Sample records for electronic structure fermi

  1. First principle study of structural, electronic and fermi surface properties of aluminum praseodymium

    NASA Astrophysics Data System (ADS)

    Shugani, Mani; Aynyas, Mahendra; Sanyal, S. P.

    2018-05-01

    We present a structural, Electronic and Fermi surface properties of Aluminum Praseodymium (AlPr) using First-principles density functional calculation by using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA). The ground state properties along with electronic and Fermi surface properties are studied. It is found that AlPr is metallic and the bonding between Al and Pr is covalent.

  2. Electronic structure of dense Pb overlayers on Si(111) investigated using angle-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Choi, W. H.; Koh, H.; Rotenberg, E.; Yeom, H. W.

    2007-02-01

    Dense Pb overlayers on Si(111) are important as the wetting layer for anomalous Pb island growth as well as for their own complex “devil’s-staircase” phases. The electronic structures of dense Pb overlayers on Si(111) were investigated in detail by angle-resolved photoemission. Among the series of ordered phases found recently above one monolayer, the low-coverage 7×3 and the high-coverage 14×3 phases are studied; they are well ordered and form reproducibly in large areas. The band dispersions and Fermi surfaces of the two-dimensional (2D) electronic states of these overlayers are mapped out. A number of metallic surface-state bands are identified for both phases with complex Fermi contours. The basic features of the observed Fermi contours can be explained by overlapping 2D free-electron-like Fermi circles. This analysis reveals that the 2D electrons near the Fermi level of the 7×3 and 14×3 phases are mainly governed by strong 1×1 and 3×3 potentials, respectively. The origins of the 2D electronic states and their apparent Fermi surface shapes are discussed based on recent structure models.

  3. Engineering the electronic structure of graphene superlattices via Fermi velocity modulation

    NASA Astrophysics Data System (ADS)

    Lima, Jonas R. F.

    2017-01-01

    Graphene superlattices have attracted much research interest in the last years, since it is possible to manipulate the electronic properties of graphene in these structures. It has been verified that extra Dirac points appear in the electronic structure of the system. The electronic structure in the vicinity of these points has been studied for a gapless and gapped graphene superlattice and for a graphene superlattice with a spatially modulated energy gap. In each case a different behavior was obtained. In this work we show that via Fermi velocity engineering it is possible to tune the electronic properties of a graphene superlattice to match all the previous cases studied. We also obtained new features of the system never observed before, reveling that the electronic structure of graphene is very sensitive to the modulation of the Fermi velocity. The results obtained here are relevant for the development of novel graphene-based electronic devices.

  4. Fermi arcs vs. fermi pockets in electron-doped perovskite iridates

    DOE PAGES

    He, Junfeng; Hafiz, H.; Mion, Thomas R.; ...

    2015-02-23

    We report on an angle resolved photoemission (ARPES) study of bulk electron-doped perovskite iridate, (Sr 1-xLa x)₃Ir₂O₇. Fermi surface pockets are observed with a total electron count in keeping with that expected from La substitution. Depending on the energy and polarization of the incident photons, these pockets show up in the form of disconnected “Fermi arcs”, reminiscent of those reported recently in surface electron-doped Sr₂IrO₄. Our observed spectral variation is consistent with the coexistence of an electronic supermodulation with structural distortion in the system.

  5. First-principles study of electronic structure and Fermi surface in semimetallic YAs

    DOE PAGES

    Swatek, Przemys?aw Wojciech

    2018-03-23

    In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less

  6. First-principles study of electronic structure and Fermi surface in semimetallic YAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swatek, Przemys?aw Wojciech

    In the course of searching for new systems, which exhibit nonsaturating and extremely large positive magnetoresistance, electronic structure, Fermi surface, and de Haas-van Alphen characteristics of the semimetallic YAs compound were studied using the all-electron full-potential linearized augmented-plane wave (FP–LAPW) approach in the framework of the generalized gradient approximation (GGA). In the scalar-relativistic calculation, the cubic symmetry splits fivefold degenerate Y- d orbital into low-energy threefold-degenerate and twofold degenerate doublet states at point around the Fermi energy. Furthermore one of them, together with the threefold degenerate character of As-p orbital, render the YAs semimetal with a topologically trivial band ordermore » and fairly low density of states at the Fermi level. Including spin–orbit (SO) coupling into the calculation leads to pronounced splitting of the state and shifting the bands in the energy scale. Consequently, the determined four different 3-dimensional Fermi surface sheets of YAs consists of three concentric hole-like bands at and one ellipsoidal electron-like sheet centred at the X points. In full accordance with the previous first-principles calculations for isostructural YSb and YBi, the calculated Fermi surface of YAs originates from fairly compensated multi-band electronic structures.« less

  7. Electronic structures of Plutonium compounds with the NaCl-type monochalcogenides structure

    NASA Astrophysics Data System (ADS)

    Maehira, Takahiro; Tatetsu, Yasutomi

    2012-12-01

    We calculate the energy band structure and the Fermi surface of PuS, PuSe and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in a local density approximation. It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between Pu 5/ and monochalcogenide p electrons. The obtained main Fermi surfaces are composed of two hole sheets and one electron sheet, all of which are constructed from the band having the Pu 5/ state and the monochalcogenide p state.

  8. Electronic structures of U X3 (X =Al , Ga, and In) studied by photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Fujimori, Shin-ichi; Kobata, Masaaki; Takeda, Yukiharu; Okane, Tetsuo; Saitoh, Yuji; Fujimori, Atsushi; Yamagami, Hiroshi; Haga, Yoshinori; Yamamoto, Etsuji; Ōnuki, Yoshichika

    2017-09-01

    The electronic structures of U X3 (X =Al , Ga , and In ) were studied by photoelectron spectroscopy to understand the relationship between their electronic structures and magnetic properties. The band structures and Fermi surfaces of UAl3 and UGa3 were revealed experimentally by angle-resolved photoelectron spectroscopy (ARPES), and they were compared with the result of band-structure calculations. The topologies of the Fermi surfaces and the band structures of UAl3 and UGa3 were explained reasonably well by the calculation, although bands near the Fermi level (EF) were renormalized owing to the finite electron correlation effect. The topologies of the Fermi surfaces of UAl3 and UGa3 are very similar to each other, except for some minor differences. Such minor differences in their Fermi surface or electron correlation effect might take an essential role in their different magnetic properties. No significant changes were observed between the ARPES spectra of UGa3 in the paramagnetic and antiferromagnetic phases, suggesting that UGa3 is an itinerant weak antiferromagnet. The effect of chemical pressure on the electronic structures of U X3 compounds was also studied by utilizing the smaller lattice constants of UAl3 and UGa3 than that of UIn3. The valence band spectrum of UIn3 is accompanied by a satellitelike structure on the high-binding-energy side. The core-level spectrum of UIn3 is also qualitatively different from those of UAl3 and UGa3. These findings suggest that the U 5 f states in UIn3 are more localized than those in UAl3 and UGa3.

  9. Electronic structures of of PuX (X=S, Se, Te)

    NASA Astrophysics Data System (ADS)

    Maehira, Takahiro; Sakai, Eijiro; Tatetsu, Yasutomi

    2013-08-01

    We have calculated the energy band structures and the Fermi surfaces of PuS, PuSe, and PuTe by using a self-consistent relativistic linear augmented-plane-wave method with the exchange and correlation potential in the local density approximation. In general, the energy bands near the Fermi level are mainly caused by the hybridization between the Pu 5 f and the monochalcogenide p electrons. The obtained main Fermi surfaces consisted of two hole sheets and one electron sheet, which were constructed from the band having both the Pu 5 f state and the monochalcogenide p state.

  10. Effective mass and Fermi surface complexity factor from ab initio band structure calculations

    NASA Astrophysics Data System (ADS)

    Gibbs, Zachary M.; Ricci, Francesco; Li, Guodong; Zhu, Hong; Persson, Kristin; Ceder, Gerbrand; Hautier, Geoffroy; Jain, Anubhav; Snyder, G. Jeffrey

    2017-02-01

    The effective mass is a convenient descriptor of the electronic band structure used to characterize the density of states and electron transport based on a free electron model. While effective mass is an excellent first-order descriptor in real systems, the exact value can have several definitions, each of which describe a different aspect of electron transport. Here we use Boltzmann transport calculations applied to ab initio band structures to extract a density-of-states effective mass from the Seebeck Coefficient and an inertial mass from the electrical conductivity to characterize the band structure irrespective of the exact scattering mechanism. We identify a Fermi Surface Complexity Factor: Nv*K* from the ratio of these two masses, which in simple cases depends on the number of Fermi surface pockets (Nv* ) and their anisotropy K*, both of which are beneficial to high thermoelectric performance as exemplified by the high values found in PbTe. The Fermi Surface Complexity factor can be used in high-throughput search of promising thermoelectric materials.

  11. Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Zhao, Huaisong; Gao, Deheng; Feng, Shiping

    2017-03-01

    One of the most intriguing puzzle is why there is a coexistence of Fermi arcs and Fermi pockets in the pseudogap phase of cuprate superconductors? This puzzle is calling for an explanation. Based on the t - J model in the fermion-spin representation, the coexistence of the Fermi arcs and Fermi pockets in cuprate superconductors is studied by taking into account the pseudogap effect. It is shown that the pseudogap induces an energy band splitting, and then the poles of the electron Green's function at zero energy form two contours in momentum space, however, the electron spectral weight on these two contours around the antinodal region is gapped out by the pseudogap, leaving behind the low-energy electron spectral weight only located at the disconnected segments around the nodal region. In particular, the tips of these disconnected segments converge on the hot spots to form the closed Fermi pockets, generating a coexistence of the Fermi arcs and Fermi pockets. Moreover, the single-particle coherent weight is directly related to the pseudogap, and grows linearly with doping. The calculated result of the overall dispersion of the electron excitations is in qualitative agreement with the experimental data. The theory also predicts that the pseudogap-induced peak-dip-hump structure in the electron spectrum is absent from the hot-spot directions.

  12. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6.

    PubMed

    Neupane, M; Alidoust, N; Xu, S-Y; Kondo, T; Ishida, Y; Kim, D J; Liu, Chang; Belopolski, I; Jo, Y J; Chang, T-R; Jeng, H-T; Durakiewicz, T; Balicas, L; Lin, H; Bansil, A; Shin, S; Fisk, Z; Hasan, M Z

    2013-01-01

    The Kondo insulator SmB6 has long been known to exhibit low-temperature transport anomalies whose origin is of great interest. Here we uniquely access the surface electronic structure of the anomalous transport regime by combining state-of-the-art laser and synchrotron-based angle-resolved photoemission techniques. We observe clear in-gap states (up to ~4 meV), whose temperature dependence is contingent on the Kondo gap formation. In addition, our observed in-gap Fermi surface oddness tied with the Kramers' point topology, their coexistence with the two-dimensional transport anomaly in the Kondo hybridization regime, as well as their robustness against thermal recycling, taken together, collectively provide strong evidence for protected surface metallicity with a Fermi surface whose topology is consistent with the theoretically predicted topological Fermi surface. Our observations of systematic surface electronic structure provide the fundamental electronic parameters for the anomalous Kondo ground state of correlated electron material SmB6.

  13. Investigation of electronic structure and chemical bonding of intermetallic Pd2HfIn: An ab-initio study

    NASA Astrophysics Data System (ADS)

    Bano, Amreen; Gaur, N. K.

    2018-05-01

    Ab-initio calculations are carried out to study the electronic and chemical bonding properties of Intermetallic full Heusler compound Pd2HfIn which crystallizes in F-43m structure. All calculations are performed by using density functional theory (DFT) based code Quantum Espresso. Generalized gradient approximations (GGA) of Perdew- Burke- Ernzerhof (PBE) have been adopted for exchange-correlation potential. Calculated electronic band structure reveals the metallic character of the compound. From partial density of states (PDoS), we found the presence of relatively high intensity electronic states of 4d-Pd atom at Fermi level. We have found a pseudo-gap just abouve the Fermi level and N(E) at Fermi level is observed to be 0.8 states/eV, these finding indicates the existence of superconducting character in Pd2HfIn.

  14. Positron Annihilation Studies of the Electronic Structure of Selected High-Temperature Cuprate and Organic Superconductors.

    NASA Astrophysics Data System (ADS)

    Chan, Lie Ping

    The understanding of the electronic structure of the high-T_{c} superconductors could be important for a full theoretical description of the mechanism behind superconductivity in these materials. In this thesis, we present our measurements of the positron -electron momentum distributions of the cuprate superconductors Bi_2Sr_2CaCu _2O_8, Tl _2Ba_2Ca _2Cu_3O_ {10}, and the organic superconductor kappa-(BEDT)_2Cu(NCS) _2. We use the positron Two-dimensional Angular Correlation of Annihilation Radiation technique to make the measurements on single crystals and compare our high-statistics data with band structure calculations to determine the existence and nature of the respective Fermi surfaces. The spectra from unannealed Bi _2Sr_2CaCu _2O_8 exhibit effects of the superlattice modulation in the BiO_2 layers, and a theoretical understanding of the modulation effects on the electronic band structure is required to interpret these spectra. Since the present theory does not consider the modulation, we have developed a technique to remove the modulation effects from our spectra, and the resultant data when compared with the positron -electron momentum distribution calculation, yield features consistent with the predicted CuO_2 and BiO_2 Fermi surfaces. In the data from unannealed Tl_2Ba _2Ca_2Cu_3 O_{10}, we only observe indications of the TlO Fermi surfaces, and attribute the absence of the predicted CuO_2 Fermi surfaces to the poor sample quality. In the absence of positron-electron momentum calculations for kappa-(BEDT)_2Cu(NCS) _2, we compare our data to electronic band structure calculations, and observed features suggestive of the predicted Fermi surface contributions from the BEDT cation layers. A complete positron-electron calculation for kappa-(BEDT)_2 Cu(NCS)_2 is required to understand the positron wavefunction effects in this material.

  15. Fermi surfaces of the pyrite-type cubic AuSb2 compared with split Fermi surfaces of the ullmannite-type cubic chiral NiSbS and PdBiSe

    NASA Astrophysics Data System (ADS)

    Nishimura, K.; Kakihana, M.; Nakamura, A.; Aoki, D.; Harima, H.; Hedo, M.; Nakama, T.; Ōnuki, Y.

    2018-05-01

    We grew high-quality single crystals of AuSb2 with the pyrite (FeS2)-type cubic structure by the Bridgman method and studied the Fermi surface properties by the de Haas-van Alphen (dHvA) experiment and the full potential LAPW band calculation. The Fermi surfaces of AuSb2 are found to be similar to those of NiSbS and PdBiSe with the ullmannite (NiSbS)-type cubic chiral structure because the crystal structures are similar each other and the number of valence electrons is the same between two different compounds. Note that each Fermi surface splits into two Fermi surfaces in NiSbS and PdBiSe, reflecting the non-centrosymmetric crystal structure.

  16. Free electron laser-driven ultrafast rearrangement of the electronic structure in Ti

    PubMed Central

    Principi, E.; Giangrisostomi, E.; Cucini, R.; Bencivenga, F.; Battistoni, A.; Gessini, A.; Mincigrucci, R.; Saito, M.; Di Fonzo, S.; D'Amico, F.; Di Cicco, A.; Gunnella, R.; Filipponi, A.; Giglia, A.; Nannarone, S.; Masciovecchio, C.

    2015-01-01

    High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M2,3-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs. PMID:26798835

  17. Electronic structure study of wide band gap magnetic semiconductor (La0.6Pr0.4)0.65Ca0.35MnO3 nanocrystals in paramagnetic and ferromagnetic phases

    NASA Astrophysics Data System (ADS)

    Dwivedi, G. D.; Joshi, Amish G.; Kumar, Shiv; Chou, H.; Yang, K. S.; Jhong, D. J.; Chan, W. L.; Ghosh, A. K.; Chatterjee, Sandip

    2016-04-01

    X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La0.6Pr0.4)0.65Ca0.35MnO3 near Fermi-level. XMCD results indicate that Mn3+ and Mn4+ spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La0.6Pr0.4)0.65Ca0.35MnO3 system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below TC. The valence band UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.

  18. Electronic structure basis for the extraordinary magnetoresistance in WTe 2

    DOE PAGES

    Pletikosić, I.; Ali, Mazhar N.; Fedorov, A. V.; ...

    2014-11-19

    The electronic structure basis of the extremely large magnetoresistance in layered non-magnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at the Fermi level, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anisotropic, quasi one-dimensional Fermi surface from which the pronounced anisotropy of the magnetoresistance follows. As a result, a change in the Fermi surface with temperature was found and a high-density-of-states band that may take over conduction at higher temperatures and cause the observed turn-on behavior ofmore » the magnetoresistance in WTe₂ was identified.« less

  19. Electron and positron states in HgBa2CuO4

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Jarlborg, T.

    1994-08-01

    Local-density-calculations of the electronic structure of HgBa2CuO4 have been performed with the self-consistent linear muffin-tin orbital method. The positron-density distribution and its sensitivity due to different potentials are calculated. The annihilation rates are computed in order to study the chemical bonding and to predict the Fermi-surface signal. Comparisons are made with previous calculations on other high-Tc copper oxides concerning the Fermi-surface properties and electron-positron overlap. We discuss the possibility of observing the Fermi surface associated with the Cu-O planes in positron-annihilation experiments.

  20. Electronic structure Fermi liquid theory of high Tc superconductors: Comparison of predictions with experiments

    NASA Technical Reports Server (NTRS)

    Yu, Jaejun; Freeman, A. J.

    1991-01-01

    Predictions of local density functional (LDF) calculations of the electronic structure and transport properties of high T(sub c) superconductors are presented. As evidenced by the excellent agreement with both photoemission and positron annihilation experiments, a Fermi liquid nature of the 'normal' state of the high T(sub c) superconductors become clear for the metallic phase of these oxides. In addition, LDF predictions on the normal state transport properties are qualitatively in agreement with experiments on single crystals. It is emphasized that the signs of the Hall coefficients for the high T(sub c) superconductors are not consistent with the types of dopants (e.g., electron-doped or hole-doped) but are determined by the topology of the Fermi surfaces obtained from the LDF calculations.

  1. Applications of Fermi-Lowdin-Orbital Self-Interaction Correction Scheme to Organic Systems

    NASA Astrophysics Data System (ADS)

    Baruah, Tunna; Kao, Der-You; Yamamoto, Yoh

    Recent progress in treating the self-interaction errors by means of local, Lowdin-orthogonalized Fermi Orbitals offers a promising route to study the effect of self-interaction errors in the electronic structure of molecules. The Fermi orbitals depend on the location of the electronic positions, called as Fermi orbital descriptors. One advantage of using the Fermi orbitals is that the corrected Hamiltonian is unitarily invariant. Minimization of the corrected energies leads to an optimized set of centroid positions. Here we discuss the applications of this method to various systems from constituent atoms to several medium size molecules such as Mg-porphyrin, C60, pentacene etc. The applications to the ionic systems will also be discussed. De-SC0002168, NSF-DMR 125302.

  2. Optical Response of Sr2RuO4 Reveals Universal Fermi-Liquid Scaling and Quasiparticles Beyond Landau Theory

    NASA Astrophysics Data System (ADS)

    Stricker, D.; Mravlje, J.; Berthod, C.; Fittipaldi, R.; Vecchione, A.; Georges, A.; van der Marel, D.

    2014-08-01

    We report optical measurements demonstrating that the low-energy relaxation rate (1/τ) of the conduction electrons in Sr2RuO4 obeys scaling relations for its frequency (ω) and temperature (T) dependence in accordance with Fermi-liquid theory. In the thermal relaxation regime, 1/τ∝(ℏω)2+(pπkBT)2 with p=2, and ω/T scaling applies. Many-body electronic structure calculations using dynamical mean-field theory confirm the low-energy Fermi-liquid scaling and provide quantitative understanding of the deviations from Fermi-liquid behavior at higher energy and temperature. The excess optical spectral weight in this regime provides evidence for strongly dispersing "resilient" quasiparticle excitations above the Fermi energy.

  3. Splitting Fermi Surfaces and Heavy Electronic States in Non-Centrosymmetric U3Ni3Sn4

    NASA Astrophysics Data System (ADS)

    Maurya, Arvind; Harima, Hisatomo; Nakamura, Ai; Shimizu, Yusei; Homma, Yoshiya; Li, DeXin; Honda, Fuminori; Sato, Yoshiki J.; Aoki, Dai

    2018-04-01

    We report the single-crystal growth of the non-centrosymmetric paramagnet U3Ni3Sn4 by the Bridgman method and the Fermi surface properties detected by de Haas-van Alphen (dHvA) experiments. We have also investigated single-crystal U3Ni3Sn4 by single-crystal X-ray diffraction, magnetization, electrical resistivity, and heat capacity measurements. The angular dependence of the dHvA frequencies reveals many closed Fermi surfaces, which are nearly spherical in topology. The experimental results are in good agreement with local density approximation (LDA) band structure calculations based on the 5f-itinerant model. The band structure calculation predicts many Fermi surfaces, mostly with spherical shape, derived from 12 bands crossing the Fermi energy. To our knowledge, the splitting of Fermi surfaces due to the non-centrosymmetric crystal in 5f-electron systems is experimentally detected for the first time. The temperature dependence of the dHvA amplitude reveals a large cyclotron effective mass of up to 35 m0, indicating the heavy electronic state of U3Ni3Sn4 due to the proximity of the quantum critical point. From the field dependence of the dHvA amplitude, a mean free path of conduction electrons of up to 1950 Å is detected, reflecting the good quality of the grown crystal. The small splitting energy related to the antisymmetric spin-orbit interaction is most likely due to the large cyclotron effective mass.

  4. Fermi Surface as a Driver for the Shape-Memory Effect in AuZn

    NASA Astrophysics Data System (ADS)

    Lashley, Jason

    2005-03-01

    Martensites are materials that undergo diffusionless, solid-state transitions. The martensitic transition yields properties that depend on the history of the material and if reversible can allow it to recover its previous shape after plastic deformation. This is known as the shape-memory effect (SME). We have succeeded in identifying the operative electronic mechanism responsible for the martensitic transition in the shape-memory alloy AuZn by using Fermi-surface measurements (de Haas-van Alphen oscillations) and band-structure calculations. Our findings suggest that electronic band structure gives rise to special features on the Fermi surface that is important to consider in the design of SME alloys.

  5. Composite Fermi surface in the half-filled Landau level with anisotropic electron mass

    NASA Astrophysics Data System (ADS)

    Ippoliti, Matteo; Geraedts, Scott; Bhatt, Ravindra

    We study the problem of interacting electrons in the lowest Landau level at half filling in the quantum Hall regime, when the electron dispersion is given by an anisotropic mass tensor. Based on experimental observations and theoretical arguments, the ground state of the system is expected to consist of composite Fermions filling an elliptical Fermi sea, with the anisotropy of the ellipse determined by the competing effects of the isotropic Coulomb interaction and anisotropic electron mass tensor. We test this idea quantitatively by using a numerical density matrix renormalization group method for quantum Hall systems on an infinitely long cylinder. Singularities in the structure factor allow us to map the Fermi surface of the composite Fermions. We compute the composite Fermi surface anisotropy for several values of the electron mass anisotropy which allow us to deduce the functional dependence of the former on the latter. This research was supported by Department of Energy Office of Basic Energy Sciences through Grant No. DE-SC0002140.

  6. Electronic structure study of wide band gap magnetic semiconductor (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} nanocrystals in paramagnetic and ferromagnetic phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwivedi, G. D.; Chou, H.; Yang, K. S.

    2016-04-25

    X-ray circular magnetic dichroism (XMCD), X-ray photoemission spectroscopy (XPS), and ultraviolet photoemission spectroscopy (UPS) techniques were used to study the electronic structure of nanocrystalline (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} near Fermi-level. XMCD results indicate that Mn{sup 3+} and Mn{sup 4+} spins are aligned parallel to each other at 20 K. The low M-H hysteresis curve measured at 5 K confirms ferromagnetic ordering in the (La{sub 0.6}Pr{sub 0.4}){sub 0.65}Ca{sub 0.35}MnO{sub 3} system. The low temperature valence band XPS indicates that coupling between Mn3d and O2p is enhanced and the electronic states near Fermi-level have been suppressed below T{sub C}. The valence bandmore » UPS also confirms the suppression of electronic states near Fermi-level below Curie temperature. UPS near Fermi-edge shows that the electronic states are almost absent below 0.5 eV (at 300 K) and 1 eV (at 115 K). This absence clearly demonstrates the existence of a wide band-gap in the system since, for hole-doped semiconductors, the Fermi-level resides just above the valence band maximum.« less

  7. The electronic structures and work functions of (100) surface of typical binary and doped REB6 single crystals

    NASA Astrophysics Data System (ADS)

    Liu, Hongliang; Zhang, Xin; Xiao, Yixin; Zhang, Jiuxing

    2018-03-01

    The density function theory been used to calculate the electronic structures of binary and doped rare earth hexaborides (REB6), which exhibits the large density of states (DOS) near Fermi level. The d orbital elections of RE element contribute the electronic states of election emission near the Fermi level, which imply that the REB6 (RE = La, Ce, Gd) with wide distribution of high density d orbital electrons could provide a lower work function and excellent emission properties. Doping RE elements into binary REB6 can adjust DOS and the position of the Fermi energy level. The calculated work functions of considered REB6 (100) surface show that the REB6 (RE = La, Ce, Gd) have lower work function and doping RE elements with active d orbital electrons can significantly reduce work function of binary REB6. The thermionic emission test results are basically accordant with the calculated value, proving the first principles calculation could provide a good theoretical guidance for the study of electron emission properties of REB6.

  8. Toward the theory of fermionic condensation

    NASA Astrophysics Data System (ADS)

    Khodel, V. A.

    2017-04-01

    The diagrammatic technique elaborated by Belyaev for the theory of a Fermi liquid has been implemented to analyze the behavior of Fermi systems beyond the topological phase transition point, where the fermionic condensate appears. It has been shown that the inclusion of the interaction between the condensate and above-condensate particles leads to the emergence of a gap in the single-particle excitation spectrum of these particles even in the absence of Cooper pairing. Hence, the emergence of this gap in homogeneous electron systems of silicon field-effect structures leads to a metal-insulator phase transition rather than to superconductivity. It has been shown that the same interaction explains the nature of the Fermi arc structure in twodimensional electron systems of cuprates.

  9. Pseudogap and electronic structure of electron-doped Sr2IrO4

    NASA Astrophysics Data System (ADS)

    Moutenet, Alice; Georges, Antoine; Ferrero, Michel

    2018-04-01

    We present a theoretical investigation of the effects of correlations on the electronic structure of the Mott insulator Sr2IrO4 upon electron doping. A rapid collapse of the Mott gap upon doping is found, and the electronic structure displays a strong momentum-space differentiation at low doping level: The Fermi surface consists of pockets centered around (π /2 ,π /2 ) , while a pseudogap opens near (π ,0 ) . Its physical origin is shown to be related to short-range spin correlations. The pseudogap closes upon increasing doping, but a differentiated regime characterized by a modulation of the spectral intensity along the Fermi surface persists to higher doping levels. These results, obtained within the cellular dynamical mean-field-theory framework, are discussed in comparison to recent photoemission experiments and an overall good agreement is found.

  10. Direct, experimental evidence of the Fermi surface in YBa2Cu3O(7-x)

    NASA Astrophysics Data System (ADS)

    Haghighi, H.; Kaiser, J. H.; Rayner, S. L.; West, R. N.; Liu, J. Z.; Shelton, R.; Howell, R. H.; Sterne, P. A.; Solal, F. R.; Fluss, M. J.

    1991-04-01

    We report new measurements of the electron positron momentum spectra of YBa2Cu3O(7-x) performed with ultra-high statistical precision. These data differ from previous results in two significant respects: They show the D(sub 2) symmetry appropriate for untwinned crystals and, more importantly, they show unmistakable, statistically significant, discontinuities that are evidence of a major Fermi surface section. These results provide a partial answer to a question of special significance to the study of high temperature superconductors i.e., the distribution of the electrons in the material, the electronic structure. Special consideration has been given both experimentally and theoretically to the existence and shape of a Fermi surface in the materials and to the superconducting gap. There are only three experimental techniques that can provide details of the electronic structure at useful resolutions. They are angular correlation of positron annihilation radiation, ACAR, angle resolved photo emission, PE, and de Haas van Alphen measurements.

  11. Fermi surface properties of paramagnetic NpCd11 with a large unit cell

    NASA Astrophysics Data System (ADS)

    Homma, Yoshiya; Aoki, Dai; Haga, Yoshinori; Settai, Rikio; Sakai, Hironori; Ikeda, Shugo; Yamamoto, Etsuji; Nakamura, Akio; Shiokawa, Yoshinobu; Takeuchi, Tetsuya; Yamagami, Hiroshi; Ōnuki, Yoshichika

    2010-03-01

    We succeeded in growing a high-quality single crystal of NpCd11 with the cubic BaHg11-type structure by the Cd-self flux method. The lattice parameter of a = 9.2968(2) Å and crystallographic positions of the atoms were determined by x-ray single-crystal structure analysis. From the results of the magnetic susceptibility and specific heat experiments, this compound is found to be a 5f-localized paramagnet with the singlet ground state in the crystalline electric field (CEF) scheme. Fermi surface properties were measured using the de Haas-van Alphen (dHvA) technique. Long-period oscillations were observed in the dHvA frequency range of 9.1 x 105 to 1.9 x 107 Oe, indicating small cross-sectional areas of Fermi surfaces, which is consistent with a small Brillouin zone based on a large unit cell. From the results of dHvA and magnetoresistance experiments, the Fermi surface of NpCd11 is found to consist of many kinds of closed Fermi surfaces and a multiply-connected-like Fermi surface, although the result of energy band calculations based on the 5f-localized Np3+(5f4) configuration reveals the existence of only closed Fermi surfaces. The corresponding cyclotron effective mass is small, ranging from 0.1 to 0.7 m0, which is consistent with a small electronic specific heat coefficient γ ≅ 10mJ/K2·mol, revealing no hybridization between the 5f electrons and conduction electrons.

  12. Minimax rational approximation of the Fermi-Dirac distribution.

    PubMed

    Moussa, Jonathan E

    2016-10-28

    Accurate rational approximations of the Fermi-Dirac distribution are a useful component in many numerical algorithms for electronic structure calculations. The best known approximations use O(log(βΔ)log(ϵ -1 )) poles to achieve an error tolerance ϵ at temperature β -1 over an energy interval Δ. We apply minimax approximation to reduce the number of poles by a factor of four and replace Δ with Δ occ , the occupied energy interval. This is particularly beneficial when Δ ≫ Δ occ , such as in electronic structure calculations that use a large basis set.

  13. Minimax rational approximation of the Fermi-Dirac distribution

    NASA Astrophysics Data System (ADS)

    Moussa, Jonathan E.

    2016-10-01

    Accurate rational approximations of the Fermi-Dirac distribution are a useful component in many numerical algorithms for electronic structure calculations. The best known approximations use O(log(βΔ)log(ɛ-1)) poles to achieve an error tolerance ɛ at temperature β-1 over an energy interval Δ. We apply minimax approximation to reduce the number of poles by a factor of four and replace Δ with Δocc, the occupied energy interval. This is particularly beneficial when Δ ≫ Δocc, such as in electronic structure calculations that use a large basis set.

  14. Structural and electronic properties of LaPd2As2 superconductor: First-principle calculations

    NASA Astrophysics Data System (ADS)

    Singh, Birender; Kumar, Pradeep

    2017-05-01

    In present work we have studied electronic and structural properties of superconducting LaPd2As2 compound having collapsed tetragonal structure using first-principle calculations. The band structure calculations show that the LaPd2As2 is metallic consistent with the reported experimental observation, and the density of states plots clearly shows that at the Fermi level major contribution to density of states arises from Pd 4d and As 4p states, unlike the Fe-based superconductors where major contribution at the Fermi level comes from Fe 3d states. The estimated value of electron-phonon coupling is found to be 0.37, which gives the upper bound of superconducting transition temperature of 5K, suggesting the conventional nature of this superconductor.

  15. Electronic Structure and Thermoelectric Properties of Transition Metal Monosilicides

    NASA Astrophysics Data System (ADS)

    Pshenay-Severin, D. A.; Ivanov, Yu. V.; Burkov, A. T.; Novikov, S. V.; Zaitsev, V. K.; Reith, H.

    2018-06-01

    We present theoretical and experimental results on electronic structure and thermoelectric properties of cobalt monosilicide (CoSi) and of Co1- x M x Si diluted alloys (M = Fe and Ni) at temperatures from 2 K to 800 K. CoSi crystallizes into a non-centrosymmetric cubic B20 structure, which suggests the possibility of a topologically non-trivial electronic structure. We show that the electronic structure of CoSi exhibits linear band crossings in close vicinity to Fermi energy, confirming the possibility of non-trivial topology. The proximity of the linear-dispersion bands to Fermi energy implies their important contribution to the electronic transport. Calculation of thermopower of CoSi, using ab initio band structure and the constant relaxation time approximation, is carried out. It reveals that many body corrections to the electronic spectrum are important in order to obtain qualitative agreement of theoretical and experimental temperature dependences of thermopower. Phonon dispersion and lattice thermal conductivity are calculated. The phonons give a major contribution to the thermal conductivity of the compound below room temperature.

  16. Fermi arc electronic structure and Chern numbers in the type-II Weyl semimetal candidate Mo x W 1 - x Te 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belopolski, Ilya; Xu, Su-Yang; Ishida, Yukiaki

    2016-08-15

    It has recently been proposed that electronic band structures in crystals can give rise to a previously overlooked type of Weyl fermion, which violates Lorentz invariance and, consequently, is forbidden in particle physics. It was further predicted that Mo x W 1 - x Te 2 may realize such a type-II Weyl fermion. Here, we first show theoretically that it is crucial to access the band structure above the Fermi level ε F to show a Weyl semimetal in Mo x W 1 - x Te 2 . Then, we study Mo x W 1 - x Te 2 bymore » pump-probe ARPES and we directly access the band structure > 0.2 eV above ε F in experiment. By comparing our results with ab initio calculations, we conclude that we directly observe the surface state containing the topological Fermi arc. We propose that a future study of Mo x W 1 - x Te 2 by pump-probe ARPES may directly pinpoint the Fermi arc. Our work sets the stage for the experimental discovery of the first type-II Weyl semimetal in Mo x W 1 - x Te 2 .« less

  17. Fermi bubbles as a source of cosmic rays above 1015 eV

    NASA Astrophysics Data System (ADS)

    Chernyshov, D. O.; Cheng, K. S.; Dogiel, V. A.; Ko, C. M.

    2014-11-01

    Fermi bubbles are giant gamma-ray structures extended north and south of the Galactic center with characteristic sizes of order of 10 kpc recently discovered by Fermi Large Area Telescope. Good correlation between radio and gamma-ray emission in the region covered by Fermi bubbles implies the presence of high-energy electrons in this region. Since it is relatively difficult for relativistic electrons of this energy to travel all the way from the Galactic sources toward Fermi bubbles one can assume that they accelerated in-situ. The corresponding acceleration mechanism should also affect the distribution of the relativistic protons in the Galaxy. Since protons have much larger lifetimes the effect may even be observed near the Earth. In our model we suggest that Fermi bubbles are created by acceleration of electrons on series of shocks born due to periodic star accretions by supermassive black hole Sgr A*. We propose that hadronic CR within the 'knee' of the observed CR spectrum are produced by Galactic supernova remnants distributed in the Galactic disk. Reacceleration of these particles in the Fermi Bubble produces CRs beyond the knee. This model provides a natural explanation of the observed CR flux, spectral indexes, and matching of spectra at the knee.

  18. Superconductivity across Lifshitz transition and anomalous insulating state in surface K-dosed (Li0.8Fe0.2OH)FeSe.

    PubMed

    Ren, Mingqiang; Yan, Yajun; Niu, Xiaohai; Tao, Ran; Hu, Die; Peng, Rui; Xie, Binping; Zhao, Jun; Zhang, Tong; Feng, Dong-Lai

    2017-07-01

    In iron-based superconductors, understanding the relation between superconductivity and electronic structure upon doping is crucial for exploring the pairing mechanism. Recently, it was found that, in iron selenide (FeSe), enhanced superconductivity ( T c of more than 40 K) can be achieved via electron doping, with the Fermi surface only comprising M-centered electron pockets. By using surface K dosing, scanning tunneling microscopy/spectroscopy, and angle-resolved photoemission spectroscopy, we studied the electronic structure and superconductivity of (Li 0.8 Fe 0.2 OH)FeSe in the deep electron-doped regime. We find that a Γ-centered electron band, which originally lies above the Fermi level ( E F ), can be continuously tuned to cross E F and contribute a new electron pocket at Γ. When this Lifshitz transition occurs, the superconductivity in the M-centered electron pocket is slightly suppressed, and a possible superconducting gap with a small size (up to ~5 meV) and a dome-like doping dependence is observed on the new Γ electron pocket. Upon further K dosing, the system eventually evolves into an insulating state. Our findings provide new clues to understand superconductivity versus Fermi surface topology and the correlation effect in FeSe-based superconductors.

  19. Superconductivity across Lifshitz transition and anomalous insulating state in surface K–dosed (Li0.8Fe0.2OH)FeSe

    PubMed Central

    Ren, Mingqiang; Yan, Yajun; Niu, Xiaohai; Tao, Ran; Hu, Die; Peng, Rui; Xie, Binping; Zhao, Jun; Zhang, Tong; Feng, Dong-Lai

    2017-01-01

    In iron-based superconductors, understanding the relation between superconductivity and electronic structure upon doping is crucial for exploring the pairing mechanism. Recently, it was found that, in iron selenide (FeSe), enhanced superconductivity (Tc of more than 40 K) can be achieved via electron doping, with the Fermi surface only comprising M-centered electron pockets. By using surface K dosing, scanning tunneling microscopy/spectroscopy, and angle-resolved photoemission spectroscopy, we studied the electronic structure and superconductivity of (Li0.8Fe0.2OH)FeSe in the deep electron-doped regime. We find that a Γ-centered electron band, which originally lies above the Fermi level (EF), can be continuously tuned to cross EF and contribute a new electron pocket at Γ. When this Lifshitz transition occurs, the superconductivity in the M-centered electron pocket is slightly suppressed, and a possible superconducting gap with a small size (up to ~5 meV) and a dome-like doping dependence is observed on the new Γ electron pocket. Upon further K dosing, the system eventually evolves into an insulating state. Our findings provide new clues to understand superconductivity versus Fermi surface topology and the correlation effect in FeSe-based superconductors. PMID:28740865

  20. Electronic structure reconstruction across the antiferromagnetic transition in TaFe₁̣₂₃Te₃ spin ladder

    DOE PAGES

    Xu, Min; Wang, Li -Min; Peng, Rui; ...

    2015-02-01

    With angle-resolved photoemission spectroscopy, we studied the electronic structure of TaFe₁̣₂₃Te₃, a two-leg spin ladder compound with a novel antiferromagnetic ground state. Quasi-two-dimensional Fermi surface is observed, with sizable inter-ladder hopping. Moreover, instead of observing an energy gap at the Fermi surface in the antiferromagnetic state, we observed the shifts of various bands. Combining these observations with density-functional-theory calculations, we propose that the large scale reconstruction of the electronic structure, caused by the interactions between coexisting itinerant electrons and local moments, is most likely the driving force of the magnetic transition. Thus TaFe₁̣₂₃Te₃ serves as a simpler platform that containsmore » similar ingredients as the parent compounds of iron-based superconductors.« less

  1. Orbital-dependent electron correlation effects in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Yi, Ming

    The iron chalcogenide superconductors constitute arguably one of the most intriguing families of the iron-based high temperature superconductors given their ability to superconduct at comparable temperatures as the iron pnictides, despite the lack of similarities in their magnetic structures and Fermi surface topologies. In particular, the lack of hole Fermi pockets at the Brillouin zone center posts a challenge to the previous proposal of spin fluctuation mediated pairing via Fermi surface nesting. In this talk, using angle-resolved photoemission spectroscopy measurements, I will present evidence that show that instead of Fermi surface topology, strong electron correlation observed in electron bandwidth is an important ingredient for superconductivity in the iron chalcogenides. Specifically, I will show i) there exists universal strong orbital-selective renormalization effects and proximity to an orbital-selective Mott phase in Fe1+yTe1-xSex, AxFe2-ySe2, and monolayer FeSe film on SrTiO3, and ii) in RbxFe2(Se1-zSz)2 , where sulfur substitution for selenium continuously suppresses superconductivity down to zero, little change occurs in the Fermi surface topology while a substantial reduction of electron correlation is observed in an expansion of the overall bandwidth, implying that electron correlation is one of the key tuning parameters for superconductivity in these materials.

  2. Magnetospheric Multiscale Satellite Observations of Parallel Electron Acceleration in Magnetic Field Reconnection by Fermi Reflection from Time Domain Structures

    NASA Technical Reports Server (NTRS)

    Mozer, F. S.; Agapitov, O. A.; Artemyev, A.; Burch, J. L.; Ergun, R. E.; Giles, B. L.; Mourenas, D.; Torbert, R. B.; Phan, T. D.; Vasko, I.

    2016-01-01

    The same time domain structures (TDS) have been observed on two Magnetospheric Multiscale Satellites near Earth's dayside magnetopause. These TDS, traveling away from the X line along the magnetic field at 4000 km/s, accelerated field-aligned approx. 5 eV electrons to approx. 200 eV by a single Fermi reflection of the electrons by these overtaking barriers. Additionally, the TDS contained both positive and negative potentials, so they were a mixture of electron holes and double layers. They evolve in approx.10 km of space or 7 ms of time and their spatial scale size is 10-20 km, which is much larger than the electron gyroradius (less than1km) or the electron inertial length (4 km at the observation point, less nearer the X line).

  3. Electronic structure and Fermi surface topology of WTe2 in a magnetic field

    NASA Astrophysics Data System (ADS)

    Krishna, Jyoti; Maitra, T.

    2018-05-01

    Two dimensional (2D) layered transition metal dichalcogenides (TMDs) have recently become the foremost candidate for future electronic device applications overcoming graphene as latter has no bandgap which limits some of the applications. WTe2 is one such TMD whose magnetoresistance (MR) continue to increase with magnetic field without any indication of saturation. Inspired by this, we have theoretically investigated the material using first principle density functional theory (DFT) approach to study the effect of magnetic field on electronic structure of the compound. The magnetic field is seen to enhance the hole pockets' size along Γ-Z direction, which brings in significant change in the Fermi surface topology.

  4. Minimax rational approximation of the Fermi-Dirac distribution

    DOE PAGES

    Moussa, Jonathan E.

    2016-10-27

    Accurate rational approximations of the Fermi-Dirac distribution are a useful component in many numerical algorithms for electronic structure calculations. The best known approximations use O(log(βΔ)log(ϵ –1)) poles to achieve an error tolerance ϵ at temperature β –1 over an energy interval Δ. We apply minimax approximation to reduce the number of poles by a factor of four and replace Δ with Δ occ, the occupied energy interval. Furthermore, this is particularly beneficial when Δ >> Δ occ, such as in electronic structure calculations that use a large basis set.

  5. Electronic structure in high temperature superconducting oxides

    NASA Astrophysics Data System (ADS)

    Howell, R. H.; Sterne, P.; Solal, F.; Fluss, M. J.; Tobin, J.; Obrien, J.; Radousky, H. B.; Haghighi, H.; Kaiser, J. H.; Rayner, S. L.

    1991-08-01

    We have performed measurements on entwined single crystals of YBCO using both photoemission and positron angular correlation of annihilation radiation and on single crystals of LSCO using only angular correlation. Fermi surface features in good agreement with band theory were found and identified in all of the measurements. In photoemission, the Fermi momentum was fixed for several points and the band dispersion below the Fermi energy was mapped. In positron angular correlation measurements, the shape of the Fermi surface was mapped for the CuO chains (YBCO) and the CuO planes (LSCO). Demonstration of the existence of Fermi surfaces in the HTSC materials points a direction for future theoretical considerations.

  6. The electronic structure of Au25 clusters: between discrete and continuous

    NASA Astrophysics Data System (ADS)

    Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Sai Krishna, Katla; Li, Ruipeng; Mei, Wai-Ning; Skrabalak, Sara E.; Kumar, Challa S. S. R.; Losovyj, Yaroslav

    2016-08-01

    Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies.Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies. Electronic supplementary information (ESI) available: Experimental details including chemicals, sample preparation, and characterization methods. Computation techniques, SV-AUC, GIWAXS, XPS, UPS, MALDI-TOF, ESI data of Au25 clusters. See DOI: 10.1039/c6nr02374f

  7. a Positron Study of the Electronic Structure of Yttrium Barium Copper Oxide.

    NASA Astrophysics Data System (ADS)

    Haghighi, Hossein

    The work described in this thesis is concerned with a study of the electronic structure of the high T _{c} superconductor YBa _2Cu_3O _7 using the technique of two dimensional angular correlation of annihilation radiation (2D-ACAR). We have studied this compound with a view to clarifying whether YBa_2Cu_3O _7 possess a Fermi surface. The numerous different theories that have been proposed to explain the superconductivity phase of these types of materials can be classified into two main groups. The theories in the first group assume the existence of a conventional Fermi fluid and Fermi surface. The alternative more exotic models do not require a Fermi surface but are based on the Mott-Hubbard model of strongly correlated charge and spin excitations. Prior to this work all 2D-ACAR studies of YBa _2Cu_3O _7 involved twinned crystals and modest statistics and little of significance was learned other than that, consistent with that of predictions of theory, the positron was preferentially annihilating on the copper-oxygen chains. The studies of untwinned crystals of YBa_2Cu _3O_7, herein described are of much higher statistics and resulted in one of the clearest imaginable manifestations of a Fermi surface in the form of an extended discontinuity in the measured momentum spectrum. This discontinuity is even more apparent in the LCW-folded spectrum with a form and profile in substantial agreement with the theoretical predictions of a Gamma-X electron ridge Fermi surface section arising from states in the Cu-O chains.

  8. Evolution and Control of Electronic Structures near the Interface of Complex Oxide Heterostructure SmTiO3/SrTiO3

    NASA Astrophysics Data System (ADS)

    Mori, Ryo; Marshall, Patrick; Isaac, Brandon; Denlinger, Jonathan; Stemmer, Susanne; Lanzara, Alessandra

    The confined electron system in the quantum well of the transition metal oxide, SrTiO3, embedded in the rare earth titanate, SmTiO3, shows unique properties, such as high carrier density, fermi liquid to non-fermi liquid transition, and pseudo-gap, which can be controlled by changing the shape of the quantum well. We will present a distinct difference in the electronic structures between the different quantum well structures obtained by angle-resolved photoemission spectroscopy (ARPES) measurements, suggesting the possibility to control the orbital character and the electron correlation near the interface as well as carrier density. The work was supported by the Quantum Materials Program at LBNL, funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231.

  9. Novel Electronic Structures of Ru-pnictides RuPn (Pn = P, As, Sb)

    NASA Astrophysics Data System (ADS)

    Goto, H.; Toriyama, T.; Konishi, T.; Ohta, Y.

    Density-functional-theory-based electronic structure calculations are made to consider the novel electronic states of Ru-pnictides RuP and RuAs where the intriguing phase transitions and superconductivity under doping of Rh have been reported. We find that there appear nearly degenerate flat bands just at the Fermi level in the high-temperature metallic phase of RuP and RuAs; the flat-band states come mainly from the 4dxy orbitals of Ru ions and the Rh doping shifts the Fermi level just above the flat bands. The splitting of the flat bands caused by their electronic instability may then be responsible for the observed phase transition to the nonmagnetic insulating phase at low temperatures. We also find that the band structure calculated for RuSb resembles that of the doped RuP and RuAs, which is consistent with experiment where superconductivity occurs in RuSb without Rh doping.

  10. Topological Nodal Cooper Pairing in Doped Weyl Metals

    NASA Astrophysics Data System (ADS)

    Li, Yi; Haldane, F. D. M.

    2018-02-01

    We generalize the concept of Berry connection of the single-electron band structure to that of a two-particle Cooper pairing state between two Fermi surfaces with opposite Chern numbers. Because of underlying Fermi surface topology, the pairing Berry phase acquires nontrivial monopole structure. Consequently, pairing gap functions have topologically protected nodal structure as vortices in the momentum space with the total vorticity solely determined by the pair monopole charge qp. The nodes of gap function behave as the Weyl-Majorana points of the Bogoliubov-de Gennes pairing Hamiltonian. Their relation with the connection patterns of the surface modes from the Weyl band structure and the Majorana surface modes inside the pairing gap is also discussed. Under the approximation of spherical Fermi surfaces, the pairing symmetry are represented by monopole harmonic functions. The lowest possible pairing channel carries angular momentum number j =|qp|, and the corresponding gap functions are holomorphic or antiholomorphic functions on Fermi surfaces. After projected on the Fermi surfaces with nontrivial topology, all the partial-wave channels of pairing interactions acquire the monopole charge qp independent of concrete pairing mechanism.

  11. Correlation of Device Performance and Fermi Level Shift in the Emitting Layer of Organic Light-Emitting Diodes with Amine-Based Electron Injection Layers.

    PubMed

    Stolz, Sebastian; Lemmer, Uli; Hernandez-Sosa, Gerardo; Mankel, Eric

    2018-03-14

    We investigate three amine-based polymers, polyethylenimine and two amino-functionalized polyfluorenes, as electron injection layers (EILs) in organic light-emitting diodes (OLEDs) and find correlations between the molecular structure of the polymers, the electronic alignment at the emitter/EIL interface, and the resulting device performance. X-ray photoelectron spectroscopy measurements of the emitter/EIL interface indicate that all three EIL polymers induce an upward shift of the Fermi level in the emitting layer close to the interface similar to n-type doping. The absolute value of this Fermi level shift, which can be explained by an electron transfer from the EIL polymers into the emitting layer, correlates with the number of nitrogen-containing groups in the side chains of the polymers. Whereas polyethylenimine (PEI) and one of the investigated polyfluorenes (PFCON-C) have six such groups per monomer unit, the second investigated polyfluorene (PFN) only possesses two. Consequently, we measure Fermi level shifts of 0.5-0.7 eV for PEI and PFCON-C and only 0.2 eV for PFN. As a result of these Fermi level shifts, the energetic barrier for electron injection is significantly lowered and OLEDs which comprise PEI or PFCON-C as an EIL exhibit a more than twofold higher luminous efficacy than OLEDs with PFN.

  12. Visualizing weakly bound surface Fermi arcs and their correspondence to bulk Weyl fermions

    PubMed Central

    Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim

    2016-01-01

    Fermi arcs are the surface manifestation of the topological nature of Weyl semimetals, enforced by the bulk-boundary correspondence with the bulk Weyl nodes. The surface of tantalum arsenide, similar to that of other members of the Weyl semimetal class, hosts nontopological bands that obscure the exploration of this correspondence. We use the spatial structure of the Fermi arc wave function, probed by scanning tunneling microscopy, as a spectroscopic tool to distinguish and characterize the surface Fermi arc bands. We find that, as opposed to nontopological states, the Fermi arc wave function is weakly affected by the surface potential: it spreads rather uniformly within the unit cell and penetrates deeper into the bulk. Fermi arcs reside predominantly on tantalum sites, from which the topological bulk bands are derived. Furthermore, we identify a correspondence between the Fermi arc dispersion and the energy and momentum of the bulk Weyl nodes that classify this material as topological. We obtain these results by introducing an analysis based on the role the Bloch wave function has in shaping quantum electronic interference patterns. It thus carries broader applicability to the study of other electronic systems and other physical processes. PMID:27551687

  13. Structural and electronic properties of AlN(0001) surface under partial N coverage as determined by ab initio approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strak, Pawel; Sakowski, Konrad; Kempisty, Pawel

    2015-09-07

    Properties of bare and nitrogen-covered Al-terminated AlN(0001) surface were determined using density functional theory (DFT) calculations. At a low nitrogen coverage, the Fermi level is pinned by Al broken bond states located below conduction band minimum. Adsorption of nitrogen is dissociative with an energy gain of 6.05 eV/molecule at a H3 site creating an overlap with states of three neighboring Al surface atoms. During this adsorption, electrons are transferred from Al broken bond to topmost N adatom states. Accompanying charge transfer depends on the Fermi level. In accordance with electron counting rule (ECR), the DFT results confirm the Fermi levelmore » is not pinned at the critical value of nitrogen coverage θ{sub N}(1) = 1/4 monolayer (ML), but it is shifted from an Al-broken bond state to Np{sub z} state. The equilibrium thermodynamic potential of nitrogen in vapor depends drastically on the Fermi level pinning being shifted by about 4 eV for an ECR state at 1/4 ML coverage. For coverage above 1/4 ML, adsorption is molecular with an energy gain of 1.5 eV at a skewed on-top position above an Al surface atom. Electronic states of the admolecule are occupied as in the free molecule, no electron transfer occurs and adsorption of a N{sub 2} molecule does not depend on the Fermi level. The equilibrium pressure of molecular nitrogen above an AlN(0001) surface depends critically on the Fermi level position, being very low and very high for low and high coverage, respectively. From this fact, one can conclude that at typical growth conditions, the Fermi level is not pinned, and the adsorption and incorporation of impurities depend on the position of Fermi level in the bulk.« less

  14. Multiple Fermi pockets revealed by Shubnikov-de Haas oscillations in WTe2

    NASA Astrophysics Data System (ADS)

    Xiang, Fei-Xiang; Veldhorst, Menno; Dou, Shi-Xue; Wang, Xiao-Lin

    2015-11-01

    The recently discovered non-saturating and parabolic magnetoresistance and the pressure-induced superconductivity at low temperature in WTe2 imply its rich electronic structure and possible practical applications. Here we use magnetotransport measurements to investigate the electronic structure of WTe2 single crystals. A non-saturating and parabolic magnetoresistance is observed from low temperature to high temperature up to 200 K with magnetic fields up to 8 T. Shubnikov-de Haas (SdH) oscillations with beating patterns are observed, the fast Fourier transform of which reveals three oscillation frequencies, corresponding to three pairs of Fermi pockets with comparable effective masses, m* ∼ 0.31~me . By fitting the Hall resistivity, we infer that they can be attributed to one pair of electron pockets and two pairs of hole pockets, together with nearly perfect compensation of the electron-hole carrier concentration. These magnetotransport measurements reveal the complex electronic structure in WTe2, explaining the non-saturating magnetoresistance.

  15. Origins of Fermi-level pinning on GaN and InN polar and nonpolar surfaces

    NASA Astrophysics Data System (ADS)

    Segev, D.; Van de Walle, C. G.

    2006-10-01

    Using band structure and total energy methods, we study the atomic and electronic structures of the polar (+c and - c plane) and nonpolar (a and m plane) surfaces of GaN and InN. We identify two distinct microscopic origins for Fermi-level pinning on GaN and InN, depending on surface stoichiometry and surface polarity. At moderate Ga/N ratios unoccupied gallium dangling bonds pin the Fermi level on n-type GaN at 0.5 0.7 eV below the conduction-band minimum. Under highly Ga-rich conditions metallic Ga adlayers lead to Fermi-level pinning at 1.8 eV above the valence-band maximum. We also explain the source of the intrinsic electron accumulation that has been universally observed on polar InN surfaces. It is caused by In-In bonds leading to occupied surface states above the conduction-band minimum. We predict that such a charge accumulation will be absent on the nonpolar surfaces of InN, when prepared under specific conditions.

  16. Valley density-wave (VDW) and Superconductivity in Iron-Pnictides

    NASA Astrophysics Data System (ADS)

    Cvetkovic, Vladimir; Tesanovic, Zlatko

    2009-03-01

    One of the experimentally observed features of iron-pnictide superconductors is the structural transition and SDW ordering occurring at almost the same temperature. Starting from a tight-binding model [1], we construct an effective theory for iron-pnictides with the distinctive two hole and two electron Fermi surfaces. This theory is then mapped onto a negative-U Hubbard model with additional orbital and spin flavors [2]. We demonstrate that the superconducting instability of the attractive Hubbard model --- valley density-wave (VDW) --- corresponds to the observed structural and SDW orders. The deviations from perfect nesting between the hole and electron Fermi surfaces are mapped onto the Zeeman field which causes portions of Fermi surface to remain ungapped. The origin of pnictide superconductivity in this model, and its ties to the VDW are discussed. [1] V. Cvetkovic and Z. Tesanovic, http://arxiv.org/abs/0804.4678. [2] V. Cvetkovic and Z. Tesanovic, http://arxiv.org/abs/0808.3742.

  17. Positron-annihilation study of the electronic structure of URu2Si2

    NASA Astrophysics Data System (ADS)

    Rozing, G. J.; Mijnarends, P. E.; Menovsky, A. A.; de Chtel, P. F.

    1991-04-01

    Measurements of the two-dimensional angular correlation of annihilation radiation (2D-ACAR) were performed on oriented single crystals of URu2Si2. The spectra, obtained with integration along four different symmetry directions, display anisotropic structure in fair agreement with a previous calculation of the two-photon momentum distribution. In particular, the contribution of the f-ligand hybridized electron states is clearly observed and reasonably well described by the band calculation. The 2D-ACAR distribution remains unchanged as the temperature is increased from 6 K in the Fermi-liquid state to 72 K, which is just above the coherence temperature. The inhomogeneity of the positron density in the unit cell complicates the Lock-Crisp-West (LCW) analysis of the experiments in terms of Fermi-surface features. Nevertheless, the disagreement between theory and experiment after LCW folding indicates that the Fermi surface as predicted by local-density-approximation band theory does not apply.

  18. High-resolution angle-resolved photoemission study of electronic structure and charge-density wave formation in HoTe3

    NASA Astrophysics Data System (ADS)

    Liu, Guodong; Wang, Chenlu; Zhang, Yan; Hu, Bingfeng; Mou, Daixiang; Yu, Li; Zhao, Lin; Zhou, Xingjiang; Wang, Nanlin; Chen, Chuangtian; Xu, Zuyan

    We performed high-resolution angle-resolved photoemission spectroscopy (ARPES) measurement on high quality crystal of HoTe3, an intriguing quasi-two-dimensional rare-earth-element tritelluride charge-density-wave (CDW) compound. The main features of the electronic structure in this compound are established by employing a quasi-CW laser (7eV) and a helium discharging lamp (21.22 eV) as excitation light sources. It reveals many bands back folded according to the CDW periodicity and two incommensurate CDW gaps created by perpendicular Fermi surface (FS) nesting vectors. A large gap is found to open in well nested regions of the Fermi surface sheets, whereas other Fermi surface sections with poor nesting remain ungapped. In particular, some peculiar features are identified by using our ultra-high resolution and bulk sensitive laser-ARPES.

  19. Quantum oscillations from the reconstructed Fermi surface in electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Higgins, J. S.; Chan, M. K.; Sarkar, Tarapada; McDonald, R. D.; Greene, R. L.; Butch, N. P.

    2018-04-01

    We have studied the electronic structure of electron-doped cuprate superconductors via measurements of high-field Shubnikov–de Haas oscillations in thin films. In optimally doped Pr2‑x Ce x CuO4±δ and La2‑x Ce x CuO4±δ , quantum oscillations indicate the presence of a small Fermi surface, demonstrating that electronic reconstruction is a general feature of the electron-doped cuprates, despite the location of the superconducting dome at very different doping levels. Negative high-field magnetoresistance is correlated with an anomalous low-temperature change in scattering that modifies the amplitude of quantum oscillations. This behavior is consistent with effects attributed to spin fluctuations.

  20. Angular-dependent magnetoresistance study in Ca0.73La0.27FeAs2: a ‘parent’ compound of 112-type iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Xing, Xiangzhuo; Xu, Chunqiang; Li, Zhanfeng; Feng, Jiajia; Zhou, Nan; Zhang, Yufeng; Sun, Yue; Zhou, Wei; Xu, Xiaofeng; Shi, Zhixiang

    2018-01-01

    We report a study of angular-dependent magnetoresistance (AMR) with the magnetic field rotated in the plane perpendicular to the current on a Ca0.73La0.27FeAs2 single crystal, which is regarded as a ‘parent’ compound of 112-type iron pnictide superconductors. A pronounced AMR with twofold symmetry is observed, signifying the highly anisotropic Fermi surface. By further analyzing the AMR data, we find that the Fermi surface above the structural/antiferromagnetic (AFM) transition (T s/T N) is quasi-two-dimensional (quasi-2D), as revealed by the 2D scaling behavior of the AMR, Δρ/ρ(0) (H, θ)  =  Δρ/ρ(0) (µ 0 Hcosθ), θ being the magnetic field angle with respect to the c axis. While such 2D scaling becomes invalid at temperatures below T s/T N, the three-dimensional (3D) scaling approach by inclusion of the anisotropy of the Fermi surface is efficient, indicating that the appearance of the 3D Fermi surface contributes to anisotropic electronic transport. Compared with other experimental observations, we suspect that the additional 3D hole pocket (generated by the Ca d orbital and As1 p z orbital) around the Γ point in CaFeAs2 will disappear in the heavily electron doped regime, and moreover, the Fermi surface should be reconstructed across the structural/AFM transition. Besides, a quasi-linear in-plane magnetoresistance with H//ab is observed at low temperatures and its possible origins are also discussed. Our results provide more information to further understand the electronic structure of 112-type IBSs.

  1. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films.

    PubMed

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X J

    2016-02-08

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors.

  2. Atomic-scale structural and electronic properties of SrTiO3/GaAs interfaces: A combined STEM-EELS and first-principles study

    NASA Astrophysics Data System (ADS)

    Hong, Liang; Bhatnagar, Kunal; Droopad, Ravi; Klie, Robert F.; Öǧüt, Serdar

    2017-07-01

    The electronic properties of epitaxial oxide thin films grown on compound semiconductors are largely determined by the interfacial atomic structure, as well as the thermodynamic conditions during synthesis. Ferroelectric polarization and Fermi-level pinning in SrTiO3 films have been attributed to the presence of oxygen vacancies at the oxide/semiconductor interface. Here, we present scanning transmission electron microscopy (STEM) and electron energy-loss spectroscopy analyses of GaAs films grown on SrTiO3 combined with first-principles calculations to determine the atomic and electronic structures of the SrTiO3/GaAs interfaces. An atomically abrupt SrO/As interface is observed and the interfacial SrO layer is found to be O-deficient. First-principles density functional theory (DFT) calculations show SrO/Ga and Sr/As interfaces are favorable under O-rich and O-poor conditions, respectively. The SrO/Ga interface is reconstructed via the formation of Ga-Ga dimers while the Sr/As interface is abrupt and consistent with the experiment. DFT calculations further reveal that intrinsic two-dimensional electron gas (2DEG) forms in both SrO/Ga and Sr/As interfaces, and the Fermi level is pinned to the localized 2DEG states. Interfacial O vacancies can enhance the 2DEG density while it is possible for Ga/As vacancies to unpin the Fermi level from the 2DEG states.

