was examined through free-recall measure, text-based, bridging-inference, elaborative-inference, problem-solving questions and a sorting task. The results indicated that high-knowledge readers benefited from the low-cohesion text. The interaction of text cohesion and knowledge was reliable for the sorting activity, for elaborative-inference and for problem-solving questions. Although high-knowledge readers performed better in text-based and in bridging-inference questions with the low-cohesion text, the interaction of text cohesion and knowledge was not reliable. The results suggest a more complex view of when and for whom textual cohesion affects comprehension and consequently learning in computer science.

  9. Meandering channels without vegetation: Examples from Nevada and Chile

    NASA Astrophysics Data System (ADS)

    Matsubara, Y.; Howard, A. D.; Burr, D. M.; Williams, R. M.; Moore, J. M.

    2012-12-01

    We report on a study motivated by the occurrence of highly sinuous, actively migrating paleochannels on Mars. Highly sinuous, unconfined meanders require small aspect ratios, which in turn require cohesive channel banks. This cohesion is obtained most commonly by vegetation cover coupled with high suspended sediment loading. The dominant role of vegetation in meandering is reflected in the difficulty in creating highly sinuous channels in flume experiment without introduction of vegetation. The occurrence of strongly meandering channels on Mars suggests meanders can develop in the absence of vegetation. The main objective of our study is to understand the processes of meander evolution in non-vegetated surfaces. We have studied two terrestrial sites in which meandering channels form where vegetation is sparse and has little influence on bank erodibility or point-bar deposition, indicating that there must be other mechanisms creating bank cohesion. One mechanism is stabilization of point-bar deposits by mud drapes. The Quinn River in Nevada is a sinuous channel that flows through fine lacustrine sediments on the floor of paleolake Lahontan resulting in the river having both bed and bank composed of sediment containing least 40% silt/clay. In addition to abundant mud, high salt content of the river water encourages flocculation and settling of fine sediment; thus both high clay/silt content and salt work together at the Quinn River to maintain a small aspect ratio. In contrast to the Quinn River, meandering channels on alluvial fans in the Atacama Desert in northern Chile are deposited by flows originating from the foothills of the Andes Mountains where sediments are coarser and more variable in size. Like Quinn River both fine sediments and salts contribute to meandering. The bank cohesion is provided by mudflows or hyperconcentrated flows creating bank drapes as well as extensive overbank levees which harden to adobe-like consistency. The Atacama Desert is rich in precipitated salts forming salt crusted deposits, and because grains are coarser, we speculate that these salts may possibly be playing a much more direct role in providing the cohesion than they do in the Quinn River. We are using chemical analyses and Scanning Electron Microscope (SEM) images of sediment samples to investigate cementation mechanisms.

  10. Simulation of Delamination Propagation in Composites Under High-Cycle Fatigue by Means of Cohesive-Zone Models

    NASA Technical Reports Server (NTRS)

    Turon, Albert; Costa, Josep; Camanho, Pedro P.; Davila, Carlos G.

    2006-01-01

    A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters.

  11. Indirect intergenic suppression of a radiosensitive mutant of Sordaria macrospora defective in sister-chromatid cohesiveness.

    PubMed

    Huynh, A D; Leblon, G; Zickler, D

    1986-01-01

    Six ultra violet (UV) mutageneses were performed on the spo76 UV-sensitive mutant of Sordaria macrospora. Spo76 shows an early centromere cleavage associated with an arrest at the first meiotic division and therefore does not form ascospores. Moreover, it exhibits altered pairing structure (synaptonemal complex), revealing a defect in the sister-chromatid cohesiveness. From 37 revertants which partially restored sporulation, 34 extragenic suppressors of spo76 were isolated. All suppressors are altered in chromosomal pairing but, unlike spo76, show a wild type centromere cleavage. The 34 suppressors were assigned to six different genes and mapped. Only one of the suppressor genes is involved in repair functions.

  12. The Development and Use of Cohesive Devices in L2 Writing and Their Relations to Judgments of Essay Quality

    ERIC Educational Resources Information Center

    Crossley, Scott A.; Kyle, Kristopher; McNamara, Danielle S.

    2016-01-01

    An important topic in writing research has been the use of cohesive features. Much of this research has focused on local and text cohesion. The few studies that have studied global cohesion have been restricted to first language writing. This study investigates the development of local, global, and text cohesion in the writing of 57 language (L2)…

  13. The Efficacy of ’Don’t Ask, Don’t Tell’

    DTIC Science & Technology

    2009-01-01

    psychologists explored the concepts, experimental and cor- relation evidence supported dividing cohesion into two distinct types: social cohesion and task...cohesion. Social cohesion is the nature and quality of the emotional bonds within a group—the degree to which members spend time together, like...along (that is, has high social cohesion ) would perform better. Almost counterintuitively, it has been shown that in some situations, high social

  14. The Impact of Drug Abuse on Tank Crew Cohesion.

    DTIC Science & Technology

    1982-08-01

    social cohesion ). Examination ef modal scores on the Cohesion Questions indicated that similarity or difference in drug use pattern influenced the...demography, drug use and social cohesion . The AFFIL scores were divided into two groups: Hi AFFEL and Lo AFFIL. The Hi AFFIL group was comprised of...difference in usage pattern, the social cohesion questions were slightly more sensitive to simple similarity in drug use pattern than the job-related

  15. Outdoor activities and depressive symptoms in displaced older adults following natural disaster: community cohesion as mediator and moderator.

    PubMed

    Chao, Shiau-Fang

    2016-09-01

    This investigation examined whether community cohesion mediates or moderates the relationship between outdoor activities and depressive symptoms in older adults displaced by Typhoon Morakot in Taiwan. This cross-sectional study included 292 adults aged 65 years or older who were relocated to permanent houses after Typhoon Morakot damaged their homes on 8th August 2009. Multiple regression analysis was applied to test the role of community cohesion on the association between outdoor activities and depressive symptoms. The sample of displaced older adults displayed higher prevalence of depressive symptoms than the average for community dwelling older people in Taiwan. Community cohesion fully mediated the relationship between outdoor activities and depressive symptoms. Community cohesion also moderated the relationship between outdoor activities and depressive symptoms. Community cohesion occupies a key role on the link between outdoor activities and depressive symptoms. Participation in outdoor activities was associated positively with community cohesion, while high community cohesion was related negatively to depressive symptoms. Additionally, the benefit of outdoor activities to fewer depressive symptoms only manifested in older adults with high community cohesion. Programs and services should be designed to enhance community cohesion in order to maximize the benefit of outdoor activities to the mental health of displaced older adults after natural disasters.

  16. Spilling over: Partner parenting stress as a predictor of family cohesion in parents of adolescents with developmental disabilities.

    PubMed

    Mitchell, Darcy B; Szczerepa, Alexandra; Hauser-Cram, Penny

    2016-01-01

    Family cohesion relates to positive outcomes for both parents and children. Maintaining cohesion may be especially challenging for families of adolescents with developmental disabilities, yet this has been studied infrequently in this group. We investigated cohesion in these families, particularly with respect to partner stress, using the notion of the 'spillover effect' as a model. Adolescents with disabilities and their parents participated. Parents reported on teen adaptive and problem behaviours and on marital satisfaction, parenting stress, and family cohesion. The stress of one partner was tested as a predictor of the quality of family cohesion reported by the other. Adolescent behaviour problems were negative predictors of family cohesion in mothers, and marital satisfaction positively predicted cohesion for both parents. Above other factors, greater partner stress predicted poorer family cohesion for both fathers and mothers. Marital satisfaction acted as a suppressor of this relation. To improve the overall climate of families, care providers should take into consideration individual relationships, including the marital relationship. In addition, the possibility of spillover from one individual to another should be recognized as a factor in family functioning. Family-centred practices are likely to lead to greater feelings of cohesion and overall better individual and family well-being. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Written cohesion in children with and without language learning disabilities.

    PubMed

    Koutsoftas, Anthony D; Petersen, Victoria

    2017-09-01

    Cohesion refers to the linguistic elements of discourse that contribute to its continuity and is an important element to consider as part of written language intervention, especially in children with language learning disabilities (LLD). There is substantial evidence that children with LLD perform more poorly than typically developing (TD) peers on measures of cohesion in spoken language and on written transcription measures; however, there is far less research comparing groups on cohesion as a measure of written language across genres. The current study addresses this gap through the following two aims. First, to describe and compare cohesion in narrative and expository writing samples of children with and without language learning disabilities. Second, to relate measures of cohesion to written transcription and translation measures, oral language, and writing quality. Fifty intermediate-grade children produced one narrative and one expository writing sample from which measures of written cohesion were obtained. These included the frequency, adequacy and complexity of referential and conjunctive ties. Expository samples resulted in more complex cohesive ties and children with TD used more complex ties than peers with LLD. Different relationships among cohesion measures and writing were observed for narrative verse expository samples. Findings from this study demonstrate cohesion as a discourse-level measure of written transcription and how the use of cohesion can vary by genre and group (LLD, TD). Clinical implications for assessment, intervention, and future research are provided. © 2016 Royal College of Speech and Language Therapists.

  18. Ultimate pier and contraction scour prediction in cohesive soils at selected bridges in Illinois

    USGS Publications Warehouse

    Straub, Timothy D.; Over, Thomas M.; Domanski, Marian M.

    2013-01-01

    The Scour Rate In COhesive Soils-Erosion Function Apparatus (SRICOS-EFA) method includes an ultimate scour prediction that is the equilibrium maximum pier and contraction scour of cohesive soils over time. The purpose of this report is to present the results of testing the ultimate pier and contraction scour methods for cohesive soils on 30 bridge sites in Illinois. Comparison of the ultimate cohesive and noncohesive methods, along with the Illinois Department of Transportation (IDOT) cohesive soil reduction-factor method and measured scour are presented. Also, results of the comparison of historic IDOT laboratory and field values of unconfined compressive strength of soils (Qu) are presented. The unconfined compressive strength is used in both ultimate cohesive and reduction-factor methods, and knowing how the values from field methods compare to the laboratory methods is critical to the informed application of the methods. On average, the non-cohesive method results predict the highest amount of scour, followed by the reduction-factor method results; and the ultimate cohesive method results predict the lowest amount of scour. The 100-year scour predicted for the ultimate cohesive, noncohesive, and reduction-factor methods for each bridge site and soil are always larger than observed scour in this study, except 12% of predicted values that are all within 0.4 ft of the observed scour. The ultimate cohesive scour prediction is smaller than the non-cohesive scour prediction method for 78% of bridge sites and soils. Seventy-six percent of the ultimate cohesive predictions show a 45% or greater reduction from the non-cohesive predictions that are over 10 ft. Comparing the ultimate cohesive and reduction-factor 100-year scour predictions methods for each bridge site and soil, the scour predicted by the ultimate cohesive scour prediction method is less than the reduction-factor 100-year scour prediction method for 51% of bridge sites and soils. Critical shear stress remains a needed parameter in the ultimate scour prediction for cohesive soils. The unconfined soil compressive strength measured by IDOT in the laboratory was found to provide a good prediction of critical shear stress, as measured by using the erosion function apparatus in a previous study. Because laboratory Qu analyses are time-consuming and expensive, the ability of field-measured Rimac data to estimate unconfined soil strength in the critical shear–soil strength relation was tested. A regression analysis was completed using a historic IDOT dataset containing 366 data pairs of laboratory Qu and field Rimac measurements from common sites with cohesive soils. The resulting equations provide a point prediction of Qu, given any Rimac value with the 90% confidence interval. The prediction equations are not significantly different from the identity Qu = Rimac. The alternative predictions of ultimate cohesive scour presented in this study assume Qu will be estimated using Rimac measurements that include computed uncertainty. In particular, the ultimate cohesive predicted scour is greater than observed scour for the entire 90% confidence interval range for predicting Qu at the bridges and soils used in this study, with the exception of the six predicted values that are all within 0.6 ft of the observed scour.

  19. The Emergence of Embedded Relations and Group Formation in Networks of Competition

    ERIC Educational Resources Information Center

    Thye, Shane R.; Lawler, Edward J.; Yoon, Jeongkoo

    2011-01-01

    This study examines how and when small networks of self-interested agents generate a group tie or affiliation at the network level. A group affiliation is formed when actors (a) perceive themselves as members of a group and (b) share resources with each other despite an underlying competitive structure. We apply a concept of structural cohesion to…

  20. Influence of group cohesion on maternal well-being among participants in a support/education group program for single mothers.

    PubMed

    Lipman, Ellen L; Waymouth, Marjorie; Gammon, Tara; Carter, Patricia; Secord, Margaret; Leung, Olivia; Mills, Brenda; Hicks, Frances

    2007-10-01

    Single mothers are at increased risk of psychosocial disadvantage, social isolation and physical and mental health difficulties. The authors present (1) the results of group cohesion assessments completed by mothers participating in a trial of community-based support/education groups, and (2) assessments of the association between group cohesion ratings and intervention outcomes of maternal self-evaluations of well-being (mood, self-esteem, and social support) and parenting. Mothers participating in groups completed the Group Atmosphere Scale, a measure of group cohesion, post-group. Overall, most participants provided strong ratings of group cohesion. Significant associations were found between group cohesion and specific positive outcomes. This suggests a positive association between group cohesion and mood, self-esteem, social support, and parenting, in this trial.

  1. Associations Between Family Structure, Family Functioning, and Substance Use Among Hispanic/Latino Adolescents

    PubMed Central

    Wagner, Karla D.; Ritt-Olson, Anamara; Chou, Chih-Ping; Pokhrel, Pallav; Duan, Lei; Baezconde-Garbanati, Lourdes; Soto, Daniel W.; Unger, Jennifer B.

    2010-01-01

    This study examined the role of family structure and functioning in predicting substance use among Hispanic/Latino adolescents, surveyed in 9th and 10th grade. The sample (N=1433) was half female, mostly of Mexican descent, and the majority was born in the U.S. Living with a single father was associated with less parental monitoring and less family cohesion (γ = −0.07, −0.06, respectively). Living with a single mother was associated with less parental monitoring (γ = −0.10). Living with neither parent was associated with less communication (γ = −0.08), less parental monitoring (γ = −0.09), more family conflict (γ = 0.06), and less family cohesion (γ = −0.06). Less monitoring was associated with substance use at follow-up (β = −0.17). Low rates of parental monitoring appear to mediate the association between parental family structure and substance use. Results suggest that improving basic parenting skills, and offering additional social support and resources to assist parents in monitoring adolescents may help prevent substance use. These interventions may be particularly beneficial for single parents. PMID:20307116

  2. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D.

    PubMed

    Swat, Maciej H; Thomas, Gilberto L; Shirinifard, Abbas; Clendenon, Sherry G; Glazier, James A

    2015-01-01

    Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors.

  3. Collective ritual and social support networks in rural South India

    PubMed Central

    2018-01-01

    The scholarship on religion has long argued that collective worship helps foster social cohesion. Despite the pervasiveness of this contention, rigorous quantitative evaluations of it have been surprisingly limited. Here, I draw on network data representing the ties of social support among Hindu residents of a South Indian village to evaluate the association between collective religious ritual and social cohesion. I find that those who partake in collective religious rituals together have a higher probability of having a supportive relationship than those who do not. At the structural level, this corresponds to denser connections among co-participants. At the individual level, participants are more embedded in the local community of co-religionists, but are not disassociating themselves from members of other religious denominations. These patterns hold most strongly for co-participation in the recurrent, low-arousal monthly worships at the temple, and are suggestive for co-participation in the intense and dysphoric ritual acts carried out as part of an annual festival. Together, these findings provide clear empirical evidence of the lasting relationship between collective religious ritual and social cohesion. PMID:29794040

  4. Emergent Stratification in Solid Tumors Selects for Reduced Cohesion of Tumor Cells: A Multi-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D

    PubMed Central

    Swat, Maciej H.; Thomas, Gilberto L.; Shirinifard, Abbas; Clendenon, Sherry G.; Glazier, James A.

    2015-01-01

    Tumor cells and structure both evolve due to heritable variation of cell behaviors and selection over periods of weeks to years (somatic evolution). Micro-environmental factors exert selection pressures on tumor-cell behaviors, which influence both the rate and direction of evolution of specific behaviors, especially the development of tumor-cell aggression and resistance to chemotherapies. In this paper, we present, step-by-step, the development of a multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source CompuCell3D modeling environment. Our model includes essential cell behaviors, microenvironmental components and their interactions. Our model provides a platform for exploring selection pressures leading to the evolution of tumor-cell aggression, showing that emergent stratification into regions with different cell survival rates drives the evolution of less cohesive cells with lower levels of cadherins and higher levels of integrins. Such reduced cohesivity is a key hallmark in the progression of many types of solid tumors. PMID:26083246

  5. Social cohesion matters in health

    PubMed Central

    2013-01-01

    Introduction The concept of social cohesion has invoked debate due to the vagueness of its definition and the limitations of current measurements. This paper attempts to examine the concept of social cohesion, develop measurements, and investigate the relationship between social cohesion and individual health. Methods This study used a multilevel study design. The individual-level samples from 29 high-income countries were obtained from the 2000 World Value Survey (WVS) and the 2002 European Value Survey. National-level social cohesion statistics were obtained from Organization of Economic Cooperation and Development datasets, World Development Indicators, and Asian Development Bank key indicators for the year 2000, and from aggregating responses from the WVS. In total 47,923 individuals were included in this study. The factor analysis was applied to identify dimensions of social cohesion, which were used as entities in the cluster analysis to generate a regime typology of social cohesion. Then, multilevel regression models were applied to assess the influences of social cohesion on an individual’s self-rated health. Results and discussion Factor analysis identified five dimensions of social cohesion: social equality, social inclusion, social development, social capital, and social diversity. Then, the cluster analysis revealed five regimes of social cohesion. A multi-level analysis showed that respondents in countries with higher social inclusion, social capital, and social diversity were more likely to report good health above and beyond individual-level characteristics. Conclusions This study is an innovative effort to incorporate different aspects of social cohesion. This study suggests that social cohesion was associated with individual self-rated after controlling individual characteristics. To achieve further advancement in population health, developed countries should consider policies that would foster a society with a high level of social inclusion, social capital, and social diversity. Future research could focus on identifying possible pathways by which social cohesion influences various health outcomes. PMID:24165541

  6. Factors Related to Group Cohesiveness.

    ERIC Educational Resources Information Center

    Roark, Albert E.; Sharah, Hussein S.

    1989-01-01

    Investigated the relationship of group cohesiveness to empathy, self-disclosure, acceptance, and trust, and compared three different groups (personal growth, driving under the influence, psychotherapy), with a total of 65 subjects, on measures of cohesiveness. Found all factors correlated significantly with cohesiveness and with one another.…

  7. Resolving anatomical and functional structure in human brain organization: identifying mesoscale organization in weighted network representations.

    PubMed

    Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M

    2014-10-01

    Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.

  8. Alcohol Use Severity Among Adult Hispanic Immigrants: Examining the Roles of Family Cohesion, Social Support, and Gender.

    PubMed

    Cano, Miguel Ángel; Sánchez, Mariana; Rojas, Patria; Ramírez-Ortiz, Daisy; Polo, Katherine L; Romano, Eduardo; De La Rosa, Mario

    2018-03-21

    This study examined (a) the direct association of family cohesion on alcohol use severity among adult Hispanic immigrants; (b) the indirect association of family cohesion on alcohol use severity via social support; and (c) if gender moderates the direct and indirect associations between family cohesion and alcohol use severity. Mediation and moderation analyses were conducted on a cross-sectional sample of 411 (men = 222, women = 189) participants from Miami-Dade, Florida. Findings indicate that higher family cohesion was directly associated with higher social support and lower alcohol use severity. Higher social support was also directly associated with lower alcohol use severity. Additionally, family cohesion had an indirect association with alcohol use severity via social support. Moderation analyses indicated that gender moderated the direct association between family cohesion and alcohol use severity, but did not moderate the indirect association. Some potential clinical implications may be that strengthening family cohesion may enhance levels of social support, and in turn, lower alcohol use severity among adult Hispanic immigrants. Furthermore, strengthening family cohesion may be especially beneficial to men in efforts to lower levels of alcohol use severity.

  9. A sign of the times: To have or to be? Social capital or social cohesion?

    PubMed

    Carrasco, Maria A; Bilal, Usama

    2016-06-01

    Among various social factors associated with health behavior and disease, social cohesion has not captured the imagination of public health researchers as much as social capital as evidenced by the subsuming of social cohesion into social capital and the numerous studies analyzing social capital and the comparatively fewer articles analyzing social cohesion and health. In this paper we provide a brief overview of the evolution of the conceptualization of social capital and social cohesion and we use philosopher Erich Fromm's distinction between "having" and "being" to understand the current research focus on capital over cohesion. We argue that social capital is related to having while social cohesion is related to being and that an emphasis on social capital leads to individualizing tendencies that are antithetical to cohesion. We provide examples drawn from the literature where this conflation of social capital and cohesion results in non-concordant definitions and subsequent operationalization of these constructs. Beyond semantics, the practical implication of focusing on "having" vs. "being" include an emphasis on understanding how to normalize groups and populations rather than providing those groups space for empowerment and agency leading to health. Published by Elsevier Ltd.

  10. Towards a universal description of cohesive-particle flows

    NASA Astrophysics Data System (ADS)

    Lamarche, Casey; Liu, Peiyuan; Kellogg, Kevin; Lattanzi, Aaron; Hrenya, Christine

    2017-11-01

    A universal framework for describing cohesive granular flows seems unattainable based on prior works, making a fundamental continuum theory to predict such flows appear unachievable. For the first time, universal behavior of cohesive-grain flows is demonstrated by linking the macroscopic (many-grain) behavior to grain-grain interactions via two dimensionless groups: a generalized Bond number BoG - ratio of maximum cohesive force to the force driving flow - and a new Agglomerate number Ag - ratio of critical cohesive energy to the granular energy. Cohesive-grain flow is investigated in several systems, and universal behavior is determined via collapse of a cohesion-dependent output variable from each system with the appropriate dimensionless group. Universal behavior is observed using BoG for dense (enduring-contact-dominated) flows and Ag for dilute (collision-dominated) flows, as BoG accounts for the cohesive contact force and Ag for increased collisional dissipation due to cohesion. Hence, a new physical picture is presented, namely, BoG dominates in dense flows, where force chains drive momentum transfer, and Ag dominates in dilute systems, where the dissipative collisions dominate momentum transfer. Apparent discrepancies with past treatments are resolved. Dow Corning Corporation.

  11. Don’t Ask, Don’t Tell: Failing in Strategic Leadership

    DTIC Science & Technology

    2007-03-30

    another example of where the results might be useful. Even if 7 one accepts the fact that task cohesion overrides social cohesion as a major...it can be inferred that social cohesion is still an important factor in combat. At this point the important question becomes whether openly gay...Gateway, 1993), 57. 17 39 Social cohesion refers to emotional bonds and friendship, and is distinguished from task cohesion which refers to a group’s

  12. Interactive effects of team cohesion on perceived efficacy in semi-professional sport.

    PubMed

    Marcos, Francisco Miguel Leo; Miguel, Pedro Antonio Sánchez; Oliva, David Sánchez; Calvo, Tomás García

    2010-01-01

    The present study examined the relationships among cohesion, self-efficacy, coaches' perceptions of their players' efficacy at the individual level and athletes' perceptions of their teammates' efficacy. Participants (n = 76) recruited from four semi- professional soccer and basketball teams completed cohesiveness and efficacy questionnaires who. Data were analyzed through a correlational methodology. Results indicated significant correlations between self-efficacy and task cohesion and social cohesion. Regression analysis results suggest task cohesion positively related to coaches and teammate's perception of efficacy. These results have implications for practitioners in terms of the importance of team building to enhance team cohesion and feelings of efficacy. Key pointsThis paper increases the knowledge about soccer and basketball match analysis.Give normative values to establish practice and match objectives.Give applications ideas to connect research with coaches' practice.

  13. Impact of Truck Loading on Design and Analysis of Asphaltic Pavement Structures : Phase III

    DOT National Transportation Integrated Search

    2012-03-01

    This study investigated the impact of the realistic constitutive material behavior of asphalt layer (both nonlinear inelastic : and fracture) for the prediction of pavement performance. To this end, this study utilized a cohesive zone model to consid...

  14. Structural Mechanics Solutions for Butt Joint Seals in Cold Climates

    DOT National Transportation Integrated Search

    1996-08-01

    An effective, formed-in-place joint seal will respond with elastic or viscoelastic behavior over a reasonable design life to any large movement of the joint without adhesive or cohesive failure. For a given joint movement, seals with lower stiffness ...

  15. Navigating the "Inter" in Intercultural Education

    ERIC Educational Resources Information Center

    Salter, Peta; Maxwell, Jacinta

    2018-01-01

    The structure of the Australian national curriculum encompasses engagement with "intercultural education". Significantly, the context from which the curriculum was developed was heavily influenced by a multiculturalist ideology in which notions of cohesion and harmony were dominant. Therefore, those working with the curriculum need to…

  16. Modeling reciprocal team cohesion-performance relationships, as impacted by shared leadership and members' competence.

    PubMed

    Mathieu, John E; Kukenberger, Michael R; D'Innocenzo, Lauren; Reilly, Greg

    2015-05-01

    Despite the lengthy history of team cohesion-performance research, little is known about their reciprocal relationships over time. Using meta-analysis, we synthesize findings from 17 CLP design studies, and analyze their results using SEM. Results support that team cohesion and performance are related reciprocally with each other over time. We then used longitudinal data from 205 members of 57 student teams who competed in a complex business simulation over 10 weeks, to test: (a) whether team cohesion and performance were related reciprocally over multiple time periods, (b) the relative magnitude of those relationships, and (c) whether they were stable over time. We also considered the influence of team members' academic competence and degree of shared leadership on these dynamics. As anticipated, cohesion and performance were related positively, and reciprocally, over time. However, the cohesion → performance relationship was significantly higher than the performance → cohesion relationship. Moreover, the cohesion → performance relationship grew stronger over time whereas the performance → cohesion relationship remained fairly consistent over time. As expected, shared leadership related positively to team cohesion but not directly to their performance; whereas average team member academic competence related positively to team performance but was unrelated to team cohesion. Finally, we conducted and report a replication using a second sample of students competing in a business simulation. Our earlier substantive relationships were mostly replicated, and we illustrated the dynamic temporal properties of shared leadership. We discuss these findings in terms of theoretical importance, applied implications, and directions for future research. (c) 2015 APA, all rights reserved.

  17. Structural modifications induced in dentin by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Le, Quang-Tri; Bertrand, Caroline; Vilar, Rui

    2016-12-01

    The structural and chemical modifications induced in dentin by ultrafast laser ablation were studied. The laser experiments were performed with a Yb:KYW chirped-pulse-regenerative amplification laser system (560-fs pulse duration, 1030-nm radiation wavelength), fluences in the range 2 to 14 J/cm2, 1-kHz pulse repetition rate, and 5-mm/s scanning speed. The ablation surfaces were characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. The ablation surfaces produced with 2 J/cm2 presented an irregular morphology with exposed dentinal tubules and no evidence of thermal effects. For 7 and 14 J/cm2, the ablation surfaces were covered by a layer of redeposited ablation debris, consisting mainly of amorphous calcium phosphate. This layer is weakly adherent to the underlying tissue and can be easily removed by ultrasonication, revealing a surface with a morphology similar to the one obtained with 2 J/cm2. The constitution of the dentin ablation surfaces is similar to the constitution of pristine dentin, showing that, within this fluence range, the laser treatment does not significantly modify the structure and constitution of dentin. The results achieved suggest an ablation mechanism where collagen is preferentially decomposed by the laser radiation, reducing the tissue cohesive strength and leading, ultimately, to its ablation.

