Science.gov

Sample records for electronic structure spectral-luminescent

  1. Structure and spectral-luminescent properties of polymethine dyes

    NASA Astrophysics Data System (ADS)

    Ishchenko, Aleksandr A.

    1991-08-01

    The review considers the influence of the length of the polymethine chain, the structures of the hetero-radicals, the nature of substituents, electronic asymmetry, interactions of chromophores, structures of ion-pairs, photochemical reactions with proton transfer, and concentration, on the spectral-luminescent properties of polymethine dyes. The characteristic features of these properties in low-polarity media, including polymeric matrices, are discussed. Solvatochromism and solvatofluorochromism of polymethines are considered. Major factors influencing changes in the spectral-luminescent properties of cyanines, in relation to their structure and the nature of the medium, are revealed. Possible applications of polymethines to the solution of various problems connected with the transformation of light energy are discussed. The bibliography includes 231 references.

  2. Structural, spectral-luminescent, and lasing properties of nanostructured Tm : CaF{sub 2} ceramics

    SciTech Connect

    Ryabochkina, P A; Lyapin, A A; Osiko, Vyacheslav V; Fedorov, Pavel P; Ushakov, S N; Kruglova, M V; Sakharov, N V; Garibin, E A; Gusev, P E; Krutov, M A

    2012-09-30

    The structure and the spectral-luminescent properties of CaF{sub 2} - TmF{sub 3} fluoride ceramics and single crystals are studied. AFM investigations revealed a layered nanostructure of grains, which was not observed in reference samples of single crystals. It is found that the spectral-luminescent properties of CaF{sub 2} - TmF{sub 3} ceramics and single crystals are similar. Lasing at the {sup 3}F{sub 4} {yields} {sup 3}H{sub 6} transition of Tm{sup 3+} ions in CaF{sub 2} - TmF{sub 3} ceramics (wavelength 1898 nm) under diode pimping is obtained for the first time. (laser applications and other topics in quantum electronics)

  3. The influence of structural factors on the composition, spectral-luminescent properties and thermal stability of zinc(II) bis(dipyrromethenate)s crystal solvates with amines

    NASA Astrophysics Data System (ADS)

    Guseva, G. B.; Ksenofontov, A. A.; Antina, E. V.

    2017-02-01

    It was found that 3,3‧-, 2,3‧- and 2,2‧-zinc(II) bis(dipyrromethenate)s ([Zn2L2]) form stable supramolecular complexes with aromatic and aliphatic amines (X - pyridine (Py), N,N-dimethylmethanamide (DMF), diethylamine (DEA) and triethylamine (TEA)) of the composition [Zn2L2(X)n]. Composition, stability and spectral-luminescent properties of the [Zn2L2(X)n] crystal solvates were studied by means of FTIR, PXRD, thermal, mass spectral, absorption, and fluorescence analyses. Spectroscopic studies showed that the quantum yield (φ) of [Zn2L2(Х)n] in cyclohexane is much lower (to ∼ 1.4-4.0 times) than φ for the [Zn2L2]. Crystal solvates are stable up to a temperature ∼367.35-427.55 K. It is demonstrated, that the high interactions energies (Znsbnd N) in [Zn2L2(X)n] supramolecular complexes are the main cause of the fluorescence quenching of [Zn2L2] luminophores in the presence of electron-donor molecules. The obtained results are of interest for the development on the basis of [Zn2L2] of a new fluorescent sensors of the electron donor molecules.

  4. Spectral luminescence analysis of amniotic fluid

    NASA Astrophysics Data System (ADS)

    Slobozhanina, Ekaterina I.; Kozlova, Nataly M.; Kasko, Leonid P.; Mamontova, Marina V.; Chernitsky, Eugene A.

    1997-12-01

    It is shown that the amniotic fluid has intensive ultra-violet luminescence caused by proteins. Along with it amniotic fluid radiated in the field of 380 - 650 nm with maxima at 430 - 450 nm and 520 - 560 nm. The first peak of luminescence ((lambda) exc equals 350 nm; (lambda) em equals 430 - 440 nm) is caused (most probably) by the presence in amniotic fluid of some hormones, NADH2 and NADPH2. A more long-wave component ((lambda) exc equals 460 nm; (lambda) em equals 520 - 560 nm) is most likely connected with the presence in amniotic fluid pigments (bilirubin connected with protein and other). It is shown that intensity and maximum of ultra-violet luminescence spectra of amniotic fluid in normality and at pathology are identical. However both emission spectra and excitation spectra of long-wave ((lambda) greater than 450 nm) luminescence of amniotic fluid from pregnant women with such prenatal abnormal developments of a fetus as anencephaly and spina bifida are too long-wave region in comparison with the norm. Results of research testify that spectral luminescent analysis of amniotic fluid can be used for screening of malformations of the neural tube. It is very difficult for a practical obstetrician to reveal pregnant women with a high risk of congenital malformations of the fetus. Apart from ultrasonic examination, cytogenetic examination of amniotic fluid and defumination of concentrations of alpha-fetoprotein and acetylcholin-esterases in the amniotic fluid and blood plasma are the most widely used diagnostic approaches. However, biochemical and cytogenetic diagnostic methods are time-consuming. In the present work spectral luminescence properties of the amniotic fluid are investigated to determine spectral parameters that can be used to reveal pregnant women with a high risk of congenital malformations of their offsprings.

  5. Spectral-luminescent and lasing properties of pyridylaryloxazoles

    SciTech Connect

    Alekseeva, V.I.

    1986-09-01

    This paper studies the spectral-luminescent and lasing properties of several new 2-(4-pyridyl)-5-aryloxazoles with a varying substituent in the 5-phenyl radical, and their quarternary salts (II). The spectral-luminescent properties of the compounds synthesized were investigated by using a SF-4A spectrophotometer and a fluorescent apparatus based on a ZMR-3 monochromator with photoelectric recording. The absolute fluorescence quantum yields were determined by the equal absorption method. The absorption spectra of compounds I in 96% ethanol are not different in their character from an absorption spectrum of unsubstituted 2,5-diphenyloxazole (PPO). It is shown that the compounds studied are prospective for lasing emission in the 16,130-20,410 cm/sup -1/ region.

  6. Spectral-luminescent study of the interaction of some styrylcyanine dyes with bovine serum albumin and DNA in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Nizomov, Negmat; Kurtaliev, Eldar N.; Nizamov, Shawkat N.; Khodjayev, Gayrat

    2009-11-01

    Spectral-luminescent characteristics of the several new styrylcyanine dyes, synthesized on the base of F dye ((E)-4-(4-(dimethylamino)styryl)-1-methylpyridinium iodide), were studied in aqueous solutions in the presence and absence of bovine serum albumin and deoxyribonucleic acid. It was shown, that with the rise of concentration of bovine serum albumin and deoxyribonucleic acid in aqueous solution, the bathochromic shift of electronic absorption spectra band and sharp intensity increase of fluorescence band intensity are observed for studied dyes, while the shape of absorption and fluorescence bands remains intact. Biophysical parameters (the binding constant and quantity of the binding sites) of interaction of studied dyes with BSA and DNA were determined. It is shown, that homodimer styrylcyanine dyes with a pentyl - or longer linking chain have larger binding affinity to specified biomolecules than dyes with shorter link-chain.

  7. The change of the spectral-luminescent properties of coumarin-7 and coumarin-30 upon protonation

    NASA Astrophysics Data System (ADS)

    Nikolaeva, M. V.; Puzyk, M. V.

    2017-04-01

    The influence of perchloric acid on the spectral-luminescent characteristics of coumarin-7 and coumarin-30 in acetonitrile and ethanol is studied. A probable mechanism and methods of controlling the protonation of nitrogen atoms of the phenylimidazole fragment are discussed.

  8. Research in the field of 2,4,5-triarylimidazoles. communication 3. spectral-luminescence properties of 1,4-bis(4,5-diphenyl-1H-imidazol-2-yl)benzene

    SciTech Connect

    Marevstev, V.S.; Cherkashin, M.I.; Khamchukov, Y.D.; Luchina, V.G.; Shienok, A.I.