  3. Absence of Dirac states in BaZnBi 2 induced by spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Weijun; Wang, Aifeng; Graf, D.

    We report magnetotransport properties of BaZnBi 2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi 2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX 2 ( A = alkaline-earth, B = transition-metal, and Xmore » = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.« less

  4. Absence of Dirac states in BaZnBi 2 induced by spin-orbit coupling

    DOE PAGES

    Ren, Weijun; Wang, Aifeng; Graf, D.; ...

    2018-01-22

    We report magnetotransport properties of BaZnBi 2 single crystals. Whereas electronic structure features Dirac states, such states are removed from the Fermi level by spin-orbit coupling (SOC) and consequently electronic transport is dominated by the small hole and electron pockets. Our results are consistent with not only three-dimensional, but also with quasi-two-dimensional portions of the Fermi surface. The SOC-induced gap in Dirac states is much larger when compared to isostructural SrMnBi 2. This suggests that not only long-range magnetic order, but also mass of the alkaline-earth atoms A in ABX 2 ( A = alkaline-earth, B = transition-metal, and Xmore » = Bi/Sb) are important for the presence of low-energy states obeying the relativistic Dirac equation at the Fermi surface.« less

  5. Design study of high gradient, low impedance accelerating structures for the FERMI free electron laser linac upgrade

    NASA Astrophysics Data System (ADS)

    Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.

    2017-09-01

    The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.

  6. Theoretical calculation of electron-positron momentum density in YBa 2Cu 3O 7-δ

    NASA Astrophysics Data System (ADS)

    Massidda, S.

    1990-07-01

    We present calculations of the electron-positron momentum density for the high- Tc superconductor YBa 2Cu 3O 7-δ for δ=0 and for the insulating parent compound YBa 2Cu 3O 6, based on first-principle electronic structure calculations performed within the local density approximation (LDA) using the full potential linearized augmented plane wave (FLAPW) method. Our results indicate a small overlap of the positron wave function with the CuO 2 plane electrons and, as a consequence, relatively small signals due to the related Fermi surfaces. By contrast, the present calculations show, after the folding of Umklapp terms according to Lock, Crisp and West, clear Fermi surface breaks arising from the Cu-O chain bands. No general agreement with existing experiments allows a clear definition of Fermi surface structures in the latter. A comparison of the calculated momentum with the experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) recently measured in Geneva shows an overall agreement for the insulating compound, despite the spurious LDA metallic state, and possibly suggests the importance of O vacancies in experiments performed on non-stoichiometric YBa 2Cu 3O 7-δ samples.

  7. Trivial and topological Fermi arcs in the type-II Weyl semimetal candidate MoTe2

    NASA Astrophysics Data System (ADS)

    Tamai, Anna; Wu, Quansheng; Cucchi, Irene; Bruno, Flavio; Barreteau, Celine; Giannini, Enrico; Soluyanov, Alexey; Baumberger, Felix

    Weyl semimetals are commonly identified by detecting their characteristic open surface state Fermi arcs in angle-resolved photoemission (ARPES) experiments. However, in type-II Weyl semimetals the Fermi arcs generally disappear in the bulk carrier pockets before reaching the Weyl points where they terminate - making it harder to unambiguously identify this new electronic state. Using laser-based ARPES, we have resolved multiple distinct Fermi arcs on the inequivalent top and bottom (001) surfaces of the candidate type-II Weyl semimetal MoTe2. By comparing our ARPES data with systematic electronic structure calculations simulating different Weyl point arrangements, we show that some of these arcs are false positives as they can be explained without Weyl points, while others are only reproduced in scenarios with at least eight Weyl points. Our results thus suggest that MoTe2 is the first experimental realisation of a type-II Weyl semimetal.

  8. Theoretical and experimental investigations of superconductivity. Amorphous semiconductors, superconductivity and magnetism

    NASA Technical Reports Server (NTRS)

    Cohen, M. H.

    1973-01-01

    The research activities from 1 March 1963 to 28 February 1973 are summarized. Major lectures are listed along with publications on superconductivity, superfluidity, electronic structures and Fermi surfaces of metals, optical spectra of solids, electronic structure of insulators and semiconductors, theory of magnetic metals, physics of surfaces, structures of metals, and molecular physics.

  9. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides.

    PubMed

    Charnukha, A; Evtushinsky, D V; Matt, C E; Xu, N; Shi, M; Büchner, B; Zhigadlo, N D; Batlogg, B; Borisenko, S V

    2015-12-18

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  10. High-temperature superconductivity from fine-tuning of Fermi-surface singularities in iron oxypnictides

    NASA Astrophysics Data System (ADS)

    Charnukha, A.; Evtushinsky, D. V.; Matt, C. E.; Xu, N.; Shi, M.; Büchner, B.; Zhigadlo, N. D.; Batlogg, B.; Borisenko, S. V.

    2015-12-01

    In the family of the iron-based superconductors, the REFeAsO-type compounds (with RE being a rare-earth metal) exhibit the highest bulk superconducting transition temperatures (Tc) up to 55 K and thus hold the key to the elusive pairing mechanism. Recently, it has been demonstrated that the intrinsic electronic structure of SmFe0.92Co0.08AsO (Tc = 18 K) is highly nontrivial and consists of multiple band-edge singularities in close proximity to the Fermi level. However, it remains unclear whether these singularities are generic to the REFeAsO-type materials and if so, whether their exact topology is responsible for the aforementioned record Tc. In this work, we use angle-resolved photoemission spectroscopy (ARPES) to investigate the inherent electronic structure of the NdFeAsO0.6F0.4 compound with a twice higher Tc = 38 K. We find a similarly singular Fermi surface and further demonstrate that the dramatic enhancement of superconductivity in this compound correlates closely with the fine-tuning of one of the band-edge singularities to within a fraction of the superconducting energy gap Δ below the Fermi level. Our results provide compelling evidence that the band-structure singularities near the Fermi level in the iron-based superconductors must be explicitly accounted for in any attempt to understand the mechanism of superconducting pairing in these materials.

  11. Electronic characteristics of Tl 2Ba 2CuO 6. Fermi surface, positron wavefunction, electric field gradients, and transport parameters

    NASA Astrophysics Data System (ADS)

    Singh, David J.; Pickett, Warren E.

    1992-12-01

    A number of properties identifiable from the electronic bands and one-electron wavefunctions have been obtained from a well converged self-consistent calculation of the electronic structure of Tl 2Ba 2CuO 6. The Fermi surface is found to consist of two sheets: a two-dimensional barrel surface arising from the CuO 2 layer, and a three-dimensional spheroid arising from states with strong TlO character but actually extending throughout all layers of the structure. This feature has important implications for the transport properties, and especially for the degree of anisotropy. We compare with transport data on single crystals of Tl 2Ba 2CuO 6. The calculated Fermi surface of the spheroid is found to be in substantial agreement with the measured period of magnetization oscillations in the de Haas-van Alphen effect by Kido et al. The positron wavefunction engulfs the CuO 2 layers, making this material a promising case for mapping out with positron 2D-ACAR the layer-derived Fermi surface that is believed to be central to high-temperature superconductivity. The electric field gradients are predicted and compared with calculations for other cuprates. The Hall coefficient RHxyz (carrier motion on the a-b plane) is found to be positive and within a factor of 1.5 of that measured on ceramic samples, while the other non-vanishing component of the Hall tensor is predicted to be negative.

  12. First principles study of crystal Si-doped Ge2Sb2Te5

    NASA Astrophysics Data System (ADS)

    Yan, Beibei; Yang, Fei; Chen, Tian; Wang, Minglei; Chang, Hong; Ke, Daoming; Dai, Yuehua

    2017-02-01

    Ge2Sb2Te5 (GST) and Si-doped GST with hexagonal structure were investigated by means of First-principles calcucations. We performed many kinds of doping types and studied the electronic properties of Si-doped GST with various Si concentrations. The theoretical calculations show that the lowest formation energy appeared when Si atoms substitute the Sb atoms (SiSb). With the increasing of Si concentrations from 10% to 30%, the impurity states arise around the Fermi level and the band gap of the SiSb structure broadens. Meanwhile, the doping supercell has the most favorable structure when the doping concentration keeps in 20%. The Si-doped GST exhibits p-type metallic characteristics more distinctly owing to the Fermi level moves toward the valence band. The Te p, d-orbitals electrons have greater impact on electronic properties than that of Te s-orbitals.

  13. Structural, electronic and vibrational properties of few-layer 2H-and 1T-TaSe 2

    DOE PAGES

    Yan, Jia -An; Dela Cruz, Mack A.; Cook, Brandon G.; ...

    2015-11-16

    Two-dimensional metallic transition metal dichalcogenides (TMDs) are of interest for studying phenomena such as charge-density wave (CDW) and superconductivity. Few-layer tantalum diselenides (TaSe 2) are typical metallic TMDs exhibiting rich CDW phase transitions. However, a description of the structural, electronic and vibrational properties for different crystal phases and stacking configurations, essential for interpretation of experiments, is lacking. We present first principles calculations of structural phase energetics, band dispersion near the Fermi level, phonon properties and vibrational modes at the Brillouin zone center for different layer numbers, crystal phases and stacking geometries. Evolution of the Fermi surfaces as well as themore » phonon dispersions as a function of layer number reveals dramatic dimensionality effects in this CDW material. Lastly, our results indicate strong electronic interlayer coupling, detail energetically possible stacking geometries, and provide a basis for interpretation of Raman spectra.« less

  14. Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity

    NASA Astrophysics Data System (ADS)

    Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.

    2016-07-01

    We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.

  15. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crabtree, G.W.; Dye, D.H.; Karim, D.P.

    1987-02-01

    The detailed angular dependence of the Fermi radius k/sub F/, the Fermi velocity v/sub F/(k), the many-body enhancement factor lambda(k), and the superconducting energy gap ..delta..(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas--van Alphen (dHvA) data of Karim, Ketterson, and Crabtree (J. Low Temp. Phys. 30, 389 (1978)), a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained kappa,more » ..cap alpha..', and ..cap alpha..'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor lambda(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of lambda(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap ..delta..(k) is estimated from our results for lambda(k), assuming weak anisotropy.« less

  16. Anisotropy of the Fermi surface, Fermi velocity, many-body enhancement, and superconducting energy gap in Nb

    NASA Astrophysics Data System (ADS)

    Crabtree, G. W.; Dye, D. H.; Karim, D. P.; Campbell, S. A.; Ketterson, J. B.

    1987-02-01

    The detailed angular dependence of the Fermi radius kF, the Fermi velocity vF(k), the many-body enhancement factor λ(k), and the superconducting energy gap Δ(k), for electrons on the Fermi surface of Nb are derived with use of the de Haas-van Alphen (dHvA) data of Karim, Ketterson, and Crabtree [J. Low Temp. Phys. 30, 389 (1978)], a Korringa-Kohn-Rostoker parametrization scheme, and an empirically adjusted band-structure calculation of Koelling. The parametrization is a nonrelativistic five-parameter fit allowing for cubic rather than spherical symmetry inside the muffin-tin spheres. The parametrized Fermi surface gives a detailed interpretation of the previously unexplained κ, α', and α'' orbits in the dHvA data. Comparison of the parametrized Fermi velocities with those of the empirically adjusted band calculation allow the anisotropic many-body enhancement factor λ(k) to be determined. Theoretical calculations of the electron-phonon interaction based on the tight-binding model agree with our derived values of λ(k) much better than those based on the rigid-muffin-tin approximation. The anisotropy in the superconducting energy gap Δ(k) is estimated from our results for λ(k), assuming weak anisotropy.

  17. Observation of two-dimensional Fermi surface and Dirac dispersion in the new material YbMnSb2

    NASA Astrophysics Data System (ADS)

    Kealhofer, Robert; Jang, Sooyoung; Griffin, Sinead; John, Caolan; Doyle, Spencer; Neaton, Jeffrey; Analytis, James G.; Denlinger, J. D.; Benavides, Katherine; Chan, Julia

    We present the synthesis, crystal structure, electronic structure, and transport properties of the new material YbMnSb2. Our measurements reveal that this system is a low-carrier-density semimetal with a 2D Fermi surface arising from a 3D Dirac dispersion. This Fermi surface is consistent with the predictions of antiferromagnetic density functional theory calculations and the Fermi surface observed via angle-resolved photoemission spectroscopy. The quantitative agreement between these measurements and calculations indicates that YbMnSb2 may be a new topological semimetal in the presence of magnetic order. R. K. is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1106400. C. J., J. G. A., and much of this work received support from the Gordon and Betty Moore Foundation Grant No. GBMF4374.

  18. Effect of doping on electronic properties of HgSe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nag, Abhinav, E-mail: abhinavn76@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com

    2016-05-23

    First principle study of electronic properties of pure and doped HgSe have been performed using all electron Full Potential Linearized Augmented Plane Wave (FP-LAPW) method using ELK code. The electronic exchange and co-relations are considered using Generalized Gradient Approach (GGA). Lattice parameter, Density of States (DOS) and Band structure calculations have been performed. The total energy curve (Energy vs Lattice parameter), DOS and band structure calculations are in good agreement with the experimental values and those obtained using other DFT codes. The doped material is studied within the Virtual Crystal Approximation (VCA) with doping levels of 10% to 25% ofmore » electrons (hole) per unit cell. Results predict zero band gap in undopedHgSe and bands meet at Fermi level near the symmetry point Γ. For doped HgSe, we found that by electron (hole) doping, the point where conduction and valence bands meet can be shifted below (above) the fermi level.« less

  19. On the correct implementation of Fermi-Dirac statistics and electron trapping in nonlinear electrostatic plane wave propagation in collisionless plasmas

    NASA Astrophysics Data System (ADS)

    Schamel, Hans; Eliasson, Bengt

    2016-05-01

    Quantum statistics and electron trapping have a decisive influence on the propagation characteristics of coherent stationary electrostatic waves. The description of these strictly nonlinear structures, which are of electron hole type and violate linear Vlasov theory due to the particle trapping at any excitation amplitude, is obtained by a correct reduction of the three-dimensional Fermi-Dirac distribution function to one dimension and by a proper incorporation of trapping. For small but finite amplitudes, the holes become of cnoidal wave type and the electron density is shown to be described by a ϕ ( x ) 1 / 2 rather than a ϕ ( x ) expansion, where ϕ ( x ) is the electrostatic potential. The general coefficients are presented for a degenerate plasma as well as the quantum statistical analogue to these steady state coherent structures, including the shape of ϕ ( x ) and the nonlinear dispersion relation, which describes their phase velocity.

  20. Modulating the band structure and sub-bandgap absorption of Co-hyperdoped silicon by co-doping with shallow-level elements

    NASA Astrophysics Data System (ADS)

    Dong, Xiao; Fang, Xiuxiu; Wang, Yongyong; Song, Xiaohui; Lu, Zhansheng

    2018-06-01

    Hyperdoped group-III elements can lower the Fermi energy in the band structures of Co-hyperdoped silicon. When the Co-to-X (X = B, Al, Ga) ratio is 2:1, the intermediate band (IB) in the bandgap includes the Fermi energy and is partially filled by electrons, which is in accordance with the requirement of an IB material. The hyperdoped X atoms can cause the blueshift of the sub-bandgap absorption of the compound compared with the material with no shallow-level elements, which is due to the enlargement of the electronic excitation energy of the Co,X-co-doped silicon.

  1. Phenomenological view at the two-component physics of cuprates

    NASA Astrophysics Data System (ADS)

    Teitel'baum, G. B.

    2017-08-01

    In the search for mechanisms of high- T c superconductivity it is critical to know the electronic spectrum in the pseudogap phase from which superconductivity evolves. The lack of ARPES data for every cuprate family precludes an agreement as to its structure, doping and temperature dependence and the role of charge ordering. No approach has been developed yet to address the issue theoretically, and we limit ourselves by the phenomenological analysis of the experimental data. We argue that, in the Fermi-liquid-like regime ubiquitous in underdoped cuprates, the spectrum consists of holes on the Fermi arcs and an electronic pocket in contrast to the idea of the Fermi surface reconstruction via charge ordering. At high temperatures, the electrons are dragged by holes while at lower temperatures they get decoupled. The longstanding issue of the origin of the negative Hall coefficient in YBCO and Hg1201 at low temperature is resolved: the electronic contribution prevails, as its mobility becomes temperature independent, while the mobility of holes, scattered by the shortwavelength charge density waves, decreases.

  2. Evolution of the electronic structure of La2-xSrxCuO4 with doping determined by positron-annihilation spectroscopy

    NASA Astrophysics Data System (ADS)

    Howell, R. H.; Sterne, P. A.; Fluss, M. J.; Kaiser, J. H.; Kitazawa, K.; Kojima, H.

    1994-05-01

    We have measured and calculated the electron-positron momentum distribution of La2-xSrxCuO4 samples for Sr concentrations of 0, 0.1, 0.13, and 0.2. Measured distributions were obtained at room temperature with high statistical precision, greater than 4×108 events, in the Lawrence Livermore National Laboratory positron-annihilation angular correlation spectrometer on single-crystal samples fabricated using the traveling solvent floating zone technique. Corresponding theoretical momentum-density calculations were performed using the linear muffin-tin-orbital method. The momentum distribution of all samples contained features derived from the overlap of the positron distribution with the valence electrons. In addition, discontinuities typical of a Fermi surface are seen in the doped samples. The form and position of these features are in general agreement with the Fermi surface and overall momentum distributions as predicted by band theory. However, the evolution of the Fermi surface with doping differed significantly from expectations based on single electron band theories.

  3. Towards a complete Fermi surface in underdoped high Tc superconductors

    NASA Astrophysics Data System (ADS)

    Harrison, Neil

    The discovery of magnetic quantum oscillations in underdoped high Tc superconductors raised many questions, and initiated a quest to understand the origin of the Fermi surface the like of which had not been seen since the very first discovery of quantum oscillations in elemental bismuth. While studies of the Fermi surface of materials are today mostly assisted by computer codes for calculating the electronic band structure, this was not the case in the underdoped high Tc materials. The Fermi surface was shown to reconstructed into small pockets, yet there was no hint of a viable order parameter. Crucial clues to understanding the origin of the Fermi surface were provided by the small value of the observed Fermi surface cross-section, the negative Hall coefficient and the small electronic heat capacity at high magnetic fields. We also know that the magnetic fields were likely to be too weak to destroy the pseudogap and that vortex pinning effects could be seen to persist to high magnetic fields at low temperatures. I will show that the Fermi surface that appears to fit best with the experimental observations is a small electron pocket formed by connecting the nodal `Fermi arcs' seen in photoemission experiments, corresponding to a density-wave state with two different orthogonal ordering vectors. The existence of such order has subsequently been detected by x-ray scattering experiments, thereby strengthening the case for charge ordering being responsible for reconstructing the Fermi surface. I will discuss new efforts to understand the relationship between the charge ordering and the pseudogap state, discussing the fate of the quasiparticles in the antinodal region and the dimensionality of the Fermi surface. The author acknowledges contributions from Suchitra Sebastian, Brad Ramshaw, Mun Chan, Yu-Te Hsu, Mate Hartstein, Gil Lonzarich, Beng Tan, Arkady Shekhter, Fedor Balakirev, Ross McDonald, Jon Betts, Moaz Altarawneh, Zengwei Zhu, Chuck Mielke, James Day, Doug Bonn, Ruixing Liang, Walter Hardy. Supported by BES ``Science of 100 tesla'' program.

  4. Electronic structures and superconductivity in LuTE2Si2 phases (TE = d-electron transition metal)

    NASA Astrophysics Data System (ADS)

    Samsel-Czekała, M.; Chajewski, G.; Wiśniewski, P.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    In the course of our search for unconventional superconductors amidst the 1:2:2 phases, we have re-investigated the LuTE2Si2 compounds with TE = Fe, Co, Ni, Ru, Pd and Pt. In this paper, we present the results of our fully relativistic ab initio calculations of the band structures, performed using the full-potential local-orbital code. The theoretical data are supplemented by the results of low-temperature electrical transport and specific heat measurements performed down to 0.35 K. All the materials studied but LuPt2Si2 crystallize with the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm). Their Fermi surfaces exhibit a three-dimensional multi-band character. In turn, the Pt-bearing compound adopts the primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm), and its Fermi surface consists of predominantly quasi-two-dimensional sheets. Bulk superconductivity was found only in LuPd2Si2 and LuPt2Si2 (independent of the structure type and dimensionality of the Fermi surface). The key superconducting characteristics indicate a fully-gapped BCS type character. Though the electronic structure of LuFe2Si2 closely resembles that of the unconventional superconductor YFe2Ge2, this Lu-based silicide exhibits neither superconductivity nor spin fluctuations at least down to 0.35 K.

  5. Converting topological insulators into topological metals within the tetradymite family

    NASA Astrophysics Data System (ADS)

    Chen, K.-W.; Aryal, N.; Dai, J.; Graf, D.; Zhang, S.; Das, S.; Le Fèvre, P.; Bertran, F.; Yukawa, R.; Horiba, K.; Kumigashira, H.; Frantzeskakis, E.; Fortuna, F.; Balicas, L.; Santander-Syro, A. F.; Manousakis, E.; Baumbach, R. E.

    2018-04-01

    We report the electronic band structures and concomitant Fermi surfaces for a family of exfoliable tetradymite compounds with the formula T2C h2P n , obtained as a modification to the well-known topological insulator binaries Bi2(Se,Te ) 3 by replacing one chalcogen (C h ) with a pnictogen (P n ) and Bi with the tetravalent transition metals T = Ti, Zr, or Hf. This imbalances the electron count and results in layered metals characterized by relatively high carrier mobilities and bulk two-dimensional Fermi surfaces whose topography is well-described by first-principles calculations. Intriguingly, slab electronic structure calculations predict Dirac-like surface states. In contrast to Bi2Se3 , where the surface Dirac bands are at the Γ point, for (Zr,Hf ) 2Te2 (P,As) there are Dirac cones of strong topological character around both the Γ ¯ and M ¯ points, which are above and below the Fermi energy, respectively. For Ti2Te2P , the surface state is predicted to exist only around the M ¯ point. In agreement with these predictions, the surface states that are located below the Fermi energy are observed by angle-resolved photoemission spectroscopy measurements, revealing that they coexist with the bulk metallic state. Thus this family of materials provides a foundation upon which to develop novel phenomena that exploit both the bulk and surface states (e.g., topological superconductivity).

  6. Support effects in single atom iron catalysts on adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S)

    NASA Astrophysics Data System (ADS)

    Gao, Zhengyang; Yang, Weijie; Ding, Xunlei; Lv, Gang; Yan, Weiping

    2018-04-01

    The effects of support on gas adsorption is crucial for single atom catalysts design and optimization. To gain insight into support effects on gas adsorption characteristics, a comprehensive theoretical study was performed to investigate the adsorption characteristics of toxic gases (NO2, NH3, SO3 and H2S) by utilizing single atom iron catalysts with three graphene-based supports. The adsorption geometry, adsorption energy, electronic and magnetic properties of the adsorption system have been explored. Additionally, the support effects have been analyzed through d-band center and Fermi softness, and thermodynamic analysis has been performed to consider the effect of temperature on gas adsorption. The support effects have a remarkable influence on the adsorption characteristics of four types of toxic gases which is determined by the electronic structure of graphene-based support, and the electronic structure can be characterized by Fermi softness of catalysts. Fermi softness and uplift height of Fe atom could be good descriptors for the adsorption activity of single atom iron catalysts with graphene-based supports. The findings can lay a foundation for the further study of graphene-based support effects in single atom catalysts and provide a guideline for development and design of new graphene-based support materials utilizing the idea of Fermi softness.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koryazhkina, M. N., E-mail: mahavenok@mail.ru; Tikhov, S. V.; Gorshkov, O. N.

    It is shown that the formation of Au nanoparticles at the insulator–silicon interface in structures with a high density of surface states results in a shift of the Fermi-level pinning energy at this interface towards the valence-band ceiling in silicon and in increasing the surface-state density at energies close to the Fermi level. In this case, a band with a peak at 0.85 eV arises on the photosensivity curves of the capacitor photovoltage, which is explained by the photoemission of electrons from the formed Au-nanoparticle electron states near the valence-band ceiling in silicon.

  8. Probing the Fermi surface and magnetotransport properties of MoAs2

    NASA Astrophysics Data System (ADS)

    Singha, Ratnadwip; Pariari, Arnab; Gupta, Gaurav Kumar; Das, Tanmoy; Mandal, Prabhat

    2018-04-01

    Transition-metal dipnictides (TMDs) have recently been identified as possible candidates to host a topology-protected electronic band structure. These materials belong to an isostructural family and show several exotic transport properties. Especially, the large values of magnetoresistance (MR) and carrier mobility have drawn significant attention from the perspective of technological applications. In this paper, we investigate the magnetotransport and Fermi surface properties of single-crystalline MoAs2, another member of this group of compounds. A field-induced resistivity plateau and a large MR have been observed, which are comparable to those in several topological systems. Interestingly, in contrast to other isostructural materials, the carrier density in MoAs2 is quite high and shows single-band-dominated transport. The Fermi pockets, which have been identified from the quantum oscillation, are the largest among the members of this group and have significant anisotropy with crystallographic direction. Our first-principles calculations reveal a substantial difference between the band structures of MoAs2 and that of other TMDs. The calculated Fermi surface consists of one electron pocket and another "open-orbit" hole pocket, which has not been observed in TMDs so far.

  9. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  10. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    DOE PAGES

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; ...

    2018-01-31

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7p electronic shell becomes so large (~10 eV) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. Finally, this effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  11. Electron and Nucleon Localization Functions of Oganesson: Approaching the Thomas-Fermi Limit

    NASA Astrophysics Data System (ADS)

    Jerabek, Paul; Schuetrumpf, Bastian; Schwerdtfeger, Peter; Nazarewicz, Witold

    2018-02-01

    Fermion localization functions are used to discuss electronic and nucleonic shell structure effects in the superheavy element oganesson, the heaviest element discovered to date. Spin-orbit splitting in the 7 p electronic shell becomes so large (˜10 eV ) that Og is expected to show uniform-gas-like behavior in the valence region with a rather large dipole polarizability compared to the lighter rare gas elements. The nucleon localization in Og is also predicted to undergo a transition to the Thomas-Fermi gas behavior in the valence region. This effect, particularly strong for neutrons, is due to the high density of single-particle orbitals.

  12. Electronic structure and electron-phonon coupling in TiH$$_2$$

    DOE PAGES

    Shanavas, Kavungal Veedu; Lindsay, Lucas R.; Parker, David S.

    2016-06-15

    Calculations using first principles methods and strong coupling theory are carried out to understand the electronic structure and superconductivity in cubic and tetragonal TiHmore » $$_2$$. A large electronic density of states at the Fermi level in the cubic phase arises from Ti-$$t_{2g}$$ states and leads to a structural instability against tetragonal distortion at low temperatures. However, constraining the in-plane lattice constants diminishes the energy gain associated with the tetragonal distortion, allowing the cubic phase to be stable at low temperatures. Furthermore, calculated phonon dispersions show decoupled acoustic and optic modes arising from Ti and H vibrations, respectively and frequencies of optic modes to be rather high. The cubic phase has a large electron-phonon coupling parameter $$\\lambda$$ and critical temperature of several K. Contribution of the hydrogen sublattice to $$\\lambda$$ is found to be small in this material, which we understand from strong coupling theory to be due to the small H-$s$ DOS at the Fermi level and high energy of hydrogen modes at the tetrahedral sites.« less

  13. The electronic structure of Au25 clusters: between discrete and continuous.

    PubMed

    Katsiev, Khabiboulakh; Lozova, Nataliya; Wang, Lu; Sai Krishna, Katla; Li, Ruipeng; Mei, Wai-Ning; Skrabalak, Sara E; Kumar, Challa S S R; Losovyj, Yaroslav

    2016-08-21

    Here, an approach based on synchrotron resonant photoemission is employed to explore the transition between quantization and hybridization of the electronic structure in atomically precise ligand-stabilized nanoparticles. While the presence of ligands maintains quantization in Au25 clusters, their removal renders increased hybridization of the electronic states in the vicinity of the Fermi level. These observations are supported by DFT studies.

  14. Fermi surfaces and electronic topological transitions in metallic solid solutions

    NASA Astrophysics Data System (ADS)

    Bruno, E.; Ginatempo, B.; Guiliano, E. S.; Ruban, A. V.; Vekilov, Yu. Kh.

    1994-12-01

    Notwithstanding the substitutional disorder, the Fermi surface of metallic alloys can be measured and computed. We show that, from the theoretical point of view, it is defined as the locus of the peaks of the Bloch Spectral Function (BSF). Such Fermi surfaces, on varying the atomic concentrations, may undergo changes of their topology, known as Electronic Topological Transitions (ETT). Thus, for instance, pockets of electrons or holes may appear or disappear, necks may open or close. ETTs cause anomalous behaviours of thermodynamic, transport and elastic properties of metals and constitute a fascinating field in the study of Fermi liquid systems. Although ETTs could be studied on pure systems as a function of the thermodynamic variables, nevertheless such a study would often require extreme conditions, and would lead to experimental difficulties. On the other hand, it is possible to explore the variations of atomic concentration, i.e. the valence electron per atom ratio, in metallic solid solutions with a relative experimental ease. In this paper we review the theoretical techniques for the determination of Fermi surfaces in metallic solid solutions and discuss some examples of ETTs, namely LiMg, ZrNb, NbMo, MoRe, AgPd, CdMg, NiW and NiTi alloys, also in connection with experimental data as thermoelectric power, resistivity, elastic constants and electron-phonon coupling and with the determinations of the electron momentum distribution function from Compton scattering and positron annihilation experiments. We show that the ab initio calculations of the electronic structure for the quoted systems, together with a careful determination of the BSF, are able to predict quantitatively ETTs at those concentrations where physical quantities display anomalies, so confirming directly ETT theory. Although it is not the purpose of the present review to give a full account of electronic structure calculation schemes, however, we briefly discuss the ideas and the main physical approximations underlying theories of substitutional disorder in alloys. We shall pay some more attention to the Coherent Potential Approximation (CPA) in the Korringa-Kohn-Rostoker (KKR) multiple scattering framework and the Hohenberg and Kohn Density Functional Theory in the Local Density Approximation (LDA) for the exchange-correlation potential. The above choice is supported by the numerical versatility of the LDAKKRCPA theory, and, more important, by the a fortiori evidence that essentially equivalent results are obtained from different theoretical frameworks, provided the same basic physical approximations are used. Accordingly, when convenient, we present new LDAKKRCPA determinations of the Fermi surfaces, as for the ZrNbMoRe series.

  15. Structural phase transition and 5f-electrons localization of PuSe explored by ab initio calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui Shouxin, E-mail: shouxincui@yahoo.co; Feng Wenxia; Hu Haiquan

    2010-04-15

    An investigation into the structural phase transformation, electronic and optical properties of PuSe under high pressure was conducted by using the full potential linearized augmented plane wave plus local orbitals (FP-LAPW+lo) method, in the presence and in the absence of spin-orbit coupling (SOC). Our results demonstrate that there exists a structural phase transition from rocksalt (B 1) structure to CsCl-type (B 2) structure at the transition pressure of 36.3 GPa (without SOC) and 51.3 GPa (with SOC). The electronic density of states (DOS) for PuSe show that the f-electrons of Pu are more localized and concentrated in a narrow peakmore » near the Fermi level, which is consistent with the experimental studies. The band structure shows that B 1-PuSe is metallic. A pseudogap appears around the Fermi level of the total density of states of B 1 phase PuSe, which may contribute to its stability. The calculated reflectivity R(omega) shows agreement with the available experimental results. Furthermore, the absorption spectrum, refractive index, extinction coefficient, energy-loss spectrum and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. - Abstract: Graphical Abstract Legend (TOC Figure): 5f-electrons are more localized by the analysis of the density of states (SOC). The origin spectra peaks was interpreted based on electronic structures.« less

  16. Common electronic origin of superconductivity in (Li,Fe)OHFeSe bulk superconductor and single-layer FeSe/SrTiO3 films

    PubMed Central

    Zhao, Lin; Liang, Aiji; Yuan, Dongna; Hu, Yong; Liu, Defa; Huang, Jianwei; He, Shaolong; Shen, Bing; Xu, Yu; Liu, Xu; Yu, Li; Liu, Guodong; Zhou, Huaxue; Huang, Yulong; Dong, Xiaoli; Zhou, Fang; Liu, Kai; Lu, Zhongyi; Zhao, Zhongxian; Chen, Chuangtian; Xu, Zuyan; Zhou, X. J.

    2016-01-01

    The mechanism of high-temperature superconductivity in the iron-based superconductors remains an outstanding issue in condensed matter physics. The electronic structure plays an essential role in dictating superconductivity. Recent revelation of distinct electronic structure and high-temperature superconductivity in the single-layer FeSe/SrTiO3 films provides key information on the role of Fermi surface topology and interface in inducing or enhancing superconductivity. Here we report high-resolution angle-resolved photoemission measurements on the electronic structure and superconducting gap of an FeSe-based superconductor, (Li0.84Fe0.16)OHFe0.98Se, with a Tc at 41 K. We find that this single-phase bulk superconductor shows remarkably similar electronic behaviours to that of the superconducting single-layer FeSe/SrTiO3 films in terms of Fermi surface topology, band structure and the gap symmetry. These observations provide new insights in understanding high-temperature superconductivity in the single-layer FeSe/SrTiO3 films and the mechanism of superconductivity in the bulk iron-based superconductors. PMID:26853801

  17. Interface electronic structures of reversible double-docking self-assembled monolayers on an Au(111) surface

    PubMed Central

    Zhang, Tian; Ma, Zhongyun; Wang, Linjun; Xi, Jinyang; Shuai, Zhigang

    2014-01-01

    Double-docking self-assembled monolayers (DDSAMs), namely self-assembled monolayers (SAMs) formed by molecules possessing two docking groups, provide great flexibility to tune the work function of metal electrodes and the tunnelling barrier between metal electrodes and the SAMs, and thus offer promising applications in both organic and molecular electronics. Based on the dispersion-corrected density functional theory (DFT) in comparison with conventional DFT, we carry out a systematic investigation on the dual configurations of a series of DDSAMs on an Au(111) surface. Through analysing the interface electronic structures, we obtain the relationship between single molecular properties and the SAM-induced work-function modification as well as the level alignment between the metal Fermi level and molecular frontier states. The two possible conformations of one type of DDSAM on a metal surface reveal a strong difference in the work-function modification and the electron/hole tunnelling barriers. Fermi-level pinning is found to be a key factor to understand the interface electronic properties. PMID:24615153

  18. Electronic properties of graphene and effect of doping on the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nag, Abhinav, E-mail: abhinavn76@gmail.com; Kumar, Jagdish, E-mail: jagdishphysicist@gmail.com; Sastri, O. S. K. S., E-mail: sastri.osks@gmail.com

    2015-05-15

    The electronic structure of pure and doped two dimensional crystalline material graphene have been computed and analyzed. Density functional theory has been employed to perform calculations. The electronic exchange and correlations are considered using local density approximation (LDA). The doped material is studied within virtual crystal approximation (VCA) upto 0.15e excess as well as deficient charge per unit cell. Full Potential Linear Augmented Plane Wave basis as implemented in ELK code has been used to perform the calculations. To ensures the monolayer of graphene, distance after which energy is almost constant when interlayer seperation is varied, is taken as separatingmore » distance between the layers. The obtained density of states and band structure is analyzed. Results show that there is zero band gap in undoped graphene and conduction and valence band meets at fermi level at symmetry point K. PDOS graph shows that near the fermi level the main contribution is due to 2p{sub z} electrons. By using VCA, calculations for doped graphene are done and the results for doped graphene are compared with undoped graphene. We found that by electron or hole doping, the point where conduction and valence bands meet can shift below or above the fermi level. The shift in bands seems almost as per rigid band model upto doping concentration studied.« less

  19. Shift of semimetal-semiconductor bond direction on “0 1 1” to “1 1 1” Bismuth quazi-two-dimension system

    NASA Astrophysics Data System (ADS)

    Yazdani, Ahmad; Hamreh, Sajad

    2018-03-01

    The electronic structure of the nanocrystallines and quasi-two-dimensional systems strongly impressed by the thermodynamic- behavior mainly due to excess of hidden surface free energy. Therefore, the stability of crystalline structure’s change could be related to band-offset of bond rupturing of atomic displacements. whereas for the electronic-structure of "Bi" it seams the competition of L.S and bond exchange should be effectively dominated. Besides all of the characters behave spatial like strong sensitive oxidation here it is supposed that strong correlated electronic structure in the absence of oxygen is resulted on direction of redistribution of surface chemical bond formation before any reconstructive structure. Where • The metallic direction of electronic structure “0 1 1” is changed to “1 1 1” semiconductor direction. • the effect of L.S is more evident on the local density of state while it is not observable around the fermi level. • Strong effect of spin-orbit interaction on splitting of the valance to nearly conduction band around the fermi level is more evident.

  20. Interacting Electrons in Graphene: Fermi Velocity Renormalization and Optical Response

    NASA Astrophysics Data System (ADS)

    Stauber, T.; Parida, P.; Trushin, M.; Ulybyshev, M. V.; Boyda, D. L.; Schliemann, J.

    2017-06-01

    We have developed a Hartree-Fock theory for electrons on a honeycomb lattice aiming to solve a long-standing problem of the Fermi velocity renormalization in graphene. Our model employs no fitting parameters (like an unknown band cutoff) but relies on a topological invariant (crystal structure function) that makes the Hartree-Fock sublattice spinor independent of the electron-electron interaction. Agreement with the experimental data is obtained assuming static self-screening including local field effects. As an application of the model, we derive an explicit expression for the optical conductivity and discuss the renormalization of the Drude weight. The optical conductivity is also obtained via precise quantum Monte Carlo calculations which compares well to our mean-field approach.

  1. Fermi orbital self-interaction corrected electronic structure of molecules beyond local density approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, T., E-mail: torsten.hahn@physik.tu-freiberg.de; Liebing, S.; Kortus, J.

    2015-12-14

    The correction of the self-interaction error that is inherent to all standard density functional theory calculations is an object of increasing interest. In this article, we apply the very recently developed Fermi-orbital based approach for the self-interaction correction [M. R. Pederson et al., J. Chem. Phys. 140, 121103 (2014) and M. R. Pederson, J. Chem. Phys. 142, 064112 (2015)] to a set of different molecular systems. Our study covers systems ranging from simple diatomic to large organic molecules. We focus our analysis on the direct estimation of the ionization potential from orbital eigenvalues. Further, we show that the Fermi orbitalmore » positions in structurally similar molecules appear to be transferable.« less

  2. Propagation and head-on collisions of ion-acoustic solitons in a Thomas-Fermi magnetoplasma: Relativistic degeneracy effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    Small amplitude propagation and quasielastic head-on collision of ion-acoustic solitary waves (IASWs) are investigated in a degenerate Thomas-Fermi electron-positron-ion magnetized plasma using extended Poincare-Lighthill-Kuo reductive perturbation method for both ultrarelativistic and nonrelativistic electron/positron degeneracy cases. It is observed that both bright- and dark-type solitary shapes can exist in such plasma, depending on two critical values. The shape of ion-acoustic solitary structures as well as sign of their collision phase shifts are both determined by the same critical values. It is further revealed that relativistic degeneracy of electrons/positrons has significant effect on the propagation as well as interaction of IASWs.

  3. Dramatic changes in the electronic structure upon transition to the collapsed tetragonal phase in CaFe 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhaka, R. S.; Jiang, Rui; Ran, S.

    2014-01-31

    We use angle-resolved photoemission spectroscopy and density functional theory calculations to study the electronic structure of CaFe 2As 2 in the collapsed tetragonal (CT) phase. This unusual phase of iron arsenic high-temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the postgrowth thermal treatment of single crystals, we were able to stabilize the CT phase at ambient pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks belowmore » the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase, along with an apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Haoxiang; Zhou, Xiaoqing; Nummy, Thomas

    Layered nickelates have the potential for exotic physics similar to high T C superconducting cuprates as they have similar crystal structures and these transition metals are neighbors in the periodic table. Here we present an angle-resolved photoemission spectroscopy (ARPES) study of the trilayer nickelate La 4Ni 3O 10 revealing its electronic structure and correlations, finding strong resemblances to the cuprates as well as a few key differences. We find a large hole Fermi surface that closely resembles the Fermi surface of optimally hole-doped cuprates, including its d x2-y2 orbital character, hole filling level, and strength of electronic correlations. However, inmore » contrast to cuprates, La 4Ni 3O 10 has no pseudogap in the d x2-y2 band, while it has an extra band of principally d 3z2-r2 orbital character, which presents a low temperature energy gap. Furthermore, these aspects drive the nickelate physics, with the differences from the cuprate electronic structure potentially shedding light on the origin of superconductivity in the cuprates.« less

  5. Fermiology and electron dynamics of trilayer nickelate La 4Ni 3O 10

    DOE PAGES

    Li, Haoxiang; Zhou, Xiaoqing; Nummy, Thomas; ...

    2017-09-26

    Layered nickelates have the potential for exotic physics similar to high T C superconducting cuprates as they have similar crystal structures and these transition metals are neighbors in the periodic table. Here we present an angle-resolved photoemission spectroscopy (ARPES) study of the trilayer nickelate La 4Ni 3O 10 revealing its electronic structure and correlations, finding strong resemblances to the cuprates as well as a few key differences. We find a large hole Fermi surface that closely resembles the Fermi surface of optimally hole-doped cuprates, including its d x2-y2 orbital character, hole filling level, and strength of electronic correlations. However, inmore » contrast to cuprates, La 4Ni 3O 10 has no pseudogap in the d x2-y2 band, while it has an extra band of principally d 3z2-r2 orbital character, which presents a low temperature energy gap. Furthermore, these aspects drive the nickelate physics, with the differences from the cuprate electronic structure potentially shedding light on the origin of superconductivity in the cuprates.« less

  6. Effect of electron-phonon coupling on energy and density of states renormalizations of dynamically screened graphene

    NASA Astrophysics Data System (ADS)

    Leblanc, J. P. F.; Carbotte, J. P.; Nicol, E. J.

    2012-02-01

    Motivated by recent tunneling and angle-resolved photoemission (ARPES) work [1,2], we explore the combined effect of electron-electron and electron-phonon couplings on the renormalized energy dispersion, the spectral function, and the density of states of doped graphene. We find that the plasmarons seen in ARPES are also observable in the density of states and appear as structures with quadratic dependence on energy about the minima. Further, we illustrate how knowledge of the slopes of both the density of states and the renormalized dispersion near the Fermi level can allow for the separation of momentum and frequency dependent renormalizations to the Fermi velocity. This analysis should allow for the isolation of the renormalization due to the electron-phonon interaction from that of the electron-electron interaction. [4pt] [1] Brar et al. Phys. Rev. Lett. 104, 036805 (2010) [2] Bostwick et al. Science 328, p.999 (2010)

  7. Electronic structure and magneto-optical effects in CeSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liechtenstein, A.I.; Antropov, V.P.; Harmon, B.N.

    1994-04-15

    The electronic structure and magneto-optical spectra of CeSb have been calculated using the self-consistent local-density approximation with explicit on-site Coulomb parameters for the correlated [ital f] state of cerium. The essential electronic structure of cerium antimonide consists of one occupied [ital f] band, predominantly with orbital [ital m]=[minus]3 character and spin [sigma]=1 located 2 eV below the Fermi level and interacting with broad Sb [ital p] bands crossing [ital E][sub [ital F

  8. Photoemission and muon spin relaxation spectroscopy of the iron-based Rb0.77Fe1.61Se2 superconductor: Crucial role of the cigar-shaped Fermi surface

    NASA Astrophysics Data System (ADS)

    Maletz, J.; Zabolotnyy, V. B.; Evtushinsky, D. V.; Yaresko, A. N.; Kordyuk, A. A.; Shermadini, Z.; Luetkens, H.; Sedlak, K.; Khasanov, R.; Amato, A.; Krzton-Maziopa, A.; Conder, K.; Pomjakushina, E.; Klauss, H.-H.; Rienks, E. D. L.; Büchner, B.; Borisenko, S. V.

    2013-10-01

    In this study, we investigate the electronic and magnetic properties of Rb0.77Fe1.61Se2 (Tc = 32.6 K) in normal and superconducting states by means of photoemission and μSR spectroscopies as well as band-structure calculations. We demonstrate that the unusual behavior of these materials is the result of separation into metallic (˜12%) and insulating (˜88%) phases. Only the former becomes superconducting and has a usual electronic structure of electron-doped FeSe slabs. Our results thus imply that the antiferromagnetic insulating phase is just a by-product of Rb intercalation and its magnetic properties have no direct relation to the superconductivity. Instead, we find that also in this class of iron-based compounds, the key ingredient for superconductivity is a certain proximity of a Van Hove singularity to the Fermi level.

  9. Studies on electronic structure of interfaces between Ag and gelatin for stabilization of Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Tani, Tadaaki; Uchida, Takayuki

    2015-06-01

    Extremely high stability of Ag nanoparticles in photographic materials has forced us to study the electronic structures of the interfaces between thin layers of Ag, Au, and Pt and their surface membranes in ambient atmosphere by photoelectron yield spectroscopy in air and Kelvin probe method. Owing to the Fermi level equalization between a metal layer and a membrane coming from air, the electron transfer took place from the membrane to Pt and Au layers and from an Ag layer to the membrane, giving the reason for poor stability of Ag nanoparticles in air. The control of the Fermi level of an Ag layer with respect to that of a gelatin membrane in air could be widely made according to Nernst’s equation by changing the pH and pAg values of an aqueous gelatin solution used to form the membrane, and thus available to stabilize Ag nanoparticles in a gelatin matrix.

  10. Role of 5f electrons in the structural stability of light actinide (Th-U) mononitrides under pressure.

    PubMed

    Modak, P; Verma, Ashok K

    2016-03-28

    Pressure induced structural sequences and their mechanism for light actinide (Th-U) mononitrides were studied as a function of 5f-electron number using first-principles total energy and electronic structure calculations. Zero pressure lattice constants, bulk module and C11 elastic module vary systematically with 5f-electron number implying its direct role on crystal binding. There is a critical 5f-electron number below which the system makes B1-B2 and above it B1-R3̄m-B2 structural sequence under pressure. Also, the B1-B2 transition pressure increases with increasing 5f-electron number whereas an opposite trend is obtained for the B1-R3̄m transition pressure. The ascending of N p anti-bonding states through the Fermi level at high pressure is responsible for the structural instability of the system. Above the critical 5f-electron number in the system a narrow 5f-band occurs very close to the Fermi level which allows the system to lower its symmetry via band Jahn-Teller type lattice distortion and the system undergoes a B1-R3̄m phase transition. However, below the critical 5f-electron number this mechanism is not favorable due to a lack of sufficient 5f-state occupancy and thus the system undergoes a B1-B2 phase transition like other ionic solids.

  11. Trigonal warping induced unusual spin texture and strong spin polarization in graphene with the Rashba effect

    NASA Astrophysics Data System (ADS)

    Ma, Da-Shuai; Yu, Zhi-Ming; Pan, Hui; Yao, Yugui

    2018-02-01

    We study the electronic and scattering properties of graphene with moderate Rashba spin-orbit coupling (SOC). The Rashba SOC in graphene tends to distort the band structure and gives rise to a trigonally warped Fermi surface. For electrons at a pronouncedly warped Fermi surface, the spin direction exhibits a staircase profile as a function of the momentum, making an unusual spin texture. We also study the spin-resolved scattering on a Rashba barrier and find that the trigonal warping is essential for producing spin polarization of the transmitted current. Particularly, both the direction and strength of the spin polarization can be controlled by kinds of electric methods. Our work unveils that not only SOC but also the geometry of the Fermi surface is important for generating spin polarization.

  12. Enhanced superconductivity in the high pressure phase of SnAs studied from first principles

    NASA Astrophysics Data System (ADS)

    Sreenivasa Reddy, P. V.; Kanchana, V.; Millichamp, T. E.; Vaitheeswaran, G.; Dugdale, S. B.

    2017-01-01

    First principles calculations are performed using density functional theory and density functional perturbation theory for SnAs. Total energy calculations show the first order phase transition from an NaCl structure to a CsCl one at around 37 GPa, which is also confirmed from enthalpy calculations and agrees well with experimental work. Calculations of the phonon structure and hence the electron-phonon coupling, λep, and superconducting transition temperature, Tc, across the phase diagram are performed. These calculations give an ambient pressure Tc, in the NaCl structure, of 3.08 K, in good agreement with experiment whilst at the transition pressure, in the CsCl structure, a drastically increased value of Tc = 12.2 K is found. Calculations also show a dramatic increase in the electronic density of states at this pressure. The lowest energy acoustic phonon branch in each structure also demonstrates some softening effects. Electronic structure calculations of the Fermi surface in both phases are presented for the first time as well as further calculations of the generalised susceptibility with the inclusion of matrix elements. These calculations indicate that the softening is not derived from Fermi surface nesting and it is concluded to be due to a wavevector-dependent enhancement of the electron-phonon coupling.

  13. Electron heating and acceleration during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Dahlin, Joel

    2017-10-01

    Magnetic reconnection is thought to be an important driver of energetic particles in a variety of astrophysical phenomena such as solar flares and magnetospheric storms. However, the observed fraction of energy imparted to a nonthermal component can vary widely in different regimes. We use kinetic particle-in-cell (PIC) simulations to demonstrate the important role of the non-reversing (guide) field in controlling the efficiency of electron acceleration in collisionless reconnection. In reconnection where the guide field is smaller than the reconnecting component, the dominant electron accelerator is a Fermi-type mechanism that preferentially energizes the most energetic particles. In strong guide field reconnection, the field-line contraction that drives the Fermi mechanism becomes weak. Instead, parallel electric fields are primarily responsible for driving electron heating but are ineffective in driving the energetic component of the spectrum. Three-dimensional simulations reveal that the stochastic magnetic field that develops during 3D guide field reconnection plays a vital role in particle acceleration and transport. The reconnection outflows that drive Fermi acceleration also expel accelerating particles from energization regions. In 2D reconnection, electrons are trapped in island cores and acceleration ceases, whereas in 3D the stochastic magnetic field enables energetic electrons to leak out of islands and freely sample regions of energy release. A finite guide field is required to break initial 2D symmetry and facilitate escape from island structures. We show that reconnection with a guide field comparable to the reconnecting field generates the greatest number of energetic electrons, a regime where both (a) the Fermi mechanism is an efficient driver and (b) energetic electrons may freely access acceleration sites. These results have important implications for electron acceleration in solar flares and reconnection-driven dissipation in turbulence.

  14. Theoretical study of the noble metals on semiconductor surfaces and Ti-base shape memory alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Yungui

    1994-07-27

    The electronic and structural properties of the (√3 x√3) R30° Ag/Si(111) and (√3 x √3) R30° Au/Si(111) surfaces are investigated using first principles total energy calculations. We have tested almost all experimentally proposed structural models for both surfaces and found the energetically most favorable model for each of them. The lowest energy model structure of the (√3 x √3) R30° Ag/Si(111) surface consists of a top layer of Ag atoms arranged as ``honeycomb-chained-trimers`` lying above a distorted ``missing top layer`` Si(111) substrate. The coverage of Ag is 1 monolayer (ML). We find that the honeycomb structure observed in STM imagesmore » arise from the electronic charge densities of an empty surface band near the Fermi level. The electronic density of states of this model gives a ``pseudo-gap`` around the Fermi level, which is consistent with experimental results. The lowest energy model for the (√3 x √3) R30° Au/Si(111) surface is a conjugate honeycomb-chained-trimer (CHCT-1) configuration which consists of a top layer of trimers formed by 1 ML Au atoms lying above a ``missing top layer`` Si(111) substrate with a honeycomb-chained-trimer structure for its first layer. The structures of Au and Ag are in fact quite similar and belong to the same class of structural models. However, small variation in the structural details gives rise to quite different observed STM images, as revealed in the theoretical calculations. The electronic charge density from bands around the Fermi level for the (√3 x √3) R30°, Au/Si(111) surface also gives a good description of the images observed in STM experiments. First principles calculations are performed to study the electronic and structural properties of a series of Ti-base binary alloys TiFe, TiNi, TiPd, TiMo, and TiAu in the B2 structure.« less

  15. Fractionalized Fermi liquids and exotic superconductivity in the Kitaev-Kondo lattice

    NASA Astrophysics Data System (ADS)

    Seifert, Urban F. P.; Meng, Tobias; Vojta, Matthias

    2018-02-01

    Fractionalized Fermi liquids (FL*) have been introduced as non-Fermi-liquid metallic phases, characterized by coexisting electron-like charge carriers and local moments which form a fractionalized spin liquid. Here we investigate a Kondo lattice model on the honeycomb lattice with Kitaev interactions among the local moments, a concrete model hosting FL* phases based on Kitaev's Z2 spin liquid. We characterize the FL* phases via perturbation theory, and we employ a Majorana-fermion mean-field theory to map out the full phase diagram. Most remarkably we find nematic triplet superconducting phases which mask the quantum phase transition between fractionalized and conventional Fermi liquid phases. Their pairing structure is inherited from the Kitaev spin liquid; i.e., superconductivity is driven by Majorana glue.

  16. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.

    PubMed

    Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2012-07-03

    The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.

  17. Electronic structure and magnetic properties of quaternary Heusler alloy Co2CrGa1-xGex (x=0-1)

    NASA Astrophysics Data System (ADS)

    Seema, K.; Kumar, Ranjan

    2015-03-01

    The electronic structure of Co-based quaternary Heusler compounds Co2CrGa1-xGex (x=0.00, 0.25, 0.50, 0.75, 1.00) are calculated by first-principles density functional theory. The substitution of Ga by Ge leads to increase in the number of valence electrons. With increasing concentration of Ge, lattice constant decreases linearly whereas bulk modulus and total magnetic moment increases. This shows that the magnetic properties of the compound are dependent on electron concentration of main group element. The calculations show that the alloys with x=0.00, 0.25, 0.50 are not true half-metallic materials whereas alloy with x=0.75, 1.00 exhibit 100% spin polarization at the Fermi level. It shows that the Fermi level can be shifted within the energy-gap to achieve 100% spin polarization. The effect of volumetric and tetragonal strain on magnetic properties is also studied.

  18. Ab initio density functional theory investigation of structural and electronic properties of double-walled silicon carbide nanotubes

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-12-01

    By using ab initio density functional theory, the structural and electronic properties of (n,n)@(11,11) double-walled silicon carbide nanotubes (SiCNTs) are investigated. Our calculations reveal the existence of an energetically favorable double-walled nanotube whose interwall distance is about 4.3 Å. Interwall spacing and curvature difference are found to be essential for the electronic states around the Fermi level.

  19. Electronic structure of scandium-doped MgB2

    NASA Astrophysics Data System (ADS)

    de La Peña, Omar; Agrestini, Stefano

    2005-03-01

    Recently has been reported the synthesis of a new superconducting alloy based on MgB2, where Mg is partially substituted with Sc. In order to analyze the effect of Sc doping on the structural and superconducting properties of Mg1-xScxB2, we have performed a detailed study of the electronic structure for this new diboride. The calculations have been done using the first-principles LAPW method, within the supercell approach for modeling the doping. In this work we report results for the electronic band structure, Fermi surface, and density of states. The effect of the Sc-d orbitals on the structural and electronic properties of Mg1-xScxB2 is analyzed. Increasing the Sc concentration (x) the σ-band is gradually filled, because Sc have one valence electron more than Mg. Interestingly, the analysis of the band structure shows that even for ScB2 the top of the σ-band remain above the Fermi level, nevertheless the σ-band presents high dispersion and has an important contribution of d states. In this way, in addition to the band filling effect, Sc doping gradually reduces the two-dimensional character of the σ- band in Mg1-xScxB2 as a result of increasing the sp(B)-d(Sc) hybridization. This research was partially supported by Consejo Nacional de Ciencia y Tecnolog'ia (CONACYT, M'exico) under Grant. No. 43830-F

  20. Ab initio study on rare-earth iron-pnictides RFeAsO (R = Pr, Nd, Sm, Gd) in low-temperature Cmma phase

    NASA Astrophysics Data System (ADS)

    Eryigit, Resul; Gurel, Tanju; Erturk, Esra; Lukoyanov, A. V.; Akcay, Guven; Anisimov, V. I.

    2014-03-01

    We present density functional theory calculations on iron-based pnictides RFeAsO (R = Pr, Nd, Sm, Gd). The calculations have been carried out using plane-waves and projector augmented wave (PAW) pseudopotential approach. Structural, magnetic and electronic properties are studied within generalized gradient approximation (GGA) and also within GGA+U in order to investigate the influence of electron correlation effects. Low-temperature Cmma structure is fully optimized by GGA considering both non-magnetic and magnetic cells. We have found that spin-polarized structure improves the agreement with experiments on equilibrium lattice parameters, particularly c lattice parameter and Fe-As bond-lengths. Electronic band structure, total density of states, and spin-dependent orbital-resolved density of states are also analyzed in the frameworks of GGA and GGA+U and discussed. For all materials, by including on-site Coulomb correction, rare earth 4f states move away from the Fermi level and the Fermi level features of the systems are found to be mostly defined by the 3d electron-electron correlations in Fe. This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK Project No. TBAG-111T796) and the Russian Foundation for Basic Research (Project No. 12-02-91371-CT_a).

  1. Superconductivity in YTE2Ge2 compounds (TE = d-electron transition metal)

    NASA Astrophysics Data System (ADS)

    Chajewski, G.; Samsel-Czekała, M.; Hackemer, A.; Wiśniewski, P.; Pikul, A. P.; Kaczorowski, D.

    2018-05-01

    Polycrystalline samples of YTE2Ge2 with TE = Co, Ni, Ru, Rh, Pd and Pt were synthesized and characterized by means of X-ray powder diffraction and low-temperature electrical resistivity and specific heat measurements, supplemented by fully relativistic full-potential local-orbital band structure calculations. We confirm that most of the compounds studied crystallize in a body-centered tetragonal ThCr2S2 -type structure (space group I 4 / mmm) and have three-dimensional Fermi surfaces, while only one of them (YPt2Ge2) forms with a primitive tetragonal CaBe2Ge2 -type unit cell (space group P 4 / nmm) and possesses quasi-two-dimensional Fermi surface sheets with some nesting. Physical properties data show conventional superconductivity in the phases with TE = Co, Pd and Pt, i.e. independently of the structure type (and hence the dimensionality of the Fermi surface).

  2. The structural, electronic and optical properties of Nd doped ZnO using first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wen, Jun-Qing; Zhang, Jian-Min; Chen, Guo-Xiang; Wu, Hua; Yang, Xu

    2018-04-01

    The density functional theory calculations using general gradient approximation (GGA) applying Perdew-Burke-Ernzerhof (PBE) as correlation functional have been systematically performed to research the formation energy, the electronic structures, band structures, total and partial DOS, and optical properties of Nd doping ZnO with the content from 6.25% to 12.5%. The formation energies are negative for both models, which show that two structures are energetically stable. Nd doping ZnO crystal is found to be a direct band gap semiconductor and Fermi level shifts upward into conduction band, which show the properties of n-type semiconductor. Band structures are more compact after Nd doping ZnO, implying that Nd doping induces the strong interaction between different atoms. Nd doping ZnO crystal presents occupied states at near Fermi level, which mainly comes from the Nd 4f orbital. The calculated optical properties imply that Nd doping causes a red-shift of absorption peaks, and enhances the absorption of the visible light.

  3. Electronic structure and the van Hove singularity scenario in high-T(sub c)H(g)Ba2CuO(4+delta) superconductors

    NASA Technical Reports Server (NTRS)

    Agrawal, Bal K.; Agrawal, Savitri

    1995-01-01

    The electronic structure and the hole concentrations in the high Tc superconductor HgBa2CuO(4+delta) (delta = O, 1) has been investigated by employing a first principles full potential self-consistent LMTO method with the local density functional theory. The scalar relativistic effects have been considered. The hole concentrations of the Cu-d and O-p(x,y) orbitals are seen to be larger for the HgBaCuO5 system than those of the HgBaCuO4 solid. However, the van Hove singularity (vHs) induced Cu-d and O-p peak which is seen to lie comparatively away and above the Fermi level in the delta = 1 system shifts towards the Fermi level in the delta = 0 system. Thus, the superconducting behavior appears to originate from the occurrence of the vHs peak at the Fermi level. The Fermi surface nesting area in the delta = 0 compound is seen to be larger than in the delta = 1 compound. The calculation reveals that the increase in pressure on the crystal enhances the hole concentrations but without showing any optimum value, On the other hand, the vHs peak approaches to-wards the Fermi level with pressure and crosses the Fermi surface near V/Vo approximately equals 0.625 (V and Vo are the crystal volumes at high and normal pressures, respectively). Our calculated value of the bulk modulus equal to 0.626 Mbar predicts the occurrence of this crossover at about 24 GPa which is in complete agreement with the experimental value. At this pressure the compound has maximum nesting area and self-doped behavior.

  4. Antiphase Fermi-surface modulations accompanying displacement excitation in a parent compound of iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Okazaki, Kozo; Suzuki, Hakuto; Suzuki, Takeshi; Yamamoto, Takashi; Someya, Takashi; Ogawa, Yu; Okada, Masaru; Fujisawa, Masami; Kanai, Teruto; Ishii, Nobuhisa; Itatani, Jiro; Nakajima, Masamichi; Eisaki, Hiroshi; Fujimori, Atsushi; Shin, Shik

    2018-03-01

    We investigate the transient electronic structure of BaFe2As2 , a parent compound of iron-based superconductors, by time- and angle-resolved photoemission spectroscopy. In order to probe the entire Brillouin zone, we utilize extreme ultraviolet photons and observe photoemission intensity oscillation with the frequency of the A1 g phonon which is antiphase between the zone-centered hole Fermi surfaces (FSs) and zone-cornered electron FSs. We attribute the antiphase behavior to the warping in one of the zone-centered hole FSs accompanying the displacement of the pnictogen height and find that this displacement is the same direction as that induced by substitution of P for As, where superconductivity is induced by a structural modification without carrier doping in this system.

  5. Uncovering the Key Role of the Fermi Level of the Electron Mediator in a Z-Scheme Photocatalyst by Detecting the Charge Transfer Process of WO3-metal-gC3N4 (Metal = Cu, Ag, Au).