  18. Ab Initio Modeling of Structure and Properties of Single and Mixed Alkali Silicate Glasses.

    PubMed

    Baral, Khagendra; Li, Aize; Ching, Wai-Yim

    2017-10-12

    A density functional theory (DFT)-based ab initio molecular dynamics (AIMD) has been applied to simulate models of single and mixed alkali silicate glasses with two different molar concentrations of alkali oxides. The structural environments and spatial distributions of alkali ions in the 10 simulated models with 20% and 30% of Li, Na, K and equal proportions of Li-Na and Na-K are studied in detail for subtle variations among the models. Quantum mechanical calculations of electronic structures, interatomic bonding, and mechanical and optical properties are carried out for each of the models, and the results are compared with available experimental observation and other simulations. The calculated results are in good agreement with the experimental data. We have used the novel concept of using the total bond order density (TBOD), a quantum mechanical metric, to characterize internal cohesion in these glass models. The mixed alkali effect (MAE) is visible in the bulk mechanical properties but not obvious in other physical properties studied in this paper. We show that Li doping deviates from expected trend due to the much stronger Li-O bonding than those of Na and K doping. The approach used in this study is in contrast with current studies in alkali-doped silicate glasses based only on geometric characterizations.

  19. Intact Discourse Cohesion and Coherence Following Bilateral Ventromedial Prefrontal Cortex

    ERIC Educational Resources Information Center

    Kurczek, Jake; Duff, Melissa C.

    2012-01-01

    Discourse cohesion and coherence give communication its continuity providing the grammatical and lexical links that hold an utterance or text together and give it meaning. Researchers often link cohesion and coherence deficits to the frontal lobes by drawing attention to frontal lobe dysfunction in populations where discourse cohesion and…

  20. Nonequivalent Associations between Forms of Cohesiveness and Group-Related Outcomes: Evidence for Multidimensionality.

    ERIC Educational Resources Information Center

    Zaccaro, Stephen J.

    1991-01-01

    Presents results of a study contrasting different forms of group cohesiveness in a student military organization. Reports that task cohesiveness was more strongly associated with lower role uncertainty, higher individual performance, and lower absenteeism than was interpersonal cohesiveness. Concludes that data provide evidence for a…

  1. Building a Board that Sticks Together

    ERIC Educational Resources Information Center

    Wilson, E. B.

    2006-01-01

    High-performing boards operating at a distinguishable level of excellence, all exhibit a culture of cohesiveness. And a compelling codicil is that these boards did not deliberately set out to become cohesive and perhaps do not even know they are cohesive. This article examines the value of cohesion to university governing boards, explicitly…

  2. Soldiers Have to Eat Soup Together for a Long Time

    DTIC Science & Technology

    2007-03-10

    negatively impacted unit cohesion. The definition of cohesion used for this project is that of “ social cohesion ” or trust based on shared successes...fight.” 9 Napoleon was referring to social cohesion or trust based on shared successes during training and operations. The DoD’s mobilization

  3. Multiscale structure, interfacial cohesion, adsorbed layers, miscibility and properties in dense polymer-particle mixtures

    NASA Astrophysics Data System (ADS)

    Schweizer, Ken

    2012-02-01

    A major goal in polymer nanocomposite research is to understand and predict how the chemical and physical nature of individual polymers and nanoparticles, and thermodynamic state (temperature, composition, solvent dilution, filler loading), determine bulk assembly, miscibility and properties. Microscopic PRISM theory provides a route to this goal for equilibrium disordered mixtures. A major prediction is that by manipulating the net polymer-particle interfacial attraction, miscibility is realizable via the formation of thin thermodynamically stable adsorbed layers, which, however, are destroyed by entropic depletion and bridging attraction effects if interface cohesion is too weak or strong, respectively. This and related issues are quantitatively explored for miscible mixtures of hydrocarbon polymers, silica nanospheres, and solvent using x-ray scattering, neutron scattering and rheology. Under melt conditions, quantitative agreement between theory and silica scattering experiments is achieved under both steric stabilization and weak depletion conditions. Using contrast matching neutron scattering to characterize the collective structure factors of polymers, particles and their interface, the existence and size of adsorbed polymer layers, and their consequences on microstructure, is determined. Failure of the incompressible RPA, accuracy of PRISM theory, the nm thickness of adsorbed layers, and qualitative sensitivity of the bulk modulus to interfacial cohesion and particle size are demonstrated for concentrated PEO-silica-ethanol nanocomposites. Temperature-dependent complexity is discovered when water is the solvent, and nonequilibrium effects emerge for adsorbing entangled polymers that strongly impact structure. By varying polymer chemistry, the effect of polymer-particle attraction on the intrinsic viscosity is explored with striking non-classical effects observed. This work was performed in collaboration with S.Y.Kim, L.M.Hall, C.Zukoski and B.Anderson.

  4. CrossTalk, The Journal of Defense Software Engineering. Volume 28 Number 1. Jan/Feb 2015

    DTIC Science & Technology

    2015-02-01

    5.63 1.03 Positive Gain 1.19 42% 1.10 27% 1.20 31% 0.44 12% Table 7. Group 1 & 2 Pretest and Posttest Means and Gain Scores. The one ...linked to team performance [6][7][8] and is considered one of the most important small group variables [9] with cohesion-performance being driven by...increased team cohesion. Measuring Cohesion In order to measure team cohesion, one must first understand the correlated cohesion constructs. The Group

  5. Does neighborhood social cohesion modify the relationship between neighborhood social norms and smoking behaviors in Mexico?

    PubMed

    Lozano, Paula; Fleischer, Nancy L; Moore, Spencer; Shigematsu, Luz Myriam Reynales; Santillán, Edna Arillo; Thrasher, James F

    2016-07-01

    The aim of this study was to examine the separate and combined relationships of neighborhood social norms and neighborhood social cohesion with smoking behavior in a cohort of adult Mexican smokers. Neighborhood anti-smoking norms were measured as the proportion of residents in each neighborhood who believed that society disapproves of smoking. Perceived social cohesion was measured using a 5-item cohesion scale and aggregated to the neighborhood level. Higher neighborhood anti-smoking norms were associated with less successful quitting. Neighborhood social cohesion modified the relationship between neighborhood social norms and two smoking behaviors: smoking intensity and quit attempts. Residents of neighborhoods with weaker anti-smoking norms and higher social cohesion had lower smoking intensity and more quit attempts than residents living in other areas. Social cohesion may help buffer smoking behavior in areas with weak social norms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Companionship in the neighborhood context: Older adults’ living arrangements and perceptions of social cohesion

    PubMed Central

    Bromell, Lea; Cagney, Kathleen A.

    2014-01-01

    This study investigated the impact of neighborhood social cohesion on the perceived companionship of nearly 1,500 community-dwelling older adults from the Neighborhood, Organization, Aging and Health project (NOAH), a Chicago-based study of older adult well-being in the neighborhood context. We hypothesized that the relationship between neighborhood-level social cohesion and individual residents’ reports of companionship would be more pronounced among those who lived alone than those who resided with others. Controlling for age, gender, education, race, marital status, length of neighborhood residence, and self-rated health, neighborhood social cohesion predicted companionship among those who lived alone; for a one-unit increase in neighborhood social cohesion, the odds of reporting companionship increased by half. In contrast, social cohesion did not predict the companionship of those who resided with others. The results suggest that older adults who live alone particularly profit from the benefits of socially cohesive neighborhood environments. PMID:24860203

  7. Effects of Transition Metals on the Grain Boundary Cohesion in Tungsten

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Kurtz, Richard J.

    2012-04-01

    We report on the effects of alloying transition metals on the interfacial cohesion of W {Sigma}27<110>{l_brace}525{r_brace} symmetrical tilt grain boundary (GB). Density-functional-theory calculations show that the effects are related to the sensitivity of the d-orbital's occupation with respect to the atomic environments at the GB. Systematic trends of cleavage energy as a function of the electronic valence of the impurities were observed across different interfacial positions. Segregation formation energies were calculated to study the stability of the substitutional sites. All of the energetically preferred sites also correspond to the positions at which the alloying elements increase the GB cleavage energy.more » For each element, the more stable the configuration, the higher the cleavage energy. This finding is crucial in designing polycrystalline W-alloys with improved fracture toughness. Considering the solubility limit, the results suggest that Ta, Nb, Re, Ru, and Os are potential additives against intergranular fracture.« less

  8. Effect of acetic acid on physical properties of pregelatinized wheat and corn starch gels.

    PubMed

    Majzoobi, Mahsa; Kaveh, Zahra; Farahnaky, Asgar

    2016-04-01

    Pregelatinized starches are physically modified starches with ability to absorb water and increase viscosity at ambient temperature. The main purpose of this study was to determine how different concentrations of acetic acid (0, 500, 1000, 10,000 mg/kg) can affect functional properties of pregelatinized wheat and corn starches (PGWS and PGCS, respectively) produced by a twin drum drier. With increasing acetic acid following changes occurred for both samples; cold water solubility (at 25 °C) increased, water absorption and apparent cold water viscosity (at 25 °C) reduced, the smooth surface of the starch particles converted to an uneven surface as confirmed by scanning electron microscopy, cohesiveness, consistency and turbidity of the starch gels reduced while their syneresis increased. It was found that in presence of acetic acid, PGWS resulted in higher water absorption and apparent cold water viscosity and produced more cohesive and turbid gels with less syneresis compared to PGCS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Group structure and group process for effective space station astronaut teams

    NASA Technical Reports Server (NTRS)

    Nicholas, J. M.; Kagan, R. S.

    1985-01-01

    Space Station crews will encounter new problems, many derived from the social interaction of groups working in space for extended durations. Solutions to these problems must focus on the structure of groups and the interaction of individuals. A model of intervention is proposed to address problems of interpersonal relationships and emotional stress, and improve the morale, cohesiveness, and productivity of astronaut teams.

  10. When Visions of the Rainbow Nation Are Not Enough: Effect of Post-Apartheid Higher Education Reform on Social Cohesion in South Africa

    ERIC Educational Resources Information Center

    Woodrooffe, Dhruneanne D.

    2011-01-01

    Under the apartheid state, higher education was structured to maintain and reproduce the subordinate social and economic position of non-Whites. The post-apartheid higher education sector suffered from fragmentation along racial lines, a lack of sustainability, and a structural incapacity to meet the challenges of restructuring and development.…

  11. Lexical Cohesion and Specialized Knowledge in Science and Popular Science Texts.

    ERIC Educational Resources Information Center

    Myers, Greg

    1991-01-01

    Examines cohesion in the introductions to some scientific articles and compares the patterns to those from popularizations. Discusses a computational model of cohesion. Argues that readers of scientific articles must have a knowledge of lexical relations to see the implicit cohesion, whereas readers of popularizations must see the cohesive…

  12. Cohesion energetics of carbon allotropes: Quantum Monte Carlo study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Hyeondeok; Kang, Sinabro; Koo, Jahyun

    2014-03-21

    We have performed quantum Monte Carlo calculations to study the cohesion energetics of carbon allotropes, including sp{sup 3}-bonded diamond, sp{sup 2}-bonded graphene, sp–sp{sup 2} hybridized graphynes, and sp-bonded carbyne. The computed cohesive energies of diamond and graphene are found to be in excellent agreement with the corresponding values determined experimentally for diamond and graphite, respectively, when the zero-point energies, along with the interlayer binding in the case of graphite, are included. We have also found that the cohesive energy of graphyne decreases systematically as the ratio of sp-bonded carbon atoms increases. The cohesive energy of γ-graphyne, the most energetically stablemore » graphyne, turns out to be 6.766(6) eV/atom, which is smaller than that of graphene by 0.698(12) eV/atom. Experimental difficulty in synthesizing graphynes could be explained by their significantly smaller cohesive energies. Finally, we conclude that the cohesive energy of a newly proposed graphyne can be accurately estimated with the carbon–carbon bond energies determined from the cohesive energies of graphene and three different graphynes considered here.« less

  13. [Effects of Korean proficiency and parent-child cohesion on self-esteem and acculturation among children from multicultural families].

    PubMed

    Kim, Mi Ye; Lim, Ji Young; Chung, Grace H

    2012-12-01

    There is evidence that parent-child cohesion is a potentially influential factor in children's self-esteem and acculturation. However, no research to date has examined cohesion with parents as a potential pathway between Korean proficiency and self-esteem or acculturation among children from multicultural families. This study was done to address these limitations by examining whether and to what extent cohesion with parents mediated the effect of Korean proficiency on self-esteem and acculturation among children from multicultural families. Data were collected from a sample of 138 mothers and their children living in Seoul, Daegu, Kyungi province, and Kyungpook province. Multiple regression analysis was used to examine the relationships between the variables of interest. Mediation effects of cohesion with parents were tested by following the procedure recommended by Baron and Kenny (1986). Cohesion with parents partially mediated the relationship between Korean proficiency and self-esteem. For children's acculturation, the effect of Korean proficiency was partially mediated through father-child cohesion. Mother-child cohesion completely mediated the relationship between Korean proficiency and acculturation. These findings suggest that to help children from multicultural families experiencing difficulties with self-esteem or acculturation, it might be useful to develop programs that are aimed at strengthen cohesion with parents.

  14. Happier together. Social cohesion and subjective well-being in Europe.

    PubMed

    Delhey, Jan; Dragolov, Georgi

    2016-06-01

    Despite mushrooming research on "social" determinants of subjective well-being (SWB), little is known as to whether social cohesion as a collective property is among the key societal conditions for human happiness. This article fills this gap in investigating the importance of living in a cohesive society for citizens' SWB. For 27 European Union countries, it combines the newly developed Bertelsmann Foundation's Cohesion Index with individual well-being data on life evaluation and psychological functioning as surveyed in the recent European Quality of Life Survey. The main results from multi-level analyses are as follows. First, Europeans are indeed happier and psychologically healthier in more cohesive societies. Second, all three core domains of cohesion increase individuals' SWB. Third, citizens in the more affluent part of Europe feel the positivity of social cohesion more consistently than those in the less affluent part. Finally, within countries, cohesion is good for the SWB of resource-rich and resource-poor groups alike. Our findings also shed new light on the ongoing debate on economic progress and quality of life: what makes citizenries of affluent societies happier is, in the first place, their capacity to create togetherness and solidarity among their members-in other words, cohesion. © 2015 International Union of Psychological Science.

  15. Neighborhood cohesion and daily well-being: Results from a diary study

    PubMed Central

    Robinette, Jennifer W.; Charles, Susan T.; Mogle, Jacqueline A.; Almeida, David M.

    2013-01-01

    Neighborly cohesiveness has documented benefits for health. Furthermore, high perceived neighborhood cohesion offsets the adverse health effects of neighborhood socioeconomic adversity. One potential way neighborhood cohesion influences health is through daily stress processes. The current study uses participants (n = 2022, age 30–84 years) from The Midlife in the United States II and the National Study of Daily Experiences II, collected between 2004–2006, to examine this hypothesis using a within-person, daily diary design. We predicted that people who perceive high neighborhood cohesion are exposed to fewer daily stressors, such as interpersonal arguments, lower daily physical symptoms and negative affect, and higher daily positive affect. We also hypothesized that perceptions of neighborhood cohesion buffer declines in affective and physical well-being on days when daily stressors do occur. Results indicate that higher perceived neighborhood cohesion predicts fewer self-reported daily stressors, higher positive affect, lower negative affect, and fewer physical health symptoms. High perceived neighborhood cohesion also buffers the effects of daily stressors on negative affect, even after adjusting for other sources of social support. Results from the present study suggest interventions focusing on neighborhood cohesion may result in improved well-being and may minimize the adverse effect of daily stressors. PMID:24034965

  16. Context matters: Community social cohesion and health behaviors in two South African areas.

    PubMed

    Lippman, Sheri A; Leslie, Hannah H; Neilands, Torsten B; Twine, Rhian; Grignon, Jessica S; MacPhail, Catherine; Morris, Jessica; Rebombo, Dumisani; Sesane, Malebo; El Ayadi, Alison M; Pettifor, Audrey; Kahn, Kathleen

    2018-03-01

    Understanding how social contexts shape HIV risk will facilitate development of effective prevention responses. Social cohesion, the trust and connectedness experienced in communities, has been associated with improved sexual health and HIV-related outcomes, but little research has been conducted in high prevalence settings. We conducted population-based surveys with adults 18-49 in high HIV prevalence districts in Mpumalanga (n = 2057) and North West Province (n = 1044), South Africa. Community social cohesion scores were calculated among the 70 clusters. We used multilevel logistic regression stratified by gender to assess individual- and group-level associations between social cohesion and HIV-related behaviors: recent HIV testing, heavy alcohol use, and concurrent sexual partnerships. Group-level cohesion was protective in Mpumalanga, where perceived social cohesion was higher. For each unit increase in group cohesion, the odds of heavy drinking among men were reduced by 40% (95%CI 0.25, 0.65); the odds of women reporting concurrent sexual partnerships were reduced by 45% (95%CI 0.19, 1.04; p = 0.06); and the odds of reporting recent HIV testing were 1.6 and 1.9 times higher in men and women, respectively. We identified potential health benefits of cohesion across three HIV-related health behaviors in one region with higher overall evidence of group cohesion. There may be a minimum level of cohesion required to yield positive health effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Coach-initiated motivational climate and cohesion in youth sport.

    PubMed

    Eys, Mark A; Jewitt, Eryn; Evans, M Blair; Wolf, Svenja; Bruner, Mark W; Loughead, Todd M

    2013-09-01

    The general purpose of the present study was to examine the link between cohesion and motivational climate in youth sport. The first specific objective was to determine if relationships demonstrated in previous research with adult basketball and handball participants would be replicated in a younger sample and with a more heterogeneous set of sports. The second specific objective was to examine whether sources of athlete enjoyment moderate the relationships between motivational climate and cohesion. Athletes (N = 997; 532 girls and 465 boys; Mage = 15.26 +/- 1.20 years) completed measures pertaining to coach-initiated motivational climate, cohesion, and sources of enjoyment. Bivariate and canonical correlations revealed positive correlations between perceptions of a task-involving motivational climate and both task and social cohesion, while ego-involving motivational climate was negatively related. Cluster analyses suggested that individuals perceiving a low task-involving climate and high ego-involving climate perceived their teams as less cohesive. Finally, the degree to which participants derived enjoyment through other-referenced competency served as a moderator in the motivational climate-task cohesion relationship. Specifically, the relationship between task cohesion and motivational climate was more pronounced for those individuals who were less likely to derive enjoyment through other-referenced competency. Youth athletes' perceptions of coach-initiated motivational climate are related to cohesion. This relationship is, however, moderated by the degree to which athletes derive enjoyment through other-referenced competency. Motivational climate is an important variable to consider within team-building protocols intent on developing cohesion.

  18. Using neighborhood cohesiveness to infer interactions between protein domains.

    PubMed

    Segura, Joan; Sorzano, C O S; Cuenca-Alba, Jesus; Aloy, Patrick; Carazo, J M

    2015-08-01

    In recent years, large-scale studies have been undertaken to describe, at least partially, protein-protein interaction maps, or interactomes, for a number of relevant organisms, including human. However, current interactomes provide a somehow limited picture of the molecular details involving protein interactions, mostly because essential experimental information, especially structural data, is lacking. Indeed, the gap between structural and interactomics information is enlarging and thus, for most interactions, key experimental information is missing. We elaborate on the observation that many interactions between proteins involve a pair of their constituent domains and, thus, the knowledge of how protein domains interact adds very significant information to any interactomic analysis. In this work, we describe a novel use of the neighborhood cohesiveness property to infer interactions between protein domains given a protein interaction network. We have shown that some clustering coefficients can be extended to measure a degree of cohesiveness between two sets of nodes within a network. Specifically, we used the meet/min coefficient to measure the proportion of interacting nodes between two sets of nodes and the fraction of common neighbors. This approach extends previous works where homolog coefficients were first defined around network nodes and later around edges. The proposed approach substantially increases both the number of predicted domain-domain interactions as well as its accuracy as compared with current methods. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. A blanching technique for intradermal injection of the hyaluronic acid Belotero.

    PubMed

    Micheels, Patrick; Sarazin, Didier; Besse, Stéphanie; Sundaram, Hema; Flynn, Timothy C

    2013-10-01

    With the proliferation of dermal fillers in the aesthetic workplace have come instructions from various manufacturers regarding dermal placement. Determination of injection needle location in the dermis has in large part been based on physician expertise, product and needle familiarity, and patient-specific skin characteristics. An understanding of the precise depth of dermal structures may help practitioners improve injection specificity. Unlike other dermal fillers that suggest intradermal and deep dermal injection planes, a new hyaluronic acid with a cohesive polydensified matrix may be more appropriate for the superficial dermis because of its structure and its high degree of integration into the dermis. To that end, the authors designed a small study to quantify the depth of the superficial dermis by means of ultrasound and histology. Using ultrasound resources, the authors determined the depths of the epidermis, the dermis, and the reticular dermis in the buttocks of six patients; the authors then extrapolated the depth of the superficial reticular dermis. Histologic studies of two of the patients showed full integration of the product in the reticular dermis. Following determination of injection depths and filler integration, the authors describe a technique ("blanching") for injection of the cohesive polydensified matrix hyaluronic acid into the superficial dermis. At this time, blanching is appropriate only for injection of the cohesive polydensified matrix hyaluronic acid known as Belotero Balance in the United States, although it may have applications for other hyaluronic acid products outside of the United States.

  20. Validation of theoretical pathway between discrimination, diabetes self-care and glycemic control.

    PubMed

    Dawson, Aprill Z; Walker, Rebekah J; Campbell, Jennifer A; Egede, Leonard E

    2016-07-01

    This study examined the mechanisms through which discrimination influences diabetes self-care and glycemic control in patients with diabetes by using structured equation modeling. 615 patients were recruited from two adult primary care clinics in the southeastern United States. Measures were based on a theoretical model and included perceived discrimination, social support, social cohesion, and perceived stress. Structured equation modeling examined the relationship with diabetes self-care and glycemic control. The final model (chi2(211)=328.82, p<0.0001, R(2)=0.99, RMSEA=0.03 and CFI=0.98) shows that higher stress is directly significantly related to a decreased self-care (r=-0.59, p <0.001) and increased HbA1c (r=0.27, p<0.05). There was no significant direct association between discrimination, social support or social cohesion, and glycemic control or self-care. There was, however, a direct significant association between increased discrimination (r=0.46, p<0.001), decreased social support (r=-0.34, p<0.001), increased social cohesion (r=0.14, p<0.05) and increased stress. These results support the hypothesized pathway of discrimination on health outcomes, showing both a direct and indirect influence through stress on HbA1c in adults with diabetes. Understanding the pathways through which discrimination influences diabetes outcomes is important for providing more comprehensive and effective care. These results suggest future interventions targeting patients with diabetes should take discrimination-induced stress into account. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Wireless Monitoring of Changes in Crew Relations during Long-Duration Mission Simulation.

    PubMed

    Johannes, Bernd; Sitev, Alexej S; Vinokhodova, Alla G; Salnitski, Vyacheslav P; Savchenko, Eduard G; Artyukhova, Anna E; Bubeev, Yuri A; Morukov, Boris V; Tafforin, Carole; Basner, Mathias; Dinges, David F; Rittweger, Jörn

    2015-01-01

    Group structure and cohesion along with their changes over time play an important role in the success of missions where crew members spend prolonged periods of time under conditions of isolation and confinement. Therefore, an objective system for unobtrusive monitoring of crew cohesion and possible individual stress reactions is of high interest. For this purpose, an experimental wireless group structure (WLGS) monitoring system integrated into a mobile psychophysiological system was developed. In the presented study the WLGS module was evaluated separately in six male subjects (27-38 years old) participating in a 520-day simulated mission to Mars. Two days per week, each crew member wore a small sensor that registered the presence and distance of the sensors either worn by the other subjects or strategically placed throughout the isolation facility. The registration between two sensors was on average 91.0% in accordance. A correspondence of 95.7% with the survey video on day 475 confirmed external reliability. An integrated score of the "crew relation time index" was calculated and analyzed over time. Correlation analyses of a sociometric questionnaire (r = .35-.55, p< .05) and an ethological group approach (r = .45-.66, p < 05) provided initial evidence of the method's validity as a measure of cohesion when taking behavioral and activity patterns into account (e.g. only including activity phases in the afternoon). This confirms our assumption that the registered amount of time spent together during free time is associated with the intensity of personal relationships.

  2. Channels of Change: Contrasting Network Mechanisms in the Use of Interventions

    PubMed Central

    Neal, Zachary P.; Atkins, Marc S.; Henry, David B.; Frazier, Stacy L.

    2011-01-01

    This study informs community science, and seeks to narrow the research-to-practice gap, by examining how the interpersonal networks within a setting influence individuals’ use of interventions. More specifically, it explores the role of two network mechanisms—cohesion and structural similarity—in urban elementary school teachers’ use of interventions designed to improve academic and behavioral outcomes for students. Lagged regression models examine how position in advice giving networks influenced weekly use of the daily report card and peer assisted learning by kindergarten through fourth grade teachers in three schools. Results indicate that intervention use spreads among teachers with similar patterns of advice-giving relationships (i.e., via structural similarity), rather than from teachers who are sources of advice (i.e., via cohesion). These results are consistent with findings in other settings, and suggest that researchers wishing to increase the use of an intervention should select change agents based on their patterns of their relationships, rather than on their direct connections. PMID:21181552

  3. Segmentation in cohesive systems constrained by elastic environments

    NASA Astrophysics Data System (ADS)

    Novak, I.; Truskinovsky, L.

    2017-04-01

    The complexity of fracture-induced segmentation in elastically constrained cohesive (fragile) systems originates from the presence of competing interactions. The role of discreteness in such phenomena is of interest in a variety of fields, from hierarchical self-assembly to developmental morphogenesis. In this paper, we study the analytically solvable example of segmentation in a breakable mass-spring chain elastically linked to a deformable lattice structure. We explicitly construct the complete set of local minima of the energy in this prototypical problem and identify among them the states corresponding to the global energy minima. We show that, even in the continuum limit, the dependence of the segmentation topology on the stretching/pre-stress parameter in this problem takes the form of a devil's type staircase. The peculiar nature of this staircase, characterized by locking in rational microstructures, is of particular importance for biological applications, where its structure may serve as an explanation of the robustness of stress-driven segmentation. This article is part of the themed issue 'Patterning through instabilities in complex media: theory and applications.'

  4. Nanostructured Composites: Effective Mechanical Property Determination of Nanotube Bundles

    NASA Technical Reports Server (NTRS)

    Saether, E.; Pipes, R. B.; Frankland, S. J. V.

    2002-01-01

    Carbon nanotubes naturally tend to form crystals in the form of hexagonally packed bundles or ropes that should exhibit a transversely isotropic constitutive behavior. Although the intratube axial stiffness is on the order of 1 TPa due to a strong network of delocalized bonds, the intertube cohesive strength is orders of magnitude less controlled by weak, nonbonding van der Waals interactions. An accurate determination of the effective mechanical properties of nanotube bundles is important to assess potential structural applications such as reinforcement in future composite material systems. A direct method for calculating effective material constants is developed in the present study. The Lennard-Jones potential is used to model the nonbonding cohesive forces. A complete set of transverse moduli are obtained and compared with existing data.