    1986-01-10

    The authors continue their investigation of triarylimidazoles and their derivatives, which show promise for use in formulating photosensitive materials. In order to establish the photophysical and photochemical mechanisms of reactions taking place in these systems under the influence of light, the authors interpret the electronic absorption and emission spectra of the original molecules. The authors report on a study of the spectral-luminescence properties of 1,4-bis(4,5-diphenyl-1H-imidazol-2-yl) benzene which takes part in the process of photobleaching of solutions of 1,4-bis(4,5-diphenyl-2h-imidazol-2-ylidene) 2,5-cyclohexadiene.

  9. Spectral-luminescence characteristics of lead sulfide molecular clusters and quantum dots in fluorophosphate glasses

    NASA Astrophysics Data System (ADS)

    Lipatova, Zh. O.; Kolobkova, E. V.; Nikonorov, N. V.

    2015-12-01

    PbS molecular clusters and quantum dots (QDs) have been formed by heat treatment in fluorophosphate glasses of the Na2O3-P2O5-Ga2O3-ALF3-ZnO(S)-PbF2 system, and their spectral-luminescence characteristics have been investigated. It is experimentally shown that the transition from molecular clusters to QDs is accompanied by a stepwise change in the spectrum and luminescence quantum yield. Molecular PbS clusters luminesce in the visible spectral range (1.5-3.5 eV) and QDs luminesce in the IR region (0.6-1.4 eV). The luminescence of molecular PbS clusters is characterized by low quantum yield, which decreases from 10 to 1% with an increase in excitation energy. An increase in nanoparticle size leads to a decrease in the Stokes shift from 80 to 50 meV. The QD luminescence spectrum contains two bands, which are due to transitions from two lower excited states.

  10. Electron Structure of Francium

    NASA Astrophysics Data System (ADS)

    Koufos, Alexander

    2012-02-01

    This talk presents the first calculations of the electronic structure of francium for the bcc, fcc and hcp structures, using the Augmented Plane Wave (APW) method in its muffin-tin and linearized general potential forms. Both the Local Density Approximation (LDA) and Generalized Gradient Approximation (GGA), were used to calculate the electronic structure and total energy of francium (Fr). The GGA and LDA both found the total energy of the hcp structure slightly below that of the fcc and bcc structure, respectively. This is in agreement with similar results for the other alkali metals using the same methodology. The equilibrium lattice constant, bulk modulus and superconductivity parameters were calculated. We found that under pressures, in the range of 1-5 GPa, Fr could be a superconductor at a critical temperature of about 4K.

  11. Investigation of the spectral-luminescent properties of the threonine molecule

    NASA Astrophysics Data System (ADS)

    Migovich, M. I.; Kel'man, V. A.

    2016-07-01

    We have investigated the laser-excited photoluminescence spectra of powder and aqueous solution threonine. The spectral ranges of the photoluminescence and its intensity maxima have been determined. We have measured the spectral dependence of the molar extinction coefficient of an aqueous solution of threonine. Using quantum-chemical methods, we have calculated the electron absorption spectrum, the dipole moment, and the distributions of charges on individual atoms of the threonine molecule. The calculated electron absorption spectrum has been compared with experiment.

  12. Spectral-luminescent study of the porphyrin-diketones and their complexes

    NASA Astrophysics Data System (ADS)

    Papkovsky, Dmitri B.; Ponomarev, Gelii V.

    2001-08-01

    Syntheses of octaethylporphine-diketone (OEPDK) and its platinum(II) and palladium(II) complexes (PtOEPDK, PdOEPDK) were optimized, and the dyes were isolated in a pure form in preparative quantities. They were characterized by the NMR, UV-VIS absorption and emission spectroscopy. Electronic spectra of these dyes (absorption and luminescence) were investigated in detail, and compared to corresponding porphyrins and porphyrin-monoketones. OEPDK showed a strong fluorescence at about 700 nm, while PtOEPDK and PdOEPDK showed very weak room-temperature phosphorescence in the region of 850-1100 nm and practically no fluorescence. Protonation mechanisms were studied for these dyes. Protonation at sites other than pyrrole nitrogen atoms was shown to occur, corresponding protomeric spectral forms are presented. The possibilities of the use of porphyrin-diketones as longwave fluorescent and phosphorescent probes are discussed.

  13. Spectral-luminescent and photochemical characteristics of homodimers of the styrylcyanine dye Sbt in solutions.

    PubMed

    Kurtaliev, Eldar N

    2011-10-15

    The influence of concentration, solvent nature on the intermolecular interaction and its spectroscopic manifestations in solutions of styrylcyanine dye Sbt ((E)-2-(4-(dimethylamino)styryl)-3-methylbenzo[d]thiazol-3-ium iodide) and its homodimers, i.e. dyes with two interconnected chromophores, was studied. It was found out that, depending on the concentration, the structure of dye molecules, the nature of the solvent various forms of associated molecules are forms; each of these forms is manifested in the spectra of absorption and fluorescence in its own way. It is shown that the intensity of the main absorption band of the studied dyes in aqueous solutions and in a mixture of water+ethanol decreases in the process of light irradiation and a new band is observed in the region of shorter wavelengths; the intensity of the new band increases with increase of radiation exposure of solutions.

  14. Spectral-luminescent properties of silver molecular clusters and nanoparticles formed by ion exchange in antimony-doped photo-thermo-refractive glasses

    NASA Astrophysics Data System (ADS)

    Sgibnev, E. M.; Nikonorov, N. V.; Ignat'ev, A. I.

    2017-01-01

    The formation of silver molecular clusters and nanoparticles in photo-thermo-refractive (PTR) glasses with different antimony contents has been investigated using ion exchange with subsequent thermal treatment. The influence of the antimony oxide (Sb2O3) concentration and treatment temperature on the spectral-luminescent properties of silver molecular clusters and nanoparticles in glass has been investigated. It is shown that silver molecular clusters in PTR glasses are characterized by strong broadband luminescence in the visible and near-IR ranges and that the formation of silver nanoparticles leads to luminescence quenching.

  15. Electronic structures of porous nanocarbons

    PubMed Central

    Baskin, Artem; Král, Petr

    2011-01-01

    We use large scale ab-initio calculations to describe electronic structures of graphene, graphene nanoribbons, and carbon nanotubes periodically perforated with nanopores. We disclose common features of these systems and develop a unified picture that permits us to analytically predict and systematically characterize metal-semiconductor transitions in nanocarbons with superlattices of nanopores of different sizes and types. These novel materials with highly tunable band structures have numerous potential applications in electronics, light detection, and molecular sensing. PMID:22355555

  16. Electronic structures of porous nanocarbons.

    PubMed

    Baskin, Artem; Král, Petr

    2011-01-01

    We use large scale ab-initio calculations to describe electronic structures of graphene, graphene nanoribbons, and carbon nanotubes periodically perforated with nanopores. We disclose common features of these systems and develop a unified picture that permits us to analytically predict and systematically characterize metal-semiconductor transitions in nanocarbons with superlattices of nanopores of different sizes and types. These novel materials with highly tunable band structures have numerous potential applications in electronics, light detection, and molecular sensing.

  17. Electronic structures of porous nanocarbons

    NASA Astrophysics Data System (ADS)

    Baskin, Artem; Král, Petr

    2011-07-01

    We use large scale ab-initio calculations to describe electronic structures of graphene, graphene nanoribbons, and carbon nanotubes periodically perforated with nanopores. We disclose common features of these systems and develop a unified picture that permits us to analytically predict and systematically characterize metal-semiconductor transitions in nanocarbons with superlattices of nanopores of different sizes and types. These novel materials with highly tunable band structures have numerous potential applications in electronics, light detection, and molecular sensing.

  18. Electronic structure of sulfanilamides

    SciTech Connect

    Grechishkin, V.S.; Grechishkina, R.V.; Starovoitova, O.V.