    PubMed

    Li, Houfen; Yu, Hongtao; Quan, Xie; Chen, Shuo; Zhang, Yaobin

    2016-01-27

    Z-scheme photocatalytic system shows superiority in degradation of refractory pollutants and water splitting due to the high redox capacities caused by its unique charge transfer behaviors. As a key component of Z-scheme system, the electron mediator plays an important role in charge carrier migration. According to the energy band theory, we believe the interfacial energy band bendings facilitate the electron transfer via Z-scheme mechanism when the Fermi level of electron mediator is between the Fermi levels of Photosystem II (PS II) and Photosystem I (PS I), whereas charge transfer is inhibited in other cases as energy band barriers would form at the semiconductor-metal interfaces. Here, this inference was verified by the increased hydroxyl radical generation and improved photocurrent on WO3-Cu-gC3N4 (with the desired Fermi level structure), which were not observed on either WO3-Ag-gC3N4 or WO3-Au-gC3N4. Finally, photocatalytic degradation rate of 4-nonylphenol on WO3-Cu-gC3N4 was proved to be as high as 11.6 times than that of WO3-gC3N4, further demonstrating the necessity of a suitable electron mediator in Z-scheme system. This study provides scientific basis for rational construction of Z-scheme photocatalytic system.

  6. Unconventional aspects of electronic transport in delafossite oxides

    NASA Astrophysics Data System (ADS)

    Daou, Ramzy; Frésard, Raymond; Eyert, Volker; Hébert, Sylvie; Maignan, Antoine

    2017-12-01

    The electronic transport properties of the delafossite oxides ? are usually understood in terms of two well-separated entities, namely the triangular ? and (? layers. Here, we review several cases among this extensive family of materials where the transport depends on the interlayer coupling and displays unconventional properties. We review the doped thermoelectrics based on ? and ?, which show a high-temperature recovery of Fermi-liquid transport exponents, as well as the highly anisotropic metals ?, ?, and ?, where the sheer simplicity of the Fermi surface leads to unconventional transport. We present some of the theoretical tools that have been used to investigate these transport properties and review what can and cannot be learned from the extensive set of electronic structure calculations that have been performed.

  7. Tunability of the topological nodal-line semimetal phase in ZrSi X -type materials ( X = S ,   Se ,   Te )

    DOE PAGES

    Hosen, M. Mofazzel; Dimitri, Klauss; Belopolski, Ilya; ...

    2017-04-03

    The discovery of a topological nodal-line (TNL) semimetal phase in ZrSiS has invigorated the study of other members of this family. In this paper, we present a comparative electronic structure study ofmore » $$\\mathrm{ZrSi}X$$ (where $$X=\\text{S}$$, Se, Te) using angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations. Our ARPES studies show that the overall electronic structure of $$\\mathrm{ZrSi}X$$ materials comprises the diamond-shaped Fermi pocket, the nearly elliptical-shaped Fermi pocket, and a small electron pocket encircling the zone center ($$\\mathrm{{\\Gamma}}$$) point, the $M$ point, and the $X$ point of the Brillouin zone, respectively. We also observe a small Fermi surface pocket along the $$M{-}\\mathrm{{\\Gamma}}{-}M$$ direction in ZrSiTe, which is absent in both ZrSiS and ZrSiSe. Furthermore, our theoretical studies show a transition from nodal-line to nodeless gapped phase by tuning the chalcogenide from S to Te in these material systems. Finally, our findings provide direct evidence for the tunability of the TNL phase in $$\\mathrm{ZrSi}X$$ material systems by adjusting the spin-orbit coupling strength via the $X$ anion.« less

  8. Breakdown of Landau Fermi liquid theory: Restrictions on the degrees of freedom of quantum electrons

    NASA Astrophysics Data System (ADS)

    Su, Yue-Hua; Lu, Han-Tao

    2018-04-01

    One challenge in contemporary condensed matter physics is to understand unconventional electronic physics beyond the paradigm of Landau Fermi-liquid theory. Here, we present a perspective that posits that most such examples of unconventional electronic physics stem from restrictions on the degrees of freedom of quantum electrons in Landau Fermi liquids. Since the degrees of freedom are deeply connected to the system's symmetries and topology, these restrictions can thus be realized by external constraints or by interaction-driven processes via the following mechanisms: (i) symmetry breaking, (ii) new emergent symmetries, and (iii) nontrivial topology. Various examples of unconventional electronic physics beyond the reach of traditional Landau Fermi liquid theory are extensively investigated from this point of view. Our perspective yields basic pathways to study the breakdown of Landau Fermi liquids and also provides a guiding principle in the search for novel electronic systems and devices.

  9. Spectral probes of the holographic Fermi ground state: Dialing between the electron star and AdS Dirac hair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cubrovic, Mihailo; Liu Yan; Schalm, Koenraad

    2011-10-15

    We argue that the electron star and the anti-de Sitter (AdS) Dirac hair solution are two limits of the free charged Fermi gas in AdS. Spectral functions of holographic duals to probe fermions in the background of electron stars have a free parameter that quantifies the number of constituent fermions that make up the charge and energy density characterizing the electron star solution. The strict electron star limit takes this number to be infinite. The Dirac hair solution is the limit where this number is unity. This is evident in the behavior of the distribution of holographically dual Fermi surfaces.more » As we decrease the number of constituents in a fixed electron star background the number of Fermi surfaces also decreases. An improved holographic Fermi ground state should be a configuration that shares the qualitative properties of both limits.« less

  10. Quantum oscillations in the type-II Dirac semi-metal candidate PtSe2

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Schmidt, Marcus; Süss, Vicky; Chan, Mun; Balakirev, Fedor F.; McDonald, Ross D.; Parkin, Stuart S. P.; Felser, Claudia; Yan, Binghai; Moll, Philip J. W.

    2018-04-01

    Three-dimensional topological semi-metals carry quasiparticle states that mimic massless relativistic Dirac fermions, elusive particles that have never been observed in nature. As they appear in the solid body, they are not bound to the usual symmetries of space-time and thus new types of fermionic excitations that explicitly violate Lorentz-invariance have been proposed, the so-called type-II Dirac fermions. We investigate the electronic spectrum of the transition-metal dichalcogenide PtSe2 by means of quantum oscillation measurements in fields up to 65 T. The observed Fermi surfaces agree well with the expectations from band structure calculations, that recently predicted a type-II Dirac node to occur in this material. A hole- and an electron-like Fermi surface dominate the semi-metal at the Fermi level. The quasiparticle mass is significantly enhanced over the bare band mass value, likely by phonon renormalization. Our work is consistent with the existence of type-II Dirac nodes in PtSe2, yet the Dirac node is too far below the Fermi level to support free Dirac–fermion excitations.

  11. The electronic structure of the high-TC cuprates within the hidden rotating order

    NASA Astrophysics Data System (ADS)

    Azzouz, M.; Ramakko, B. W.; Presenza-Pitman, G.

    2010-09-01

    The doping dependence of the Fermi surface and energy distribution curves of the high-TC cuprate materials La2 - xSrxCuO4 and Bi2Sr2CaCu2O8 + δ are analyzed within the rotating antiferromagnetism theory. Using three different quantities; the k-dependent occupation probability, the spectral function, and the chemical potential (energy spectra), the Fermi surface is calculated and compared to experimental data for La2 - xSrxCuO4. The Fermi surface we calculate evolves from hole-like pockets in the underdoped regime to large electron-like contours in the overdoped regime. This is in agreement with recent findings by Sebastian et al for the α-pocket of Y Ba2Cu3O6 + x (2010 Phys. Rev. B 81 214524). In addition, the full width at half maximum of the energy distribution curves is found to behave linearly with their peak position in agreement with experiment for Bi2Sr2CaCu2O8 + δ. The effect of scattering on both the Fermi surface and energy distribution curves is examined.

  12. The structural, electronic and dynamic properties of the L1{sub 2}- type Co{sub 3}Ti alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arikan, Nihat; Özduran, Mustafa

    2014-10-06

    The structural, electronic and dynamic properties of the cubic Co{sub 3}Ti alloy in L1{sub 2} structure have been investigated using a pseudopotential plane wave (PP-PW) method within the generalized gradient approximation proposed by Perdew–Burke–Ernzerhof (GGA-PBE). The structural properties, including the lattice constant, the bulk modulus and its pressure derivative agree reasonably with the previous results. The density of state (DOS), projected density of state (PDOS) and electronic band structure are also reported. The DOS shows that Co{sub 3}Ti alloy has a metallic character since the energy bands cross the Fermi level. The density of states at Fermi level mainly comesmore » from the Co-3d states. Phonon dispersion curves and their corresponding total densities of states were obtained using a linear response in the framework of the density functional perturbation theory. All computed phonon frequencies are no imaginer and thus, Co{sub 3}Ti alloy is dynamically stable. The zone center phonon modes have been founded to be 9.307, 9.626 and 13.891 THz for Co{sub 3}Ti.« less

  13. Transport properties and electronic structure of Na0.28PtSi

    NASA Astrophysics Data System (ADS)

    Itahara, Hiroshi; Suzumura, Akitoshi; Oh, Song-Yul

    2017-07-01

    We have investigated the electronic structure and properties of Na0.28PtSi, which is a Pt-based intermetallic compound with no reported physical properties. Na0.28PtSi powder with an average grain size of 15 µm was demonstrated to be stable in a strongly acidic aqueous solution. The ab initio calculations revealed that there is a band crossing the Fermi level and that the density of states (DOS) under the Fermi level mainly consists of d orbitals of Pt atoms. Here, we used the model of Na0.25PtSi with an approximately ordered structure (space group I4, full Na site occupation), which was set instead of the reported statistically disordered structure of Na0.28PtSi (I4/mcm, Na site occupancy: 0.258). The calculated electronic structure corresponded to the measured metallic properties of the Na0.28PtSi sintered body: i.e., the electrical resistivity of Na0.28PtSi was increased from 1.77 × 10-8 Ω m at 30 K to 2.67 × 10-7 Ω m at 300 K and the Seebeck coefficient was 0.11 µV K-1 at 300 K.

  14. Observation of an electron band above the Fermi level in FeTe₀.₅₅Se₀.₄₅ from in-situ surface doping

    DOE PAGES

    Zhang, P.; Richard, P.; Xu, N.; ...

    2014-10-27

    We used in-situ potassium (K) evaporation to dope the surface of the iron-based superconductor FeTe₀.₅₅Se₀.₄₅. The systematic study of the bands near the Fermi level confirms that electrons are doped into the system, allowing us to tune the Fermi level of this material and to access otherwise unoccupied electronic states. In particular, we observe an electron band located above the Fermi level before doping that shares similarities with a small three-dimensional pocket observed in the cousin, heavily-electron-doped KFe₂₋ xSe₂ compound.

  15. Electronic structure of R Sb ( R = Y , Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy

    DOE PAGES

    Wu, Yun; Lee, Yongbin; Kong, Tai; ...

    2017-07-15

    Here, we use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Duemore » to the “lanthanide contraction”, the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.« less

  16. Electronic structure of R Sb ( R = Y , Ce, Gd, Dy, Ho, Tm, Lu) studied by angle-resolved photoemission spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Lee, Yongbin; Kong, Tai

    Here, we use high-resolution angle-resolved photoemission spectroscopy (ARPES) and electronic structure calculations to study the electronic properties of rare-earth monoantimonides RSb (R = Y, Ce, Gd, Dy, Ho, Tm, Lu). The experimentally measured Fermi surface (FS) of RSb consists of at least two concentric hole pockets at the Γ point and two intersecting electron pockets at the X point. These data agree relatively well with the electronic structure calculations. Detailed photon energy dependence measurements using both synchrotron and laser ARPES systems indicate that there is at least one Fermi surface sheet with strong three-dimensionality centered at the Γ point. Duemore » to the “lanthanide contraction”, the unit cell of different rare-earth monoantimonides shrinks when changing the rare-earth ion from CeSb to LuSb. This results in the differences in the chemical potentials in these compounds, which are demonstrated by both ARPES measurements and electronic structure calculations. Interestingly, in CeSb, the intersecting electron pockets at the X point seem to be touching the valence bands, forming a fourfold-degenerate Dirac-like feature. On the other hand, the remaining rare-earth monoantimonides show significant gaps between the upper and lower bands at the X point. Furthermore, similar to the previously reported results of LaBi, a Dirac-like structure was observed at the Γ point in YSb, CeSb, and GdSb, compounds showing relatively high magnetoresistance. This Dirac-like structure may contribute to the unusually large magnetoresistance in these compounds.« less

  17. Observation of a two-dimensional Fermi surface and Dirac dispersion in YbMnSb2

    NASA Astrophysics Data System (ADS)

    Kealhofer, Robert; Jang, Sooyoung; Griffin, Sinéad M.; John, Caolan; Benavides, Katherine A.; Doyle, Spencer; Helm, T.; Moll, Philip J. W.; Neaton, Jeffrey B.; Chan, Julia Y.; Denlinger, J. D.; Analytis, James G.

    2018-01-01

    We present the crystal structure, electronic structure, and transport properties of the material YbMnSb2, a candidate system for the investigation of Dirac physics in the presence of magnetic order. Our measurements reveal that this system is a low-carrier-density semimetal with a two-dimensional Fermi surface arising from a Dirac dispersion, consistent with the predictions of density-functional-theory calculations of the antiferromagnetic system. The low temperature resistivity is very large, suggesting that scattering in this system is highly efficient at dissipating momentum despite its Dirac-like nature.

  18. Observation of Dirac-like band dispersion in LaAgSb 2

    DOE PAGES

    Shi, X.; Richard, P.; Wang, Kefeng; ...

    2016-02-16

    In this paper, we present a combined angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations study of the electronic structure of LaAgSb 2 in the entire first Brillouin zone. We observe a Dirac-cone-like structure in the vicinity of the Fermi level formed by the crossing of two linear energy bands, as well as the nested segments of a Fermi surface pocket emerging from the cone. In conclusion, our ARPES results show the close relationship of the Dirac cone to the charge-density-wave ordering, providing consistent explanations for exotic behaviors in this material.

  19. Electronic structure of CuTeO 4 and its relationship to cuprates

    DOE PAGES

    Botana, Antia S.; Norman, Michael R.

    2017-03-13

    Based on first-principles calculations, the electronic structure of CuTeO 4 is discussed in the context of superconducting cuprates. Despite some significant crystallographic differences, we find that CuTeO 4 is similar to these cuprates, exhibiting a quasi-two-dimensional electronic structure that involves hybridized Cu- d and O-p states in the vicinity of the Fermi level, along with an antiferromagnetic insulating ground state. Lastly, hole- doping this material by substituting Te 6+ with Sb 5+ would be of significant interest.

  20. Influence of the plasma environment on atomic structure using an ion-sphere model

    DOE PAGES

    Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel

    2015-09-03

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less

  1. Influence of the plasma environment on atomic structure using an ion-sphere model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belkhiri, Madeny Jean; Fontes, Christopher John; Poirier, Michel

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for themore » six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe 22+, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the MCDF value of B. Saha et al.« less

  2. Fermi surface interconnectivity and topology in Weyl fermion semimetals TaAs, TaP, NbAs, and NbP

    DOE PAGES

    Lee, Chi-Cheng; Xu, Su-Yang; Huang, Shin-Ming; ...

    2015-12-01

    The family of binary compounds including TaAs, TaP, NbAs, and NbP was recently discovered as the first realization of Weyl semimetals. In order to develop a comprehensive description of the charge carriers in these Weyl semimetals, we performed detailed and systematic electronic band structure calculations which reveal the nature of Fermi surfaces and their complex interconnectivity in TaAs, TaP, NbAs, and NbP. In conclusion, our work reports a comparative and comprehensive study of Fermi surface topology and band structure details of all known members of the Weyl semimetal family and hence provides the fundamental knowledge for realizing the many predictedmore » exotic topological quantum physics of Weyl semimetals based on the TaAs class of materials.« less

  3. Evolution of electronic states in n-type copper oxide superconductor via electric double layer gating

    NASA Astrophysics Data System (ADS)

    Jin, Kui; Hu, Wei; Zhu, Beiyi; Kim, Dohun; Yuan, Jie; Sun, Yujie; Xiang, Tao; Fuhrer, Michael S.; Takeuchi, Ichiro; Greene, Richard. L.

    2016-05-01

    The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2-xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of -2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected.

  4. First Principles Study of Band Structure and Band Gap Engineering in Graphene for Device Applications

    DTIC Science & Technology

    2015-03-20

    In the bandstructure of graphene which is dominated by Dirac description, valence and conduction bands cross the Fermi level at a single point (K...of energy bands and appearance of Dirac cones near the ‘K’ point and Fermi level the electrons behave like massless Dirac fermions. For applications...results. Introduction Graphene, the super carbon , is now accepted as wonder material with new physics and it has caused major

  5. Electronic and Magnetic Properties of Ni-Doped Zinc-Blende ZnO: A First-Principles Study.

    PubMed

    Xue, Suqin; Zhang, Fuchun; Zhang, Shuili; Wang, Xiaoyang; Shao, Tingting

    2018-04-26

    The electronic structure, band structure, density of state, and magnetic properties of Ni-doped zinc-blende (ZB) ZnO are studied by using the first-principles method based on the spin-polarized density-functional theory. The calculated results show that Ni atoms can induce a stable ferromagnetic (FM) ground state in Ni-doped ZB ZnO. The magnetic moments mainly originate from the unpaired Ni 3 d orbitals, and the O 2 p orbitals contribute a little to the magnetic moments. The magnetic moment of a supercell including a single Ni atom is 0.79 μ B . The electronic structure shows that Ni-doped ZB ZnO is a half-metallic FM material. The strong spin-orbit coupling appears near the Fermi level and shows obvious asymmetry for spin-up and spin-down density of state, which indicates a significant hybrid effects from the Ni 3 d and O 2 p states. However, the coupling of the anti-ferromagnetic (AFM) state show metallic characteristic, the spin-up and spin-down energy levels pass through the Fermi surface. The magnetic moment of a single Ni atom is 0.74 μ B . Moreover, the results show that the Ni 3 d and O 2 p states have a strong p - d hybridization effect near the Fermi level and obtain a high stability. The above theoretical results demonstrate that Ni-doped zinc blende ZnO can be considered as a potential half-metal FM material and dilute magnetic semiconductors.

  6. The 7 × 1 Fermi Surface Reconstruction in a Two-dimensional f -electron Charge Density Wave System: PrTe 3

    DOE PAGES

    Lee, Eunsook; Kim, D. H.; Kim, Hyun Woo; ...

    2016-07-25

    The electronic structure of a charge density wave (CDW) system PrTe 3 and its modulated structure in the CDW phase have been investigated by employing ARPES, XAS, Pr 4 f RPES, and first-principles band structure calculation. Pr ions are found to be nearly trivalent, supporting the CDW instability in the metallic Te sheets through partial filling. Finite Pr 4 f spectral weight is observed near the Fermi level, suggesting the non-negligible Pr 4 f contribution to the CDW formation through the Pr 4 f -Te 5p hybridization. The two-fold symmetric features in the measured Fermi surface (FS) of PrTe 3more » are explained by the calculated FS for the assumed 7 × 1 CDW supercell formation in Te sheets. The shadow bands and the corresponding very weak FSs are observed, which originate from both the band folding due to the 3D interaction of Te sheets with neighboring Pr-Te layers and that due to the CDW-induced FS reconstruction. The straight vertical FSs are observed along k z, demonstrating the nearly 2D character for the near-EF states. The observed linear dichroism reveals the in-plane orbital character of the near-E F Te 5p states.« less

  7. Non Fermi Liquid Crossovers in a Quasi-One-Dimensional Conductor in an Inclined Magnetic Field

    NASA Astrophysics Data System (ADS)

    Lebed, Andrei

    We consider a theoretical problem of electron-electron scattering time in a quasi-one-dimensional (Q1D) conductor in a magnetic field, perpendicular to its conducting axis. We show that inverse electron-electron scattering time becomes of the order of characteristic electron energy, 1 / τ ~ ɛ ~ T , in a high magnetic field, directed far from the main crystallographic axes, which indicates breakdown of the Fermi liquid theory. In a magnetic field, directed close to one of the main crystallographic axis, inverse electron-electron scattering time becomes much smaller than characteristic electron energy and, thus, applicability of Fermi liquid theory restores. We suggest that there exist crossovers between Fermi liquid and some non Fermi liquid states in a strong enough inclined magnetic field. Application of our results to the Q1D conductor (Per)2Au(mnt)2 shows that it has to be possible to observe the above mentioned phenomenon in feasibly high magnetic fields of the order of H >=H* ~= 25 T . It was partially supported by NFS grant DMR-1104512.

  8. Electronic structure of ZrX2 (X = Se, Te)

    NASA Astrophysics Data System (ADS)

    Shkvarin, A. S.; Merentsov, A. I.; Shkvarina, E. G.; Yarmoshenko, Yu. M.; Píš, I.; Nappini, S.; Titov, A. N.

    2018-03-01

    The electronic structure of the ZrX2 (X = Se, Te) compounds has been studied using photoelectron, resonant photoelectron and X-ray absorption spectroscopy, theoretical calculations of the X-ray absorption spectra, and density of electronic states. It was found that the absorption spectra and valence band spectra are influenced by the chalcogen type. The results of the multiplet calculation of the Zr4+ atom show that the change in the splitting in the crystal field, which is described by the 10Dq parameter, is due to the change in the ratio of covalent and ionic contributions to the chemical bond. The resonance band near the Fermi level in the valence band spectra is observed for ZrTe2 in the Zr 3p-4d resonant excitation mode. The extent of photon energy indicates the charge localization on the Zr atom. Similar resonance band for ZrSe2 is absent; it indicates the presence of a gap at the Fermi level.

  9. New family of graphene-based organic semiconductors: An investigation of photon-induced electronic structure manipulation in half-fluorinated graphene

    NASA Astrophysics Data System (ADS)

    Walter, Andrew L.; Sahin, Hasan; Kang, Jun; Jeon, Ki-Joon; Bostwick, Aaron; Horzum, Seyda; Moreschini, Luca; Chang, Young Jun; Peeters, Francois M.; Horn, Karsten; Rotenberg, Eli

    2016-02-01

    The application of graphene to electronic and optoelectronic devices is limited by the absence of reliable semiconducting variants of this material. A promising candidate in this respect is graphene oxide, with a band gap on the order of ˜5 eV , however, this has a finite density of states at the Fermi level. Here, we examine the electronic structure of three variants of half -fluorinated carbon on Sic(0001), i.e., the (6 √{3 }×6 √{3 } ) R 30∘ C/SiC "buffer layer," graphene on this (6 √{3 }×6 √{3 } ) R 30∘ C/SiC buffer layer, and graphene decoupled from the SiC substrate by hydrogen intercalation. Using angle-resolved photoemission, core level photoemission, and x-ray absorption, we show that the electronic, chemical, and physical structure of all three variants is remarkably similar, exhibiting a large band gap and a vanishing density of states at the Fermi level. These results are explained in terms of first-principles calculations. This material thus appears very suitable for applications, even more so since it is prepared on a processing-friendly substrate. We also investigate two separate UV photon-induced modifications of the electronic structure that transform the insulating samples (6.2-eV band gap) into semiconducting (˜2.5 -eV band gap) and metallic regions, respectively.

  10. Electronic Structure and Properties of Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Yang, Liu; Arnold, Jim (Technical Monitor)

    2001-01-01

    A theoretical framework based on Huckel tight-binding model has been formulated to analyze the electronic structure of carbon nanotubes under uniform deformation. The model successfully quantifies the dispersion relation, density of states and bandgap change of nanotubes under uniform stretching, compression, torsion and bending. Our analysis shows that the shifting of the Fermi point away from the Brillouin zone vertices is the key reason for these changes. As a result of this shifting, the electronic structure of deformed carbon nanotubes varies dramatically depending on their chirality and deformation mode. Treating the Fermi point as a function of strain and tube chirality, the analytical solution preserves the concise form of undeformed carbon nanotubes. It predicts the shifting, merging and splitting of the Van Hove singularities in the density of states and the zigzag pattern of bandgap change under strains. Four orbital tight-binding simulations of carbon nanotubes under uniform stretching, compression, torsion and bending have been performed to verify the analytical solution. Extension to more complex systems are being performed to relate this analytical solution to the spectroscopic characterization, device performance and proposed quantum structures induced by the deformation. The limitations of this model will also be discussed.

  11. Single Crystal Growth, Resistivity, and Electronic Structure of the Weyl Semimetals NbP and TaP

    DOE PAGES

    Sapkota, Deepak; Mukherjee, Rupam; Mandrus, David

    2016-12-06

    We have successfully synthesized niobium monophosphide and tantalum monophosphide crystals by a chemical vapor transport technique. We report resistivity vs. temperature of both materials in the temperature range from 2 K to 300 K. We have also performed electronic structure calculations and present the band structure and density of states of these two compounds. The calculations show that both compounds are semimetals, as their conduction and valence bands overlap near the Fermi energy.

  12. Persistent Charge-Density-Wave Order in Single-Layer TaSe2.

    PubMed

    Ryu, Hyejin; Chen, Yi; Kim, Heejung; Tsai, Hsin-Zon; Tang, Shujie; Jiang, Juan; Liou, Franklin; Kahn, Salman; Jia, Caihong; Omrani, Arash A; Shim, Ji Hoon; Hussain, Zahid; Shen, Zhi-Xun; Kim, Kyoo; Min, Byung Il; Hwang, Choongyu; Crommie, Michael F; Mo, Sung-Kwan

    2018-02-14

    We present the electronic characterization of single-layer 1H-TaSe 2 grown by molecular beam epitaxy using a combined angle-resolved photoemission spectroscopy, scanning tunneling microscopy/spectroscopy, and density functional theory calculations. We demonstrate that 3 × 3 charge-density-wave (CDW) order persists despite distinct changes in the low energy electronic structure highlighted by the reduction in the number of bands crossing the Fermi energy and the corresponding modification of Fermi surface topology. Enhanced spin-orbit coupling and lattice distortion in the single-layer play a crucial role in the formation of CDW order. Our findings provide a deeper understanding of the nature of CDW order in the two-dimensional limit.

  13. NMR studies of electronic structure in crystalline and amorphous Zr2PdH/x/

    NASA Technical Reports Server (NTRS)

    Bowman, R. C., Jr.; Johnson, W. L.; Maeland, A. J.; Rhim, W.-K.

    1983-01-01

    The proton Knight shifts and spin-lattice relaxation times have been measured in crystalline and amorphous Ze2PdH(x). Core polarization from the Zr d-band dominates the proton hyperfine interactions. The density of Fermi level d-electron states is reduced in the amorphous phase relative to the electron density in crystalline Zr2PdH(x).

  14. Specific heat, Electrical resistivity and Electronic band structure properties of noncentrosymmetric Th7Fe3 superconductor.

    PubMed

    Tran, V H; Sahakyan, M

    2017-11-17

    Noncentrosymmetric superconductor Th 7 Fe 3 has been investigated by means of specific heat, electrical resisitivity measurements and electronic properties calculations. Sudden drop in the resistivity at 2.05 ± 0.15 K and specific heat jump at 1.98 ± 0.02 K are observed, rendering the superconducting transition. A model of two BCS-type gaps appears to describe the zero-magnetic-field specific heat better than those based on the isotropic BCS theory or anisotropic functions. A positive curvature of the upper critical field H c2 (T c ) and nonlinear field dependence of the Sommerfeld coefficient at 0.4 K qualitatively support the two-gap scenario, which predicts H c2 (0) = 13 kOe. The theoretical densities of states and electronic band structures (EBS) around the Fermi energy show a mixture of Th 6d- and Fe 3d-electrons bands, being responsible for the superconductivity. Furthermore, the EBS and Fermi surfaces disclose significantly anisotropic splitting associated with asymmetric spin-orbit coupling (ASOC). The ASOC sets up also multiband structure, which presumably favours a multigap superconductivity. Electron Localization Function reveals the existence of both metallic and covalent bonds, the latter may have different strengths depending on the regions close to the Fe or Th atoms. The superconducting, electronic properties and implications of asymmetric spin-orbit coupling associated with noncentrosymmetric structure are discussed.

  15. Electron-positron momentum density in Tl 2Ba 2CuO 6

    NASA Astrophysics Data System (ADS)

    Barbiellini, B.; Gauthier, M.; Hoffmann, L.; Jarlborg, T.; Manuel, A. A.; Massidda, S.; Peter, M.; Triscone, G.

    1994-08-01

    We present calculations of the electron-positron momentum density for the high- Tc superconductor Tl 2Ba 2CuO 6, together with some preliminary two-dimensional angular correlation of the annihilation radiation (2D-ACAR) measurements. The calculations are based on the first-principles electronic structure obtained using the full-potential linearized augmented plane wave (FLAPW) and the linear muffin-tin orbital (LMTO) methods. We also use a linear combination of the atomic orbitals-molecular orbital method (LCAO-MO) to discuss orbital contributions to the anisotropies. Some agreement between calculated and measured 2D-ACAR anisotropies encourage sample improvement for further Fermi surface investigations. Indeed, our results indicate a non-negligle overlap of the positron wave function with the CuOo 2 plane electrons. Therefore, this compound may be well suited for investigating the relevant CuO 2 Fermi surface by 2D-ACAR.

  16. Electronic properties of two inequivalent surfaces in MoTe2 studied by quasi-particle interference

    NASA Astrophysics Data System (ADS)

    Iaia, Davide; Shichao, Yan; Madhavan, Vidya

    MoTe2 has received renewed interest due to its topological properties. At a temperature below 250 K, MoTe2 is a type II Weyl semimetal hosting three-dimensional (3D) linearly dispersing states with well defined chirality. Nodes in this 3D dispersion are called Weyl points. Weyl points of opposite chirality are expected to be connected by topologically protected Fermi arcs. In this talk we discuss low temperature scanning tunneling microscopy studies of the electronic structure of MoTe2. The electronic properties are studied using quasi-particle interference technique which allows us to resolve Fermi arcs features and to clearly distinguish between two inequivalent MoTe2 surfaces. Our results provide important contributions to further our understanding of the electronic properties of this new and exotic class of materials. National Science Foundation (NSF).

  17. Fermi surface topology and hot spot distribution in the Kondo lattice system CeB 6

    DOE PAGES

    Neupane, Madhab; Alidoust, Nasser; Belopolski, Ilya; ...

    2015-09-18

    Rare-earth hexaborides have attracted considerable attention recently in connection to a variety of correlated phenomena including heavy fermions, superconductivity, and low-temperature magnetic phases. Here, we present high-resolution angle-resolved photoemission spectroscopy studies of trivalent CeB 6 and divalent BaB 6 rare-earth hexaborides. Here we find that the Fermi surface electronic structure of CeB 6 consists of large oval-shaped pockets around the X points of the Brillouin zone, whereas the states around the zone center Γ point are strongly renormalized. Our first-principles calculations agree with our experimental results around the X points but not around the Γ point, indicating areas of strongmore » renormalization located near Γ. The Ce quasiparticle states participate in the formation of hot spots at the Fermi surface, whereas the incoherent f states hybridize and lead to the emergence of dispersive features absent in the non-$f$ counterpart BaB 6. Lastly, our results provide an understanding of the electronic structure in rare-earth hexaborides, which will be useful in elucidating the nature of the exotic low-temperature phases in these materials.« less

  18. Modification of graphene electronic properties via controllable gas-phase doping with copper chloride

    NASA Astrophysics Data System (ADS)

    Rybin, Maxim G.; Islamova, Vera R.; Obraztsova, Ekaterina A.; Obraztsova, Elena D.

    2018-01-01

    Molecular doping is an efficient, non-destructive, and simple method for changing the electronic structure of materials. Here, we present a simple air ambient vapor deposition method for functionalization of pristine graphene with a strong electron acceptor: copper chloride. The doped graphene was characterized by Raman spectroscopy, UV-vis-NIR optical absorption spectroscopy, scanning electron microscopy, and electro-physical measurements performed using the 4-probe method. The effect of charge transfer from graphene to a dopant results in shifting the Fermi level in doped graphene. The change of the electronic structure of doped graphene was confirmed by the tangential Raman peak (G-peak) shift and by the appearance of the gap in the UV-vis-NIR spectrum after doping. Moreover, the charge transfer resulted in a substantial decrease in electrical sheet resistance depending on the doping level. At the highest concentration of copper chloride, a Fermi level shift into the valence band up to 0.64 eV and a decrease in the sheet resistance value by 2.36 times were observed (from 888 Ω/sq to 376 Ω/sq for a single graphene layer with 97% of transparency).

  19. Absence of photoemission from the Fermi level in potassium intercalated picene and coronene films: structure, polaron, or correlation physics?

    PubMed

    Mahns, Benjamin; Roth, Friedrich; Knupfer, Martin

    2012-04-07

    The electronic structure of potassium intercalated picene and coronene films has been studied using photoemission spectroscopy. Picene has additionally been intercalated using sodium. Upon alkali metal addition core level as well as valence band photoemission data signal a filling of previously unoccupied states of the two molecular materials due to charge transfer from potassium. In contrast to the observation of superconductivity in K(x)picene and K(x)coronene (x ~ 3), none of the films studied shows emission from the Fermi level, i.e., we find no indication for a metallic ground state. Several reasons for this observation are discussed.

  20. Optical spectroscopy shows that the normal state of URu2Si2 is an anomalous Fermi liquid.

    PubMed

    Nagel, Urmas; Uleksin, Taaniel; Rõõm, Toomas; Lobo, Ricardo P S M; Lejay, Pascal; Homes, Christopher C; Hall, Jesse S; Kinross, Alison W; Purdy, Sarah K; Munsie, Tim; Williams, Travis J; Luke, Graeme M; Timusk, Thomas

    2012-11-20

    Fermi showed that, as a result of their quantum nature, electrons form a gas of particles whose temperature and density follow the so-called Fermi distribution. As shown by Landau, in a metal the electrons continue to act like free quantum mechanical particles with enhanced masses, despite their strong Coulomb interaction with each other and the positive background ions. This state of matter, the Landau-Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Calculations show that, if electron-electron scattering dominates the resistivity in a Landau-Fermi liquid, the ratio of the two terms, b, has the universal value of b = 4. We find that in the normal state of the heavy Fermion metal URu(2)Si(2), instead of the Fermi liquid value of 4, the coefficient b = 1 ± 0.1. This unexpected result implies that the electrons in this material are experiencing a unique scattering process. This scattering is intrinsic and we suggest that the uranium f electrons do not hybridize to form a coherent Fermi liquid but instead act like a dense array of elastic impurities, interacting incoherently with the charge carriers. This behavior is not restricted to URu(2)Si(2). Fermi liquid-like states with b ≠ 4 have been observed in a number of disparate systems, but the significance of this result has not been recognized.

  1. Optical spectroscopy shows that the normal state of URu2Si2 is an anomalous Fermi liquid

    PubMed Central

    Nagel, Urmas; Uleksin, Taaniel; Rõõm, Toomas; Lobo, Ricardo P. S. M.; Lejay, Pascal; Homes, Christopher C.; Hall, Jesse S.; Kinross, Alison W.; Purdy, Sarah K.; Munsie, Tim; Williams, Travis J.; Luke, Graeme M.; Timusk, Thomas

    2012-01-01

    Fermi showed that, as a result of their quantum nature, electrons form a gas of particles whose temperature and density follow the so-called Fermi distribution. As shown by Landau, in a metal the electrons continue to act like free quantum mechanical particles with enhanced masses, despite their strong Coulomb interaction with each other and the positive background ions. This state of matter, the Landau–Fermi liquid, is recognized experimentally by an electrical resistivity that is proportional to the square of the absolute temperature plus a term proportional to the square of the frequency of the applied field. Calculations show that, if electron-electron scattering dominates the resistivity in a Landau–Fermi liquid, the ratio of the two terms, b, has the universal value of b = 4. We find that in the normal state of the heavy Fermion metal URu2Si2, instead of the Fermi liquid value of 4, the coefficient b = 1 ± 0.1. This unexpected result implies that the electrons in this material are experiencing a unique scattering process. This scattering is intrinsic and we suggest that the uranium f electrons do not hybridize to form a coherent Fermi liquid but instead act like a dense array of elastic impurities, interacting incoherently with the charge carriers. This behavior is not restricted to URu2Si2. Fermi liquid-like states with b ≠ 4 have been observed in a number of disparate systems, but the significance of this result has not been recognized. PMID:23115333

  2. Interplay of phase sequence and electronic structure in the modulated martensites of Mn2NiGa from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Kundu, Ashis; Gruner, Markus E.; Siewert, Mario; Hucht, Alfred; Entel, Peter; Ghosh, Subhradip

    2017-08-01

    We investigate the relative stability, structural properties, and electronic structure of various modulated martensites of the magnetic shape memory alloy Mn2NiGa by means of density functional theory. We observe that the instability in the high-temperature cubic structure first drives the system to a structure where modulation shuffles with a period of six atomic planes are taken into account. The driving mechanism for this instability is found to be the nesting of the minority band Fermi surface, in a similar way to that established for the prototype system Ni2MnGa . In agreement with experiments, we find 14M modulated structures with orthorhombic and monoclinic symmetries having energies lower than other modulated phases with the same symmetry. In addition, we also find energetically favorable 10M modulated structures which have not been observed experimentally for this system yet. The relative stability of various martensites is explained in terms of changes in the electronic structures near the Fermi level, affected mostly by the hybridization of Ni and Mn states. Our results indicate that the maximum achievable magnetic field-induced strain in Mn2NiGa would be larger than in Ni2MnGa . However, the energy costs for creating nanoscale adaptive twin boundaries are found to be one order of magnitude higher than that in Ni2MnGa .

  3. C4N3H monolayer: A two-dimensional organic Dirac material with high Fermi velocity

    NASA Astrophysics Data System (ADS)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Li, Jianfu; Du, Youwei; Tang, Nujiang

    2017-11-01

    Searching for two-dimensional (2D) organic Dirac materials, which have more adaptable practical applications compared with inorganic ones, is of great significance and has been ongoing. However, only two such materials with low Fermi velocity have been discovered so far. Herein, we report the design of an organic monolayer with C4N3H stoichiometry that possesses fascinating structure and good stability in its free-standing state. More importantly, we demonstrate that this monolayer is a semimetal with anisotropic Dirac cones and very high Fermi velocity. This Fermi velocity is roughly one order of magnitude larger than the largest velocity ever reported in 2D organic Dirac materials, and it is comparable to that in graphene. The Dirac states in this monolayer arise from the extended π -electron conjugation system formed by the overlapping 2 pz orbitals of carbon and nitrogen atoms. Our finding paves the way to a search for more 2D organic Dirac materials with high Fermi velocity.

  4. Mechanism of biphasic charge recombination and accumulation in TiO2 mesoporous structured perovskite solar cells.

    PubMed

    Wang, Hao-Yi; Wang, Yi; Yu, Man; Han, Jun; Guo, Zhi-Xin; Ai, Xi-Cheng; Zhang, Jian-Ping; Qin, Yujun

    2016-04-28

    Organic-inorganic halide perovskite solar cells are becoming the next big thing in the photovoltaic field owing to their rapidly developing photoelectric conversion performance. Herein, mesoporous structured perovskite devices with various perovskite grain sizes are fabricated by a sequential dropping method, and the charge recombination dynamics is investigated by transient optical-electric measurements. All devices exhibit an overall power conversion efficiency around 15%. More importantly, a biphasic trap-limited charge recombination process is proposed and interpreted by taking into account the specific charge accumulation mechanism in perovskite solar cells. At low Fermi levels, photo-generated electrons predominately populate in the perovskite phase, while at high Fermi levels, most electrons occupy traps in mesoporous TiO2. As a result, the dynamics of charge recombination is, respectively, dominated by the perovskite phase and mesoporous TiO2 in these two cases. The present work would give a new perspective on the charge recombination process in meso-structured perovskite solar cells.

  5. Origin of Pressure-induced Superconducting Phase in K xFe 2-ySe 2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    DOE PAGES

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; ...

    2016-08-08

    Pressure dependence of the electronic and crystal structures of K xFe 2–ySe 2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change ofmore » Fermi surface topology. Lastly, our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.« less

  6. Origin of Pressure-induced Superconducting Phase in KxFe2-ySe2 studied by Synchrotron X-ray Diffraction and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yoshiya; Yamaoka, Hitoshi; Tanaka, Masashi; Okazaki, Hiroyuki; Ozaki, Toshinori; Takano, Yoshihiko; Lin, Jung-Fu; Fujita, Hidenori; Kagayama, Tomoko; Shimizu, Katsuya; Hiraoka, Nozomu; Ishii, Hirofumi; Liao, Yen-Fa; Tsuei, Ku-Ding; Mizuki, Jun'Ichiro

    2016-08-01

    Pressure dependence of the electronic and crystal structures of KxFe2-ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.

  7. Electronic Structure of ABC-stacked Multilayer Graphene and Trigonal Warping:A First Principles Calculation

    NASA Astrophysics Data System (ADS)

    Yelgel, Celal

    2016-04-01

    We present an extensive density functional theory (DFT) based investigation of the electronic structures of ABC-stacked N-layer graphene. It is found that for such systems the dispersion relations of the highest valence and the lowest conduction bands near the K point in the Brillouin zone are characterised by a mixture of cubic, parabolic, and linear behaviours. When the number of graphene layers is increased to more than three, the separation between the valence and conduction bands decreases up until they touch each other. For five and six layer samples these bands show flat behaviour close to the K point. We note that all states in the vicinity of the Fermi energy are surface states originated from the top and/or bottom surface of all the systems considered. For the trilayer system, N = 3, pronounced trigonal warping of the bands slightly above the Fermi level is directly obtained from DFT calculations.

  8. Band structure modification of the thermoelectric Heusler-phase TiFe2Sn via Mn substitution.

    PubMed

    Zou, Tianhua; Jia, Tiantian; Xie, Wenjie; Zhang, Yongsheng; Widenmeyer, Marc; Xiao, Xingxing; Weidenkaff, Anke

    2017-07-19

    Doping (or substitution)-induced modification of the electronic structure to increase the electronic density of states (eDOS) near the Fermi level is considered as an effective strategy to enhance the Seebeck coefficient, and may consequently boost the thermoelectric performance. Through density-functional theory calculations of Mn-substituted TiFe 2-x Mn x Sn compounds, we demonstrate that the d-states of the substituted Mn atoms induce a strong resonant level near the Fermi energy. Our experimental results are in good agreement with the calculations. They show that Mn substitution results in a large increase of the Seebeck coefficient, arising from an enhanced eDOS in Heusler compounds. The results prove that a proper substitution position and element selection can increase the eDOS, leading to a higher Seebeck coefficient and thermoelectric performance of ecofriendly materials.

  9. Controlling resonant tunneling in graphene via Fermi velocity engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Jonas R. F., E-mail: jonas.lima@ufrpe.br; Pereira, Luiz Felipe C.; Bezerra, C. G.

    We investigate the resonant tunneling in a single layer graphene superlattice with modulated energy gap and Fermi velocity via an effective Dirac-like Hamiltonian. We calculate the transmission coefficient with the transfer matrix method and analyze the effect of a Fermi velocity modulation on the electronic transmission, in the case of normal and oblique incidence. We find it is possible to manipulate the electronic transmission in graphene by Fermi velocity engineering, and show that it is possible to tune the transmitivity from 0 to 1. We also analyze how a Fermi velocity modulation influences the total conductance and the Fano factor.more » Our results are relevant for the development of novel graphene-based electronic devices.« less

  10. Importance of nonlocal electron correlation in the BaNiS2 semimetal from quantum oscillations studies

    NASA Astrophysics Data System (ADS)

    Klein, Yannick; Casula, Michele; Santos-Cottin, David; Audouard, Alain; Vignolles, David; Fève, Gwendal; Freulon, Vincent; Plaçais, Bernard; Verseils, Marine; Yang, Hancheng; Paulatto, Lorenzo; Gauzzi, Andrea

    2018-02-01

    By means of Shubnikov-de Haas and de Haas-van Alphen oscillations, and ab initio calculations, we have studied the Fermi surface of high-quality BaNiS2 single crystals, with mean free path l ˜400 Å . The angle and temperature dependence of quantum oscillations indicates a quasi-two-dimensional Fermi surface, made of an electronlike tube centered at Γ , and of four holelike cones, generated by Dirac bands, weakly dispersive in the out-of-plane direction. Ab initio electronic structure calculations, in the density functional theory framework, show that the inclusion of screened exchange is necessary to account for the experimental Fermi pockets. Therefore, the choice of the functional becomes crucial. A modified HSE hybrid functional with 7% of exact exchange outperforms both GGA and GGA +U density functionals, signaling the importance of nonlocal screened-exchange interactions in BaNiS2, and, more generally, in 3 d compensated semimetals.

  11. Direct k-space mapping of the electronic structure in an oxide-oxide interface.

    PubMed

    Berner, G; Sing, M; Fujiwara, H; Yasui, A; Saitoh, Y; Yamasaki, A; Nishitani, Y; Sekiyama, A; Pavlenko, N; Kopp, T; Richter, C; Mannhart, J; Suga, S; Claessen, R

    2013-06-14

    The interface between LaAlO(3) and SrTiO(3) hosts a two-dimensional electron system of itinerant carriers, although both oxides are band insulators. Interface ferromagnetism coexisting with superconductivity has been found and attributed to local moments. Experimentally, it has been established that Ti 3d electrons are confined to the interface. Using soft x-ray angle-resolved resonant photoelectron spectroscopy we have directly mapped the interface states in k space. Our data demonstrate a charge dichotomy. A mobile fraction contributes to Fermi surface sheets, whereas a localized portion at higher binding energies is tentatively attributed to electrons trapped by O vacancies in the SrTiO(3). While photovoltage effects in the polar LaAlO(3) layers cannot be excluded, the apparent absence of surface-related Fermi surface sheets could also be fully reconciled in a recently proposed electronic reconstruction picture where the built-in potential in the LaAlO(3) is compensated by surface O vacancies serving also as a charge reservoir.

  12. Fermi level pinning at the Ge(001) surface—A case for non-standard explanation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wojtaszek, Mateusz; Zuzak, Rafal; Godlewski, Szymon

    2015-11-14

    To explore the origin of the Fermi level pinning in germanium, we investigate the Ge(001) and Ge(001):H surfaces. The absence of relevant surface states in the case of Ge(001):H should unpin the surface Fermi level. This is not observed. For samples with donors as majority dopants, the surface Fermi level appears close to the top of the valence band regardless of the surface structure. Surprisingly, for the passivated surface, it is located below the top of the valence band allowing scanning tunneling microscopy imaging within the band gap. We argue that the well known electronic mechanism behind band bending doesmore » not apply and a more complicated scenario involving ionic degrees of freedom is therefore necessary. Experimental techniques involve four point probe electric current measurements, scanning tunneling microscopy, and spectroscopy.« less

  13. Spin–orbit coupling, minimal model and potential Cooper-pairing from repulsion in BiS2-superconductors

    NASA Astrophysics Data System (ADS)

    Cobo-Lopez, Sergio; Saeed Bahramy, Mohammad; Arita, Ryotaro; Akbari, Alireza; Eremin, Ilya

    2018-04-01

    We develop the realistic minimal electronic model for recently discovered BiS2 superconductors including the spin–orbit (SO) coupling based on the first-principles band structure calculations. Due to strong SO coupling, characteristic for the Bi-based systems, the tight-binding low-energy model necessarily includes p x , p y , and p z orbitals. We analyze a potential Cooper-pairing instability from purely repulsive interaction for the moderate electronic correlations using the so-called leading angular harmonics approximation. For small and intermediate doping concentrations we find the dominant instabilities to be {d}{x2-{y}2}-wave, and s ±-wave symmetries, respectively. At the same time, in the absence of the sizable spin fluctuations the intra and interband Coulomb repulsions are of the same strength, which yield the strongly anisotropic behavior of the superconducting gaps on the Fermi surface. This agrees with recent angle resolved photoemission spectroscopy findings. In addition, we find that the Fermi surface topology for BiS2 layered systems at large electron doping can resemble the doped iron-based pnictide superconductors with electron and hole Fermi surfaces maintaining sufficient nesting between them. This could provide further boost to increase T c in these systems.

  14. Study of electronic structure of liquid Pb

    NASA Astrophysics Data System (ADS)

    Vora, A. M.; Gajjar, P. N.

    2018-04-01

    The Fiolhais et al.'s universal model potential in conjunction with the hard sphere technique of Percus and Yevick has been used for the study of electronic structure, Fermi energy and density of states of liquid Pb. The screening influence of the different forms of the local field correction functions proposed by Hartree (H) and Taylor (T) on the afore said properties is studied, which replicates the changing effects of screening and found suitable for the present study.

  15. The origin of anisotropy and high density of states in the electronic structure of Cr2GeC by means of polarized soft x-ray spectroscopy and ab initio calculations

    NASA Astrophysics Data System (ADS)

    Magnuson, Martin; Mattesini, Maurizio; Bugnet, Matthieu; Eklund, Per

    2015-10-01

    The anisotropy in the electronic structure of the inherently nanolaminated ternary phase Cr2GeC is investigated by bulk-sensitive and element selective soft x-ray absorption/emission spectroscopy. The angle-resolved absorption/emission measurements reveal differences between the in-plane and out-of-plane bonding at the (0001) interfaces of Cr2GeC. The Cr L 2, 3, C K, and Ge M 1, M 2, 3 emission spectra are interpreted with first-principles density-functional theory (DFT) including core-to-valence dipole transition matrix elements. For the Ge 4s states, the x-ray emission measurements reveal two orders of magnitude higher intensity at the Fermi level than DFT within the General Gradient Approximation (GGA) predicts. We provide direct evidence of anisotropy in the electronic structure and the orbital occupation that should affect the thermal expansion coefficient and transport properties. As shown in this work, hybridization and redistribution of intensity from the shallow 3d core levels to the 4s valence band explain the large Ge density of states at the Fermi level.

  16. The origin of anisotropy and high density of states in the electronic structure of Cr2GeC by means of polarized soft x-ray spectroscopy and ab initio calculations.

    PubMed

    Magnuson, Martin; Mattesini, Maurizio; Bugnet, Matthieu; Eklund, Per

    2015-10-21

    The anisotropy in the electronic structure of the inherently nanolaminated ternary phase Cr2GeC is investigated by bulk-sensitive and element selective soft x-ray absorption/emission spectroscopy. The angle-resolved absorption/emission measurements reveal differences between the in-plane and out-of-plane bonding at the (0001) interfaces of Cr2GeC. The Cr L(2, 3), C K, and Ge M1, M(2, 3) emission spectra are interpreted with first-principles density-functional theory (DFT) including core-to-valence dipole transition matrix elements. For the Ge 4s states, the x-ray emission measurements reveal two orders of magnitude higher intensity at the Fermi level than DFT within the General Gradient Approximation (GGA) predicts. We provide direct evidence of anisotropy in the electronic structure and the orbital occupation that should affect the thermal expansion coefficient and transport properties. As shown in this work, hybridization and redistribution of intensity from the shallow 3d core levels to the 4s valence band explain the large Ge density of states at the Fermi level.

  17. Criticality of the electron-nucleus cusp condition to local effective potential-energy theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan Xiaoyin; Sahni, Viraht; Graduate School of the City University of New York, 360 Fifth Avenue, New York, New York 10016

    2003-01-01

    Local(multiplicative) effective potential energy-theories of electronic structure comprise the transformation of the Schroedinger equation for interacting Fermi systems to model noninteracting Fermi or Bose systems whereby the equivalent density and energy are obtained. By employing the integrated form of the Kato electron-nucleus cusp condition, we prove that the effective electron-interaction potential energy of these model fermions or bosons is finite at a nucleus. The proof is general and valid for arbitrary system whether it be atomic, molecular, or solid state, and for arbitrary state and symmetry. This then provides justification for all prior work in the literature based on themore » assumption of finiteness of this potential energy at a nucleus. We further demonstrate the criticality of the electron-nucleus cusp condition to such theories by an example of the hydrogen molecule. We show thereby that both model system effective electron-interaction potential energies, as determined from densities derived from accurate wave functions, will be singular at the nucleus unless the wave function satisfies the electron-nucleus cusp condition.« less

  18. Self-energy behavior away from the Fermi surface in doped Mott insulators.

    PubMed

    Merino, J; Gunnarsson, O; Kotliar, G

    2016-02-03

    We analyze self-energies of electrons away from the Fermi surface in doped Mott insulators using the dynamical cluster approximation to the Hubbard model. For large onsite repulsion, U, and hole doping, the magnitude of the self-energy for imaginary frequencies at the top of the band ([Formula: see text]) is enhanced with respect to the self-energy magnitude at the bottom of the band ([Formula: see text]). The self-energy behavior at these two [Formula: see text]-points is switched for electron doping. Although the hybridization is much larger for (0, 0) than for [Formula: see text], we demonstrate that this is not the origin of this difference. Isolated clusters under a downward shift of the chemical potential, [Formula: see text], at half-filling reproduce the overall self-energy behavior at (0, 0) and [Formula: see text] found in low hole doped embedded clusters. This happens although there is no change in the electronic structure of the isolated clusters. Our analysis shows that a downward shift of the chemical potential which weakly hole dopes the Mott insulator can lead to a large enhancement of the [Formula: see text] self-energy for imaginary frequencies which is not associated with electronic correlation effects, even in embedded clusters. Interpretations of the strength of electronic correlations based on self-energies for imaginary frequencies are, in general, misleading for states away from the Fermi surface.

  19. Relativistic Thomas-Fermi treatment of compressed atoms and compressed nuclear matter cores of stellar dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rotondo, M.; Rueda, Jorge A.; Xue, S.-S.

    The Feynman-Metropolis-Teller treatment of compressed atoms is extended to the relativistic regimes. Each atomic configuration is confined by a Wigner-Seitz cell and is characterized by a positive electron Fermi energy. The nonrelativistic treatment assumes a pointlike nucleus and infinite values of the electron Fermi energy can be attained. In the relativistic treatment there exists a limiting configuration, reached when the Wigner-Seitz cell radius equals the radius of the nucleus, with a maximum value of the electron Fermi energy (E{sub e}{sup F}){sub max}, here expressed analytically in the ultrarelativistic approximation. The corrections given by the relativistic Thomas-Fermi-Dirac exchange term are alsomore » evaluated and shown to be generally small and negligible in the relativistic high-density regime. The dependence of the relativistic electron Fermi energies by compression for selected nuclei are compared and contrasted to the nonrelativistic ones and to the ones obtained in the uniform approximation. The relativistic Feynman-Metropolis-Teller approach here presented overcomes some difficulties in the Salpeter approximation generally adopted for compressed matter in physics and astrophysics. The treatment is then extrapolated to compressed nuclear matter cores of stellar dimensions with A{approx_equal}(m{sub Planck}/m{sub n}){sup 3}{approx}10{sup 57} or M{sub core}{approx}M{sub {circle_dot}}. A new family of equilibrium configurations exists for selected values of the electron Fermi energy varying in the range 0

  20. Electronic properties of GeTe and Ag- or Sb-substituted GeTe studied by low-temperature Te 125 NMR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, J.; Levin, E. M.; Lee, Y.

    We have carried out 125Te nuclear magnetic resonance (NMR) in a wide temperature range of 1.5–300 K to investigate the electronic properties of Ge 50 Te 50, Ag 2 Ge 48Te 50 , and Sb 2 Ge 48 Te 50 from a microscopic point of view. From the temperature dependence of the NMR shift (K) and nuclear spin lattice relaxation rate (1/T 1), we found that two bands contribute to the physical properties of the materials. One band overlaps the Fermi level providing the metallic state where no strong electron correlations are revealed by Korringa analysis. The other band ismore » separated from the Fermi level by an energy gap of E g/k B ~67 K, which gives rise to semiconductorlike properties. First-principles calculation reveals that the metallic band originates from the Ge vacancy while the semiconductorlike band is related to the fine structure of the density of states near the Fermi level. We find low-temperature Te125 NMR data for the materials studied here clearly show that Ag substitution increases hole concentration while Sb substitution decreases it.« less

  1. Electronic properties of GeTe and Ag- or Sb-substituted GeTe studied by low-temperature Te 125 NMR

    DOE PAGES

    Cui, J.; Levin, E. M.; Lee, Y.; ...

    2016-08-18

    We have carried out 125Te nuclear magnetic resonance (NMR) in a wide temperature range of 1.5–300 K to investigate the electronic properties of Ge 50 Te 50, Ag 2 Ge 48Te 50 , and Sb 2 Ge 48 Te 50 from a microscopic point of view. From the temperature dependence of the NMR shift (K) and nuclear spin lattice relaxation rate (1/T 1), we found that two bands contribute to the physical properties of the materials. One band overlaps the Fermi level providing the metallic state where no strong electron correlations are revealed by Korringa analysis. The other band ismore » separated from the Fermi level by an energy gap of E g/k B ~67 K, which gives rise to semiconductorlike properties. First-principles calculation reveals that the metallic band originates from the Ge vacancy while the semiconductorlike band is related to the fine structure of the density of states near the Fermi level. We find low-temperature Te125 NMR data for the materials studied here clearly show that Ag substitution increases hole concentration while Sb substitution decreases it.« less

  2. Electronic properties of core-shell nanowire resonant tunneling diodes

    PubMed Central

    2014-01-01

    The electronic sub-band structure of InAs/InP/InAs/InP/InAs core-shell nanowire resonant tunneling diodes has been investigated in the effective mass approximation by varying the core radius and the thickness of the InP barriers and InAs shells. A top-hat, double-barrier potential profile and optimal energy configuration are obtained for core radii and surface shells >10 nm, InAs middle shells <10 nm, and 5 nm InP barriers. In this case, two sub-bands exist above the Fermi level in the InAs middle shell which belongs to the m = 0 and m = 1 ladder of states that have similar wave functions and energies. On the other hand, the lowest m = 0 sub-band in the core falls below the Fermi level but the m = 1 states do not contribute to the current transport since they reside energetically well above the Fermi level. We compare the case of GaAs/AlGaAs/GaAs/AlGaAs/GaAs which may conduct current with smaller applied voltages due to the larger effective mass of electrons in GaAs and discuss the need for doping. PMID:25288912

  3. Decreasing the Hydroxylation Affinity of La 1–x Sr x MnO 3 Perovskites To Promote Oxygen Reduction Electrocatalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoerzinger, Kelsey A.; Hong, Wesley T.; Wang, Xiao Renshaw

    Understanding the interaction between oxides and water is critical to design many of their functionalities, including the electrocatalysis of molecular oxygen reduction. In this study, we probed the hydroxylation of model (001)-oriented La(1-x)SrxMnO3 (LSMO) perovskite surfaces, where the electronic structure and manganese valence was controlled by five substitution levels of lanthanum with strontium, using ambient pressure X-ray photoelectron spectroscopy in a humid environment. The degree of hydroxyl formation on the oxide surface correlated with the proximity of the valence band center relative to the Fermi level. LSMO perovskites with a valence band center closer to the Fermi level were moremore » reactive toward water, forming more hydroxyl species at a given relative humidity. More hydroxyl species correlate with greater electron-donating character to the surface free energy in wetting, and reduce the activity to catalyze oxygen reduction reaction (ORR) kinetics in basic solution. New strategies to design more active catalysts should include design of electronically conducting oxides with lower valence band centers relative to the Fermi level at ORR-relevant potentials.« less

  4. Electronic properties of core-shell nanowire resonant tunneling diodes.

    PubMed

    Zervos, Matthew

    2014-01-01

    The electronic sub-band structure of InAs/InP/InAs/InP/InAs core-shell nanowire resonant tunneling diodes has been investigated in the effective mass approximation by varying the core radius and the thickness of the InP barriers and InAs shells. A top-hat, double-barrier potential profile and optimal energy configuration are obtained for core radii and surface shells >10 nm, InAs middle shells <10 nm, and 5 nm InP barriers. In this case, two sub-bands exist above the Fermi level in the InAs middle shell which belongs to the m = 0 and m = 1 ladder of states that have similar wave functions and energies. On the other hand, the lowest m = 0 sub-band in the core falls below the Fermi level but the m = 1 states do not contribute to the current transport since they reside energetically well above the Fermi level. We compare the case of GaAs/AlGaAs/GaAs/AlGaAs/GaAs which may conduct current with smaller applied voltages due to the larger effective mass of electrons in GaAs and discuss the need for doping.

  5. Density of states, optical and thermoelectric properties of perovskite vanadium fluorides Na3VF6

    NASA Astrophysics Data System (ADS)

    Reshak, A. H.; Azam, Sikander

    2014-05-01

    The electronic structure, charge density and Fermi surface of Na3VF6 compound have been examined with the support of density functional theory (DFT). Using the full potential linear augmented plane wave method, we employed the local density approximation (LDA), generalized gradient approximation (GGA) and Engel-Vosko GGA (EVGGA) to treat the exchange correlation potential to solve Kohn-Sham equations. The calculation show that Na3VF6 compound has metallic nature and the Fermi energy (EF) is assessed by overlapping of V-d state. The calculated density of states at the EF are about 18.655, 51.932 and 13.235 states/eV, and the bare linear low-temperature electronic specific heat coefficient (γ) is found to be 3.236 mJ/mol-K2, 9.008 mJ/mol-K2 and 2.295 mJ/mol-K2 for LDA, GGA and EVGGA, respectively. The Fermi surface is composed of two sheets. The chemical bonding of Na3VF6 compound is analyzed through the electronic charge density in the (1 1 0) crystallographic plane. The optical constants and thermal properties were also calculated and discussed.

  6. DFT calculations of strain and interface effects on electronic structures and magnetic properties of L10-FePt/Ag heterojunction of GMR applications

    NASA Astrophysics Data System (ADS)

    Pramchu, Sittichain; Jaroenjittichai, Atchara Punya; Laosiritaworn, Yongyut

    2018-03-01

    In this work, density functional theory (DFT) was employed to investigate the effect of strain and interface on electronic structures and magnetic properties of L10-FePt/Ag heterojunction. Two possible interface structures of L10-FePt(001)/Ag(001), that is, interface between Fe and Ag layers (Fe/Ag) and between Pt and Ag layers (Pt/Ag), were inspected. It was found that Pt/Ag interface is more stable than Fe/Ag interface due to its lower formation energy. Further, under the lattice mismatch induced tensile strain, the enhancement of magnetism for both Fe/Ag and Pt/Ag interface structures has been found to have progressed, though the magnetic moments of "interfacial" Fe and Pt atoms have been found to have decreased. To explain this further, the local density of states (LDOS) analysis suggests that interaction between Fe (Pt) and Ag near Fe/Ag (Pt/Ag) interface leads to spin symmetry breaking of the Ag atom and hence induces magnetism magnitude. In contrast, the magnetic moments of interfacial Fe and Pt atoms reduce because of the increase in the electronic states near the Fermi level of the minority-spin electrons. In addition, the significant enhancements of the LDOS near the Fermi levels of the minority-spin electrons signify the boosting of the transport properties of the minority-spin electrons and hence the spin-dependent electron transport at this ferromagnet/metal interface. From this work, it is expected that this clarification of the interfacial magnetism may inspire new innovation on how to improve spin-dependent electron transport for enhancing the giant magnetoresistance (GMR) ratio of potential GMR-based spintronic devices.