  5. Peptides at the Interface: Self-Assembly of Amphiphilic Designer Peptides and Their Membrane Interaction Propensity

    PubMed Central

    2016-01-01

    Self-assembling amphiphilic designer peptides have been successfully applied as nanomaterials in biomedical applications. Understanding molecular interactions at the peptide–membrane interface is crucial, since interactions at this site often determine (in)compatibility. The present study aims to elucidate how model membrane systems of different complexity (in particular single-component phospholipid bilayers and lipoproteins) respond to the presence of amphiphilic designer peptides. We focused on two short anionic peptides, V4WD2 and A6YD, which are structurally similar but showed a different self-assembly behavior. A6YD self-assembled into high aspect ratio nanofibers at low peptide concentrations, as evidenced by synchrotron small-angle X-ray scattering and electron microscopy. These supramolecular assemblies coexisted with membranes without remarkable interference. In contrast, V4WD2 formed only loosely associated assemblies over a large concentration regime, and the peptide promoted concentration-dependent disorder on the membrane arrangement. Perturbation effects were observed on both membrane systems although most likely induced by different modes of action. These results suggest that membrane activity critically depends on the peptide’s inherent ability to form highly cohesive supramolecular structures. PMID:27741400

  6. Melt layer formation in stainless steel under transient thermal loads

    NASA Astrophysics Data System (ADS)

    Steudel, I.; Klimov, N. S.; Linke, J.; Loewenhoff, Th.; Pintsuk, G.; Pitts, R. A.; Wirtz, M.

    2015-08-01

    To investigate the performance of stainless steel under transient thermal events, such as photon pulses caused by disruptions mitigated by massive gas injection (MGI), the material has been exposed to electron beam loads with ITER relevant power densities slightly above the melting threshold (245 MW/m2) and a pulse duration of 3 ms (Sugihara et al., 2012; Klimov et al., 2013; Pitts et al., 2013). The samples were manufactured from different steel grades with slightly modified chemical composition. To investigate the effect of repetitive surface heat loads on the melting process and the melt motion, identical heat pulses in the range of 100-3000 were applied. All tested materials showed intense melt-induced surface roughening, driven by repeated shallow surface melting up to several ten micrometre and fast re-solidification with epitaxial grain growth. During the liquid phase, melt motion induced by cohesive forces results in the formation of a wavy surface structure with apexes. Further experiments have been performed to study the effects of non-perpendicular surfaces or leading edges.

  7. Suppressing Crack Formation in Particulate Systems by Utilizing Capillary Forces

    PubMed Central

    Schneider, Monica; Maurath, Johannes; Fischer, Steffen B.; Weiß, Moritz; Willenbacher, Norbert; Koos, Erin

    2017-01-01

    Cracks, formed during the drying of particulate films, can reduce the effectiveness or even render products useless. We present a novel, generic approach to suppress crack formation in thin films made from hard particle suspensions, which are otherwise highly susceptible to cracking, using the capillary force between particles present when a trace amount of an immiscible liquid is added to a suspension. This secondary liquid preserves the particle cohesion, modifying the structure and increasing the drying rate. Crack-free films can be produced at thicknesses much greater than the critical cracking thickness for a suspension without capillary interactions, and even persists after sintering. This capillary suspension strategy is applicable to a broad range of materials including suspensions of metals, semiconductive and ceramic oxides or glassy polymeric particles and can be easily implemented in many industrial processes since it is based on well-established unit operations. Promising fields of application include ceramic foils and printed electronic devices. PMID:28263554

  8. Physician Information Needs in Managing Delirium

    PubMed Central

    Taft, Teresa; Nelsen, Scott D; Slager, Stacey; Weir, Charlene

    2017-01-01

    Delirium has the highest occurrence rate of any complication in hospitalized adults over the age of 65. The study objective was to determine physician information needs for use in the development of electronic clinical decision support for physicians managing the care of patients with delirium. Critical incident interviews were conducted with 8 experienced internal medicine physicians and 1 cardiologist. Thematic analysis revealed the following 6 themes: 1) Clinician’s experience an impoverished information field for mental status, 2) Uncertainty is pervasive, 3) Extensive information foraging effort is required for cohesive story building, 4) Goal Conflict leads to missed diagnosis and early closure, 5) Diffusion of Responsibility for treating delirium is common, and 6) Use of structured delirium resources is minimal. Elicited information needs were identified and physician recommendations for improving access to information needed in managing the care of patient’s with delirium are reported. Information elicited in this study is useful for designing delirium clinical decision support that supports physician cognition.

  9. Phase transformations of 4,4'-biphenyldicarboxylic acid on Cu(001)

    NASA Astrophysics Data System (ADS)

    Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J. W.; Poelsema, Bene

    2012-06-01

    The growth and structure of 4,4'-biphenyldicarboxylic-acid (BDA) on Cu(001) at temperatures between 300 and 400 K was studied by low energy electron microscopy and μ-LEED. First, the adsorbed BDA molecules form a disordered dilute phase. Once this phase reaches a sufficiently high density, a crystalline phase nucleates, in which the molecules form a hydrogen-bonded two-dimensional (2D) supramolecular c(8×8) network. By a careful analysis of the bright-field image intensity, we can measure the density in the dilute phase, which is up to 30% of that in the crystalline phase. From the respective equilibrium densities at different temperatures, we determine the 2D phase diagram and extract a cohesive energy of 0.35 eV. We also analyze the island decay behavior and estimate the BDA molecule diffusion constants. Steps are found to be highly transparent for diffusing BDA molecules. In the temperature range of 362-400 K, we find chemical diffusion constants between 850-1700nm2s-1.

  10. Analysis of Gas-Particle Flows through Multi-Scale Simulations

    NASA Astrophysics Data System (ADS)

    Gu, Yile

    Multi-scale structures are inherent in gas-solid flows, which render the modeling efforts challenging. On one hand, detailed simulations where the fine structures are resolved and particle properties can be directly specified can account for complex flow behaviors, but they are too computationally expensive to apply for larger systems. On the other hand, coarse-grained simulations demand much less computations but they necessitate constitutive models which are often not readily available for given particle properties. The present study focuses on addressing this issue, as it seeks to provide a general framework through which one can obtain the required constitutive models from detailed simulations. To demonstrate the viability of this general framework in which closures can be proposed for different particle properties, we focus on the van der Waals force of interaction between particles. We start with Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) simulations where the fine structures are resolved and van der Waals force between particles can be directly specified, and obtain closures for stress and drag that are required for coarse-grained simulations. Specifically, we develop a new cohesion model that appropriately accounts for van der Waals force between particles to be used for CFD-DEM simulations. We then validate this cohesion model and the CFD-DEM approach by showing that it can qualitatively capture experimental results where the addition of small particles to gas fluidization reduces bubble sizes. Based on the DEM and CFD-DEM simulation results, we propose stress models that account for the van der Waals force between particles. Finally, we apply machine learning, specifically neural networks, to obtain a drag model that captures the effects from fine structures and inter-particle cohesion. We show that this novel approach using neural networks, which can be readily applied for other closures other than drag here, can take advantage of the large amount of data generated from simulations, and therefore offer superior modeling performance over traditional approaches.

  11. Social Cohesion as a Real-Life Phenomenon: Assessing the Explanatory Power of the Universalist and Particularist Perspectives

    ERIC Educational Resources Information Center

    Janmaat, Jan Germen

    2011-01-01

    Unlike most studies on social cohesion, this study explores the concept as a real-life macro-level phenomenon. It assesses to what extent the conceptions of social cohesion suggested by several macro-level approaches represent coherent empirically observable forms of social cohesion. Additionally it discusses two perspectives on social…

  12. Formation and Restacking of Disordered Smectite Osmotic Hydrates

    DOE PAGES

    Gilbert, Benjamin; Comolli, Luis R.; Tinnacher, Ruth M.; ...

    2015-12-01

    Clay swelling, an important phenomenon in natural systems, can dramatically affect the properties of soils and sediments. Something of particular interest in low-salinity, saturated systems are osmotic hydrates, forms of smectite in which the layer separation greatly exceeds the thickness of a single smectite layer due to the intercalation of water. In situ X-ray diffraction (XRD) studies have shown a strong link between ionic strength and average interlayer spacing in osmotic hydrates but also indicate the presence of structural disorder that has not been fully described. In the present study the structural state of expanded smectite in sodium chloride solutionsmore » was investigated by combining very low electron dose, high-resolution cryogenic-transmission electron microscopy observations with XRD experiments. Wyoming smectite (SWy-2) was embedded in vitreous ice to evaluate clay structure in aqua. Lattice-fringe images showed that smectite equilibrated in aqueous, low-ionic-strength solutions, exists as individual smectite layers, osmotic hydrates composed of parallel layers, as well as disordered layer conformations. There was no evidence found here for edge-to-sheet attractions, but significant variability in interlayer spacing was observed. Whether this variation could be explained by a dependence of the magnitude of long-range cohesive (van der Waals) forces on the number of layers in a smectite particle was investigated here. Calculations of the Hamaker constant for layer-layer interactions showed that van der Waals forces may span at least five layers plus the intervening water and confirmed that forces vary with layer number. The drying of the disordered osmotic hydrates induced re-aggregation of the smectite to form particles that exhibited coherent scattering domains. Clay disaggregation and restacking may be considered as an example of oriented attachment, with the unusual distinction that it may be cycled repeatedly by changing solution conditions.« less

  13. Formation and Restacking of Disordered Smectite Osmotic Hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, Benjamin; Comolli, Luis R.; Tinnacher, Ruth M.

    Clay swelling, an important phenomenon in natural systems, can dramatically affect the properties of soils and sediments. Something of particular interest in low-salinity, saturated systems are osmotic hydrates, forms of smectite in which the layer separation greatly exceeds the thickness of a single smectite layer due to the intercalation of water. In situ X-ray diffraction (XRD) studies have shown a strong link between ionic strength and average interlayer spacing in osmotic hydrates but also indicate the presence of structural disorder that has not been fully described. In the present study the structural state of expanded smectite in sodium chloride solutionsmore » was investigated by combining very low electron dose, high-resolution cryogenic-transmission electron microscopy observations with XRD experiments. Wyoming smectite (SWy-2) was embedded in vitreous ice to evaluate clay structure in aqua. Lattice-fringe images showed that smectite equilibrated in aqueous, low-ionic-strength solutions, exists as individual smectite layers, osmotic hydrates composed of parallel layers, as well as disordered layer conformations. There was no evidence found here for edge-to-sheet attractions, but significant variability in interlayer spacing was observed. Whether this variation could be explained by a dependence of the magnitude of long-range cohesive (van der Waals) forces on the number of layers in a smectite particle was investigated here. Calculations of the Hamaker constant for layer-layer interactions showed that van der Waals forces may span at least five layers plus the intervening water and confirmed that forces vary with layer number. The drying of the disordered osmotic hydrates induced re-aggregation of the smectite to form particles that exhibited coherent scattering domains. Clay disaggregation and restacking may be considered as an example of oriented attachment, with the unusual distinction that it may be cycled repeatedly by changing solution conditions.« less

  14. Multinational Business Gaming: Is Gender Important?

    ERIC Educational Resources Information Center

    Johnson, Scott D.; And Others

    1997-01-01

    A study investigated influence of gender on undergraduate students (n=119) involved in international business games. Females tended to view the simulation as less complex, have less cohesive group structures, and show less self-confidence than males. However, game performance measures showed no significant gender differences. Implications for…

  15. Text Mining.

    ERIC Educational Resources Information Center

    Trybula, Walter J.

    1999-01-01

    Reviews the state of research in text mining, focusing on newer developments. The intent is to describe the disparate investigations currently included under the term text mining and provide a cohesive structure for these efforts. A summary of research identifies key organizations responsible for pushing the development of text mining. A section…

  16. Adoptees' Portrayal of the Development of Family Structure.

    ERIC Educational Resources Information Center

    Sobol, Michael P.; And Others

    1994-01-01

    Young adult adoptees (n=48) and nonadoptees (n=72) provided retrospective accounts of family relationships that portrayed adoptive families as more cohesive and adaptable, with greater closeness before adolescence. Results are considered in terms of discontinuities of observations of adoptive families and adoptees' personal reflections. (SLD)

  17. Family cohesion and pride, drinking and alcohol use disorder in Puerto Rico.

    PubMed

    Caetano, Raul; Vaeth, Patrice A C; Canino, Glorisa

    2017-01-01

    The extended multigenerational family is a core value of Hispanic culture. Family cohesion/pride can have protective effects on drinking- and drug-use-related behavior among Hispanics. To examine the association between family cohesion/pride, drinking, binge drinking, and DSM-5 alcohol use disorder (AUD) in Puerto Rico. Data are from a household random sample of 1510 individuals 18-64 years of age in San Juan, Puerto Rico. Bivariate analyses showed that family cohesion/pride was not associated with the average number of drinks consumed per week but was associated with binge drinking among men. Family cohesion/pride was also associated with DSM-5 AUD. Results of the multivariate analyses were consistent with these bivariate results for DSM-5 AUD. Respondents with low (OR = 2.2, 95CL = 1.21-3.98; p < .01) and medium (OR = 1.88; 95CL = 1.12-3.14; p < .01) family cohesion/pride were more likely than those with high family cohesion/pride to have a positive diagnosis of DSM-5 AUD. More liberal drinking norms and positive attitudes toward drinking were also strong predictors of the average number of drinks consumed per week. More liberal drinking norms also predicted binge drinking, and DSM-5 AUD. Higher family cohesion/pride may have a protective effect against DSM-5 AUD. This may have practical implications for clinical and prevention programs. As long as high cohesion is not enabling drinking, these programs can enhance and support family cohesion/pride to help clients in treatment and recovery and prevent drinking problems.

  18. The influence of crystal habit on the prediction of dry powder inhalation formulation performance using the cohesive-adhesive force balance approach.

    PubMed

    Hooton, Jennifer C; Jones, Matthew D; Harris, Haggis; Shur, Jagdeep; Price, Robert

    2008-09-01

    The aim of this investigation was to study the influence of crystalline habit of active pharmaceutical ingredients on the cohesive-adhesive force balance within model dry powder inhaler (DPI) formulations and the corresponding affect on DPI formulation performance. The cohesive-adhesive balance (CAB) approach to colloid probe atomic force microscopy (AFM) was employed to determine the cohesive and adhesive interactions of micronized budesonide particles against the {102} and {002} faces of budesonide single crystals and crystalline substrates of different sugars (cyclodextrin, lactose, trehalose, raffinose, and xylitol), respectively. These data were used to measure the relative level of cohesion and adhesion via CAB and the possible influence on in vitro performance of a carrier-based DPI formulation. Varying the crystal habit of the drug had a significant effect on the cohesive measurement of micronized budesonide probes, with the cohesive values on the {102} faces being approximately twice that on the {002} crystal faces. However, although different CAB values were measured with the sugars with respect to the crystal faces chosen for the cohesive-based measurement, the overall influence on the rank order of the CAB values was not directly influenced. For these data sets, the CAB gradient indicated that a decrease in the dominance of the adhesive forces led to a concomitant increase in fine particle delivery, reaching a plateau as the cohesive forces became dominant. The study suggested that crystal habit of the primary drug crystals influences the cohesive interactions and the resulting force balance measurements of colloid probe CAB analysis.

  19. Family Cohesion and Pride: Drinking and Alcohol Use Disorders in Puerto Rico

    PubMed Central

    Caetano, Raul; Vaeth, Patrice A. C.; Canino, Glorisa

    2017-01-01

    Background The extended multigenerational family is a core value of Hispanic culture. Family cohesion/pride can have protective effects on drinking and drug use related behavior among Hispanics. Objectives To examine the association between family cohesion/pride, drinking, binge drinking, and DSM-5 alcohol use disorder in Puerto Rico. Methods Data are from a household random sample of 1510 individuals 18-64 years of age of San Juan, Puerto Rico. Results Bivariate analyses showed that family cohesion/pride was not associated with the average number of drinks consumed per week, but was associated with binge drinking among men. Family cohesion/pride was also associated with DSM-5 alcohol use disorder. Results of the multivariate analyses were consistent with these bivariate results for DSM-5 AUD. Respondents with low (OR=2.2, 95CL=1.21-3.98; p<.01) and medium (OR=1.88; 95CL=1.12-3.14; p<.01) family cohesion/pride were more likely than those with high family cohesion/pride to have a positive diagnosis of DSM-5 alcohol use disorder. More liberal drinking norms and positive attitudes towards drinking were also strong predictors of the average number of drinks consumed per week. More liberal drinking norms also predicted binge drinking, and DSM-5 AUD. Conclusions Higher family cohesion/pride may have a protective effect against DSM-5 alcohol use disorder. This may have practical implications for clinical and prevention programs. As long as high cohesion is not enabling drinking, these programs can enhance and support family cohesion/pride to help clients in treatment and recovery and prevent drinking problems. PMID:27808561

  20. Analysis of the interphase of a polyamide bonded to chromic acid anodized Ti-6AL-4V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guinta, R.K.; Kander, R.G.

    2000-01-06

    Structural adhesive joints, when tested as made, typically fail cohesively through the centerline of the adhesive. However, in any study of adhesive joint durability, failure near the adhesive/substrate interface becomes an important consideration. In the current study, an interfacially debonding adhesive test, the notched coating adhesion (NCA) test, was applied to LaRC(trademark) PETI-5 adhesive bonded to chronic acid anodized (CAA) Ti-6Al-4V. Post-failure analysis of the interphase region included X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), field emission scanning electron microscopy (FE-SEM), and atomic force microscopy (AFM). Mechanical interlocking between an adhesive and a substrate occurs when the liquid adhesivemore » flows into interstices of the substrate, solidifies, and becomes locked in place. Mechanical interlocking is believed to significantly contribute to the adhesion of substrates that exhibit microroughness, such as metal surfaces treated with chromic acid anodization or sodium hydroxide anodization. Filbey and Wightman found that an epoxy penetrated the pores of CAA Ti-6Al-4V, one of the limited number of pore penetration studies that have been reported. In the current study, the penetration of PETI-5 into the pores of CAA Ti-6Al-4V is investigated through analysis of adhesive/substrate failure surfaces.« less

  1. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement.

    PubMed

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05). SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively. Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group.

  2. Effect of ultraviolet light irradiation on bond strength of fiber post: Evaluation of surface characteristic and bonded area of fiber post with resin cement

    PubMed Central

    Reza, Fazal; Ibrahim, Nur Sukainah

    2015-01-01

    Objective: Fiber post is cemented to a root canal to restore coronal tooth structure. This research aims to evaluate the effect of ultraviolet (UV) irradiation on bond strength of fiber post with resin cement. Materials and Methods: A total of 40 of the two types of fiber posts, namely, FRC Prostec (FRC) and Fiber KOR (KOR), were used for the experiment. UV irradiation was applied on top of the fiber post surface for 0, 15, 20, and 30 min. The irradiated surface of the fiber posts (n = 5) were immediately bonded with resin cement (Rely X U200) after UV irradiation. Shear bond strength (SBS) MPa was measured, and the dislodged area of post surfaces was examined with scanning electron microscopes. Changes in surface roughness (Ra) of the FRC group after UV irradiation were observed (n = 3) using atomic force microscopy. Data of SBS were statistically analyzed using one-way analysis of variance, followed by multiple comparisons (P < 0.05). Results: SBS was significantly higher for 20 min of UV irradiation of the FRC group while significantly higher SBS was observed with 15 min of UV irradiation of the KOR group. Resin cement was more evident (cohesive failure) on the dislodged post surface of the UV treated groups compared with the control. The surface roughness of the FRC post was Ra = 175.1 nm and Ra = 929.2 nm for the control and the 20 min group, respectively. Conclusions: Higher surface roughness of the UV irradiated group indicated formation of mechanical retention on the fiber post surface. Evidence of cohesive failure was observed which indicated higher SBS of fiber post with the UV irradiated group. PMID:25713488

  3. Contributions of Self-Explanation to Comprehension of High- and Low-Cohesion Texts

    ERIC Educational Resources Information Center

    Ozuru, Yasuhiro; Briner, Stephen; Best, Rachel; McNamara, Danielle S.

    2010-01-01

    This study examined how the contribution of self-explanation to science text comprehension is affected by the cohesion of a text at a local level. Psychology undergraduates read and self-explained a science text with either low or high local cohesion. Local cohesion was manipulated by the presence or absence of connectives and referential words or…

  4. [Effects of family cohesion and adaptability on behavioral problems in preschool children].

    PubMed

    Wang, Yan-Ni; Xue, Hong-Li; Chen, Qian

    2016-05-01

    To investigate the effects of family cohesion and adaptability on behavioral problems in preschool children. The stratified cluster multistage sampling method was used to perform a questionnaire survey in the parents of 1 284 children aged 3-6 years in the urban area of Lanzhou, China. The general status questionnaire, Conners Child Behavior Checklist (Parent Symptom Question), and Family Adaptability and Cohesion Scale, Second edition, Chinese version (FACESII-CV) were used to investigate behavioral problems and family cohesion and adaptability. The overall detection rate of behavioral problems in preschool children was 17.13%. The children with different types of family cohesion had different detection rates of behavioral problems, and those with free-type family cohesion showed the highest detection rate of behavioral problems (40.2%). The children with different types of family adaptability also had different detection rates of behavioral problems, and those with stiffness type showed the highest detection rate of behavioral problems (25.1%). The behavioral problems in preschool children were negatively correlated with family cohesion and adaptability. During the growth of preschool children, family cohesion and adaptability have certain effects on the mental development of preschool children.

  5. Authentic leadership, group cohesion and group identification in security and emergency teams.

    PubMed

    García-Guiu López, Carlos; Molero Alonso, Fernando; Moya Morales, Miguel; Moriano León, Juan Antonio

    2015-01-01

    Authentic leadership (AL) is a kind of leadership that inspires and promotes positive psychological capacities, underlining the moral and ethical component of behavior. The proposed investigation studies the relations among AL, cohesion, and group identification in security and emergency teams. A cross-sectional research design was conducted in which participated 221 members from 26 fire departments and operative teams from the local police of three Spanish provinces. The following questionnaires were administered: Authentic Leadership (ALQ), Group Cohesion (GEQ), and Mael and Ashford's Group Identification Questionnaire. A direct and positive relation was found between AL, cohesion, and group identification. An indirect relation was also found between AL and group cohesion through group identification, indicating the existence of partial mediation. The utility of the proposed model based on AL is considered; this model can be employed by those in charge of the fire departments and operative groups in organizations to improve workteams' cohesion. Both AL and group identification help to explain group cohesion in organizations committed to security and emergencies.

  6. Negative emotional reactivity moderates the relations between family cohesion and internalizing and externalizing symptoms in adolescence✩

    PubMed Central

    Rabinowitz, Jill A.; Osigwe, Ijeoma; Drabick, Deborah A.G.; Reynolds, Maureen D.

    2016-01-01

    Lower family cohesion is associated with adolescent internalizing and externalizing problems. However, there are likely individual differences in youth's responses to family processes. For example, adolescents higher in negative emotional reactivity, who often exhibit elevated physiological responsivity to context, may be differentially affected by family cohesion. We explored whether youth's negative emotional reactivity moderated the relation between family cohesion and youth's symptoms and tested whether findings were consistent with the diathesis-stress model or differential susceptibility hypothesis. Participants were 651 adolescents (M = 12.99 ± .95 years old; 72% male) assessed at two time points (Time 1, ages 12–14; Time 2, age 16) in Pittsburgh, PA. At Time 1, mothers reported on family cohesion and youth reported on their negative emotional reactivity. At Time 2, youth reported on their symptoms. Among youth higher in negative emotional reactivity, lower family cohesion predicted higher symptoms than higher family cohesion, consistent with the diathesis-stress model. PMID:27718379

  7. The relation between social cohesion and smoking cessation among Black smokers, and the potential role of psychosocial mediators.

    PubMed

    Reitzel, Lorraine R; Kendzor, Darla E; Castro, Yessenia; Cao, Yumei; Businelle, Micheal S; Mazas, Carlos A; Cofta-Woerpel, Ludmila; Li, Yisheng; Cinciripini, Paul M; Ahluwalia, Jasjit S; Wetter, David W

    2013-04-01

    Social cohesion, the self-reported trust and connectedness between neighbors, may affect health behaviors via psychosocial mechanisms. Relations between individual perceptions of social cohesion and smoking cessation were examined among 397 Black treatment-seeking smokers. Continuation ratio logit models examined the relation of social cohesion and biochemically verified continuous smoking abstinence through 6 months post-quit. Indirect effects were examined in single mediator models using a nonparametric bootstrapping procedure. All analyses controlled for sociodemographics, tobacco dependence, and treatment. The total effect of social cohesion on continuous abstinence was non-significant (β = 0.05, p = 0.10). However, social cohesion was associated with social support, positive affect, negative affect, and stress, which, in turn, were each associated with abstinence in adjusted models (ps < 0.05). Results suggest that social cohesion may facilitate smoking cessation among Black smokers through desirable effects on psychosocial mechanisms that can result from living in a community with strong interpersonal connections.

  8. Companionship in the neighborhood context: older adults' living arrangements and perceptions of social cohesion.

    PubMed

    Bromell, Lea; Cagney, Kathleen A

    2014-03-01

    This study investigated the impact of neighborhood social cohesion on the perceived companionship of nearly 1,500 community-dwelling older adults from the Neighborhood, Organization, Aging and Health project (NOAH), a Chicago-based study of older adult well-being in the neighborhood context. We hypothesized that the relationship between neighborhood-level social cohesion and individual residents' reports of companionship would be more pronounced among those who lived alone than those who resided with others. Controlling for age, gender, education, race, marital status, length of neighborhood residence, and self-rated health, neighborhood social cohesion predicted companionship among those who lived alone; for a one-unit increase in neighborhood social cohesion, the odds of reporting companionship increased by half. In contrast, social cohesion did not predict the companionship of those who resided with others. The results suggest that older adults who live alone particularly profit from the benefits of socially cohesive neighborhood environments. © The Author(s) 2013.

  9. The Relation between Social Cohesion and Smoking Cessation among Black Smokers, and the Potential Role of Psychosocial Mediators

    PubMed Central

    Reitzel, Lorraine R.; Kendzor, Darla E.; Castro, Yessenia; Cao, Yumei; Businelle, Micheal S.; Mazas, Carlos A.; Cofta-Woerpel, Ludmila; Li, Yisheng; Cinciripini, Paul M.; Ahluwalia, Jasjit S.; Wetter, David W.

    2012-01-01

    Background Social cohesion, the self-reported trust and connectedness between neighbors, may affect health behaviors via psychosocial mechanisms. Purpose Relations between individual perceptions of social cohesion and smoking cessation were examined among 397 Black treatment-seeking smokers. Methods Continuation ratio logit models examined the relation of social cohesion and biochemically-verified continuous smoking abstinence through 6 months post-quit. Indirect effects were examined in single mediator models using a nonparametric bootstrapping procedure. All analyses controlled for sociodemographics, tobacco dependence, and treatment. Results The total effect of social cohesion on continuous abstinence was non-significant (β=.05, p=.10). However, social cohesion was associated with social support, positive affect negative affect, and stress, which, in turn, were each associated with abstinence in adjusted models (ps<.05). Conclusions Results suggest that social cohesion may facilitate smoking cessation among Black smokers through desirable effects on psychosocial mechanisms that can result from living in a community with strong interpersonal connections. PMID:23135831

  10. Cohesive zone model for direct silicon wafer bonding

    NASA Astrophysics Data System (ADS)

    Kubair, D. V.; Spearing, S. M.

    2007-05-01

    Direct silicon wafer bonding and decohesion are simulated using a spectral scheme in conjunction with a rate-dependent cohesive model. The cohesive model is derived assuming the presence of a thin continuum liquid layer at the interface. Cohesive tractions due to the presence of a liquid meniscus always tend to reduce the separation distance between the wafers, thereby opposing debonding, while assisting the bonding process. In the absence of the rate-dependence effects the energy needed to bond a pair of wafers is equal to that needed to separate them. When rate-dependence is considered in the cohesive law, the experimentally observed asymmetry in the energetics can be explained. The derived cohesive model has the potential to form a bridge between experiments and a multiscale-modelling approach to understand the mechanics of wafer bonding.