    1986-05-01

    At present, about 30,000 derivatives of sulfanilamide are known. The establishment of a relationship between the structure of these compounds and their bacteriostatic activity is an urgent problem. In the present work, this problem is solved by means of NQR and NMR spectroscopy. Since the content of the /sup 14/N nuclei in these molecules is not high, to run the NQR, they used the double resonance method. Some samples of the sulfanilamides were studied by direct pulsed NQR method. The high resolution NMR spectra were run in heavy water solution on a RS-60MA spectrometer. All the measurements were carried out at 120/sup 0/K in the solid phase. The results of the calculation of eQq/sub zz/ for the NH/sub 2/ groups in the sulfanilamide residue are listed. To interpret the results by the MO LCAO method in the Hueckel approximation on the EC-1022 computer by a special FORTRAN program, they calculated the charged rho on an atom in the amino group with parameters of hetero atoms and coupling constants.

  19. The influence of the polymer-stabilizer molecular weight on the spectral luminescence properties of composite sols and coatings containing PbS quantum dots

    NASA Astrophysics Data System (ADS)

    Evstrop'ev, K. S.; Dukel'skii, K. V.; Gatchin, Yu. A.; Evstrop'ev, S. K.; Bondarenko, I. B.

    2016-12-01

    The influence of the polyvinylpyrrolidone (PVP) molecular weight on the stability and spectral luminescence properties of sols of lead sulfide nanocrystals and the related composite coatings has been studied. It is shown that the spectral properties of PbS sols stabilized with low-molecular (PVP) and the related coatings are determined to a great extent by the formation of large particle aggregates in these materials and, accordingly, high level of light scattering. It is effective to use low-molecular PVP for preparing powder materials containing PbS quantum dots (QDs), because it allows one to perform fast powder precipitation and form small semiconductor particles. High-molecular PVP provides high aggregative and sedimentation stabilities of semiconductor nanocrystal sols. This polymer is effective for use in preparing stable QD sols and homogeneous coatings transparent in the visible spectral range.

  20. Theoretical electronic structure of structurally modified graphene

    NASA Astrophysics Data System (ADS)

    Dvorak, Marc David

    Graphene has emerged as a promising replacement for silicon in next-generation electronics and optoelectronic devices. If graphene is to be used in semiconductor devices, however, it must acquire an electronic band gap. Numerous approaches have been proposed to control the band gap of graphene, including the periodic patterning of defects. However, the mechanism for band gap opening and the associated physics in graphene patterned with defects remain unclear. Using both analytic theory and first-principles calculations, we show that periodic patterning of defects on graphene can open a large and tunable band gap, induce strong absorption peaks at optical wavelengths, and host a giant band gap quantum spin Hall phase. First, a geometric rule is analytically derived for the arrangements of defects that open a band gap in graphene, with one ninth of all possible patterns opening a band gap. Next, we perform ab-initio density functional calculations to compare the effects of structural vacancies, hexagonal BN dopants, and passivants on the electronic structure of graphene. Qualitatively, these three types of structural defects behave the same, with only slight differences in their resulting band structures. By adjusting the shape of structural defects, we show how to move the Dirac cones in reciprocal space in accordance with the tight-binding model for the anisotropic honeycomb lattice, while the fundamental mechanism for band gap opening remains the same. To quantitatively predict the band gap and optical properties of these materials, we employ many-body perturbation theory with Green's functions (GW/Bethe-Salpeter equation) to directly include electron-electron and electron-hole interactions. Structurally modified graphene shows a strong renormalization of the fundamental band gap over single particle descriptions, and a strong electron-hole interaction as indicated by strong exciton binding energies (> 0.5 eV). Finally, we show that structurally modified graphene

  1. Electronic structure of wet DNA.

    PubMed

    Gervasio, Francesco Luigi; Carloni, Paolo; Parrinello, Michele

    2002-09-02

    The electronic properties of a Z-DNA crystal synthesized in the laboratory are investigated by means of density-functional theory Car-Parrinello calculations. The electronic structure has a gap of only 1.28 eV. This separates a manifold of 12 occupied states which came from the pi guanine orbitals from the lowest empty states in which the electron is transferred to the Na+ from PO-4 groups and water molecules. We have evaluated the anisotropic optical conductivity. At low frequency the conductivity is dominated by the pi-->Na+ transitions. Our calculation demonstrates that the cost of introducing electron holes in wet DNA strands could be lower than previously anticipated.

  2. Electron Scattering and Nuclear Structure

    ERIC Educational Resources Information Center

    Trower, W. P.; Ficenec, J. R.

    1971-01-01

    Presents information about the nucleus gained by studies of electron scattering. Discusses what can be implied about the shape of the charge distribution, the nucleus positions, the vibrational modes of the nucleus, the momentum of the nucleus, and the granularity and core structures of the nucleus. (DS)

  3. Electronic Structure Principles and Aromaticity

    ERIC Educational Resources Information Center

    Chattaraj, P. K.; Sarkar, U.; Roy, D. R.

    2007-01-01

    The relationship between aromaticity and stability in molecules on the basis of quantities such as hardness and electrophilicity is explored. The findings reveal that aromatic molecules are less energetic, harder, less polarizable, and less electrophilic as compared to antiaromatic molecules, as expected from the electronic structure principles.

  4. Electronic Structure Principles and Aromaticity

    ERIC Educational Resources Information Center

    Chattaraj, P. K.; Sarkar, U.; Roy, D. R.

    2007-01-01

    The relationship between aromaticity and stability in molecules on the basis of quantities such as hardness and electrophilicity is explored. The findings reveal that aromatic molecules are less energetic, harder, less polarizable, and less electrophilic as compared to antiaromatic molecules, as expected from the electronic structure principles.

  5. Electron Scattering and Nuclear Structure

    ERIC Educational Resources Information Center

    Trower, W. P.; Ficenec, J. R.

    1971-01-01

    Presents information about the nucleus gained by studies of electron scattering. Discusses what can be implied about the shape of the charge distribution, the nucleus positions, the vibrational modes of the nucleus, the momentum of the nucleus, and the granularity and core structures of the nucleus. (DS)

  6. Electronic structure of tin monosulfide

    NASA Astrophysics Data System (ADS)

    Bletskan, D. I.; Bletskan, M. M.; Glukhov, K. E.

    2017-01-01

    The band structure of three-dimensional and two-dimensional tin monosulfide was calculated by the density functional method in LDA and LDA+U approximations. Group-theoretical analysis of the electronic band structure of SnS crystallized in the orthorhombic structure with space group D2h16- Pcmn is carried out, the symmetry of wave functions of the valence band and the bottom of the conduction band is found. The selection rules for direct and indirect optical transitions at different incident light polarization are determined. The group-theoretical analysis of energy states of the three-dimensional and two-dimensional SnS structures explains the formation of the band structure including the Davydov splitting. The calculated total density of states is compared with the known experimental XPS and UPS spectra, providing the assignment of their main features.

  7. Electronic structure of Calcium hexaborides

    SciTech Connect

    Lee, Byounghak; Wang, Lin-Wang

    2005-06-15

    We present a theoretical study of crystal and electronic structures of CaB6 within a screened-exchange local density approximation (sX-LDA). Our ab initio total energy calculations show that CaB6 is a semiconductor with a gap of >1.2 eV, in agreement with recent experimental observations. We show a very sensitive band gap dependence on the crystal internal parameter, which might partially explain the scatter of previous theoretical results. Our calculation demonstrates that it is essential to study this system simultaneously for both crystal structures and electronic properties, and that the sX-LDA provides an ideal method for this problem.

  8. Structural Dynamics of Electronic Systems

    NASA Astrophysics Data System (ADS)

    Suhir, E.

    2013-03-01

    The published work on analytical ("mathematical") and computer-aided, primarily finite-element-analysis (FEA) based, predictive modeling of the dynamic response of electronic systems to shocks and vibrations is reviewed. While understanding the physics of and the ability to predict the response of an electronic structure to dynamic loading has been always of significant importance in military, avionic, aeronautic, automotive and maritime electronics, during the last decade this problem has become especially important also in commercial, and, particularly, in portable electronics in connection with accelerated testing of various surface mount technology (SMT) systems on the board level. The emphasis of the review is on the nonlinear shock-excited vibrations of flexible printed circuit boards (PCBs) experiencing shock loading applied to their support contours during drop tests. At the end of the review we provide, as a suitable and useful illustration, the exact solution to a highly nonlinear problem of the dynamic response of a "flexible-and-heavy" PCB to an impact load applied to its support contour during drop testing.