  7. Effects of magnetic dopants in (Li0.8M0.2OH )FeSe (M =Fe , Mn, Co): Density functional theory study using a band unfolding technique

    NASA Astrophysics Data System (ADS)

    Chen, M. X.; Chen, Wei; Zhang, Zhenyu; Weinert, M.

    2017-12-01

    The effects of Fe dopants on the electronic bands structure of (Li0.8Fe0.2OH )FeSe are investigated by a band unfolding (k -projection) technique and first-principles supercell calculations. Doping 20% Fe into the LiOH layers causes electron donation to the FeSe layers, significantly changing the profile of bands around the Fermi level. Because of the weak bonding between the LiOH and FeSe layers the magnetic configuration of the dopants has only minor effects on the band structure. The electronic bands for the surface FeSe layer of (Li0.8Fe0.2OH )FeSe show noticeable differences compared to those of the inner layers, both in the location of the Fermi level and in details of the bands near the high symmetry points, resulting from different effective doping levels and the broken symmetry at the surface. The band structure for the surface FeSe layer with checkerboard antiferromagnetic order is reasonably consistent with angle-resolved photoemission results. The 3 d transition metals Mn and Co have similar doping effects on the band structure of (LiOH)FeSe.

  8. Influence of the plasma environment on atomic structure using an ion-sphere model

    NASA Astrophysics Data System (ADS)

    Belkhiri, Madeny; Fontes, Christopher J.; Poirier, Michel

    2015-09-01

    Plasma environment effects on atomic structure are analyzed using various atomic structure codes. To monitor the effect of high free-electron density or low temperatures, Fermi-Dirac and Maxwell-Boltzmann statistics are compared. After a discussion of the implementation of the Fermi-Dirac approach within the ion-sphere model, several applications are considered. In order to check the consistency of the modifications brought here to extant codes, calculations have been performed using the Los Alamos Cowan Atomic Structure (cats) code in its Hartree-Fock or Hartree-Fock-Slater form and the parametric potential Flexible Atomic Code (fac). The ground-state energy shifts due to the plasma effects for the six most ionized aluminum ions have been calculated using the fac and cats codes and fairly agree. For the intercombination resonance line in Fe22 +, the plasma effect within the uniform electron gas model results in a positive shift that agrees with the multiconfiguration Dirac-Fock value of B. Saha and S. Fritzsche [J. Phys. B 40, 259 (2007), 10.1088/0953-4075/40/2/002]. Last, the present model is compared to experimental data in titanium measured on the terawatt Astra facility and provides values for electron temperature and density in agreement with the maria code.

  9. Suppression of the "Quasiclassical" proximity gap in correlated-metal--superconductor structures.

    PubMed

    Nikolić, Branislav K; Freericks, J K; Miller, P

    2002-02-18

    We study the energy and spatial dependence of the local density of states in a superconductor--correlated-metal--superconductor Josephson junction, where the correlated metal is a non-Fermi liquid (described by the Falicov-Kimball model). Many-body correlations are treated with dynamical mean-field theory, extended to inhomogeneous systems. While quasiclassical theories predict a minigap in the spectrum of a disordered Fermi liquid which is proximity-coupled within a mesoscopic junction, we find that increasing electron correlations destroy any minigap that might be opened in the absence of many-body correlations.

  10. Electronic structure and magnetic ordering in manganese hydride

    NASA Astrophysics Data System (ADS)

    Magnitskaya, M. V.; Kulikov, N. I.

    1991-03-01

    The self-consistent electron energy bands of antiferromagnetic (AFM) and non-magnetic manganese hydride are calculated using the linear muffintin orbital method (LMTO). The calculated values of equilibrium volume and of magnetic moment on the manganese site are in good agreement with experiment. The Fermi surface of paramagnetic MnH contains two nesting parts, and their superposition gives rise to AFM gap.

  11. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    PubMed Central

    Doiron-Leyraud, N.; Badoux, S.; René de Cotret, S.; Lepault, S.; LeBoeuf, D.; Laliberté, F.; Hassinger, E.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Park, J.-H..; Vignolles, D.; Vignolle, B.; Taillefer, L.; Proust, C.

    2015-01-01

    In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge–density–wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap. PMID:25616011

  12. Electron transport in polycyclic aromatic hydrocarbons/boron nitride hybrid structures: density functional theory combined with the nonequilibrium Green's function.

    PubMed

    Panahi, S F K S; Namiranian, Afshin; Soleimani, Maryam; Jamaati, Maryam

    2018-02-07

    We investigate the electronic transport properties of two types of junction based on single polyaromatic hydrocarbons (PAHs) and PAHs embedded in boron nitride (h-BN) nanoribbons, using nonequilibrium Green's functions (NEGF) and density functional theory (DFT). In the PAH junctions, a Fano resonance line shape at the Fermi energy in the transport feature can be clearly seen. In hybrid junctions, structural asymmetries enable interactions between the electronic states, leading to observation of interface-based transport. Our findings reveal that the interface of PAH/h-BN strongly affects the transport properties of the structures.

  13. Comparison of electronic structure between monolayer silicenes on Ag (111)

    NASA Astrophysics Data System (ADS)

    Chun-Liang, Lin; Ryuichi, Arafune; Maki, Kawai; Noriaki, Takagi

    2015-08-01

    The electronic structures of monolayer silicenes (4 × 4 and ) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations. Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.

  14. Quasiparticle scattering in type-II Weyl semimetal MoTe2

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Liang; Arafune, Ryuichi; Minamitani, Emi; Kawai, Maki; Takagi, Noriaki

    2018-03-01

    The electronic structure of type-II Weyl semimetal molybdenum ditelluride (MoTe2) is studied by using scanning tunneling microscopy and density functional theory calculations. Through measuring energy-dependent quasiparticle interference (QPI) patterns with a cryogenic scanning tunneling microscope, several characteristic features are found in the QPI patterns. Two of them arise from the Weyl semimetal nature; one is the topological Fermi arc surface state and the other can be assigned to be a Weyl point. The remaining structures are derived from the scatterings relevant to the bulk electronic states. The findings lead to further understanding of the topological electronic structure of type-II Weyl semimetal MoTe2.

  15. Quasiparticle scattering in type-II Weyl semimetal MoTe2.

    PubMed

    Lin, Chun-Liang; Arafune, Ryuichi; Minamitani, Emi; Kawai, Maki; Takagi, Noriaki

    2018-02-15

    The electronic structure of type-II Weyl semimetal molybdenum ditelluride (MoTe 2 ) is studied by using scanning tunneling microscopy and density functional theory calculations. Through measuring energy-dependent quasiparticle interference (QPI) patterns with a cryogenic scanning tunneling microscope, several characteristic features are found in the QPI patterns. Two of them arise from the Weyl semimetal nature; one is the topological Fermi arc surface state and the other can be assigned to be a Weyl point. The remaining structures are derived from the scatterings relevant to the bulk electronic states. The findings lead to further understanding of the topological electronic structure of type-II Weyl semimetal MoTe 2 .

  16. Geometrically frustrated trimer-based Mott insulator

    NASA Astrophysics Data System (ADS)

    Nguyen, Loi T.; Halloran, T.; Xie, Weiwei; Kong, Tai; Broholm, C. L.; Cava, R. J.

    2018-05-01

    The crystal structure of B a4NbR u3O12 is based on triangular planes of elongated R u3O12 trimers oriented perpendicular to the plane. We report that it is semiconducting, that its Weiss temperature and effective magnetic moment are -155 K and 2.59 μB/f .u . , respectively, and that the magnetic susceptibility and specific-heat data indicate that it exhibits magnetic ordering near 4 K. The presence of a high density of low energy states is evidenced by a substantial Sommerfeld-like T-linear term [ γ =31 (2 ) mJ mo l-1K-2 ] in the specific heat. Electronic-structure calculations reveal that the electronic states at the Fermi energy reside on the R u3O12 trimers and that the calculated density of electronic states is high and continuous around the Fermi energy—in other words density functional theory calculates the material to be a metal. The results imply that B a4NbR u3O12 is a geometrically frustrated trimer-based Mott insulator.

  17. Anomalous transport phenomena in Weyl metal beyond the Drude model for Landau's Fermi liquids.

    PubMed

    Kim, Ki-Seok; Kim, Heon-Jung; Sasaki, M; Wang, J-F; Li, L

    2014-12-01

    Landau's Fermi-liquid theory is the standard model for metals, characterized by the existence of electron quasiparticles near a Fermi surface as long as Landau's interaction parameters lie below critical values for instabilities. Recently this fundamental paradigm has been challenged by the physics of strong spin-orbit coupling, although the concept of electron quasiparticles remains valid near the Fermi surface, where Landau's Fermi-liquid theory fails to describe the electromagnetic properties of this novel metallic state, referred to as Weyl metal. A novel ingredient is that such a Fermi surface encloses a Weyl point with definite chirality, referred to as a chiral Fermi surface, which can arise from breaking of either time reversal or inversion symmetry in systems with strong spin-orbit coupling, responsible for both the Berry curvature and the chiral anomaly. As a result, electromagnetic properties of the Weyl metallic state are described not by conventional Maxwell equations but by axion electrodynamics, where Maxwell equations are modified with a topological-in-origin spatially modulated [Formula: see text] term. This novel metallic state was realized recently in Bi[Formula: see text]Sb x around [Formula: see text] under magnetic fields, where the Dirac spectrum appears around the critical point between the normal semiconducting ([Formula: see text]) and topological semiconducting phases ([Formula: see text]) and the time reversal symmetry breaking perturbation causes the Dirac point to split into a pair of Weyl points along the direction of the applied magnetic field for a very strong spin-orbit coupled system. In this review article, we discuss how the topological structure of both the Berry curvature and the chiral anomaly (axion electrodynamics) gives rise to anomalous transport phenomena in [Formula: see text]Sb x around [Formula: see text] under magnetic fields, thus modifying the Drude model of Landau's Fermi liquids.

  18. The Key Ingredients of the Electronic Structure of FeSe

    NASA Astrophysics Data System (ADS)

    Coldea, Amalia I.; Watson, Matthew D.

    2018-03-01

    FeSe is a fascinating superconducting material at the frontier of research in condensed matter physics. Here, we provide an overview of the current understanding of the electronic structure of FeSe, focusing in particular on its low-energy electronic structure as determined from angle-resolved photoemission spectroscopy, quantum oscillations, and magnetotransport measurements of single-crystal samples. We discuss the unique place of FeSe among iron-based superconductors, as it is a multiband system exhibiting strong orbitally dependent electronic correlations and unusually small Fermi surfaces and is prone to different electronic instabilities. We pay particular attention to the evolution of the electronic structure that accompanies the tetragonal-orthorhombic structural distortion of the lattice around 90 K, which stabilizes a unique nematic electronic state. Finally, we discuss how the multiband multiorbital nematic electronic structure impacts our understanding of the superconductivity, and show that the tunability of the nematic state with chemical and physical pressure helps to disentangle the role of different competing interactions relevant for enhancing superconductivity.

  19. Measurement of the Atomic Orbital Composition of the Near-Fermi-Level Electronic States in the Lanthanum Monopnictides LaBi and LaSb

    NASA Astrophysics Data System (ADS)

    Nummy, Thomas; Waugh, Justin; Parham, Stephen; Li, Haoxiang; Zhou, Xiaoqing; Plumb, Nick; Tafti, Fazel; Dessau, Daniel

    Angle resolved photoemission spectroscopy (ARPES) is used to measure the electronic structure of the Extreme Magnetoresistance (XMR) topological semimetal candidates LaBi and LaSb. Using a wide range of photon energies the true bulk states are cleanly disentangled from the various types of surface states, which may exist due to surface projections of bulk states as well as for topological reasons. The orbital content of the near-EF states are extracted using varying photon polarizations. The measured bulk bands are somewhat lighter and are energy shifted compared to the results of Density Functional calculations, which is a minor effect in LaBi and a more serious effect in LaSb. This bulk band structure puts LaBi in the v = 1 class of Topological Insulators (or semimetals), consistent with the measured Dirac-like surface states. LaSb on the other hand is at the verge of a topological band inversion, with a less-clear case for any distinctly topological surface states. The low-dimensional cigar-shaped bulk Fermi surfaces for both compounds are separated out by orbital content, with a crossover from pnictide d orbitals to La p orbitals around the Fermi surface, which through strong spin-orbit coupling may be relevant for the Extreme Magnetoresistance. NSF GRFP.

  20. Implementation of a method for calculating temperature-dependent resistivities in the KKR formalism

    NASA Astrophysics Data System (ADS)

    Mahr, Carsten E.; Czerner, Michael; Heiliger, Christian

    2017-10-01

    We present a method to calculate the electron-phonon induced resistivity of metals in scattering-time approximation based on the nonequilibrium Green's function formalism. The general theory as well as its implementation in a density-functional theory based Korringa-Kohn-Rostoker code are described and subsequently verified by studying copper as a test system. We model the thermal expansion by fitting a Debye-Grüneisen curve to experimental data. Both the electronic and vibrational structures are discussed for different temperatures, and employing a Wannier interpolation of these quantities we evaluate the scattering time by integrating the electron linewidth on a triangulation of the Fermi surface. Based thereupon, the temperature-dependent resistivity is calculated and found to be in good agreement with experiment. We show that the effect of thermal expansion has to be considered in the whole calculation regime. Further, for low temperatures, an accurate sampling of the Fermi surface becomes important.

  1. Double-wells and double-layers in dusty Fermi-Dirac plasmas: Comparison with the semiclassical Thomas-Fermi counterpart

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    Based on the quantum hydrodynamics (QHD) model, a new relationship between the electrostatic-potential and the electron-density in the ultradense plasma is derived. Propagation of arbitrary amplitude nonlinear ion waves is, then, investigated in a completely degenerate dense dusty electron-ion plasma, using this new energy relation for the relativistic electrons, in the ground of quantum hydrodynamics model and the results are compared to the case of semiclassical Thomas-Fermi dusty plasma. Based on the standard pseudopotential approach, it is remarked that the Fermi-Dirac plasma, in contrast to the Thomas-Fermi counterpart, accommodates a wide variety of nonlinear excitations such as positive/negative-potential ion solitarymore » and periodic waves, double-layers, and double-wells. It is also remarked that the relativistic degeneracy parameter which relates to the mass-density of plasma has significant effects on the allowed matching-speed range in Fermi-Dirac dusty plasmas.« less

  2. Tight-binding modeling and low-energy behavior of the semi-Dirac point.

    PubMed

    Banerjee, S; Singh, R R P; Pardo, V; Pickett, W E

    2009-07-03

    We develop a tight-binding model description of semi-Dirac electronic spectra, with highly anisotropic dispersion around point Fermi surfaces, recently discovered in electronic structure calculations of VO2-TiO2 nanoheterostructures. We contrast their spectral properties with the well-known Dirac points on the honeycomb lattice relevant to graphene layers and the spectra of bands touching each other in zero-gap semiconductors. We also consider the lowest order dispersion around one of the semi-Dirac points and calculate the resulting electronic energy levels in an external magnetic field. In spite of apparently similar electronic structures, Dirac and semi-Dirac systems support diverse low-energy physics.

  3. Origins of the structural phase transitions in MoTe2 and WTe2

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Jung; Kang, Seoung-Hun; Hamada, Ikutaro; Son, Young-Woo

    2017-05-01

    Layered transition metal dichalcogenides MoTe2 and WTe2 share almost similar lattice constants as well as topological electronic properties except their structural phase transitions. While the former shows a first-order phase transition between monoclinic and orthorhombic structures, the latter does not. Using a recently proposed van der Waals density functional method, we investigate structural stability of the two materials and uncover that the disparate phase transitions originate from delicate differences between their interlayer bonding states near the Fermi energy. By exploiting the relation between the structural phase transitions and the low energy electronic properties, we show that a charge doping can control the transition substantially, thereby suggesting a way to stabilize or to eliminate their topological electronic energy bands.

  4. Spin-density wave state in simple hexagonal graphite

    NASA Astrophysics Data System (ADS)

    Mosoyan, K. S.; Rozhkov, A. V.; Sboychakov, A. O.; Rakhmanov, A. L.

    2018-02-01

    Simple hexagonal graphite, also known as AA graphite, is a metastable configuration of graphite. Using tight-binding approximation, it is easy to show that AA graphite is a metal with well-defined Fermi surface. The Fermi surface consists of two sheets, each shaped like a rugby ball. One sheet corresponds to electron states, another corresponds to hole states. The Fermi surface demonstrates good nesting: a suitable translation in the reciprocal space superposes one sheet onto another. In the presence of the electron-electron repulsion, a nested Fermi surface is unstable with respect to spin-density-wave ordering. This instability is studied using the mean-field theory at zero temperature, and the spin-density-wave order parameter is evaluated.

  5. Self-consistent self-interaction corrected density functional theory calculations for atoms using Fermi-Löwdin orbitals: Optimized Fermi-orbital descriptors for Li-Kr

    NASA Astrophysics Data System (ADS)

    Kao, Der-you; Withanage, Kushantha; Hahn, Torsten; Batool, Javaria; Kortus, Jens; Jackson, Koblar

    2017-10-01

    In the Fermi-Löwdin orbital method for implementing self-interaction corrections (FLO-SIC) in density functional theory (DFT), the local orbitals used to make the corrections are generated in a unitary-invariant scheme via the choice of the Fermi orbital descriptors (FODs). These are M positions in 3-d space (for an M-electron system) that can be loosely thought of as classical electron positions. The orbitals that minimize the DFT energy including the SIC are obtained by finding optimal positions for the FODs. In this paper, we present optimized FODs for the atoms from Li-Kr obtained using an unbiased search method and self-consistent FLO-SIC calculations. The FOD arrangements display a clear shell structure that reflects the principal quantum numbers of the orbitals. We describe trends in the FOD arrangements as a function of atomic number. FLO-SIC total energies for the atoms are presented and are shown to be in close agreement with the results of previous SIC calculations that imposed explicit constraints to determine the optimal local orbitals, suggesting that FLO-SIC yields the same solutions for atoms as these computationally demanding earlier methods, without invoking the constraints.

  6. Electron acceleration in a secondary magnetic island formed during magnetic reconnection with a guide field

    NASA Astrophysics Data System (ADS)

    Wang, Huanyu; Lu, Quanming; Huang, Can; Wang, Shui

    2017-05-01

    Secondary magnetic islands may be generated in the vicinity of an X line during magnetic reconnection. In this paper, by performing two-dimensional (2-D) particle-in-cell simulations, we investigate the role of a secondary magnetic island in electron acceleration during magnetic reconnection with a guide field. The electron motions are found to be adiabatic, and we analyze the contributions of the parallel electric field and Fermi and betatron mechanisms to electron acceleration in the secondary island during the evolution of magnetic reconnection. When the secondary island is formed, electrons are accelerated by the parallel electric field due to the existence of the reconnection electric field in the electron current sheet. Electrons can be accelerated by both the parallel electric field and Fermi mechanism when the secondary island begins to merge with the primary magnetic island, which is formed simultaneously with the appearance of X lines. With the increase in the guide field, the contributions of the Fermi mechanism to electron acceleration become less and less important. When the guide field is sufficiently large, the contribution of the Fermi mechanism is almost negligible.

  7. Theoretical Study of tip apex electronic structure in Scanning Tunneling Microscope

    NASA Astrophysics Data System (ADS)

    Choi, Heesung; Huang, Min; Randall, John; Cho, Kyeongjae

    2011-03-01

    Scanning Tunneling Microscope (STM) has been widely used to explore diverse surface properties with an atomic resolution, and STM tip has played a critical role in controlling surface structures. However, detailed information of atomic and electronic structure of STM tip and the fundamental understanding of STM images are still incomplete. Therefore, it is important to develop a comprehensive understanding of the electronic structure of STM tip. We have studied the atomic and electronic structures of STM tip with various transition metals (TMs) by DFT method. The d-electrons of TM tip apex atoms show different orbital states near the Fermi level. We will present comprehensive data of STM tips from our DFT calculation. Verified quantification of the tip electronic structures will lead to fundamental understanding of STM tip structure-property relationship. This work is supported by the DARPA TBN Program and the Texas ETF. DARPA Tip Based Nanofabrication Program and the Emerging Technology Fund of the State of Texas.

  8. Mechanism of charge transfer and its impacts on Fermi-level pinning for gas molecules adsorbed on monolayer WS2.

    PubMed

    Zhou, Changjie; Yang, Weihuang; Zhu, Huili

    2015-06-07

    Density functional theory calculations were performed to assess changes in the geometric and electronic structures of monolayer WS2 upon adsorption of various gas molecules (H2, O2, H2O, NH3, NO, NO2, and CO). The most stable configuration of the adsorbed molecules, the adsorption energy, and the degree of charge transfer between adsorbate and substrate were determined. All evaluated molecules were physisorbed on monolayer WS2 with a low degree of charge transfer and accept charge from the monolayer, except for NH3, which is a charge donor. Band structure calculations showed that the valence and conduction bands of monolayer WS2 are not significantly altered upon adsorption of H2, H2O, NH3, and CO, whereas the lowest unoccupied molecular orbitals of O2, NO, and NO2 are pinned around the Fermi-level when these molecules are adsorbed on monolayer WS2. The phenomenon of Fermi-level pinning was discussed in light of the traditional and orbital mixing charge transfer theories. The impacts of the charge transfer mechanism on Fermi-level pinning were confirmed for the gas molecules adsorbed on monolayer WS2. The proposed mechanism governing Fermi-level pinning is applicable to the systems of adsorbates on recently developed two-dimensional materials, such as graphene and transition metal dichalcogenides.

  9. Electron storage in single wall carbon nanotubes. Fermi level equilibration in semiconductor-SWCNT suspensions.

    PubMed

    Kongkanand, Anusorn; Kamat, Prashant V

    2007-08-01

    The use of single wall carbon nanotubes (SWCNTs) as conduits for transporting electrons in a photoelectrochemical solar cell and electronic devices requires better understanding of their electron-accepting properties. When in contact with photoirradiated TiO(2) nanoparticles, SWCNTs accept and store electrons. The Fermi level equilibration with photoirradiated TiO(2) particles indicates storage of up to 1 electron per 32 carbon atoms in the SWCNT. The stored electrons are readily discharged on demand upon addition of electron acceptors such as thiazine and oxazine dyes (reduction potential less negative than that of the SWCNT conduction band) to the TiO(2)-SWCNT suspension. The stepwise electron transfer from photoirradiated TiO(2) nanoparticles --> SWCNT --> redox couple has enabled us to probe the electron equilibration process and determine the apparent Fermi level of the TiO(2)-SWCNT system. A positive shift in apparent Fermi level (20-30 mV) indicates the ability of SWCNTs to undergo charge equilibration with photoirradiated TiO(2) particles. The dependence of discharge capacity on the reduction potential of the dye redox couple is compared for TiO(2) and TiO(2)-SWCNT systems under equilibration conditions.

  10. Photoemission study of the electronic structure and charge density waves of Na₂Ti₂Sb₂O

    DOE PAGES

    Tan, S. Y.; Jiang, J.; Ye, Z. R.; ...

    2015-04-30

    The electronic structure of Na₂Ti₂Sb₂O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na₂Ti₂Sb₂O in the non-magnetic state, which indicates that there is no magnetic order in Na₂Ti₂Sb₂O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na₂Ti₂Sb₂O. Photon energy dependent ARPES results suggest that the electronic structure of Na₂Ti₂Sb₂O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV atmore » 7 K, indicating that Na₂Ti₂Sb₂O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime. (author)« less

  11. Electronic and structural ground state of heavy alkali metals at high pressure

    DOE PAGES

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; ...

    2015-02-17

    Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of themore » valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.« less

  12. Nanoscale measurements of unoccupied band dispersion in few-layer graphene.

    PubMed

    Jobst, Johannes; Kautz, Jaap; Geelen, Daniël; Tromp, Rudolf M; van der Molen, Sense Jan

    2015-11-26

    The properties of any material are fundamentally determined by its electronic band structure. Each band represents a series of allowed states inside a material, relating electron energy and momentum. The occupied bands, that is, the filled electron states below the Fermi level, can be routinely measured. However, it is remarkably difficult to characterize the empty part of the band structure experimentally. Here, we present direct measurements of unoccupied bands of monolayer, bilayer and trilayer graphene. To obtain these, we introduce a technique based on low-energy electron microscopy. It relies on the dependence of the electron reflectivity on incidence angle and energy and has a spatial resolution ∼10 nm. The method can be easily applied to other nanomaterials such as van der Waals structures that are available in small crystals only.

  13. Theory of Fermi Liquid with Flat Bands

    NASA Astrophysics Data System (ADS)

    Khodel, V. A.

    2018-04-01

    A self-consistent theory of Fermi systems hosting flat bands is developed. Compared with an original model of fermion condensation, its key point consists in proper accounting for mixing between condensate and non-condensate degrees of freedom that leads to formation of a non-BCS gap Υ (p) in the single-particle spectrum. The results obtained explain: (1) the two-gap structure of spectra of single-particle excitations of electron systems of copper oxides, revealed in ARPES studies, (2) the role of violation of the topological stability of the Landau state in the arrangement of the T-x phase diagram of this family of high-T_c superconductors, (3) the topological nature of a metal-insulator transition, discovered in homogeneous two-dimensional low-density electron liquid of MOSFETs more than 20 years ago.

  14. First Results on the High Energy Cosmic Ray Electron Spectrum from Fermi Lat

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2009-01-01

    This viewgraph presentation addresses energy reconstruction, electron-hadron separation, validation of Monte Carlo with flight data and an assessment of systematic errors from the Fermi Large Area Telescope.

  15. Analyse des proprietes electroniques de supraconducteurs a l'aide de la theorie de la fonctionnelle de la densite

    NASA Astrophysics Data System (ADS)

    Blackburn, Simon

    In this thesis, the electronic structure of different kinds of superconductors is explored with the density functional theory. A brief explanation of this theory is done in the introduction. The Hubbard model is also presented as it can be used to solve shortcomings of the theory in some materials such as cuprates. The blend of the two theories is the DFT+U which is used to describe materials with strongly correlated electrons. Afterward, a paper describing the electron-phonon coupling in the superconductor NbC1- xNx is presented. Results from this work show the role of the Fermi surface in the electron pairing mechanism leading to superconductivity. Based on these results, a model is developed explaining how the critical temperature is influenced by the change in frequency of the vibration modes. Then, quantum oscillation results based on a detailed analysis of Fermi surfaces, allowing a direct comparison with experimental data, are presented within two papers. The first one is about a material in the iron pnictide family, the LaFe2P2. Our calculations show that the Fermi surface of this material is different from the superconducting doped BaFe2As2 which explains why this material shows no sign of superconductivity. The second paper is about the heavy fermion system YbCoIn5. To do this, a new efficient method to calculate de Haas-van Alphen frequencies is developed. Finally, a paper on superconducting YBa2Cu3O6.5 is presented. Using DFT+U, the role of various magnetic orders on the Fermi surface are studied. The results allow a better understanding of the measured quantum oscillations in this material.

  16. Electron-exchange and quantum screening effects on the Thomson scattering process in quantum Fermi plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Gyeong Won; Jung, Young-Dae; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180-3590

    2013-06-15

    The influence of the electron-exchange and quantum screening on the Thomson scattering process is investigated in degenerate quantum Fermi plasmas. The Thomson scattering cross section in quantum plasmas is obtained by the plasma dielectric function and fluctuation-dissipation theorem as a function of the electron-exchange parameter, Fermi energy, plasmon energy, and wave number. It is shown that the electron-exchange effect enhances the Thomson scattering cross section in quantum plasmas. It is also shown that the differential Thomson scattering cross section has a minimum at the scattering angle Θ=π/2. It is also found that the Thomson scattering cross section increases with anmore » increase of the Fermi energy. In addition, the Thomson scattering cross section is found to be decreased with increasing plasmon energy.« less

  17. High-resolution Compton scattering study of the electron momentum density in Al

    NASA Astrophysics Data System (ADS)

    Ohata, T.; Itou, M.; Matsumoto, I.; Sakurai, Y.; Kawata, H.; Shiotani, N.; Kaprzyk, S.; Mijnarends, P. E.; Bansil, A.

    2000-12-01

    We report high-resolution Compton profiles (CP's) of Al along the three principal symmetry directions at a photon energy of 59.38 keV, together with corresponding highly accurate theoretical profiles obtained within the local-density approximation (LDA) based band-theory framework. A good accord between theory and experiment is found with respect to the overall shapes of the CP's and their first and second derivatives, as well as the anisotropies in the CP's defined as differences between pairs of various CP's. There are, however, discrepancies in that, in comparison to the LDA predictions, the measured profiles are lower at low momenta, show a Fermi cutoff that is broader, and display a tail that is higher at momenta above the Fermi momentum. A number of simple model calculations are carried out in order to gain insight into the nature of the underlying 3D momentum density in Al and the role of the Fermi surface in inducing fine structure in the CP's. The present results when compared with those on Li show clearly that the size of discrepancies between theoretical and experimental CP's is markedly smaller in Al than in Li. This indicates that, with increasing electron density, the conventional picture of the electron gas becomes more representative of the momentum density and that shortcomings of the LDA framework in describing the electron correlation effects become less important.

  18. Momentum-resolved hidden-order gap reveals symmetry breaking and origin of entropy loss in URu2Si2

    NASA Astrophysics Data System (ADS)

    Bareille, C.; Boariu, F. L.; Schwab, H.; Lejay, P.; Reinert, F.; Santander-Syro, A. F.

    2014-07-01

    Spontaneous symmetry breaking in physical systems leads to salient phenomena at all scales, from the Higgs mechanism and the emergence of the mass of the elementary particles, to superconductivity and magnetism in solids. The hidden-order state arising below 17.5 K in URu2Si2 is a puzzling example of one of such phase transitions: its associated broken symmetry and gap structure have remained longstanding riddles. Here we directly image how, across the hidden-order transition, the electronic structure of URu2Si2 abruptly reconstructs. We observe an energy gap of 7 meV opening over 70% of a large diamond-like heavy-fermion Fermi surface, resulting in the formation of four small Fermi petals, and a change in the electronic periodicity from body-centred tetragonal to simple tetragonal. Our results explain the large entropy loss in the hidden-order phase, and the similarity between this phase and the high-pressure antiferromagnetic phase found in quantum-oscillation experiments.

  19. Fermiology of the strongly spin-orbit coupled superconductor Sn(1-x)In(x)Te: implications for topological superconductivity.

    PubMed

    Sato, T; Tanaka, Y; Nakayama, K; Souma, S; Takahashi, T; Sasaki, S; Ren, Z; Taskin, A A; Segawa, Kouji; Ando, Yoichi

    2013-05-17

    We have performed angle-resolved photoemission spectroscopy on the strongly spin-orbit coupled low-carrier density superconductor Sn(1-x)In(x)Te (x = 0.045) to elucidate the electronic states relevant to the possible occurrence of topological superconductivity, as recently reported for this compound based on point-contact spectroscopy. The obtained energy-band structure reveals a small holelike Fermi surface centered at the L point of the bulk Brillouin zone, together with a signature of a topological surface state, indicating that this material is a doped topological crystalline insulator characterized by band inversion and mirror symmetry. A comparison of the electronic states with a band-noninverted superconductor possessing a similar Fermi surface structure, Pb(1-x)Tl(x)Te, suggests that the anomalous behavior in the superconducting state of Sn(1-x)In(x)Te is related to the peculiar orbital characteristics of the bulk valence band and/or the presence of a topological surface state.

  20. Cu doped diamond: Effect of charge state and defect aggregation on spin interactions in a 3d transition metal doped wide band-gap semiconductor

    NASA Astrophysics Data System (ADS)

    Benecha, E. M.; Lombardi, E. B.

    2018-05-01

    We present a first principles study of Cu in diamond using DFT+U electronic structure methods, by carefully considering the impact of co-doping, charge state, and Fermi level position on its stability, lattice location, spin states, and electronic properties. We show that the energetic stability and spin states of Cu are strongly dependent on the Fermi level position and the type of diamond co-doping, with Cu being energetically more favorable in n-type or p-type co-doped diamond compared to intrinsic diamond. Since Cu has been predicted to order magnetically in a number of other wide band-gap semiconductors, we have also evaluated this possibility for Cu doped diamond. We show that while Cu exhibits strong spin interactions at specific interatomic separations in diamond, a detailed consideration of the impact of Fermi level position and Cu aggregation precludes magnetic ordering, with Cu forming non-magnetic, antiferromagnetic, or paramagnetic clusters. These results have important implications in the understanding of the properties of transition metal dopants in diamond for device applications.

  1. Functional renormalization group approach to electronic structure calculations for systems without translational symmetry

    NASA Astrophysics Data System (ADS)

    Seiler, Christian; Evers, Ferdinand

    2016-10-01

    A formalism for electronic-structure calculations is presented that is based on the functional renormalization group (FRG). The traditional FRG has been formulated for systems that exhibit a translational symmetry with an associated Fermi surface, which can provide the organization principle for the renormalization group (RG) procedure. We here advance an alternative formulation, where the RG flow is organized in the energy-domain rather than in k space. This has the advantage that it can also be applied to inhomogeneous matter lacking a band structure, such as disordered metals or molecules. The energy-domain FRG (ɛ FRG) presented here accounts for Fermi-liquid corrections to quasiparticle energies and particle-hole excitations. It goes beyond the state of the art G W -BSE , because in ɛ FRG the Bethe-Salpeter equation (BSE) is solved in a self-consistent manner. An efficient implementation of the approach that has been tested against exact diagonalization calculations and calculations based on the density matrix renormalization group is presented. Similar to the conventional FRG, also the ɛ FRG is able to signalize the vicinity of an instability of the Fermi-liquid fixed point via runaway flow of the corresponding interaction vertex. Embarking upon this fact, in an application of ɛ FRG to the spinless disordered Hubbard model we calculate its phase boundary in the plane spanned by the interaction and disorder strength. Finally, an extension of the approach to finite temperatures and spin S =1 /2 is also given.

  2. Fermi LAT Results and Perspectives in Measurements of High Energy Galactic Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    Real breakthrough during last 1-1.5 years in cosmic ray electrons: ATIC, HESS, Pamela, and finally Fermi-LAT. New quality data have made it possible to start quantitative modeling. With the new data more puzzles than before on CR electrons origin. Need "multi-messenger" campaign: electrons, positrons, gammas, X-ray, radio, neutrino... It is viable that we are dealing with at least two distinct mechanisms of "primary" electron (both signs) production: a softer spectrum of negative electrons, and a harder spectrum of both e(+)+e(-). Exotic (e.g. DM) origin is not ruled out. Upper limits on CR electrons anisotropy are set. Good perspectives to have the Fermi LAT results on proton spectrum and positron fraction.

  3. Orbital superconductivity, defects, and pinned nematic fluctuations in the doped iron chalcogenide FeSe 0.45 Te 0.55

    DOE PAGES

    Sarkar, Saheli; Van Dyke, John; Sprau, Peter O.; ...

    2017-08-09

    We demonstrate that the differential conductance, dI/dV , measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe0.45Te0.55, possesses a series of characteristic features that allow one to extract the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two hole-like Fermi surfaces, and a strongly anisotropic gap on the electron-like Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related C 2-symmetry in the Fourier transformed differential conductance.

  4. Orbital superconductivity, defects, and pinned nematic fluctuations in the doped iron chalcogenide FeSe 0.45 Te 0.55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Saheli; Van Dyke, John; Sprau, Peter O.

    We demonstrate that the differential conductance, dI/dV , measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe0.45Te0.55, possesses a series of characteristic features that allow one to extract the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two hole-like Fermi surfaces, and a strongly anisotropic gap on the electron-like Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related C 2-symmetry in the Fourier transformed differential conductance.

  5. Energy spectrum and electrical conductivity of graphene with a nitrogen impurity

    NASA Astrophysics Data System (ADS)

    Repetskii, S. P.; Vyshivanaya, I. G.; Skotnikov, V. A.; Yatsenyuk, A. A.

    2015-04-01

    The electronic structure of graphene with a nitrogen impurity has been studied based on the model of tight binding using exchange-correlation potentials in the density-functional theory. Wave functions of 2 s and 2 p states of neutral noninteracting carbon atoms have been chosen as the basis. When studying the matrix elements of the Hamiltonian, the first three coordination shells have been taken into account. It has been established that the hybridization of electron-energy bands leads to the splitting of the electron energy spectrum near the Fermi level. Due to the overlap of the energy bands, the arising gap behaves as a quasi-gap, in which the density of the electron levels is much lower than in the rest of the spectrum. It has been established that the conductivity of graphene decreases with increasing nitrogen concentration. Since the increase in the nitrogen concentration leads to an increase in the density of states at the Fermi level, the decrease in the conductivity is due to a sharper decrease in the time of relaxation of the electron sates.

  6. What can Fermi LAT observation of the Galactic Centre tell us about its active past?

    NASA Astrophysics Data System (ADS)

    Zaharijas, Gabrijela; Petrović, Jovana; Serpico, Pasquale

    The Fermi-LAT gamma-ray data in the inner Galaxy region show several prominent features possibly related to the past activity of the Milky Way's super massive black hole. At a large, 50 deg scale, the Fermi LAT revealed symmetric hour glass structures with hard energy spectra extending up to 100 GeV (and dubbed `the Fermi bubbles'). More recently and closer to the Galactic centre, at the 10 deg scale, several groups have claimed evidence for excess gamma-ray emission that appears symmetric around the Galactic center and has an energy spectrum peaking at few GeVs. We explore here the possibility that this emission originates in inverse Compton emission from high-energy electrons produced in a short duration, burst-like event injecting 1052 - 1053 erg, roughly 106 yrs ago. Several lines of evidence suggest that a series of `burst like' events happened in the vicinity of our black hole in the past and gamma-ray observations may offer a new view of that scenario.

  7. A VO-seeded Approach for the Growth of Star-shaped VO2 and V2O5 Nanocrystals: Facile Synthesis Structural Characterization and Elucidation of Electronic Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L Whittaker; J Velazquez; S Banerjee

    2011-12-31

    Obtaining shape and size control of strongly correlated materials is imperative to obtain a fundamental understanding of the influence of finite size and surface restructuring on electronic instabilities in the proximity of the Fermi level. We present here a novel synthetic approach that takes advantage of the intrinsic octahedral symmetry of rock-salt-structured VO to facilitate the growth of six-armed nanocrystallites of related, technologically important binary vanadium oxides VO2 and V2O5. The prepared nanostructures exhibit clear six-fold symmetry and most notably show remarkable retention of electronic structure. The latter has been evidenced through extensive X-ray absorption spectroscopy measurements.

  8. Electronic structure of PrBa2Cu3O7: A local-spin-density approximation with on-site Coulomb interaction

    NASA Astrophysics Data System (ADS)

    Biagini, M.; Calandra, C.; Ossicini, Stefano

    1995-10-01

    Electronic structure calculations based on the local-spin-density approximation (LSDA) fail to reproduce the antiferromagnetic ground state of PrBa2Cu3O7 (PBCO). We have performed linear muffin-tin orbital-atomic sphere approximation calculations, based on the local-spin-density approximation with on-site Coulomb correlation applied to Cu(1) and Cu(2) 3d states. We have found that inclusion of the on-site Coulomb interaction modifies qualitatively the electronic structure of PBCO with respect to the LSDA results, and gives Cu spin moments in good agreement with the experimental values. The Cu(2) upper Hubbard band lies about 1 eV above the Fermi energy, indicating a CuII oxidation state. On the other hand, the Cu(1) upper Hubbard band is located across the Fermi level, which implies an intermediate oxidation state for the Cu(1) ion, between CuI and CuII. The metallic character of the CuO chains is preserved, in agreement with optical reflectivity [K. Takenaka et al., Phys. Rev. B 46, 5833 (1992)] and positron annihilation experiments [L. Hoffmann et al., Phys. Rev. Lett. 71, 4047 (1993)]. These results support the view of an extrinsic origin of the insulating character of PrBa2Cu3O7.

  9. Electrostatic energy and screened charge interaction near the surface of metals with different Fermi surface shape

    NASA Astrophysics Data System (ADS)

    Gabovich, A. M.; Il'chenko, L. G.; Pashitskii, E. A.; Romanov, Yu. A.

    1980-04-01

    Using the Poisson equation Green function for a self-consistent field in a spatially inhomogeneous system, expressions for the electrostatic energy and screened charge interaction near the surface of a semi-infinite metal and a thin quantizing film are derived. It is shown that the decrease law and Friedel oscillation amplitude of adsorbed atom indirect interaction are determined by the electron spectrum character and the Fermi surface shape. The results obtained enable us to explain, in particular, the submonolayer adsorbed film structure on the W and Mo surfaces.

  10. Fermi discovers giant gamma-ray bubbles in the Milky Way

    NASA Image and Video Library

    2017-12-08

    NASA image release November 9, 2010 To view a video about this story go to: www.flickr.com/photos/gsfc/5162413062 Using data from NASA's Fermi Gamma-ray Space Telescope, scientists have recently discovered a gigantic, mysterious structure in our galaxy. This never-before-seen feature looks like a pair of bubbles extending above and below our galaxy's center. But these enormous gamma-ray emitting lobes aren't immediately visible in the Fermi all-sky map. However, by processing the data, a group of scientists was able to bring these unexpected structures into sharp relief. Each lobe is 25,000 light-years tall and the whole structure may be only a few million years old. Within the bubbles, extremely energetic electrons are interacting with lower-energy light to create gamma rays, but right now, no one knows the source of these electrons. Are the bubbles remnants of a massive burst of star formation? Leftovers from an eruption by the supermassive black hole at our galaxy's center? Or or did these forces work in tandem to produce them? Scientists aren't sure yet, but the more they learn about this amazing structure, the better we'll understand the Milky Way. To learn more go to: www.nasa.gov/mission_pages/GLAST/news/new-structure.html NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Join us on Facebook Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio

  11. Time-dependent Models for Blazar Emission with the Second-order Fermi Acceleration

    NASA Astrophysics Data System (ADS)

    Asano, Katsuaki; Takahara, Fumio; Kusunose, Masaaki; Toma, Kenji; Kakuwa, Jun

    2014-01-01

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101-232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range of Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 1038 erg s-1, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.

  12. Anomalous Hall conductivity and electronic structures of Si-substituted Mn2CoAl epitaxial films

    NASA Astrophysics Data System (ADS)

    Arima, K.; Kuroda, F.; Yamada, S.; Fukushima, T.; Oguchi, T.; Hamaya, K.

    2018-02-01

    We study anomalous Hall conductivity (σAHC) and electronic band structures of Si-substituted Mn2CoAl (Mn2CoAl1 -xSix ). First-principles calculations reveal that the electronic band structure is like a spin-gapless system even after substituting a quaternary element of Si for Al up to x =0.2 in Mn2CoAl1 -xSix . This means that the Si substitution enables the Fermi-level shift without largely changing the electronic structures in Mn2CoAl . By using molecular beam epitaxy techniques, Mn2CoAl1 -xSix epitaxial films can be grown, leading to the systematic control of x (0 ⩽x ⩽0.3 ). In addition to the electrical conductivity, the values of σAHC for the Mn2CoAl1 -xSix films are similar to those in Mn2CoAl films shown in previous reports. We note that a very small σAHC of ˜1.1 S/cm is obtained for x = 0.225, and the sign of σAHC is changed from positive to negative at around x = 0.25. We discuss the origin of the sign reversal of σAHC as a consequence of the Fermi-level shift in Mn2CoAl . Considering the presence of the structural disorder in the Mn2CoAl1 -xSix films, we can conclude that the small value and sign reversal of σAHC are not related to the characteristics of spin-gapless semiconductors.

  13. Two-photon momentum density in La2-xSrxCuO4 and Nd2-xCexCuO4

    NASA Astrophysics Data System (ADS)

    Blandin, P.; Massidda, S.; Barbiellini, B.; Jarlborg, T.; Lerch, P.; Manuel, A. A.; Hoffmann, L.; Gauthier, M.; Sadowski, W.; Walker, E.; Peter, M.; Yu, Jaejun; Freeman, A. J.

    1992-07-01

    We present calculations of the electron-positron momentum density for the high-Tc superconductors La2-xSrxCuO4 and Nd2-xCexCuO4, together with experimental two-dimensional angular correlation of annihilation radiation (2D-ACAR) for Nd2-xCexCuO4. The calculations are based on first-principles electronic structure obtained using the full-potential linearized augmented-plane-wave and the linear muffin-tin orbital methods. Our results indicate a non-negligible overlap of the positron wave function with the CuO2 plane electrons responsible for the Fermi surfaces in these compounds. Therefore, these compounds may be well suited for investigating Fermi-surface-related effects. After the folding of umklapp terms according to Lock, Crisp, and West, the predicted Fermi-surface breaks are mixed with strong effects induced by the positron wave function in La2-xSrxCuO4, while their resolution is better in Nd2-xCexCuO4. A comparison of our calculations with the most recent experimental results for La2-xSrxCuO4 shows good agreement. For Nd2-xCexCuO4 good agreement is observed between theoretical and experimental 2D-ACAR profiles.

  14. Atomic Scale Control of Competing Electronic Phases in Ultrathin Correlated Oxides

    NASA Astrophysics Data System (ADS)

    Shen, Kyle

    2015-03-01

    Ultrathin epitaxial thin films offer a number of unique advantages for engineering the electronic properties of correlated transition metal oxides. For example, atomically thin films can be synthesized to artificially confine electrons in two dimensions. Furthermore, using a substrate with a mismatched lattice constant can impose large biaxial strains of larger than 3% (Δa / a), much larger than can achieved in bulk single crystals. Since these dimensionally confined or strained systems may necessarily be less than a few unit cells thick, investigating their properties and electronic structure can be particularly challenging. We employ a combination of reactive oxide molecular beam epitaxy (MBE) and angle-resolved photoemission spectroscopy (ARPES) to investigate how dimensional confinement and epitaxial strain can be used to manipulate electronic properties and structure in correlated transition metal oxide thin films. We describe some of our recent work manipulating and studying the electronic structure of ultrathin LaNiO3 through a thickness-driven metal-insulator transition between three and two unit cells (Nature Nanotechnology 9, 443, 2014), where coherent Fermi liquid-like quasiparticles are suppressed at the metal-insulator transition observed in transport. We also will describe some recent unpublished work using epitaxial strain to drive a Lifshitz transition in atomically thin films of the spin-triplet ruthenate superconductor Sr2RuO4, where we also can dramatically alter the quasiparticle scattering rates and drive the system towards non-Fermi liquid behavior near the critical point (B. Burganov, C. Adamo, in preparation). Funding provided by the Office of Naval Research and Air Force Office of Scientific Research.

  15. Understanding the photoluminescence characteristics of Eu{sup 3+}-doped double-perovskite by electronic structure calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Binita; Halder, Saswata; Sinha, T. P.

    2016-05-23

    Europium-doped luminescent barium samarium tantalum oxide Ba{sub 2}SmTaO{sub 6} (BST) has been investigated by first-principles calculation, and the crystal structure, electronic structure, and optical properties of pure BST and Eu-doped BST have been examined and compared. Based on the calculated results, the luminescence properties and mechanism of Eu-doped BST has been discussed. In the case of Eu-doped BST, there is an impurity energy band at the Fermi level, which is formed by seven spin up energy levels of Eu and act as the luminescent centre, which is evident from the band structure calculations.

  16. THE MECHANISMS OF ELECTRON ACCELERATION DURING MULTIPLE X LINE MAGNETIC RECONNECTION WITH A GUIDE FIELD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Huanyu; Lu, Quanming; Huang, Can

    2016-04-20

    The interactions between magnetic islands are considered to play an important role in electron acceleration during magnetic reconnection. In this paper, two-dimensional particle-in-cell simulations are performed to study electron acceleration during multiple X line reconnection with a guide field. Because the electrons remain almost magnetized, we can analyze the contributions of the parallel electric field, Fermi, and betatron mechanisms to electron acceleration during the evolution of magnetic reconnection through comparison with a guide-center theory. The results show that with the magnetic reconnection proceeding, two magnetic islands are formed in the simulation domain. Next, the electrons are accelerated by both themore » parallel electric field in the vicinity of the X lines and the Fermi mechanism due to the contraction of the two magnetic islands. Then, the two magnetic islands begin to merge into one, and, in such a process, the electrons can be accelerated by both the parallel electric field and betatron mechanisms. During the betatron acceleration, the electrons are locally accelerated in the regions where the magnetic field is piled up by the high-speed flow from the X line. At last, when the coalescence of the two islands into one big island finishes, the electrons can be further accelerated by the Fermi mechanism because of the contraction of the big island. With the increase of the guide field, the contributions of the Fermi and betatron mechanisms to electron acceleration become less and less important. When the guide field is sufficiently large, the contributions of the Fermi and betatron mechanisms are almost negligible.« less

  17. First-Order Antiferromagnetic Transition and Fermi Surfaces in Semimetal EuSn3

    NASA Astrophysics Data System (ADS)

    Mori, Akinobu; Miura, Yasunao; Tsutsumi, Hiroki; Mitamura, Katsuya; Hagiwara, Masayuki; Sugiyama, Kiyohiro; Hirose, Yusuke; Honda, Fuminori; Takeuchi, Tetsuya; Nakamura, Ai; Hiranaka, Yuichi; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2014-02-01

    We grew high-quality single crystals of the antiferromagnet EuSn3 with the AuCu3-type cubic crystal structure by the Sn self-flux method and measured the electrical resistivity, magnetic susceptibility, high-field magnetization, specific heat, thermal expansion, and de Haas-van Alphen (dHvA) effect, in order to study the magnetic and Fermi surface properties. We observed steplike changes in the electrical resistivity and magnetic susceptibility, and a sharp peak of the specific heat and thermal expansion coefficient at a Néel temperature TN = 36.4 K. The first-order nature of the antiferromagnetic transition was ascertained by the observation of thermal hysteresis as well as of latent heat at TN. The present antiferromagnetic transition is found to be not a typical second-order phase transition but a first-order one. From the results of dHvA experiment, we clarified that the Fermi surface is very similar to that of the divalent compound YbSn3, mainly consisting of a nearly spherical hole Fermi surface and eight ellipsoidal electron Fermi surfaces. EuSn3 is possibly a compensated metal, and the occupation of a nearly spherical hole Fermi surface is 3.5% in its Brillouin zone, indicating that EuSn3 is a semimetal.

  18. Electronic band structure study of colossal magnetoresistance in Tl 2Mn 2O 7

    NASA Astrophysics Data System (ADS)

    Seo, D.-K.; Whangbo, M.-H.; Subramanian, M. A.

    1997-02-01

    The electronic structure of Tl 2Mn 2O 7 was examined by performing tight binding band calculations. The overlap between the Mn t 2g- and Tl 6 s-block bands results in a partial filling of the Tl 6 s-block bands. The associated Fermi surface consists of 12 cigar-shape electron pockets with each electron pocket about {1}/{1000} of the first Brillouin zone in size. The Tl 6 s-block bands have orbital contributions from the Mn atoms, and the carrier density is very low. These are important for the occurrence of a colossal magnetoresistance in Tl 2Mn 2O 7.

  19. Study of certain features of the electronic structure of the ternary alloys Ni2(Mn, Fe) and Ni3(Mn, Co)

    NASA Technical Reports Server (NTRS)

    Zhukova, V. M.; Fadin, V. P.

    1981-01-01

    The changes in electronic structure related to transport processes occurring during the alloying of he alloy Ni3Mn with iron and cobalt, and the ordering of the ternary alloys thus formed are presented. The Hall effect, the absolute thermal emf, the internal saturation induction, the Nernst-Ettingshausen constant, and the electrical resistivity were measured. Results show a decrease in the contribution of hole sections of the Fermi surface to the transport process occurs together with a considerable increase in the contribution of electron sections. In this case, the mobility of 3 dimensional holes decreases and the mobility of 4s electrons increases considerably.

  20. Anomalous electron collimation in HgTe quantum wells with inverted band structure.

    PubMed

    Zou, Y L; Zhang, L B; Song, J T

    2013-02-20

    We investigate the electron collimation behavior in HgTe quantum wells (QWs) with a magnetic-electric barrier induced by a ferromagnetic metal stripe. We find that electrons can transmit perfectly through the magnetic-electric barrier at some specific incidence angles. These angles can be controlled by the tuning gate voltage, local magnetic field and Fermi energy of incident electrons in QWs with appropriate barrier length. This collimation feature can be used to construct momentum filters in HgTe QWs and has potential application in nanodevices.

  1. The structural and electronic properties of metal atoms adsorbed on graphene

    NASA Astrophysics Data System (ADS)

    Liu, Wenjiang; Zhang, Cheng; Deng, Mingsen; Cai, Shaohong

    2017-09-01

    Based on density functional theory (DFT), we studied the structural and electronic properties of seven different metal atoms adsorbed on graphene (M + graphene). The geometries, adsorption energies, density of states (DOS), band structures, electronic dipole moment, magnetic moment and work function (WF) of M + graphene were calculated. The adsorption energies ΔE indicated that Li, Na, K, Ca and Fe adsorbed on graphene were tending to form stable structures. However, diffusion would occur on Cu and Ag adsorbed on graphene. In addition, the electronic structure near the Fermi level of graphene was significantly affected by Fe (Cu and Ag), compared with Li (Na, K and Ca). The electronic dipole moment and magnetic moment of M + graphene were sensitive to the adsorbed metal atoms. Moreover, we found electropositive (electronegative) adsorption can decrease (increase) the WF of the surface. Specially, the WF of Ag + graphene and Fe + graphene would increase because surface dipole moment make a contribution to electron.

  2. NMR study of B-2p Fermi-level density of states in the transition metal diborides

    NASA Astrophysics Data System (ADS)

    Lue, C. S.; Lai, W. J.

    2005-04-01

    We present a systematic study of the AlB2-type transition metal diborides by measuring the 11B NMR spin-lattice relaxation rate on TiB2, VB2, ZrB2, NbB2, HfB2, as well as TaB2. For all studied materials, the observed relaxation at B nuclei is mainly due to the p-electrons. The comparison with theoretical calculations allows the experimental determination of the partial B-2p Fermi-level density of states (DOS). In addition, the extracted B-2p Fermi-level DOS values in TiB2, ZrB2, and HfB are consistently smaller than in VB2, NbB2, and TaB2. We connect this trend to the rigid-band scenario raised by band structure calculations.

  3. Organic heterojunctions: Contact-induced molecular reorientation, interface states, and charge re-distribution

    PubMed Central

    Opitz, Andreas; Wilke, Andreas; Amsalem, Patrick; Oehzelt, Martin; Blum, Ralf-Peter; Rabe, Jürgen P.; Mizokuro, Toshiko; Hörmann, Ulrich; Hansson, Rickard; Moons, Ellen; Koch, Norbert

    2016-01-01

    We reveal the rather complex interplay of contact-induced re-orientation and interfacial electronic structure – in the presence of Fermi-level pinning – at prototypical molecular heterojunctions comprising copper phthalocyanine (H16CuPc) and its perfluorinated analogue (F16CuPc), by employing ultraviolet photoelectron and X-ray absorption spectroscopy. For both layer sequences, we find that Fermi-level (EF) pinning of the first layer on the conductive polymer substrate modifies the work function encountered by the second layer such that it also becomes EF-pinned, however, at the interface towards the first molecular layer. This results in a charge transfer accompanied by a sheet charge density at the organic/organic interface. While molecules in the bulk of the films exhibit upright orientation, contact formation at the heterojunction results in an interfacial bilayer with lying and co-facial orientation. This interfacial layer is not EF-pinned, but provides for an additional density of states at the interface that is not present in the bulk. With reliable knowledge of the organic heterojunction’s electronic structure we can explain the poor performance of these in photovoltaic cells as well as their valuable function as charge generation layer in electronic devices. PMID:26887445

  4. Electron-ion coupling in semiconductors beyond Fermi's Golden Rule [On the electron-ion coupling in semiconductors beyond Fermi's Golden Rule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medvedev, Nikita; Li, Zheng; Tkachenko, Victor

    2017-01-31

    In the present study, a theoretical study of electron-phonon (electron-ion) coupling rates in semiconductors driven out of equilibrium is performed. Transient change of optical coefficients reflects the band gap shrinkage in covalently bonded materials, and thus, the heating of atomic lattice. Utilizing this dependence, we test various models of electron-ion coupling. The simulation technique is based on tight-binding molecular dynamics. Our simulations with the dedicated hybrid approach (XTANT) indicate that the widely used Fermi's golden rule can break down describing material excitation on femtosecond time scales. In contrast, dynamical coupling proposed in this work yields a reasonably good agreement ofmore » simulation results with available experimental data.« less

  5. Nanoscale measurements of unoccupied band dispersion in few-layer graphene

    PubMed Central

    Jobst, Johannes; Kautz, Jaap; Geelen, Daniël; Tromp, Rudolf M.; van der Molen, Sense Jan

    2015-01-01

    The properties of any material are fundamentally determined by its electronic band structure. Each band represents a series of allowed states inside a material, relating electron energy and momentum. The occupied bands, that is, the filled electron states below the Fermi level, can be routinely measured. However, it is remarkably difficult to characterize the empty part of the band structure experimentally. Here, we present direct measurements of unoccupied bands of monolayer, bilayer and trilayer graphene. To obtain these, we introduce a technique based on low-energy electron microscopy. It relies on the dependence of the electron reflectivity on incidence angle and energy and has a spatial resolution ∼10 nm. The method can be easily applied to other nanomaterials such as van der Waals structures that are available in small crystals only. PMID:26608712

  6. Structural and electronic properties of double-walled boron nitride nanocones

    NASA Astrophysics Data System (ADS)

    Brito, E.; Silva, T. S.; Guerra, T.; Leite, L.; Azevedo, S.; Freitas, A.; Kaschny, J. R.

    2018-01-01

    First principles calculations were applied to study the structural and electronic properties of different configurations of double-walled boron nitride nanocones with a disclination angle of 60°. The analysis includes different rotation angles, distance between apexes, as well as distinct types of antiphase boundaries. The calculations indicate that the non-rotated configuration of double-walled nanocone with a defective line composed by C and N atoms, forming C-N bonds, is the most stable configuration. It was found that the yam angle, apexes distance and defective line composition present significant influence on the electronic properties of such structures. Moreover, analyzing the spin charge density, for the electronic states near the Fermi level, it was also found that the configuration with a defective line containing C atoms presents a net magnetic moment.

  7. A computational study of photo-induced electron transfer rate constants in subphthalocyanine/C60 organic photovoltaic materials via Fermi's golden rule

    NASA Astrophysics Data System (ADS)

    Lee, Myeong H.; Dunietz, Barry D.; Geva, Eitan

    2014-03-01

    We present a methodology to obtain the photo-induced electron transfer rate constant in organic photovoltaic (OPV) materials within the framework of Fermi's golden rule, using inputs obtained from first-principles electronic structure calculation. Within this approach, the nuclear vibrational modes are treated quantum-mechanically and a short-time approximation is avoided in contrast to the classical Marcus theory where these modes are treated classically within the high-temperature and short-time limits. We demonstrate our methodology on boron-subphthalocyanine-chloride/C60 OPV system to determine the rate constants of electron transfer and electron recombination processes upon photo-excitation. We consider two representative donor/acceptor interface configurations to investigate the effect of interface configuration on the charge transfer characteristics of OPV materials. In addition, we determine the time scale of excited states population by employing a master equation after obtaining the rate constants for all accessible electronic transitions. This work is pursued as part of the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the US Department of Energy Office of Science, Office of Basic Energy Sciences under 390 Award No. DE-SC0000957.

  8. Experimental Investigation of the Electronic Properties of Twisted Bilayer Graphene by STM and STS

    NASA Astrophysics Data System (ADS)

    Yin, Longjing; Qiao, Jiabin; Wang, Wenxiao; Zuo, Weijie; He, Lin

    The electronic properties of graphene multilayers depend sensitively on their stacking order. A twisted angle is treated as a unique degree of freedom to tune the electronic properties of graphene system. Here we study electronic structures of the twisted bilayers by scanning tunneling microscopy (STM) and spectroscopy (STS). We demonstrate that the interlayer coupling strength affects both the Van Hove singularities and the Fermi velocity of twisted bilayers dramatically. This removes the discrepancy about the Fermi velocity renormalization in the twisted bilayers and provides a consistent interpretation of all current data. Moreover, we report the experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers by STM and STS. At a magic twisted angle, about 1.11°, a pronounced sharp peak is observed in the tunnelling spectra due to the action of the non-Abelian gauge fields. Because of the effective non-Abelian gauge fields, the rotation angle could transfer the charge carriers in the twisted bilayers from massless Dirac fermions into well localized electrons, or vice versa, efficiently. This provides a new route to tune the electronic properties of graphene systems, which will be essential in future graphene nanoelectronics.

  9. Energetics and electronic properties of Pt wires of different topologies on monolayer MoSe{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jamdagni, Pooja, E-mail: j.poojaa1228@gmail.com; Ahluwalia, P. K.; Kumar, Ashok

    2016-05-23

    The energetics and electronic properties of different topology of Pt wires including linear, zigzag and ladder structures on MoSe{sub 2} monolayer have been investigated in the framework of density functional theory (DFT). The predicted order of stability of Pt wire on MoSe{sub 2} monolayer is found to be: linear > ladder > zigzag. Pt wires induce states near the Fermi level of MoSe{sub 2} that results into metallic characteristics of Pt-wire/MoSe{sub 2} assembled system. Valence band charge density signifies most of the contribution from Pt atoms near the Fermi energy of assembled wire/MoSe{sub 2} system. These findings are expected tomore » be important for the fabrication of devices based on MoSe{sub 2} layers for flexible nanoelectronics.« less

  10. Ab initio study of gold-doped zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Srivastava, Pankaj; Dhar, Subhra; Jaiswal, Neeraj K.