  11. Sex differences in the development of perceived family cohesion and depressive symptoms in Taiwanese adolescents.

    PubMed

    Sze, Tat-Ming; Hsieh, Pei-Jung; Lin, Sieh-Hwa; Chen, I-Jung

    2013-08-01

    This study investigates the progression of family cohesion perceptions and depressive symptoms during the character development stage in adolescents. Data were used from the Taiwan Youth Project. The final sample comprised 2,690 adolescents with 1,312 girls (48.8%; M age = 13.0 yr., SD = 0.5). Latent curve growth analysis was employed to explore these developments. Seventh-grade girls reported greater family cohesion and more depressive symptoms than boys, and boys reported greater growth in family cohesion than girls. However, progression of depressive symptoms was not associated with the child's sex. Higher perceived family cohesion in Grade 7 correlated with less increase of depressive symptoms from Grades 9 to 11. The long-term positive influence of family cohesion on depressive symptoms is discussed.

  12. Flow-induced Development of Unicellular Cyanobacterial Mats

    NASA Astrophysics Data System (ADS)

    Gong, J.; Tice, M. M.

    2011-12-01

    Microbial mats/biofilms are abundant microbial growth structures throughout the history of life on Earth. Understanding the mechanisms for their morphogenesis and interactions with physical sedimentary forces are important topics that allow deeper understanding of related records. When subjected to hydrodynamic influences, mats are known to vary in morphology and structure in response to fluid shear, yet mechanistically, the underlying cellular architecture due to interactions with flow remain unexplained. Moreover, mats are found to emerge larger scale roughness elements and modified cohesive strength growing under flow. It is a mystery how and why these mat-community-level features are linked in association with modified boundary layers at the mats surface. We examined unicellular cyanobacterium Synechocystis sp. PCC 6803 in a circular flow bioreactor designed to maintain a fixed set of hydrodynamic conditions. The use of monoculture strains and unidirectional currents, while not replicating natural mat systems (almost certainly multi-species and often multi-directional currents under complex wind or tidal wave actions), helps to simplify these systems and allows for specific testing of hypotheses regarding how mats evolve distinctive morphologies induced by flow. The unique design of the reactor also makes measurements such as critical erosional shear stress of the mats possible, in addition to microscopic, macroscopic imaging and weeks of continuous mats growth monitoring. We report the finding that linear chains, filament-like cell groups were present from unicellular cyanobacterial mats growing under flow (~1-5 cm/s) and these structures are organized within ~1-3mm size streamers and ~0.5-1mm size nodular macrostructures. Ultra-small, sub-micron thick EPS strings are observed under TEM and are likely the cohesive architectural elements in mats across different fluid regimes. Mat cohesion generally grows with and adapts to increasing flow shear stress within certain limits. Overall topological roughness of the mats were analyzed and estimated in terms of the skin friction of the mats surfaces interacting with flow. Then, together with the critical erosional cohesive strength of the mats estimated, we present a theoretical physical model linking morphology and material strength of mats to overlying fluid flow. If this model were further tested true, it suggests that physical flows may very well have a controlling effect on the properties of mats growing within it.

  13. Influence of ultrasound and diamond burs treatments on microtensile bond strength.

    PubMed

    Conde, Alexandre; Mainieri, Vivian; Mota, Eduardo Goncalves; Oshima, Hugo Mitsuo

    2012-01-01

    To compare surface treatments with CVDentUS ultrasound tips (UT) and KGSorensen diamond burs (DB) on etched (e) and non-etched (n/e) dentin. The microtensile bond strength (μTBS) was measured and fractography was assessed by scanning electron microscope (SEM). Sixteen molars were divided into four groups of four teeth each according to treatment (DB-n/e; DB-e; UT-n/e; UT-e). The teeth were restored, sectioned into samples for μTBS (n=40) and tested on a EMIC DL-2000 universal machine (0.5 mm/min) and analyzed by SEM for fracture classification. For analysis of the data on μTBS, the two-way ANOVA, using treatment and acid etching as fixed factor, and the Tukey test were used (α=0.05). To failures classification in cohesive in dentin (CD); cohesive in composite resin (CC); cohesive interfacial on base or top of hybrid layer (CBT); cohesive in adhesive (CA); mixed (M); interfacial on smear layer (S) the Fisher's exact test (α=0.05) was performed. The mean values of μTBS (in MPa) in the different groups were as follows: UT-e: 45.31 ± 8.16; DB-e: 34.04 ± 9.29; UT-n/e: 15.17 ± 3.71; and DB-n/e: 9.86 ± 3.80. On analysis of the SEM micrographs, the DB-n/e group showed total obstruction of dentinal tubules; the UT-n/e group showed partial desobstruction of dentinal tubules and irregular surface; the DB-e group showed complete desobstruction of dentinal tubules; and the UT-e group showed complete desobstruction of dentinal tubules and irregular surface. The combination of ultrasound treatment and acid etching provides high values of μTBS. An association exists between CA/CC failures and the UT method, CBT failure and the DB method, CBT/CC failures and etching, S failure and non-etching.

  14. Unraveling the disease consequences and mechanisms of modular structure in animal social networks

    PubMed Central

    Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta

    2017-01-01

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living. PMID:28373567

  15. Unraveling the disease consequences and mechanisms of modular structure in animal social networks

    USGS Publications Warehouse

    Sah, Pratha; Leu, Stephan T.; Cross, Paul C.; Hudson, Peter J.; Bansal, Shweta

    2017-01-01

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.

  16. Unraveling the disease consequences and mechanisms of modular structure in animal social networks.

    PubMed

    Sah, Pratha; Leu, Stephan T; Cross, Paul C; Hudson, Peter J; Bansal, Shweta

    2017-04-18

    Disease risk is a potential cost of group living. Although modular organization is thought to reduce this cost in animal societies, empirical evidence toward this hypothesis has been conflicting. We analyzed empirical social networks from 43 animal species to motivate our study of the epidemiological consequences of modular structure in animal societies. From these empirical studies, we identified the features of interaction patterns associated with network modularity and developed a theoretical network model to investigate when and how subdivisions in social networks influence disease dynamics. Contrary to prior work, we found that disease risk is largely unaffected by modular structure, although social networks beyond a modular threshold experience smaller disease burden and longer disease duration. Our results illustrate that the lowering of disease burden in highly modular social networks is driven by two mechanisms of modular organization: network fragmentation and subgroup cohesion. Highly fragmented social networks with cohesive subgroups are able to structurally trap infections within a few subgroups and also cause a structural delay to the spread of disease outbreaks. Finally, we show that network models incorporating modular structure are necessary only when prior knowledge suggests that interactions within the population are highly subdivided. Otherwise, null networks based on basic knowledge about group size and local contact heterogeneity may be sufficient when data-limited estimates of epidemic consequences are necessary. Overall, our work does not support the hypothesis that modular structure universally mitigates the disease impact of group living.

  17. Exploring the Effect of Background Knowledge and Text Cohesion on Learning from Texts in Computer Science

    ERIC Educational Resources Information Center

    Gasparinatou, Alexandra; Grigoriadou, Maria

    2013-01-01

    In this study, we examine the effect of background knowledge and local cohesion on learning from texts. The study is based on construction-integration model. Participants were 176 undergraduate students who read a Computer Science text. Half of the participants read a text of maximum local cohesion and the other a text of minimum local cohesion.…

  18. Cohesion: The Vital Ingredient for Successful Army Units

    DTIC Science & Technology

    1982-04-19

    responding in military life as well.𔄀 A special problem of social cohesion directly related to social background was the integration of minority troops...forces has been a powerful verification of sociological theory concerning social cohesion and organizational effectiveness. Sociological theory does not...prevent the development of groups with social cohesion committed to the military hierarchy. 2 5 Personality of Wnit Mmbers Among the characteristics

  19. Evaluation of Coordination of Emergency Response Team through the Social Network Analysis. Case Study: Oil and Gas Refinery.

    PubMed

    Mohammadfam, Iraj; Bastani, Susan; Esaghi, Mahbobeh; Golmohamadi, Rostam; Saee, Ali

    2015-03-01

    The purpose of this study was to examine the cohesions status of the coordination within response teams in the emergency response team (ERT) in a refinery. For this study, cohesion indicators of social network analysis (SNA; density, degree centrality, reciprocity, and transitivity) were utilized to examine the coordination of the response teams as a whole network. The ERT of this research, which was a case study, included seven teams consisting of 152 members. The required data were collected through structured interviews and were analyzed using the UCINET 6.0 Social Network Analysis Program. The results reported a relatively low number of triple connections, poor coordination with key members, and a high level of mutual relations in the network with low density, all implying that there were low cohesions of coordination in the ERT. The results showed that SNA provided a quantitative and logical approach for the examination of the coordination status among response teams and it also provided a main opportunity for managers and planners to have a clear understanding of the presented status. The research concluded that fundamental efforts were needed to improve the presented situations.

  20. Exit, cohesion, and consensus: social psychological moderators of consensus among adolescent peer groups

    PubMed Central

    Fisher, Jacob C.

    2017-01-01

    Virtually all social diffusion work relies on a common formal basis, which predicts that consensus will develop among a connected population as the result of diffusion. In spite of the popularity of social diffusion models that predict consensus, few empirical studies examine consensus, or a clustering of attitudes, directly. Those that do either focus on the coordinating role of strict hierarchies, or on the results of online experiments, and do not consider how consensus occurs among groups in situ. This study uses longitudinal data on adolescent social networks to show how meso-level social structures, such as informal peer groups, moderate the process of consensus formation. Using a novel method for controlling for selection into a group, I find that centralized peer groups, meaning groups with clear leaders, have very low levels of consensus, while cohesive peer groups, meaning groups where more ties hold the members of the group together, have very high levels of consensus. This finding is robust to two different measures of cohesion and consensus. This suggests that consensus occurs either through central leaders’ enforcement or through diffusion of attitudes, but that central leaders have limited ability to enforce when people can leave the group easily. PMID:29335675

  1. Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA.

    PubMed

    Rozitis, Ben; MacLennan, Eric; Emery, Joshua P

    2014-08-14

    Space missions and ground-based observations have shown that some asteroids are loose collections of rubble rather than solid bodies. The physical behaviour of such 'rubble-pile' asteroids has been traditionally described using only gravitational and frictional forces within a granular material. Cohesive forces in the form of small van der Waals forces between constituent grains have recently been predicted to be important for small rubble piles (ten kilometres across or less), and could potentially explain fast rotation rates in the small-asteroid population. The strongest evidence so far has come from an analysis of the rotational breakup of the main-belt comet P/2013 R3 (ref. 7), although that was indirect and poorly constrained by observations. Here we report that the kilometre-sized asteroid (29075) 1950 DA (ref. 8) is a rubble pile that is rotating faster than is allowed by gravity and friction. We find that cohesive forces are required to prevent surface mass shedding and structural failure, and that the strengths of the forces are comparable to, though somewhat less than, the forces found between the grains of lunar regolith.

  2. Trajectories of childhood neighbourhood cohesion and adolescent mental health: evidence from a national Canadian cohort.

    PubMed

    Kingsbury, M; Kirkbride, J B; McMartin, S E; Wickham, M E; Weeks, M; Colman, I

    2015-11-01

    The objective of this study was to examine associations between trajectories of childhood neighbourhood social cohesion and adolescent mental health and behaviour. This study used data from the National Longitudinal Survey of Children and Youth, a nationally representative sample of Canadian children. The sample included 5577 children aged 0-3 years in 1994-1995, prospectively followed until age 12-15 years. Parental perceived neighbourhood cohesion was assessed every 2 years. Latent growth class modelling was used to identify trajectories of neighbourhood cohesion. Mental health and behavioural outcomes were self-reported at age 12-15 years. Logistic regression was used to examine associations between neighbourhood cohesion trajectories and outcomes, adjusting for potential confounders. Five distinct trajectories were identified: 'stable low' (4.2%); 'moderate increasing' (9.1%); 'stable moderate' (68.5%); 'high falling' (8.9%); and 'stable high' (9.3%). Relative to those living in stable moderately cohesive neighbourhoods, those in stable low cohesive neighbourhoods were more likely to experience symptoms of anxiety/depression [odds ratio (OR) = 1.73, 95% confidence interval (CI) 1.04-2.90] and engage in indirect aggression (OR = 1.62, 95% CI 1.07-2.45). Those with improvements in neighbourhood cohesion had significantly lower odds of hyperactivity (OR = 0.67, 95% CI 0.46-0.98) and indirect aggression (OR = 0.69, 95% CI 0.49-0.96). In contrast, those with a decline in neighbourhood cohesion had increased odds of hyperactivity (OR = 1.67, 95% CI 1.21-2.29). Those in highly cohesive neighbourhoods in early childhood were more likely to engage in prosocial behaviour ('high falling': OR = 1.93, 95% CI 1.38-2.69; 'stable high': OR = 1.89, 95% CI 1.35-2.63). These results suggest that neighbourhood cohesion in childhood may have time-sensitive effects on several domains of adolescent mental health and behaviour.

  3. Trajectories of Childhood Neighbourhood Cohesion and Adolescent Mental Health: Evidence from a National Canadian Cohort

    PubMed Central

    Kingsbury, Mila; Kirkbride, James B; McMartin, Seanna E; Wickham, Maeve E; Weeks, Murray; Colman, Ian

    2017-01-01

    Background The objective of this study was to examine associations between trajectories of childhood neighbourhood social cohesion and adolescent mental health and behaviour. Methods This study used data from the National Longitudinal Survey of Children and Youth, a nationally representative sample of Canadian children. The sample included 5577 children aged 0-3 in 1994/95, prospectively followed until age 12-15. Parental perceived neighbourhood cohesion was assessed every two years. Latent growth class modeling was used to identify trajectories of neighbourhood cohesion. Mental health and behavioural outcomes were self-reported at age 12-15 years. Logistic regression was used to examine associations between neighbourhood cohesion trajectories and outcomes, adjusting for potential confounders. Results Five distinct trajectories were identified: ‘stable low’ (4.2%); ‘moderate increasing’ (9.1%); ‘stable moderate’ (68.5%); ‘high falling’ (8.9%); and, ‘stable high’ (9.3%). Relative to those living in stable moderately cohesive neighbourhoods, those in stable low cohesive neighbourhoods were more likely to experience symptoms of anxiety/depression (OR=1.75; 95%CI: 1.05,2.92) and engage in indirect aggression (OR=1.59; 95%CI: 1.05,2.40). Those with improvements in neighbourhood cohesion had significantly lower odds of hyperactivity (OR=0.68; 95%CI: 0.46,0.99) and indirect aggression (OR=0.68; 95%CI: 0.49,0.95). In contrast, those with a decline in neighbourhood cohesion had increased odds of hyperactivity (OR=1.65; 95%CI: 1.20,2.27). Those in highly cohesive neighbourhoods in early childhood were more likely to engage in prosocial behaviour (‘high falling’: OR=1.95; 95%CI: 1.40,2.72; ‘stable high’: OR=1.91; 95%CI: 1.37,2.66). Conclusions These results suggest that neighbourhood cohesion in childhood may have time-sensitive effects on several domains of adolescent mental health and behaviour. PMID:26169730

  4. Potential of Prolamins from Maize and Sorghum to Form Gluten-like Structures in Wheat-free Bread

    USDA-ARS?s Scientific Manuscript database

    Prolamins from maize (zeins) are known to form viscoelastic, extensible, cohesive dough when mixed together with starch and water above their glass transition temperature (Tg, approximately 28 °C). By adding hydroxypropyl methylcellulose (HPMC, a surface-active hydrocolloid) to this formulation, lea...

  5. Differences by Sexual Orientation in Perceptions of Neighborhood Cohesion: Implications for Health.

    PubMed

    Henning-Smith, Carrie; Gonzales, Gilbert

    2018-06-01

    A large body of research documents the relationship between health and place, including the positive association between neighborhood cohesion and health. However, very little research has examined neighborhood cohesion by sexual orientation. This paper addresses that gap by examining differences in perceived neighborhood cohesion by sexual orientation. We use data from the 2016 National Health Interview Survey (n = 28,164 respondents aged 18 years and older) to examine bivariate differences by sexual orientation in four measures of neighborhood cohesion. We then use ordered logistic regression models to assess the relationship between sexual orientation and a scaled measure of neighborhood cohesion, adjusting for socio-demographic characteristics, living arrangements, health status, region, and neighborhood tenure. We find that lesbian, gay, and bisexual (LGB) adults are less likely to say that they live in a close-knit neighborhood (54.6 vs. 65.6%, p < 0.001), they can count on their neighbors (74.7 vs. 83.1%, p < 0.001), they trust their neighbors (75.5 vs. 83.7%, p < 0.001), or people in their neighborhood help each other out (72.9 vs. 83.1%, p < 0.001), compared to heterosexual adults. Even after controlling for socio-demographic factors, neighborhood cohesion scores are lower for LGB adults compared to heterosexual adults (odds ratio of better perceived neighborhood cohesion for sexual minorities: 0.70, p < 0.001). Overall, LGB adults report worse neighborhood cohesion across multiple measures, even after adjusting for individual characteristics and neighborhood tenure. Because living in a cohesive neighborhood is associated with better health outcomes, future research, community-level initiatives, and public policy efforts should focus on creating welcoming neighborhood environments for sexual minorities.

  6. Unit cohesion, traumatic exposure and mental health of military personnel.

    PubMed

    Kanesarajah, J; Waller, M; Zheng, W Y; Dobson, A J

    2016-06-01

    The benefit of military unit cohesion to morale and psychological resilience is well established. But it remains unclear whether unit cohesion modifies the association between deployment-related traumatic exposure and mental health problems. To examine the association between unit cohesion, traumatic exposure and poor mental health [symptoms of post-traumatic stress disorder (PTSD), psychological distress and alcohol dependency] and assess whether the relationship between traumatic exposure and poor mental health differs by level of unit cohesion. A self-reported cross-sectional survey of Australian military personnel deployed to Iraq or Afghanistan between 2001 and 2009. Among 11411 participants, those with low levels of unit cohesion had higher odds of PTSD symptoms [aOR (95% CI): 2.54 (1.88, 3.42)], very high psychological distress [aOR (95% CI): 4.28 (3.04, 6.02)] and a high level of alcohol problems [aOR (95% CI): 1.71 (1.32, 2.22)] compared with those reporting high unit cohesion on deployment. Higher exposure to traumatic events on deployment was associated with greater risk of PTSD symptoms, very high levels of psychological distress and high levels of alcohol problems in this cohort. However, there was no evidence of a statistically significant interaction between unit cohesion and traumatic exposures in influencing poor mental health. Our findings suggest that both unit cohesion and traumatic exposure are independently associated with poor mental health. Efforts to improve military unit cohesion may help to improve the mental health resilience of military personnel, regardless of their level of traumatic exposure. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Bedform development and morphodynamics in mixed cohesive sediment substrates: the importance of winnowing and flocculation

    NASA Astrophysics Data System (ADS)

    Ye, Leiping; Parsons, Daniel; Manning, Andrew

    2016-04-01

    There remains a lack of process-based knowledge of sediment dynamics within flows over bedforms generated in complex mixtures of cohesionless sand and biologically-active cohesive muds in natural estuarine flow systems. The work to be presented forms a part of the UK NERC "COHesive BEDforms (COHBED)" project which aims to fill this gap in knowledge. Herein results from a field survey in sub-tidal zone of Dee estuary (NW, England) and a set of large-scale laboratory experiments, conducted using mixtures of non-cohesive sands, cohesive muds and Xanthan gum (as a proxy for the biological stickiness of Extracellular Polymeric Substances (EPS)) will be presented. The results indicate the significance of biological-active cohesive sediments in controlling winnowing rates and flocculation dynamics, which contributes significantly to rates of bedform evolution.

  8. Neighborhood Social Cohesion and Sleep Outcomes in the Native Hawaiian and Pacific Islander National Health Interview Survey.

    PubMed

    Young, Marielle C; Gerber, Monica W; Ash, Tayla; Horan, Christine M; Taveras, Elsie M

    2018-05-16

    Native Hawaiians and Pacific Islanders (NHPIs) have the lowest attainment of healthy sleep duration among all racial and ethnic groups in the United States. We examined associations of neighborhood social cohesion with sleep duration and quality. Cross-sectional analysis of 2,464 adults in the NHPI National Health Interview Survey (2014). Neighborhood social cohesion was categorized as a continuous and categorical variable into low (<12), medium (12-14) and high (>15) according to tertiles of the distribution of responses. We used multinomial logistic regression to examine the adjusted odds ratio of short and long sleep duration relative to intermediate sleep duration. We used binary logistic regression for dichotomous sleep quality outcomes. Sleep outcomes were modeled as categorical variables. 40% of the cohort reported short (<7 hours) sleep duration and only 4% reported long (>9 hours) duration. Mean (SE, range) social cohesion score was 12.4 units (0.11, 4-16) and 23% reported low social cohesion. In multivariable models, each 1 SD decrease in neighborhood social cohesion score was associated with higher odds of short sleep duration (OR: 1.14, 95% CI: 1.02, 1.29). Additionally, low social cohesion was associated with increased odds of short sleep duration (OR: 1.53, 95% CI: 1.10, 2.13). No associations between neighborhood social cohesion and having trouble falling or staying asleep and feeling well rested were found. Low neighborhood social cohesion is associated with short sleep duration in NHPIs.

  9. Adhesive Characterization and Progressive Damage Analysis of Bonded Composite Joints

    NASA Technical Reports Server (NTRS)

    Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung

    2014-01-01

    The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.

  10. The Relationship of Individual Difference and Group Process Variables with Self-Managed Team Performance: A Field Investigation

    DTIC Science & Technology

    2001-12-15

    emotional stability, openness to experience, agreeableness, learning and performance goal orientation) and process variables ( social cohesion and group...both subjective performance measures and 6 of the 7 objective performance measures over that of social cohesion . Social cohesion predicted unique...variance in team member satisfaction over that of group potency. Additionally, social cohesion mediated the relationship between agreeableness and team

  11. Formal and Informal Work Group Relationships With Performance: A Moderation Model Using Social

    DTIC Science & Technology

    2006-03-01

    networks can be divided into two main categories: formal and informal (Scott, 2000). Similar distinctions have been made between task and social cohesion (Mullen...Cooper, 1994; Carron, Widmeyer, & Brawley, 1985; Zaccaro & Lowe, 1986; Zaccaro & McCoy, 1988). Social cohesion has been defined as...performance and social cohesion and performance (Beal et al., 2003). This move toward a multidimensional view of cohesion is consistent with the

  12. Neighborhood Social Cohesion and Depressive Symptoms Among Latinos: Does Use of Community Resources for Physical Activity Matter?

    PubMed

    Perez, Lilian G; Arredondo, Elva M; McKenzie, Thomas L; Holguin, Margarita; Elder, John P; Ayala, Guadalupe X

    2015-10-01

    Greater neighborhood social cohesion is linked to fewer depressive symptoms and greater physical activity, but the role of physical activity on the relationship between neighborhood social cohesion and depression is poorly understood. The purpose of the study was to examine the effects of physical activity on the association between neighborhood social cohesion and depressive symptoms. Multivariate logistic regression tested the moderation of self-reported leisure-time moderate-to-vigorous physical activity (LTMVPA) and active use of parks or recreational facilities on the association between neighborhood social cohesion and depressive symptoms among 295 randomly selected Latino adults who completed a face-to-face interview. After adjusting for age, gender, and income, neighborhood social cohesion and depressive symptoms were inversely related (OR = 0.8; 95% CI: 0.5-1.2). Active use of parks or recreational facilities moderated the association between neighborhood social cohesion and depressive symptoms but meeting the recommendations for LTMVPA did not. Latinos who reported active use of parks or recreational facilities and higher levels of neighborhood social cohesion had fewer depressive symptoms than peers who did not use these spaces. Future studies are needed to test strategies for promoting active use of parks or recreational facilities to address depression in Latinos.

  13. Cohesion, leadership, mental health stigmatisation and perceived barriers to care in UK military personnel.

    PubMed

    Jones, Norman; Campion, Ben; Keeling, Mary; Greenberg, Neil

    2018-02-01

    Military research suggests a significant association between leadership, cohesion, mental health stigmatisation and perceived barriers to care (stigma/BTC). Most studies are cross sectional, therefore longitudinal data were used to examine the association of leadership and cohesion with stigma/BTC. Military personnel provided measures of leadership, cohesion, stigma/BTC, mental health awareness and willingness to discuss mental health following deployment (n = 2510) and 4-6 months later (n = 1636). At follow-up, baseline leadership and cohesion were significantly associated with stigma/BTC; baseline cohesion alone was significantly associated with awareness of and willingness to discuss mental health at follow-up. Over time, changes in perceived leadership and cohesion were significantly associated with corresponding changes in stigma/BTC levels. Stigma/BTC content was similar in both surveys; fear of being viewed as weak and being treated differently by leaders was most frequently endorsed while thinking less of a help-seeking team member and unawareness of potential help sources were least common. Effective leadership and cohesion building may help to reduce stigma/BTC in military personnel. Mental health awareness and promoting the discussion of mental health matters may represent core elements of supportive leader behaviour. Perceptions of weakness and fears of being treated differently represent a focus for stigma/BTC reduction.

  14. The importance of cohesion and enjoyment for the fitness improvement of 8-10-year-old children participating in a team and individual sport school-based physical activity intervention.

    PubMed

    Elbe, Anne-Marie; Wikman, Johan Michael; Zheng, Miky; Larsen, Malte Nejst; Nielsen, Glen; Krustrup, Peter

    2017-04-01

    This study investigates the enjoyment and cohesion of school children participating in a school-based high-intensity physical activity (PA) intervention. Both enjoyment and cohesion have been found to be important factors for adherence to regular physical and sport activity, an important outcome of PA interventions. The sample consisted of 300 pupils (mean age: 9.3 years; 52.7% female) assigned to a team sport intervention, an individual sport intervention, or a control group for 10 months. The Physical Activity Enjoyment Scale and Youth Sport Environment Questionnaire were used to measure enjoyment and cohesion. The Yo-Yo IR1C test determined fitness improvements. Results showed that enjoyment and cohesion (social) measured at the beginning of the intervention significantly predict fitness improvements achieved after 10 months. No differing developmental effects over time could be found in the intervention groups with regard to cohesion and enjoyment when comparing them to the control group. However, enjoyment and cohesion (social) significantly decreased in the groups that performed individual sports. Team sports seem to be more advantageous for the development of enjoyment and cohesion, which are both factors that positively impact the health outcomes of the intervention.

  15. Neighborhood social cohesion and depressive symptoms among Latinos: Does use of community resources for physical activity matter?

    PubMed Central

    Perez, Lilian G.; Arredondo, Elva M.; McKenzie, Thomas L.; Holguin, Margarita; Elder, John P.; Ayala, Guadalupe X.

    2017-01-01

    Background Greater neighborhood social cohesion is linked to fewer depressive symptoms and greater physical activity, but the role of physical activity on the relationship between neighborhood social cohesion and depression is poorly understood. The purpose of the study was to examine the effects of physical activity on the association between neighborhood social cohesion and depressive symptoms. Methods Multivariate logistic regression tested the moderation of self-reported leisure time moderate-to vigorous-physical activity (LTMVPA) and active use of parks or recreational facilities on the association between neighborhood social cohesion and depressive symptoms among 295 randomly selected Latino adults who completed a face-to-face interview. Results After adjusting for age, gender, and income, neighborhood social cohesion and depressive symptoms were inversely related (OR=0.8; 95% CI: 0.5–1.2). Active use of parks or recreational facilities moderated the association between neighborhood social cohesion and depressive symptoms but meeting the recommendations for LTMVPA did not. Latinos who reported active use of parks or recreational facilities and higher levels of neighborhood social cohesion had fewer depressive symptoms than peers who did not use these spaces. Conclusions Future studies are needed to test strategies for promoting active use of parks or recreational facilities to address depression in Latinos. PMID:25599244

  16. Mind the gap! Automated concept map feedback supports students in writing cohesive explanations.

    PubMed

    Lachner, Andreas; Burkhart, Christian; Nückles, Matthias

    2017-03-01

    Many students are challenged with the demand of writing cohesive explanations. To support students in writing cohesive explanations, we developed a computer-based feedback tool that visualizes cohesion deficits of students' explanations in a concept map. We conducted three studies to investigate the effectiveness of such feedback as well as the underlying cognitive processes. In Study 1, we found that the concept map helped students identify potential cohesion gaps in their drafts and plan remedial revisions. In Study 2, students with concept map feedback conducted revisions that resulted in more locally and globally cohesive, and also more comprehensible, explanations than the explanations of students who revised without concept map feedback. In Study 3, we replicated the findings of Study 2 by and large. More importantly, students who had received concept map feedback on a training explanation 1 week later wrote a transfer explanation without feedback that was more cohesive than the explanation of students who had received no feedback on their training explanation. The automated concept map feedback appears to particularly support the evaluation phase of the revision process. Furthermore, the feedback enabled novice writers to acquire sustainable skills in writing cohesive explanations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. GRAIN BOUNDARY STRENGTHENING PROPERTIES OF TUNGSTEN ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Setyawan, Wahyu; Kurtz, Richard J.