  9. Electronic structure investigations of quasicrystals

    NASA Astrophysics Data System (ADS)

    Rotenberg, E.; Theis, W.; Horn, K.

    2004-08-01

    We present a review of the determination of density of states (DOS) of quasicrystals using valence band photoemission spectroscopy. The absence of fine or spiky structure in the angle-integrated DOS of quasicrystals suggests the possibility of delocalized electronic states. These were confirmed with angle-resolved photoemission studies, which clearly establish the presence of dispersing features attributed to momentum-dependent bandstructure. Such dispersing states are observed not only for deeper-lying sp states, but also for d-derived bands near the Fermi level. Data from three different high symmetry surfaces of decagonal Al-Ni-Co, an ideal model system, are presented. We find that only a few dominant reciprocal lattice vectors are sufficient to describe the quasiperiodic potential, and the implications for electronic properties are discussed.

  10. Electronic instrumentation for smart structures

    NASA Astrophysics Data System (ADS)

    Blanar, George J.

    1995-04-01

    The requirements of electronic instrumentation for smart structures are similar to those of data acquisition systems at our national particle physics laboratories. Modern high energy and heavy ion physics experiments may have tens of thousands of channels of data sources producing data that must be converted to digital form, compacted, stored and interpreted. In parallel, multiple sensors distributed in and around smart structures generate either binary or analog signals that are voltage, charge, or time like in their information content. In all cases, they must be transmitted, converted and preserved into a unified digital format for real-time processing. This paper will review the current status of practical large scale electronic measurement systems with special attention to architectures and physical organization. Brief surveys of the current state of the art will include preamplifiers and amplifiers, comparators and discriminators, voltage or charge analog-to-digital converters, time internal meters or time-to-digital converters, and finally, counting or scalar systems. The paper will conclude by integrating all of these ideas in a concept for an all-digital readout of a smart structure using the latest techniques used in physics research today.

  11. The electronic structure of Lu

    NASA Astrophysics Data System (ADS)

    Tibbetts, T. A.; Harmon, B. N.

    1982-12-01

    The electronic structure of hcp Lu has been calculated using a linearized augmented plane wave (LAPW) method and the Hedin-Lundqvist local density approximation for exchange and correlation. Although complete self-consistency was hindered by the proximity of the 4f levels to the Fermi energy, the valence bands were converged and the calculation yielded a Fermi surface remarkably similar to that calculated by Keeton and Loucks. Comparison is made with recent de Haas-van Alphen and neutron magnetic form factor experiments.

  12. Electronic structure quantum Monte Carlo

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Mitas, Lubos

    2009-04-01

    Quantum Monte Carlo (QMC) is an advanced simulation methodology for studies of manybody quantum systems. The QMC approaches combine analytical insights with stochastic computational techniques for efficient solution of several classes of important many-body problems such as the stationary Schrödinger equation. QMC methods of various flavors have been applied to a great variety of systems spanning continuous and lattice quantum models, molecular and condensed systems, BEC-BCS ultracold condensates, nuclei, etc. In this review, we focus on the electronic structure QMC, i.e., methods relevant for systems described by the electron-ion Hamiltonians. Some of the key QMC achievements include direct treatment of electron correlation, accuracy in predicting energy differences and favorable scaling in the system size. Calculations of atoms, molecules, clusters and solids have demonstrated QMC applicability to real systems with hundreds of electrons while providing 90-95% of the correlation energy and energy differences typically within a few percent of experiments. Advances in accuracy beyond these limits are hampered by the so-called fixed-node approximation which is used to circumvent the notorious fermion sign problem. Many-body nodes of fermion states and their properties have therefore become one of the important topics for further progress in predictive power and efficiency of QMC calculations. Some of our recent results on the wave function nodes and related nodal domain topologies will be briefly reviewed. This includes analysis of few-electron systems and descriptions of exact and approximate nodes using transformations and projections of the highly-dimensional nodal hypersurfaces into the 3D space. Studies of fermion nodes offer new insights into topological properties of eigenstates such as explicit demonstrations that generic fermionic ground states exhibit the minimal number of two nodal domains. Recently proposed trial wave functions based on Pfaffians with

  13. Electronic transport in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Lagerqvist, Johan

    In this dissertation electronic transport in nanoscale structures is discussed. An expression for the shot noise, a fluctuation in current due to the discreteness of charge, is derived directly from the wave functions of a nanoscale system. Investigation of shot noise is of particular interest due to the rich fundamental physics involved. For example, the study of shot noise can provide fundamental insight on the nature of electron transport in a nanoscale junction. We report calculations of the shot noise properties of parallel wires in the regime in which the interwire distance is much smaller than the inelastic mean free path. The validity of quantized transverse momenta in a nanoscale structure and its effect on shot noise is also discussed. We theoretically propose and show the feasibility of a novel protocol for DNA sequencing based on the electronic signature of single-stranded DNA while it translocates through a nanopore. We find that the currents for the bases are sufficiently different to allow for efficient sequencing. Our estimates reveal that sequencing of an entire human genome could be done with very high accuracy in a matter of hours, e.g., orders of magnitude faster than present techniques. We also find that although the overall magnitude of the current may change dramatically with different detection conditions, the intrinsic distinguishability of the bases is not significantly affected by pore size and transverse field strength. Finally, we study the ability of water to screen charges in nanopores by using all-atom molecular dynamics simulations coupled to electrostatic calculations. Due to the short length scales of the nanopore geometry and the large local field gradient of a single ion, the energetics of transporting an ion through the pore is strongly dependent on the microscopic details of the electric field. We show that as long as the pore allows the first hydration shell to stay intact, e.g., ˜6 nearby water molecules, the electric field

  14. Electronic Structure of UGe_2

    NASA Astrophysics Data System (ADS)

    Denlinger, J. D.; Rossnagel, Kai; Allen, J. W.; Huxley, A. D.; Flouquet, J.

    2003-03-01

    UGe2 is of high current interest in connection with the possible role of ferromagnetic fluctuations in its pressure induced superconductivity, for which the Fermi surface (FS) is thought to be important. The band structure and FS contours of a single crystal have been measured using resonant angle-resolved photoemission near the U 5d to 5f edge. Quantitative comparisons to available band structure calculations and to magneto-oscillaory measurements will be presented. Discrepancies with theory are generically similar to those(J.D. Denlinger et al.), J. Electron Spectrosc. Relat. Phenom. 117-118, 347 (2001). found for heavy Fermion URu_2Si2 in that the underlying non-f bands appear to play the major role in defining the FS and in determining the k-space location of 5f spectral weight, in contrast to the important role of actual f-bands in the theory. Supported by the U.S. NSF at U. Mich. (DMR-9971611) and by the U.S. DOE at U. Mich. (DE-FG02-90ER45416) and at the Advanced Light Source (DE-AC03-76SF00098).

  15. Electronic processes in multilayer memory structures

    NASA Astrophysics Data System (ADS)

    Plotnikov, A. F.

    The papers presented in this volume contain results of recent theoretical and experimental research related to electron processes in optoelectronic memory media based on structures consisting of a metal, an amorphous insulating layer, and a semiconductor. Topics discussed include photostimulated electron processes in metal-insulator-semiconductor structures, electron transfer phenomena in amorphous dielectric layers, degradation phenomena in MNOS memory elements under prolonged charge injection into the dielectric layer, and characteristics of charge relaxation in MNOS structures following multiple reprogramming.