    2014-12-01

    The electronic transport properties of zigzag graphene nanoribbons (ZGNRs) through covalent functionalization of gold (Au) atoms is investigated by using non-equilibrium Green's function combined with density functional theory. It is revealed that the electronic properties of Au-doped ZGNRs vary significantly due to spin and its non-inclusion. We find that the DOS profiles of Au-adsorbed ZGNR due to spin reveal very less number of states available for conduction, whereas non-inclusion of spin results in higher DOS across the Fermi level. Edge Au-doped ribbons exhibit stable structure and are energetically more favorable than the center Au-doped ZGNRs. Though the chemical interaction at the ZGNR-Au interface modifies the Fermi level, Au-adsorbed ZGNR reveals semimetallic properties. A prominent qualitative change of the I-V curve from linear to nonlinear is observed as the Au atom shifts from center toward the edges of the ribbon. Number of peaks present near the Fermi level ensures conductance channels available for charge transport in case of Au-center-substituted ZGNR. We predict semimetallic nature of the Au-adsorbed ZGNR with a high DOS peak distributed over a narrow energy region at the Fermi level and fewer conductance channels. Our calculations for the magnetic properties predict that Au functionalization leads to semiconducting nature with different band gaps for spin up and spin down. The outcomes are compared with the experimental and theoretical results available for other materials.

  11. One-electron propagation in Fermi, Pasta, Ulam disordered chains with Gaussian acoustic pulse pumping

    NASA Astrophysics Data System (ADS)

    Silva, L. D. Da; Dos Santos, J. L. L.; Ranciaro Neto, A.; Sales, M. O.; de Moura, F. A. B. F.

    In this work, we consider a one-electron moving on a Fermi, Pasta, Ulam disordered chain under effect of electron-phonon interaction and a Gaussian acoustic pulse pumping. We describe electronic dynamics using quantum mechanics formalism and the nonlinear atomic vibrations using standard classical physics. Solving numerical equations related to coupled quantum/classical behavior of this system, we study electronic propagation properties. Our calculations suggest that the acoustic pumping associated with the electron-lattice interaction promote a sub-diffusive electronic dynamics.

  12. Doping dependence of charge order in electron-doped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Mou, Yingping; Feng, Shiping

    2017-12-01

    In the recent studies of the unconventional physics in cuprate superconductors, one of the central issues is the interplay between charge order and superconductivity. Here the mechanism of the charge-order formation in the electron-doped cuprate superconductors is investigated based on the t-J model. The experimentally observed momentum dependence of the electron quasiparticle scattering rate is qualitatively reproduced, where the scattering rate is highly anisotropic in momentum space, and is intriguingly related to the charge-order gap. Although the scattering strength appears to be weakest at the hot spots, the scattering in the antinodal region is stronger than that in the nodal region, which leads to the original electron Fermi surface is broken up into the Fermi pockets and their coexistence with the Fermi arcs located around the nodal region. In particular, this electron Fermi surface instability drives the charge-order correlation, with the charge-order wave vector that matches well with the wave vector connecting the hot spots, as the charge-order correlation in the hole-doped counterparts. However, in a striking contrast to the hole-doped case, the charge-order wave vector in the electron-doped side increases in magnitude with the electron doping. The theory also shows the existence of a quantitative link between the single-electron fermiology and the collective response of the electron density.

  13. Electronic structure and energetics of the tetragonal distortion for TiH2, ZrH2 and HfH2: a first principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quijano, Ramiro; DeCoss, Romeo; Singh, David J

    2009-01-01

    The electronic structure and energetics of the tetragonal distortion for the fluorite-type dihydrides TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} are studied by means of highly accurate first-principles total-energy calculations. For HfH{sub 2}, in addition to the calculations using the scalar relativistic (SR) approximation, calculations including the spin-orbit coupling have also been performed. The results show that TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} in the cubic phase are unstable against tetragonal strain. For the three systems, the total energy shows two minima as a function of the c/a ratio with the lowest-energy minimum at c/a < 1 in agreementmore » with the experimental observations. The band structure of TiH{sub 2}, ZrH{sub 2}, and HfH{sub 2} (SR) around the Fermi level shows two common features along the two major symmetry directions of the Brillouin zone, {Lambda}?L and {Lambda}?K, a nearly flat doubly degenerate band, and a van Hove singularity, respectively. In cubic HfH{sub 2} the spin-orbit coupling lifts the degeneracy of the partially filled bands in the {Lambda}?L path, while the van Hove singularity in the {Lambda}?K path remains unchanged. The density of states of the three systems in the cubic phase shows a sharp peak at the Fermi level. We found that the tetragonal distortion produces a strong reduction in the density of states at the Fermi level resulting mainly from the splitting of the doubly-degenerate bands in the {Lambda}?L direction and the shift of the van Hove singularity to above the Fermi level. The validity of the Jahn-Teller model in explaining the tetragonal distortion in this group of dihydrides is discussed.« less

  14. Unusual Evolution of the Conduction-Electron State in CexLa1-xB6 from Non-Fermi Liquid to Fermi Liquid

    NASA Astrophysics Data System (ADS)

    Nakamura, S.; Endo, M.; Yamamoto, H.; Isshiki, T.; Kimura, N.; Aoki, H.; Nojima, T.; Otani, S.; Kunii, S.

    2006-12-01

    We report unusual evolution of the conduction-electron state in the localized f electron system CexLa1-xB6 from normal electron state to heavy Fermi liquid (FL) state through local FL and non-FL states with increasing Ce concentration and/or with increasing magnetic field. The effective mass of quasiparticle or the coefficient A of T2 term of resistivity is found to increase divergently near the boundary between FL state and non-FL state. The features of the non-FL state are also different from those of the typical non-FL systems previously observed or theoretically predicted.

  15. Effect of Fermi surface nesting on resonant spin excitations in Ba{<_1-x}K{<_x}Fe{<_2}As{<_2}.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellan, J.-P.; Rosenkranz, S.; Goremychkin, E.A.

    2011-01-01

    We report inelastic neutron scattering measurements of the resonant spin excitations in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s{sub {+-}}-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.

  16. Thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space under the generalized uncertainty principle

    NASA Astrophysics Data System (ADS)

    Li, Heling; Ren, Jinxiu; Wang, Wenwei; Yang, Bin; Shen, Hongjun

    2018-02-01

    Using the semi-classical (Thomas-Fermi) approximation, the thermodynamic properties of ideal Fermi gases in a harmonic potential in an n-dimensional space are studied under the generalized uncertainty principle (GUP). The mean particle number, internal energy, heat capacity and other thermodynamic variables of the Fermi system are calculated analytically. Then, analytical expressions of the mean particle number, internal energy, heat capacity, chemical potential, Fermi energy, ground state energy and amendments of the GUP are obtained at low temperatures. The influence of both the GUP and the harmonic potential on the thermodynamic properties of a copper-electron gas and other systems with higher electron densities are studied numerically at low temperatures. We find: (1) When the GUP is considered, the influence of the harmonic potential is very much larger, and the amendments produced by the GUP increase by eight to nine orders of magnitude compared to when no external potential is applied to the electron gas. (2) The larger the particle density, or the smaller the particle masses, the bigger the influence of the GUP. (3) The effect of the GUP increases with the increase in the spatial dimensions. (4) The amendments of the chemical potential, Fermi energy and ground state energy increase with an increase in temperature, while the heat capacity decreases. T F0 is the Fermi temperature of the ideal Fermi system in a harmonic potential. When the temperature is lower than a certain value (0.22 times T F0 for the copper-electron gas, and this value decreases with increasing electron density), the amendment to the internal energy is positive, however, the amendment decreases with increasing temperature. When the temperature increases to the value, the amendment is zero, and when the temperature is higher than the value, the amendment to the internal energy is negative and the absolute value of the amendment increases with increasing temperature. (5) When electron density is greater than or equal to 1037 m-3, the influence of the GUP becomes the dominant factor affecting the thermodynamic properties of the system.

  17. Effect of structural distortion on the electronic band structure of NaOsO3 studied within density functional theory and a three-orbital model

    NASA Astrophysics Data System (ADS)

    Mohapatra, Shubhajyoti; Bhandari, Churna; Satpathy, Sashi; Singh, Avinash

    2018-04-01

    Effects of the structural distortion associated with the OsO6 octahedral rotation and tilting on the electronic band structure and magnetic anisotropy energy for the 5 d3 compound NaOsO3 are investigated using the density functional theory (DFT) and within a three-orbital model. Comparison of the essential features of the DFT band structures with the three-orbital model for both the undistorted and distorted structures provides insight into the orbital and directional asymmetry in the electron hopping terms resulting from the structural distortion. The orbital mixing terms obtained in the transformed hopping Hamiltonian resulting from the octahedral rotations are shown to account for the fine features in the DFT band structure. Staggered magnetization and the magnetic character of states near the Fermi energy indicate weak coupling behavior.

  18. Stable topological insulators achieved using high energy electron beams

    PubMed Central

    Zhao, Lukas; Konczykowski, Marcin; Deng, Haiming; Korzhovska, Inna; Begliarbekov, Milan; Chen, Zhiyi; Papalazarou, Evangelos; Marsi, Marino; Perfetti, Luca; Hruban, Andrzej; Wołoś, Agnieszka; Krusin-Elbaum, Lia

    2016-01-01

    Topological insulators are potentially transformative quantum solids with metallic surface states which have Dirac band structure and are immune to disorder. Ubiquitous charged bulk defects, however, pull the Fermi energy into the bulk bands, denying access to surface charge transport. Here we demonstrate that irradiation with swift (∼2.5 MeV energy) electron beams allows to compensate these defects, bring the Fermi level back into the bulk gap and reach the charge neutrality point (CNP). Controlling the beam fluence, we tune bulk conductivity from p- (hole-like) to n-type (electron-like), crossing the Dirac point and back, while preserving the Dirac energy dispersion. The CNP conductance has a two-dimensional character on the order of ten conductance quanta and reveals, both in Bi2Te3 and Bi2Se3, the presence of only two quantum channels corresponding to two topological surfaces. The intrinsic quantum transport of the topological states is accessible disregarding the bulk size. PMID:26961901

  19. Hallmarks of the Mott-metal crossover in the hole-doped pseudospin-1/2 Mott insulator Sr 2IrO 4

    DOE PAGES

    Cao, Yue; Wang, Qiang; Waugh, Justin A.; ...

    2016-04-22

    The physics of doped Mott insulators remains controversial after decades of active research, hindered by the interplay among competing orders and fluctuations. It is thus highly desired to distinguish the intrinsic characters of the Mott-metal crossover from those of other origins. Here we investigate the evolution of electronic structure and dynamics of the hole-doped pseudospin-1/2 Mott insulator Sr 2 IrO 4 . The effective hole doping is achieved by replacing Ir with Rh atoms, with the chemical potential immediately jumping to or near the top of the lower Hubbard band. The doped iridates exhibit multiple iconic low-energy features previously observedmore » in doped cuprates - pseudogaps, Fermi arcs and marginal-Fermi-liquid-like electronic scattering rates. We suggest these signatures are most likely an integral part of the material's proximity to the Mott state, rather than from many of the most claimed mechanisms, including preformed electron pairing, quantum criticality or density-wave formation.« less

  20. Ab - initio study of rare earth magnesium alloy: TbMg

    NASA Astrophysics Data System (ADS)

    Kumari, Meena; Yadav, Priya; Nautiyal, Shashank; Verma, U. P.

    2018-05-01

    The structural, electronic and magnetic properties of TbMg were analyzed by using full-potential linearized augmented plane wave method. This intermetallic is stable in structure CsCl (B2 phase) with space group Pm-3m. In electronic properties, we show the electronic band structure and density of states plots. These plots show that this alloy have metallic character because there is no band gap between the valance band and conduction band at Fermi level. The structural properties, i.e. equilibrium lattice constant, bulk modulus and its pressure derivative, energy and volume show good agreement with available data. In this paper, we also present the total magnetic moment along with the magnetic moment on the atomic and interstitial sites of TbMg intermetallic in B2 phase.

  1. Non-Fermi-liquid magic angle effects in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Lebed, A. G.

    2016-07-01

    We investigate a theoretical problem of electron-electron interactions in an inclined magnetic field in a quasi-one-dimensional (Q1D) conductor. We show that they result in strong non-Fermi-liquid corrections to a specific heat, provided that the direction of the magnetic field is far from the so-called Lebed's magic angles (LMAs). If magnetic field is directed close to one of the LMAs, the specific heat corrections become small and the Fermi-liquid picture restores. As a result, we predict Fermi-liquid-non-Fermi-liquid angular crossovers in the vicinities of the LMA directions of the field. We suggest to perform the corresponding experiment in the Q1D conductor (Per) 2Au (mnt) 2 under pressure in magnetic fields of the order of H ≃25 T .

  2. Correlation-Induced Self-Doping in the Iron-Pnictide Superconductor Ba2Ti2Fe2As4O

    NASA Astrophysics Data System (ADS)

    Ma, J.-Z.; van Roekeghem, A.; Richard, P.; Liu, Z.-H.; Miao, H.; Zeng, L.-K.; Xu, N.; Shi, M.; Cao, C.; He, J.-B.; Chen, G.-F.; Sun, Y.-L.; Cao, G.-H.; Wang, S.-C.; Biermann, S.; Qian, T.; Ding, H.

    2014-12-01

    The electronic structure of the iron-based superconductor Ba2Ti2Fe2As4O (Tconset=23.5 K ) has been investigated by using angle-resolved photoemission spectroscopy and combined local density approximation and dynamical mean field theory calculations. The electronic states near the Fermi level are dominated by both the Fe 3 d and Ti 3 d orbitals, indicating that the spacer layers separating different FeAs layers are also metallic. By counting the enclosed volumes of the Fermi surface sheets, we observe a large self-doping effect; i.e., 0.25 electrons per unit cell are transferred from the FeAs layer to the Ti2As2O layer, leaving the FeAs layer in a hole-doped state. This exotic behavior is successfully reproduced by our dynamical mean field calculations, in which the self-doping effect is attributed to the electronic correlations in the 3 d shells. Our work provides an alternative route of effective doping without element substitution for iron-based superconductors.

  3. Time-dependent models for blazar emission with the second-order Fermi acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asano, Katsuaki; Takahara, Fumio; Toma, Kenji

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations. The hard electron spectrum predicted by the Fermi-II process agrees with the hard photon spectrum of 1ES 1101–232. For other blazars that show softer spectra, the Fermi-II model requires radial evolution of the electron injection rate and/or diffusion coefficient in the outflow. Such evolutions can yield a curved electron spectrum, which can reproduce the synchrotron spectrum of Mrk 421 from the radio to the X-ray regime. The photon spectrum in the GeV energy range ofmore » Mrk 421 is hard to fit with a synchrotron self-Compton model. However, if we introduce an external radio photon field with a luminosity of 4.9 × 10{sup 38} erg s{sup –1}, GeV photons are successfully produced via inverse Compton scattering. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.« less

  4. Materials considerations for forming the topological insulator phase in InAs/GaSb heterostructures

    NASA Astrophysics Data System (ADS)

    Shojaei, B.; McFadden, A. P.; Pendharkar, M.; Lee, J. S.; Flatté, M. E.; Palmstrøm, C. J.

    2018-06-01

    In an ideal InAs/GaSb bilayer of appropriate dimension, in-plane electron and hole bands overlap and hybridize, and a topologically nontrivial, or quantum spin Hall (QSH) insulator, phase is predicted to exist. The in-plane dispersion's potential landscape, however, is subject to microscopic perturbations originating from material imperfections. In this work, the effect of disorder on the electronic structure of InAs/GaSb (001) bilayers was studied by observing the temperature and magnetic-field dependence of the resistance of a dual-gated heterostructure gate-tuned through the inverted to normal gap regimes. Conduction with the electronic structure tuned to the inverted (predicted topological) regime and the Fermi level in the hybridization gap was qualitatively similar to behavior in a disordered two-dimensional system. The impact of charged impurities and interface roughness on the formation of topologically protected edge states and an insulating bulk was estimated. The experimental evidence and estimates of disorder in the potential landscape indicated that the potential fluctuations in state-of-the-art films are sufficiently strong such that conduction with the electronic structure tuned to the predicted topological insulator (TI) regime and the Fermi level in the hybridization gap was dominated by a symplectic metal phase rather than a TI phase. The implications are that future efforts must address disorder in this system, and focus must be placed on the reduction of defects and disorder in these heterostructures if a TI regime is to be achieved.

  5. First principles molecular dynamics study of nitrogen vacancy complexes in boronitrene

    NASA Astrophysics Data System (ADS)

    Ukpong, A. M.; Chetty, N.

    2012-07-01

    We present the results of first principles molecular dynamics simulations of nitrogen vacancy complexes in monolayer hexagonal boron nitride. The threshold for local structure reconstruction is found to be sensitive to the presence of a substitutional carbon impurity. We show that activated nitrogen dynamics triggers the annihilation of defects in the layer through formation of Stone-Wales-type structures. The lowest energy state of nitrogen vacancy complexes is negatively charged and spin polarized. Using the divacancy complex, we show that their formation induces spontaneous magnetic moments, which is tunable by electron or hole injection. The Fermi level s-resonant defect state is identified as a unique signature of the ground state of the divacancy complex. Due to their ability to enhance structural cohesion, only the divacancy and the nitrogen vacancy carbon-antisite complexes are able to suppress the Fermi level resonant defect state to open a gap between the conduction and valence bands.

  6. Topological Nodal-Net Semimetal in a Graphene Network Structure

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Tao; Nie, Simin; Weng, Hongming; Kawazoe, Yoshiyuki; Chen, Changfeng

    2018-01-01

    Topological semimetals are characterized by the nodal points in their electronic structure near the Fermi level, either discrete or forming a continuous line or ring, which are responsible for exotic properties related to the topology of bulk bands. Here we identify by ab initio calculations a distinct topological semimetal that exhibits nodal nets comprising multiple interconnected nodal lines in bulk and have two coupled drumheadlike flat bands around the Fermi level on its surface. This nodal net semimetal state is proposed to be realized in a graphene network structure that can be constructed by inserting a benzene ring into each C- C bond in the bct-C4 lattice or by a crystalline modification of the (5,5) carbon nanotube. These results expand the realm of nodal manifolds in topological semimetals, offering a new platform for exploring novel physics in these fascinating materials.

  7. Split Fermi Surfaces of the Spin-Orbit-Coupled Metal Cd2Re2O7 Probed by de Haas-van Alphen Effect

    NASA Astrophysics Data System (ADS)

    Matsubayashi, Yasuhito; Sugii, Kaori; Hirose, Hishiro T.; Hirai, Daigorou; Sugiura, Shiori; Terashima, Taichi; Uji, Shinya; Hiroi, Zenji

    2018-05-01

    The superconducting pyrochlore oxide Cd2Re2O7 shows a structural transition with inversion symmetry breaking (ISB) at Ts1 = 200 K. A recent theory [L. Fu, Phys. Rev. Lett. 115, 026401 (2015)] suggests that the origin is an electronic instability that leads to a multipolar order in the spin-orbit-coupled metal. To observe the Fermi surface of the low-temperature phase of Cd2Re2O7, we perform de Haas-van Alphen effect measurements by means of magnetic torque. In reference to a calculated band structure, the spin-split Fermi surfaces with large cyclotron masses of 5-9m0 are revealed. The splitting is suggested to be due to an antisymmetric spin-orbit coupling induced by ISB, the strength of which is estimated to be approximately 67 K, which is rather smaller than those of typical non-centrosymmetric metals.

  8. Electronic structure, elasticity, bonding features and mechanical behaviour of zinc intermetallics: A DFT study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatima, Bushra, E-mail: bushrafatima25@gmail.com; Acharya, Nikita; Sanyal, Sankar P.

    2016-05-06

    The structural stability, electronic structure, elastic and mechanical properties of TiZn and ZrZn intermetallics have been studied using ab-initio full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation for exchange and correlation potentials. The various structural parameters, such as lattice constant (a{sub 0}), bulk modulus (B), and its pressure derivative (B’) are analysed and compared. The investigation of elastic constants affirm that both TiZn and ZrZn are elastically stable in CsCl (B{sub 2} phase) structure. The electronic structures have been analysed quantitatively from the band structure which reveals the metallic nature of these compounds. To better illustratemore » the nature of bonding and charge transfer, we have also studied the Fermi surfaces. The three well known criterion of ductility namely Pugh’s rule, Cauchy’s pressure and Frantsevich rule elucidate the ductile nature of these compounds.« less

  9. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a a uniform magnetic field. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  10. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of jitter radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a a uniform magnetic field. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  11. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This small- scale magnetic field structure is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a uniform magnetic field. The jitter radiation resulting from small-scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.

  12. Photoemission study of the electronic structure and charge density waves of Na2Ti2Sb2O.

    PubMed

    Tan, S Y; Jiang, J; Ye, Z R; Niu, X H; Song, Y; Zhang, C L; Dai, P C; Xie, B P; Lai, X C; Feng, D L

    2015-04-30

    The electronic structure of Na2Ti2Sb2O single crystal is studied by photon energy and polarization dependent angle-resolved photoemission spectroscopy (ARPES). The obtained band structure and Fermi surface agree well with the band structure calculation of Na2Ti2Sb2O in the non-magnetic state, which indicates that there is no magnetic order in Na2Ti2Sb2O and the electronic correlation is weak. Polarization dependent ARPES results suggest the multi-band and multi-orbital nature of Na2Ti2Sb2O. Photon energy dependent ARPES results suggest that the electronic structure of Na2Ti2Sb2O is rather two-dimensional. Moreover, we find a density wave energy gap forms below the transition temperature and reaches 65 meV at 7 K, indicating that Na2Ti2Sb2O is likely a weakly correlated CDW material in the strong electron-phonon interaction regime.

  13. Electronic structure evolution in doping of fullerene (C{sub 60}) by ultra-thin layer molybdenum trioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenggong; Wang, Congcong; Kauppi, John

    2015-08-28

    Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.

  14. High-temperature cuprate superconductors studied by x-ray Compton scattering and positron annihilation spectroscopies

    NASA Astrophysics Data System (ADS)

    Barbiellini, Bernardo

    2013-06-01

    The bulk Fermi surface in an overdoped (x = 0.3) single crystal of La2-xSrxCuO4 has been observed by using x-ray Compton scattering. This momentum density technique also provides a powerful tool for directly seeing what the dopant Sr atoms are doing to the electronic structure of La2CuO4. Because of wave function effects, positron annihilation spectroscopy does not yield a strong signature of the Fermi surface in extended momentum space, but it can be used to explore the role of oxygen defects in the reservoir layers for promoting high temperature superconductivity.

  15. Electronic structure engineering in silicene via atom substitution and a new two-dimensional Dirac structure Si3C

    NASA Astrophysics Data System (ADS)

    Yin, Na; Dai, Ying; Wei, Wei; Huang, Baibiao

    2018-04-01

    A lot of efforts have been made towards the band gap opening in two-dimensional silicene, the silicon version of graphene. In the present work, the electronic structures of single atom doped (B, N, Al and P) and codoped (B/N and Al/P) silicene monolayers are systematically examined on the base of density functional electronic calculations. Our results demonstrate that single atom doping can realize electron or hole doping in the silicene; while codoping, due to the syergistic effects, results in finite band gap in silicene at the Dirac point without significantly degrading the electronic properties. In addition, the characteristic of band gap shows dependence on the doping concentration. Importantly, we predict a new two-dimensional Dirac structure, the graphene-like Si3C, which also shows linear band dispersion relation around the Fermi level. Our results demonstrates an important perspective to engineer the electronic and optical properties of silicene.

  16. Electron core ionization in compressed alkali metal cesium

    NASA Astrophysics Data System (ADS)

    Degtyareva, V. F.

    2018-01-01

    Elements of groups I and II in the periodic table have valence electrons of s-type and are usually considered as simple metals. Crystal structures of these elements at ambient pressure are close-packed and high-symmetry of bcc and fcc-types, defined by electrostatic (Madelung) energy. Diverse structures were found under high pressure with decrease of the coordination number, packing fraction and symmetry. Formation of complex structures can be understood within the model of Fermi sphere-Brillouin zone interactions and supported by Hume-Rothery arguments. With the volume decrease there is a gain of band structure energy accompanied by a formation of many-faced Brillouin zone polyhedra. Under compression to less than a half of the initial volume the interatomic distances become close to or smaller than the ionic radius which should lead to the electron core ionization. At strong compression it is necessary to assume that for alkali metals the valence electron band overlaps with the upper core electrons, which increases the valence electron count under compression.

  17. Electronic and structural ground state of heavy alkali metals at high pressure

    NASA Astrophysics Data System (ADS)

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-01

    Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  18. Tunable electromagnetically induced absorption based on graphene

    NASA Astrophysics Data System (ADS)

    Cao, Maoyong; Wang, Tongling; Zhang, Huiyun; Zhang, Yuping

    2018-04-01

    In this paper, an electronically induced absorption (EIA) structure based on graphene at the infrared frequency is proposed. A pair of nanorods is coupled to a ring resonator, resulting in electronically induced transparency (EIT), and then, Babinet's principle is applied to transform the EIT structure into an EIA structure. Based on the bright and dark modes of the coupling schemes, the adjustment of the coupling strength between the dark and bright modes can be achieved by changing the asymmetry degree. In addition, the transparency window and the absorption peak can be tuned by changing the Fermi energy of graphene. This graphene-based EIA structure can develop the path in narrow-band filtering and, absorptive switching in the future.

  19. Enhanced electron-phonon coupling near the lattice instability of superconducting NbC1-xNx from density-functional calculations

    NASA Astrophysics Data System (ADS)

    Blackburn, Simon; Côté, Michel; Louie, Steven G.; Cohen, Marvin L.

    2011-09-01

    Using density-functional theory within the local-density approximation, we study the electron-phonon coupling in NbC1-xNx and NbN crystals in the rocksalt structure. The Fermi surface of these systems exhibits important nesting. The associated Kohn anomaly greatly increases the electron-phonon coupling and induces a structural instability when the electronic density of states reaches a critical value. Our results reproduce the observed rise in Tc from 11.2 to 17.3 K as the nitrogen doping is increased in NbC1-xNx. To further understand the contribution of the structural instability to the rise of the superconducting temperature, we develop a model for the Eliashberg spectral function in which the effect of the unstable phonons is set apart. We show that this model together with the McMillan formula can reproduce the increase of Tc near the structural phase transition.

  20. Landau-level spectroscopy of massive Dirac fermions in single-crystalline ZrTe5 thin flakes

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Dun, Z. L.; Zhou, H. D.; Lu, Z.; Chen, K.-W.; Moon, S.; Besara, T.; Siegrist, T. M.; Baumbach, R. E.; Smirnov, D.; Jiang, Z.

    2017-07-01

    We report infrared magnetospectroscopy studies on thin crystals of an emerging Dirac material ZrTe5 near the intrinsic limit. The observed structure of the Landau-level transitions and zero-field infrared absorption indicate a two-dimensional Dirac-like electronic structure, similar to that in graphene but with a small relativistic mass corresponding to a 9.4-meV energy gap. Measurements with circularly polarized light reveal a significant electron-hole asymmetry, which leads to splitting of the Landau-level transitions at high magnetic fields. Our model, based on the Bernevig-Hughes-Zhang effective Hamiltonian, quantitatively explains all observed transitions, determining the values of the Fermi velocity, Dirac mass (or gap), electron-hole asymmetry, and electron and hole g factors.

  1. Stability of rhombohedral phases in vanadium at high-pressure and high-temperature: first-principles investigations

    NASA Astrophysics Data System (ADS)

    Wang, Yi X.; Wu, Q.; Chen, Xiang R.; Geng, Hua Y.

    2016-09-01

    The pressure-induced transition of vanadium from BCC to rhombohedral structures is unique and intriguing among transition metals. In this work, the stability of these phases is revisited by using density functional theory. At finite temperatures, a novel transition of rhombohedral phases back to BCC phase induced by thermal electrons is discovered. This reentrant transition is found not driven by phonons, instead it is the electronic entropy that stabilizes the latter phase, which is totally out of expectation. Parallel to this transition, we find a peculiar and strong increase of the shear modulus C44 with increasing temperature. It is counter-intuitive in the sense that it suggests an unusual harding mechanism of vanadium by temperature. With these stability analyses, the high-pressure and finite-temperature phase diagram of vanadium is proposed. Furthermore, the dependence of the stability of RH phases on the Fermi energy and chemical environment is investigated. The results demonstrate that the position of the Fermi level has a significant impact on the phase stability, and follows the band-filling argument. Besides the Fermi surface nesting, we find that the localization/delocalization of the d orbitals also contributes to the instability of rhombohedral distortions in vanadium.

  2. Multi-band Electronic Structure of Ferromagnetic CeRuPO

    NASA Astrophysics Data System (ADS)

    Takahashi, Masaya; Ootsuki, Daiki; Horio, Masafumi; Arita, Masashi; Namatame, Hirofumi; Taniguchi, Masaki; Saini, Naurang L.; Sugawara, Hitoshi; Mizokawa, Takashi

    2018-04-01

    We have studied the multi-band electronic structure of ferromagnetic CeRuPO (TC = 15 K) by means of angle-resolved photoemission spectroscopy (ARPES). The ARPES results show that three hole bands exist around the zone center and two of them cross the Fermi level (EF). Around the zone corner, two electron bands are observed and cross EF. These hole and electron bands, which can be assigned to the Ru 4d bands, are basically consistent with the band-structure calculation including their orbital characters. However, one of the electron bands with Ru 4d 3z2 - r2 character is strongly renormalized indicating correlation effect due to hybridization with the Ce 4f orbitals. The Ru 4d 3z2 - r2 band changes across TC suggesting that the out-of-plane 3z2 - r2 orbital channel plays essential roles in the ferromagnetism.

  3. Beam energy spread in FERMI@elettra gun and linac induced by intrabeam scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zholents, Alexander A; Zholents, Alexander A; Zolotorev, Max S.

    Intrabeam scattering (IBS) of electrons in the pre-cathode area in the electron guns know in the literature as Boersh effect is responsible for a growth of the electron beam energy spread there. Albeit most visible within the electron gun where the electron beam density is large and the energy spread is small, the IBS acts all along the entire electron beam pass through the Linac. In this report we calculate the energy spread induced by IBS in the FERMI@elettra electron gun.

  4. Characterizing the electronic ground states of single-layer NbSe2 via STM/STS

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Ugeda, Miguel; Bradley, Aaron; Zhang, Yi; Onishi, Seita; Ruan, Wei; Ojeda-Aristizabal, Claudia; Ryu, Hyejin; Edmonds, Mark; Tsai, Hsin-Zon; Riss, Alexander; Mo, Sung-Kwan; Lee, Dunghai; Zettl, Alex; Hussain, Zahid; Shen, Zhi-Xun; Crommie, Michael

    Layered transition metal dichalcogenides (TMDs) are ideal systems for exploring collective electronic phases such as charge density wave (CDW) order and superconductivity. In bulk NbSe2 the CDW sets in at TCDW = 33K and superconductivity sets in at Tc = 7.2K. Below Tc these electronic states coexist but their microscopic formation mechanisms remain controversial. Here we present an electronic characterization study of a single 2D layer of NbSe2 by means of low temperature scanning tunneling microscopy/spectroscopy (STM/STS), angle-resolved photoemission spectroscopy (ARPES), and electrical transport measurements. We demonstrate that the CDW order remains intact in 2D and exhibits a robust 3 x 3 superlattice. Superconductivity also still occurs but its onset is depressed to 1.6K. Our STS measurements at 5K reveal a CDW gap of Δ = 4 meV at the Fermi energy, which is accessible via STS due to the removal of bands crossing the Fermi surface in the 2D limit. Our observations are consistent with the predicted simplified (compared to bulk) electronic structure of single-layer NbSe2, thus providing new insight into CDW formation and superconductivity in this model strongly-correlated system.

  5. Defects and impurities induced structural and electronic changes in pyrite CoS2: first principles studies.

    PubMed

    Li, Shengwen; Zhang, Yanning; Niu, Xiaobin

    2018-05-03

    Cobalt pyrite (CoS2) and related materials are attracting much attention due to their potential use in renewable energy applications. In this work, first-principles studies were performed to investigate the effects of various neutral defects and ion dopants on the structural, energetic, magnetic and electronic properties of the bulk CoS2. Our theoretical results show that the concentrations of single cobalt (VCo) and sulfur (VS) vacancies in CoS2 samples can be high under S-rich and S-poor conditions, respectively. Although the single vacancies induce defect states near the gap edge, they are still half-metallic. We find that the substitution of one S with the O atom does not obviously change the structural, magnetic and electronic features near the Fermi level of the system. Most transition metal impurities (MnCo, FeCo, and MoCo) and Group IV and V anion impurities (CS, SiS, NS, PS, and AsS) create impurity states that are deep and/or near the gap edge. However, NiCo and Group VII elements (FS, ClS, and BrS) cause very localized gap states close to the Fermi level in the minority spin channel, which may modify their electrochemical performances. Our extensive calculations provide instructive information for the design and optimization of CoS2-related energy materials.

  6. Breakdown of the Migdal approximation at Lifshitz transitions with giant zero-point motion in the H3S superconductor.

    PubMed

    Jarlborg, Thomas; Bianconi, Antonio

    2016-04-20

    While 203 K high temperature superconductivity in H3S has been interpreted by BCS theory in the dirty limit here we focus on the effects of hydrogen zero-point-motion and the multiband electronic structure relevant for multigap superconductivity near Lifshitz transitions. We describe how the topology of the Fermi surfaces evolves with pressure giving different Lifshitz-transitions. A neck-disrupting Lifshitz-transition (type 2) occurs where the van Hove singularity, vHs, crosses the chemical potential at 210 GPa and new small 2D Fermi surface portions appear with slow Fermi velocity where the Migdal-approximation becomes questionable. We show that the neglected hydrogen zero-point motion ZPM, plays a key role at Lifshitz transitions. It induces an energy shift of about 600 meV of the vHs. The other Lifshitz-transition (of type 1) for the appearing of a new Fermi surface occurs at 130 GPa where new Fermi surfaces appear at the Γ point of the Brillouin zone here the Migdal-approximation breaks down and the zero-point-motion induces large fluctuations. The maximum Tc = 203 K occurs at 160 GPa where EF/ω0 = 1 in the small Fermi surface pocket at Γ. A Feshbach-like resonance between a possible BEC-BCS condensate at Γ and the BCS condensate in different k-space spots is proposed.

  7. Iron pages of HTSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasparov, V. A., E-mail: vgasparo@issp.ac.r

    Experimental data are presented on the superconducting and electronic properties of iron-based high-temperature superconductors in the normal and superconducting states. The following topics are discussed: lattice structure; structure of magnetic vortices; magnetic penetration depth; Fermi surface; isotope effect; and critical magnetic fields both in oxide compounds of 1111 type and oxide-free compounds of 122, 111, and 011 types as a function of the doping level, temperature, and external pressure.

  8. Optimized unconventional superconductivity in a molecular Jahn-Teller metal

    PubMed Central

    Zadik, Ruth H.; Takabayashi, Yasuhiro; Klupp, Gyöngyi; Colman, Ross H.; Ganin, Alexey Y.; Potočnik, Anton; Jeglič, Peter; Arčon, Denis; Matus, Péter; Kamarás, Katalin; Kasahara, Yuichi; Iwasa, Yoshihiro; Fitch, Andrew N.; Ohishi, Yasuo; Garbarino, Gaston; Kato, Kenichi; Rosseinsky, Matthew J.; Prassides, Kosmas

    2015-01-01

    Understanding the relationship between the superconducting, the neighboring insulating, and the normal metallic state above Tc is a major challenge for all unconventional superconductors. The molecular A3C60 fulleride superconductors have a parent antiferromagnetic insulator in common with the atom-based cuprates, but here, the C603– electronic structure controls the geometry and spin state of the structural building unit via the on-molecule Jahn-Teller effect. We identify the Jahn-Teller metal as a fluctuating microscopically heterogeneous coexistence of both localized Jahn-Teller–active and itinerant electrons that connects the insulating and superconducting states of fullerides. The balance between these molecular and extended lattice features of the electrons at the Fermi level gives a dome-shaped variation of Tc with interfulleride separation, demonstrating molecular electronic structure control of superconductivity. PMID:26601168

  9. Reconstruction of Band Structure Induced by Electronic Nematicity in an FeSe Superconductor

    NASA Astrophysics Data System (ADS)

    Nakayama, K.; Miyata, Y.; Phan, G. N.; Sato, T.; Tanabe, Y.; Urata, T.; Tanigaki, K.; Takahashi, T.

    2014-12-01

    We have performed high-resolution angle-resolved photoemission spectroscopy on an FeSe superconductor (Tc˜8 K ), which exhibits a tetragonal-to-orthorhombic structural transition at Ts˜90 K . At low temperature, we found splitting of the energy bands as large as 50 meV at the M point in the Brillouin zone, likely caused by the formation of electronically driven nematic states. This band splitting persists up to T ˜110 K , slightly above Ts, suggesting that the structural transition is triggered by the electronic nematicity. We have also revealed that at low temperature the band splitting gives rise to a van Hove singularity within 5 meV of the Fermi energy. The present result strongly suggests that this unusual electronic state is responsible for the unconventional superconductivity in FeSe.

  10. Effect of lateral size and thickness on the electronic structure and optical properties of quasi two-dimensional CdSe and CdS nanoplatelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bose, Sumanta; Fan, W. J., E-mail: ewjfan@ntu.edu.sg; Zhang, D. H.

    2016-04-14

    The effect of lateral size and vertical thickness of CdSe and CdS nanoplatelets (NPLs) on their electronic structure and optical properties are investigated using an effective-mass envelope function theory based on the 8-band k ⋅ p model with valence force field considerations. Volumetrically larger NPLs have lower photon emission energy due to limited quantum confinement, but a greater transition matrix element (TME) due to larger electron-hole wavefunction overlap. The optical gain characteristics depend on several factors such as TME, Fermi factor, carrier density, NPL dimensions, material composition, and dephasing rate. There is a red shift in the peak position, moremore » so with an increase in thickness than lateral size. For an increasing carrier density, the gain spectrum undergoes a slight blue shift due to band filling effect. For a fixed carrier density, the Fermi factor is higher for volumetrically larger NPLs and so is the difference between the quasi-Fermi level separation and the effective bandgap. The transparency injection carrier density (and thus input current density threshold) is dimension dependent and falls for volumetrically larger NPLs, as they can attain the requisite exciton count for transparency with a relatively lower density. Between CdSe and CdS, CdSe has lower emission energy due to smaller bandgap, but a higher TME due to lower effective mass. CdS, however, has a higher so hole contribution due to a lower spin-orbit splitting energy. Both CdSe and CdS NPLs are suitable candidates for short-wavelength LEDs and lasers in the visible spectrum, but CdSe is expected to exhibit better optical performance.« less

  11. Electronic and spin structure of the wide-band-gap topological insulator: Nearly stoichiometric Bi2Te2S

    NASA Astrophysics Data System (ADS)

    Annese, E.; Okuda, T.; Schwier, E. F.; Iwasawa, H.; Shimada, K.; Natamane, M.; Taniguchi, M.; Rusinov, I. P.; Eremeev, S. V.; Kokh, K. A.; Golyashov, V. A.; Tereshchenko, O. E.; Chulkov, E. V.; Kimura, A.

    2018-05-01

    We have grown the phase-homogeneous ternary compound with composition Bi2Te1.85S1.15 very close to the stoichiometric Bi2Te2S . The measurements performed with spin- and angle-resolved photoelectron spectroscopy as well as density functional theory and G W calculations revealed a wide-band-gap three-dimensional topological insulator phase. The surface electronic spectrum is characterized by the topological surface state (TSS) with Dirac point located above the valence band and Fermi level lying in the band gap. TSS band dispersion and constant energy contour manifest a weak warping effect near the Fermi level along with in-plane and out-of-plane spin polarization along the Γ ¯-K ¯ line. We identified four additional states at deeper binding energies with high in-plane spin polarization.

  12. Electron-hole pairing of Fermi-arc surface states in a Weyl semimetal bilayer

    NASA Astrophysics Data System (ADS)

    Michetti, Paolo; Timm, Carsten

    2017-03-01

    The topological nature of Weyl semimetals (WSMs) is corroborated by the presence of chiral surface states, which connect the projections of the bulk Weyl points by Fermi arcs (FAs). We study a bilayer structure realized by introducing a thin insulating spacer into a bulk WSM. Employing a self-consistent mean-field description of the interlayer Coulomb interaction, we propose that this system can develop an interlayer electron-hole pair condensate. The formation of this excitonic condensate leads to partial gapping of the FA dispersion. We obtain the dependence of the energy gap and the critical temperature on the model parameters, finding, in particular, a linear scaling of these quantities with the separation between the Weyl points in momentum space. A detrimental role is played by the curvature of the FAs, although the pairing persists for moderately small curvature. A signature of the condensate is the modification of the quantum oscillations involving the surface FAs.

  13. Angular dependence of novel magnetic quantum oscillations in a quasi-two-dimensional multiband Fermi liquid with impurities

    NASA Astrophysics Data System (ADS)

    Bratkovsky, A. M.; Alexandrov, A. S.

    2002-03-01

    The semiclassical Lifshitz-Kosevich-type description is given for the angular dependence of quantum oscillations with combination frequencies in a multiband quasi-two-dimensional Fermi liquid with a constant number of electrons. The analytical expressions are found for the Dingle, thermal, spin, and amplitude (Yamaji) reduction factors of the novel combination harmonics, where the latter two strongly oscillate with the direction of the field [1]. At the magic angles those factors reduce to the purely two-dimensional expressions given earlier. The combination harmonics are suppressed in the presence of the nonquantized background states, and they decay exponentially faster with temperature and/or disorder compared to the standard harmonics, providing an additional tool for electronic structure determination. The theory is applied to Sr2RuO4. [1] A.M. Bratkovsky and A.S. Alexandrov, Phys. Rev. B 65, xxxx (2002); cond-mat/0104520.

  14. Electronic fingerprints of DNA bases on graphene.

    PubMed

    Ahmed, Towfiq; Kilina, Svetlana; Das, Tanmoy; Haraldsen, Jason T; Rehr, John J; Balatsky, Alexander V

    2012-02-08

    We calculate the electronic local density of states (LDOS) of DNA nucleotide bases (A,C,G,T), deposited on graphene. We observe significant base-dependent features in the LDOS in an energy range within a few electronvolts of the Fermi level. These features can serve as electronic fingerprints for the identification of individual bases in scanning tunneling spectroscopy (STS) experiments that perform image and site dependent spectroscopy on biomolecules. Thus the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS. © 2012 American Chemical Society

  15. Hybrid functional study of α-uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, Gurpreet, E-mail: gurpreet@igcar.gov.in; Chinnappan, Ravi; Panigrahi, B. K.

    2016-05-23

    We have used the hybrid density functionals to study the structural and electronic properties of alpha-U. The fraction of exact Hartree Folk exchange used is varied from 0.0 to 0.6. The equilibrium volume is found to be underestimated and bulk modulus overestimated with HSE as compared to both calculated by PBE and the experimental values. Electronic bands below the Fermi level are found to shift to lower energy with respect to PBE electronic bands which itself gives the bands shifted to lower energies as compared to UPS experiments.

  16. Structural expansions for the ground state energy of a simple metal

    NASA Technical Reports Server (NTRS)

    Hammerberg, J.; Ashcroft, N. W.

    1973-01-01

    A structural expansion for the static ground state energy of a simple metal is derived. An approach based on single particle band structure which treats the electron gas as a non-linear dielectric is presented, along with a more general many particle analysis using finite temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi surface distortions, and chemical potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron ion interaction, and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero temperature thermodynamic functions of atomic hydrogen are reported.

  17. Quasi-continuous transition from a Fermi liquid to a spin liquid in κ-(ET)2Cu2(CN)3.

    PubMed

    Furukawa, Tetsuya; Kobashi, Kazuhiko; Kurosaki, Yosuke; Miyagawa, Kazuya; Kanoda, Kazushi

    2018-01-22

    The Mott metal-insulator transition-a manifestation of Coulomb interactions among electrons-is known as a discontinuous transition. Recent theoretical studies, however, suggest that the transition is continuous if the Mott insulator carries a spin liquid with a spinon Fermi surface. Here, we demonstrate the case of a quasi-continuous Mott transition from a Fermi liquid to a spin liquid in an organic triangular-lattice system κ-(ET) 2 Cu 2 (CN) 3 . Transport experiments performed under fine pressure tuning have found that as the Mott transition is approached, the Fermi liquid coherence temperature continuously falls to the scale of kelvins, with a divergent quasi-particle decay rate on the metal side, and the charge gap continuously closes on the insulator side. A Clausius-Clapeyron analysis provides thermodynamic evidence for the extremely weak first-order nature of the transition. These results provide additional support for the existence of a spinon Fermi surface, which becomes an electron Fermi surface when charges are delocalized.

  18. Extracting the temperature of hot carriers in time- and angle-resolved photoemission.

    PubMed

    Ulstrup, Søren; Johannsen, Jens Christian; Grioni, Marco; Hofmann, Philip

    2014-01-01

    The interaction of light with a material's electronic system creates an out-of-equilibrium (non-thermal) distribution of optically excited electrons. Non-equilibrium dynamics relaxes this distribution on an ultrafast timescale to a hot Fermi-Dirac distribution with a well-defined temperature. The advent of time- and angle-resolved photoemission spectroscopy (TR-ARPES) experiments has made it possible to track the decay of the temperature of the excited hot electrons in selected states in the Brillouin zone, and to reveal their cooling in unprecedented detail in a variety of emerging materials. It is, however, not a straightforward task to determine the temperature with high accuracy. This is mainly attributable to an a priori unknown position of the Fermi level and the fact that the shape of the Fermi edge can be severely perturbed when the state in question is crossing the Fermi energy. Here, we introduce a method that circumvents these difficulties and accurately extracts both the temperature and the position of the Fermi level for a hot carrier distribution by tracking the occupation statistics of the carriers measured in a TR-ARPES experiment.

  19. Electron acceleration behind a wavy dipolarization front

    NASA Astrophysics Data System (ADS)

    Wu, Mingyu; Lu, Quanming; Volwerk, Martin; Nakamura, Rumi; Zhang, Tielong

    2018-02-01

    In this paper, with the in-situ observations from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes we report a wavy dipolarization front (DF) event, where the DF has different magnetic structures and electron distributions at different y positions in the Geocentric Solar Magnetospheric (GSM) coordinates. At y ˜2.1RE (RE is the radius of Earth), the DF has a relatively simple structure, which is similar to that of a conventional DF. At y ˜3.0RE, the DF is revealed to have a multiple DF structure, where the plasma exhibits a vortex flow. Such a wavy DF could be the results of the interchange instability. The different structure of such a wavy DF at different sites has a great effect on electron acceleration. Fermi acceleration can occur at the site of the DF with a simple or multiple DF structure, while betatron acceleration as a local process has the contribution to energetic electrons only at the site of the DF with a simple structure.

  20. Generalized charge-screening in relativistic Thomas–Fermi model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akbari-Moghanjoughi, M.

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, themore » variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}∝r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.« less

  1. Topological Properties and the Dynamical Crossover from Mixed-Valence to Kondo-Lattice Behavior in the Golden Phase of SmS.

    PubMed

    Kang, Chang-Jong; Choi, Hong Chul; Kim, Kyoo; Min, B I

    2015-04-24

    We have investigated temperature-dependent behaviors of electronic structure and resistivity in a mixed-valent golden phase of SmS, based on the dynamical mean-field-theory band-structure calculations. Upon cooling, the coherent Sm 4f bands are formed to produce the hybridization-induced pseudogap near the Fermi level, and accordingly the topology of the Fermi surface is changed to exhibit a Lifshitz-like transition. The surface states emerging in the bulk gap region are found to be not topologically protected states but just typical Rashba spin-polarized states, indicating that SmS is not a topological Kondo semimetal. From the analysis of anomalous resistivity behavior in SmS, we have identified universal energy scales, which characterize the Kondo-mixed-valent semimetallic systems.

  2. Pressure variation of Rashba spin splitting toward topological transition in the polar semiconductor BiTeI

    NASA Astrophysics Data System (ADS)

    Ideue, T.; Checkelsky, J. G.; Bahramy, M. S.; Murakawa, H.; Kaneko, Y.; Nagaosa, N.; Tokura, Y.

    2014-10-01

    BiTeI is a polar semiconductor with gigantic Rashba spin-split bands in bulk. We have investigated the effect of pressure on the electronic structure of this material via magnetotransport. Periods of Shubunikov-de Haas (SdH) oscillations originating from the spin-split outer Fermi surface and inner Fermi surface show disparate responses to pressure, while the carrier number derived from the Hall effect is unchanged with pressure. The associated parameters which characterize the spin-split band structure are strongly dependent on pressure, reflecting the pressure-induced band deformation. We find the SdH oscillations and transport response are consistent with the theoretically proposed pressure-induced band deformation leading to a topological phase transition. Our analysis suggests the critical pressure for the quantum phase transition near Pc=3.5 GPa.

  3. Theoretical investigation of the structural, electronic, dynamical and thermal properties of YSn3 and YPb3

    NASA Astrophysics Data System (ADS)

    Kılıçarslan, Aynur; Salmankurt, Bahadır; Duman, Sıtkı

    2017-02-01

    We have performed an ab initio study of the structural, electronic, dynamical and thermal properties of the cubic AuCu3-type YSn3 and YPb3 by using the density functional theory, plane-wave pseudopotential method and a linear response scheme, within the generalized gradient approximation. An analysis of the electronic density of states at the Fermi level is found to be governed by the p states of Sn and Pb atoms with some contributions from the d states of Y atoms. The obtained phonon figures indicate that these material are dynamically stable in the cubic structure. Due to the metallic behavior of the compounds, the calculated zone-center phonon modes are triply degenerate. Also the thermal properties have been examined.

  4. Effect of collisions on photoelectron sheath in a gas

    NASA Astrophysics Data System (ADS)

    Sodha, Mahendra Singh; Mishra, S. K.

    2016-02-01

    This paper presents a study of the effect of the collision of electrons with atoms/molecules on the structure of a photoelectron sheath. Considering the half Fermi-Dirac distribution of photo-emitted electrons, an expression for the electron density in the sheath has been derived in terms of the electric potential and the structure of the sheath has been investigated by incorporating Poisson's equation in the analysis. The method of successive approximations has been used to solve Poisson's equation with the solution for the electric potential in the case of vacuum, obtained earlier [Sodha and Mishra, Phys. Plasmas 21, 093704 (2014)], being used as the zeroth order solution for the present analysis. The inclusion of collisions influences the photoelectron sheath structure significantly; a reduction in the sheath width with increasing collisions is obtained.

  5. Quasiparticle Scattering in Type-II Weyl semimetal MoTe2.

    PubMed

    Lin, Chun-Liang; Arafune, Ryuichi; Minamitani, Emi; Kawai, Maki; Takagi, Noriaki

    2018-01-30

    The electronic structure of type-II Weyl semimetal molybdenum ditelluride (MoTe<sub>2</sub>) is studied by using scanning tunneling microscopy and density functional theory calculations. Through measuring energy-dependent quasiparticle interference (QPI) patterns with a cryogenic scanning tunneling microscope, several characteristic features are found in the QPI patterns. Two of them arise from the Weyl semimetal nature; one is the topological Fermi arc surface state and the other can be assigned to be a Weyl point. The remaining structures are derived from the scatterings relevant to the bulk electronic states. The findings lead to thorough understanding of the topological electronic structure of type-II Weyl semimetal MoTe<sub>2</sub>. © 2018 IOP Publishing Ltd.

  6. Constraints on cosmological dark matter annihilation from the Fermi-LAT isotropic diffuse gamma-ray measurement

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2010-04-01

    The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in the energy range from 20 to 100 GeV. Here, we use the absolute size and spectral shape of this measured flux to derive cross section limits on three types of generic dark matter candidates: annihilating into quarks, charged leptons and monochromatic photons. Predicted gamma-ray fluxes from annihilating dark matter are strongly affected by the underlying distribution of dark matter, and bymore » using different available results of matter structure formation we assess these uncertainties. We also quantify how the dark matter constraints depend on the assumed conventional backgrounds and on the Universe's transparency to high-energy gamma-rays. In reasonable background and dark matter structure scenarios (but not in all scenarios we consider) it is possible to exclude models proposed to explain the excess of electrons and positrons measured by the Fermi-LAT and PAMELA experiments. Derived limits also start to probe cross sections expected from thermally produced relics (e.g. in minimal supersymmetry models) annihilating predominantly into quarks. Finally, for the monochromatic gamma-ray signature, the current measurement constrains only dark matter scenarios with very strong signals.« less

  7. de Haas–van Alphen study of role of 4 f electrons in antiferromagnetic CeZn 11 as compared to its nonmagnetic analog LaZn 11

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blake, S. F.; Hodovanets, H.; McCollam, A.

    Here we present a de Haas–van Alphen study of the Fermi surface of the low-temperature antiferromagnet CeZn 11 and its nonmagnetic analog LaZn 11, measured by torque magnetometry up to fields of 33T and at temperatures down to 320 mK . Both systems possess similar de Haas–van Alphen frequencies, with three clear sets of features—ranging from 50 T to 4 kT —corresponding to three bands of a complex Fermi surface, with an expected fourth band also seen weakly in CeZn 11 . The effective masses of the charge carriers are very light (<1 m e) in LaZn 11 but amore » factor of 2–4 larger in CeZn 11, indicative of stronger electronic correlations. We perform detailed density functional theory (DFT) calculations for CeZn 11 and find that only DFT+ U calculations with U = 1.5 eV , which localize the 4 f states, provide a good match to the measured de Haas–van Alphen frequencies, once the presence of magnetic breakdown orbits is also considered. Finally, our study suggests that the Fermi surface of CeZn 11 is very close to that of LaZn 11 being dominated by Zn 3d , as the Ce 4 f states are localized and have little influence on its electronic structure, however, they are responsible for its magnetic order and contribute to enhance electronic correlations.« less

  8. de Haas–van Alphen study of role of 4 f electrons in antiferromagnetic CeZn 11 as compared to its nonmagnetic analog LaZn 11

    DOE PAGES

    Blake, S. F.; Hodovanets, H.; McCollam, A.; ...

    2016-12-02

    Here we present a de Haas–van Alphen study of the Fermi surface of the low-temperature antiferromagnet CeZn 11 and its nonmagnetic analog LaZn 11, measured by torque magnetometry up to fields of 33T and at temperatures down to 320 mK . Both systems possess similar de Haas–van Alphen frequencies, with three clear sets of features—ranging from 50 T to 4 kT —corresponding to three bands of a complex Fermi surface, with an expected fourth band also seen weakly in CeZn 11 . The effective masses of the charge carriers are very light (<1 m e) in LaZn 11 but amore » factor of 2–4 larger in CeZn 11, indicative of stronger electronic correlations. We perform detailed density functional theory (DFT) calculations for CeZn 11 and find that only DFT+ U calculations with U = 1.5 eV , which localize the 4 f states, provide a good match to the measured de Haas–van Alphen frequencies, once the presence of magnetic breakdown orbits is also considered. Finally, our study suggests that the Fermi surface of CeZn 11 is very close to that of LaZn 11 being dominated by Zn 3d , as the Ce 4 f states are localized and have little influence on its electronic structure, however, they are responsible for its magnetic order and contribute to enhance electronic correlations.« less

  9. Localization of massless Dirac particles via spatial modulations of the Fermi velocity

    NASA Astrophysics Data System (ADS)

    Downing, C. A.; Portnoi, M. E.

    2017-08-01

    The electrons found in Dirac materials are notorious for being difficult to manipulate due to the Klein phenomenon and absence of backscattering. Here we investigate how spatial modulations of the Fermi velocity in two-dimensional Dirac materials can give rise to localization effects, with either full (zero-dimensional) confinement or partial (one-dimensional) confinement possible depending on the geometry of the velocity modulation. We present several exactly solvable models illustrating the nature of the bound states which arise, revealing how the gradient of the Fermi velocity is crucial for determining fundamental properties of the bound states such as the zero-point energy. We discuss the implications for guiding electronic waves in few-mode waveguides formed by Fermi velocity modulation.

  10. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Models of Pulsars

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    This viewgraph presentation describes, in detail, the Fermi Large Area Telescope (LAT) and GLAST Burst Monitor (GBM). Observations made from the June 11, 2008 launch and a discussion of observations made of high energy cosmic ray electrons is also presented.

  11. Fermi-edge superfluorescence from a quantum-degenerate electron-hole gas

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Hee; , G. Timothy Noe, II; McGill, Stephen A.; Wang, Yongrui; Wójcik, Aleksander K.; Belyanin, Alexey A.; Kono, Junichiro

    2013-11-01

    Nonequilibrium can be a source of order. This rather counterintuitive statement has been proven to be true through a variety of fluctuation-driven, self-organization behaviors exhibited by out-of-equilibrium, many-body systems in nature (physical, chemical, and biological), resulting in the spontaneous appearance of macroscopic coherence. Here, we report on the observation of spontaneous bursts of coherent radiation from a quantum-degenerate gas of nonequilibrium electron-hole pairs in semiconductor quantum wells. Unlike typical spontaneous emission from semiconductors, which occurs at the band edge, the observed emission occurs at the quasi-Fermi edge of the carrier distribution. As the carriers are consumed by recombination, the quasi-Fermi energy goes down toward the band edge, and we observe a continuously red-shifting streak. We interpret this emission as cooperative spontaneous recombination of electron-hole pairs, or superfluorescence (SF), which is enhanced by Coulomb interactions near the Fermi edge. This novel many-body enhancement allows the magnitude of the spontaneously developed macroscopic polarization to exceed the maximum value for ordinary SF, making electron-hole SF even more ``super'' than atomic SF.

  12. Ground-state energies of simple metals

    NASA Technical Reports Server (NTRS)

    Hammerberg, J.; Ashcroft, N. W.

    1974-01-01

    A structural expansion for the static ground-state energy of a simple metal is derived. Two methods are presented, one an approach based on single-particle band structure which treats the electron gas as a nonlinear dielectric, the other a more general many-particle analysis using finite-temperature perturbation theory. The two methods are compared, and it is shown in detail how band-structure effects, Fermi-surface distortions, and chemical-potential shifts affect the total energy. These are of special interest in corrections to the total energy beyond third order in the electron-ion interaction and hence to systems where differences in energies for various crystal structures are exceptionally small. Preliminary calculations using these methods for the zero-temperature thermodynamic functions of atomic hydrogen are reported.

  13. Anomalous electronic structure and magnetoresistance in TaAs2

    NASA Astrophysics Data System (ADS)

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; Scott, B.; Wakeham, N.; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.

    2016-06-01

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.

  14. Anomalous electronic structure and magnetoresistance in TaAs2

    PubMed Central

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; Scott, B.; Wakeham, N.; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.

    2016-01-01

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions. PMID:27271852

  15. Theoretical simulations of the structural stabilities, elastic, thermodynamic and electronic properties of Pt3Sc and Pt3Y compounds

    NASA Astrophysics Data System (ADS)

    Boulechfar, R.; Khenioui, Y.; Drablia, S.; Meradji, H.; Abu-Jafar, M.; Omran, S. Bin; Khenata, R.; Ghemid, S.

    2018-05-01

    Ab-initio calculations based on density functional theory have been performed to study the structural, electronic, thermodynamic and mechanical properties of intermetallic compounds Pt3Sc and Pt3Y using the full-potential linearized augmented plane wave(FP-LAPW) method. The total energy calculations performed for L12, D022 and D024 structures confirm the experimental phase stability. Using the generalized gradient approximation (GGA), the values of enthalpies formation are -1.23 eV/atom and -1.18 eV/atom for Pt3Sc and Pt3Y, respectively. The densities of states (DOS) spectra show the existence of a pseudo-gap at the Fermi level for both compounds which indicate the strong spd hybridization and directing covalent bonding. Furthermore, the density of states at the Fermi level N(EF), the electronic specific heat coefficient (γele) and the number of bonding electrons per atom are predicted in addition to the elastic constants (C11, C12 and C44). The shear modulus (GH), Young's modulus (E), Poisson's ratio (ν), anisotropy factor (A), ratio of B/GH and Cauchy pressure (C12-C44) are also estimated. These parameters show that the Pt3Sc and Pt3Y are ductile compounds. The thermodynamic properties were calculated using the quasi-harmonic Debye model to account for their lattice vibrations. In addition, the influence of the temperature and pressure was analyzed on the heat capacities (Cp and Cv), thermal expansion coefficient (α), Debye temperature (θD) and Grüneisen parameter (γ).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lima, Jonas R. F., E-mail: jonas.iasd@gmail.com

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E{sub g} can be tuned in the range 0 ≤ E{sub g} ≤ 2Δ by changing the periodic potential. We analyze the low energymore » electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems.« less

  17. On the lattice dynamics of metallic hydrogen and other Coulomb systems

    NASA Technical Reports Server (NTRS)

    Beck, H.; Straus, D.

    1975-01-01

    Numerical results for the phonon spectra of metallic hydrogen and other Coulomb systems in cubic lattices are presented. In second order in the electron-ion interaction, the behavior of the dielectric function of the interacting electron gas for arguments around the seond Fermi harmonic leads to drastic Kohn anomalies and even to imaginary phonon frequencies. Third-order band-structure corrections are also calculated. Properties of self-consistent phonons and the validity of the adiabatic approximation are discussed.

  18. Electronic structure and electron-phonon interaction in hexagonal yttrium by density functional calculations

    NASA Astrophysics Data System (ADS)

    Singh, Prabhakar P.

    2007-03-01

    To understand the pressure-induced changes in the electronic structure and the electron-phonon interaction in yttrium, we have studied hexagonal-close-packed (hcp) yttrium, stable at ambient pressure, and double hexagonal-close-packed (dhcp) yttrium, stable up to around 44GPa , using density-functional-based methods. Our results show that as one goes from hcp yttrium to dhcp yttrium, there are (i) a substantial charge transfer from s→d with extensive modifications of the d band and a sizable reduction in the density of states at the Fermi energy, (ii) a substantial stiffening of phonon modes with the electron-phonon coupling covering the entire frequency range, and (iii) an increase in the electron-phonon coupling constant λ from 0.55 to 1.24, leading to a change in the superconducting transition temperature Tc from 0.3to15.3K for μ*=0.2 .

  19. Theoretical Interpretation of Pass 8 Fermi -LAT e + + e - Data

    DOE PAGES

    Di Mauro, M.; Manconi, S.; Vittino, A.; ...