    2012-10-10

    Density functional theory was employed to investigate grain boundary (GB) properties of W alloys. A range of substitutional solutes across the Periodic Table was investigated to understand the behavior of different electronic orbitals in changing the GB cleavage energy in the Σ27a[110]{525} GB. A number of transition metals were predicted to enhance the GB cohesion. This includes Ru, Re, Os, Ir, V, Cr, Mn, Fe, Co, Ti, Hf, Ta and Nb. While lanthanides, s and p elements were tended to cause GB embrittlement.

  18. Quality charters or quality members? A control theory perspective on team charters and team performance.

    PubMed

    Courtright, Stephen H; McCormick, Brian W; Mistry, Sal; Wang, Jiexin

    2017-10-01

    Though prevalent in practice, team charters have only recently received scholarly attention. However, most of this work has been relatively devoid of theory, and consequently, key questions about why and under what conditions team charter quality affects team performance remain unanswered. To address these gaps, we draw on macro organizational control theory to propose that team charter quality serves as a team-level "behavior" control mechanism that builds task cohesion through a structured exercise. We then juxtapose team charter quality with an "input" team control mechanism that influences the emergence of task cohesion more organically: team conscientiousness. Given their redundant effects on task cohesion, we propose that the effects of team charter quality and team conscientiousness on team performance (through task cohesion) are substitutive such that team charter quality primarily impacts team performance for teams that are low (vs. high) on conscientiousness. We test and find support for our hypotheses in a sample of 239 undergraduate self-managing project teams. Our study contributes to the groups and teams literature in the following ways: first, relative to previous studies, we take a more theory-driven approach toward understanding team charters, and in doing so, uncover when and why team charter quality impacts team performance; second, we integrate two normally disparate perspectives on team effectiveness (team development and team selection) to offer a broader perspective on how teams are "built"; and third, we introduce team charter quality as a performance-enhancing mechanism for teams lower on conscientiousness. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  19. Dynamic self-organization of microwell-aggregated cellular mixtures.

    PubMed

    Song, Wei; Tung, Chih-Kuan; Lu, Yen-Chun; Pardo, Yehudah; Wu, Mingming; Das, Moumita; Kao, Der-I; Chen, Shuibing; Ma, Minglin

    2016-06-29

    Cells with different cohesive properties self-assemble in a spatiotemporal and context-dependent manner. Previous studies on cell self-organization mainly focused on the spontaneous structural development within a short period of time during which the cell numbers remained constant. However the effect of cell proliferation over time on the self-organization of cells is largely unexplored. Here, we studied the spatiotemporal dynamics of self-organization of a co-culture of MDA-MB-231 and MCF10A cells seeded in a well defined space (i.e. non-adherent microfabricated wells). When cell-growth was chemically inhibited, high cohesive MCF10A cells formed a core surrounded by low cohesive MDA-MB-231 cells on the periphery, consistent with the differential adhesion hypothesis (DAH). Interestingly, this aggregate morphology was completely inverted when the cells were free to grow. At an initial seeding ratio of 1 : 1 (MDA-MB-231 : MCF10A), the fast growing MCF10A cells segregated in the periphery while the slow growing MDA-MB-231 cells stayed in the core. Another morphology developed at an inequal seeding ratio (4 : 1), that is, the cell mixtures developed a side-by-side aggregate morphology. We conclude that the cell self-organization depends not only on the cell cohesive properties but also on the cell seeding ratio and proliferation. Furthermore, by taking advantage of the cell self-organization, we purified human embryonic stem cells-derived pancreatic progenitors (hESCs-PPs) from co-cultured feeder cells without using any additional tools or labels.

  20. Social Capital as a Determinant of Self-Rated Health in Women of Reproductive Age: A Population-Based Study.

    PubMed

    Baheiraei, Azam; Bakouei, Fatemeh; Bakouei, Sareh; Eskandari, Narges; Ahmari Tehran, Hoda

    2015-07-19

    Recognition of the factors related to women's health is necessary. Evidence is available that the social structure including social capital plays an important role in the shaping people's health. The aim of the current study was to investigate the association between self-rated health and social capital in women of reproductive age. This study is a population-based cross-sectional survey on 770 women of reproductive age, residing in any one of the 22 municipality areas across Tehran (capital of Iran) with the multi stage sampling technique. Self-rated health (Dependent variable), social capital (Independent variable) and covariates were studied. Analysis of data was done by one-way ANOVA test and multiple linear regressions. Depending on logistic regression analyses, the significant associations were found between self-rated health and age, educational level, crowding index, sufficiency of income for expenses and social cohesion. Data show that women with higher score in social cohesion as an outcome dimension of social capital have better self-rated health (PV = 0.001). Given the findings of this study, the dimensions of social capital manifestations (groups and networks, trust and solidarity, collective action and cooperation) can potentially lead to the dimensions of social capital outcomes (social cohesion and inclusion, and empowerment and political action). Following that, social cohesion as a dimension of social capital outcomes has positively relationship with self- rated health after controlling covariates. Therefore, it is required to focus on the social capital role on health promotion and health policies.

  1. The Self-Association of Graphane Is Driven by London Dispersion and Enhanced Orbital Interactions.

    PubMed

    Wang, Changwei; Mo, Yirong; Wagner, J Philipp; Schreiner, Peter R; Jemmis, Eluvathingal D; Danovich, David; Shaik, Sason

    2015-04-14

    We investigated the nature of the cohesive energy between graphane sheets via multiple CH···HC interactions, using density functional theory (DFT) including dispersion correction (Grimme's D3 approach) computations of [n]graphane σ dimers (n = 6-73). For comparison, we also evaluated the binding between graphene sheets that display prototypical π/π interactions. The results were analyzed using the block-localized wave function (BLW) method, which is a variant of ab initio valence bond (VB) theory. BLW interprets the intermolecular interactions in terms of frozen interaction energy (ΔE(F)) composed of electrostatic and Pauli repulsion interactions, polarization (ΔE(pol)), charge-transfer interaction (ΔE(CT)), and dispersion effects (ΔE(disp)). The BLW analysis reveals that the cohesive energy between graphane sheets is dominated by two stabilizing effects, namely intermolecular London dispersion and two-way charge transfer energy due to the σ(CH) → σ*(HC) interactions. The shift of the electron density around the nonpolar covalent C-H bonds involved in the intermolecular interaction decreases the C-H bond lengths uniformly by 0.001 Å. The ΔE(CT) term, which accounts for ∼15% of the total binding energy, results in the accumulation of electron density in the interface area between two layers. This accumulated electron density thus acts as an electronic "glue" for the graphane layers and constitutes an important driving force in the self-association and stability of graphane under ambient conditions. Similarly, the "double faced adhesive tape" style of charge transfer interactions was also observed among graphene sheets in which it accounts for ∼18% of the total binding energy. The binding energy between graphane sheets is additive and can be expressed as a sum of CH···HC interactions, or as a function of the number of C-H bonds.

  2. The association between social cohesion and physical activity in canada: A multilevel analysis.

    PubMed

    Yip, Calvin; Sarma, Sisira; Wilk, Piotr

    2016-12-01

    Although previous research has shown that social cohesion may promote physical activity, social cohesion at the individual level was not always differentiated from social cohesion at the community level, and studies were often limited to specific population subgroups or geographical areas. We addressed the above limitations through the use of a multilevel modelling approach and nationally-representative data from the 2009-2014 Canadian Community Health Survey. Physical activity level was operationalized as average daily energy expenditure; social cohesion was assessed by self-rated sense of belonging to the local community; and communities were represented by Canada's Forward Sortation Areas. The sample included 245,150 respondents from 1570 communities. Geographical location was found to explain a significant proportion (4.1%) of the overall variance in physical activity level. After adjusting for age, sex, household income, education and urban-rural status, both individual- and community-level social cohesion were found to be positively associated with physical activity (p<0.001 for both). Thus, efforts to promote social cohesion and integration within communities may also promote physical activity and overall health.

  3. Aurora A-dependent CENP-A phosphorylation at inner centromeres protects bioriented chromosomes against cohesion fatigue.

    PubMed

    Eot-Houllier, Grégory; Magnaghi-Jaulin, Laura; Fulcrand, Géraldine; Moyroud, François-Xavier; Monier, Solange; Jaulin, Christian

    2018-05-14

    Sustained spindle tension applied to sister centromeres during mitosis eventually leads to uncoordinated loss of sister chromatid cohesion, a phenomenon known as "cohesion fatigue." We report that Aurora A-dependent phosphorylation of serine 7 of the centromere histone variant CENP-A (p-CENP-AS7) protects bioriented chromosomes against cohesion fatigue. Expression of a non-phosphorylatable version of CENP-A (CENP-AS7A) weakens sister chromatid cohesion only when sister centromeres are under tension, providing the first evidence of a regulated mechanism involved in protection against passive cohesion loss. Consistent with this observation, p-CENP-AS7 is detected at the inner centromere where it forms a discrete domain. The depletion or inhibition of Aurora A phenocopies the expression of CENP-AS7A and we show that Aurora A is recruited to centromeres in a Bub1-dependent manner. We propose that Aurora A-dependent phosphorylation of CENP-A at the inner centromere protects chromosomes against tension-induced cohesion fatigue until the last kinetochore is attached to spindle microtubules.

  4. Effect of clay type on the velocity and run-out distance of cohesive sediment gravity flows

    NASA Astrophysics Data System (ADS)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Novel laboratory experiments in a lock-exchange flume filled with natural seawater revealed that sediment gravity flows (SGFs) laden with kaolinite clay (weakly cohesive), bentonite clay (strongly cohesive) and silica flour (non-cohesive) have strongly contrasting flow properties. Knowledge of cohesive clay-laden sediment gravity flows is limited, despite clay being one of the most abundant sediment types on earth and subaqueous SGFs transporting the greatest volumes of sediment on our planet. Cohesive SGFs are particularly complex owing to the dynamic interplay between turbulent and cohesive forces. Cohesive forces allow the formation of clay flocs and gels, which increase the viscosity and shear strength of the flow, and attenuate shear-induced turbulence. The experimental SGFs ranged from dilute turbidity currents to dense debris flows. For each experiment, the run-out distance, head velocity and thickness distribution of the deposit were measured, and the flow properties were recorded using high-resolution video. Increasing the volume concentration of kaolinite and bentonite above 22% and 17%, respectively, reduced both the maximum head velocity and the run-out distances of the SGFs. We infer that increasing the concentration of clay particles enhances the opportunity for the particles to collide and flocculate, thus increasing the viscosity and shear strength of the flows at the expense of turbulence, and reducing their forward momentum. Increasing the volume concentration in the silica-flour laden flows from 1% to 46% increased the maximum head velocity, owing to the gradual increase in excess density. Thereafter, however, intergranular friction is inferred to have attenuated the turbulence, causing a rapid reduction in the maximum head velocity and run-out distance as suspended sediment concentration was increased. Moving from flows carrying bentonite via kaolinite to silica flour, a progressively larger volumetric suspended sediment concentration was needed to produce similar run-out distances and maximum head velocities. Strongly cohesive bentonite flows were able to create a stronger network of particle bonds than weakly cohesive kaolinite flows of a similar concentration, thus producing the lower maximum head velocities and run-out distances observed. The lack of cohesion in the silica-flour laden flows meant that extremely high suspended sediment concentrations, i.e. close to the cubic packing density, were required to produce a high enough frictional strength to reduce the forward momentum of these flows. These experimental results can be used to improve our understanding of the deposit geometry and run-out distance of fine-grained SGFs in the natural environment. We suggest that natural SGFs that carry weakly cohesive clays (e.g. kaolinite) reach a greater distance from their origin than flows that contain strongly cohesive clays (e.g. bentonite) at similar suspended sediment concentrations, whilst equivalent fine-grained, non-cohesive SGFs travel the furthest. In addition, weakly cohesive SGFs may cover a larger surface area and have thinner deposits, with important ramifications for the architecture of stacked event beds.

  5. Unsupervised Spatial, Temporal and Relational Models for Social Processes

    DTIC Science & Technology

    2012-02-01

    Andrej Mrvar . A partitioning approach to structural balance. Social Networks, 18(2):149 – 168, 1996 . [37] Thi V. Duong, Hung H. Bui, Dinh Q. Phung, and...partitioning provided by Doreian and Mrvar [36], who demonstrate that there was increasing evidence over time that 62 CHAPTER 4. COMMUNITY DETECTION this...foursome was a genuine group. Doreian and Mrvar used a block modeling approach optimiz- ing structural balance, a measure of cohesion incorporating

  6. Influence of dry cohesion on the micro- and macro-mechanical properties of dense polydisperse powders & grains

    NASA Astrophysics Data System (ADS)

    Kievitsbosch, Robert; Smit, Hendrik; Magnanimo, Vanessa; Luding, Stefan; Taghizadeh, Kianoosh

    2017-06-01

    Understanding how cohesive granular materials behave is of interest for many industrial applications, such as pharmaceutical or food and civil engineering. Models of the behaviour of granular materials on the microscopic scale can be used to obtain macroscopic continuum relations by a micro-macro transition approach. The Discrete Element Method (DEM) is used to inspect the influence of cohesion on the micro and macro behaviour of granular assemblies by using an elasto-plastic cohesive contact model. Interestingly, we observe that frictional samples prepared with different cohesion values show a significant difference in pressure and coordination number in the jammed regime; the differences become more pronounced when packings are closer to the jamming density, i.e. the lowest density where the system is mechanically stable. Furthermore, we observe that cohesion has an influence on the jamming density for frictional samples, but there is no influence on the jamming density for frictionless samples.

  7. Relation between social cohesion and team performance in soccer teams.

    PubMed

    Tziner, Aharon; Nicola, Nicola; Rizac, Anis

    2003-02-01

    Investigations of the influence on team performance of team composition, in terms of task-related attributes, e.g., personality traits, cognitive abilities, often assumes this relation to be mediated by the strength (intensity) of the interpersonal relations (social cohesion) among team members. However, there has been little empirical examination of how much social cohesion actually affects team outcomes. This preliminary study sought to examine this issue using soccer teams, which have been held to resemble workplace teams. Perceptions of team cohesion were collected from 198 Israeli soccer players (comprising 36 national league teams) during the week preceding their weekly games. A significant correlation was found between the perceptions of social cohesion and the results of the soccer matches, indicating a link between team social cohesion and team performance. Implications of the results, as well as the study's limitations, are discussed, and avenues for research are suggested.

  8. Composition, concentration and deprivation: exploring their association with social cohesion among different ethnic groups in the UK.

    PubMed

    Bécares, Laia; Stafford, Mai; Laurence, James; Nazroo, James

    2011-01-01

    Although studies in the US have shown an association between the ethnic residential composition of an area and reports of decreased social cohesion among its residents, this association is not clear in the UK, and particularly for ethnic minority groups. The current study analyses a merged dataset from the 2005 and 2007 Citizenship Survey to assess the evidence for an association between social cohesion and ethnic residential concentration, composition and area deprivation across different ethnic groups in the UK. Results of the multilevel regression models show that, after adjusting for area deprivation, increased levels of social cohesion are found in areas of greater ethnic residential heterogeneity. Although different patterns emerge across ethnic groups and the measure of social cohesion used, findings consistently show that it is area deprivation, and not ethnic residential heterogeneity, which erodes social cohesion in the UK.

  9. Cohesive and mixed sediment in the Regional Ocean Modeling System (ROMS v3.6) implemented in the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST r1234)

    NASA Astrophysics Data System (ADS)

    Sherwood, Christopher R.; Aretxabaleta, Alfredo L.; Harris, Courtney K.; Rinehimer, J. Paul; Verney, Romaric; Ferré, Bénédicte

    2018-05-01

    We describe and demonstrate algorithms for treating cohesive and mixed sediment that have been added to the Regional Ocean Modeling System (ROMS version 3.6), as implemented in the Coupled Ocean-Atmosphere-Wave-Sediment Transport Modeling System (COAWST Subversion repository revision 1234). These include the following: floc dynamics (aggregation and disaggregation in the water column); changes in floc characteristics in the seabed; erosion and deposition of cohesive and mixed (combination of cohesive and non-cohesive) sediment; and biodiffusive mixing of bed sediment. These routines supplement existing non-cohesive sediment modules, thereby increasing our ability to model fine-grained and mixed-sediment environments. Additionally, we describe changes to the sediment bed layering scheme that improve the fidelity of the modeled stratigraphic record. Finally, we provide examples of these modules implemented in idealized test cases and a realistic application.

  10. A multilevel analysis of social ties and social cohesion among Latinos and their neighborhoods: results from Chicago.

    PubMed

    Almeida, Joanna; Kawachi, Ichiro; Molnar, Beth E; Subramanian, S V

    2009-09-01

    Research suggests that, among Latinos, there are health benefits associated with living in a neighborhood populated with coethnics. While social networks and social cohesion are the proposed explanation for the salubrious effect and are assumed to be characteristics of Latino immigrant enclaves, evidence for this is limited. We used multilevel regression to test the relative contribution of individual race/ethnicity and neighborhood concentration of Mexican Americans as predictors of social networks and social cohesion. After accounting for personal characteristics, we found a negative association between neighborhood concentration of Mexican Americans and social cohesion. Among Latinos, living in a neighborhood with increased coethnics was associated with increased social ties. Compared to non-Latino whites, Mexican Americans reported more social ties but lower social cohesion. Contrary to the assumption that Mexican immigrant enclaves beget social cohesion, we did not find this to be true in Chicago neighborhoods.

  11. Perceptions of communication, family adaptability and cohesion: a comparison of adolescents newly diagnosed with cancer and their parents.

    PubMed

    Phillips-Salimi, Celeste R; Robb, Sheri L; Monahan, Patrick O; Dossey, Amy; Haase, Joan E

    2014-01-01

    To describe and compare adolescent and parent perspectives on communication, family adaptability and cohesion, as well as relationships among these variables, during the first month of an adolescent's cancer diagnosis. Seventy adolescent-parent dyads were enrolled as part of a larger multi-site study. The adolescents ranged in age from 11 to 19, and 61% were males. Parents were predominately mothers (83%). Dyads were predominately non-Hispanic Caucasian (63%). Measures included the Parent-Adolescent Communication Scale and the Family Adaptability and Cohesion Evaluation Scale (FACES II). Paired t-tests, Pearson correlations, intra-class correlation coefficients and multiple linear regression analyses were completed. Adolescent scores on communication, family adaptability and cohesion were significantly lower than parent scores. The inter-dyadic agreement between adolescents and parents was low. Communication, family adaptability and cohesion were examined separately for adolescents and for parents, and significant relationships were found. Both adolescent- and parent-perceived communication was significantly associated with family adaptability and cohesion outcomes. Differences were found in adolescent and parent perceptions of communication, family adaptability and cohesion. When both adolescents and parents had better perceived communication, this was associated with better perceived family adaptability and cohesion. Results suggest that the development of interventions to enhance adolescent-parent communication could help foster better family adaptability and cohesion, which may ultimately impact their psychological adjustment. In addition, understanding the degree to which adolescents and parents disagree on their perceptions, including the results that parents generally have more favorable perceptions, may be a useful starting point when developing interventions.

  12. Perceptions of Communication, Family Adaptability, and Cohesion: A Comparison of Adolescents Newly Diagnosed with Cancer and their Parents

    PubMed Central

    Phillips-Salimi, Celeste R.; Robb, Sheri L.; Monahan, Patrick O.; Dossey, Amy; Haase, Joan E.

    2017-01-01

    Purpose Describe and compare adolescent and parent perspectives on communication, family adaptability and cohesion, as well as relationships among these variables, during the first month of the adolescent’s cancer diagnosis. Methods Seventy 70 adolescent-parent dyads were enrolled as part of a larger multi-site study. Adolescents ranged in age from 11–19 and 61% were males. Parents were predominately mothers (83%). Dyads were predominately non-Hispanic Caucasian (63%). Measures included the Parent-Adolescent Communication Scale and the Family Adaptability and Cohesion Evaluation Scale (FACES II). Paired t tests, Pearson correlations, intra-class correlation coefficients, and multiple linear regression analyses were completed. Results Adolescent scores on communication, family adaptability, and cohesion were significantly lower than parent scores. The inter-dyadic agreement between adolescents and parents was low. Communication, family adaptability, and cohesion were examined separately for adolescents and for parents, significant relationships were found. Both adolescent- and parent-perceived communication was significantly associated with family adaptability and cohesion outcomes. Conclusions Differences were found in adolescent and parent perceptions of communication, family adaptability, and cohesion. When both adolescents and parents had better perceived communication, it was associated with better perceived family adaptability and cohesion. Results suggest the development of interventions to enhance adolescent-parent communication could help foster better family adaptability and cohesion which may ultimately impact their psychological adjustment. In addition, understanding the degree to which adolescents and parents disagree on their perceptions, including the results that parents generally have more favorable perceptions, may be a useful starting point when developing interventions. PMID:24501152

  13. Is it Ethnic Fractionalization or Social Exclusion, Which Affects Social Cohesion?

    PubMed

    van Staveren, Irene; Pervaiz, Zahid

    2017-01-01

    The theory about missing links of economic growth often lags behind the empirical estimations of such links. A consensus has emerged that ethnic fractionalization has a negative impact on growth, also when controlled for income inequality. Often, although implicitly, the assumed channel is social cohesion. We analyse the effect of fractionalization on social cohesion with a different inequality measure, namely a social measure of inequality: the Inclusion of Minorities Index. Our results indicate that it is social exclusion , which reduces social cohesion, rather than diversity as such . We conclude that future studies of social cohesion and its relation to growth may benefit from using measures of social exclusion next to ethnic diversity.

  14. Atomistic Cohesive Zone Models for Interface Decohesion in Metals

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin I.; Saether, Erik; Glaessgen, Edward H.

    2009-01-01

    Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship characterizing the load transfer across the plane of a growing edge crack is extracted from atomistic simulations for use within a continuum finite element model. The methodology for the atomistic derivation of a cohesive-zone law is presented. This procedure can be implemented to build cohesive-zone finite element models for simulating fracture in nanocrystalline or ultrafine grained materials.

  15. Flow Function of Pharmaceutical Powders Is Predominantly Governed by Cohesion, Not by Friction Coefficients.

    PubMed

    Leung, Lap Yin; Mao, Chen; Srivastava, Ishan; Du, Ping; Yang, Chia-Yi

    2017-07-01

    The purpose of this study was to demonstrate that the flow function (FFc) of pharmaceutical powders, as measured by rotational shear cell, is predominantly governed by cohesion but not friction coefficients. Driven by an earlier report showing an inverse correlation between FFc and the cohesion divided by the corresponding pre-consolidation stress (Wang et al. 2016. Powder Tech. 294:105-112), we performed analysis on a large data set containing 1130 measurements from a ring shear tester and identified a near-perfect inverse correlation between the FFc and cohesion. Conversely, no correlation was found between FFc and friction angles. We also conducted theoretical analysis and estimated such correlations based on Mohr-Coulomb failure model. We discovered that the correlation between FFc and cohesion can sustain as long as the angle of internal friction at incipient flow is not significantly larger than the angle of internal friction at steady-state flow, a condition covering almost all pharmaceutical powders. The outcome of this study bears significance in pharmaceutical development. Because the cohesion value is strongly influenced by the interparticle cohesive forces, this study effectively shows that it is more efficient to improve the pharmaceutical powder flow by lowering the interparticle cohesive forces than by lowering the interparticle frictions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Winnowing and Flocculation in Bio-physical Cohesive Substrate: A Flume Experimental and Estuarine Study

    NASA Astrophysics Data System (ADS)

    Ye, L.; Parsons, D. R.; Manning, A. J.

    2016-12-01

    Cohesive sediment, or mud, is ubiquitously found in most aqueous environments, such as coasts and estuaries. The study of cohesive sediment behaviors requires the synchronous description of mutual interactions of grains (e.g., winnowing and flocculation), their physical properties (e.g., grain size) and also the ambient water. Herein, a series of flume experiments (14 runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substrates: secreted by aquatic microorganisms) are combined with an estuarine field survey (Dee estuary, NW England) to investigate the behavior of suspensions over bio-physical cohesive substrates. The experimental results indicate that winnowing and flocculation occur pervasively in bio-physical cohesive flow systems. Importantly however, the evolution of the bed and bedform dynamics and hence turbulence production can be lower when cohesivity is high. The estuarine survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed, that pervasively exists in many natural estuarine systems, plays a significant role in controlling the interactions between bed substrate and sediment suspension and deposition, including controlling processes such as sediment winnowing, flocculation and re-deposition. Full understanding of these processes are essential in advancing sediment transport modelling and prediction studies across natural estuarine systems and the work will report on an improved conceptual model for sediment sorting deposition in bio-physical cohesive substrates.

  17. Family cohesion and posttraumatic intrusion and avoidance among war veterans: a 20-year longitudinal study.

    PubMed

    Zerach, Gadi; Solomon, Zahava; Horesh, Danny; Ein-Dor, Tsachi

    2013-02-01

    The bi-directional relationships between combat-induced posttraumatic symptoms and family relations are yet to be understood. The present study assesses the longitudinal interrelationship of posttraumatic intrusion and avoidance and family cohesion among 208 Israeli combat veterans from the 1982 Lebanon War. Two groups of veterans were assessed with self-report questionnaires 1, 3 and 20 years after the war: a combat stress reaction (CSR) group and a matched non-CSR control group. Latent Trajectories Modeling showed that veterans of the CSR group reported higher intrusion and avoidance than non-CSR veterans at all three points of time. With time, there was a decline in these symptoms in both groups, but the decline was more salient among the CSR group. The latter also reported lower levels of family cohesion. Furthermore, an incline in family cohesion levels was found in both groups over the years. Most importantly, Autoregressive Cross-Lagged Modeling among CSR and non-CSR veterans revealed that CSR veterans' posttraumatic symptoms in 1983 predicted lower family cohesion in 1985, and lower family cohesion, in turn, predicted posttraumatic symptoms in 2002. The findings suggest that psychological breakdown on the battlefield is a marker for future family cohesion difficulties. Our results lend further support for the bi-directional mutual effects of posttraumatic symptoms and family cohesion over time.