  16. Role of electronic structure in magnetic tunneling

    NASA Astrophysics Data System (ADS)

    Wang, Kuising; Zhang, Shufeng; Levy, Peter M.; Szunyogh, Laszlo; Weinberger, Peter

    1998-11-01

    To assess the effect of electronic structure of magnetic electrodes on the magnetoresistance of tunnel junctions (JMR) we made ab initio calculations of the electronic structure of BCC(1 0 0) Fe, and FCC(1 0 0) Co and Ni electrodes. We treat hopping to and propagation in the barrier as adjustable parameters and discuss features of the JMR attributable to the electronic structure of the electrodes.

  17. Spectral-Luminescent, Photochemical, and Lasing Characteristics of Boron Dipyrromethene Difluoro (III) Derivatives in Liquid and Solid-State Media

    NASA Astrophysics Data System (ADS)

    Kuznetsova, R. T.; Aksenova, Yu. V.; Prokopenko, A. A.; Bashkirtsev, D. E.; Tel'minov, E. N.; Arabei, S. M.; Pavich, T. A.; Solovyov, K. N.; Antina, E. V.

    2016-08-01

    Optical properties of some boron dipyrromethene difluoro (III) (BF2-dipyrromethene) derivatives are studied depending on the ligand structure, the medium in which they are incorporated, irradiation time, and radiation wavelength. Prospects for application of the prepared solid-state media painted by the examined compounds in various optical devices used in modern technologies are demonstrated. These are active laser media in the range 550-565 nm based on three-component silicate matrices with high laser damage threshold and sensor media based on boron difluoride complexes of halogen-substituted dipyrromethenes incorporated into an organic polymer for the determination of oxygen concentration in a gas mixture. Spectral, energy, and resource characteristics of lasing of solid-state elements are presented. The effect of reversible dye photounpainting in three-component silicate matrices with subsequent restoration in the darkness is discovered. Possible reasons for this effect are discussed with allowance for which laser media with increased photostability can be prepared. A high sensitivity of the sensor medium based on diiodinated complex of BF2-dipyrromethene incorporated into polyvinyl butyral is obtained. Reasons for the increase in the response time to the change of the gas mixture when going over to neutral argon and possibilities of its elimination are discussed.

  18. Electronic correlation contributions to structural energies

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    2015-03-01

    The recursion method is used to calculate electronic excitation spectra including electron-electron interactions within the Hubbard model. The effects of correlation on structural energies are then obtained from these spectra and applied to stacking faults. http://arxiv.org/abs/1405.2288 Supported by the Richmond F. Snyder Fund and Gifts.

  19. Electronic structure of lithium tetraborate

    NASA Astrophysics Data System (ADS)

    Wooten, David J.

    Due to many of its attributes, Li2B4O7 provides a possible material for incorporation as either a primary or companion material in future solid state neutron detectors. There is however a lack of fundamental characterization information regarding this useful material, particularly its electronic configuration. To address this, an investigation of Li2B4O7(110) and Li2B 4O7(100) was undertaken, utilizing photoemission and inverse photoemission spectroscopic techniques. The measured band gap depended on crystallographic direction with the band gaps ranging from 8.9+/-0.5 eV to 10.1+/-0.5 eV. The measurement yielded a density of states that qualitatively agreed with the theoretical results from model bulk band structure calculations for Li2B4O7; albeit with a larger band gap than predicted, but consistent with the known deficiencies of Local Density Approximation and Density Functional Theory calculations. The occupied states of both surfaces were extremely flat; to the degree that resolving periodic dispersion of the occupied states was inconclusive, within the resolution of the system. However, both surfaces demonstrated clear periodic dispersion within the empty states very close to theoretical Brillouin zone values. These attributes also translated to a lighter charge carrier effective mass in the unoccupied states. Of the two surfaces, Li2B4O 7(110) yielded the more consistent values in orthogonal directions for energy states. The presence of a bulk band gap surface state and image potential state in Li2B4O7(110) was indicative of a defect-free surface. The absence of both in the more polar, more dielectric Li2B4O7(100) was attributed to the presence of defects determined to be O vacancies. The results from Li2B 4O7(110) were indicative of a more stable surface than Li 2B4O7(100). In addition, Li 1s bulk and surface core level components were determined at the binding energies of -56.5+0.4 and -53.7+0.5 eV. Resonance features were observed along the [001

  20. Electronic Structure of Lithium Tetraborate

    DTIC Science & Technology

    2010-06-01

    binding energies of -56.5+0.4 and -53.7+0.5 eV. Resonance features were observed along the [001] direction and were attributed to a Coster- Kronig ...could be theoretically explained as an Auger electron [12] or Coster- Kronig process [13] of a Li 1s electron photoexcitation to an unoccupied 2p...Coster Kronig , which requires only one Li atom. Such a Coster Kronig mechanism is pictorially displayed below in Figure 7.9. 128 Figure 7.9

  1. Electron tomography of dislocation structures

    SciTech Connect

    Liu, G.S.; House, S.D.; Kacher, J.; Tanaka, M.; Higashida, K.; Robertson, I.M.

    2014-01-15

    Recent developments in the application of electron tomography for characterizing microstructures in crystalline solids are described. The underlying principles for electron tomography are presented in the context of typical challenges in adapting the technique to crystalline systems and in using diffraction contrast imaging conditions. Methods for overcoming the limitations associated with the angular range, the number of acquired images, and uniformity of image contrast are introduced. In addition, a method for incorporating the real space coordinate system into the tomogram is presented. As the approach emphasizes development of experimental solutions to the challenges, the solutions developed and implemented are presented in the form of examples.

  2. Electron gun controlled smart structure

    DOEpatents

    Martin, Jeffrey W.; Main, John Alan; Redmond, James M.; Henson, Tammy D.; Watson, Robert D.

    2001-01-01

    Disclosed is a method and system for actively controlling the shape of a sheet of electroactive material; the system comprising: one or more electrodes attached to the frontside of the electroactive sheet; a charged particle generator, disposed so as to direct a beam of charged particles (e.g. electrons) onto the electrode; a conductive substrate attached to the backside of the sheet; and a power supply electrically connected to the conductive substrate; whereby the sheet changes its shape in response to an electric field created across the sheet by an accumulation of electric charge within the electrode(s), relative to a potential applied to the conductive substrate. Use of multiple electrodes distributed across on the frontside ensures a uniform distribution of the charge with a single point of e-beam incidence, thereby greatly simplifying the beam scanning algorithm and raster control electronics, and reducing the problems associated with "blooming". By placing a distribution of electrodes over the front surface of a piezoelectric film (or other electroactive material), this arrangement enables improved control over the distribution of surface electric charges (e.g. electrons) by creating uniform (and possibly different) charge distributions within each individual electrode. Removal or deposition of net electric charge can be affected by controlling the secondary electron yield through manipulation of the backside electric potential with the power supply. The system can be used for actively controlling the shape of space-based deployable optics, such as adaptive mirrors and inflatable antennae.

  3. Complex structures of dense lithium: Electronic origin

    NASA Astrophysics Data System (ADS)

    Degtyareva, V. F.

    2016-11-01

    Lithium—the lightest alkali metal exhibits unexpected structures and electronic behavior at high pressures. Like the heavier alkali metals, Li is bcc at ambient pressure and transforms first to fcc (at 7.5 GPa). The post-fcc high-pressure form Li-cI 16 (at 40-60 GPa) is similar to Na-cI 16 and related to more complex structures of heavy alkalis Rb-oC52 and Cs- oC84. The other high pressure phases for Li (oC88, oC40, oC24) observed at pressures up to 130 GPa are found only in Li. The different route of Li high-pressure structures correlates with its special electronic configuration containing the only 3 electrons (at 1s and 2s levels). Crystal structures for Li are analyzed within the model of Fermi sphere-Brillouin zone interactions. Stability of post-fcc structures for Li are supported by the Hume-Rothery arguments when new diffraction plains appear close to the Fermi level producing pseudogaps near the Fermi level and decreasing the crystal energy. The filling of Brillouin-Jones zones by electron states for a given structure defines the physical properties as optical reflectivity, electrical resistivity and superconductivity. To understand the complexity of structural and physical properties of Li above 60 GPa it is necessary to assume the valence electron band overlap with the core electrons and increase the valence electron count under compression.