    2017-08-17

    The flux of positrons and electrons (e + + e -) has been measured by the Fermi Large Area Telescope (LAT) in the energy range between 7 GeV and 2 TeV. Here, we discuss a number of interpretations of Pass 8 Fermi-LAT e + + e - spectrum, combining electron and positron emission from supernova remnants (SNRs) and pulsar wind nebulae (PWNe), or produced by the collision of cosmic rays (CRs) with the interstellar medium. We also found that the Fermi-LAT spectrum is compatible with the sum of electrons from a smooth SNR population, positrons from cataloged PWNe, and amore » secondary component. If we include in our analysis constraints from the AMS-02 positron spectrum, we obtain a slightly worse fit to the e + + e - Fermi-LAT spectrum, depending on the propagation model. As an additional scenario, we replace the smooth SNR component within 0.7 kpc with the individual sources found in Green's catalog of Galactic SNRs. We find that separate consideration of far and near sources helps to reproduce the e + + e - Fermi-LAT spectrum. However, we show that the fit degrades when the radio constraints on the positron emission from Vela SNR (which is the main contributor at high energies) are taken into account. We find that a break in the power-law injection spectrum at about 100 GeV can also reproduce the measured e + + e -spectrum and, among the CR propagation models that we consider, no reasonable break of the power-law dependence of the diffusion coefficient can modify the electron flux enough to reproduce the observed shape.« less

  20. Theoretical Interpretation of Pass 8 Fermi -LAT e + + e - Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Mauro, M.; Manconi, S.; Vittino, A.

    The flux of positrons and electrons (e + + e -) has been measured by the Fermi Large Area Telescope (LAT) in the energy range between 7 GeV and 2 TeV. Here, we discuss a number of interpretations of Pass 8 Fermi-LAT e + + e - spectrum, combining electron and positron emission from supernova remnants (SNRs) and pulsar wind nebulae (PWNe), or produced by the collision of cosmic rays (CRs) with the interstellar medium. We also found that the Fermi-LAT spectrum is compatible with the sum of electrons from a smooth SNR population, positrons from cataloged PWNe, and amore » secondary component. If we include in our analysis constraints from the AMS-02 positron spectrum, we obtain a slightly worse fit to the e + + e - Fermi-LAT spectrum, depending on the propagation model. As an additional scenario, we replace the smooth SNR component within 0.7 kpc with the individual sources found in Green's catalog of Galactic SNRs. We find that separate consideration of far and near sources helps to reproduce the e + + e - Fermi-LAT spectrum. However, we show that the fit degrades when the radio constraints on the positron emission from Vela SNR (which is the main contributor at high energies) are taken into account. We find that a break in the power-law injection spectrum at about 100 GeV can also reproduce the measured e + + e -spectrum and, among the CR propagation models that we consider, no reasonable break of the power-law dependence of the diffusion coefficient can modify the electron flux enough to reproduce the observed shape.« less

  1. Superconductivity in doped Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  2. Pressure effects on band structures in dense lithium

    NASA Astrophysics Data System (ADS)

    Goto, Naoyuki; Nagara, Hitose

    2012-07-01

    We studied the change of the band structures in some structures of Li predicted at high pressures, using GGA and GW calculations. The width of the 1s band coming from the 1s electron of Li shows broadening by the pressurization, which is the normal behavior of bands at high pressure. The width of the band just below the Fermi level decreases by the pressurization, which is an opposite behavior to the normal bands. The character of this narrowing band is mostly p-like with a little s-like portion. The band gaps in some structures are really observed even by the GGA calculations. The gaps by the GW calculations increase to about 1.5 times the GGA values. Generally the one-shot GW calculation (diagonal only calculations) gives more reliable values than the GGA, but it may fail to predict band gaps for the case where band dispersion shows complex crossing near the Fermi level. There remains some structures for which GW calculations with off-diagonal elements taken into account are needed to identify the phase to be metallic or semiconducting.

  3. A layered Dirac system candidate: Fermi surface and anomalous Berry phase in ZrSiSe

    NASA Astrophysics Data System (ADS)

    Chiu, Yu-Che; Chen, Kuan-Wen; Graf, David; Zhou, Qiong; Martin, Thomas J.; Chan, Julia Y.; Johannes, Michelle; Baumbach, Ryan E.; Balicas, Luis

    ZrSiSe was recently claimed to correspond to a novel type of nodal Dirac system. We synthesized single crystals through a combination of solid state reaction and chemical vapor transport. The as-grown single crystals display residual resistivities on the order of 100 nOhmcm at 2K yielding a resistivity ratio surpassing 200. Magnetoresistance (MR) measurements reveal a non-saturating increase in the resistivity by a factor of 500000% under fields up to 35 Tesla. De Haas van Alphen measurements under high magneticfields reveal a Fermi surface that is more complex than previously reported, although its geometry generally agrees with band structure calculations that indicate Dirac-like dispersion in the bulk around the Fermi energy. The charge carrier effective masses extracted from Lifshitz-Kosevich (LK) fits to the amplitude of quantum oscillations were found to range between 0.08me to 0.5me where me is the free electron mass. Fittings of the oscillatory signal to the LK formalism further reveal the existence of cyclotron orbits displaying non-trivial Berry phases approaching pi, which is consistent with the expectations from band structure calculations. funded by DOE, NSF, NHMFL.

  4. Terahertz spectroscopic evidence of non-Fermi-liquid-like behavior in structurally modulated PrNi O3 thin films

    NASA Astrophysics Data System (ADS)

    Phanindra, V. Eswara; Agarwal, Piyush; Rana, D. S.

    2018-01-01

    The intertwined and competing energy scales of various interactions in rare-earth nickelates R Ni O3 (R =La to Lu) hold potential for a wide range of exotic ground states realized upon structural modulation. Using terahertz (THz) spectroscopy, the low-energy dynamics of a novel non-Fermi liquid (NFL) metallic phase induced in compressive PrNi O3 thin film was studied by evaluating the quasiparticle scattering rate in the light of two distinct models over a wide temperature range. First, evaluating THz conductivity in the framework of extended Drude model, the frequency-dependent scattering rate is found to deviate from the Landau Fermi liquid (LFL) behavior, thus, suggesting NFL-like phase at THz frequencies. Second, fitting THz conductivity to the multiband Drude-Lorentz model reveals the band-dependent scattering rates and provides microscopic interpretation of the carriers contributing to the Drude modes. This is first evidence of NFL-like behavior in nickelates at THz frequencies consistent with dc conductivity, which also suggests that THz technology is indispensable in understanding emerging electronic phases and associated phenomena. We further demonstrate that the metal-insulator transition in nickelates has the potential to design efficient THz modulators.

  5. Electronic structure and optical property of boron doped semiconducting graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Chen, Aqing; Shao, Qingyi; Wang, Li; Deng, Feng

    2011-08-01

    We present a system study on the electronic structure and optical property of boron doped semiconducting graphene nanoribbons using the density functional theory. Energy band structure, density of states, deformation density, Mulliken popular and optical spectra are considered to show the special electronic structure of boron doped semiconducting graphene nanoribbons. The C-B bond form is discussed in detail. From our analysis it is concluded that the Fermi energy of boron doped semiconducting graphene nanoribbons gets lower than that of intrinsic semiconducting graphene nanoribbons. Our results also show that the boron doped semiconducting graphene nanoribbons behave as p-type semiconducting and that the absorption coefficient of boron doped armchair graphene nanoribbons is generally enhanced between 2.0 eV and 3.3 eV. Therefore, our results have a great significance in developing nano-material for fabricating the nano-photovoltaic devices.

  6. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    NASA Astrophysics Data System (ADS)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  7. Electronic Structure of HgBa2CaCu2O(6+delta) Epitaxial films measured by x-ray Photoemission

    NASA Technical Reports Server (NTRS)

    Vasquez, R. P.; Rupp, M.; Gupta, A.; Tsuei, C. C.

    1995-01-01

    The electronic structure and chemical states of HgBa2CaCu20(sub 6 + delta), epitaxial films have been studied with x-ray photelectron spectroscopy. Signals from the superconducting phase dominate all the core-level spectra, and a clear Fermi edge is observed in the valence-band region. The Ba, Ca, Cu, and O core levels are similar to those of Tl2Ba2CaCu208(+)O(sub 6 + delta), but distinct differences are observed in the valence bands which are consistent with differences in the calculated densities of states.

  8. Investigation of structural, electronic, elastic and optical properties of Cd1-x-yZnxHgyTe alloys

    NASA Astrophysics Data System (ADS)

    Tamer, M.

    2016-06-01

    Structural, optical and electronic properties and elastic constants of Cd1-x-yZnx HgyTe alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers-Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard's law. It is seen that results obtained from theory and experiments are all in agreement.

  9. Electronic topological transitions in the AgPd system

    NASA Astrophysics Data System (ADS)

    Skorodumova, N. V.; Simak, S. I.; Smirnova, E. A.; Vekilov, Yu. Kh.

    1995-02-01

    “First-principles” LMTO-CPA calculations of the Fermi surfaces and thermodynamic properties of AgPd random alloys are presented. We show that there are at least four electronic topological transitions (ETT) in the system. The changes of the Fermi surface topology lead to the appearance of peculiarities in the concentration dependence of the thermodynamic (ground state) properties.

  10. Thomas-Fermi model electron density with correct boundary conditions: Application to atoms and ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, S.H.

    1999-01-01

    The author proposes an electron density in atoms and ions, which has the Thomas-Fermi-Dirac form in the intermediate region of r, satisfies the Kato condition for small r, and has the correct asymptotic behavior at large values of r, where r is the distance from the nucleus. He also analyzes the perturbation in the density produced by multipolar fields. He uses these densities in the Poisson equation to deduce average values of r{sup m}, multipolar polarizabilities, and dispersion coefficients of atoms and ions. The predictions are in good agreement with experimental and other theoretical values, generally within about 20%. Hemore » tabulates here the coefficient A in the asymptotic density; radial expectation values (r{sup m}) for m = 2, 4, 6; multipolar polarizabilities {alpha}{sub 1}, {alpha}{sub 2}, {alpha}{sub 3}; expectation values {l_angle}r{sup 0}{r_angle} and {l_angle}r{sup 2}{r_angle} of the asymptotic electron density; and the van der Waals coefficient C{sub 6} for atoms and ions with 2 {le} Z {le} 92. Many of the results, particularly the multipolar polarizabilities and the higher order dispersion coefficients, are the only ones available in the literature. The variation of these properties also provides interesting insight into the shell structure of atoms and ions. Overall, the Thomas-Fermi-Dirac model with the correct boundary conditions provides a good global description of atoms and ions.« less

  11. Stability of rhombohedral phases in vanadium at high-pressure and high-temperature: first-principles investigations

    PubMed Central

    Wang, Yi X.; Wu, Q.; Chen, Xiang R.; Geng, Hua Y.

    2016-01-01

    The pressure-induced transition of vanadium from BCC to rhombohedral structures is unique and intriguing among transition metals. In this work, the stability of these phases is revisited by using density functional theory. At finite temperatures, a novel transition of rhombohedral phases back to BCC phase induced by thermal electrons is discovered. This reentrant transition is found not driven by phonons, instead it is the electronic entropy that stabilizes the latter phase, which is totally out of expectation. Parallel to this transition, we find a peculiar and strong increase of the shear modulus C44 with increasing temperature. It is counter-intuitive in the sense that it suggests an unusual harding mechanism of vanadium by temperature. With these stability analyses, the high-pressure and finite-temperature phase diagram of vanadium is proposed. Furthermore, the dependence of the stability of RH phases on the Fermi energy and chemical environment is investigated. The results demonstrate that the position of the Fermi level has a significant impact on the phase stability, and follows the band-filling argument. Besides the Fermi surface nesting, we find that the localization/delocalization of the d orbitals also contributes to the instability of rhombohedral distortions in vanadium. PMID:27581551

  12. Tip-induced reduction of the resonant tunneling current on semiconductor surfaces.

    PubMed

    Jelínek, Pavel; Svec, Martin; Pou, Pablo; Perez, Ruben; Cháb, Vladimír

    2008-10-24

    We report scanning tunneling microscope measurements showing a substantial decrease of the current, almost to zero, on the Si(111)-(7x7) reconstruction in the near-to-contact region under low bias conditions. First principles simulations for the tip-sample interaction and transport calculations show that this effect is driven by the substantial local modification of the atomic and electronic structure of the surface. The chemical reactivity of the adatom dangling bond states that dominate the electronic density of states close to the Fermi level and their spatial localization result in a strong modification of the electronic current.

  13. Band offset and electron affinity of MBE-grown SnSe2

    NASA Astrophysics Data System (ADS)

    Zhang, Qin; Li, Mingda Oscar; Lochocki, Edward B.; Vishwanath, Suresh; Liu, Xinyu; Yan, Rusen; Lien, Huai-Hsun; Dobrowolska, Malgorzata; Furdyna, Jacek; Shen, Kyle M.; Cheng, Guangjun; Hight Walker, Angela R.; Gundlach, David J.; Xing, Huili G.; Nguyen, N. V.

    2018-01-01

    SnSe2 is currently considered a potential two-dimensional material that can form a near-broken gap heterojunction in a tunnel field-effect transistor due to its large electron affinity which is experimentally confirmed in this letter. With the results from internal photoemission and angle-resolved photoemission spectroscopy performed on Al/Al2O3/SnSe2/GaAs and SnSe2/GaAs test structures where SnSe2 is grown on GaAs by molecular beam epitaxy, we ascertain a (5.2 ± 0.1) eV electron affinity of SnSe2. The band offset from the SnSe2 Fermi level to the Al2O3 conduction band minimum is found to be (3.3 ± 0.05) eV and SnSe2 is seen to have a high level of intrinsic electron (n-type) doping with the Fermi level positioned at about 0.2 eV above its conduction band minimum. It is concluded that the electron affinity of SnSe2 is larger than that of most semiconductors and can be combined with other appropriate semiconductors to form near broken-gap heterojunctions for the tunnel field-effect transistor that can potentially achieve high on-currents.

  14. Second-Order Fermi Acceleration and Emission in Blazar Jets

    NASA Astrophysics Data System (ADS)

    Asano, Katsuaki; Takahara, Fumio; Toma, Kenji; Kusunose, Masaaki; Kakuwa, Jun

    The second-order Fermi acceleration (Fermi-II) driven by turbulence may be responsible for the electron acceleration in blazar jets. We test this model with time-dependent simulations, adopt it for 1ES 1101-232, and Mrk 421. The Fermi-II model with radial evolution of the electron injection rate and/or diffusion coefficient can reproduce the spectra from the radio to the gamma-ray regime. For Mrk 421, an external radio photon field with a luminosity of 4.9 begin{math} {times} 10 (38) erg s (-1) is required to agree with the observed GeV flux. The temporal variability of the diffusion coefficient or injection rate causes flare emission. The observed synchronicity of X-ray and TeV flares implies a decrease of the magnetic field in the flaring source region.

  15. Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems

    NASA Astrophysics Data System (ADS)

    Ingham, B.; Hendy, S. C.; Chong, S. V.; Tallon, J. L.

    2005-08-01

    Tungsten trioxide adopts a variety of structures which can be intercalated with charged species to alter the electronic properties, thus forming “tungsten bronzes.” Similar effects are observed upon removing oxygen from WO3 . We present a computational study of cubic and hexagonal alkali bronzes and examine the effects on cell size and band structure as the size of the intercalated ion is increased. With the exception of hydrogen (which is predicted to be unstable as an intercalate), the behavior of the bronzes are relatively consistent. NaWO3 is the most stable of the cubic systems, although in the hexagonal system the larger ions are more stable. The band structures are identical, with the intercalated atom donating its single electron to the tungsten 5d valence band. A study of fractional doping in the NaxWO3 system (0⩽x⩽1) showed a linear variation in cell parameter and a systematic shift in the Fermi level into the conduction band. In the oxygen-deficient WO3-x system the Fermi level undergoes a sudden jump into the conduction band at around x=0.2 . Lastly, three compounds of a layered WO4•α,ω -diaminoalkane hybrid series were studied and found to be insulating, with features in the band structure similar to those of the parent WO3 compound that relate well to experimental UV-visible spectroscopy results.

  16. Electronic structure Fermi liquid theory of high T(sub c) superconductors: Comparison with experiments

    NASA Astrophysics Data System (ADS)

    Freeman, A. J.; Yu, Jaejun

    1990-04-01

    For years, there has been controversy on whether the normal state of the Cu-oxide superconductors is a Fermi liquid or some other exotic ground state. However, some experimentalists are clarifying the nature of the normal state of the high T(sub c) superconductors by surmounting the experimental difficulties in producing clean, well characterized surfaces so as to obtain meaningful high resolved photoemission data, which agrees with earlier positron-annihilation experiments. The experimental work on high resolution angle resolved photoemission by Campuzano et al. and positron-annihilation studies by Smedskjaer et al. has verified the calculated Fermi surfaces in YBa2Cu3O7 superconductors and has provided evidence for the validity of the energy band approach. Similar good agreement was found for Bi2Sr2CaCu2O8 by Olson et al. As a Fermi liquid (metallic) nature of the normal state of the high T(sub c) superconductors becomes evident, these experimental observations have served to confirm the predictions of the local density functional calculations and hence the energy band approach as a valid natural starting point for further studies of their superconductivity.

  17. Electronic structure Fermi liquid theory of high T(sub c) superconductors: Comparison with experiments

    NASA Technical Reports Server (NTRS)

    Freeman, A. J.; Yu, Jaejun

    1990-01-01

    For years, there has been controversy on whether the normal state of the Cu-oxide superconductors is a Fermi liquid or some other exotic ground state. However, some experimentalists are clarifying the nature of the normal state of the high T(sub c) superconductors by surmounting the experimental difficulties in producing clean, well characterized surfaces so as to obtain meaningful high resolved photoemission data, which agrees with earlier positron-annihilation experiments. The experimental work on high resolution angle resolved photoemission by Campuzano et al. and positron-annihilation studies by Smedskjaer et al. has verified the calculated Fermi surfaces in YBa2Cu3O7 superconductors and has provided evidence for the validity of the energy band approach. Similar good agreement was found for Bi2Sr2CaCu2O8 by Olson et al. As a Fermi liquid (metallic) nature of the normal state of the high T(sub c) superconductors becomes evident, these experimental observations have served to confirm the predictions of the local density functional calculations and hence the energy band approach as a valid natural starting point for further studies of their superconductivity.

  18. Growth optimization and electronic structure of ultrathin CoO films on Ag(001): A LEED and photoemission study

    NASA Astrophysics Data System (ADS)

    Barman, Sukanta; Menon, Krishnakumar S. R.

    2018-04-01

    We present here a detailed growth optimization of CoO thin film on Ag(001) involving the effects of different growth parameters on the electronic structure. A well-ordered stoichiometric growth of 5 ML CoO film has been observed at 473 K substrate temperature and 1 × 10-6 mbar oxygen partial pressure. The growth at lower substrate temperature and oxygen partial pressure show non-stoichiometric impurity phases which have been investigated further to correlate the growth parameters with surface electronic structure. The coverage dependent valence band electronic structure of the films grown at optimized condition reveals the presence of interfacial states near the Fermi edge (EF) for lower film coverages. Presence of interfacial states in the stoichiometric films rules out their defect-induced origin. We argue that this is an intrinsic feature of transition metal monoxides like NiO, CoO, MnO in the low coverage regime.

  19. Electronic structure of (Ca{sub 0.85}La{sub 0.15})FeAs{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Z.-H., E-mail: z.liu@ifw-dresden.de; Borisenko, S. V., E-mail: s.borysenko@ifw-dresden.de; Kim, T. K.

    We report a comprehensive study of orbital character and tridimensional nature of the electronic structure of (Ca{sub 0.85}La{sub 0.15})FeAs{sub 2} from recently discovered “112” family of Iron-based superconductors (IBS), with angle-resolved photoemission spectroscopy. We observed that the band structure is similar to that of “122” family, namely, there are three hole-like bands at the Brillouin zone (BZ) center and two electron-like bands at the BZ corner. The bands near the Fermi level (E{sub F}) are mainly derived from the Fe t{sub 2g} orbitals. On the basis of our present and earlier studies, we classify IBS into the three types accordingmore » to their crystal structures. We show that although the bands near E{sub F} mainly originate from Fe 3d electrons, they are significantly modified by the interaction between the superconducting slabs and the intermediate atoms.« less

  20. Valence Band Control of Metal Silicide Films via Stoichiometry.

    PubMed

    Streller, Frank; Qi, Yubo; Yang, Jing; Mangolini, Filippo; Rappe, Andrew M; Carpick, Robert W

    2016-07-07

    The unique electronic and mechanical properties of metal silicide films render them interesting for advanced materials in plasmonic devices, batteries, field-emitters, thermoelectric devices, transistors, and nanoelectromechanical switches. However, enabling their use requires precisely controlling their electronic structure. Using platinum silicide (PtxSi) as a model silicide, we demonstrate that the electronic structure of PtxSi thin films (1 ≤ x ≤ 3) can be tuned between metallic and semimetallic by changing the stoichiometry. Increasing the silicon content in PtxSi decreases the carrier density according to valence band X-ray photoelectron spectroscopy and theoretical density of states (DOS) calculations. Among all PtxSi phases, Pt3Si offers the highest DOS due to the modest shift of the Pt5d manifold away from the Fermi edge by only 0.5 eV compared to Pt, rendering it promising for applications. These results, demonstrating tunability of the electronic structure of thin metal silicide films, suggest that metal silicides can be designed to achieve application-specific electronic properties.

  1. Weakly-Correlated Nature of Ferromagnetism in Nonsymmorphic CrO2 Revealed by Bulk-Sensitive Soft-X-Ray ARPES

    NASA Astrophysics Data System (ADS)

    Bisti, F.; Rogalev, V. A.; Karolak, M.; Paul, S.; Gupta, A.; Schmitt, T.; Güntherodt, G.; Eyert, V.; Sangiovanni, G.; Profeta, G.; Strocov, V. N.

    2017-10-01

    Chromium dioxide CrO2 belongs to a class of materials called ferromagnetic half-metals, whose peculiar aspect is that they act as a metal in one spin orientation and as a semiconductor or insulator in the opposite one. Despite numerous experimental and theoretical studies motivated by technologically important applications of this material in spintronics, its fundamental properties such as momentum-resolved electron dispersions and the Fermi surface have so far remained experimentally inaccessible because of metastability of its surface, which instantly reduces to amorphous Cr2O3 . In this work, we demonstrate that direct access to the native electronic structure of CrO2 can be achieved with soft-x-ray angle-resolved photoemission spectroscopy whose large probing depth penetrates through the Cr2O3 layer. For the first time, the electronic dispersions and Fermi surface of CrO2 are measured, which are fundamental prerequisites to solve the long debate on the nature of electronic correlations in this material. Since density functional theory augmented by a relatively weak local Coulomb repulsion gives an exhaustive description of our spectroscopic data, we rule out strong-coupling theories of CrO2 . Crucial for the correct interpretation of our experimental data in terms of the valence-band dispersions is the understanding of a nontrivial spectral response of CrO2 caused by interference effects in the photoemission process originating from the nonsymmorphic space group of the rutile crystal structure of CrO2 .

  2. The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özduran, Mustafa; Turgut, Kemal; Arikan, Nihat

    2014-10-06

    We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso programmore » package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.« less

  3. Importance of conduction electron correlation in a Kondo lattice, Ce₂CoSi₃.

    PubMed

    Patil, Swapnil; Pandey, Sudhir K; Medicherla, V R R; Singh, R S; Bindu, R; Sampathkumaran, E V; Maiti, Kalobaran

    2010-06-30

    Kondo systems are usually described by the interaction of the correlation induced local moments with the highly itinerant conduction electrons. Here, we study the role of electron correlations among conduction electrons in the electronic structure of a Kondo lattice compound, Ce₂CoSi₃, using high resolution photoemission spectroscopy and ab initio band structure calculations, where Co 3d electrons contribute in the conduction band. High energy resolution employed in the measurements helped to reveal the signatures of Ce 4f states derived Kondo resonance features at the Fermi level and the dominance of Co 3d contributions at higher binding energies in the conduction band. The lineshape of the experimental Co 3d band is found to be significantly different from that obtained from the band structure calculations within the local density approximations, LDA. Consideration of electron-electron Coulomb repulsion, U, among Co 3d electrons within the LDA + U method leads to a better representation of experimental results. The signature of an electron correlation induced satellite feature is also observed in the Co 2p core level spectrum. These results clearly demonstrate the importance of the electron correlation among conduction electrons in deriving the microscopic description of such Kondo systems.

  4. Large Fermi Surface of Heavy Electrons at the Border of Mott Insulating State in NiS 2

    DOE PAGES

    Friedemann, S.; Chang, H.; Gamża, M. B.; ...

    2016-05-12

    One early triumph of quantum physics is the explanation why some materials are metallic whereas others are insulating. While a treatment based on single electron states is correct for most materials this approach can fail spectacularly, when the electrostatic repulsion between electrons causes strong correlations. Not only can these favor new and subtle forms of matter, such as magnetism or superconductivity, they can even cause the electrons in a half-filled energy band to lock into position, producing a correlated, or Mott insulator. The transition into the Mott insulating state raises important fundamental questions. Foremost among these is the fate ofmore » the electronic Fermi surface and the associated charge carrier mass, as the Mott transition is approached. We report the first direct observation of the Fermi surface on the metallic side of a Mott insulating transition by high pressure quantum oscillatory measurements in NiS 2. We find our results point at a large Fermi surface consistent with Luttinger's theorem and a strongly enhanced quasiparticle effective mass. These two findings are in line with central tenets of the Brinkman-Rice picture of the correlated metal near the Mott insulating state and rule out alternative scenarios in which the carrier concentration vanishes continuously at the metal-insulator transition.« less

  5. EUO-Based Multifunctional Heterostructures

    DTIC Science & Technology

    2015-06-06

    magnetoresistance and the metal -insulator transition resistance ratios of doped EuO by interfacing this semiconductor with niobium; the observed effect is...general and may be applied to any metal /semiconductor interface where the semiconductor shows large Zeeman splitting under magnetic field, (2...understanding the changes in electronic structure and Fermi-surface reconstruction that occur as doped EuO progresses through the ferromagnetic metal

  6. Hyperfine structure of the MnH X 7Sigma + state: A large gas-to-matrix shift in the Fermi contact interaction

    NASA Astrophysics Data System (ADS)

    Varberg, Thomas D.; Field, Robert W.; Merer, Anthony J.

    1990-06-01

    Sub-Doppler spectra of the A 7Π-X 7Σ+ (0,0) band of gas phase MnH near 5680 Å were recorded by intermodulated fluorescence spectroscopy. The spectra reveal hyperfine splittings arising from both the 55Mn and 1H nuclear spins. Internal hyperfine perturbations have been observed between the different spin components of the ground state at low N`. From a preliminary analysis of several rotational lines originating from the isolated and unperturbed F1(J`=3) spin component of the X 7Σ+(N`=0) level, the 55Mn Fermi contact interaction in the ground state has been measured as bF=Aiso =276(1) MHz. This value is 11% smaller than the value obtained by Weltner et al. from an electron-nuclear double resonance (ENDOR) study of MnH in an argon matrix at 4 K. This unprecedented gas-to-matrix shift in the Fermi contact parameter is discussed.

  7. Anisotropic Surface State Mediated RKKY Interaction Between Adatoms on a Hexagonal Lattice

    NASA Astrophysics Data System (ADS)

    Einstein, Theodore; Patrone, Paul

    2012-02-01

    Motivated by recent numerical studies of Ag on Pt(111), we derive a far-field expression for the RKKY interaction mediated by surface states on a (111) FCC surface, considering the effect of anisotropy in the Fermi edge. The main contribution to the interaction comes from electrons whose Fermi velocity vF is parallel to the vector R connecting the interacting adatoms; we show that in general, the corresponding Fermi wave-vector kF is not parallel to R. The interaction is oscillatory; the amplitude and wavelength of oscillations have angular dependence arising from the anisotropy of the surface state band structure. The wavelength, in particular, is determined by the component of the aforementioned kF that is parallel to R. Our analysis is easily generalized to other systems. For Ag on Pt(111), our results indicate that the RKKY interaction between pairs of adatoms should be nearly isotropic and so cannot account for the anisotropy found in the studies motivating our work.

  8. Low-bias flat band-stop filter based on velocity modulated gaussian graphene superlattice

    NASA Astrophysics Data System (ADS)

    Sattari-Esfahlan, S. M.; Shojaei, S.

    2018-05-01

    Transport properties of biased planar Gaussian graphene superlattice (PGGSL) with Fermi velocity barrier is investigated by transfer matrix method (TMM). It is observed that enlargement of bias voltage over miniband width breaks the miniband to WSLs leads to suppressing resonant tunneling. Transmission spectrum shows flat wide stop-band property controllable by external bias voltage with stop-band width of near 200 meV. The simulations demonstrate that strong velocity barriers prevent tunneling of Dirac electrons leading to controllable enhancement of stop-band width. By increasing ratio of Fermi velocity in barriers to wells υc stop-band width increase. As wide transmission stop-band width (BWT) of filter is tunable from 40 meV to 340 meV is obtained by enhancing ratio of υc from 0.2 to 1.5, respectively. Proposed structure suggests easy tunable wide band-stop electronic filter with a modulated flat stop-band characteristic by height of electrostatic barrier and structural parameters. Robust sensitivity of band width to velocity barrier intensity in certain bias voltages and flat band feature of proposed filter may be opens novel venue in GSL based flat band low noise filters and velocity modulation devices.

  9. Abnormal specific heat enhancement and non-Fermi-liquid behavior in the heavy-fermion system U2Cu17 -xGax (5 ≤x ≤8 )

    NASA Astrophysics Data System (ADS)

    Svanidze, E.; Amon, A.; Prots, Yu.; Leithe-Jasper, A.; Grin, Yu.

    2018-03-01

    In the antiferromagnetic heavy-fermion compound U2Zn17 , the Sommerfeld coefficient γ can be enhanced if all Zn atoms are replaced by a combination of Cu and Al or Cu and Ga. In the former ternary phase, glassy behavior was observed, while for the latter, conflicting ground-state reports suggest material quality issues. In this work, we investigate the U2Cu17 -xGax substitutional series for 4.5 ≤x ≤9.5 . In the homogeneity range of the phase with the Th2Zn17 -type of crystal structure, all samples exhibit glassy behavior with 0.6 K ≤Tf≤1.8 K . The value of the electronic specific heat coefficient γ in this system exceeds 900 mJ/molUK2. Such a drastic effective-mass enhancement can possibly be attributed to the effects of structural disorder, since the role of electron concentration and lattice compression is likely minimal. Crystallographic disorder is also responsible for the emergence of non-Fermi-liquid behavior in these spin-glass materials, as evidenced by logarithmic divergence of magnetic susceptibility, specific heat, and electrical resistivity.

  10. Time-Dependent Thomas-Fermi Approach for Electron Dynamics in Metal Clusters

    NASA Astrophysics Data System (ADS)

    Domps, A.; Reinhard, P.-G.; Suraud, E.

    1998-06-01

    We propose a time-dependent Thomas-Fermi approach to the (nonlinear) dynamics of many-fermion systems. The approach relies on a hydrodynamical picture describing the system in terms of collective flow. We investigate in particular an application to electron dynamics in metal clusters. We make extensive comparisons with fully fledged quantal dynamical calculations and find overall good agreement. The approach thus provides a reliable and inexpensive scheme to study the electronic response of large metal clusters.

  11. Many-body exciton states in self-assembled quantum dots coupled to a Fermi sea

    NASA Astrophysics Data System (ADS)

    Koenraad, P. M.; Kleemans, N. A. J. M.; van Bree, J.; Govorov, A. O.; Hamhuis, G. J.; Notzel, R.; Silov, A. Yu.

    2010-03-01

    Using voltage dependent photoluminescence spectroscopy we have studied the coupling between QD states and the continuum of states of a Fermi sea of electrons in the close proximity of a self-assembled InAs quantum dot embedded in GaAs. This coupling gives rise to new optical transitions, manifesting the formation of many-body exciton states. The lines in the photoluminescence spectra can be well explained within the Anderson and Mahan exciton models. The presence of Mahan excitons originates from the Coulomb interaction between electrons in the Fermi sea and the hole(s) in the QD whereas a the second type of many-body exciton is due to a hybridized exciton originating from the tunnel interaction between the continuum of states in the Fermi sea and the localized state in the QD. Our study demonstrates the possibility to investigate a variety of many-body states in QDs coupled to a Fermi sea and opens the way to investigate optically the Kondo effect and related spin phenomena in these systems.

  12. Electron-phonon coupling in graphene placed between magnetic Li and Si layers on cobalt

    NASA Astrophysics Data System (ADS)

    Usachov, Dmitry Yu.; Fedorov, Alexander V.; Vilkov, Oleg Yu.; Ogorodnikov, Ilya I.; Kuznetsov, Mikhail V.; Grüneis, Alexander; Laubschat, Clemens; Vyalikh, Denis V.

    2018-02-01

    Using angle-resolved photoemission spectroscopy (ARPES), we study the electronic structure and electron-phonon coupling in a Li-doped graphene monolayer decoupled from the Co(0001) substrate by intercalation of silicon. Based on the photoelectron diffraction measurements, we disclose the structural properties of the Si/Co interface. Our density functional theory calculations demonstrate that in the studied Li/graphene/Si/Co system the magnetism of Co substrate induces notable magnetic moments on Li and Si atoms. At the same time graphene remains almost nonmagnetic and clamped between two magnetically active atomic layers with antiparallel magnetizations. ARPES maps of the graphene Fermi surface reveal strong electron doping, which may lead to superconductivity mediated by electron-phonon coupling (EPC). Analysis of the spectral function of photoelectrons reveals apparent anisotropy of EPC in the k space. These properties make the studied system tempting for studying the relation between superconductivity and magnetism in two-dimensional materials.

  13. Electronic Structure and Transport in Solids from First Principles

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal Ibrahim

    The focus of this dissertation is the determination of the electronic structure and trans- port properties of solids. We first review some of the theory and computational methodology used in the calculation of electronic structure and materials properties. Throughout the dissertation, we make extensive use of state-of-the-art software packages that implement density functional theory, density functional perturbation theory, and the GW approximation, in addition to specialized methods for interpolating matrix elements for extremely accurate results. The first application of the computational framework introduced is the determination of band offsets in semiconductor heterojunctions using a theory of quantum dipoles at the interface. This method is applied to the case of heterojunction formed between a new metastable phase of silicon, with a rhombohedral structure, and cubic silicon. Next, we introduce a novel method for the construction of localized Wannier functions, which we have named the optimized projection functions method (OPFM). We illustrate the method on a variety of systems and find that it can reliably construct localized Wannier functions with minimal user intervention. We further develop the OPFM to investigate a class of materials called topological insulators, which are insulating in the bulk but have conductive surface states. These properties are a result of a nontrivial topology in their band structure, which has interesting effects on the character of the Wannier functions. In the last sections of the main text, the noble metals are studied in great detail, including their electronic properties and carrier dynamics. In particular, we investigate, the Fermi surface properties of the noble metals, specifically electron-phonon scattering lifetimes, and subsequently the transport properties determined by carriers on the Fermi surface. To achieve this, a novel sampling technique is developed, with wide applicability to transport calculations. Additionally, the generation and transport of hot carriers is studied extensively. The distribution of hot carriers generated from the decay of plasmons is explored over a range of energy, and the transport properties, particularly the lifetimes and mean-free-paths, of the hot carriers are determined. Lastly, appendices detailing the implementation of the algorithms developed in the work is presented, along with a useful derivation of the electron-plasmon matrix elements.

  14. A comparative study of different methods for calculating electronic transition rates

    NASA Astrophysics Data System (ADS)

    Kananenka, Alexei A.; Sun, Xiang; Schubert, Alexander; Dunietz, Barry D.; Geva, Eitan

    2018-03-01

    We present a comprehensive comparison of the following mixed quantum-classical methods for calculating electronic transition rates: (1) nonequilibrium Fermi's golden rule, (2) mixed quantum-classical Liouville method, (3) mean-field (Ehrenfest) mixed quantum-classical method, and (4) fewest switches surface-hopping method (in diabatic and adiabatic representations). The comparison is performed on the Garg-Onuchic-Ambegaokar benchmark charge-transfer model, over a broad range of temperatures and electronic coupling strengths, with different nonequilibrium initial states, in the normal and inverted regimes. Under weak to moderate electronic coupling, the nonequilibrium Fermi's golden rule rates are found to be in good agreement with the rates obtained via the mixed quantum-classical Liouville method that coincides with the fully quantum-mechanically exact results for the model system under study. Our results suggest that the nonequilibrium Fermi's golden rule can serve as an inexpensive yet accurate alternative to Ehrenfest and the fewest switches surface-hopping methods.

  15. Observation of pseudogap in MgB2

    NASA Astrophysics Data System (ADS)

    Patil, S.; Medicherla, V. R. R.; Ali, Khadiza; Singh, R. S.; Manfrinetti, P.; Wrubl, F.; Dhar, S. K.; Maiti, Kalobaran

    2017-11-01

    We investigate the electronic structure of a specially prepared highly dense conventional high temperature superconductor, MgB2, employing high resolution photoemission spectroscopy. The spectral evolution close to the Fermi energy is commensurate to BCS descriptions as expected. However, the spectra in the wider energy range reveal the emergence of a pseudogap much above the superconducting transition temperature indicating an apparent departure from the BCS scenario. The energy scale of the pseudogap is comparable to the energy of the E2g phonon mode responsible for superconductivity in MgB2 and the pseudogap can be attributed to the effect of electron-phonon coupling on the electronic structure. These results reveal a scenario of the emergence of the superconducting gap within an electron-phonon coupling induced pseudogap and have significant implications in the study of high temperature superconductors.

  16. Thermally Driven Electronic Topological Transition in FeTi

    NASA Astrophysics Data System (ADS)

    Yang, F. C.; Muñoz, J. A.; Hellman, O.; Mauger, L.; Lucas, M. S.; Tracy, S. J.; Stone, M. B.; Abernathy, D. L.; Xiao, Yuming; Fultz, B.

    2016-08-01

    Ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M5- phonon mode in B 2 -ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. The thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M5- phonon mode and an adiabatic electron-phonon interaction with an unusual temperature dependence.

  17. Theoretical Interpretation of Pass 8 Fermi -LAT e {sup +} + e {sup −} Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Mauro, M.; Manconi, S.; Donato, F.

    The flux of positrons and electrons ( e {sup +} + e {sup −}) has been measured by the Fermi Large Area Telescope (LAT) in the energy range between 7 GeV and 2 TeV. We discuss a number of interpretations of Pass 8 Fermi -LAT e {sup +} + e {sup −} spectrum, combining electron and positron emission from supernova remnants (SNRs) and pulsar wind nebulae (PWNe), or produced by the collision of cosmic rays (CRs) with the interstellar medium. We find that the Fermi -LAT spectrum is compatible with the sum of electrons from a smooth SNR population, positronsmore » from cataloged PWNe, and a secondary component. If we include in our analysis constraints from the AMS-02 positron spectrum, we obtain a slightly worse fit to the e {sup +} + e {sup −} Fermi -LAT spectrum, depending on the propagation model. As an additional scenario, we replace the smooth SNR component within 0.7 kpc with the individual sources found in Green’s catalog of Galactic SNRs. We find that separate consideration of far and near sources helps to reproduce the e {sup +} + e {sup −} Fermi -LAT spectrum. However, we show that the fit degrades when the radio constraints on the positron emission from Vela SNR (which is the main contributor at high energies) are taken into account. We find that a break in the power-law injection spectrum at about 100 GeV can also reproduce the measured e {sup +} + e {sup −} spectrum and, among the CR propagation models that we consider, no reasonable break of the power-law dependence of the diffusion coefficient can modify the electron flux enough to reproduce the observed shape.« less

  18. Electronic structure modifications and band gap narrowing in Zn0.95V0.05O

    NASA Astrophysics Data System (ADS)

    Ahad, Abdul; Majid, S. S.; Rahman, F.; Shukla, D. K.; Phase, D. M.

    2018-04-01

    We present here, structural, optical and electronic structure studies on Zn0.95V0.05O, synthesized using solid state method. Rietveld refinement of x-ray diffraction pattern indicates no considerable change in the lattice of doped ZnO. The band gap of doped sample, as calculated by Kubelka-Munk transformed reflectance spectra, has been found reduced compared to pure ZnO. Considerable changes in absorbance in UV-Vis range is observed in doped sample. V doping induced decrease in band gap is supported by x-ray absorption spectroscopy measurements. It is experimentally confirmed that conduction band edge in Zn0.95V0.05O has shifted towards Fermi level than in pure ZnO.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Llave, Ezequiel de la; Herrera, Santiago E.; Adam, Catherine

    The molecular and electronic structure of Os(II) complexes covalently bonded to self-assembled monolayers (SAMs) on Au(111) surfaces was studied by means of polarization modulation infrared reflection absorption spectroscopy, photoelectron spectroscopies, scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory calculations. Attachment of the Os complex to the SAM proceeds via an amide covalent bond with the SAM alkyl chain 40° tilted with respect to the surface normal and a total thickness of 26 Å. The highest occupied molecular orbital of the Os complex is mainly based on the Os(II) center located 2.2 eV below the Fermi edge and themore » LUMO molecular orbital is mainly based on the bipyridine ligands located 1.5 eV above the Fermi edge.« less

  20. Spatial variations of the local density of states modified by CDWs in 1 T- TaS2- xSex

    NASA Astrophysics Data System (ADS)

    Hasegawa, T.; Yamaguchi, W.; Kim, J.-J.; Wei, W.; Nantoh, M.; Ikuta, H.; Kitazawa, K.; Manivannan, A.; Fujishima, A.; Uchinokura, K.

    1994-07-01

    Spatial variations of the local density of states (LDOS) near the Fermi level have been observed on the layered dichalcogenides 1 T- TaS2- xSex ( x = 0, 0.2, 2) for the first time. The tunneling spectra on the cleaved surfaces were measured by atomic-site tunneling (AST) spectroscopy technique at room temperature. In 1T-TaS 2, the LDOS was substantially different among the three inequivalent Ta atomic sites induced by the CDW formation. However, the surface electronic structure became homogeneous, as the Se content was increased. By substituting Se for S, the minimum position of the LDOS was systematically shifted to a higher energy side above the Fermi level.

  1. Spin polarized first principles study of Mn doped gallium nitride monolayer nanosheet

    NASA Astrophysics Data System (ADS)

    Sharma, Venus; Kaur, Sumandeep; Srivastava, Sunita; Kumar, Tankeshwar

    2017-05-01

    The structural, electronic and magnetic properties of gallium nitride nanosheet (GaNs) doped with Mn atoms have been studied using spin polarized density functional theory. The binding energy per atom, Energy Band gap, Fermi energy, magnetic moment, electric dipole moment have been found. The doped nanosheet is found to be more stable than pure GaN monolayer nanosheet. Adsorption of Mn atom has been done at four different sites on GaNs which affects the fermi level position. It is found that depending on the doping site, Mn can behave both like p-type semiconductor and also as n-type semiconductor. Also, it is ascertained that Mn doped GaNs (GaNs-Mn) exhibits ferromagnetic behavior.

  2. Fermiology and Superconductivity of Topological Surface States in PdTe2

    NASA Astrophysics Data System (ADS)

    Clark, O. J.; Neat, M. J.; Okawa, K.; Bawden, L.; Marković, I.; Mazzola, F.; Feng, J.; Sunko, V.; Riley, J. M.; Meevasana, W.; Fujii, J.; Vobornik, I.; Kim, T. K.; Hoesch, M.; Sasagawa, T.; Wahl, P.; Bahramy, M. S.; King, P. D. C.

    2018-04-01

    We study the low-energy surface electronic structure of the transition-metal dichalcogenide superconductor PdTe2 by spin- and angle-resolved photoemission, scanning tunneling microscopy, and density-functional theory-based supercell calculations. Comparing PdTe2 with its sister compound PtSe2 , we demonstrate how enhanced interlayer hopping in the Te-based material drives a band inversion within the antibonding p -orbital manifold well above the Fermi level. We show how this mediates spin-polarized topological surface states which form rich multivalley Fermi surfaces with complex spin textures. Scanning tunneling spectroscopy reveals type-II superconductivity at the surface, and moreover shows no evidence for an unconventional component of its superconducting order parameter, despite the presence of topological surface states.

  3. Theoretical model of x-ray scattering as a dense matter probe.

    PubMed

    Gregori, G; Glenzer, S H; Rozmus, W; Lee, R W; Landen, O L

    2003-02-01

    We present analytical expressions for the dynamic structure factor, or form factor S(k,omega), which is the quantity describing the x-ray cross section from a dense plasma or a simple liquid. Our results, based on the random phase approximation for the treatment on the charged particle coupling, can be applied to describe scattering from either weakly coupled classical plasmas or degenerate electron liquids. Our form factor correctly reproduces the Compton energy down-shift and the known Fermi-Dirac electron velocity distribution for S(k,omega) in the case of a cold degenerate plasma. The usual concept of scattering parameter is also reinterpreted for the degenerate case in order to include the effect of the Thomas-Fermi screening. The results shown in this work can be applied to interpreting x-ray scattering in warm dense plasmas occurring in inertial confinement fusion experiments or for the modeling of solid density matter found in the interior of planets.

  4. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2 H – NbSe 2

    DOE PAGES

    Arguello, C. J.; Rosenthal, E. P.; Andrade, E. F.; ...

    2015-01-21

    We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe₂ that we measure by scanning tunneling spectroscopic imaging. We show, from the momentum and energy dependence of the quasiparticle interference, that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe₂. We demonstrate that, by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wave vector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiologymore » and the interactions. In 2H-NbSe₂, we use this combination to confirm that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the charge density wave ordering wave vector.« less

  5. Quasiparticle interference, quasiparticle interactions, and the origin of the charge density wave in 2H-NbSe2.

    PubMed

    Arguello, C J; Rosenthal, E P; Andrade, E F; Jin, W; Yeh, P C; Zaki, N; Jia, S; Cava, R J; Fernandes, R M; Millis, A J; Valla, T; Osgood, R M; Pasupathy, A N

    2015-01-23

    We show that a small number of intentionally introduced defects can be used as a spectroscopic tool to amplify quasiparticle interference in 2H-NbSe2 that we measure by scanning tunneling spectroscopic imaging. We show, from the momentum and energy dependence of the quasiparticle interference, that Fermi surface nesting is inconsequential to charge density wave formation in 2H-NbSe2. We demonstrate that, by combining quasiparticle interference data with additional knowledge of the quasiparticle band structure from angle resolved photoemission measurements, one can extract the wave vector and energy dependence of the important electronic scattering processes thereby obtaining direct information both about the fermiology and the interactions. In 2H-NbSe2, we use this combination to confirm that the important near-Fermi-surface electronic physics is dominated by the coupling of the quasiparticles to soft mode phonons at a wave vector different from the charge density wave ordering wave vector.

  6. Importance of the van Hove singularity in superconducting PdTe2

    NASA Astrophysics Data System (ADS)

    Kim, Kyoo; Kim, Sooran; Kim, J. S.; Kim, Heejung; Park, J.-H.; Min, B. I.

    2018-04-01

    We have investigated the electronic, phononic, and superconducting properties of the transition-metal dichalcogenide superconductor PdTe2, and explored the origin of different superconducting behaviors between PdTe2 and its isostructural PtTe2 that is nonsuperconducting. We have found that the saddle-point van Hove singularity (vHs) near the Fermi level, which interacts strongly with Te phonon modes, plays an important role in the BCS-type superconductivity of PdTe2. We show that, with electron doping, the vHs in PdTe2 shifts down toward the Fermi level to enhance Tc, as is consistent with the observed enhancement of Tc in Cu-doped PdTe2. We ascribe the absence of superconductivity in PtTe2 to the different dispersion behavior of the saddle-point vHs band from that of PdTe2. We also suggest that this difference in the vHs band behaviors is responsible for the different structural responses of PdTe2 and PtTe2 to external pressure.

  7. Correlation Effects and Hidden Spin-Orbit Entangled Electronic Order in Parent and Electron-Doped Iridates Sr2 IrO4

    NASA Astrophysics Data System (ADS)

    Zhou, Sen; Jiang, Kun; Chen, Hua; Wang, Ziqiang

    2017-10-01

    Analogs of the high-Tc cuprates have been long sought after in transition metal oxides. Because of the strong spin-orbit coupling, the 5 d perovskite iridates Sr2 IrO4 exhibit a low-energy electronic structure remarkably similar to the cuprates. Whether a superconducting state exists as in the cuprates requires understanding the correlated spin-orbit entangled electronic states. Recent experiments discovered hidden order in the parent and electron-doped iridates, some with striking analogies to the cuprates, including Fermi surface pockets, Fermi arcs, and pseudogap. Here, we study the correlation and disorder effects in a five-orbital model derived from the band theory. We find that the experimental observations are consistent with a d -wave spin-orbit density wave order that breaks the symmetry of a joint twofold spin-orbital rotation followed by a lattice translation. There is a Berry phase and a plaquette spin flux due to spin procession as electrons hop between Ir atoms, akin to the intersite spin-orbit coupling in quantum spin Hall insulators. The associated staggered circulating Jeff=1 /2 spin current can be probed by advanced techniques of spin-current detection in spintronics. This electronic order can emerge spontaneously from the intersite Coulomb interactions between the spatially extended iridium 5 d orbitals, turning the metallic state into an electron-doped quasi-2D Dirac semimetal with important implications on the possible superconducting state suggested by recent experiments.

  8. Doping Scheme in Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada

    1997-01-01

    Due to the dramatic reduction in MOS size, there appear many unwanted effects. In these small devices, the number of dopant atoms in the channel is not macroscopic and electrons may suffer significantly different scattering from device to device since the spatial distribution of dopant atoms is no longer regarded as continuous. This prohibits integration, while it is impossible to control such dopant positions within atomic scale. A fundamental solution is to create electronics with simple but atomically precise structures, which could be fabricated with recent atom manipulation technology. All the constituent atoms are placed as planned, and then the device characteristics are deviation-free, which is mandatory for integration. Atomic chain electronics belongs to this category. Foreign atom chains or arrays form devices, and they are placed on the atomically flat substrate surface. We can design the band structure and the resultant Fermi energy of these structures by manipulating the lattice constant. Using the tight-binding theory with universal parameters, it has been predicted that isolated Si chains and arrays are metallic, Mg chains are insulating, and Mg arrays have metallic and insulating phases [1]. The transport properties along a metallic chain have been studied, emphasizing the role of the contact to electrodes [2]. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along die chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of pant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  9. Electronic Structure Control of Tungsten Oxide Activated by Ni for Ultrahigh-Performance Supercapacitors.

    PubMed

    Meng, Tian; Kou, Zongkui; Amiinu, Ibrahim Saana; Hong, Xufeng; Li, Qingwei; Tang, Yongfu; Zhao, Yufeng; Liu, Shaojun; Mai, Liqiang; Mu, Shichun

    2018-04-17

    Tuning the electron structure is of vital importance for designing high active electrode materials. Here, for boosting the capacitive performance of tungsten oxide, an atomic scale engineering approach to optimize the electronic structure of tungsten oxide by Ni doping is reported. Density functional theory calculations disclose that through Ni doping, the density of state at Fermi level for tungsten oxide can be enhanced, thus promoting its electron transfer. When used as electrode of supercapacitors, the obtained Ni-doped tungsten oxide with 4.21 at% Ni exhibits an ultrahigh mass-specific capacitance of 557 F g -1 at the current density of 1 A g -1 and preferable durability in a long-term cycle test. To the best of knowledge, this is the highest supercapacitor performance reported so far in tungsten oxide and its composites. The present strategy demonstrates the validity of the electronic structure control in tungsten oxide via introducing Ni atoms for pseudocapacitors, which can be extended to other related fields as well. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The LLRF System for the S-Band RF Plants of the FERMI Linac

    NASA Astrophysics Data System (ADS)

    Fabris, A.; Byrd, J.; D'Auria, G.; Doolittle, L.; Gelmetti, F.; Huang, G.; Jones, J.; Milloch, M.; Predonzani, M.; Ratti, A.; Rohlev, T.; Salom, A.; Serrano, C.; Stettler, M.

    2016-04-01

    Specifications on electron beam quality for the operation of a linac-based free-electron laser (FEL), as FERMI in Trieste (Italy), impose stringent requirements on the stability of the electromagnetic fields of the accelerating sections. These specifications can be met only with state-of-the-art low-level RF (LLRF) systems based on advanced digital technologies. Design considerations, construction, and performance results of the FERMI digital LLRF are presented in this paper. The stability requirements derived by simulations are better than 0.1% in amplitude and 0.1° S-band in phase. The system installed in the FERMI Linac S-band RF plants has met these specifications and is in operation on a 24-h basis as a user facility. Capabilities of the system allow planning for new developments that are also described here.

  11. Hydrodynamic flows of non-Fermi liquids: Magnetotransport and bilayer drag

    NASA Astrophysics Data System (ADS)

    Patel, Aavishkar A.; Davison, Richard A.; Levchenko, Alex

    2017-11-01

    We consider a hydrodynamic description of transport for generic two-dimensional electron systems that lack Galilean invariance and do not fall into the category of Fermi liquids. We study magnetoresistance and show that it is governed only by the electronic viscosity provided that the wavelength of the underlying disorder potential is large compared to the microscopic equilibration length. We also derive the Coulomb drag transresistance for double-layer non-Fermi-liquid systems in the hydrodynamic regime. As an example, we consider frictional drag between two quantum Hall states with half-filled lowest Landau levels, each described by a Fermi surface of composite fermions coupled to a U (1 ) gauge field. We contrast our results to prior calculations of drag of Chern-Simons composite particles and place our findings in the context of available experimental data.

  12. Invited Article: Coherent imaging using seeded free-electron laser pulses with variable polarization: First results and research opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Capotondi, F.; Pedersoli, E.; Mahne, N.

    2013-05-15

    FERMI-Elettra, the first vacuum ultraviolet and soft X-ray free-electron laser (FEL) using by default a 'seeded' scheme, became operational in 2011 and has been opened to users since December 2012. The parameters of the seeded FERMI FEL pulses and, in particular, the superior control of emitted radiation in terms of spectral purity and stability meet the stringent requirements for single-shot and resonant coherent diffraction imaging (CDI) experiments. The advantages of the intense seeded FERMI pulses with variable polarization have been demonstrated with the first experiments performed using the multipurpose experimental station operated at the diffraction and projection imaging (DiProI) beamline.more » The results reported here were obtained with fixed non-periodic targets during the commissioning period in 2012 using 20-32 nm wavelength range. They demonstrate that the performance of the FERMI FEL source and the experimental station meets the requirements of CDI, holography, and resonant magnetic scattering in both multi- and single-shot modes. Moreover, we present the first magnetic scattering experiments employing the fully circularly polarized FERMI pulses. The ongoing developments aim at pushing the lateral resolution by using shorter wavelengths provided by double-stage cascaded FERMI FEL-2 and probing ultrafast dynamic processes using different pump-probe schemes, including jitter-free seed laser pump or FEL-pump/FEL-probe with two color FEL pulses generated by the same electron bunch.« less

  13. Fluctuations Magnetiques des Gaz D'electrons Bidimensionnels: Application AU Compose Supraconducteur LANTHANE(2-X) Strontium(x) Cuivre OXYGENE(4)

    NASA Astrophysics Data System (ADS)

    Benard, Pierre

    Nous presentons une etude des fluctuations magnetiques de la phase normale de l'oxyde de cuivre supraconducteur La_{2-x}Sr _{x}CuO_4 . Le compose est modelise par le Hamiltonien de Hubbard bidimensionnel avec un terme de saut vers les deuxiemes voisins (modele tt'U). Le modele est etudie en utilisant l'approximation de la GRPA (Generalized Random Phase Approximation) et en incluant les effets de la renormalisation de l'interaction de Hubbard par les diagrammes de Brueckner-Kanamori. Dans l'approche presentee dans ce travail, les maximums du facteur de structure magnetique observes par les experiences de diffusion de neutrons sont associes aux anomalies 2k _{F} de reseau du facteur de structure des gaz d'electrons bidimensionnels sans interaction. Ces anomalies proviennent de la diffusion entre particules situees a des points de la surface de Fermi ou les vitesses de Fermi sont tangentes, et conduisent a des divergences dont la nature depend de la geometrie de la surface de Fermi au voisinage de ces points. Ces resultats sont ensuite appliques au modele tt'U, dont le modele de Hubbard usuel tU est un cas particulier. Dans la majorite des cas, les interactions ne determinent pas la position des maximums du facteur de structure. Le role de l'interaction est d'augmenter l'intensite des structures du facteur de structure magnetique associees a l'instabilite magnetique du systeme. Ces structures sont souvent deja presentes dans la partie imaginaire de la susceptibilite sans interaction. Le rapport d'intensite entre les maximums absolus et les autres structures du facteur de structure magnetique permet de determiner le rapport U_ {rn}/U_{c} qui mesure la proximite d'une instabilite magnetique. Le diagramme de phase est ensuite etudie afin de delimiter la plage de validite de l'approximation. Apres avoir discute des modes collectifs et de l'effet d'une partie imaginaire non-nulle de la self-energie, l'origine de l'echelle d'energie des fluctuations magnetiques est examinee. Il est ensuite demontre que le modele a trois bandes predit les memes resultats pour la position des structures du facteur de structure magnetique que le modele a une bande, dans la limite ou l'hybridation des orbitales des atomes d'oxygene des plans Cu-O_2 et l'amplitude de sauts vers les seconds voisins sont nulles. Il est de plus constate que l'effet de l'hybridation des orbitales des atomes d'oxygene est bien modelise par le terme de saut vers les seconds voisins. Meme si ils decrivent correctement le comportement qualitatif des maximums du facteur de structure magnetique, les modeles a trois bandes et a une bande ne permettent pas d'obtenir une position de ces structures conforme avec les mesures experimentales, si on suppose que la bande est rigide, c'est-a-dire que les parametres du Hamiltonien sont independants de la concentration de strontium. Ceci peut etre cause par la dependance des parametres du Hamiltonien sur la concentration de strontium. Finalement, les resultats sont compares avec les experiences de diffusion de neutrons et les autres theories, en particulier celles de Littlewood et al. (1993) et de Q. Si et al. (1993). La comparaison avec les resultats experimentaux pour le compose de lanthane suggere que le liquide de Fermi possede une surface de Fermi disjointe, et qu'il est situe pres d'une instabilite magnetique incommensurable.

  14. Fermi-Edge Singularity of Spin-Polarized Electrons

    NASA Astrophysics Data System (ADS)

    Plochocka-Polack, P.; Groshaus, J. G.; Rappaport, M.; Umansky, V.; Gallais, Y.; Pinczuk, A.; Bar-Joseph, I.

    2007-05-01

    We study the absorption spectrum of a two-dimensional electron gas (2DEG) in a magnetic field. We find that at low temperatures, when the 2DEG is spin polarized, the absorption spectra, which correspond to the creation of spin up or spin down electrons, differ in magnitude, linewidth, and filling factor dependence. We show that these differences can be explained as resulting from the creation of a Mahan exciton in one case, and of a power law Fermi-edge singularity in the other.

  15. Spin-resolved band structure of a densely packed Pb monolayer on Si(111)

    NASA Astrophysics Data System (ADS)

    Brand, C.; Muff, S.; Fanciulli, M.; Pfnür, H.; Tringides, M. C.; Dil, J. H.; Tegenkamp, C.

    2017-07-01

    Monolayer structures of Pb on Si(111) attracted recently considerable interest as superconductivity was found in these truly two-dimensional (2D) structures. In this study, we analyzed the electronic surface band structure of the so-called striped incommensurate Pb phase with 4/3 ML coverage by means of spin-resolved photoemission spectroscopy. Our results fully agree with density functional theory calculations done by Ren et al. [Phys. Rev. B 94, 075436 (2016), 10.1103/PhysRevB.94.075436]. We observe a local Zeeman-type splitting of a fully occupied and spin-polarized surface band at the K¯√{3} points. The growth of this densely packed Pb structure results in the formation of imbalanced rotational domains, which triggered the detection of C3 v symmetry forbidden spin components for surface states around the Fermi energy. Moreover, the Fermi surface of the metallic surface state of this phase is Rashba spin split and revealed a pronounced warping. However, the 2D nesting vectors are incommensurate with the atomic structure, thus keeping this system rather immune against charge density wave formation and possibly enabling a superconducting behavior.

  16. Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure

    NASA Astrophysics Data System (ADS)

    de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.

    2016-06-01

    Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au-induced nanowire and subsurface Ge-related states, an anomalous suppression of the density of states at the Fermi level is observed in both the STS and ARPES data, and this phenomenon is discussed in the light of the effects of disorder.

  17. New Results from Fermi-LAT and Their Implications for the Nature of Dark Matter and the Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2009-01-01

    The measured spectrum is compatible with a power law within our current systematic errors. The spectral index (-3.04) is harder than expected from previous experiments and simple theoretical considerations. "Pre-Fermi" diffusive model requires a harder electron injection spectrum (by 0.12) to fit the Fermi data, but inconsistent with positron excess reported by Pamela if it extends to higher energy. Additional component of electron flux from local source(s) may solve the problem; its origin, astrophysical or exotic, is still unclear. Valuable contribution to the calculation of IC component of diffuse gamma radiation.

  18. Optically induced Lifshitz transition in bilayer graphene

    NASA Astrophysics Data System (ADS)

    Iorsh, I. V.; Dini, K.; Kibis, O. V.; Shelykh, I. A.

    2017-10-01

    It is shown theoretically that the renormalization of the electron energy spectrum of bilayer graphene with a strong high-frequency electromagnetic field (dressing field) results in the Lifshitz transition—the abrupt change in the topology of the Fermi surface near the band edge. This effect substantially depends on the polarization of the field: The linearly polarized dressing field induces the Lifshitz transition from the quadruply connected Fermi surface to the doubly connected one, whereas the circularly polarized field induces the multicritical point where the four different Fermi topologies may coexist. As a consequence, the discussed phenomenon creates a physical basis to control the electronic properties of bilayer graphene with light.

  19. Nonadiabatic Dynamics May Be Probed through Electronic Coherence in Time-Resolved Photoelectron Spectroscopy.

    PubMed

    Bennett, Kochise; Kowalewski, Markus; Mukamel, Shaul

    2016-02-09

    We present a hierarchy of Fermi golden rules (FGRs) that incorporate strongly coupled electronic/nuclear dynamics in time-resolved photoelectron spectroscopy (TRPES) signals at different levels of theory. Expansion in the joint electronic and nuclear eigenbasis yields the numerically most challenging exact FGR (eFGR). The quasistatic Fermi Golden Rule (qsFGR) neglects nuclear motion during the photoionization process but takes into account electronic coherences as well as populations initially present in the pumped matter as well as those generated internally by coupling between electronic surfaces. The standard semiclassical Fermi Golden Rule (scFGR) neglects the electronic coherences and the nuclear kinetic energy during the ionizing pulse altogether, yielding the classical Condon approximation. The coherence contributions depend on the phase-profile of the ionizing field, allowing coherent control of TRPES signals. The photoelectron spectrum from model systems is simulated using these three levels of theory. The eFGR and the qsFGR show temporal oscillations originating from the electronic or vibrational coherences generated as the nuclear wave packet traverses a conical intersection. These oscillations, which are missed by the scFGR, directly reveal the time-evolving splitting between electronic states of the neutral molecule in the curve-crossing regime.