  18. Symptom fluctuations, self-esteem, and cohesion during group cognitive behaviour therapy for early psychosis.

    PubMed

    Lecomte, Tania; Leclerc, Claude; Wykes, Til

    2018-03-01

    Group cohesion has been linked to positive changes in self-esteem and in symptoms during group psychotherapy in people with psychosis. These changes may be linked to changes in symptoms as fluctuations in self-esteem have been linked to symptom fluctuations. We aimed to determine the relationship between these three factors - group cohesion, self-esteem, and symptoms - during group cognitive behaviour therapy for psychosis (GCBTp). We hypothesized that group cohesion would precede changes in symptoms and self-esteem and that improvements in self-esteem would precede improvements in symptoms. This is an uncontrolled longitudinal study recruiting from a convenience sample within two early psychosis clinics. Sixty-six individuals from first episode of psychosis treatment programmes participated in this study and received 24 sessions of a validated GCBTp protocol. Participants answered a brief questionnaire at the end of each session, measuring their group cohesion, self-esteem, and perception of their symptoms as worse, same, or better than usual. Orthogonal polynomial contrasts for time effects were estimated with a mixed model for repeated measures with a random cluster effect and revealed a quartic trend regarding changes in symptoms over the 24 sessions. Self-esteem, symptoms, and group cohesion were strongly linked during a given session. Also, self-esteem changes predicted changes in symptoms up to two sessions later, and symptoms changes predicted self-esteem changes at the next session. Group cohesion preceded improvements in both self-esteem and symptoms; self-esteem also predicted improvements in group cohesion. These results suggest that self-esteem and symptoms influence each other during therapy, with improvements in one leading to improvements in the other. Group cohesion also appears to be an essential prerequisite to positive changes in self-esteem and symptoms during GCBTp. This study emphasizes the interrelation between self-esteem improvements and symptom improvements, with improvements in one leading to improvements in the other, during group CBT for psychosis. Group cohesion, in this study, is a predictor of self-esteem and symptom improvements, suggesting that a special attention should be given to developing a strong alliance and group cohesion early on during CBT for psychosis. © 2017 The British Psychological Society.

  19. Confirming the Structural Validity of the My Class Inventory -- Short Form Revised

    ERIC Educational Resources Information Center

    Mariani, Melissa; Villares, Elizabeth; Sink, Christopher A.; Colvin, Kimberly; Kuba, Summer Perhay

    2015-01-01

    Researchers analyzed data collected from elementary school students (N = 893) to further establish the psychometric soundness of the My Class Inventory--Short Form Revised (MCI-SFR). A confirmatory factor analysis was conducted resulting in a good fit for a four-factor model, which corresponds to the instrument's four scales (Cohesion,…

  20. Culturally Responsive Writing Instruction for Secondary Students with Emotional and Behavioral Disorders

    ERIC Educational Resources Information Center

    Chiu, Calli Lewis; Carrero, Kelly M.; Lusk, Mandy E.

    2017-01-01

    Research suggests that teachers often do not adequately prepare students with emotional and behavioral disorders (EBD) to utilize organizational structures and basic writing skills that are necessary to produce cohesive essays. Among the challenges of effectively teaching writing to secondary students with EBD is how to deliver culturally…

  1. Global Migration, Diversity, and Civic Education: Improving Policy and Practice. Multicultural Education Series

    ERIC Educational Resources Information Center

    Banks, James A., Ed.; Suárez-Orozco, Marcelo, Ed.; Ben-Peretz, Miriam, Ed.

    2016-01-01

    Mass migration and globalization are creating new and deep challenges to education systems the world over. In this volume, some of the world's leading researchers in multicultural education and immigration discuss critical issues related to cultural sustainability, structural inclusion, and social cohesion. The authors consider how global…

  2. The Effect of Centralization and Cohesion on the Social Construction of Knowledge in Discussion Forums

    ERIC Educational Resources Information Center

    Tirado, Ramón; Hernando, Ángel; Aguaded, José Ignacio

    2015-01-01

    Interactive relationships in online learning communities can influence the process and quality of knowledge building. The aim of this study is to empirically investigate the relationships between network structures and social knowledge building in an asynchronous writing environment through discussion forums in a learning management system. The…

  3. The Effect of Centralization and Cohesion on the Social Construction of Knowledge in Discussion Forums

    ERIC Educational Resources Information Center

    Tirado, Ramon; Hernando, Angel; Aguaded, Jose Ignacio

    2012-01-01

    Interactive relationships in online learning communities can influence the process and quality of knowledge building. The aim of this study is to empirically investigate the relationships between network structures and social knowledge building in an asynchronous writing environment through discussion forums in a learning management system. The…

  4. Social Ecology and Group Cohesion in Pilot Whales and Their Responses to Playback of Anthropogenic and Natural Sounds

    DTIC Science & Technology

    2015-09-30

    Minvielle-Sebastia, L. and Guinet, C. (2008). Long-term social structure of long-finned pilot whales (Globicephala melas ) in the Strait of Gibraltar. Acta...Severity of Behavioral Changes Observed During Experimental Exposures of Killer (Orcinus orca), Long-Finned Pilot (Globicephala melas ), and Sperm

  5. Interactions between European Citizenship and Language Learning among Adolescent Europeans

    ERIC Educational Resources Information Center

    Hennebry, Mairin

    2011-01-01

    Recent enlargement of the European Union (EU) has created debate as to the suitability of current structures and policies for effectively engaging citizens and developing social cohesion. Education and specifically modern foreign language (MFL) teaching are argued by the literature to play a key role in equipping young people to interact and…

  6. Teaching for Citizenship in Lebanon: Teachers Talk about the Civics Classroom

    ERIC Educational Resources Information Center

    Akar, Bassel

    2012-01-01

    "National and Civic Education" is a program of study compulsory across all grade levels in Lebanon aimed at promoting social cohesion and active citizenship. A sample of 19 civics teachers in Lebanon across four of the six governorates participated in semi-structured interviews. The conversations delved into their conceptions of…

  7. Segmentation in cohesive systems constrained by elastic environments

    PubMed Central

    Novak, I.

    2017-01-01

    The complexity of fracture-induced segmentation in elastically constrained cohesive (fragile) systems originates from the presence of competing interactions. The role of discreteness in such phenomena is of interest in a variety of fields, from hierarchical self-assembly to developmental morphogenesis. In this paper, we study the analytically solvable example of segmentation in a breakable mass–spring chain elastically linked to a deformable lattice structure. We explicitly construct the complete set of local minima of the energy in this prototypical problem and identify among them the states corresponding to the global energy minima. We show that, even in the continuum limit, the dependence of the segmentation topology on the stretching/pre-stress parameter in this problem takes the form of a devil's type staircase. The peculiar nature of this staircase, characterized by locking in rational microstructures, is of particular importance for biological applications, where its structure may serve as an explanation of the robustness of stress-driven segmentation. This article is part of the themed issue ‘Patterning through instabilities in complex media: theory and applications.’ PMID:28373383

  8. Influence of heat treatment on bond strength and corrosion resistance of sol-gel derived bioglass-ceramic coatings on magnesium alloy.

    PubMed

    Shen, Sibo; Cai, Shu; Xu, Guohua; Zhao, Huan; Niu, Shuxin; Zhang, Ruiyue

    2015-05-01

    In this study, bioglass-ceramic coatings were prepared on magnesium alloy substrates through sol-gel dip-coating route followed by heat treatment at the temperature range of 350-500°C. Structure evolution, bond strength and corrosion resistance of samples were studied. It was shown that increasing heat treatment temperature resulted in denser coating structure as well as increased interfacial residual stress. A failure mode transition from cohesive to adhesive combined with a maximum on the measured bond strength together suggested that heat treatment enhanced the cohesion strength of coating on the one hand, while deteriorated the adhesion strength of coating/substrate on the other, thus leading to the highest bond strength of 27.0MPa for the sample heat-treated at 450°C. This sample also exhibited the best corrosion resistance. Electrochemical tests revealed that relative dense coating matrix and good interfacial adhesion can effectively retard the penetration of simulated body fluid through the coating, thus providing excellent protection for the underlying magnesium alloy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Scour in cohesive soils

    DOT National Transportation Integrated Search

    2015-05-01

    This study of scour in cohesive soils had two objectives. The first was to introduce and demonstrate a new ex situ erosion testing device (ESTD) that can mimic the near-bed flow of open channels to erode cohesive soils within a specified range of she...

  10. Factors associated with low unit cohesion in Australian Defence Force members who deployed to the Middle East (2001–2009)

    PubMed Central

    Kanesarajah, Jeeva; Waller, M; Zheng, W Y; Dobson, A J

    2016-01-01

    Introduction Unit cohesion has been shown to bolster the mental health of military personnel; hence, it is important to identify the characteristics that are associated with low unit cohesion, so that interventions to improve unit cohesion can be targeted and implemented. Little is known about the factors associated with low unit cohesion. This research aims to identify demographic, military service and deployment factors associated with low unit cohesion. Methods Data from a self-reported cross-sectional study of 11 411 current or ex-serving Australian military personnel deployed to Iraq or Afghanistan between 2001 and 2009 were used. Multivariable logistic regression was used to investigate the research aims. Results Being female (adjusted OR (aOR) (95% CI) 1.35 (1.21 to 1.51)), non-commissioned officer (aOR (95% CI) 1.50 (1.39 to 1.62)), lower ranked (aOR (95% CI) 1.74 (1.51 to 2.01)) or having left military service (aOR (95% CI) 1.71 (1.46 to 2.02)) was associated with reporting low unit cohesion. Potentially modifiable factors such as performing logistic roles on deployment (aOR (95% CI) 1.13 (1.01 to 1.27)), dissatisfaction with work experience on deployment such as working with colleagues who did not do what was expected of them (aOR (95% CI) 4.09 (3.61 to 4.64)), and major problems at home while deployed (aOR (95% CI) 1.50 (1.38 to 1.63)) were also associated with reporting low unit cohesion. Conclusions This is the first study to identify demographic, military service and deployment factors associated with low unit cohesion. The modifiable nature of unit cohesion means that military leaders could use this information to identify subgroups for targeted resilience interventions that may reduce vulnerabilities to mental health problems and improve the job satisfaction, preparedness and deployment experiences of serving members. PMID:26567321

  11. Putty-like bone fillers based on CaP ceramics or Biosilicate® combined with carboxymethylcellulose: Characterization, optimization, and evaluation.

    PubMed

    Gabbai-Armelin, Paulo R; Renno, Ana Cm; Crovace, Murilo C; Magri, Angela Mp; Zanotto, Edgar D; Peitl, Oscar; Leeuwenburgh, Sander Cg; Jansen, John A; van den Beucken, Jeroen Jjp

    2017-08-01

    Calcium phosphates and bioactive glass ceramics have been considered promising biomaterials for use in surgeries. However, their moldability should be further enhanced. We here thereby report the handling, physicochemical features, and morphological characteristics of formulations consisting of carboxymethylcellulose-glycerol and hydroxyapatite-tricalcium phosphate or Biosilicate® particles. We hypothesized that combining either material with carboxymethylcellulose-glycerol would improve handling properties, retaining their bioactivity. In addition to scanning electron microscopy, cohesion, mineralization, pH, and viscoelastic properties of the novel formulations, cell culture experiments were performed to evaluate the cytotoxicity and cell proliferation. Putty-like formulations were obtained with improved cohesion and moldability. Remarkably, mineralization in simulated body fluid of hydroxyapatite-tricalcium phosphate/carboxymethylcellulose-glycerol formulations was enhanced compared to pure hydroxyapatite-tricalcium phosphate. Cell experiments showed that all formulations were noncytotoxic and that HA-TCP60 and BGC50 extracts led to an increased cell proliferation. We conclude that combining carboxymethylcellulose-glycerol with either hydroxyapatite-tricalcium phosphate or Biosilicate® allows for the generation of moldable putties, improves handling properties, and retains the ceramic bioactivity.

  12. Analysis of Cohesion and Collective Efficacy Profiles for the Performance of Soccer Players

    PubMed Central

    Leo, Francisco M.; Sánchez-Miguel, Pedro A.; Sánchez-Oliva, David; Amado, Diana; García-Calvo, Tomás

    2013-01-01

    The principal aims of the study were to define different profiles of cohesion and perceived efficacy in soccer players and to measure their differences in performance. The subjects were 235 soccer players in the under-18 category who played in the National League in Spain and 15 coaches whose ages ranged from 29 to 45 years. Diverse instruments to assess cohesion, perceived efficacy, and expectations of success were used in the study. Moreover, we measured playing time and performance. The results of the study proved the existence of four cohesion and efficacy profiles that presented significant differences in expectations of success, playing time, and performance. Furthermore, significant differences were found in the distribution of players in the teams as a function of performance. The main conclusion of this study is that soccer players with higher cohesion and collective efficacy levels belonged to teams that completed the season at the top-level classification. In contrast, athletes with low cohesion and collective efficacy usually played in unsuccessful teams. Coaches and sports psychologists are encouraged to promote both social and task cohesion and collective efficacy to enhance team performance. PMID:24511358

  13. Assessing the impact of vulnerability on perceptions of social cohesion in the context of community resilience to disaster in the Blue Mountains.

    PubMed

    Redshaw, Sarah; Ingham, Valerie; McCutcheon, Marion; Hicks, John; Burmeister, Oliver

    2018-02-01

    To assess the impact of network communications, community participation and elements of vulnerability on the perception of social cohesiveness in the Blue Mountains local government area (Blue Mountains LGA). A questionnaire was administered to residents of the Blue Mountains LGA. Econometric analysis of the resulting data was undertaken. Blue Mountains LGA, Australia. One thousand one hundred and three residents of the Blue Mountains LGA responded to the questionnaire. The responses enabled the construction of variables measuring individual perceptions of community cohesiveness, their network communications and community participation. Demographic data and data on the vulnerabilities of individuals were also collected. The data were used in an econometric model which identified that network communications and community participation impacted positively on perceptions of social cohesiveness while vulnerability factors had a negative impact. Remedial action to build community cohesiveness and network communications can be expected to have a positive impact on social cohesiveness. In developing strategies to build community cohesiveness and network communication, particular care needs to be taken to ensure the inclusion of those members of society who are regarded as the most vulnerable. © 2017 National Rural Health Alliance Inc.

  14. Team Cohesion, Player Attitude, and Performance Expectations in Simulation.

    ERIC Educational Resources Information Center

    Wellington, William J.; Faria, A. J.

    1996-01-01

    Examines the relationship of team cohesion, participant attitude, and performance expectations to actual performance results in a simulation competition. Findings indicate a strong relationship between beginning team cohesion and performance expectations and final game performance, but little relationship between beginning participant attitudes…

  15. Of Blue Badges and Purple Cloth, the Impact of Battle Death in a Cohesive Unit

    DTIC Science & Technology

    1988-12-18

    the small-unit level. History shows that the key to understanding the problem of death in a cohesive unit is that the danger of being killed or...cohesion and motivation are rooted in intensely personal attachments at the small-unit level. History shows that the key to understanding the problem of...without fear of mortal peril." (8) In this one sentence he shows his awareness of the necessity for leadership and cohesiveness in the face of death

  16. Large Space Systems Technology, Part 2, 1981

    NASA Technical Reports Server (NTRS)

    Boyer, W. J. (Compiler)

    1982-01-01

    Four major areas of interest are covered: technology pertinent to large antenna systems; technology related to the control of large space systems; basic technology concerning structures, materials, and analyses; and flight technology experiments. Large antenna systems and flight technology experiments are described. Design studies, structural testing results, and theoretical applications are presented with accompanying validation data. These research studies represent state-of-the art technology that is necessary for the development of large space systems. A total systems approach including structures, analyses, controls, and antennas is presented as a cohesive, programmatic plan for large space systems.

  17. The impact of neighborhood violence and social cohesion on smoking behaviors among a cohort of smokers in Mexico

    PubMed Central

    Fleischer, Nancy L.; Lozano, Paula; Santillán, Edna Arillo; Shigematsu, Luz Myriam Reynales; Thrasher, James F.

    2016-01-01

    Background Recent increases in violent crime may impact a variety of health outcomes in Mexico. We examined relationships between neighborhood-level violence and smoking behaviors in a cohort of Mexican smokers from 2011–2012, and whether neighborhood-level social cohesion modified these relationships. Methods Data were analyzed from adult smokers and recent ex-smokers who participated in Waves 5–6 of the International Tobacco Control Mexico Survey. Self-reported neighborhood violence and social cohesion were asked of Wave 6 survey participants (n=2129 current and former smokers, n=150 neighborhoods). Neighborhood-level averages for violence and social cohesion (range 4–14 and 10–25, respectively) were assigned to individuals. We used generalized estimating equations to determine associations between neighborhood indicators and individual-level smoking intensity, quit behaviors, and relapse. Results Higher neighborhood violence was associated with higher smoking intensity (Risk Ratio (RR)=1.17, 95% Confidence Interval (CI) 1.02–1.33), and fewer quit attempts (RR=0.72, 95% CI 0.61–0.85). Neighborhood violence was not associated with successful quitting or relapse. Higher neighborhood social cohesion was associated with more quit attempts and more successful quitting. Neighborhood social cohesion modified the association between neighborhood violence and smoking intensity: in neighborhoods with higher social cohesion, as violence increased, smoking intensity decreased and in neighborhoods with lower social cohesion, as violence increased, so did smoking intensity. Conclusion In the context of recent increased violence in Mexico, smokers living in neighborhoods with more violence may smoke more cigarettes per day and make fewer quit attempts than their counterparts in less violent neighborhoods. Neighborhood social cohesion may buffer the impact of violence on smoking intensity. PMID:26043898

  18. Facing Sorrow as a Group Unites. Facing Sorrow in a Group Divides

    PubMed Central

    Rennung, Miriam; Göritz, Anja S.

    2015-01-01

    Collective gatherings foster group cohesion through providing occasion for emotional sharing among participants. However, prior studies have failed to disentangle two processes that are involved in emotional sharing: 1) focusing shared attention on the same emotion-eliciting event and 2) actively sharing one’s experiences and disclosing one’s feelings to others. To date, it has remained untested if shared attention influences group cohesion independent of active emotional sharing. Our experiment investigated the effect of shared versus individual attention on cohesion in groups of strangers. We predicted that differences in group cohesion as called forth by shared vs. individual attention are most pronounced when experiencing highly arousing negative affect, in that the act of experiencing intensely negative affect with others buffers negative affect’s otherwise detrimental effect on group cohesion. Two-hundred sixteen participants were assembled in groups of 3 to 4 people to either watch an emotion-eliciting film simultaneously on a common screen or to watch the same emotion-eliciting film clip on a laptop in front of each group member using earphones. The film clips were chosen to elicit either highly arousing negative affect or one of three other affective states representing the other poles in Russel’s Circumplex model of affect. We examined self-reported affective and cognitive group cohesion and a behavioral measure of group cohesion. Results support our buffer-hypothesis, in that experiencing intense negative affect in unison leads to higher levels of group cohesion than experiencing this affect individually despite the group setting. The present study demonstrates that shared attention to intense negative emotional stimuli affects group cohesion independently of active emotional sharing. PMID:26335924

  19. Differences in neighborhood social cohesion and aerobic physical activity by Latino subgroup.

    PubMed

    Murillo, Rosenda; Echeverria, Sandra; Vasquez, Elizabeth

    2016-12-01

    Previous research has examined the role of neighborhood social cohesion in physical activity outcomes; however, less is known about this relationship across Latino subgroups. The purpose of our study was to examine the association between neighborhood social cohesion and aerobic leisure-time physical activity (LTPA) among Latino adults and to determine whether these associations differ by Latino subgroup. We used cross-sectional 2013-2014 National Health Interview Survey (NHIS) data on Latinos originating from 5 countries/regions (i.e., Latinos of Puerto Rican, Mexican/Mexican-American, Cuban/Cuban-American, Dominican and Central or South American origin) aged ≥18 years (n=11,126). Multivariable logistic regression models were used to estimate associations between self-reported neighborhood social cohesion and meeting aerobic LTPA guidelines. Models were adjusted for age, sex, education, and acculturation. We also investigated whether associations varied by Latino subgroup. In adjusted models for all Latino adults, compared with those reporting low social cohesion, individuals who reported high social cohesion (Odds Ratio [OR]: 1.33; 95% Confidence Interval [CI]: 1.17-1.52) were significantly more likely to meet the aerobic physical activity guideline. When stratified by Latino subgroups, among Mexican/Mexicans-Americans (OR: 1.39; 95% CI: 1.16, 1.66) and Cuban/Cuban Americans (OR: 1.73; 95% CI: 1.00, 2.97) high social cohesion was associated with meeting the aerobic activity guideline. Among Dominicans, those who reported medium social cohesion (OR: 0.52, 95% CI: 0.29, 0.93) were less likely to meet the aerobic activity guideline. When examining aerobic physical activity outcomes in the Latino population, the role of neighborhood social cohesion and the variability among Latino subgroups should be considered.

  20. Gelation of Soy Milk with Hagfish Exudate Creates a Flocculated and Fibrous Emulsion- and Particle Gel

    PubMed Central

    Böni, Lukas; Rühs, Patrick A.; Windhab, Erich J.; Fischer, Peter; Kuster, Simon

    2016-01-01

    Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v) and with a soy emulsion (commercial soy milk) to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making “soy slime”, a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food products. PMID:26808048

  1. Gelation of Soy Milk with Hagfish Exudate Creates a Flocculated and Fibrous Emulsion- and Particle Gel.

    PubMed

    Böni, Lukas; Rühs, Patrick A; Windhab, Erich J; Fischer, Peter; Kuster, Simon

    2016-01-01

    Hagfish slime is an ultra dilute, elastic and cohesive hydrogel that deploys within milliseconds in cold seawater from a glandularly secreted exudate. The slime is made of long keratin-like fibers and mucin-like glycoproteins that span a network which entraps water and acts as a defense mechanism against predators. Unlike other hydrogels, the slime only confines water physically and is very susceptible to mechanical stress, which makes it unsuitable for many processing operations and potential applications. Despite its huge potential, little work has been done to improve and functionalize the properties of this hydrogel. To address this shortcoming, hagfish exudate was mixed with a soy protein isolate suspension (4% w/v) and with a soy emulsion (commercial soy milk) to form a more stable structure and combine the functionalities of a suspension and emulsion with those of the hydrogel. Hagfish exudate interacted strongly with the soy systems, showing a markedly increased viscoelasticity and water retention. Hagfish mucin was found to induce a depletion and bridging mechanism, which caused the emulsion and suspension to flocculate, making "soy slime", a cohesive and cold-set emulsion- and particle gel. The flocculation network increases viscoelasticity and substantially contributes to liquid retention by entrapping liquid in the additional confinements between aggregated particles and protein fibers. Because the mucin-induced flocculation resembles the salt- or acid-induced flocculation in tofu curd production, the soy slime was cooked for comparison. The cooked soy slime was similar to conventional cooked tofu, but possessed a long-range cohesiveness from the fibers. The fibrous, cold-set, and curd-like structure of the soy slime represents a novel way for a cold coagulation and fiber incorporation into a suspension or emulsion. This mechanism could be used to efficiently gel functionalized emulsions or produce novel tofu-like structured food products.

  2. Unique cohesive nature of the β1-isomer of [70]PCBM fullerene on structures and photovoltaic performances of bulk heterojunction films with PffBT4T-2OD polymers.

    PubMed

    Umeyama, Tomokazu; Igarashi, Kensho; Sakamaki, Daisuke; Seki, Shu; Imahori, Hiroshi

    2018-01-04

    The effects of regioisomer and diastereomer separations of [70]PCBM on structures and photovoltaic properties of PffBT4T-2OD:[70]PCBM blend films have systematically been investigated for the first time. Decreasing the amount of a diastereomer of β-[70]PCBM with high aggregation tendency (β 1 -[70]PCBM) improved the photovoltaic performances.

  3. Self-organized centripetal movement of corneal epithelium in the absence of external cues

    NASA Astrophysics Data System (ADS)

    Lobo, Erwin P.; Delic, Naomi C.; Richardson, Alex; Raviraj, Vanisri; Halliday, Gary M.; di Girolamo, Nick; Myerscough, Mary R.; Lyons, J. Guy

    2016-08-01

    Maintaining the structure of the cornea is essential for high-quality vision. In adult mammals, corneal epithelial cells emanate from stem cells in the limbus, driven by an unknown mechanism towards the centre of the cornea as cohesive clonal groups. Here we use complementary mathematical and biological models to show that corneal epithelial cells can self-organize into a cohesive, centripetal growth pattern in the absence of external physiological cues. Three conditions are required: a circumferential location of stem cells, a limited number of cell divisions and mobility in response to population pressure. We have used these complementary models to provide explanations for the increased rate of centripetal migration caused by wounding and the potential for stem cell leakage to account for stable transplants derived from central corneal tissue, despite the predominantly limbal location of stem cells.

  4. Occurrence of cohesion of metals during combined plastic deformation

    NASA Technical Reports Server (NTRS)

    Aynbinder, S. G.; Klokova, E. F.

    1980-01-01

    Experiments were conducted to study the cohesion of metals with surface films of varying thickness and hardness. It was established that the deformation necessary for the occurrence of cohesion is determined by the correlation of mechanical properties of the films and the base metal. The greater the relative hardness of the film the lower the deformation necessary for the occurrence of cohesion. The films are as plastic as the base metal prevent cohesion, since in this case it is impossible for sections of metal to appear that are free of contaminants. The physical perculiarities of metals that determine their capability for coalescence under conditions of dry friction are the relative hardness and plasticity of the oxide films formed on their surface under atmospheric conditions.

  5. Validation of a brief form of the Perceived Neighborhood Social Cohesion questionnaire.

    PubMed

    Dupuis, Marc; Baggio, Stéphanie; Gmel, Gerhard

    2017-02-01

    The aim of this study was the validation of a brief form of the Perceived Neighborhood Social Cohesion questionnaire using data from 5065 men from the "Cohort Study on Substance-Use Risk Factors." A 9-item scale covering three factors was proposed. Excellent indices of internal consistency were measured (α = .93). The confirmatory factor analyses resulted in acceptable fit indices supporting measurement invariance across French and German forms. Significant correlations were found between the brief form of the Perceived Neighborhood Social Cohesion questionnaire, and satisfaction and self-reported health, providing evidence of the concurrent validity of the scale. Perceived neighborhood social cohesion, and depression and suicide attempts were negatively associated, sustaining the protective effect of perceived social cohesion.

  6. The Role of Preceptorship and Group Cohesion on Newly Licensed Registered Nurses' Satisfaction and Intent to Stay.

    PubMed

    Bontrager, Sarah; Hart, Patricia L; Mareno, Nicole

    2016-03-01

    Thirteen percent of newly licensed registered nurses (NLRNs) vacate their first job after 1 year, and 37% report that they feel ready to change jobs. Turnover can lead to consistent and detrimental nursing shortages in nursing units, as well as increased costs for health care systems. A descriptive, prospective, cross-sectional design was used to understand how preceptor role effectiveness and group cohesion affect NLRNs' satisfaction and intent to stay. NLRNs reported high levels of perceived preceptor role effectiveness, group cohesion, and job satisfaction, with only moderate levels of intent to stay. Statistically significant relationships were found among preceptor role effectiveness, job satisfaction, and intent to stay, as well as among group cohesion, job satisfaction, and intent to stay. Preceptor role effectiveness and group cohesion are predictors of NLRNs' level of job satisfaction. Job satisfaction is a predictor of NLRNs' intent to stay. Effective preceptors and positive group cohesion are factors that are important to NLRNs' job satisfaction and intent to stay. Copyright 2016, SLACK Incorporated.

  7. Erosion properties of cohesive sediments in the Colorado River in Grand Canyon

    USGS Publications Warehouse

    Akahori, R.; Schmeeckle, M.W.; Topping, D.J.; Melis, T.S.

    2008-01-01

    Cohesive sediment deposits characterized by a high fraction of mud (silt plus clay) significantly affect the morphology and ecosystem of rivers. Potentially cohesive sediment samples were collected from deposits in the Colorado River in Marble and Grand Canyons. The erosion velocities of these samples were measured in a laboratory flume under varying boundary shear stresses. The non-dimensional boundary shear stress at which erosion commenced showed a systematic deviation from that of non-cohesive sediments at mud fractions greater than 0.2. An empirical relation for the boundary shear stress threshold of erosion as a function of mud fraction was proposed. The mass erosion rate was modelled using the Ariathurai-Partheniades equation. The erosion rate parameter of this equation was found to be a strong function of mud fraction. Under similar boundary shear stress and sediment supply conditions in the Colorado River, cohesive lateral eddy deposits formed of mud fractions in excess of 0.2 will erode less rapidly than non-cohesive deposits. Copyright ?? 2008 John Wiley & Sons, Ltd.