  4. Electronic Structure of Small Lanthanide Containing Molecules

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Ray, Manisha; Topolski, Josey E.; Chick Jarrold, Caroline

    2016-06-01

    Lanthanide-based materials have unusual electronic properties because of the high number of electronic degrees of freedom arising from partial occupation of 4f orbitals, which make these materials optimal for their utilization in many applications including electronics and catalysis. Electronic spectroscopy of small lanthanide molecules helps us understand the role of these 4f electrons, which are generally considered core-like because of orbital contraction, but are energetically similar to valence electrons. The spectroscopy of small lanthanide-containing molecules is relatively unexplored and to broaden this understanding we have completed the characterization of small cerium, praseodymium, and europium molecules using photoelectron spectroscopy coupled with DFT calculations. The characterization of PrO, EuH, EuO/EuOH, and CexOy molecules have allowed for the determination of their electron affinity, the assignment of numerous anion to neutral state transitions, modeling of anion/neutral structures and electron orbital occupation.

  5. Electronic Structure of Semiconductor Interfaces.

    DTIC Science & Technology

    1984-11-01

    no localized Interface states In the thermal gap If all the SI atoms at the Interface are saturated. In a second paper, 13 we showed how localized...OF INTERFACE STATES Various authors3 8 have called attention to the fact that there is often a sharp peak In the density of Si /Si0 2 interface states ...generating bulk amorphous Si clusters from random hard-sphere configuratlons. 7 , 8 Finally, the local electronic density of states near the interface Is

  6. Structural physiology based on electron crystallography

    PubMed Central

    Fujiyoshi, Yoshinori

    2011-01-01

    There are many questions in brain science, which are extremely interesting but very difficult to answer. For example, how do education and other experiences during human development influence the ability and personality of the adult? The molecular mechanisms underlying such phenomena are still totally unclear. However, technological and instrumental advancements of electron microscopy have facilitated comprehension of the structures of biological components, cells, and organelles. Electron crystallography is especially good for studying the structure and function of membrane proteins, which are key molecules of signal transduction in neural and other cells. Electron crystallography is now an established technique to analyze the structures of membrane proteins in lipid bilayers, which are close to their natural biological environment. By utilizing cryo-electron microscopes with helium cooled specimen stages, which were developed through a personal motivation to understand functions of neural systems from a structural point of view, structures of membrane proteins were analyzed at a resolution higher than 3 Å. This review has four objectives. First, it is intended to introduce the new research field of structural physiology. Second, it introduces some of the personal struggles, which were involved in developing the cryo-electron microscope. Third, it discusses some of the technology for the structural analysis of membrane proteins based on cryo-electron microscopy. Finally, it reviews structural and functional analyses of membrane proteins. PMID:21416541

  7. Electronic Structure Calculations at Macroscopic Scales

    DTIC Science & Technology

    2012-02-02

    to satisfy the Lindhard response function—a known limiting behavior of uniform electron gas. The Wang- Govind -Carter (WGC) kinetic energy functional... R ., QTT Representation of the Hartree and Ex- change Operators in Electronic Structure Calculations. MPI MIS preprint 37/2011 (2011). Kolda, T.G...2010). Wang, L., Teter, M.P., Kinetic energy functional of electron density. Phys. Rev. B, 45, 13196 (1992). Wang Y.A., Govind , N., Carter, E.A

  8. Structure of Wet Specimens in Electron Microscopy

    ERIC Educational Resources Information Center

    Parsons, D. F.

    1974-01-01

    Discussed are past work and recent advances in the use of electron microscopes for viewing structures immersed in gas and liquid. Improved environmental chambers make it possible to examine wet specimens easily. (Author/RH)

  9. Computational Chemistry Using Modern Electronic Structure Methods

    ERIC Educational Resources Information Center

    Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert

    2007-01-01

    Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.

  10. Instructional Approach to Molecular Electronic Structure Theory

    ERIC Educational Resources Information Center

    Dykstra, Clifford E.; Schaefer, Henry F.

    1977-01-01

    Describes a graduate quantum mechanics projects in which students write a computer program that performs ab initio calculations on the electronic structure of a simple molecule. Theoretical potential energy curves are produced. (MLH)

  11. Structure of Wet Specimens in Electron Microscopy

    ERIC Educational Resources Information Center

    Parsons, D. F.

    1974-01-01

    Discussed are past work and recent advances in the use of electron microscopes for viewing structures immersed in gas and liquid. Improved environmental chambers make it possible to examine wet specimens easily. (Author/RH)

  12. Computational Chemistry Using Modern Electronic Structure Methods

    ERIC Educational Resources Information Center

    Bell, Stephen; Dines, Trevor J.; Chowdhry, Babur Z.; Withnall, Robert

    2007-01-01

    Various modern electronic structure methods are now days used to teach computational chemistry to undergraduate students. Such quantum calculations can now be easily used even for large size molecules.

  13. Electronic structure and photophysical properties of polyimides

    SciTech Connect

    LaFemina, J.P. ); Kafafi, S.A. . Div. of Environmental Chemistry)

    1992-04-01

    The quantum mechanical AM1 and CNDO/S3 models were used to examine the effect of isoelectronic substitutions on the conformation, electronic structure, and optical absorption spectra for a series of aromatic polyimides. An analysis of the geometric changes at the substitution site and its effect on the electronic structure allowed for the prediction of changes in the ICT band of the optical absorption spectra.

  14. Controlling the Electronic Structure of Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Ohta, Taisuke; Bostwick, Aaron; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2006-08-01

    We describe the synthesis of bilayer graphene thin films deposited on insulating silicon carbide and report the characterization of their electronic band structure using angle-resolved photoemission. By selectively adjusting the carrier concentration in each layer, changes in the Coulomb potential led to control of the gap between valence and conduction bands. This control over the band structure suggests the potential application of bilayer graphene to switching functions in atomic-scale electronic devices.

  15. MCSNA: Experimental Benchmarking of Pu Electronic Structure

    SciTech Connect

    Tobin, J G

    2007-01-29

    The objective of this work is to develop and/or apply advanced diagnostics to the understanding of aging of Pu. Advanced characterization techniques such as photoelectron and x-ray absorption spectroscopy will provide fundamental data on the electronic structure of Pu phases. These data are crucial for the validation of the electronic structure methods. The fundamental goal of this project is to narrow the parameter space for the theoretical modeling of Pu aging. The short-term goal is to perform experiments to validate electronic structure calculations of Pu. The long-term goal is to determine the effects of aging upon the electronic structure of Pu. Many of the input parameters for aging models are not directly measurable. These parameters will need to be calculated or estimated. Thus a First Principles-Approach Theory is needed, but it is unclear what terms are important in the Hamiltonian. (H{Psi} = E{Psi}) Therefore, experimental data concerning the 5f electronic structure are needed, to determine which terms in the Hamiltonian are important. The data obtained in this task are crucial for reducing the uncertainty of Task LL-01-developed models and predictions. The data impact the validation of electronic structure methods, the calculation of defect properties, the evaluation of helium diffusion, and the validation of void nucleation models. The importance of these activities increases if difficulties develop with the accelerating aging alloy approach.

  16. Foil support structure for large electron guns

    SciTech Connect

    Brucker, J.P.; Rose, E.A.

    1993-08-01

    This paper describes a novel support structure for a vacuum diode used to pump a gaseous laser with an electron beam. Conventional support structures are designed to hold a foil flat and rigid. This new structure takes advantage of the significantly greater strength of metals in pure tension, utilizing curved shapes for both foil and support structure. The shape of the foil is comparable to the skin of a balloon, and the shape of the support structures is comparable to the cables of a suspension bridge. This design allows a significant reduction in foil thickness and support structure mass, resulting in a lower electron-beam loss between diode and laser gas. In addition, the foil is pre-formed in the support structure at pressures higher than operating pressure. Therefore, the foil is operated far from the yield point. Increased reliability is anticipated.