  20. Multigap superconductivity and strong electron-boson coupling in Fe-based superconductors: a point-contact Andreev-reflection study of Ba(Fe(1-x)Co(x))2As2 single crystals.

    PubMed

    Tortello, M; Daghero, D; Ummarino, G A; Stepanov, V A; Jiang, J; Weiss, J D; Hellstrom, E E; Gonnelli, R S

    2010-12-03

    Directional point-contact Andreev-reflection measurements in Ba(Fe(1-x)Co(x))2As2 single crystals (T(c) = 24.5 K) indicate the presence of two superconducting gaps with no line nodes on the Fermi surface. The point-contact Andreev-reflection spectra also feature additional structures related to the electron-boson interaction, from which the characteristic boson energy Ω(b)(T) is obtained, very similar to the spin-resonance energy observed in neutron scattering experiments. Both the gaps and the additional structures can be reproduced within a three-band s ± Eliashberg model by using an electron-boson spectral function peaked at Ω(0) = 12 meV ≃ Ω(b)(0).

  1. The structural and magnetic phase transitions in Ca 0.73La 0.27FeAs 2 with electron overdoped FeAs layers.

    DOE PAGES

    Jiang, Shan; Liu, Chang; Cao, H.; ...

    2016-02-26

    Here we report a study of the Ca 0.73La 0.27FeAs 2 single crystals. We unravel a monoclinic to triclinic phase transition at 58 K, and a paramagnetic to stripe antiferromagnetic (AFM) phase transition at 54 K, below which spins order 45° away from the stripe direction. Furthermore, we demonstrate this material is substantially structurally untwinned at ambient pressure with the formation of spin rotation walls (S-walls). Finally, in addition to the central-hole and corner-electron Fermi pockets usually appearing in FPS, angle-resolved photoemission (ARPES) measurements resolve a Fermiology where an extra electron pocket of mainly As chain character exists at themore » Brillouin zone edge.« less

  2. Electronic structure of disordered CuPd alloys: A two-dimensional positron-annihilation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.

    1987-11-23

    Two-dimensional--angular-correlation experiments using posi- tron-annihilation spectroscopy were performed on a series of disordered Cu-rich CuPd-alloy single crystals. The results are compared with theoretical calculations based on the Korringa-Kohn-Rostoker coherent-potential approximation. Our experiments confirm the theoretically predicted flattening of the alloy Fermi surface near (110) with increasing Pd concentration. The momentum densities and the two-dimensional--angular-correlation spectra around zero momentum exhibit a characteristic signature of the electronic states near the valence-band edge in the alloy.

  3. Electron-hole asymmetry, Dirac fermions, and quantum magnetoresistance in BaMnBi 2

    DOE PAGES

    Li, Lijun; Wang, Kefeng; Graf, D.; ...

    2016-03-28

    Here, we report two-dimensional quantum transport and Dirac fermions in BaMnBi 2 single crystals. BaMnBi 2 is a layered bad metal with highly anisotropic conductivity and magnetic order below 290 K. Magnetotransport properties, nonzero Berry phase, small cyclotron mass, and the first-principles band structure calculations indicate the presence of Dirac fermions in Bi square nets. Quantum oscillations in the Hall channel suggest the presence of both electron and hole pockets, whereas Dirac and parabolic states coexist at the Fermi level.

  4. Manifestation of intra-atomic 5d6s-4f exchange coupling in photoexcited gadolinium

    NASA Astrophysics Data System (ADS)

    Zhang, G. P.; Jenkins, T.; Bennett, M.; Bai, Y. H.

    2017-12-01

    Intra-atomic exchange couplings (IECs) between 5d6s and 4f electrons are ubiquitous in rare-earth metals and play a critical role in spin dynamics. However, detecting them in real time domain has been difficult. Here we show the direct evidence of IEC between 5d6s and 4f electrons in gadolinium. Upon femtosecond laser excitation, 5d6s electrons are directly excited; their majority bands shift toward the Fermi level while their minority bands do the opposite. For the first time, our first-principles minority shift now agrees with the experiment quantitatively. Excited 5d6s electrons lower the exchange potential barrier for 4f electrons, so the 4f states are also shifted in energy, a prediction that can be tested experimentally. Although a significant number of 5d6s electrons, some several eV below the Fermi level, are excited out of the Fermi sea, there is no change in the 4f states, a clear manifestation of intra-atomic exchange coupling.

  5. New Results on High Energy Cosmic Ray Electrons Observed with Fermi LAT and Their Implications on the Origin of Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2010-01-01

    The Large Area Telescope on-board the Fermi Gamma-Ray Space Telescope has collected more than 10 million cosmic ray electrons with energy above 7 GeV since its science operation on orbit. High energy electrons rapidly lose their energy by synchrotron radiation on Galactic magnetic fields and by inverse Compton scattering on the interstellar radiation field. The typical distance over which a 1 TeV electron loses half its total energy is estimated to be 300-400 pc.This makes them a unique tool for probing nearby Galactic space. Observed spectrum has a harder spectral index than was previously reported and suggests the presence of nearby sources of high energy electrons. One of viable candidates are nearby pulsars, possibly some of recently discovered by Fermi. At the same time the dark matter origin of such sources cannot be ruled out. I will also report our current upper limits on cosmic ray electrons anisotropy which helps to set constraints on their local sources.

  6. Bulk Fermi surface of the Weyl type-II semimetallic candidate γ - MoTe 2

    DOE PAGES

    Rhodes, D.; Schönemann, R.; Aryal, N.; ...

    2017-10-17

    The electronic structure of semi-metallic transition-metal dichalcogenides, such as WTemore » $$_2$$ and orthorhombic $$\\gamma-$$MoTe$$_2$$, are claimed to contain pairs of Weyl points or linearly touching electron and hole pockets associated with a non-trivial Chern number. For this reason, these compounds were recently claimed to conform to a new class, deemed type-II, of Weyl semi-metallic systems. A series of angle resolved photoemission experiments (ARPES) claim a broad agreement with these predictions detecting, for example, topological Fermi arcs at the surface of these crystals. We synthesized single-crystals of semi-metallic MoTe$$_2$$ through a Te flux method to validate these predictions through measurements of its bulk Fermi surface (FS) via quantum oscillatory phenomena. We find that the superconducting transition temperature of $$\\gamma-$$MoTe$$_2$$ depends on disorder as quantified by the ratio between the room- and low-temperature resistivities, suggesting the possibility of an unconventional superconducting pairing symmetry. Similarly to WTe$$_2$$, the magnetoresistivity of $$\\gamma-$$MoTe$$_2$$ does not saturate at high magnetic fields and can easily surpass $$10^{6}$$ \\%. Remarkably, the analysis of the de Haas-van Alphen (dHvA) signal superimposed onto the magnetic torque, indicates that the geometry of its FS is markedly distinct from the calculated one. The dHvA signal also reveals that the FS is affected by the Zeeman-effect precluding the extraction of the Berry-phase. A direct comparison between the previous ARPES studies and density-functional-theory (DFT) calculations reveals a disagreement in the position of the valence bands relative to the Fermi level $$\\varepsilon_F$$. Here in this paper, we show that a shift of the DFT valence bands relative to $$\\varepsilon_F$$, in order to match the ARPES observations, and of the DFT electron bands to explain some of the observed dHvA frequencies, leads to a good agreement between the calculations and the angular dependence of the FS cross-sectional areas observed experimentally. However, this relative displacement between electron- and hole-bands eliminates their crossings and, therefore, the Weyl type-II points predicted for $$\\gamma-$$MoTe$$_2$$« less

  7. Bulk Fermi surface of the Weyl type-II semimetallic candidate γ -MoTe2

    NASA Astrophysics Data System (ADS)

    Rhodes, D.; Schönemann, R.; Aryal, N.; Zhou, Q.; Zhang, Q. R.; Kampert, E.; Chiu, Y.-C.; Lai, Y.; Shimura, Y.; McCandless, G. T.; Chan, J. Y.; Paley, D. W.; Lee, J.; Finke, A. D.; Ruff, J. P. C.; Das, S.; Manousakis, E.; Balicas, L.

    2017-10-01

    The electronic structure of semimetallic transition-metal dichalcogenides, such as WTe2 and orthorhombic γ -MoTe2 , are claimed to contain pairs of Weyl points or linearly touching electron and hole pockets associated with a nontrivial Chern number. For this reason, these compounds were recently claimed to conform to a new class, deemed type-II, of Weyl semimetallic systems. A series of angle-resolved photoemission experiments (ARPES) claim a broad agreement with these predictions detecting, for example, Fermi arcs at the surface of these crystals. We synthesized single crystals of semimetallic MoTe2 through a Te flux method to validate these predictions through measurements of its bulk Fermi surface (FS) via quantum oscillatory phenomena. We find that the superconducting transition temperature of γ -MoTe2 depends on disorder as quantified by the ratio between the room- and low-temperature resistivities, suggesting the possibility of an unconventional superconducting pairing symmetry. Similarly to WTe2, the magnetoresistivity of γ -MoTe2 does not saturate at high magnetic fields and can easily surpass 106%. Remarkably, the analysis of the de Haas-van Alphen (dHvA) signal superimposed onto the magnetic torque indicates that the geometry of its FS is markedly distinct from the calculated one. The dHvA signal also reveals that the FS is affected by the Zeeman effect precluding the extraction of the Berry phase. A direct comparison between the previous ARPES studies and density-functional-theory (DFT) calculations reveals a disagreement in the position of the valence bands relative to the Fermi level ɛF. Here, we show that a shift of the DFT valence bands relative to ɛF, in order to match the ARPES observations, and of the DFT electron bands to explain some of the observed dHvA frequencies, leads to a good agreement between the calculations and the angular dependence of the FS cross-sectional areas observed experimentally. However, this relative displacement between electron and hole bands eliminates their crossings and, therefore, the Weyl type-II points predicted for γ -MoTe2 .

  8. Features of the electronic structure of FeTe compounds

    NASA Astrophysics Data System (ADS)

    Grechnev, G. E.; Lyogenkaya, A. A.; Panfilov, A. S.; Logosha, A. V.; Kotlyar, O. V.; Gnezdilov, V. P.; Makarova, I. P.; Chareev, D. A.; Mitrofanova, E. S.

    2015-12-01

    A theoretical and experimental study of the electronic structure and nature of the chemical bonds in FeTe compounds in antiferromagnetic (AFM) and paramagnetic phases was carried out. It is established that the nature of the chemical bonds is mainly metallic, and the presence of covalent bonds Fe-Te and Te-Te helps to stabilize the structural distortions of the tetragonal phase of FeTe in the low-temperature region. It is found that the bicollinear AFM structure corresponds to the ground state of the FeTe compound and the calculated value of the magnetic moment MFe = -2.4μB is in good agreement with the data from neutron diffraction measurements. At the same time, the Fermi surface (FS) of the low-temperature AFM phase is radically different from the FS of the paramagnetic FeTe. Reconstructing the FS can lead to a sign change of the Hall coefficient observed in FeTe. The calculation results serve as evidence of the fact that the electronic structures and magnetic properties of FeTe are well-described by the model of itinerant d-electrons and the density functional theory (DFT-GGA).

  9. Ab initio density functional theory investigation of Li-intercalated silicon carbide nanotube bundles

    NASA Astrophysics Data System (ADS)

    Moradian, Rostam; Behzad, Somayeh; Chegel, Raad

    2009-06-01

    We present the results of ab initio density functional theory calculations on the energetic, and geometric and electronic structure of Li-intercalated ( 6,6) silicon carbide nanotube (SiCNT) bundles. Our results show that intercalation of lithium leads to the significant changes in the geometrical structure. The most prominent effect of Li intercalation on the electronic band structure is a shift of the Fermi energy which occurs as a result of charge transfer from lithium to the SiCNTs. All the Li-intercalated ( 6,6) SiCNT bundles are predicted to be metallic representing a substantial change in electronic properties relative to the undoped bundle, which is a wide band gap semiconductor. Both inside of the nanotube and the interstitial space are susceptible for intercalation. The present calculations suggest that the SiCNT bundle is a promising candidate for the anode material in battery applications.

  10. Electronic structure of charge- and spin-controlled Sr(1-(x+y))La(x+y)Ti(1-x)Cr(x)O3.

    PubMed

    Iwasawa, H; Yamakawa, K; Saitoh, T; Inaba, J; Katsufuji, T; Higashiguchi, M; Shimada, K; Namatame, H; Taniguchi, M

    2006-02-17

    We present the electronic structure of Sr(1-(x+y))La(x+y)Ti(1-x)Cr(x)O3 investigated by high-resolution photoemission spectroscopy. In the vicinity of the Fermi level, it was found that the electronic structure was composed of a Cr 3d local state with the t(2g)3 configuration and a Ti 3d itinerant state. The energy levels of these Cr and Ti 3d states are well interpreted by the difference of the charge-transfer energy of both ions. The spectral weight of the Cr 3d state is completely proportional to the spin concentration x irrespective of the carrier concentration y, indicating that the spin density can be controlled by x as desired. In contrast, the spectral weight of the Ti 3d state is not proportional to y, depending on the amount of Cr doping.

  11. Magnetospectroscopy of symmetric and anti-symmetric states in double quantum wells

    NASA Astrophysics Data System (ADS)

    Marchewka, M.; Sheregii, E. M.; Tralle, I.; Ploch, D.; Tomaka, G.; Furdak, M.; Kolek, A.; Stadler, A.; Mleczko, K.; Zak, D.; Strupinski, W.; Jasik, A.; Jakiela, R.

    2008-02-01

    The experimental results obtained for magnetotransport in the InGaAs/InAlAs double quantum well (DQW) structures of two different shapes of wells are reported. A beating effect occurring in the Shubnikov-de Haas (SdH) oscillations was observed for both types of structures at low temperatures in the parallel transport when the magnetic field was perpendicular to the layers. An approach for the calculation of the Landau level energies for DQW structures was developed and then applied to the analysis and interpretation of the experimental data related to the beating effect. We also argue that in order to account for the observed magnetotransport phenomena (SdH and integer quantum Hall effect), one should introduce two different quasi-Fermi levels characterizing two electron subsystems regarding the symmetry properties of their states, symmetric and anti-symmetric ones, which are not mixed by electron-electron interaction.

  12. The impact of the Fermi-Dirac distribution on charge injection at metal/organic interfaces.

    PubMed

    Wang, Z B; Helander, M G; Greiner, M T; Lu, Z H

    2010-05-07

    The Fermi level has historically been assumed to be the only energy-level from which carriers are injected at metal/semiconductor interfaces. In traditional semiconductor device physics, this approximation is reasonable as the thermal distribution of delocalized states in the semiconductor tends to dominate device characteristics. However, in the case of organic semiconductors the weak intermolecular interactions results in highly localized electronic states, such that the thermal distribution of carriers in the metal may also influence device characteristics. In this work we demonstrate that the Fermi-Dirac distribution of carriers in the metal has a much more significant impact on charge injection at metal/organic interfaces than has previously been assumed. An injection model which includes the effect of the Fermi-Dirac electron distribution was proposed. This model has been tested against experimental data and was found to provide a better physical description of charge injection. This finding indicates that the thermal distribution of electronic states in the metal should, in general, be considered in the study of metal/organic interfaces.

  13. Positron Annihilation Studies of High-Temperature Superconductors and Related Compounds

    NASA Astrophysics Data System (ADS)

    Rayner, Simon

    Available from UMI in association with The British Library. The work described in this thesis is concerned with the study of the electronic structure of the high T_{c} superconductor YBa _2Cu_3O _7 and related oxide compounds using the technique of two dimensional angular correlation of annihilation radiation. These compounds differ widely in their physical properties, ranging from materials such as nickel oxide, which is an insulator, to YBa_2Cu _3O_7 or ReO _3 which are superconducting over a certain temperature range. We have studied some of these compounds with a view to clarifying whether YBa _2Cu_3O_7 possessed a Fermi surface. The numerous theories that have been proposed to explain the observed superconducting phase of these materials can be classified into two main groups. The theories in the first group predict the existence of a quasi two dimensional Fermi surface whereas the remaining models do not but are based on an approach similar to that used to explain the observed electronic structure of the transition monoxides. The data obtained from our study of NiO, CoO and twinned crystals of YBa_2Cu _3O_7 was of low statistics and it was not possible to deduce anything of significance. However, we were able to deduce that, consistent with the predictions of theory, the positron was preferentially annihilating on the copper-oxygen chains. The data obtained from our measurement on untwinned crystals of YBa_2Cu_3 O_7 was of much higher statistics and we found one of clearest imaginable manifestations of a Fermi surface in the form of a ridge in the anisotropy of our data. The ridge is even more apparent in the LCW -folded spectra. The form and profile of the ridge are in substantial agreement with the theoretical predictions of a Gamma-X electron ridge section from the Cu-O chains.

  14. Fermi surfaces in Kondo insulators

    NASA Astrophysics Data System (ADS)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  15. Redox Potentials of Colloidal n-Type ZnO Nanocrystals: Effects of Confinement, Electron Density, and Fermi-Level Pinning by Aldehyde Hydrogenation.

    PubMed

    Carroll, Gerard M; Schimpf, Alina M; Tsui, Emily Y; Gamelin, Daniel R

    2015-09-02

    Electronically doped colloidal semiconductor nanocrystals offer valuable opportunities to probe the new physical and chemical properties imparted by their excess charge carriers. Photodoping is a powerful approach to introducing and controlling free carrier densities within free-standing colloidal semiconductor nanocrystals. Photoreduced (n-type) colloidal ZnO nanocrystals possessing delocalized conduction-band (CB) electrons can be formed by photochemical oxidation of EtOH. Previous studies of this chemistry have demonstrated photochemical electron accumulation, in some cases reaching as many as >100 electrons per ZnO nanocrystal, but in every case examined to date this chemistry maximizes at a well-defined average electron density of ⟨Nmax⟩ ≈ (1.4 ± 0.4) × 10(20) cm(-3). The origins of this maximum have never been identified. Here, we use a solvated redox indicator for in situ determination of reduced ZnO nanocrystal redox potentials. The Fermi levels of various photodoped ZnO nanocrystals possessing on average just one excess CB electron show quantum-confinement effects, as expected, but are >600 meV lower than those of the same ZnO nanocrystals reduced chemically using Cp*2Co, reflecting important differences between their charge-compensating cations. Upon photochemical electron accumulation, the Fermi levels become independent of nanocrystal volume at ⟨N⟩ above ∼2 × 10(19) cm(-3), and maximize at ⟨Nmax⟩ ≈ (1.6 ± 0.3) × 10(20) cm(-3). This maximum is proposed to arise from Fermi-level pinning by the two-electron/two-proton hydrogenation of acetaldehyde, which reverses the EtOH photooxidation reaction.

  16. Migdal's theorem and electron-phonon vertex corrections in Dirac materials

    NASA Astrophysics Data System (ADS)

    Roy, Bitan; Sau, Jay D.; Das Sarma, S.

    2014-04-01

    Migdal's theorem plays a central role in the physics of electron-phonon interactions in metals and semiconductors, and has been extensively studied theoretically for parabolic band electronic systems in three-, two-, and one-dimensional systems over the last fifty years. In the current work, we theoretically study the relevance of Migdal's theorem in graphene and Weyl semimetals which are examples of 2D and 3D Dirac materials, respectively, with linear and chiral band dispersion. Our work also applies to 2D and 3D topological insulator systems. In Fermi liquids, the renormalization of the electron-phonon vertex scales as the ratio of sound (vs) to Fermi (vF) velocity, which is typically a small quantity. In two- and three-dimensional quasirelativistic systems, such as undoped graphene and Weyl semimetals, the one loop electron-phonon vertex renormalization, which also scales as η =vs/vF as η →0, is, however, enhanced by an ultraviolet logarithmic divergent correction, arising from the linear, chiral Dirac band dispersion. Such enhancement of the electron-phonon vertex can be significantly softened due to the logarithmic increment of the Fermi velocity, arising from the long range Coulomb interaction, and therefore, the electron-phonon vertex correction does not have a logarithmic divergence at low energy. Otherwise, the Coulomb interaction does not lead to any additional renormalization of the electron-phonon vertex. Therefore, electron-phonon vertex corrections in two- and three-dimensional Dirac fermionic systems scale as vs/vF0, where vF0 is the bare Fermi velocity, and small when vs≪vF0. These results, although explicitly derived for the intrinsic undoped systems, should hold even when the chemical potential is tuned away from the Dirac points.

  17. Prediction of Quantum Anomalous Hall Insulator in half-fluorinated GaBi Honeycomb

    PubMed Central

    Chen, Sung-Ping; Huang, Zhi-Quan; Crisostomo, Christian P.; Hsu, Chia-Hsiu; Chuang, Feng-Chuan; Lin, Hsin; Bansil, Arun

    2016-01-01

    Using first-principles electronic structure calculations, we predict half-fluorinated GaBi honeycomb under tensile strain to harbor a quantum anomalous Hall (QAH) insulator phase. We show that this QAH phase is driven by a single inversion in the band structure at the Γ point. Moreover, we have computed the electronic spectrum of a half-fluorinated GaBi nanoribbon with zigzag edges, which shows that only one edge band crosses the Fermi level within the band gap. Our results suggest that half-fluorination of the GaBi honeycomb under tensile strain could provide a new platform for developing novel spintronics devices based on the QAH effect. PMID:27507248

  18. Investigation of structural, electronic, elastic and optical properties of Cd{sub 1-x-y}Zn{sub x}Hg{sub y}Te alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamer, M., E-mail: mehmet.tamer@zirve.edu.tr

    2016-06-15

    Structural, optical and electronic properties and elastic constants of Cd1{sub -x-y}Zn{sub x} Hg{sub y}Te alloys have been studied by employing the commercial code Castep based on density functional theory. The generalized gradient approximation and local density approximation were utilized as exchange correlation. Using elastic constants for compounds, bulk modulus, band gap, Fermi energy and Kramers–Kronig relations, dielectric constants and the refractive index have been found through calculations. Apart from these, X-ray measurements revealed elastic constants and Vegard’s law. It is seen that results obtained from theory and experiments are all in agreement.

  19. Optical properties of graphene nanoflakes: Shape matters.

    PubMed

    Mansilla Wettstein, Candela; Bonafé, Franco P; Oviedo, M Belén; Sánchez, Cristián G

    2016-06-14

    In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNFs) or graphene quantum dots (GQDs) are relevant for their electronic structure, thermal stability, and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNF size, which shows three very distinct trends for different shapes and edge geometries.

  20. Optical properties of graphene nanoflakes: Shape matters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansilla Wettstein, Candela; Bonafé, Franco P.; Sánchez, Cristián G., E-mail: cgsanchez@fcq.unc.edu.ar

    In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNFs) or graphene quantum dots (GQDs) are relevant for their electronic structure, thermal stability, and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNFmore » size, which shows three very distinct trends for different shapes and edge geometries.« less

  1. Prediction of Quantum Anomalous Hall Insulator in half-fluorinated GaBi Honeycomb

    DOE PAGES

    Chen, Sung-Ping; Huang, Zhi-Quan; Crisostomo, Christian P.; ...

    2016-08-10

    Using first-principles electronic structure calculations, we predict half-fluorinated GaBi honeycomb under tensile strain to harbor a quantum anomalous Hall (QAH) insulator phase. We show that this QAH phase is driven by a single inversion in the band structure at the Γ point. Moreover, we have computed the electronic spectrum of a half-fluorinated GaBi nanoribbon with zigzag edges, which shows that only one edge band crosses the Fermi level within the band gap. In conclusion, our results suggest that half-fluorination of the GaBi honeycomb under tensile strain could provide a new platform for developing novel spintronics devices based on the QAHmore » effect.« less

  2. Fermi-surface reconstruction and the origin of high-temperature superconductivity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, M. R.; Materials Science Division

    2010-01-01

    In crystalline lattices, the conduction electrons form waves, known as Bloch states, characterized by a momentum vector k. The defining characteristic of metals is the surface in momentum space that separates occupied from unoccupied states. This 'Fermi' surface may seem like an abstract concept, but it can be measured and its shape can have profound consequences for the thermal, electronic, and magnetic properties of a material. In the presence of an external magnetic field B, electrons in a metal spiral around the field direction, and within a semiclassical momentum-space picture, orbit around the Fermi surface. Physical properties, such as themore » magnetization, involve a sum over these orbits, with extremal orbits on the Fermi surface, i.e., orbits with minimal or maximal area, dominating the sum [Fig. 1(a)]. Upon quantization, the resulting electron energy spectrum consists of Landau levels separated by the cyclotron energy, which is proportional to the magnetic field. As the magnetic field causes subsequent Landau levels to cross through the Fermi energy, physical quantities, such as the magnetization or resistivity, oscillate in response. It turns out that the period of these oscillations, when plotted as a function of 1/B, is proportional to the area of the extremal orbit in a plane perpendicular to the applied field [Fig. 1(b)]. The power of the quantum oscillation technique is obvious: By changing the field direction, one can map out the Fermi surface, much like a blind man feeling an elephant. The nature and topology of the Fermi surface in high-T{sub c} cuprates has been debated for many years. Soon after the materials were discovered by Bednorz and Mueller, it was realized that superconductivity was obtained by doping carriers into a parent insulating state. This insulating state appears to be due to strong electronic correlations, and is known as a Mott insulator. In the case of cuprates, the electronic interactions force the electrons on the copper ion lattice into a d{sup 9} configuration, with one localized hole in the 3d shell per copper site. Given the localized nature of this state, it was questioned whether a momentum-space picture was an appropriate description of the physics of the cuprates. In fact, this question relates to a long-standing debate in the physics community: Since the parent state is also an antiferromagnet, one can, in principle, map the Mott insulator to a band insulator with magnetic order. In this 'Slater' picture, Mott physics is less relevant than the magnetism itself. It is therefore unclear which of the two, magnetism or Mott physics, is more fundamentally tied to superconductivity in the cuprates. After twenty years of effort, definitive quantum oscillations that could be used to map the Fermi surface were finally observed in a high-temperature cuprate superconductor in 2007. This and subsequent studies reveal a profound rearrangement of the Fermi surface in underdoped cuprates. The cause of the reconstruction, and its implication for the origin of high-temperature superconductivity, is a subject of active debate.« less

  3. Electronic structure of clathrates Bax@AlySi46-y ; thermoelectric devices

    NASA Astrophysics Data System (ADS)

    Eguchi, Haruki; Nagano, Takatoshi; Takenaka, Hiroyuki; Tsumuraya, Kazuo

    2002-03-01

    Clathrates have received much attention as a candidate of high performance thermoelectric devices. This is because they have a) low thermal conductivity due to rattle effect of the alkali or heavy alkali-earth metals such as Ba atoms in the cages of clusters of the clathrates, and b) adjustablity of the Fermi levels through replacement of frame Si atoms with acceptor Al atoms and addition of the cage atoms as donors. We present the dispersion curves with LDA and GGA approximations for the exchange correlation of electrons using the planewave based pseudopotential methods and predict the electronic properties of the clathrates.

  4. Thermally Driven Electronic Topological Transition in FeTi

    DOE PAGES

    Yang, F. C.; Muñoz, J. A.; Hellman, O.; ...

    2016-08-08

    In this paper, ab initio molecular dynamics, supported by inelastic neutron scattering and nuclear resonant inelastic x-ray scattering, showed an anomalous thermal softening of the M 5 - phonon mode in B2-ordered FeTi that could not be explained by phonon-phonon interactions or electron-phonon interactions calculated at low temperatures. A computational investigation showed that the Fermi surface undergoes a novel thermally driven electronic topological transition, in which new features of the Fermi surface arise at elevated temperatures. Finally, the thermally induced electronic topological transition causes an increased electronic screening for the atom displacements in the M 5 - phonon mode andmore » an adiabatic electron-phonon interaction with an unusual temperature dependence.« less

  5. Unconventional high-Tc superconductivity in fullerides.

    PubMed

    Takabayashi, Yasuhiro; Prassides, Kosmas

    2016-09-13

    A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter-the overlap between the outer wave functions of the constituent molecules-is controlled by the C60 (3-) molecular electronic structure via the on-molecule Jahn-Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott-Jahn-Teller state through chemical or physical pressurization yields an unconventional Jahn-Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen-Cooper-Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn-Teller and Fermi liquid metal when the Jahn-Teller distortion melts.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. © 2016 The Author(s).

  6. Unconventional high-Tc superconductivity in fullerides

    PubMed Central

    Takabayashi, Yasuhiro; Prassides, Kosmas

    2016-01-01

    A3C60 molecular superconductors share a common electronic phase diagram with unconventional high-temperature superconductors such as the cuprates: superconductivity emerges from an antiferromagnetic strongly correlated Mott-insulating state upon tuning a parameter such as pressure (bandwidth control) accompanied by a dome-shaped dependence of the critical temperature, Tc. However, unlike atom-based superconductors, the parent state from which superconductivity emerges solely by changing an electronic parameter—the overlap between the outer wave functions of the constituent molecules—is controlled by the C603− molecular electronic structure via the on-molecule Jahn–Teller effect influence of molecular geometry and spin state. Destruction of the parent Mott–Jahn–Teller state through chemical or physical pressurization yields an unconventional Jahn–Teller metal, where quasi-localized and itinerant electron behaviours coexist. Localized features gradually disappear with lattice contraction and conventional Fermi liquid behaviour is recovered. The nature of the underlying (correlated versus weak-coupling Bardeen–Cooper–Schrieffer theory) s-wave superconducting states mirrors the unconventional/conventional metal dichotomy: the highest superconducting critical temperature occurs at the crossover between Jahn–Teller and Fermi liquid metal when the Jahn–Teller distortion melts. This article is part of the themed issue ‘Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene’. PMID:27501971

  7. Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.; Hardee, P. E.; Richardson, G. A.; Preece, R. D.; Sol, H.; Fishman, G. J.

    2003-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  8. 3-D RPIC simulations of relativistic jets: Particle acceleration, magnetic field generation, and emission

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing (relativistic) jets and shocks, e.g., supernova remnants, active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the .shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations which show particle acceleration in jets.

  9. Electronic properties and bonding in Zr Hx thin films investigated by valence-band x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Magnuson, Martin; Schmidt, Susann; Hultman, Lars; Högberg, Hans

    2017-11-01

    The electronic structure and chemical bonding in reactively magnetron sputtered Zr Hx (x =0.15 , 0.30, 1.16) thin films with oxygen content as low as 0.2 at.% are investigated by 4d valence band, shallow 4p core-level, and 3d core-level x-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significant reduction of the 4d valence states close to the Fermi level as a result of redistribution of intensity toward the H 1s-Zr 4d hybridization region at ˜6 eV below the Fermi level. For low hydrogen content (x =0.15 , 0.30), the films consist of a superposition of hexagonal closest-packed metal (α phase) and understoichiometric δ -Zr Hx (Ca F2 -type structure) phases, while for x =1.16 , the films form single-phase Zr Hx that largely resembles that of stoichiometric δ -Zr H2 phase. We show that the cubic δ -Zr Hx phase is metastable as thin film up to x =1.16 , while for higher H contents the structure is predicted to be tetragonally distorted. For the investigated Zr H1.16 film, we find chemical shifts of 0.68 and 0.51 eV toward higher binding energies for the Zr 4 p3 /2 and 3 d5 /2 peak positions, respectively. Compared to the Zr metal binding energies of 27.26 and 178.87 eV, this signifies a charge transfer from Zr to H atoms. The change in the electronic structure, spectral line shapes, and chemical shifts as a function of hydrogen content is discussed in relation to the charge transfer from Zr to H that affects the conductivity by charge redistribution in the valence band.

  10. A connection between domain-averaged Fermi hole orbitals and electron number distribution functions in real space.

    PubMed

    Francisco, E; Martín Pendás, A; Blanco, M A

    2009-09-28

    We show in this article how for single-determinant wave functions the one-electron functions derived from the diagonalization of the Fermi hole, averaged over an arbitrary domain Omega of real space, and expressed in terms of the occupied canonical orbitals, describe coarse-grained statistically independent electrons. With these domain-averaged Fermi hole (DAFH) orbitals, the full electron number distribution function (EDF) is given by a simple product of one-electron events. This useful property follows from the simultaneous orthogonality of the DAFH orbitals in Omega, Omega(')=R(3)-Omega, and R(3). We also show how the interfragment (shared electron) delocalization index, delta(Omega,Omega(')), transforms into a sum of one-electron DAFH contributions. Description of chemical bonding in terms of DAFH orbitals provides a vivid picture relating bonding and delocalization in real space. DAFH and EDF analyses are performed on several test systems to illustrate the close relationship between both concepts. Finally, these analyses clearly prove how DAFH orbitals well localized in Omega or Omega(') can be simply ignored in computing the EDFs and/or delta(Omega,Omega(')), and thus do not contribute to the chemical bonding between the two fragments.

  11. Highly stable CuO incorporated TiO(2) catalyst for photo-catalytic hydrogen production from H(2)O.

    PubMed

    Bandara, J; Udawatta, C P K; Rajapakse, C S K

    2005-11-01

    A CuO incorporated TiO(2) catalyst was found to be an active photo-catalyst for the reduction of H(2)O under sacrificial conditions. The catalytic activity originates from the photogeneration of excited electrons in the conduction bands of both TiO(2) and CuO resulting in a build-up of excess electrons in the conduction band of CuO. Consequently, the accumulation of excess electrons in CuO causes a negative shift in the Fermi level of CuO. The efficient inter-particle charge transfer leads to a higher catalytic activity and the formation of highly reduced states of TiO(2)/CuO, which are stable even under oxygen saturated condition. Negative shift in the Fermi level of CuO of the catalyst TiO(2)/CuO gains the required over-voltage necessary for efficient water reduction reaction. The function of CuO is to help the charge separation and to act as a water reduction site. The amount of CuO and crystalline structure were found to be crucial for the catalytic activity and the optimum CuO loading was ca. approximately 5-10%(w/w).

  12. Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods.

    PubMed

    Lien, Miao-Bin; Kim, Ji-Young; Han, Myung-Geun; Chang, You-Chia; Chang, Yu-Chung; Ferguson, Heather J; Zhu, Yimei; Herzing, Andrew A; Schotland, John C; Kotov, Nicholas A; Norris, Theodore B

    2017-06-27

    A systematic study is presented of the intensity-dependent nonlinear light scattering spectra of gold nanorods under resonant excitation of the longitudinal surface plasmon resonance (SPR). The spectra exhibit features due to coherent second and third harmonic generation as well as a broadband feature that has been previously attributed to multiphoton photoluminescence arising primarily from interband optical transitions in the gold. A detailed study of the spectral dependence of the scaling of the scattered light with excitation intensity shows unexpected scaling behavior of the coherent signals, which is quantitatively accounted for by optically induced damping of the SPR mode through a Fermi liquid model of the electronic scattering. The broadband feature is shown to arise not from luminescence, but from scattering of the second-order longitudinal SPR mode with the electron gas, where efficient excitation of the second order mode arises from an optical asymmetry of the nanorod. The electronic-temperature-dependent plasmon damping and the Fermi-Dirac distribution together determine the intensity dependence of the broadband emission, and the structure-dependent absorption spectrum determines the spectral shape through the fluctuation-dissipation theorem. Hence a complete self-consistent picture of both coherent and incoherent light scattering is obtained with a single set of physical parameters.

  13. Temperature-induced Lifshitz transition in WTe 2

    DOE PAGES

    Wu, Yun; Jo, Na Hyun; Ochi, Masayuki; ...

    2015-10-12

    In this study, we use ultrahigh resolution, tunable, vacuum ultraviolet laser-based, angle-resolved photoemission spectroscopy (ARPES), temperature- and field-dependent resistivity, and thermoelectric power (TEP) measurements to study the electronic properties of WTe 2, a compound that manifests exceptionally large, temperature-dependent magnetoresistance. The Fermi surface consists of two pairs of electron and two pairs of hole pockets along the X–Γ–X direction. Using detailed ARPES temperature scans, we find a rare example of a temperature-induced Lifshitz transition at T≃160 K, associated with the complete disappearance of the hole pockets. Our electronic structure calculations show a clear and substantial shift of the chemical potentialmore » μ(T) due to the semimetal nature of this material driven by modest changes in temperature. This change of Fermi surface topology is also corroborated by the temperature dependence of the TEP that shows a change of slope at T≈175 K and a breakdown of Kohler’s rule in the 70–140 K range. Our results and the mechanisms driving the Lifshitz transition and transport anomalies are relevant to other systems, such as pnictides, 3D Dirac semimetals, and Weyl semimetals.« less

  14. Many-body effects and ultraviolet renormalization in three-dimensional Dirac materials

    NASA Astrophysics Data System (ADS)

    Throckmorton, Robert; Hofmann, Johannes; Barnes, Edwin

    We develop a theory for electron-electron interaction-induced many-body effects in three dimensional (3D) Weyl or Dirac semimetals, including interaction corrections to the polarizability, electron self-energy, and vertex function, up to second order in the effective fine structure constant of the Dirac material. These results are used to derive the higher-order ultraviolet renormalization of the Fermi velocity, effective coupling, and quasiparticle residue, revealing that the corrections to the renormalization group (RG) flows of both the velocity and coupling counteract the leading-order tendencies of velocity enhancement and coupling suppression at low energies. This in turn leads to the emergence of a critical coupling above which the interaction strength grows with decreasing energy scale. In addition, we identify a range of coupling strengths below the critical point in which the Fermi velocity varies non-monotonically as the low-energy, non-interacting fixed point is approached. Furthermore, we find that while the higher-order correction to the flow of the coupling is generally small compared to the leading order, the corresponding correction to the velocity flow carries an additional factor of the Dirac cone flavor number relative to the leading-order result. Supported by LPS-MPO-CMTC.

  15. Structural, dynamical & electronic properties of CaCuO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, B.K.; Agrawal, S.

    1994-12-31

    The scalar relativistic version of an accurate first principles full potential self- consistent linearized muffin tin orbital (LMTO) method has been employed for describing the physical properties of the parent system of the high-Tc oxide superconductors, i.e., CaCuO2. The presently employed modified version of the LMTO method is quite fast and goes beyond the usual LMTO-ASA method in the sense that it permits a completely general shape of the potential and the charge density. Also, in contrast to LMTO-ASA, the present method is also capable of treating distorted lattice structures accurately. The calculated values of the lattice parameters of puremore » CaCuO2 lie within 3% of the experimentally measured values for the Sr-doped system Ca(.86)Sr(.14)CuO(2). The computed electronic structures and the density of states is quite similar to those of the other oxide superconductors, except of their three- dimensional character because of the presence of strong coupling between the closely spaced CuO2 layers. The van Hove singularity peak appears slightly below the Fermi level and a small concentration of oxygenation /or/ substitutional doping may pin it as the Fermi level. The calculated frequencies for some symmetric frozen phonons for undoped CaCuO2 are quite near to the measured data for the Sr-doped CaCuO2.« less

  16. Structural, dynamical and electronic properties of CaCuO2

    NASA Technical Reports Server (NTRS)

    Agrawal, Bal K.; Agrawal, Savitri

    1995-01-01

    The scalar relativistic version of an accurate first principles full potential self-consistent linearized muffin tin orbital (LMTO) method has been employed for describing the physical properties of the parent system of the high-T(sub c) oxide superconductors, i.e., CaCuO2. The presently employed modified version of the LMTO method is quite fast and goes beyond the usual LMTO ASA method in the sense that it permits a completely general shape of the potential and the charge density. Also, in contrast to LMTO ASA, the present method is also capable of treating distorted lattice structures accurately. The calculated values of the lattice parameters of pure CaCuO2 lie within 3% of the experimentally measured values for the Sr-doped system Ca(0.86)Sr(0.14)CuO(2). The computed electronic structures and the density of states is quite similar to those of the other oxide superconductors, except of their three- dimensional character because of the presence of strong coupling between the closely spaced CuO2 layers. The van Hove singularity peak appears slightly below the Fermi level and a small concentration of oxygenation /or/ substitutional doping may pin it at the Fermi level. The calculated frequencies for some symmetric frozen phonons for undoped CaCuO2 are quite near to the measured data for the Sr-doped CaCuO2.

  17. Anomalous electronic structure and magnetoresistance in TaAs 2

    DOE PAGES

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; ...

    2016-01-01

    We report that the change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs 2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. In conclusion, density functional calculations find that TaAs 2 is a new topological semimetal [Z 2more » invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.« less

  18. The Fermi Gamma-ray Burst Monitor (GBM) Terrestrial Gamma-ray Flash (TGF) Catalog

    NASA Astrophysics Data System (ADS)

    Briggs, M. S.; Roberts, O.; Fitzpatrick, G.; Stanbro, M.; Cramer, E.; Mailyan, B. G.; McBreen, S.; Connaughton, V.; Grove, J. E.; Chekhtman, A.; Holzworth, R.

    2017-12-01

    The revised Second Fermi GBM TGF catalog includes data on 4144 TGFs detected by the Fermi Gamma-ray Burst Monitor through 2016 July 31. The catalog includes 686 bright TGFs there were detected in orbit and 4135 TGFs that were discovered by ground analysis of GBM data (the two samples overlap). Thirty of the events may have been detected as electrons and positrons rather than gamma-rays: Terrestrial Electron Beams (TEBs). We also provide results from correlating the GBM TGFs with VLF radio detections of the World Wide Lightning Location Network (WWLLN). TGFs with WWLLN associations have their localization uncertainties improved from 800 to 10 km, making it possible to identify specific thunderstorms responsible for the TGFs and opening up new types of scientific investigations. There are 1544 TGFs with WWLLN associations; maps are provided for these and the other TGFs of the catalog. The data tables of the catalog are available for use by the scientific community at the Fermi Science Support Center, at https://fermi.gsfc.nasa.gov/ssc/data/access/gbm/tgf/.

  19. Fermi Surface Properties, Metamagnetic Transition and Quantum Phase Transition of CeRu2Si2 and Its Alloys Probed by the dHvA Effect

    NASA Astrophysics Data System (ADS)

    Aoki, Haruyoshi; Kimura, Noriaki; Terashima, Taichi

    2014-07-01

    This article describes the Fermi surface properties of CeRu2Si2 and its alloy systems CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 studied by the de Haas-van Alphen (dHvA) effect. We pay particular attention to how the Fermi surface properties and the f electron state change with magnetic properties, in particular how they change associated with metamagnetic transition and quantum phase transition. After summarizing the important physical properties of CeRu2Si2, we present the magnetic phase diagrams of CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 as a function of temperature, magnetic field and concentration x. From the characteristic features of the magnetic phase diagram, we argue that the ferromagnetic interaction in addition to the antiferromagnetic interaction and the Kondo effect is responsible for the magnetic properties and that the metamagnetic transitions in these systems are relevant to the ferromagnetic interaction. We summarize the Fermi surface properties of CeRu2Si2 in fields below the metamagnetic transition where the f electron state is now well understood theoretically as well as experimentally. We present experimental results in fields above the metamagnetic transitions in CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 as well as CeRu2Si2 to show that the Fermi surface properties above the metamagnetic transitions are significantly different from those below in many important aspects. We argue that the Fermi surface properties above the metamagnetic transitions are not appropriately described in terms of either itinerant or localized f electron. The experimental results in fields below the metamagnetic transitions in CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 are presented to discuss the f electron state in the ground state. The Fermi surface properties of dilute Kondo alloys of CexLa1-xRu2Si2 have been revealed as a function of Ce concentration and temperature. We show that the f electron state can be regarded as itinerant in the ground state together with the definition of the term "itinerant" in this case. The Fermi surface properties are measured also in high concentration alloys of CeRu2(SixGe1-x)2 and CexLa1-xRu2Si2 as a function of x. With the help of the angle resolved photoemission spectroscopy studies, we show that the f electron nature does not change at the quantum phase transition between the paramagnetic and antiferromagnetic phases. However, the picture for the f electron state may be ambiguous and depend on which property one considers in the magnetic states of these systems. The ambiguity and confusion of the f electron state may come from the inherent dual nature of the f electron and we would like to point out that it is sometimes misleading and may not be fruitful to discriminate the f electron state either as itinerant or localized without any clear definition for the terms "itinerant" and "localized".

  20. Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy

    NASA Astrophysics Data System (ADS)

    Kim, Do-Hyun; Kim, Hag-Soo; Song, Min Woo; Lee, Seunghyun; Lee, Sang Yun

    2017-05-01

    Hexagonal boron nitride (h-BN) is an electrical insulator with a large band gap of 5 eV and a good thermal conductor of which melting point reaches about 3000 °C. Due to these properties, much attention was given to the thermal stability rather than the electrical properties of h-BN experimentally and theoretically. In this study, we report calculations that the electronic structure of monolayer h-BN can be influenced by the presence of a vacancy defect which leads to a geometric deformation in the hexagonal lattice structure. The vacancy was varied from mono- to tri-vacancy in a supercell, and different defective structures under the same vacancy density were considered in the case of an odd number of vacancies. Consequently, all cases of vacancy defects resulted in a geometric distortion in monolayer h-BN, and new energy states were created between valence and conduction band with the Fermi level shift. Notably, B atoms around vacancies attracted one another while repulsion happened between N atoms around vacancies, irrespective of vacancy density. The calculation of formation energy revealed that multi-vacancy including more B-vacancies has much lower formation energy than vacancies with more N-vacancies. This work suggests that multi-vacancy created in monolayer h-BN will have more B-vacancies and that the presence of multi-vacancy can make monolayer h-BN electrically conductive by the new energy states and the Fermi level shift.

  1. Geometric and electronic structures of monolayer hexagonal boron nitride with multi-vacancy.

    PubMed

    Kim, Do-Hyun; Kim, Hag-Soo; Song, Min Woo; Lee, Seunghyun; Lee, Sang Yun

    2017-01-01

    Hexagonal boron nitride (h-BN) is an electrical insulator with a large band gap of 5 eV and a good thermal conductor of which melting point reaches about 3000 °C. Due to these properties, much attention was given to the thermal stability rather than the electrical properties of h-BN experimentally and theoretically. In this study, we report calculations that the electronic structure of monolayer h-BN can be influenced by the presence of a vacancy defect which leads to a geometric deformation in the hexagonal lattice structure. The vacancy was varied from mono- to tri-vacancy in a supercell, and different defective structures under the same vacancy density were considered in the case of an odd number of vacancies. Consequently, all cases of vacancy defects resulted in a geometric distortion in monolayer h-BN, and new energy states were created between valence and conduction band with the Fermi level shift. Notably, B atoms around vacancies attracted one another while repulsion happened between N atoms around vacancies, irrespective of vacancy density. The calculation of formation energy revealed that multi-vacancy including more B-vacancies has much lower formation energy than vacancies with more N-vacancies. This work suggests that multi-vacancy created in monolayer h-BN will have more B-vacancies and that the presence of multi-vacancy can make monolayer h-BN electrically conductive by the new energy states and the Fermi level shift.

  2. a Study on SODIUM(110) and Other Nearly Free Electron Metals Using Angle Resolved Photoemission Spectroscopy.

    NASA Astrophysics Data System (ADS)

    Lyo, In-Whan

    Electronic properties of the epitaxially grown Na(110) film have been studied using angle resolved ultraviolet photoemission spectroscopy with synchrotron radiation as the light source. Na provides an ideal ground to study the fundamental aspects of the electron-electron interactions in metals, because of its simple Fermi surface and small pseudopotential. The absolute band structure of Na(110) using angle resolved photoemission spectroscopy has been mapped out using the extrema searching method. The advantage of this approach is that the usual assumption of the unoccupied state dispersion is not required. We have found that the dispersion of Na(1l0) is very close to the parabolic band with the effective mass 1.21 M_{rm e} at 90 K. Self-consistent calculations of the self-energy for the homogeneous electron gas have been performed using the Green's function technique within the framework of the GW approximation, in the hope of understanding the narrowing mechanism of the bandwidth observed for all the nearly-free-electron (NFE) metals. Good agreements between the experimental data and our calculated self-energy were obtained not only for our data on k-dependency from Na(l10), but also for the total bandwidth corrections for other NFE metals, only if dielectric functions beyond the random phase approximation were used. Our findings emphasize the importance of the screening by long wavelength plasmons. Off-normal spectra of angle resolved photoemission from Na(110) show strong asymmetry of the bulk peak intensity for the wide range of photon energies. Using a simple analysis, we show this asymmetry has an origin in the interference of the surface Umklapp electrons with the normal electrons. We have also performed the detailed experimental studies of the anomalous Fermi level structure observed in the forbidden gap region of Na. This was claimed by A. W. Overhauser as the evidence of the charge density wave in the alkali metal. The possibility of this hypothesis is critically discussed against other explanations.

  3. Vortex Lattices in the Bose-Fermi Superfluid Mixture.

    PubMed

    Jiang, Yuzhu; Qi, Ran; Shi, Zhe-Yu; Zhai, Hui

    2017-02-24

    In this Letter we show that the vortex lattice structure in the Bose-Fermi superfluid mixture can undergo a sequence of structure transitions when the Fermi superfluid is tuned from the BCS regime to the BEC regime. This is due to the difference in the vortex core structure of a Fermi superfluid in the BCS regime and in the BEC regime. In the BCS regime the vortex core is nearly filled, while the density at the vortex core gradually decreases until it empties out in the BEC regime. Therefore, with the density-density interaction between the Bose and the Fermi superfluids, interaction between the two sets of vortex lattices gets stronger in the BEC regime, which yields the structure transition of vortex lattices. In view of the recent realization of this superfluid mixture and vortices therein, our theoretical predication can be verified experimentally in the near future.

  4. Fermi Gamma-Ray Observatory-Science Highlights for the First 8 Months

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2009-01-01

    This viewgraph presentation reviews the science highlights for the first 8 months of the Fermi Gamma-Ray Observatory. Results from pulsars, flaring AGN, gamma ray bursts, diffuse radiation, LMC and electron spectrum are also presented.

  5. Magnetic and Fermi Surface Properties of EuGa4

    NASA Astrophysics Data System (ADS)

    Nakamura, Ai; Hiranaka, Yuichi; Hedo, Masato; Nakama, Takao; Miura, Yasunao; Tsutsumi, Hiroki; Mori, Akinobu; Ishida, Kazuhiro; Mitamura, Katsuya; Hirose, Yusuke; Sugiyama, Kiyohiro; Honda, Fuminori; Settai, Rikio; Takeuchi, Tetsuya; Hagiwara, Masayuki; Matsuda, Tatsuma D.; Yamamoto, Etsuji; Haga, Yoshinori; Matsubayashi, Kazuyuki; Uwatoko, Yoshiya; Harima, Hisatomo; Ōnuki, Yoshichika

    2013-10-01

    We grew a high-quality single crystal EuGa4 with the tetragonal structure by the Ga self-flux method, and measured the electrical resistivity, magnetic susceptibility, high-field magnetization, specific heat, thermoelectric power and de Haas--van Alphen (dHvA) effect, together with the electrical resistivity and thermoelectric power under pressure. EuGa4 is found to be a Eu-divalent compound without anisotropy of the magnetic susceptibility in the paramagnetic state and to reveal the same magnetization curve between H \\parallel [100] and [001] in the antiferromagnetic state, where the antiferromagnetic easy-axis is oriented along the [100] direction below a Néel temperature TN=16.5 K. The magnetization curve is discussed on the basis of a simple two-sublattice model. The Fermi surface in the paramagnetic state was clarified from the results of a dHvA experiment for EuGa4 and an energy band calculation for a non-4f reference compound SrGa4, which consists of a small ellipsoidal hole--Fermi surface and a compensated cube-like electron--Fermi surface with vacant space in center. We observed an anomaly in the temperature dependence of the electrical resistivity and thermoelectric power at TCDW=150 K under 2 GPa. This might correspond to an emergence of the charge density wave (CDW). The similar phenomenon was also observed in EuAl4 at ambient pressure. We discussed the CDW phenomenon on the basis of the present peculiar Fermi surfaces.

  6. Superconductivity in an electron band just above the Fermi level: possible route to BCS-BEC superconductivity.

    PubMed

    Okazaki, K; Ito, Y; Ota, Y; Kotani, Y; Shimojima, T; Kiss, T; Watanabe, S; Chen, C-T; Niitaka, S; Hanaguri, T; Takagi, H; Chainani, A; Shin, S

    2014-02-28

    Conventional superconductivity follows Bardeen-Cooper-Schrieffer(BCS) theory of electrons-pairing in momentum-space, while superfluidity is the Bose-Einstein condensation(BEC) of atoms paired in real-space. These properties of solid metals and ultra-cold gases, respectively, are connected by the BCS-BEC crossover. Here we investigate the band dispersions in FeTe(0.6)Se(0.4)(Tc = 14.5 K ~ 1.2 meV) in an accessible range below and above the Fermi level(EF) using ultra-high resolution laser angle-resolved photoemission spectroscopy. We uncover an electron band lying just 0.7 meV (~8 K) above EF at the Γ-point, which shows a sharp superconducting coherence peak with gap formation below Tc. The estimated superconducting gap Δ and Fermi energy [Symbol: see text]F indicate composite superconductivity in an iron-based superconductor, consisting of strong-coupling BEC in the electron band and weak-coupling BCS-like superconductivity in the hole band. The study identifies the possible route to BCS-BEC superconductivity.

  7. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2

    DOE PAGES

    Wu, Yun; Mou, Daixiang; Jo, Na Hyun; ...

    2016-09-14

    We use ultrahigh resolution, tunable, vacuum ultraviolet laser angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of WTe 2, a material that was predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe 2 were proposed to emerge at the crossing points of electron and hole pockets, and Fermi arcs connecting electron and hole pockets would be visible in the spectral function on (001) surface. Here we report the observation of such Fermi arcs in WTe 2 confirming the theoretical predictions. This provides strong evidence for type-II Weyl semimetallic states in WTe 2. Here, we alsomore » find that trivial and topological domains coexist on the same surface of the sample due to the presence of inhomogeneous strain detected by scanning electron microscopy data. This is in agreement with the theoretical prediction that strain can drive this system from topological Weyl to trivial semimetal. WTe 2 therefore provides a tunable playground for studying exotic topological quantum effects.« less

  8. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Mou, Daixiang; Jo, Na Hyun

    We use ultrahigh resolution, tunable, vacuum ultraviolet laser angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of WTe 2, a material that was predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe 2 were proposed to emerge at the crossing points of electron and hole pockets, and Fermi arcs connecting electron and hole pockets would be visible in the spectral function on (001) surface. Here we report the observation of such Fermi arcs in WTe 2 confirming the theoretical predictions. This provides strong evidence for type-II Weyl semimetallic states in WTe 2. Here, we alsomore » find that trivial and topological domains coexist on the same surface of the sample due to the presence of inhomogeneous strain detected by scanning electron microscopy data. This is in agreement with the theoretical prediction that strain can drive this system from topological Weyl to trivial semimetal. WTe 2 therefore provides a tunable playground for studying exotic topological quantum effects.« less

  9. Surface structure of neutron stars with high magnetic fields

    NASA Technical Reports Server (NTRS)

    Fushiki, I.; Gudmundsson, E. H.; Pethick, C. J.

    1989-01-01

    The equation of state of cold dense matter in strong magnetic fields is calculated in the Thomas-Fermi and Thomas-Fermi-Dirac approximations. For use in the latter calculation, a new expression is derived for the exchange energy of the uniform electron gas in a strong magnetic field. Detailed calculations of the density profile in the surface region of a neutron star are described for a variety of equations of state, and these show that the surface density profile is strongly affected by the magnetic field, irrespective of whether or not matter in a magnetic field has a condensed state bound with respect to isolated atoms. It is also shown that, as a consequence of the field dependence of the screening potential, magnetic fields can significantly increase nuclear reaction rates.

  10. Dimensional crossover and thermoelectric properties in CeTe2-xSbx single crystals

    NASA Astrophysics Data System (ADS)

    Rhyee, Jong-Soo; Lee, Kyung Eun; Nyeong Kim, Jae; Shim, Ji Hoon; Min, Byeong Hun; Kwon, Yong Seung

    2013-03-01

    Several years before, we proposed that the charge density wave is a new pathway for high thermoelectric performance in In4Se3-x bulk crystalline materials. (Nature v.459, p. 965, 2009) Recently, from the increase of the chemical potential by halogen doped In4Se3-xH0.03 (H =Halogen elements) crystals, we achieved high ZT (maximum ZT 1.53) over a wide temperature range. (Adv. Mater. v.23, p.2191, 2011) Here we demonstrate the low dimensionality increases power factor in CeTe2-xSbx single crystals. The band structures of CeTe2 show the 2-dimensional (2D) Fermi surface nesting behavior as well as a 3-dimensional (3D) electron Fermi surface hindering the perfect charge density wave (CDW) gap opening. By hole doping with the substitution of Sb at the Te-site, the 3D-like Fermi surface disappears and the 2D perfect CDW gap opening enhances the power factor up to x = 0.1. With further hole doping, the Fermi surfaces become 3-dimensional structure with heavy hole bands. The enhancement of the power factor is observed near the dimensional crossover of CDW, at x = 0.1, where the CDW gap is maximized. This research was supported by Basic Science Research Program (2011-0021335), Mid-career Research Program (Strategy) (No. 2012R1A2A1A03005174) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology, and TJ Park Junior Faculty Fellowship funded by the POSCO TJ Park Foundation.

  11. Separation of electron and hole dynamics in the semimetal LaSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, F.; Xu, J.; Botana, A. S.

    We report investigations on the magnetotransport in LaSb, which exhibits extremely large magnetoresistance (XMR). Foremost, we demonstrate that the resistivity plateau can be explained without invoking topological protection. We then determine the Fermi surface from Shubnikov–de Haas (SdH) quantum oscillation measurements and find good agreement with the bulk Fermi pockets derived from first-principles calculations. Using a semiclassical theory and the experimentally determined Fermi pocket anisotropies, we quantitatively describe the orbital magnetoresistance, including its angle dependence.We show that the origin of XMR in LaSb lies in its high mobility with diminishing Hall effect, where the high mobility leads to a strongmore » magnetic-field dependence of the longitudinal magnetoconductance. Unlike a one-band material, when a system has two or more bands (Fermi pockets) with electron and hole carriers, the added conductance arising from the Hall effect is reduced, hence revealing the latent XMR enabled by the longitudinal magnetoconductance. With diminishing Hall effect, the magnetoresistivity is simply the inverse of the longitudinal magnetoconductivity, enabling the differentiation of the electron and hole contributions to the XMR, which varies with the strength and orientation of the magnetic field. This work demonstrates a convenient way to separate the dynamics of the charge carriers and to uncover the origin of XMR in multiband materials with anisotropic Fermi surfaces. Our approach can be readily applied to other XMR materials.« less

  12. Effects of partial La filling and Sb vacancy defects on CoS b 3 skutterudites

    DOE PAGES

    Hu, Chongze; Zeng, Xiaoyu; Liu, Yufei; ...

    2017-04-25

    Over the past decade, the open frame ("cagey") structure of CoSb 3 skutterudite has invited intensive filling studies with various rare-earth elements for delivering state-of-the-art mid-temperature thermoelectric performance. In order to rationalize previously reported experimental results and provide new insight into the underexplored roles of La fillers and Sb vacancies, ab initio density functional theory studies, along with semi-classical Boltzmann transport theory calculations, are performed for pristine CoSb 3 of different lattice settings and La-filled CoSb 3 with and without Sb s mono- and di-vacancy defects. We examine the effects of van der Waals (vdW) interactions, spin-orbit coupling (SOC), spinmore » polarization, partial La-filling, and Sb vacancy defects on the structural, electronic, and thermoelectric properties. The vdW interactions profoundly affect the lattice constant, which in turn affects the band gap. The SOC shows minor effects on the electronic and thermoelectric properties. The peculiar quasi-Dirac band in the pristine CoSb 3 largely survives La filling but not Sb vacancies, which instead introduce dispersive bands in the band gap region. Importantly, the band structure, density of states, and Fermi surface of La-filled CoSb 3 are significantly spin polarized, giving rise to spin-dependent thermoelectric properties. Seebeck coefficients directly calculated as a function of chemical potential are interpreted in connection with the electronic structures. Temperature-dependent Seebeck coefficients derived for the experimentally studied materials agree well with available experimental data. Seebeck coefficients obtained as a function of charge carrier concentration corroborate a thermoelectrically favorable role at high filling fractions played by the electron/hole pockets on the Fermi surface associated with the degenerate valleys/hills in the conduction/valence bands, respectively. Our results serve to advance the understanding of CoSb 3 skutterudite, a class of materials with important fundamental and application implications for thermoelectrics and spintronics.« less

  13. Effects of partial La filling and Sb vacancy defects on CoS b 3 skutterudites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Chongze; Zeng, Xiaoyu; Liu, Yufei

    Over the past decade, the open frame ("cagey") structure of CoSb 3 skutterudite has invited intensive filling studies with various rare-earth elements for delivering state-of-the-art mid-temperature thermoelectric performance. In order to rationalize previously reported experimental results and provide new insight into the underexplored roles of La fillers and Sb vacancies, ab initio density functional theory studies, along with semi-classical Boltzmann transport theory calculations, are performed for pristine CoSb 3 of different lattice settings and La-filled CoSb 3 with and without Sb s mono- and di-vacancy defects. We examine the effects of van der Waals (vdW) interactions, spin-orbit coupling (SOC), spinmore » polarization, partial La-filling, and Sb vacancy defects on the structural, electronic, and thermoelectric properties. The vdW interactions profoundly affect the lattice constant, which in turn affects the band gap. The SOC shows minor effects on the electronic and thermoelectric properties. The peculiar quasi-Dirac band in the pristine CoSb 3 largely survives La filling but not Sb vacancies, which instead introduce dispersive bands in the band gap region. Importantly, the band structure, density of states, and Fermi surface of La-filled CoSb 3 are significantly spin polarized, giving rise to spin-dependent thermoelectric properties. Seebeck coefficients directly calculated as a function of chemical potential are interpreted in connection with the electronic structures. Temperature-dependent Seebeck coefficients derived for the experimentally studied materials agree well with available experimental data. Seebeck coefficients obtained as a function of charge carrier concentration corroborate a thermoelectrically favorable role at high filling fractions played by the electron/hole pockets on the Fermi surface associated with the degenerate valleys/hills in the conduction/valence bands, respectively. Our results serve to advance the understanding of CoSb 3 skutterudite, a class of materials with important fundamental and application implications for thermoelectrics and spintronics.« less

  14. First-Principles Momentum Dependent Local Ansatz Approach to the Momentum Distribution Function in Iron-Group Transition Metals

    NASA Astrophysics Data System (ADS)

    Kakehashi, Yoshiro; Chandra, Sumal

    2017-03-01

    The momentum distribution function (MDF) bands of iron-group transition metals from Sc to Cu have been investigated on the basis of the first-principles momentum dependent local ansatz wavefunction method. It is found that the MDF for d electrons show a strong momentum dependence and a large deviation from the Fermi-Dirac distribution function along high-symmetry lines of the first Brillouin zone, while the sp electrons behave as independent electrons. In particular, the deviation in bcc Fe (fcc Ni) is shown to be enhanced by the narrow eg (t2g) bands with flat dispersion in the vicinity of the Fermi level. Mass enhancement factors (MEF) calculated from the jump on the Fermi surface are also shown to be momentum dependent. Large mass enhancements of Mn and Fe are found to be caused by spin fluctuations due to d electrons, while that for Ni is mainly caused by charge fluctuations. Calculated MEF are consistent with electronic specific heat data as well as recent angle resolved photoemission spectroscopy data.