  8. A season-long team-building intervention: examining the effect of team goal setting on cohesion.

    PubMed

    Senécal, Julie; Loughead, Todd M; Bloom, Gordon A

    2008-04-01

    The purpose of the current study was to determine whether the implementation of a season-long team-building intervention program using team goal setting increased perceptions of cohesion. The participants were 86 female high school basketball players from 8 teams. The teams were randomly assigned to either an experimental team goal-setting or control condition. Each participant completed the Group Environment Questionnaire (GEQ; Carron, Brawley, & Widmeyer, 2002; Carron, Widmeyer, & Brawley, 1985), which assessed cohesion at both the beginning and end of the season. Overall, the results revealed a significant multivariate effect, Pillai's trace F(12, 438) = 2.68, p = .002. Post hoc analyses showed that at the beginning of the season, athletes from both conditions did not differ in their perceptions of cohesion. However, at the end of the season, athletes in the team goal-setting condition held higher perceptions of cohesion than athletes in the control condition. Overall, the results indicated that team goal setting was an effective team-building tool for influencing cohesiveness in sport teams.

  9. School social cohesion, student-school connectedness, and bullying in Colombian adolescents.

    PubMed

    Springer, Andrew E; Cuevas Jaramillo, Maria Clara; Ortiz Gómez, Yamileth; Case, Katie; Wilkinson, Anna

    2016-12-01

    Student-school connectedness is inversely associated with multiple health risk behaviors, yet research is limited on the relative contributions of a student's connectedness with school and an overall context of school social cohesion to peer victimization/bullying. We examined associations of perceived school cohesion and student-school connectedness with physical victimization, verbal victimization, and social exclusion in the past six months in adolescents in grades 6-11 (N = 774) attending 11 public and private urban schools in Colombia. Cross-sectional data were collected via a self-administered questionnaire and analyzed using mixed-effects linear regression models. Higher perceived school cohesion was inversely related with exposure to three bullying types examined (p < 0.05); student-school connectedness was negatively related to verbal victimization among girls only (p < 0.01). In full models, school cohesion maintained inverse associations with three bullying types after controlling for student-school connectedness (p ≤ 0.05). Enhancing school cohesion may hold benefits for bullying prevention beyond a student's individual school connectedness. © The Author(s) 2015.

  10. Respect the technique: Status-based respect increases minority group social cohesion with majority groups, while also increasing minority collective action tendencies.

    PubMed

    Glasford, Demis E; Johnston, Brian

    2018-01-01

    The present work explores the implications of respect for social change. Social change can be achieved via improved attitudes between minority and majority groups (i.e., social cohesion) or via action taken by minority groups (i.e., collective action). Recent work suggests that the social cohesion route to social change, in particular an emphasis on commonality, may be incompatible with the collective action route to social change. We suggest that social-cohesion strategies rooted in status-based respect may allow for social cohesion and collective action. We experimentally investigated the relative effects of a majority group communicating status-based respect and commonality, as compared to a control, on minority group members' social cohesion with the majority group and willingness to engage in collective action. Status-based respect increased positive attitudes toward a majority group, relative to commonality and control, but was also associated with increased collective action tendencies. Implications for social change are discussed.

  11. Acculturative Stress and Diminishing Family Cohesion Among Recent Latino Immigrants

    PubMed Central

    De La Rosa, Mario; Ibañez, Gladys E.

    2012-01-01

    This study investigates a theorized link between Latino immigrants’ experience of acculturative stress during their two initial years in the United States (US) and declines in family cohesion from pre- to post-immigration contexts. This retrospective cohort study included 405 adult participants. Baseline assessment occurred during participants’ first 12 months in the US. Follow-up assessment occurred during participants’ second year in the US. General linear mixed models were used to estimate change in family cohesion and sociocultural correlates of this change. Inverse associations were determined between acculturative stress during initial years in the US and declines in family cohesion from pre-immigration to post-immigration contexts. Participants with undocumented immigration status, those with lower education levels, and those without family in the US generally indicated lower family cohesion. Participants who experienced more acculturative stress and those without family in the US evidenced a greater decline in family cohesion. Results are promising in terms of implications for health services for recent Latino immigrants. PMID:22790880

  12. The variability of root cohesion as an influence on shallow landslide susceptibility in the Oregon Coast Range

    USGS Publications Warehouse

    Schmidt, K.M.; Roering, J.J.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R.; Schaub, T.

    2001-01-01

    Decades of quantitative measurement indicate that roots can mechanically reinforce shallow soils in forested landscapes. Forests, however, have variations in vegetation species and age which can dominate the local stability of landslide-initiation sites. To assess the influence of this variability on root cohesion we examined scarps of landslides triggered during large storms in February and November of 1996 in the Oregon Coast Range and hand-dug soil pits on stable ground. At 41 sites we estimated the cohesive reinforcement to soil due to roots by determining the tensile strength, species, depth, orientation, relative health, and the density of roots ???1 mm in diameter within a measured soil area. We found that median lateral root cohesion ranges from 6.8-23.2 kPa in industrial forests with significant understory and deciduous vegetation to 25.6-94.3 kPa in natural forests dominated by coniferous vegetation. Lateral root cohesion in clearcuts is uniformly ???10 kPa. Some 100-year-old industrial forests have species compositions, lateral root cohesion, and root diameters that more closely resemble 10-year-old clearcuts than natural forests. As such, the influence of root cohesion variability on landslide susceptibility cannot be determined solely from broad age classifications or extrapolated from the presence of one species of vegetation. Furthermore, the anthropogenic disturbance legacy modifies root cohesion for at least a century and should be considered when comparing contemporary landslide rates from industrial forests with geologic background rates.

  13. Constitutive Modeling of the Facesheet to Core Interface in Honeycomb Sandwich Panels Subject to Mode I Delamination

    NASA Technical Reports Server (NTRS)

    Hoewer, Daniel; Lerch, Bradley A.; Bednarcyk, Brett A.; Pineda, Evan Jorge; Reese, Stefanie; Simon, Jaan-Willem

    2017-01-01

    A new cohesive zone traction-separation law, which includes the effects of fiber bridging, has been developed, implemented with a finite element (FE) model, and applied to simulate the delamination between the facesheet and core of a composite honeycomb sandwich panel. The proposed traction-separation law includes a standard initial cohesive component, which accounts for the initial interfacial stiffness and energy release rate, along with a new component to account for the fiber bridging contribution to the delamination process. Single cantilever beam tests on aluminum honeycomb sandwich panels with carbon fiber reinforced polymer facesheets were used to characterize and evaluate the new formulation and its finite element implementation. These tests, designed to evaluate the mode I toughness of the facesheet to core interface, exhibited significant fiber bridging and large crack process zones, giving rise to a concave downward concave upward pre-peak shape in the load-displacement curve. Unlike standard cohesive formulations, the proposed formulation captures this observed shape, and its results have been shown to be in excellent quantitative agreement with experimental load-displacement and apparent critical energy release rate results, representative of a payload fairing structure, as well as local strain fields measured with digital image correlation.

  14. Pathways to age-friendly communities in diverse urban neighborhoods: Do social capital and social cohesion matter?

    PubMed

    Parekh, Rupal; Maleku, Arati; Fields, Noelle; Adorno, Gail; Schuman, Donna; Felderhoff, Brandi

    2018-07-01

    Using a social capital and social cohesion lens, we reposition the concept of civic engagement among older adults to examine pathways for building age-friendly communities. We analyzed data drawn from a Community-Based Participatory Research study in the Southern U.S. that explored lived experiences of older adults, age 55 and above, who participated in individual interviews (n = 15) and six focus group discussions (n = 45) to examine their perceptions of social identity, social connectedness, and civic engagement geared toward an age-friendly city. Findings indicated that several older adults had access to social networks and socially invested resources, thereby having opportunities for civic engagement and building age-friendly neighborhoods. However, social, cultural, linguistic, and structural barriers were more evident among certain diverse ethnic populations. Marginalized low-income minorities and immigrants, such as Hispanic participants, felt the lack of social cohesion among the larger society limited their ability to give back, thus decreasing their civic engagement activities. In contrast, Caucasian and African-American older adults were able to contribute to the political process through more civic participation activities. We provide implications for examining the role of social capital and social engagement to bolster civic engagement among older adults in building age-friendly communities.

  15. CONSTRAINTS ON THE PHYSICAL PROPERTIES OF MAIN BELT COMET P/2013 R3 FROM ITS BREAKUP EVENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Masatoshi; Sánchez, Diego Paul; Gabriel, Travis

    2014-07-01

    Jewitt et al. recently reported that main belt comet P/2013 R3 experienced a breakup, probably due to rotational disruption, with its components separating on mutually hyperbolic orbits. We propose a technique for constraining physical properties of the proto-body, especially the initial spin period and cohesive strength, as a function of the body's estimated size and density. The breakup conditions are developed by combining mutual orbit dynamics of the smaller components and the failure condition of the proto-body. Given a proto-body with a bulk density ranging from 1000 kg m{sup –3} to 1500 kg m{sup –3} (a typical range of the bulk density of C-type asteroids),more » we obtain possible values of the cohesive strength (40-210 Pa) and the initial spin state (0.48-1.9 hr). From this result, we conclude that although the proto-body could have been a rubble pile, it was likely spinning beyond its gravitational binding limit and would have needed cohesive strength to hold itself together. Additional observations of P/2013 R3 will enable stronger constraints on this event, and the present technique will be able to give more precise estimates of its internal structure.« less

  16. [Grammatical complexity and cohesion mechanisms in the communicative pragmatics of children with attention deficit hyperactivity disorder].

    PubMed

    Miranda Casas, A; Ygual Fernandez, A; Rosel Remirez, J

    2004-02-01

    The purpose of this study was to compare the grammatical structures and cohesion used in the narrative sequencing of real events by children with and without attention deficit hyperactivity disorder. A total of 27 children, between the ages of seven and eight, took part in the study; 15 of them had the combined subtype of ADHD and 12 participated as a control group. To obtain the narration the children were asked to talk about two real events they had experienced: 'What happened the last time you went to the doctor's?' and 'Have you ever been bitten by an insect?' An analysis of their narrations allowed us to obtain the following variables: the total number of communication units, their average length, the syntactic complexity index, the rate of lexical diversity, the lexical type referential cohesion procedures, the deictic and anaphoric grammatical procedures, the conjunctive procedures, discourse markers, changes of subject matter and dysfluency. Results show that there are significant differences between the two groups in the narrative cohesion indicators used, the group of normal children being those that were favoured by these differences. The most striking pragmatic peculiarities were difficulties in the use of conversational markers and the changes in the subject being discussed. The narratives of children with attention deficit hyperactivity disorder are more difficult to understand, which means that the listener has to adopt a more active role in order to make up for the missing information and has to infer a great deal more. This is an aspect that can have social implications and may make communication more difficult, especially with their peers, since these usually make less effort to understand the conversations than adults do.

  17. The effect of the antioxidant on the properties of thiolated poly(aspartic acid) polymers in aqueous ocular formulations.

    PubMed

    Budai-Szűcs, Mária; Horvát, Gabriella; Gyarmati, Benjámin; Szilágyi, Barnabás Áron; Szilágyi, András; Berkó, Szilvia; Ambrus, Rita; Szabó-Révész, Piroska; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Csányi, Erzsébet

    2017-04-01

    Thiolated polymers are a promising new group of excipients, but their stability against atmospheric oxidation has not been investigated in detail, and only a few efforts have been made to improve their stability. The oxidation of the thiol groups in solutions of thiolated polymers may result in a decrease of mucoadhesion and unpredictable in situ gelation. The aims of our work were to study the stability of aqueous solutions of thiolated polymers and the effects of stabilizing agents. We investigated thiolated poly(aspartic acid) polymers stabilized with dithiothreitol, glutathione or acetylcysteine. The effects of these antioxidants on the gel structure, mucoadhesion and drug release were determined by means of scanning electron microscopy, swelling, rheology, adhesion and drug release tests. It was concluded that the stability of polymer solutions containing antioxidants is sufficient for one day. Polymers stabilized with dithiotreitol demonstrated fast swelling and drug release, but weaker mucoadhesion as compared with the other samples. Polymers stabilized with glutathione displayed the weakest cohesive properties, resulting in fast and uncontrolled drug release and moderate mucoadhesion. Acetylcysteine-stabilized polymers exhibited an optimum cross-linked structure, with free thiol groups ensuring polymer-mucin interactions, resulting in the best mucoadhesive properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Stereoselective synthesis of ( E)-4-(imidazo[1,2- a]pyrid-2-yl)-3-(4-methylphenylsulfonyl)but-3-en-2-one. X-ray crystal structure and conformational analysis

    NASA Astrophysics Data System (ADS)

    Roche, D.; Force, L.; Carpy, A.; Gardette, D.; Madesclaire, M.

    1998-06-01

    The title compound, gem-ketovinylsulfone 3, was obtained stereoselectively (de > 98%) by the action of the α-anion from p-tolylsulfonylacetone 1 on imidazol[1,2- a]pyridine-2-carbaldehyde 2 in chelation-controlled conditions in the presence of a Lewis acid (ZnCl 2). The X-ray crystal structure of 3 [C 18H 16N 2O 3S: Mt = 340.4, orthorhombic, Pbca, a = 12.208(3) Å, b = 18.848(4) Å, c = 14.566(11) Å, V = 3.351(3) Å3, Z = 8, Dcalc = 1.349 g cm -3, λ( CuKα) = 1.54178 Å, μ = 1.83 mm -1, F(000) = 1424, T = 293 K, R = 0.061 for 2.046 observed reflections] was determined, and confirmed the ( E) configuration. Despite the conjugate position of the vinyl double bond, quasi-coplanar with the imidazopyridine heterocycle, there is no evidence of p-electron delocalization. The crystal cohesion is ensured by a dense network of van der Waals contacts. The conformational analysis of the ( E) and ( Z) stereoisomers was performed by molecular dynamics simulation, and showed the ( E) isomer to be 9.1 kJ mol -1 more stable than the ( Z) isomer.

  19. Bottom-up coarse-grained models with predictive accuracy and transferability for both structural and thermodynamic properties of heptane-toluene mixtures.

    PubMed

    Dunn, Nicholas J H; Noid, W G

    2016-05-28

    This work investigates the promise of a "bottom-up" extended ensemble framework for developing coarse-grained (CG) models that provide predictive accuracy and transferability for describing both structural and thermodynamic properties. We employ a force-matching variational principle to determine system-independent, i.e., transferable, interaction potentials that optimally model the interactions in five distinct heptane-toluene mixtures. Similarly, we employ a self-consistent pressure-matching approach to determine a system-specific pressure correction for each mixture. The resulting CG potentials accurately reproduce the site-site rdfs, the volume fluctuations, and the pressure equations of state that are determined by all-atom (AA) models for the five mixtures. Furthermore, we demonstrate that these CG potentials provide similar accuracy for additional heptane-toluene mixtures that were not included their parameterization. Surprisingly, the extended ensemble approach improves not only the transferability but also the accuracy of the calculated potentials. Additionally, we observe that the required pressure corrections strongly correlate with the intermolecular cohesion of the system-specific CG potentials. Moreover, this cohesion correlates with the relative "structure" within the corresponding mapped AA ensemble. Finally, the appendix demonstrates that the self-consistent pressure-matching approach corresponds to minimizing an appropriate relative entropy.

  20. A cavitation transition in the energy landscape of simple cohesive liquids and glasses

    NASA Astrophysics Data System (ADS)

    Altabet, Y. Elia; Stillinger, Frank H.; Debenedetti, Pablo G.

    2016-12-01

    In particle systems with cohesive interactions, the pressure-density relationship of the mechanically stable inherent structures sampled along a liquid isotherm (i.e., the equation of state of an energy landscape) will display a minimum at the Sastry density ρS. The tensile limit at ρS is due to cavitation that occurs upon energy minimization, and previous characterizations of this behavior suggested that ρS is a spinodal-like limit that separates all homogeneous and fractured inherent structures. Here, we revisit the phenomenology of Sastry behavior and find that it is subject to considerable finite-size effects, and the development of the inherent structure equation of state with system size is consistent with the finite-size rounding of an athermal phase transition. What appears to be a continuous spinodal-like point at finite system sizes becomes discontinuous in the thermodynamic limit, indicating behavior akin to a phase transition. We also study cavitation in glassy packings subjected to athermal expansion. Many individual expansion trajectories averaged together produce a smooth equation of state, which we find also exhibits features of finite-size rounding, and the examples studied in this work give rise to a larger limiting tension than for the corresponding landscape equation of state.

  1. Response Functions to Critical Shocks in Social Sciences:

    NASA Astrophysics Data System (ADS)

    Roehner, B. M.; Sornette, D.; Andersen, J. V.

    We show that, provided one focuses on properly selected episodes, one can apply to the social sciences the same observational strategy that has proved successful in natural sciences such as astrophysics or geodynamics. For instance, in order to probe the cohesion of a society, one can, in different countries, study the reactions to some huge and sudden exogenous shocks, which we call Dirac shocks. This approach naturally leads to the notion of structural (as opposed or complementary to temporal) forecast. Although structural predictions are by far the most common way to test theories in the natural sciences, they have been much less used in the social sciences. The Dirac shock approach opens the way to testing structural predictions in the social sciences. The examples reported here suggest that critical events are able to reveal pre-existing "cracks" because they probe the social cohesion which is an indicator and predictor of future evolution of the system, and in some cases they foreshadow a bifurcation. We complement our empirical work with numerical simulations of the response function ("damage spreading") to Dirac shocks in the Sznajd model of consensus build-up. We quantify the slow relaxation of the difference between perturbed and unperturbed systems, the conditions under which the consensus is modified by the shock and the large variability from one realization to another.

  2. Ultimate pier and contraction scour prediction in cohesive soils at selected bridges in Illinois.

    DOT National Transportation Integrated Search

    2013-09-01

    The Scour Rate In COhesive Soils-Erosion Function Apparatus (SRICOS-EFA) method includes an ultimate scour prediction that is : the equilibrium maximum pier and contraction scour of cohesive soils over time. The purpose of this report is to present t...

  3. Community Cohesion: A Report of the Independent Review Team.

    ERIC Educational Resources Information Center

    Home Office, London (England).

    This study examined the views of English citizens and community leaders regarding problems related to disaffected, disadvantaged, culturally diverse groups. The Community Cohesion Review Team (CCRT) investigated issues needing to be addressed to bring about social cohesion. Communities were deeply polarized, with separate educational systems,…

  4. Social Cohesion and Voluntary Associations

    ERIC Educational Resources Information Center

    Heuser, Brian L.

    2005-01-01

    Voluntary organizations exert great influence over how social norms and ethical codes are guided into action. As such, they have a significant impact on societal levels of social cohesion. Although social capital involves generalized trust becoming manifest as spontaneous sociability, social cohesion is determined by how that sociability is…

  5. Women in Combat: What Next?

    DTIC Science & Technology

    1992-06-16

    other things, they must consider deployment issues, coalition partners, pregnancy, unit cohesion, strength issues, sexual harassment and fraternization...Among other things, they must consider deployment issues, coalition partners, pregnancy, unit cohesion, strength issues. sexual harassment and...11 Deployment Issues - Pregnancy/Absenteeism ... ...... 12 Unit Cohesion and Bonding .... .............. ... 14 Sexual Harassment

  6. Influence of Sport Education on Group Cohesion in University Physical Education

    ERIC Educational Resources Information Center

    Jenkins, Jayne M.; Alderman, Brandon L.

    2011-01-01

    The Sport Education ("SE") curricular model incorporated within university physical education Basic Instruction Program (BIP) may increase group cohesion. This study's purpose was to identify student perceptions of a BIP course taught within "SE," and investigate group cohesion in differing activity content. Participants…

  7. Group Cohesiveness in the Industrial Work Group.

    ERIC Educational Resources Information Center

    Seashore, Stanley E.

    Originally published in 1954, this investigation was designed to explore the formation of cohesiveness within work groups in an industrial setting, and the relationship of cohesiveness to productivity and to group members' mental health and adjustment. A company wide questionnaire survey, involving 228 groups totaling 5,871 workers, was made of…

  8. A Reappraisal of Lexical Cohesion in Conversational Discourse

    ERIC Educational Resources Information Center

    Gomez Gonzalez, Maria De Los Angeles

    2013-01-01

    Cohesion, or the connectedness of discourse, has been recognized as playing a crucial role in both language production and comprehension processes. Researchers have debated about the "right" number and classification of cohesive devices, as well as about their interaction with coherence and/or genre. The present study proposes an integrative model…

  9. Cohesion and Coherence in Theory and Reading Research.

    ERIC Educational Resources Information Center

    Fulcher, Glenn

    1989-01-01

    Examines the conflict between applied linguistics and schema theoreticians over the relationship between the concepts of cohesion and coherence. Suggests that the positions taken are the result of theoretically different starting points. Reports the results of two studies that support the theory accounting for cohesion and coherence. (RS)

  10. Cohesion Features in ESL Reading: Comparing Beginning, Intermediate and Advanced Textbooks

    ERIC Educational Resources Information Center

    Plakans, Lia; Bilki, Zeynep

    2016-01-01

    This study of English as a second language (ESL) reading textbooks investigates cohesion in reading passages from 27 textbooks. The guiding research questions were whether and how cohesion differs across textbooks written for beginning, intermediate, and advanced second language readers. Using a computational tool called Coh-Metrix, textual…

  11. Academic Social Cohesion within Higher Education

    ERIC Educational Resources Information Center

    Heuser, Brian L.

    2007-01-01

    This article explores the theoretical foundations of "social cohesion" as it relates to higher education institutions. In so doing it seeks (a) to understand the core elements of social cohesion--social capital, human capital and ethical behavioral norms that serve a common good--and (b) to establish a flexible framework for understanding the…

  12. Religious Communities, Immigration, and Social Cohesion in Rural Areas: Evidence from England

    ERIC Educational Resources Information Center

    Andrews, Rhys

    2011-01-01

    Religious communities are important sources of bridging and bonding social capital that have varying implications for perceptions of social cohesion in rural areas. In particular, as well as cultivating cohesiveness more broadly, the bridging social capital associated within mainline religious communities may represent an especially important…

  13. Family Cohesion in the Lives of Mexican American and European American Parents

    ERIC Educational Resources Information Center

    Behnke, Andrew O.; MacDermid, Shelley M.; Coltrane, Scott L.; Parke, Ross D.; Duffy, Sharon; Widaman, Keith F.

    2008-01-01

    This study investigated similarities and differences in relations between stress and parenting behaviors for 509 Mexican American and European American fathers and mothers in Southern California. Our model posited that family cohesion mediates the relation between stressors and parenting behavior, and we found that family cohesion strongly…

  14. Effective particle sizes of cohesive sediment in north Mississippi streams

    USDA-ARS?s Scientific Manuscript database

    Knowledge of the size of cohesive sediment particles transported in streams is important information for predicting how the sediment and contaminants the sediment may be carrying will be transported by the flow. Cohesive sediments (less than 0.062 mm in diameter) generally are not transported in th...

  15. Natural disasters and indicators of social cohesion.

    PubMed

    Calo-Blanco, Aitor; Kovářík, Jaromír; Mengel, Friederike; Romero, José Gabriel

    2017-01-01

    Do adversarial environmental conditions create social cohesion? We provide new answers to this question by exploiting spatial and temporal variation in exposure to earthquakes across Chile. Using a variety of methods and controlling for a number of socio-economic variables, we find that exposure to earthquakes has a positive effect on several indicators of social cohesion. Social cohesion increases after a big earthquake and slowly erodes in periods where environmental conditions are less adverse. Our results contribute to the current debate on whether and how environmental conditions shape formal and informal institutions.

  16. Natural disasters and indicators of social cohesion

    PubMed Central

    Calo-Blanco, Aitor; Kovářík, Jaromír; Mengel, Friederike; Romero, José Gabriel

    2017-01-01

    Do adversarial environmental conditions create social cohesion? We provide new answers to this question by exploiting spatial and temporal variation in exposure to earthquakes across Chile. Using a variety of methods and controlling for a number of socio-economic variables, we find that exposure to earthquakes has a positive effect on several indicators of social cohesion. Social cohesion increases after a big earthquake and slowly erodes in periods where environmental conditions are less adverse. Our results contribute to the current debate on whether and how environmental conditions shape formal and informal institutions. PMID:28591148

  17. Numerical insight into the micromechanics of jet erosion of a cohesive granular material

    NASA Astrophysics Data System (ADS)

    Cuéllar, Pablo; Benseghier, Zeyd; Luu, Li-Hua; Bonelli, Stéphane; Delenne, Jean-Yves; Radjaï, Farhang; Philippe, Pierre

    2017-06-01

    Here we investigate the physical mechanisms behind the surface erosion of a cohesive granular soil induced by an impinging jet by means of numerical simulations coupling fluid and grains at the microscale. The 2D numerical model combines the Discrete Element and Lattice Boltzmann methods (DEM-LBM) and accounts for the granular cohesion with a contact model featuring a paraboloidal yield surface. Here we review first the hydrodynamical conditions imposed by the fluid jet on a solid granular packing, turning then the attention to the impact of cohesion on the erosion kinetics. Finally, the use of an additional subcritical debonding damage model based on the work of Silvani and co-workers provides a novel insight into the internal solicitation of the cohesive granular sample by the impinging jet.

  18. Self-construal, mental distress, and family relations: a mediated moderation analysis with Asian American adolescents.

    PubMed

    Liu, Freda F; Goto, Sharon G

    2007-04-01

    The interactive effects between interdependent and independent self-construal on family cohesion and mental distress were examined. Survey responses from 153 Asian American high school students supported the hypothesized moderation of interdependence by independence on family cohesion, which was found to further mediate the relationship between self-construal and mental distress. Specifically, interdependence was positively associated with family cohesion when independence was high and negatively associated with family cohesion when independence was low. Accounting for the mediator effects of family cohesion, mental distress was positively associated with interdependence and more so for those low on independence than those high on independence. The benefits of biculturalism and research implications for the bidimensional conceptualization of self-construal for ethnic minority populations are discussed. (c) 2007 APA, all rights reserved.

  19. Transformational leadership and task cohesion in sport: the mediating role of inside sacrifice.

    PubMed

    Cronin, Lorcan Donal; Arthur, Calum Alexander; Hardy, James; Callow, Nichola

    2015-02-01

    In this cross-sectional study, we examined a mediational model whereby transformational leadership is related to task cohesion via sacrifice. Participants were 381 American (Mage = 19.87 years, SD = 1.41) Division I university athletes (188 males, 193 females) who competed in a variety of sports. Participants completed measures of coach transformational leadership, personal and teammate inside sacrifice, and task cohesion. After conducting multilevel mediation analysis, we found that both personal and teammate inside sacrifice significantly mediated the relationships between transformational leadership behaviors and task cohesion. However, there were differential patterns of these relationships for male and female athletes. Interpretation of the results highlights that coaches should endeavor to display transformational leadership behaviors as they are related to personal and teammate inside sacrifices and task cohesion.