  17. Electronic structures of geometrically restricted nanocarbons

    NASA Astrophysics Data System (ADS)

    Baskin, Artem; Kral, Petr

    2012-02-01

    We use large scale ab-initio calculations to explore the electronic structures of graphene, graphene nanoribbons, and carbon nanotubes periodically perforated with nanopores. We disclose common features in electronic structures of these porous nanocarbons (PNCs) with nanopores of different size, shapes, and localization. We develop a unified picture that permits to analytically predict and systematically characterize metal-semiconductor transitions in PNCs, allowing mapping of their electronic structures on those in pristine nanocarbons [1]. In contrast to other studies, we show that porous graphene can be metallic for certain arrangements of the pores. When we replace pores by defects (such as SW 55-77), we observe similar features in the electronic structures of the formed nanocarbons. We also study magnetic ordering in these nanocarbons and show that the position of pores/defects can influence the ordering of localized electronic spin states. These periodically modified nanocarbons with highly tunable band structures have great potential applications in electronics and optics. [1] A.I. Baskin and P. Kral, Sci. Rep.1, 36 (2011).

  18. Electronic structure and bonding in hydroxocobalamin

    NASA Astrophysics Data System (ADS)

    Ouyang, Lizhi; Rulis, Paul; Ching, Wai-Y.; Slouf, Miroslav; Nardin, Giorgio; Randaccio, Lucio

    2005-05-01

    The electronic structure of hydroxocobalamin (OHCbl) has been calculated by a density functional method, using the orthogonalized linear combination of the atomic orbitals method (OLCAO). The X-ray crystal structure has been determined from synchrotron X-ray diffraction data and the geometry determined was used in the calculations. Comparison with the recently reported electronic structures of cyanocobalamin (CNCbl), methylcobalamin (MeCbl) and adenosylcobalamin (AdoCbl) shows that Mulliken charges ( Q*) and bond orders (BO) vary only on the axial fragment.

  19. Electroluminescence of Zinc Complexes in Various OLED Structures

    NASA Astrophysics Data System (ADS)

    Odod, A. V.; Nikonova, E. N.; Nikonov, S. Yu.; Kopylova, T. N.; Kaplunov, M. G.; Krasnikova, S. S.; Nikitenko, S. L.; Yakushchenko, I. K.

    2017-05-01

    Results of spectral-luminescent and electroluminescent studies of organic semiconductor zinc complexes in light-emitting diode devices are presented. A displacement of the electroluminescence band maximum toward longer wavelengths with structure complication is shown. Devices based on zinc metal organic complexes have low threshold voltage (from 2.5 V) and brightness above 100 cd/m2.

  20. Electronic structure and polarizability of metallic nanoshells

    NASA Astrophysics Data System (ADS)

    Prodan, E.; Nordlander, P.

    2002-01-01

    An efficient method for the calculation of the electronic structure of metallic nanoshells is developed. The method is applied to a large nanoshell (of 10 nm in diameter) containing more than 2.5×10 4 conduction electrons. The calculations show that the density of states of the nanoshell is relatively bulk-like. The frequency dependent polarizability is calculated and shown to display strong confinement effects and features similar to what is predicted by semi-classical electrodynamic theory.

  1. Structural and electronic properties for atomic clusters

    NASA Astrophysics Data System (ADS)

    Sun, Yan

    We have studied the structural and electronic properties for different groups of atomic clusters by doing a global search on the potential energy surface using the Taboo Search in Descriptors Space (TSDS) method and calculating the energies with Kohn-Sham Density Functional Theory (KS-DFT). Our goal was to find the structural and electronic principles for predicting the structure and stability of clusters. For Ben (n = 3--20), we have found that the evolution of geometric and electronic properties with size reflects a change in the nature of the bonding from van der Waals to metallic and then bulk-like. The cluster sizes with extra stability agree well with the predictions of the jellium model. In the 4d series of transition metal (TM) clusters, as the d-type bonding becomes more important, the preferred geometric structure changes from icosahedral (Y, Zr), to distorted compact structures (Nb, Mo), and FCC or simple cubic crystal fragments (Tc, Ru, Rh) due to the localized nature of the d-type orbital. Analysis of relative isomer energies and their electronic density of states suggest that these clusters tend to follow a maximum hardness principle (MHP). For A4B12 clusters (A is divalent, B is monovalent), we found unusually large (on average 1.95 eV) HOMO-LUMO gap values. This shows the extra stability at an electronic closed shell (20 electrons) predicted by the jellium model. The importance of symmetry, closed electronic and ionic shells in stability is shown by the relative stability of homotops of Mg4Ag12 which also provides support for the hypothesis that clusters that satisfy more than one stability criterion ("double magic") should be particularly stable.

  2. Electronic structures of hydrogenated Si(001) surfaces

    NASA Astrophysics Data System (ADS)

    Lee, Seung Mi; Lee, Young Hee

    1996-02-01

    We have studied the electronic structure of clean and hydrogenated Si(001) surfaces via the empirical tight-binding total energy scheme. In the clean Si(001) surface, several reconstructed structures such as symmetric (2 × 1), buckled (2 × 1), p(2 × 2), and are studied. We find that higher-orderings such as the c(4 × 2) and p(2 × 2) are energetically favorable configurations. The electr density of states of these structures are also provided and compared with experimental results. In the hydrogenated Si(001) surface, there are three stable structures: monohydride, dihydride, and a (3 × 1) phase upon hydrogen coverage. We suggest that the electronic density of states can provide a way to distinguish the respective structures by several characteristic hydrogen-related peaks. These are further compared with experimental results.

  3. Electronic structure of disordered conjugated polymers: Polythiophenes

    SciTech Connect

    Vukmirovic, Nenad; Wang, Lin-Wang

    2008-11-26

    Electronic structure of disordered semiconducting conjugated polymers was studied. Atomic structure was found from a classical molecular dynamics simulation and the charge patching method was used to calculate the electronic structure with the accuracy similar to the one of density functional theory in local density approximation. The total density of states, the local density of states at different points in the system and the wavefunctions of several states around the gap were calculated in the case of poly(3-hexylthiophene) (P3HT) and polythiophene (PT) systems to gain insight into the origin of disorder in the system, the degree of carrier localization and the role of chain interactions. The results indicated that disorder in the electronic structure of alkyl substituted polythiophenes comes from disorder in the conformation of individualchains, while in the case of polythiophene there is an additional contribution due to disorder in the electronic coupling between the chains. Each of the first several wavefunctions in the conduction and valence band of P3HT is localized over several rings of a single chain. It was shown that the localization can be caused in principle both by ring torsions and chain bending, however the effect of ring torsions is much stronger. PT wavefunctions are more complicated due to larger interchain electronic coupling and are not necessarily localized on a single chain.

  4. Defect Induced Electronic Structure of Uranofullerene

    PubMed Central

    Dai, Xing; Cheng, Cheng; Zhang, Wei; Xin, Minsi; Huai, Ping; Zhang, Ruiqin; Wang, Zhigang

    2013-01-01

    The interaction between the inner atoms/cluster and the outer fullerene cage is the source of various novel properties of endohedral metallofullerenes. Herein, we introduce an adatom-type spin polarization defect on the surface of a typical endohedral stable U2@C60 to predict the associated structure and electronic properties of U2@C61 based on the density functional theory method. We found that defect induces obvious changes in the electronic structure of this metallofullerene. More interestingly, the ground state of U2@C61 is nonet spin in contrast to the septet of U2@C60. Electronic structure analysis shows that the inner U atoms and the C ad-atom on the surface of the cage contribute together to this spin state, which is brought about by a ferromagnetic coupling between the spin of the unpaired electrons of the U atoms and the C ad-atom. This discovery may provide a possible approach to adapt the electronic structure properties of endohedral metallofullerenes. PMID:23439318

  5. The Electronic Structure of Heavy Element Complexes

    SciTech Connect

    Bursten, Bruce E.

    2000-07-25

    The area of study is the bonding in heavy element complexes, and the application of more sophisticated electronic structure theories. Progress is recounted in several areas: (a) technological advances and current methodologies - Relativistic effects are extremely important in gaining an understanding of the electronic structure of compounds of the actinides, transactinides, and other heavy elements. Therefore, a major part of the continual benchmarking was the proper inclusion of the appropriate relativistic effects for the properties under study. (b) specific applications - These include organoactinide sandwich complexes, CO activation by actinide atoms, and theoretical studies of molecules of the transactinide elements. Finally, specific directions in proposed research are described.