  15. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  16. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE PAGES

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; ...

    2016-09-01

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  17. Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites

    PubMed Central

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-01-01

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively. PMID:26456013

  18. Band structure engineering and thermoelectric properties of charge-compensated filled skutterudites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun

    2015-10-12

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co 4Sb 12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing themore » Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.« less

  19. Electronic structure, thermodynamic properties and hydrogenation of LaPtIn and CePtIn compounds by ab-initio methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jezierski, Andrzej, E-mail: andrzej.jezierski@ifmpan.poznan.pl; Szytuła, Andrzej

    2016-02-15

    The electronic structures and thermodynamic properties of LaPtIn and CePtIn are studied by means of ab-initio full-relativistic full-potential local orbital basis (FPLO) method within densities functional (DFT) methodologies. We have also examined the influence of hydrogen on the electronic structure and stability of CePtInH and LaPtInH systems. The positions of the hydrogen atoms have been found from the minimum of the total energy. Our calculations have shown that band structure and topology of the Fermi surfaces changed significantly during the hydrogenation. The thermodynamic properties (bulk modulus, Debye temperatures, constant pressure heat capacity) calculated in quasi-harmonic Debye-Grüneisen model are in amore » good agreement with the experimental data. We have applied different methods of the calculation of the equation of states (EOS) (Murnaghan, Birch-Murnaghan, Poirier–Tarantola, Vinet). The thermodynamic properties are presented for the pressure 0« less

  20. Band Structure Engineering and Thermoelectric Properties of Charge-Compensated Filled Skutterudites

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoya; Yang, Jiong; Wu, Lijun; Salvador, James R.; Zhang, Cheng; Villaire, William L.; Haddad, Daad; Yang, Jihui; Zhu, Yimei; Li, Qiang

    2015-10-01

    Thermoelectric properties of semiconductors are intimately related to their electronic band structure, which can be engineered via chemical doping. Dopant Ga in the cage-structured skutterudite Co4Sb12 substitutes Sb sites while occupying the void sites. Combining quantitative scanning transmission electron microscopy and first-principles calculations, we show that Ga dual-site occupancy breaks the symmetry of the Sb-Sb network, splits the deep triply-degenerate conduction bands, and drives them downward to the band edge. The charge-compensating nature of the dual occupancy Ga increases overall filling fraction limit. By imparting this unique band structure feature, and judiciously doping the materials by increasing the Yb content, we promote the Fermi level to a point where carriers are in energetic proximity to these features. Increased participation of these heavier bands in electronic transport leads to increased thermopower and effective mass. Further, the localized distortion from Ga/Sb substitution enhances the phonon scattering to reduce the thermal conductivity effectively.

  1. Effect of pressure on the tetragonal distortion in TiH2: a first-principles study

    NASA Astrophysics Data System (ADS)

    de Coss, R.; Quijano, R.; Singh, D. J.

    2009-03-01

    The transition metal dihydride TiH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Early electronic band structure calculations have shown that TiH2 in the cubic phase display a nearly flat double degenerated band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. Nevertheless, recently we have show that the instability of fcc-TiH2 is likely to be related with a van Hove singularity. In the present work, we have performed ab-initio calculations of the electronic structure and the tetragonal distortion for TiH2 under pressure (0-30 GPa). We found that the fcc-fct energy barrier and the tetragonal distortion increases with pressure. The evolution of the tetragonal distortion is analyzed in terms of the electronic band structure. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 49985.

  2. On the electronic structure and thermoelectric properties of BiTeBr and BiTeI single crystals and of BiTeI with the addition of BiI{sub 3} and CuI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulbachinskii, Vladimir A., E-mail: kulb@mig.phys.msu.ru; Kytin, Vladimir G.; Kudryashov, Alexey A.

    The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin-orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. The optimized crystal structures show a tendency for the Bi-X (X=Br, I) bond elongation compared to the Bi-Te one. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within themore » frames of the acoustic phonons scattering model. Because of larger thermopower BiTeBr exhibits a twice higher thermoelectric figure-of-merit near room temperature, ZT=0.17, compared to BiTeI. The addition of 1 mass% of BiI{sub 3} or CuI to BiTeI decreases the mobility of electrons by two orders of magnitude, leading to significantly lower electrical conductivity, but at the same time effectively reduces the thermal conductivity. The prospects of further enhancing the thermoelectric efficiency are briefly discussed. - Graphical abstract: View of the crystal structure of BiTeBr is shown in the figure The optimized crystal structures show a tendency for the Bi-X (X=Br, I) bond elongation compared to the Bi-Te one. The electronic structures were calculated for BiTeBr and BiTeI using the density-functional theory approach and accounting for the strong spin-orbital interaction. Qualitatively, the band structures for two compounds are similar, showing strong mixing of the p states of all elements in vicinity of the Fermi level, with the band gaps of 0.595 and 0.478 eV for BiTeBr and BiTeI, respectively. Both compounds are intrinsic n-type semiconductors but display a metallic-like conductivity coupled to rather large thermopower, which is rationalized within the frames of the acoustic phonons scattering model. The addition of 1 mass% of BiI{sub 3} or CuI to BiTeI effectively reduces the thermal conductivity. The prospects of further enhancing the thermoelectric efficiency are briefly discussed. Highlights: Black-Right-Pointing-Pointer BiTeBr and BiTeI feature mixing of p states of Bi, Te, and halogen near Fermi level. Black-Right-Pointing-Pointer BiTeBr has thermoelectric figure-of-merit ZT=0.17, two times that of BiTeI. Black-Right-Pointing-Pointer 1% CuI or BiI{sub 3} decrease dramatically electron mobility in BiTeI. Black-Right-Pointing-Pointer 1% CuI decreases thermal conductivity of BiTeI by a factor of 4, reaching 0.5 W m{sup -1} K.« less

  3. Metallic carbon materials

    DOEpatents

    Cohen, Marvin Lou; Crespi, Vincent Henry; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  4. Incorporation of charge transfer into the explicit polarization fragment method by grand canonical density functional theory.

    PubMed

    Isegawa, Miho; Gao, Jiali; Truhlar, Donald G

    2011-08-28

    Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics

  5. Reduced electronic correlation effects in half substituted Ba(Fe1-xCox)2As2

    NASA Astrophysics Data System (ADS)

    Liu, Z.-H.; Yaresko, A. N.; Li, Y.; Evtushinsky, D. V.; Dai, P.-C.; Borisenko, S. V.

    2018-06-01

    We report a comprehensive study of the tridimensional nature and orbital character of the low-energy electronic structure in 50% Cobalt doped Ba(Fe1-xCox)2As2 (d6.5), by using polarization- and photon energy-dependent angle-resolved photoemission spectroscopy. An extra electron-like Fermi surface is observed around the Brillouin zone boundary compared with isoelectronic KyFe2-xSe2 (d6.5). The bands near the Fermi level (EF) are mainly derived from Fe/Co 3d t2g orbitals, revealing visible dispersions along the kz direction. In combination with the local density approximation and the dynamical mean-field theory calculations, we find that the As 4p bands are non-renormalized and the whole 3d band needs to be renormalized by a "single" factor of ˜1.6, indicating moderate electronic correlation effects. The "single" factor description of the correlation strength among the different 3d orbitals is also in sharp contrast to orbital-dependent correlation effects in BaFe2As2. Our findings indicate a remarkable reduction of correlation effects with little difference among 3d orbitals in BaFeCoAs2, due to the increased filling of the electronic 3d shell in the presence of significant Hund's coupling. The results support that the electronic correlation effects and multiple orbital physics play an important role in the superconductivity of the 122 system and in other ferropnictides.

  6. Structural impact on the eigenenergy renormalization for carbon and silicon allotropes and boron nitride polymorphs

    NASA Astrophysics Data System (ADS)

    Tutchton, Roxanne; Marchbanks, Christopher; Wu, Zhigang

    2018-05-01

    The phonon-induced renormalization of electronic band structures is investigated through first-principles calculations based on the density functional perturbation theory for nine materials with various crystal symmetries. Our results demonstrate that the magnitude of the zero-point renormalization (ZPR) of the electronic band structure is dependent on both crystal structure and material composition. We have performed analysis of the electron-phonon-coupling-induced renormalization for two silicon (Si) allotropes, three carbon (C) allotropes, and four boron nitride (BN) polymorphs. Phonon dispersions of each material were computed, and our analysis indicates that materials with optical phonons at higher maximum frequencies, such as graphite and hexagonal BN, have larger absolute ZPRs, with the exception of graphene, which has a considerably smaller ZPR despite having phonon frequencies in the same range as graphite. Depending on the structure and material, renormalizations can be comparable to the GW many-body corrections to Kohn-Sham eigenenergies and, thus, need to be considered in electronic structure calculations. The temperature dependence of the renormalizations is also considered, and in all materials, the eigenenergy renormalization at the band gap and around the Fermi level increases with increasing temperature.

  7. Fast probe of local electronic states in nanostructures utilizing a single-lead quantum dot

    PubMed Central

    Otsuka, Tomohiro; Amaha, Shinichi; Nakajima, Takashi; Delbecq, Matthieu R.; Yoneda, Jun; Takeda, Kenta; Sugawara, Retsu; Allison, Giles; Ludwig, Arne; Wieck, Andreas D.; Tarucha, Seigo

    2015-01-01

    Transport measurements are powerful tools to probe electronic properties of solid-state materials. To access properties of local electronic states in nanostructures, such as local density of states, electronic distribution and so on, micro-probes utilizing artificial nanostructures have been invented to perform measurements in addition to those with conventional macroscopic electronic reservoirs. Here we demonstrate a new kind of micro-probe: a fast single-lead quantum dot probe, which utilizes a quantum dot coupled only to the target structure through a tunneling barrier and fast charge readout by RF reflectometry. The probe can directly access the local electronic states with wide bandwidth. The probe can also access more electronic states, not just those around the Fermi level, and the operations are robust against bias voltages and temperatures. PMID:26416582

  8. Chemical contrast in STM imaging of transition metal aluminides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duguet, T.; Thiel, Patricia A.

    2012-08-01

    The present manuscript reviews recent scanning tunnelling microscopy (STM) studies of transition metal (TM) aluminide surfaces. It provides a general perspective on the contrast between Al atoms and TM atoms in STM imaging. A general trend is the much stronger bias dependence of TM atoms, or TM-rich regions of the surface. This dependence can be attenuated by the local chemical arrangements and environments. Al atoms can show a stronger bias dependence when their chemical environment, such as their immediate subsurface, is populated with TM. All this is well explained in light of combined results of STM and both theoretical andmore » experimental electronic and crystallographic structure determinations. Since STM probes the Fermi surface, the electronic structure in the vicinity of the Fermi level (EF) is essential for understanding contrast and bias dependence. Hence, partial density of states provides information about the TM d band position and width, s–p–d hybridization or interactions, or charge transfer between constituent elements. In addition, recent developments in STM image simulations are very interesting for elucidating chemical contrast at Al–TM alloy surfaces, and allow direct atomic identification, when the surface does not show too much disorder. Overall, we show that chemically-specific imaging is often possible at these surfaces.« less

  9. Fermi-surface topology of the heavy-fermion system Ce2PtIn8

    NASA Astrophysics Data System (ADS)

    Klotz, J.; Götze, K.; Green, E. L.; Demuer, A.; Shishido, H.; Ishida, T.; Harima, H.; Wosnitza, J.; Sheikin, I.

    2018-04-01

    Ce2PtIn8 is a recently discovered heavy-fermion system structurally related to the well-studied superconductor CeCoIn5. Here we report on low-temperature de Haas-van Alphen-effect measurements in high magnetic fields in Ce2PtIn8 and Pr2PtIn8 . In addition, we performed band-structure calculations for localized and itinerant Ce-4 f electrons in Ce2PtIn8 . Comparison with the experimental data of Ce2PtIn8 and of the 4 f -localized Pr2PtIn8 suggests the itinerant character of the Ce-4 f electrons. This conclusion is further supported by the observation of effective masses in Ce2PtIn8 , which are strongly enhanced with up to 26 bare electron masses.

  10. Electronic band structure of 4d and 5d transition metal trichalcogenides

    NASA Astrophysics Data System (ADS)

    Sugita, Yusuke; Miyake, Takashi; Motome, Yukitoshi

    2018-05-01

    Transition metal trichalcogenides (TMTs), a family of van der Waals materials, have gained increasing interests from the discovery of magnetism in few-layer forms. Although TMTs with 3d transition metal elements have been studied extensively, much less is explored for the 4d and 5d cases, where the interesting interplay between electron correlations and the relativistic spin-orbit coupling is expected. Using ab initio calculations, we here investigate the electronic property of TMTs with 4d and 5d transition metal elements. We show that the band structures exhibit multiple node-like features near the Fermi level. These are the remnant of multiple Dirac cones that were recently discovered in the monolayer cases. Our results indicate that the peculiar two-dimensional multiple Dirac cones are concealed even in the layered bulk systems.

  11. Localized-to-extended-states transition below the Fermi level

    NASA Astrophysics Data System (ADS)

    Tito, M. A.; Pusep, Yu. A.

    2018-05-01

    Time-resolved photoluminescence is employed to examine a transition from localized to extended electron states below the Fermi level in multiple narrow quantum well GaAs/AlGaAs heterostructures, where disorder was generated by interface roughness. Such a transition resembles the metal-insulator transition profoundly investigated by electric transport measurements. An important distinction distinguishes the localized-to-extended-states transition studied here: it takes place below the Fermi level in an electron system with a constant concentration, which implies unchanging Coulomb correlations. Moreover, for such a localized-to-extended-states transition the temperature is shown to be irrelevant. In the insulating regime the magnetic field was found to cause an additional momentum relaxation which considerably enhanced the recombination rate. Thus, we propose a method to explore the evolution of the localized electron states in a system with a fixed disorder and Coulomb interaction.

  12. Terrestrial Gamma-Ray Flashes (TGFs) Above Thunderstorms

    NASA Technical Reports Server (NTRS)

    Fishman, Gerald J.

    2012-01-01

    Intense of gamma rays have been observed by five different space-borne detectors. The TGFs have hard spectra, with photons extending to over 50 MeV. Most of these flashes last less than a millisecond. Relativistic electrons and positrons associated with TGFs are also seen by orbiting instruments In a special mode of operation, the Fermi-GBM detectors are now detecting an average of about one TGF every two hours. The Fermi spacecraft has been performing special orientations this year which has allowed the Fermi-LAT instrument also detect TGFs. The most likely origin of these high energy photons is bremsstrahlung radiation from electrons, produced by relativistic runaway electrons in intense electric fields within or above thunderstorm regions; the altitude of origin is uncertain. These TGFs may produce an appreciable radiation dose to passengers and crew in nearby aircraft. The observational aspects of TGFs will be the main focus of this talk; theoretical aspects remain speculative.

  13. Electron nematic fluid in a strained S r3R u2O7 film

    NASA Astrophysics Data System (ADS)

    Marshall, Patrick B.; Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne

    2018-04-01

    S r3R u2O7 belongs to the family of layered strontium ruthenates and exhibits a range of unusual emergent properties, such as electron nematic behavior and metamagnetism. Here, we show that epitaxial film strain significantly modifies these phenomena. In particular, we observe enhanced magnetic interactions and an electron nematic phase that extends to much higher temperatures and over a larger magnetic-field range than in bulk single crystals. Furthermore, the films show an unusual anisotropic non-Fermi-liquid behavior that is controlled by the direction of the applied magnetic field. At high magnetic fields, the metamagnetic transition to a ferromagnetic phase recovers isotropic Fermi-liquid behavior. The results support the interpretation that these phenomena are linked to the special features of the Fermi surface, which can be tuned by both film strain and an applied magnetic field.

  14. Stokes paradox in electronic Fermi liquids

    NASA Astrophysics Data System (ADS)

    Lucas, Andrew

    2017-03-01

    The Stokes paradox is the statement that in a viscous two-dimensional fluid, the "linear response" problem of fluid flow around an obstacle is ill posed. We present a simple consequence of this paradox in the hydrodynamic regime of a Fermi liquid of electrons in two-dimensional metals. Using hydrodynamics and kinetic theory, we estimate the contribution of a single cylindrical obstacle to the global electrical resistance of a material, within linear response. Momentum relaxation, present in any realistic electron liquid, resolves the classical paradox. Nonetheless, this paradox imprints itself in the resistance, which can be parametrically larger than predicted by Ohmic transport theory. We find a remarkably rich set of behaviors, depending on whether or not the quasiparticle dynamics in the Fermi liquid should be treated as diffusive, hydrodynamic, or ballistic on the length scale of the obstacle. We argue that all three types of behavior are observable in present day experiments.

  15. Mahan excitons in degenerate wurtzite InN: Photoluminescence spectroscopy and reflectivity measurements

    NASA Astrophysics Data System (ADS)

    Feneberg, Martin; Däubler, Jürgen; Thonke, Klaus; Sauer, Rolf; Schley, Pascal; Goldhahn, Rüdiger

    2008-06-01

    Unintentionally degenerately doped n -type hexagonal wurtzite InN samples were studied by using Fourier-transform photoluminescence spectroscopy and reflectivity measurements. We found in luminescence overlapping band acceptor (e,A0) transitions related to two different acceptors with a strong enhancement of their intensities close to the Fermi energy of the electrons recombining with the localized holes. Our explanation is in terms of a Fermi-edge singularity of the electrons due to strongly increased electron-hole scattering. Electron-hole pairs with such resonantly enhanced oscillator strengths have been referred to as Mahan excitons. Temperature-dependent reflectivity measurements confirm this interpretation.

  16. Secondary electron emission yield dependence on the Fermi level in Silicon

    NASA Astrophysics Data System (ADS)

    Urrabazo, David; Goeckner, Matthew; Overzet, Lawrence

    2013-09-01

    Secondary Electron Emission (SEE) by ion bombardment plays a key role in determining the properties of many plasmas. As a result, significant efforts have been expended to control the SEE coefficient (increasing or decreasing it) by tailoring the electron work function of surfaces. A few recent publications point to the possibility of controlling the SEE coefficient of semiconductor surfaces in real time through controlling the numbers of electrons in the conduction band near the surface. Large control over the plasma was achieved by injecting electrons into the semiconductor just under the cathode surface via a subsurface PN junction. The hypothesis was that SEE is dependent on the numbers of electrons in the conduction band near the surface (which is related to the position of the Fermi level near the surface). We are testing the validity of this hypothesis. We have begun fundamental ion beam studies to explore this possible dependence of SEE on the Fermi energy level using Si. Various doping levels and dopants are being evaluated and the results of these tests will be presented. This work was supported in part by US Dept. of Energy. Acknowledgement to Dr. L. Raja at UT Austin.

  17. Connection between Fermi contours of zero-field electrons and ν =1/2 composite fermions in two-dimensional systems

    NASA Astrophysics Data System (ADS)

    Ippoliti, Matteo; Geraedts, Scott D.; Bhatt, R. N.

    2017-07-01

    We investigate the relation between the Fermi sea (FS) of zero-field carriers in two-dimensional systems and the FS of the corresponding composite fermions which emerge in a high magnetic field at filling ν =1/2 , as the kinetic energy dispersion is varied. We study cases both with and without rotational symmetry and find that there is generally no straightforward relation between the geometric shapes and topologies of the two FSs. In particular, we show analytically that the composite Fermi liquid (CFL) is completely insensitive to a wide range of changes to the zero-field dispersion which preserve rotational symmetry, including ones that break the zero-field FS into multiple disconnected pieces. In the absence of rotational symmetry, we show that the notion of "valley pseudospin" in many-valley systems is generically not transferred to the CFL, in agreement with experimental observations. We also discuss how a rotationally symmetric band structure can induce a reordering of the Landau levels, opening interesting possibilities of observing higher-Landau-level physics in the high-field regime.

  18. Hilbert transform evaluation for electron-phonon self-energies

    NASA Astrophysics Data System (ADS)

    Bevilacqua, Giuseppe; Menichetti, Guido; Pastori Parravicini, Giuseppe

    2016-01-01

    The electron tunneling current through nanostructures is considered in the presence of the electron-phonon interactions. In the Keldysh nonequilibrium formalism, the lesser, greater, advanced and retarded self-energies components are expressed by means of appropriate Langreth rules. We discuss the key role played by the entailed Hilbert transforms, and provide an analytic way for their evaluation. Particular attention is given to the current-conserving lowest-order-expansion for the treament of the electron-phonon interaction; by means of an appropriate elaboration of the analytic properties and pole structure of the Green's functions and of the Fermi functions, we arrive at a surprising simple, elegant, fully analytic and easy-to-use expression of the Hilbert transforms and involved integrals in the energy domain.

  19. Self-consistent full-potential linearized-augmented-plane-wave local-density electronic-structure studies of magnetism and superconductivity in C15 compounds: ZrZn2 and ZrV2

    NASA Astrophysics Data System (ADS)

    Huang, Mei-Chun; Jansen, H. J. F.; Freeman, A. J.

    1988-03-01

    The electronic structure and properties of the cubic Laves phase (C15) compounds ZrZn2 and ZrV2 have been determined using our all-electron full-potential linearized-augmented-plane-wave (FLAPW) method for bulk solids. The computations were performed in two stages: (i) self-consistent warped muffin tin and (ii) self-consistent full potential. Spin-orbit coupling was included after either stage. The effects of the inclusion of the nonspherical terms inside the muffin tins on the eigenvalues is found to be small (of order 1 mRy). However, due to the fact that some of the bands near the Fermi level are flat, this effect leads to a much higher value of the density of states at EF in ZnZr2. The most important difference between the materials ZrZn2 and ZrV2 is the position of the d bands derived from the Zr and V atoms. Consequently, these materials have completely different Fermi surfaces. We have investigated the magnetic properties of these compounds by evaluating their generalized Stoner factors and found agreement with experiment. Our results for the superconducting transition temperature for these materials is found to be strongly dependent on the spin fluctuation parameter μsp. Of course, because of the magnetic transition, superconductivity cannot be observed in ZnZr2.

  20. Observation of Dirac-like energy band and ring-torus Fermi surface associated with the nodal line in topological insulator CaAgAs

    NASA Astrophysics Data System (ADS)

    Takane, Daichi; Nakayama, Kosuke; Souma, Seigo; Wada, Taichi; Okamoto, Yoshihiko; Takenaka, Koshi; Yamakawa, Youichi; Yamakage, Ai; Mitsuhashi, Taichi; Horiba, Koji; Kumigashira, Hiroshi; Takahashi, Takashi; Sato, Takafumi

    2018-01-01

    One of key challenges in current material research is to search for new topological materials with inverted bulk-band structure. In topological insulators, the band inversion caused by strong spin-orbit coupling leads to opening of a band gap in the entire Brillouin zone, whereas an additional crystal symmetry such as point-group and nonsymmorphic symmetries sometimes prohibits the gap opening at/on specific points or line in momentum space, giving rise to topological semimetals. Despite many theoretical predictions of topological insulators/semimetals associated with such crystal symmetries, the experimental realization is still relatively scarce. Here, using angle-resolved photoemission spectroscopy with bulk-sensitive soft-x-ray photons, we experimentally demonstrate that hexagonal pnictide CaAgAs belongs to a new family of topological insulators characterized by the inverted band structure and the mirror reflection symmetry of crystal. We have established the bulk valence-band structure in three-dimensional Brillouin zone, and observed the Dirac-like energy band and ring-torus Fermi surface associated with the line node, where bulk valence and conducting bands cross on a line in the momentum space under negligible spin-orbit coupling. Intriguingly, we found that no other bands cross the Fermi level and therefore the low-energy excitations are solely characterized by the Dirac-like band. CaAgAs provides an excellent platform to study the interplay among low-energy electron dynamics, crystal symmetry, and exotic topological properties.

  1. Phagraphene: A Low-Energy Graphene Allotrope Composed of 5-6-7 Carbon Rings with Distorted Dirac Cones.

    PubMed

    Wang, Zhenhai; Zhou, Xiang-Feng; Zhang, Xiaoming; Zhu, Qiang; Dong, Huafeng; Zhao, Mingwen; Oganov, Artem R

    2015-09-09

    Using systematic evolutionary structure searching we propose a new carbon allotrope, phagraphene [fæ'græfi:n], standing for penta-hexa-hepta-graphene, because the structure is composed of 5-6-7 carbon rings. This two-dimensional (2D) carbon structure is lower in energy than most of the predicted 2D carbon allotropes due to its sp(2)-binding features and density of atomic packing comparable to graphene. More interestingly, the electronic structure of phagraphene has distorted Dirac cones. The direction-dependent cones are further proved to be robust against external strain with tunable Fermi velocities.

  2. Electron Tunneling in Lithium Ammonia Solutions Probed by Frequency-Dependent Electron-Spin Relaxation Studies

    PubMed Central

    Maeda, Kiminori; Lodge, Matthew T.J.; Harmer, Jeffrey; Freed, Jack H.; Edwards, Peter P.

    2012-01-01

    Electron transfer or quantum tunneling dynamics for excess or solvated electrons in dilute lithium-ammonia solutions have been studied by pulse electron paramagnetic resonance (EPR) spectroscopy at both X- (9.7 GHz) and W-band (94 GHz) frequencies. The electron spin-lattice (T1) and spin-spin (T2) relaxation data indicate an extremely fast transfer or quantum tunneling rate of the solvated electron in these solutions which serves to modulate the hyperfine (Fermi-contact) interaction with nitrogen nuclei in the solvation shells of ammonia molecules surrounding the localized, solvated electron. The donor and acceptor states of the solvated electron in these solutions are the initial and final electron solvation sites found before, and after, the transfer or tunneling process. To interpret and model our electron spin relaxation data from the two observation EPR frequencies requires a consideration of a multi-exponential correlation function. The electron transfer or tunneling process that we monitor through the correlation time of the nitrogen Fermi-contact interaction has a time scale of (1–10)×10−12 s over a temperature range 230–290K in our most dilute solution of lithium in ammonia. Two types of electron-solvent interaction mechanisms are proposed to account for our experimental findings. The dominant electron spin relaxation mechanism results from an electron tunneling process characterized by a variable donor-acceptor distance or range (consistent with such a rapidly fluctuating liquid structure) in which the solvent shell that ultimately accepts the transferring electron is formed from random, thermal fluctuations of the liquid structure in, and around, a natural hole or Bjerrum-like defect vacancy in the liquid. Following transfer and capture of the tunneling electron, further solvent-cage relaxation with a timescale of ca. 10−13 s results in a minor contribution to the electron spin relaxation times. This investigation illustrates the great potential of multi-frequency EPR measurements to interrogate the microscopic nature and dynamics of ultra fast electron transfer or quantum-tunneling processes in liquids. Our results also impact on the universal issue of the role of a host solvent (or host matrix, e.g. a semiconductor) in mediating long-range electron transfer processes and we discuss the implications of our results with a range of other materials and systems exhibiting the phenomenon of electron transfer. PMID:22568866

  3. Three-dimensionality of the bulk electronic structure in WTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Jo, Na Hyun; Mou, Daixiang

    Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less

  4. Three-dimensionality of the bulk electronic structure in WTe 2

    DOE PAGES

    Wu, Yun; Jo, Na Hyun; Mou, Daixiang; ...

    2017-05-18

    Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less

  5. Quantum mechanical models for the Fermi shuttle

    NASA Astrophysics Data System (ADS)

    Sternberg, James; Ovchinnikov, S. Yu.; Macek, J. H.

    2009-05-01

    Although the Fermi shuttle was originally proposed as an explanation for highly energetic cosmic rays, it is also a mechanism for the production of high energy electrons in atomic collisions [1]. The Fermi shuttle is usually thought of as a classical effect and most models of this process rely on classical or semi-classical approximations. In this work we explore several quantum mechanical models for ion-atom collisions and examine the evidence for the Fermi shuttle in these models. [4pt] [1] B. Sulik, Cs. Koncz, K. Tok'esi, A. Orb'an, and D. Ber'enyi, Phys Rev. Lett. 88 073201 (2002)

  6. Electron scattering at interfaces in nano-scale vertical interconnects: A combined experimental and ab initio study

    NASA Astrophysics Data System (ADS)

    Lanzillo, Nicholas A.; Restrepo, Oscar D.; Bhosale, Prasad S.; Cruz-Silva, Eduardo; Yang, Chih-Chao; Youp Kim, Byoung; Spooner, Terry; Standaert, Theodorus; Child, Craig; Bonilla, Griselda; Murali, Kota V. R. M.

    2018-04-01

    We present a combined theoretical and experimental study on the electron transport characteristics across several representative interface structures found in back-end-of-line interconnect stacks for advanced semiconductor manufacturing: Cu/Ta(N)/Co/Cu and Cu/Ta(N)/Ru/Cu. In particular, we evaluate the impact of replacing a thin TaN barrier with Ta while considering both Co and Ru as wetting layers. Both theory and experiment indicate a pronounced reduction in vertical resistance when replacing TaN with Ta, regardless of whether a Co or Ru wetting layer is used. This indicates that a significant portion of the total vertical resistance is determined by electron scattering at the Cu/Ta(N) interface. The electronic structure of these nano-sized interconnects is analyzed in terms of the atom-resolved projected density of states and k-resolved transmission spectra at the Fermi level. This work further develops a fundamental understanding of electron transport and material characteristics in nano-sized interconnects.

  7. Role of spin-orbit coupling in the electronic structure of Ir O2

    NASA Astrophysics Data System (ADS)

    Das, Pranab Kumar; Sławińska, Jagoda; Vobornik, Ivana; Fujii, Jun; Regoutz, Anna; Kahk, Juhan M.; Scanlon, David O.; Morgan, Benjamin J.; McGuinness, Cormac; Plekhanov, Evgeny; Di Sante, Domenico; Huang, Ying-Sheng; Chen, Ruei-San; Rossi, Giorgio; Picozzi, Silvia; Branford, William R.; Panaccione, Giancarlo; Payne, David J.

    2018-06-01

    The delicate interplay of electronic charge, spin, and orbital degrees of freedom is in the heart of many novel phenomena across the transition metal oxide family. Here, by combining high-resolution angle-resolved photoemission spectroscopy and first principles calculations (with and without spin-orbit coupling), the electronic structure of the rutile binary iridate, Ir O2 , is investigated. The detailed study of electronic bands measured on a high-quality single crystalline sample and use of a wide range of photon energy provide a huge improvement over the previous studies. The excellent agreement between theory and experimental results shows that the single-particle DFT description of Ir O2 band structure is adequate, without the need of invoking any treatment of correlation effects. Although many observed features point to a 3D nature of the electronic structure, clear surface effects are revealed. The discussion of the orbital character of the relevant bands crossing the Fermi level sheds light on spin-orbit-coupling-driven phenomena in this material, unveiling a spin-orbit-induced avoided crossing, a property likely to play a key role in its large spin Hall effect.

  8. Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide

    DOE PAGES

    Bondi, Robert J.; Marinella, Matthew J.

    2015-02-28

    First-principles density-functional theory (DFT) calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (V O n; n=0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta 2O 5) and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. V O n of all oxidation states preferentially segregate at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta 2O 5, V O 0 are characterized by structural contractionmore » and electron density localization, while V O 2+ promote structural expansion and are depleted of electron density. In contrast, interfacial V O 0 and V O 2+ show nearly indistinguishable ionic and electronic signatures indicative of a reduced V O center. Interfacial V O 2+ extract electron density from metallic Ta indicating V O 2+ is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.« less

  9. Electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos G.; Capaz, Rodrigo B.

    2015-08-01

    Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired σ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.

  10. Electronic and Structural Properties of Vacancies and Hydrogen Adsorbates on Trilayer Graphene

    NASA Astrophysics Data System (ADS)

    Menezes, Marcos; Capaz, Rodrigo

    2015-03-01

    Using ab initio calculations, we study the electronic and structural properties of vacancies and hydrogen adsorbates on trilayer graphene. Those defects are found to share similar low-energy electronic features, since they both remove a pz electron from the honeycomb lattice and induce a defect level near the Fermi energy. However, a vacancy also leaves unpaired σ electrons on the lattice, which lead to important structural differences and also contribute to magnetism. We explore both ABA and ABC stackings and compare properties such as formation energies, magnetic moments, spin density and the local density of states (LDOS) of the defect levels. These properties show a strong sensitivity to the layer in which the defect is placed and smaller sensitivities to sublattice placing and stacking type. Finally, for the ABC trilayer, we also study how these states behave in the presence of an external electrical field, which opens a tunable gap in the band structure of the non-defective system. The pz defect states show a strong hybridization with band states as the field increases, with reduction and eventually loss of magnetization, and a non-magnetic, midgap-like state is found when the defect is at the middle layer.

  11. Magnetic field effects on the local electronic structure near a single impurity in Graphene

    NASA Astrophysics Data System (ADS)

    Yang, Ling; Zhu, Jian-Xin; Tsai, Shan-Wen

    2011-03-01

    Impurities in graphene can have a significant effect on the local electronic structure of graphene when the Fermi level is near the Dirac point. We study the problem of an isolated impurity in a single layer graphene in the presence of a perpendicular magnetic field. We use a linearization approximation for the energy dispersion and employ a T-matrix formalism to calculate the Green's function. We investigate the effect of an external magnetic field on the Friedel oscillations and impurity-induced resonant states. Different types of impurities, such as vacancies, substitutional impurities, and adatoms, are also considered. LY and SWT acknowledge financial support from NSF(DMR-0847801)and from the UC Lab Fees Research Program.

  12. Electronic properties of excess Cr at Fe site in FeCr{sub 0.02}Se alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Sandeep, E-mail: sandeepk.iitb@gmail.com; Singh, Prabhakar P.

    2015-06-24

    We have studied the effect of substitution of transition-metal chromium (Cr) in excess on Fe sub-lattice in the electronic structure of iron-selenide alloys, FeCr{sub 0.02}Se. In our calculations, we used Korringa-Kohn-Rostoker coherent potential approximation method in the atomic sphere approximation (KKR-ASA-CPA). We obtained different band structure of this alloy with respect to the parent FeSe and this may be reason of changing their superconducting properties. We did unpolarized calculations for FeCr{sub 0.02}Se alloy in terms of density of states (DOS) and Fermi surfaces. The local density approximation (LDA) is used in terms of exchange correlation potential.

  13. Gap structure in Fe-based superconductors with accidental nodes: The role of hybridization

    NASA Astrophysics Data System (ADS)

    Hinojosa, Alberto; Chubukov, Andrey V.

    2015-06-01

    We study the effects of hybridization between the two electron pockets in Fe-based superconductors with s -wave gap with accidental nodes. We argue that hybridization reconstructs the Fermi surfaces and also induces an additional interpocket pairing component. We analyze how these two effects modify the gap structure by tracing the position of the nodal points of the energy dispersions in the superconducting state. We find three possible outcomes. In the first, the nodes simply shift their positions in the Brillouin zone; in the second, the nodes merge and disappear, in which case the gap function has either equal or opposite signs on the electron pockets; in the third, a new set of nodal points emerges, doubling the original number of nodes.

  14. Enhanced thermoelectric power and electronic correlations in RuSe₂

    DOE PAGES

    Wang, Kefeng; Wang, Aifeng; Tomic, A.; ...

    2015-03-03

    We report the electronic structure, electric and thermal transport properties of Ru 1-xIr xSe₂ (x ≤ 0.2). RuSe₂ is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe₂ exceeds -200 μV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru 0.8Ir 0.2Se₂ shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb₂.

  15. Multipurpose end-station for coherent diffraction imaging and scattering at FERMI@Elettra free-electron laser facility.

    PubMed

    Capotondi, Flavio; Pedersoli, Emanuele; Bencivenga, Filippo; Manfredda, Michele; Mahne, Nicola; Raimondi, Lorenzo; Svetina, Cristian; Zangrando, Marco; Demidovich, Alexander; Nikolov, Ivaylo; Danailov, Miltcho; Masciovecchio, Claudio; Kiskinova, Maya

    2015-05-01

    The Diffraction and Projection Imaging (DiProI) beamline at FERMI, the Elettra free-electron laser (FEL), hosts a multi-purpose station that has been opened to users since the end of 2012. This paper describes the core capabilities of the station, designed to make use of the unique features of the FERMI-FEL for performing a wide range of static and dynamic scattering experiments. The various schemes for time-resolved experiments, employing both soft X-ray FEL and seed laser IR radiation are presented by using selected recent results. The ongoing upgrade is adding a reflection geometry setup for scattering experiments, expanding the application fields by providing both high lateral and depth resolution.

  16. On the important role of the anti-Jahn-Teller effect in underdoped cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Kamimura, Hiroshi; Matsuno, Shunichi; Mizokawa, Takashi; Sasaoka, Kenji; Shiraishi, Kenji; Ushio, Hideki

    2013-04-01

    In this paper it is shown that the "anti-Jahn-Teller effect" plays an essential role in giving rise to a small Fermi surface of Fermi pockets above Tc and d-wave superconductivity below Tc in underdoped cuprates. In the first part of the present paper, we review the latest developments of the model proposed by Kamimura and Suwa, which bears important characteristics born from the interplay of Jahn-Teller Physics and Mott Physics. It is shown that the feature of Fermi surfaces in underdoped LSCO is the Fermi pockets in the nodal region constructed by doped holes under the coexistence of a metallic state and of the local antiferromagnetic order. In the antinodal region in the momentum space, there are no Fermi surfaces. Then it is discussed that the phonon-involved mechanism based on the Kamimura-Suwa model leads to the d-wave superconductivity. In particular, it is shown that the origin of strong electron-phonon interactions in cuprates is due to the anti-Jahn-Teller effect. In the second part a recent theoretical result on the energy distribution curves (EDCs) of angle-resolved photoemission spectroscopy (ARPES) below Tc is discussed. It is shown that the feature of ARPES profiles of underdoped cuprates consists of a coherent peak in the nodal region and the real transitions of photoexcited electrons from occupied states below the Fermi level to a free-electron state above the vacuum level in the antinodal region, where the latter transitions form a broad hump. From this feature, the origin of the two distinct gaps observed by ARPES is elucidated without introducing the concept of the pseudogap. Finally, a remark is made on the phase diagram of underdoped cuprates.

  17. Spin-split fermi surfaces in CexLa1-xB6 and PrxLa1-xB6

    NASA Astrophysics Data System (ADS)

    Isshiki, T.; Endo, M.; Sugi, M.; Kimura, N.; Nakamura, S.; Nojima, T.; Aoki, H.; Kunii, S.

    2006-05-01

    We have performed the dHvA measurements on CexLa1-xB6 and PrxLa1-xB6 compounds to study spin splitting of the Fermi surfaces. In PrB 6 we have found new frequency branches to confirm that the Fermi surface splits into up and down spin Fermi surfaces, whereas no spin splitting has been found for x=0.25,0.5,0.75. We have also found several new frequency branches in CeB6. The new frequency branches imply that the Fermi surfaces of up and down spin conduction electrons are significantly different in CeB6 as well as in PrB6.

  18. Superconductivity in Bismuth. A New Look at an Old Problem.

    PubMed

    Mata-Pinzón, Zaahel; Valladares, Ariel A; Valladares, Renela M; Valladares, Alexander

    2016-01-01

    To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216) was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively) show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi) as indicated by the λ obtained via McMillan's formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy.

  19. A Modified Monte Carlo Method for Carrier Transport in Germanium, Free of Isotropic Rates

    NASA Astrophysics Data System (ADS)

    Sundqvist, Kyle

    2010-03-01

    We present a new method for carrier transport simulation, relevant for high-purity germanium < 100 > at a temperature of 40 mK. In this system, the scattering of electrons and holes is dominated by spontaneous phonon emission. Free carriers are always out of equilibrium with the lattice. We must also properly account for directional effects due to band structure, but there are many cautions in the literature about treating germanium in particular. These objections arise because the germanium electron system is anisotropic to an extreme degree, while standard Monte Carlo algorithms maintain a reliance on isotropic, integrated rates. We re-examine Fermi's Golden Rule to produce a Monte Carlo method free of isotropic rates. Traditional Monte Carlo codes implement particle scattering based on an isotropically averaged rate, followed by a separate selection of the particle's final state via a momentum-dependent probability. In our method, the kernel of Fermi's Golden Rule produces analytical, bivariate rates which allow for the simultaneous choice of scatter and final state selection. Energy and momentum are automatically conserved. We compare our results to experimental data.

  20. Exotic ferromagnetism in the two-dimensional quantum material C3N

    NASA Astrophysics Data System (ADS)

    Huang, Wen-Cheng; Li, Wei; Liu, Xiaosong

    2018-04-01

    The search for and study of exotic quantum states in novel low-dimensional quantum materials have triggered extensive research in recent years. Here, we systematically study the electronic and magnetic structures in the newly discovered two-dimensional quantum material C3N within the framework of density functional theory. The calculations demonstrate that C3N is an indirect-band semiconductor with an energy gap of 0.38 eV, which is in good agreement with experimental observations. Interestingly, we find van Hove singularities located at energies near the Fermi level, which is half that of graphene. Thus, the Fermi energy easily approaches that of the singularities, driving the system to ferromagnetism, under charge carrier injection, such as electric field gating or hydrogen doping. These findings not only demonstrate that the emergence of magnetism stems from the itinerant electron mechanism rather than the effects of local magnetic impurities, but also open a new avenue to designing field-effect transistor devices for possible realization of an insulator-ferromagnet transition by tuning an external electric field.

  1. Superconductivity in Bismuth. A New Look at an Old Problem

    PubMed Central

    2016-01-01

    To investigate the relationship between atomic topology, vibrational and electronic properties and superconductivity of bismuth, a 216-atom amorphous structure (a-Bi216) was computer-generated using our undermelt-quench approach. Its pair distribution function compares well with experiment. The calculated electronic and vibrational densities of states (eDOS and vDOS, respectively) show that the amorphous eDOS is about 4 times the crystalline at the Fermi energy, whereas for the vDOS the energy range of the amorphous is roughly the same as the crystalline but the shapes are quite different. A simple BCS estimate of the possible crystalline superconducting transition temperature gives an upper limit of 1.3 mK. The e-ph coupling is more preponderant in a-Bi than in crystalline bismuth (x-Bi) as indicated by the λ obtained via McMillan’s formula, λc = 0.24 and experiment λa = 2.46. Therefore with respect to x-Bi, superconductivity in a-Bi is enhanced by the higher values of λ and of eDOS at the Fermi energy. PMID:26815431

  2. Exchange enhancement of the electron g-factor in a two-dimensional semimetal in HgTe quantum wells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovkun, L. S., E-mail: bovkun@ipmras.ru; Krishtopenko, S. S.; Zholudev, M. S.

    The exchange enhancement of the electron g-factor in perpendicular magnetic fields to 12 T in HgTe/CdHgTe quantum wells 20 nm wide with a semimetal band structure is studied. The electron effective mass and g-factor at the Fermi level are determined by analyzing the temperature dependence of the amplitude of Shubnikov–de Haas oscillation in weak fields and near odd Landau-level filling factors ν ≤ 9. The experimental values are compared with theoretical calculations performed in the one-electron approximation using the eight-band kp Hamiltonian. The found dependence of g-factor enhancement on the electron concentration is explained by changes in the contributions ofmore » hole- and electron-like states to exchange corrections to the Landau-level energies in the conduction band.« less

  3. Atomically precise lateral modulation of a two-dimensional electron liquid in anatase TiO 2 thin films

    DOE PAGES

    Wang, Zhiming; Zhong, Z.; Walker, S. McKeown; ...

    2017-03-10

    Engineering the electronic band structure of two-dimensional electron liquids (2DELs) confined at the surface or interface of transition metal oxides is key to unlocking their full potential. Here we describe a new approach to tailoring the electronic structure of an oxide surface 2DEL demonstrating the lateral modulation of electronic states with atomic scale precision on an unprecedented length scale comparable to the Fermi wavelength. To this end, we use pulsed laser deposition to grow anatase TiO 2 films terminated by a (1 x 4) in-plane surface reconstruction. Employing photo-stimulated chemical surface doping we induce 2DELs with tunable carrier densities thatmore » are confined within a few TiO 2 layers below the surface. Subsequent in situ angle resolved photoemission experiments demonstrate that the (1 x 4) surface reconstruction provides a periodic lateral perturbation of the electron liquid. Furthermore, this causes strong backfolding of the electronic bands, opening of unidirectional gaps and a saddle point singularity in the density of states near the chemical potential.« less

  4. Self-consistent average-atom scheme for electronic structure of hot and dense plasmas of mixture.

    PubMed

    Yuan, Jianmin

    2002-10-01

    An average-atom model is proposed to treat the electronic structures of hot and dense plasmas of mixture. It is assumed that the electron density consists of two parts. The first one is a uniform distribution with a constant value, which is equal to the electron density at the boundaries between the atoms. The second one is the total electron density minus the first constant distribution. The volume of each kind of atom is proportional to the sum of the charges of the second electron part and of the nucleus within each atomic sphere. By this way, one can make sure that electrical neutrality is satisfied within each atomic sphere. Because the integration of the electron charge within each atom needs the size of that atom in advance, the calculation is carried out in a usual self-consistent way. The occupation numbers of electron on the orbitals of each kind of atom are determined by the Fermi-Dirac distribution with the same chemical potential for all kinds of atoms. The wave functions and the orbital energies are calculated with the Dirac-Slater equations. As examples, the electronic structures of the mixture of Au and Cd, water (H2O), and CO2 at a few temperatures and densities are presented.

  5. CePt2In7: Shubnikov-de Haas measurements on micro-structured samples under high pressures

    NASA Astrophysics Data System (ADS)

    Kanter, J.; Moll, P.; Friedemann, S.; Alireza, P.; Sutherland, M.; Goh, S.; Ronning, F.; Bauer, E. D.; Batlogg, B.

    2014-03-01

    CePt2In7 belongs to the CemMnIn3 m + 2 n heavy fermion family, but compared to the Ce MIn5 members of this group, exhibits a more two dimensional electronic structure. At zero pressure the ground state is antiferromagnetically ordered. Under pressure the antiferromagnetic order is suppressed and a superconducting phase is induced, with a maximum Tc above a quantum critical point around 31 kbar. To investigate the changes in the Fermi Surface and effective electron masses around the quantum critical point, Shubnikov-de Haas measurements were conducted under high pressures in an anvil cell. The samples were micro-structured and contacted using a Focused Ion Beam (FIB). The Focused Ion Beam enables sample contacting and structuring down to a sub-micrometer scale, making the measurement of several samples with complex shapes and multiple contacts on a single anvil feasible.

  6. Physical properties and electronic structure of a new barium titanate suboxide Ba 1+δTi 13-δO₁₂ (δ = 0.11)

    DOE PAGES

    Rotundu, Costel R.; Jiang, Shan; Deng, Xiaoyu; ...

    2015-04-01

    The structure, transport, thermodynamic properties, x-ray absorption spectra (XAS), and electronic structure of a new barium titanate suboxide, Ba 1+δTi 13-δO₁₂ (δ = 0.11), are reported. It is a paramagnetic poor metal with hole carriers dominating the transport. Fermi liquid behavior appears at low temperature. The oxidization state of Ti obtained by the XAS is consistent with the metallic Ti²⁺ state. Local density approximation band structure calculations reveal the material is near the Van Hove singularity. The pseudogap behavior in the Ti-d band and the strong hybridization between the Ti-d and O-p orbitals reflect the characteristics of the building blocksmore » of the Ti₁₃ semi-cluster and the TiO₄ quasi-squares, respectively.« less

  7. Unconventional superconductivity in magic-angle graphene superlattices.

    PubMed

    Cao, Yuan; Fatemi, Valla; Fang, Shiang; Watanabe, Kenji; Taniguchi, Takashi; Kaxiras, Efthimios; Jarillo-Herrero, Pablo

    2018-04-05

    The behaviour of strongly correlated materials, and in particular unconventional superconductors, has been studied extensively for decades, but is still not well understood. This lack of theoretical understanding has motivated the development of experimental techniques for studying such behaviour, such as using ultracold atom lattices to simulate quantum materials. Here we report the realization of intrinsic unconventional superconductivity-which cannot be explained by weak electron-phonon interactions-in a two-dimensional superlattice created by stacking two sheets of graphene that are twisted relative to each other by a small angle. For twist angles of about 1.1°-the first 'magic' angle-the electronic band structure of this 'twisted bilayer graphene' exhibits flat bands near zero Fermi energy, resulting in correlated insulating states at half-filling. Upon electrostatic doping of the material away from these correlated insulating states, we observe tunable zero-resistance states with a critical temperature of up to 1.7 kelvin. The temperature-carrier-density phase diagram of twisted bilayer graphene is similar to that of copper oxides (or cuprates), and includes dome-shaped regions that correspond to superconductivity. Moreover, quantum oscillations in the longitudinal resistance of the material indicate the presence of small Fermi surfaces near the correlated insulating states, in analogy with underdoped cuprates. The relatively high superconducting critical temperature of twisted bilayer graphene, given such a small Fermi surface (which corresponds to a carrier density of about 10 11 per square centimetre), puts it among the superconductors with the strongest pairing strength between electrons. Twisted bilayer graphene is a precisely tunable, purely carbon-based, two-dimensional superconductor. It is therefore an ideal material for investigations of strongly correlated phenomena, which could lead to insights into the physics of high-critical-temperature superconductors and quantum spin liquids.

  8. Effect of Al-doped YCrO3 on structural, electronic and magnetic properties

    NASA Astrophysics Data System (ADS)

    Durán, A.; Verdín, E.; Conde, A.; Escamilla, R.

    2018-05-01

    Structural, dielectric and magnetic properties were investigated in the YCr1-xAlxO3 with 0 < x < 0.5 compositions. XRD and XPS studies show that the partial substitution of the Al3+ ion decreases the cell volume of the orthorhombic structure without changes in the oxidation state of the Cr3+ ions. We discuss two mechanisms that could have a significant influence on the magnetic properties. The first is related to local deformation occurring for x < 0.1 of Al content and the second is related to change of the electronic structure. The local deformation is controlled by the inclination of the octahedrons and the octahedral distortion having a strong effect on the TN and the coercive field at low Al concentrations. On the other hand, the decreasing of the magnetization values (Mr and Hc) is ascribed to changes in the electronic structure, which is confirmed by a decreasing of the contribution of Cr 3d states at Fermi level due to increasing Al3+ content. Thus, we analyzed and discussed that both mechanisms influence the electronic properties of the YCr1-xAlxO3 solid solution.

  9. Non-Fermi liquids in oxide heterostructures

    NASA Astrophysics Data System (ADS)

    Stemmer, Susanne; Allen, S. James

    2018-06-01

    Understanding the anomalous transport properties of strongly correlated materials is one of the most formidable challenges in condensed matter physics. For example, one encounters metal-insulator transitions, deviations from Landau Fermi liquid behavior, longitudinal and Hall scattering rate separation, a pseudogap phase, and bad metal behavior. These properties have been studied extensively in bulk materials, such as the unconventional superconductors and heavy fermion systems. Oxide heterostructures have recently emerged as new platforms to probe, control, and understand strong correlation phenomena. This article focuses on unconventional transport phenomena in oxide thin film systems. We use specific systems as examples, namely charge carriers in SrTiO3 layers and interfaces with SrTiO3, and strained rare earth nickelate thin films. While doped SrTiO3 layers appear to be a well behaved, though complex, electron gas or Fermi liquid, the rare earth nickelates are a highly correlated electron system that may be classified as a non-Fermi liquid. We discuss insights into the underlying physics that can be gained from studying the emergence of non-Fermi liquid behavior as a function of the heterostructure parameters. We also discuss the role of lattice symmetry and disorder in phenomena such as metal-insulator transitions in strongly correlated heterostructures.

  10. Quadratic Fermi node in a 3D strongly correlated semimetal

    PubMed Central

    Kondo, Takeshi; Nakayama, M.; Chen, R.; Ishikawa, J. J.; Moon, E.-G.; Yamamoto, T.; Ota, Y.; Malaeb, W.; Kanai, H.; Nakashima, Y.; Ishida, Y.; Yoshida, R.; Yamamoto, H.; Matsunami, M.; Kimura, S.; Inami, N.; Ono, K.; Kumigashira, H.; Nakatsuji, S.; Balents, L.; Shin, S.

    2015-01-01

    Strong spin–orbit coupling fosters exotic electronic states such as topological insulators and superconductors, but the combination of strong spin–orbit and strong electron–electron interactions is just beginning to be understood. Central to this emerging area are the 5d transition metal iridium oxides. Here, in the pyrochlore iridate Pr2Ir2O7, we identify a non-trivial state with a single-point Fermi node protected by cubic and time-reversal symmetries, using a combination of angle-resolved photoemission spectroscopy and first-principles calculations. Owing to its quadratic dispersion, the unique coincidence of four degenerate states at the Fermi energy, and strong Coulomb interactions, non-Fermi liquid behaviour is predicted, for which we observe some evidence. Our discovery implies that Pr2Ir2O7 is a parent state that can be manipulated to produce other strongly correlated topological phases, such as topological Mott insulator, Weyl semimetal, and quantum spin and anomalous Hall states. PMID:26640114

  11. Pairing in a dry Fermi sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier, Thomas A.; Staar, Peter; Mishra, V.

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  12. Pairing in a dry Fermi sea

    DOE PAGES

    Maier, Thomas A.; Staar, Peter; Mishra, V.; ...

    2016-06-17

    In the traditional Bardeen–Cooper–Schrieffer theory of superconductivity, the amplitude for the propagation of a pair of electrons with momentum k and -k has a log singularity as the temperature decreases. This so-called Cooper instability arises from the presence of an electron Fermi sea. It means that an attractive interaction, no matter how weak, will eventually lead to a pairing instability. However, in the pseudogap regime of the cuprate superconductors, where parts of the Fermi surface are destroyed, this log singularity is suppressed, raising the question of how pairing occurs in the absence of a Fermi sea. In this paper, wemore » report Hubbard model numerical results and the analysis of angular-resolved photoemission experiments on a cuprate superconductor. Finally, in contrast to the traditional theory, we find that in the pseudogap regime the pairing instability arises from an increase in the strength of the spin–fluctuation pairing interaction as the temperature decreases rather than the Cooper log instability.« less

  13. Shubnikov-de Haas quantum oscillations reveal a reconstructed Fermi surface near optimal doping in a thin film of the cuprate superconductor Pr 1.86 Ce 0.14 CuO 4 ± δ

    DOE PAGES

    Breznay, Nicholas P.; Hayes, Ian M.; Ramshaw, B. J.; ...

    2016-09-16

    In this work, we study magnetotransport properties of the electron-doped superconductor Pr 2-xCe xCuO 4±δ with x = 0.14 in magnetic fields up to 92 T, and observe Shubnikov-de Haas magnetic quantum oscillations. The oscillations display a single frequency F = 255 ± 10 T, indicating a small Fermi pocket that is ~1 % of the two-dimensional Brillouin zone and consistent with a Fermi surface reconstructed from the large holelike cylinder predicted for these layered materials. Despite the low nominal doping, all electronic properties including the effective mass and Hall effect are consistent with overdoped compounds. In conclusion, our studymore » demonstrates that the exceptional chemical control afforded by high quality thin films will enable Fermi surface studies deep into the overdoped cuprate phase diagram.« less

  14. Carrier density independent scattering rate in SrTiO3-based electron liquids

    PubMed Central

    Mikheev, Evgeny; Raghavan, Santosh; Zhang, Jack Y.; Marshall, Patrick B.; Kajdos, Adam P.; Balents, Leon; Stemmer, Susanne

    2016-01-01

    We examine the carrier density dependence of the scattering rate in two- and three-dimensional electron liquids in SrTiO3 in the regime where it scales with Tn (T is the temperature and n ≤ 2) in the cases when it is varied by electrostatic control and chemical doping, respectively. It is shown that the scattering rate is independent of the carrier density. This is contrary to the expectations from Landau Fermi liquid theory, where the scattering rate scales inversely with the Fermi energy (EF). We discuss that the behavior is very similar to systems traditionally identified as non-Fermi liquids (n < 2). This includes the cuprates and other transition metal oxide perovskites, where strikingly similar density-independent scattering rates have been observed. The results indicate that the applicability of Fermi liquid theory should be questioned for a much broader range of correlated materials and point to the need for a unified theory. PMID:26861764

  15. On the Crossover from Classical to Fermi Liquid Behavior in Dense Plasmas

    NASA Astrophysics Data System (ADS)

    Daligault, Jerome

    2017-10-01

    We explore the crossover from classical plasma to quantum Fermi liquid behavior of electrons in dense plasmas. To this end, we analyze the evolution with density and temperature of the momentum lifetime of a test electron introduced in a dense electron gas. This allows us 1) to determine the boundaries of the crossover region in the temperature-density plane and to shed light on the evolution of scattering properties across it, 2) to quantify the role of the fermionic nature of electrons on electronic collisions across the crossover region, and 3) to explain how the concept of Coulomb logarithm emerges at high enough temperature but disappears at low enough temperature. Work supported by LDRD Grant No. 20170490ER.

  16. Effects of Ga substitution on the structural and magnetic properties of half metallic Fe2MnSi Heusler compound

    NASA Astrophysics Data System (ADS)

    Pedro, S. S.; Caraballo Vivas, R. J.; Andrade, V. M.; Cruz, C.; Paixão, L. S.; Contreras, C.; Costa-Soares, T.; Caldeira, L.; Coelho, A. A.; Carvalho, A. Magnus G.; Rocco, D. L.; Reis, M. S.

    2015-01-01

    The so-called half-metallic magnets have been proposed as good candidates for spintronic applications due to the feature of exhibiting a hundred percent spin polarization at the Fermi level. Such materials follow the Slater-Pauling rule, which relates the magnetic moment with the valence electrons in the system. In this paper, we study the bulk polycrystalline half-metallic Fe2MnSi Heusler compound replacing Si by Ga to determine how the Ga addition changes the magnetic, the structural, and the half-metal properties of this compound. The material does not follow the Slater-Pauling rule, probably due to a minor structural disorder degree in the system, but a linear dependence on the magnetic transition temperature with the valence electron number points to the half-metallic behavior of this compound.

  17. Electronic structures of 1-ML C84/Ag(111): Energy level alignment and work function variation

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhao, Li-Li; Zhang, Jin-Juan; Li, Wen-Jie; Liu, Wei-Hui; Chen, Da; Sheng, Chun-Qi; Wang, Jia-Ou; Qian, Hai-Jie; Ibrahim, Kurash; Li, Hong-Nian

    2017-12-01

    The electronic structures of fullerene/metal interface are critical to the performance of devices based on fullerene in molecular electronics and organic electronics. Herein, we investigate the electronic structures at the interface between C84 and Ag(111) by photoelectron spectroscopy and soft X-ray absorption spectroscopy techniques. It is observed that C84 monolayer on Ag(111) surface (1-ML C84/Ag(111)) has metallic nature. A charge transfer from substrate to the unoccupied states of C84 is determined to be 1.3 electrons per molecule. However, the work function of 1-ML C84 (4.72 eV) is observed slightly larger than that of the clean Ag(111) substrate (4.50 eV). A bidirectional charge transfer model is introduced to understand the work function variation of the fullerene/metal system. In addition to the charge transfer from substrate to the adsorbate's unoccupied states, there exists non-negligible back charge transfer from fullerene occupied molecular orbital to the metal substrate through interfacial hybridization. The Fermi level will be pinned at ∼4.72 eV for C84 monolayer on coinage metal substrate.

  18. Contactless electroreflectance study of the Fermi level pinning on GaSb surface in n-type and p-type GaSb Van Hoof structures

    NASA Astrophysics Data System (ADS)

    Kudrawiec, R.; Nair, H. P.; Latkowska, M.; Misiewicz, J.; Bank, S. R.; Walukiewicz, W.

    2012-12-01

    Contactless electroreflectance (CER) has been applied to study the Fermi-level position on GaSb surface in n-type and p-type GaSb Van Hoof structures. CER resonances, followed by strong Franz-Keldysh oscillation of various periods, were clearly observed for two series of structures. This period was much wider (i.e., the built-in electric field was much larger) for n-type structures, indicating that the GaSb surface Fermi level pinning position is closer to the valence-band than the conduction-band. From analysis of the built-in electric fields in undoped GaSb layers, it was concluded that on GaSb surface the Fermi-level is located ˜0.2 eV above the valence band.

  19. Fermi Sees the Gamma Ray Sky

    NASA Image and Video Library

    2009-10-30

    This view of the gamma-ray sky constructed from one year of Fermi LAT observations is the best view of the extreme universe to date. The map shows the rate at which the LAT detects gamma rays with energies above 300 million electron volts -- about 120 million times the energy of visible light -- from different sky directions. Brighter colors equal higher rates. Credit: NASA/DOE/Fermi LAT Collaboration Full story: www.nasa.gov/mission_pages/GLAST/news/first_year.html

  20. Electronic structure of a laterally graded ZrO2-TiO2 film on Si(100) prepared by metal-organic chemical vapor deposition in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Richter, J. H.; Karlsson, P. G.; Sandell, A.

    2008-05-01

    A TiO2-ZrO2 film with laterally graded stoichiometry has been prepared by metal-organic chemical vapor deposition in ultrahigh vacuum. The film was characterized in situ using synchrotron radiation photoelectron spectroscopy (PES) and x-ray absorption spectroscopy. PES depth profiling clearly shows that Ti ions segregate toward the surface region when mixed with ZrO2. The binding energy of the ZrO2 electronic levels is constant with respect to the local vacuum level. The binding energy of the TiO2 electronic levels is aligned to the Fermi level down to a Ti /Zr ratio of about 0.5. At a Ti /Zr ratio between 0.1 and 0.5, the TiO2 related electronic levels become aligned to the local vacuum level. The addition of small amounts of TiO2 to ZrO2 results in a ZrO2 band alignment relative to the Fermi level that is less asymmetric than for pure ZrO2. The band edge positions shift by -0.6eV for a Ti /Zr ratio of 0.03. This is explained in terms of an increase in the work function when adding TiO2, an effect that becomes emphasized by Ti surface segregation.

Top