  20. Family Cohesion and its Relationship to Psychological Distress among Latino Groups

    PubMed Central

    Rivera, Fernando I.; Guarnaccia, Peter J.; Mulvaney-Day, Norah; Lin, Julia Y.; Torres, Maria; Alegria, Margarita

    2009-01-01

    This paper presents analyses of a representative sample of US Latinos (N=2540) to investigate whether family cohesion moderates the effects of cultural conflict on psychological distress. The results for the aggregated Latino group suggests a significant association between family cohesion and lower psychological distress and the combination of strong family cohesion with presence of family cultural conflict was associated with higher psychological distress. However, this association differed by Latino groups. We found no association for Puerto Ricans, Cuban results were similar to the aggregate group, family cultural conflict in Mexicans was associated with higher psychological distress, while family cohesion in Other Latinos was associated with higher psychological distress. Implications of these findings are discussed to unravel the differences in family dynamics across Latino subethnic groups. PMID:19444326

  1. Examining the relationship between family meal frequency and individual dietary intake: does family cohesion play a role?

    PubMed

    Welsh, Ericka M; French, Simone A; Wall, Melanie

    2011-01-01

    To confirm previously reported associations between family meal frequency and dietary intake, and to examine family cohesion as a potential mediator of this relationship. Cross-sectional observational study. Data collected at baseline via questionnaire. Randomized, controlled household weight gain prevention trial. Participants were 152 adults and 75 adolescents from 90 community households. Family meal frequency assessed with a single question. Perceived family cohesion measured by the Family Adaptability and Cohesion Evaluation Scale-III. Usual intake of targeted food items assessed with modified food frequency questionnaire. Hierarchical linear regression with mediation analysis. Statistical significance set at α-level .05. Family meal frequency was associated with intake of fruits and vegetables in adults, and sweets and sugar-sweetened beverages in adolescents. Family meal frequency was positively correlated with perceived family cohesion (r = 0.41, P < .01). Partial mediation by family cohesion was observed for family meal frequency and sweets intake in adolescents. Results suggest that family cohesion is not a consistent mediator of relationship between family meal frequency and individual dietary intake. Future studies should assess additional plausible mediators of this relationship in order to better understand the effect of family meals on dietary intake. Copyright © 2011 Society for Nutrition Education. Published by Elsevier Inc. All rights reserved.

  2. The influence of text cohesion and picture detail on young readers' knowledge of science topics.

    PubMed

    Désiron, Juliette C; de Vries, Erica; Bartel, Anna N; Varahamurti, Nalini

    2017-10-16

    The effects of text cohesion and added pictures on acquired knowledge have been heavily studied each in isolation. Furthermore, studies on the effects of specific characteristics of pictures, whether facilitating or hindering, are scarce. Schnotz's ITCP Model (2014) allows to formulate hypotheses regarding the combined effect of text cohesion and presence and level of detail of a picture. This study investigates these hypotheses in the case of children reading scientific texts. One hundred and one-second-, third-, and fourth-grade pupils with a mean age of 9 years, in the western United States. Data were collected over three sessions to encompass an understanding of each pupil's knowledge based on prior sessions. Results showed a significant increase in pupils' knowledge between pre-test and immediate post-test, but as hypothesized, no significant difference between levels of cohesion. No significant difference between types of pictures was detected. After 1 week, knowledge built with a high cohesive text significantly dropped with low-detail picture, whereas, with high detail, or no picture, there was no significant difference. Results suggested that when participants were given a low-detail picture with a low cohesive text, the integration process of the material was more restricted than with a high cohesive text. © 2017 The British Psychological Society.

  3. Role of Securin, Separase and Cohesins in female meiosis and polar body formation in Drosophila.

    PubMed

    Guo, Zhihao; Batiha, Osamah; Bourouh, Mohammed; Fifield, Eric; Swan, Andrew

    2016-02-01

    Chromosome segregation in meiosis is controlled by a conserved pathway that culminates in Separase-mediated cleavage of the α-kleisin Rec8, leading to dissolution of cohesin rings. Drosophila has no gene encoding Rec8, and the absence of a known Separase target raises the question of whether Separase and its regulator Securin (Pim in Drosophila) are important in Drosophila meiosis. Here, we investigate the role of Securin, Separase and the cohesin complex in female meiosis using fluorescence in situ hybridization against centromeric and arm-specific sequences to monitor cohesion. We show that Securin destruction and Separase activity are required for timely release of arm cohesion in anaphase I and centromere-proximal cohesion in anaphase II. They are also required for release of arm cohesion on polar body chromosomes. Cohesion on polar body chromosomes depends on the cohesin components SMC3 and the mitotic α-kleisin Rad21 (also called Vtd in Drosophila). We provide cytological evidence that SMC3 is required for arm cohesion in female meiosis, whereas Rad21, in agreement with recent findings, is not. We conclude that in Drosophila meiosis, cohesion is regulated by a conserved Securin-Separase pathway that targets a diverged Separase target, possibly within the cohesin complex. © 2016. Published by The Company of Biologists Ltd.

  4. Diverse Developmental Disorders from The One Ring: Distinct Molecular Pathways Underlie the Cohesinopathies

    PubMed Central

    Horsfield, Julia A.; Print, Cristin G.; Mönnich, Maren

    2012-01-01

    The multi-subunit protein complex, cohesin, is responsible for sister chromatid cohesion during cell division. The interaction of cohesin with DNA is controlled by a number of additional regulatory proteins. Mutations in cohesin, or its regulators, cause a spectrum of human developmental syndromes known as the “cohesinopathies.” Cohesinopathy disorders include Cornelia de Lange Syndrome and Roberts Syndrome. The discovery of novel roles for chromatid cohesion proteins in regulating gene expression led to the idea that cohesinopathies are caused by dysregulation of multiple genes downstream of mutations in cohesion proteins. Consistent with this idea, Drosophila, mouse, and zebrafish cohesinopathy models all show altered expression of developmental genes. However, there appears to be incomplete overlap among dysregulated genes downstream of mutations in different components of the cohesion apparatus. This is surprising because mutations in all cohesion proteins would be predicted to affect cohesin’s roles in cell division and gene expression in similar ways. Here we review the differences and similarities between genetic pathways downstream of components of the cohesion apparatus, and discuss how such differences might arise, and contribute to the spectrum of cohesinopathy disorders. We propose that mutations in different elements of the cohesion apparatus have distinct developmental outcomes that can be explained by sometimes subtly different molecular effects. PMID:22988450

  5. Balancing act: the influence of adaptability and cohesion on satisfaction and communication in families facing TBI in Mexico.

    PubMed

    Lehan, Tara J; Stevens, Lillian Flores; Arango-Lasprilla, Juan Carlos; Díaz Sosa, Dulce María; Espinosa Jove, Irma Guadalupe

    2012-01-01

    Much of what is known about family functioning in the face of traumatic brain injury (TBI) is based on research conducted in the United States. The purpose of this study was to (1) describe the levels of family adaptability, cohesion, communication, and satisfaction as reported by Mexican TBI survivors and their family caregivers, (2) test the hypothesis of the Circumplex Model that balanced families would exhibit better communication and greater satisfaction, and (3) explore how TBI survivors' and their family caregivers' perceptions of family adaptability and cohesion influenced their own and the other's perceptions of family communication and satisfaction. In the majority of dyads, both the TBI survivor and the family caregiver endorsed balanced family adaptability and cohesion. Both TBI survivors and their family caregivers reported a relatively high level of family communication and satisfaction. TBI survivors and family caregivers who reported greater levels of family adaptability and cohesion also endorsed better family communication and greater family satisfaction. In addition, individuals with TBI whose family caregiver endorsed balanced family adaptability and cohesion reported better family communication. Further, family caregivers of TBI survivors who reported balanced family adaptability and cohesion reported better family communication. Implications for research and practice are discussed.

  6. The role of bio-physical cohesive substrates on sediment winnowing and bedform development

    NASA Astrophysics Data System (ADS)

    Ye, Leiping; Parsons, Daniel; Manning, Andrew

    2017-04-01

    Existing sediment transport and bedform size predictions for natural open-channel flows in many environments are seriously impeded by a lack of process-based knowledge concerning the dynamics of complex bed sediment mixtures comprising cohesionless sand and biologically-active cohesive muds. A series of flume experiments (14 experimental runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substance) are combined with a detailed estuarine field survey (Dee estuary, NW England) to investigate the development of bedform morphologies and characteristics of suspended sediment over bio-physical cohesive substrates. The experimental results indicate that winnowing and sediment sorting can occur pervasively in bio-physical cohesive sediment - flow systems. Importantly however, the evolution of the bed and bedform dynamics, and hence turbulence production, is significantly reduced as bed substrate cohesivity increases. The estuarine subtidal zone survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed plays a significant role in controlling the interactions between bed substrate and sediment suspension, deposition and bedform generation. The work will be presented here concludes by outlining the need to extend and revisit the effects of cohesivity in morphodynamic systems and the sets of parameters presently used in numerical modelling, particularly in the context of the impact of climate change on estuarine and coastal systems.

  7. Depth-dependent erodibility: representing burnt soils as a two-layered cohesive/non-cohesive system

    NASA Astrophysics Data System (ADS)

    Nyman, P.; Sheridan, G. J.; Moody, J. A.; Smith, H. G.; Lane, P. N.

    2011-12-01

    Immediately after wildfire there is an abundant supply of non-cohesive ash, soil and gravel which is easily entrained by overland flow. Under these conditions the sediment flux on hillslopes can be assumed to be equal to the transport capacity of the flow. However, the supply of material is finite and at some point the hillslope could shift towards a system where entrainment is restricted by armouring and soil cohesion. In this study we test the notion that burnt hillslopes can be represented as a two-layered system of non-cohesive and cohesive soils. Using a combination of i) shear vane measurements, ii) confined hillslope flow experiments and iii) a laboratory flume, we demonstrate how erosion on burnt hillslopes primarily takes place in a distinct layer of non-cohesive soil with erosion properties that are very different to the underlying soil matrix. Shear vane measurements were taken at 5 soil depths at more than 50 points along transects in order to quantify the depth and spatial distribution of non-cohesive soil in two small (0.5 ha) and steep (30 deg) convergent basins (SE Australia) that were burnt at high severity. The measurements showed that the recently burnt hillslopes were mantled with non-cohesive soil to an average depth of 18mm and 20mm at the two sites which were situated in different geologic terrain but in similar eucalyptus dominated forests. In the hillslope flow experiments, the rapid entrainment of non-cohesive material resulted in very high sediment concentration (50-60% by volume) in the initial surge from the test area. During the flow experiments the sediment concentration decreased exponentially with time until the erosion rate reached a steady state reflecting the erodibility of the underlying cohesive soil. The formation of shallow rills and the presence of large clasts (>16cm) within the test area resulted in incomplete removal of the non-cohesive material at shear stress < 50 Ncm-2. At shear stress > 50 Ncm-2 all material was removed, and the erosion depth at the end of the experiments was equal to the depth of non-cohesive material measured using the shear vane. In a separate set of experiments, a laboratory flume was used to measure the erodibility at different soil depths using soil cores that were burnt at moderate to high severity. Unlike the field based flow experiments, the erodibility measurements of non-cohesive soils in the flume were not restricted by the transport capacity of the flow. Results from the flume experiments showed a two order of magnitude decrease in erodibility within the top 2cm of the soil profile for soil cores from both chaparral and coniferous forests (western US). In summary, these results indicate that a majority of hillslope sediment may be generated from a relatively shallow layer of non-cohesive and highly erodible material. The depth of this material may be an important property that can help determine the post-fire erosion and debris flow potential, particularly in systems where other sources of sediment are limited. The study confirms that erodibility of burnt soil shows strong variation with depth and that the assumption of a constant erodibility factor may lead to misrepresentation of important processes.

  8. The effect of biological cohesion on current ripple development

    NASA Astrophysics Data System (ADS)

    Malarkey, Jonathan; Baas, Jaco H.; Hope, Julie

    2014-05-01

    Results are presented from laboratory experiments examining the role of biological cohesion, associated with Extra Polymeric Substances, on the development of current ripples. The results demonstrate the importance of biological cohesion compared to the effect of physical cohesion associated with clays in an otherwise sandy bed. FURTHER INFORMATION In fluvial and marine environments sediment transport is mainly dependent on the nature of the bed surface (rippled or flat) and the nature of cohesion in the bed. Cohesion can be either physical, as a result of the presence of clays, or biological as a result of the presence of organisms. In the case of the latter, biological cohesion occurs as a result of the presence of Extra Polymeric Substances (EPS) secreted by microorganisms. While it is known that EPS can dramatically increase the threshold of motion (Grant and Gust, 1987), comparatively little is known about the effect of EPS on ripple formation and development. The experiments described here seek to fill this gap. They also allow the effect of biological cohesion to be compared with that of physical cohesion from previous experiments (Baas et al., 2013). The experiments, which were conducted in a 10m flume at Bangor University, involved a current over a bed made of fine sand, with a median diameter of 0.148mm, and various amounts of xanthan gum, a proxy for naturally occurring EPS (Vardy et al., 2007). The hydrodynamic experimental conditions were matched very closely to those of Baas et al. (2013). The ripple dimensions were recorded through the glass side wall of the tank using time lapse photography. In the physical cohesion experiments of Baas et al. (2013) for clay contents up to 12%, the clay was very quickly winnowed out of the bed, leaving essentially clay-free ripples that developed at more or less the same rate as clean sand ripples. The resulting equilibrium ripples were essentially the same length as the clean sand ripples but reduced in height. By contrast, the biological cohesion experiments resulted in a drastic slowing down in ripple development, for much smaller amounts of xanthan (< 1/8%), but resulted in equilibrium ripples with the same dimensions as abiotic sand. This difference in effect for biological and physical cohesion is thought to be related to differences in the nature of the binding. In particular, sand grains with biological cohesion are inhibited from moving independently, which is crucial to ripple development. This work has profound implications for sediment transport studies and emphasises the importance of considering biology as well as clays in sediments. ACKNOWLEDGEMENTS This work was funded by the UK Natural Environment Research Council (NERC) under the 'COHBED' project (NE/1027223/1). REFERENCES Baas, J.H., Davies, A.G. and Malarkey, A.G. (2013) Bedform development in mixed sand-mud: the contrasting role of cohesive forces in flow and bed. Geomorphology, 182, 19-32. Grant, J. and Gust, G. (1987) Prediction of coastal sediment stability from photopigment content of mats of purple sulfur bacteria. Nature, 330, 244-246. Vardy, S., Saunders, J.E., Tolhurst, T.J., Davies, P.A., and Paterson, D.M. (2007) Calibration of the high-pressure cohesive strength meter (CSM). Continental Shelf Research, 27, 1190-1199.

  9. Fracture propagation in Indiana Limestone interpreted via linear softening cohesive fracture model

    NASA Astrophysics Data System (ADS)

    Rinehart, Alex J.; Bishop, Joseph E.; Dewers, Thomas

    2015-04-01

    We examine the use of a linear softening cohesive fracture model (LCFM) to predict single-trace fracture growth in short-rod (SR) and notched 3-point-bend (N3PB) test configurations in Indiana Limestone. The broad goal of this work is to (a) understand the underlying assumptions of LCFM and (b) use experimental similarities and deviations from the LCFM to understand the role of loading paths of tensile fracture propagation. Cohesive fracture models are being applied in prediction of structural and subsurface fracture propagation in geomaterials. They lump the inelastic processes occurring during fracture propagation into a thin zone between elastic subdomains. LCFM assumes that the cohesive zone initially deforms elastically to a maximum tensile stress (σmax) and then softens linearly from the crack opening width at σmax to zero stress at a critical crack opening width w1. Using commercial finite element software, we developed LCFMs for the SR and N3PB configurations. After fixing σmax with results from cylinder splitting tests and finding an initial Young's modulus (E) with unconfined compressive strength tests, we manually calibrate E and w1 in the SR model against an envelope of experimental data. We apply the calibrated LCFM parameters in the N3PB geometry and compare the model against an envelope of N3PB experiments. For accurate simulation of fracture propagation, simulated off-crack stresses are high enough to require inclusion of damage. Different elastic moduli are needed in tension and compression. We hypothesize that the timing and location of shear versus extensional micromechanical failures control the qualitative macroscopic force-versus-displacement response in different tests. For accurate prediction, the LCFM requires a constant style of failure, which the SR configuration maintains until very late in deformation. The N3PB configuration does not maintain this constancy. To be broadly applicable between geometries and failure styles, the LCFM would require additional physics, possibly including elastoplastic damage in the bulk material and more complicated cohesive softening models.

  10. Academic Failure and Child-to-Parent Violence: Family Protective Factors.

    PubMed

    Ibabe, Izaskun

    2016-01-01

    A reduction in academic achievement over the course of adolescence has been observed. School failure is characterized by difficulties to teaching school goals. A variety of other behavioral problems are often associated with school failure. Child-to-parent violence has been associated with different school problems. The main objective of current study was to examine the contribution of family variables (parental education level, family cohesion, and positive family discipline) on academic failure and child-to-parent violence of adolescents from a community sample. Moreover, a goal was to explore if academic failure was a valid predictor of child-to-parent violence. To this end, it has been developed a comprehensive statistical model through Structural Equation Modeling (SEM). Participants were 584 children from eight secondary schools in the Basque Country (Spain) and aged between 12 and 18. Among other scales Conflict Tactics Scale and Family Environment Scale were administrated for measuring child-to-parent violence and family cohesion environment, respectively. The structural model revealed that parental education level is a relevant protective factor against academic failure. Positive family discipline (inductive discipline, supervision, and penalty) show a significant association with child-to-parent violence and academic failure. Disciplinary practices could be more efficient to prevent child-to-parent violence or school failure if children perceive a positive environment in their home. However, these findings could be explained by inverse causality, because some parents respond to child-to-parent violence or academic failure with disciplinary strategies. School failure had indirect effects on child-to-parent violence through family cohesion. For all that, education policies should focus on parental education courses for disadvantaged families in order to generate appropriate learning environments at home and to foster improvement of parent-child relationships.

  11. Academic Failure and Child-to-Parent Violence: Family Protective Factors

    PubMed Central

    Ibabe, Izaskun

    2016-01-01

    A reduction in academic achievement over the course of adolescence has been observed. School failure is characterized by difficulties to teaching school goals. A variety of other behavioral problems are often associated with school failure. Child-to-parent violence has been associated with different school problems. The main objective of current study was to examine the contribution of family variables (parental education level, family cohesion, and positive family discipline) on academic failure and child-to-parent violence of adolescents from a community sample. Moreover, a goal was to explore if academic failure was a valid predictor of child-to-parent violence. To this end, it has been developed a comprehensive statistical model through Structural Equation Modeling (SEM). Participants were 584 children from eight secondary schools in the Basque Country (Spain) and aged between 12 and 18. Among other scales Conflict Tactics Scale and Family Environment Scale were administrated for measuring child-to-parent violence and family cohesion environment, respectively. The structural model revealed that parental education level is a relevant protective factor against academic failure. Positive family discipline (inductive discipline, supervision, and penalty) show a significant association with child-to-parent violence and academic failure. Disciplinary practices could be more efficient to prevent child-to-parent violence or school failure if children perceive a positive environment in their home. However, these findings could be explained by inverse causality, because some parents respond to child-to-parent violence or academic failure with disciplinary strategies. School failure had indirect effects on child-to-parent violence through family cohesion. For all that, education policies should focus on parental education courses for disadvantaged families in order to generate appropriate learning environments at home and to foster improvement of parent-child relationships. PMID:27774076

  12. Findings from Encontros: a multi-level STI/HIV intervention to increase condom use, reduce STI, and change the social environment among sex workers in Brazil

    PubMed Central

    Lippman, Sheri A.; Chinaglia, Magda; Donini, Angela A.; Diaz, Juan; Reingold, Arthur; Kerrigan, Deanna L.

    2012-01-01

    Background Sexually transmitted infection (STI)/HIV prevention programs which do not modify social-structural contexts that contribute to risk of STI/HIV may fail to bring about improvements in health, particularly among groups who experience discrimination and exclusion from public life. We conducted a multi-level intervention with sex workers, including improved clinical care and community mobilizing strategies to modify social-structural factors that shape sexual behavior, in order to improve condom use and reduce incident STI. Methods We followed 420 sex workers participating in the Encontros intervention in Corumbá, Brazil from 2003-2005. We estimated the effect of the intervention on incident chlamydia and gonorrhea infections and condom use using generalized estimating equations and inverse probability weighting by comparing those who actively engaged in the intervention activities (exposed) to those who were less engaged (unexposed). We also determined the association of participation on reported social cohesion and participation in networks. Results Exposed participants had significantly higher odds of reporting consistent condom use with regular clients (OR:1.9, 95%CI:1.1-3.3) and non-significantly increased odds with both new clients (OR:1.6, 0.9-2.8) and nonpaying partners (OR:1.5, 0.9-1.5). The odds of an incident STI were non-significantly reduced for exposed participants compared to unexposed (OR:0.46, 0.2-1.3). Participation was significantly associated with increased perceived cohesion and participation in networks. Conclusion This prospective study provides evidence that multi-level interventions with mobilizing strategies to modify aspects of the social environment can improve condom use, reduce STIs, and increase social cohesion and participation in networks among sex workers. PMID:22337108

  13. Findings from Encontros: a multilevel STI/HIV intervention to increase condom use, reduce STI, and change the social environment among sex workers in Brazil.

    PubMed

    Lippman, Sheri A; Chinaglia, Magda; Donini, Angela A; Diaz, Juan; Reingold, Arthur; Kerrigan, Deanna L

    2012-03-01

    Sexually transmitted infection (STI)/HIV prevention programs, which do not modify social structural contexts that contribute to risk of STI/HIV may fail to bring about improvements in health, particularly among groups who experience discrimination and exclusion from public life. We conducted a multilevel intervention with sex workers, including improved clinical care and community-mobilizing strategies to modify social structural factors that shape sexual behavior, to improve condom use and reduce incident STI. We followed 420 sex workers participating in the Encontros intervention in Corumbá, Brazil, between 2003 and 2005. We estimated the effect of the intervention on incident chlamydia and gonorrhea infections and condom use using generalized estimating equations and inverse probability weighting by comparing those who actively engaged in the intervention activities (exposed) with those who were less engaged (unexposed). We also determined the association of participation on reported social cohesion and participation in networks. Exposed participants had significantly higher odds of reporting consistent condom use with regular clients (odds ratio [OR]: 1.9, 95% confidence interval:1.1-3.3) and nonsignificantly increased odds with both new clients (OR: 1.6, 0.9-2.8) and nonpaying partners (OR: 1.5, 0.9-1.5). The odds of an incident STI were nonsignificantly reduced for exposed participants compared with unexposed (OR: 0.46, 0.2-1.3). Participation was significantly associated with increased perceived cohesion and participation in networks. This prospective study provides evidence that multilevel interventions with mobilizing strategies to modify aspects of the social environment can improve condom use, reduce STIs, and increase social cohesion and participation in networks among sex workers.

  14. Cohesive stress heterogeneities and the transition from intrinsic ductility to brittleness

    NASA Astrophysics Data System (ADS)

    Tanguy, D.

    2017-11-01

    The influence of nanoscale cavities on the fracture of the Σ 33 {554 }[110 ] symmetrical tilt grain boundary is studied by atomistic simulations. The crack crystallography is chosen such that dislocation emission is easy. A transition from a ductile behavior of the tip to a brittle one is obtained for a dense (coverage beyond 15% and intercavity spacing smaller than 4 nm) distribution of small cavities (sizes in-between 1 and 2 nm). The results are in good agreement with recent experiments from the literature. Even at the highest coverage, the character of the crack is highly sensitive to the initial position of the tip and a mixture of ductile and brittle responses is found. This complexity is beyond the usual criterion based on the drop of the work of separation with the amount of damage in the structure. It is shown that a heterogeneous cohesive zone model, with parameters extracted from the simulations and enriched with a criterion for plasticity, can explain the simulations and reproduce the transition. Additional simulations show that outside this range of small sizes and dense packing, which gives essentially a two-dimensional response (either crack opening or infinite straight dislocation emission), dislocation half-loops appear for intercavity spacing starting at about 4 nm. They constitute, together with regions of low coverage/small cavities, efficient obstacles to brittle cracking. These results could be guidelines to designing interfaces more resistant to solute embrittlement, in general. The cohesive zone model is generic. Furthermore, the {554} single crystal was used to determine to which extent the results depend on the details of the core structure versus the cavity distribution. These elements show that the conclusions reached have a generic character.

  15. Friction Stir Processing of Copper-Coated SiC Particulate-Reinforced Aluminum Matrix Composite

    PubMed Central

    Huang, Chih-Wei; Aoh, Jong-Ning

    2018-01-01

    In the present work, we proposed a novel friction stir processing (FSP) to produce a locally reinforced aluminum matrix composite (AMC) by stirring copper-coated SiC particulate reinforcement into Al6061 alloy matrix. Electroless-plating process was applied to deposit the copper surface coating on the SiC particulate reinforcement for the purpose of improving the interfacial adhesion between SiC particles and Al matrix. The core-shell SiC structure provides a layer for the atomic diffusion between aluminum and copper to enhance the cohesion between reinforcing particles and matrix on one hand, the dispersion of fine copper in the Al matrix during FSP provides further dispersive strengthening and solid solution strengthening, on the other hand. Hardness distribution and tensile results across the stir zone validated the novel concept in improving the mechanical properties of AMC that was realized via FSP. Optical microscope (OM) and Transmission Electron Microscopy (TEM) investigations were conducted to investigate the microstructure. Energy dispersive spectrometer (EDS), electron probe micro-analyzer (EPMA), and X-ray diffraction (XRD) were explored to analyze the atomic inter-diffusion and the formation of intermetallic at interface. The possible strengthening mechanisms of the AMC containing Cu-coated SiC particulate reinforcement were interpreted. The concept of strengthening developed in this work may open a new way of fabricating of particulate reinforced metal matrix composites. PMID:29652846

  16. Topical Structure in Argumentative Essays of EFL Learners and Implications for Writing Classes

    ERIC Educational Resources Information Center

    Kiliç, Mehmet; Genç, Bilal; Bada, Erdogan

    2016-01-01

    The literature on the topical organization of essays suggests that there are four possible types of progression from the topic of one clause to the topics of the following clauses. These are parallel, sequential, extended parallel, and extended sequential progressions. Essay writers' ability to create cohesion and coherence can be evaluated on the…

  17. The Relationship between Oral and Written Narratives: A Three-Year Longitudinal Study of Narrative Cohesion, Coherence, and Structure

    ERIC Educational Resources Information Center

    Pinto, Giuliana; Tarchi, Christian; Bigozzi, Lucia

    2015-01-01

    Background: The relationship between oral language and the writing process at early acquisition stages and the ways the former can enhance or limit the latter has not been researched extensively. Aims: The predictive relationship between kindergarten oral narrative competence and the first- and second-grade written narrative competence was…

  18. Higher Education Governance in Europe: Policies, Structures, Funding and Academic Staff

    ERIC Educational Resources Information Center

    De Coster, Isabelle; Forsthuber, Bernadette; Oberheidt, Stephanie; Parveva, Teodora; Glass, Anna

    2008-01-01

    The role of higher education in the society of knowledge is recognised both at European and Member State levels. This level of education is called upon to make a significant contribution to achieving the Lisbon objectives in terms of growth, prosperity and social cohesion. The European Union "Education and Training 2010" work programme…

  19. Insights into Surface Structure and Performance of Fluorinated Silicates from Cohesive Energy Studies

    DTIC Science & Technology

    2016-03-17

    Mabry 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER Q16J 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...ordering is likely to take place ; concentration of F-decyl-M2 at the air interface likely facilitates the random configurations typical of bulk material

  20. Analyzing Discourse: Text and Talk. Georgetown University Round Table on Languages and Linguistics (Washington, D.C., 1981).

    ERIC Educational Resources Information Center

    Tannen, Deborah, Ed.

    The Georgetown Round Table on discourse analysis dealt with the following aspects of the topic: Emerson's essay on language; oral remembering and narrative structures; persuasive discourse; social construction of topical cohesion; discourse as an interactional achievement; the place of intonation; topic as the unit of analysis in a criminal law…

Top