  6. Boron Fullerenes: An Electronic Structure Study

    NASA Astrophysics Data System (ADS)

    Sadrzadeh, Arta; Pupysheva, Olga; Boustani, Ihsan; Yakobson, Boris

    2008-03-01

    Using ab initio calculations, we study electronic structure and frequency modes of B80, a member of boron fullerene family made from boron isomorphs of carbon fullerenes with additional atoms in the centers of hexagons. We also investigate geometrical and electronic structural properties of double-rings with various diameters, which are important as building blocks of boron nanotubes, and as the most stable clusters among the studied isomers with no more than 36 atoms. Double-rings also appear as building blocks of B80. Furthermore, we investigate the possibility of further stabilizing some of fullerenes by depleting them.

  7. Atomic and electronic structures of novel silicon surface structures

    SciTech Connect

    Terry, J.H. Jr.

    1997-03-01

    The modification of silicon surfaces is presently of great interest to the semiconductor device community. Three distinct areas are the subject of inquiry: first, modification of the silicon electronic structure; second, passivation of the silicon surface; and third, functionalization of the silicon surface. It is believed that surface modification of these types will lead to useful electronic devices by pairing these modified surfaces with traditional silicon device technology. Therefore, silicon wafers with modified electronic structure (light-emitting porous silicon), passivated surfaces (H-Si(111), Cl-Si(111), Alkyl-Si(111)), and functionalized surfaces (Alkyl-Si(111)) have been studied in order to determine the fundamental properties of surface geometry and electronic structure using synchrotron radiation-based techniques.

  8. Electronic and structural properties of functional nanostructures

    NASA Astrophysics Data System (ADS)

    Yang, Teng

    In this Thesis, I present a study of electronic and structural properties of functional nanostructures such as MoSxIy nanowires, self-assembled monolayer on top of metallic surfaces and structural changes induced in graphite by photo excitations. MoSxI y nanowires, which can be easily synthesized in one step, show many advantages over conventional carbon nanotubes in molecular electronics and many other applications. But how to self-assemble them into desired pattern for practical electronic network? Self-assembled monolayers of polymers on metallic surfaces may help to guide pattern formation of some nanomaterials such as MoSxIy nanowires. I have investigated the physical properties of these nanoscale wires and microscopic self-assembly mechanisms of patterns by total energy calculations combined with molecular dynamics simulations and structure optimization. First, I studied the stability of novel Molybdenum chaicohalide nanowires, a candidate for molecular electronics applications. Next, I investigated the self-assembly of nanoparticles into ordered arrays with the aid of a template. Such templates, I showed, can be formed by polymer adsorption on surfaces such as highly ordered pyrolytic graphite and Ag(111). Finally, I studied the physical origin of of structural changes induced in graphite by light in form of a femtosecond laser pulse.

  9. Structure refinement from precession electron diffraction data.

    PubMed

    Palatinus, Lukáš; Jacob, Damien; Cuvillier, Priscille; Klementová, Mariana; Sinkler, Wharton; Marks, Laurence D

    2013-03-01

    Electron diffraction is a unique tool for analysing the crystal structures of very small crystals. In particular, precession electron diffraction has been shown to be a useful method for ab initio structure solution. In this work it is demonstrated that precession electron diffraction data can also be successfully used for structure refinement, if the dynamical theory of diffraction is used for the calculation of diffracted intensities. The method is demonstrated on data from three materials - silicon, orthopyroxene (Mg,Fe)(2)Si(2)O(6) and gallium-indium tin oxide (Ga,In)(4)Sn(2)O(10). In particular, it is shown that atomic occupancies of mixed crystallographic sites can be refined to an accuracy approaching X-ray or neutron diffraction methods. In comparison with conventional electron diffraction data, the refinement against precession diffraction data yields significantly lower figures of merit, higher accuracy of refined parameters, much broader radii of convergence, especially for the thickness and orientation of the sample, and significantly reduced correlations between the structure parameters. The full dynamical refinement is compared with refinement using kinematical and two-beam approximations, and is shown to be superior to the latter two.

  10. Electronic structure of Mn and Fe oxides

    NASA Astrophysics Data System (ADS)

    Harrison, Walter

    2008-03-01

    We present a clear, simple tight-binding representation of the electronic structure and cohesive energy (energy of atomization) of MnO, Mn2O3, and MnO2, in which the formal charge states Mn^2+, Mn^3+, and Mn^4+, respectively, occur. It is based upon localized cluster orbitals for each Mn and its six oxygen neighbors. This approach is fundamentally different from local-density theory (or LDA+U), and perhaps diametrically opposite to Dynamical Mean Field Theory. Electronic states were calculated self-consistently using existing parameters [1], but it is found that the charge density is quite insensitive to charge state, so that the starting parameters are adequate. The cohesive energy per Mn is dominated by the transfer of two s electrons to oxygen p states, the same for all three compounds. The differing transfer of majority d electrons to oxygen p states, and the coupling between them, accounts for the observed variation in cohesion in the series. The same description applies to the perovskites, such as LaxSr1-xMnO3, and can be used for FeO, Fe2O3 (and FeO2), Because the formulation is local, it is equally applicable to impurities, defects and surfaces. [1] Walter A. Harrison, Elementary Electronic Structure, World Scientific (Singapore, 1999), revised edition (2004).

  11. Electronic structure engineering of various structural phases of phosphorene.

    PubMed

    Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Tankeshwar, K

    2016-07-21

    We report the tailoring of the electronic structures of various structural phases of phosphorene (α-P, β-P, γ-P and δ-P) based homo- and hetero-bilayers through in-plane mechanical strains, vertical pressure and transverse electric field by employing density functional theory. In-plane biaxial strains have considerably modified the electronic bandgap of both homo- and hetero-bilayers while vertical pressure induces metallization in the considered structures. The γ-P homo-bilayer structure showed the highest ultimate tensile strength (UTS ∼ 6.21 GPa) upon in-plane stretching. Upon application of a transverse electric field, the variation in the bandgap of hetero-bilayers was found to be strongly dependent on the polarity of the applied field which is attributed to the counterbalance between the external electric field and the internal field induced by different structural phases and heterogeneity in the arrangements of atoms of each surface of the hetero-bilayer system. Our results demonstrate that the electronic structures of the considered hetero- and homo-bilayers of phosphorene could be modified by biaxial strain, pressure and electric field to achieve the desired properties for future nano-electronic devices.

  12. [Structured electronic consultation letter for shoulder disorders].

    PubMed

    Paloneva, Juha; Oikari, Marjo; Ylinen, Jari; Ingalsuo, Minna; Ilkka, Kunnamo; Ilkka, Kiviranta

    2012-01-01

    Referral to a specialist has a significant influence on management of the patient and costs associated with the treatments. However, development and research of the process by which patients are referred has been almost neglected. Expectations considering the purpose, contents, and timing of the referral of the consulting physician and the consultant do not always meet. A structured, electronic consultation letter was developed to respond this need. Functionality and interactivity are the key elements of the referral, including (1) an electronic referral letter to a specialist, (2) interactive education in clinical examination and management of shoulder disorders, and (3) an instrument of clinical examination and documentation of shoulder disorders.

  13. The electronic structure of nonpolyhex carbon nanotubes.

    PubMed

    László, István

    2004-01-01

    Generalizing the folding method to any periodic two-dimensional planar carbon structures we have calculated the corresponding electronic structures in the framework of the one orbital one site tight-binding (Bloch-Hückel) method by solving the eigenvalue problems in a numerical way. We discussed the metallic or the nonmetallic behavior of the nanotubes by applying the folding vectors of parameters (m, n). We extended the topological coordinate method to two-dimensional periodic planar structures as well. Nearly regular hexagonal, pentagonal, and heptagonal polygons were obtained. The curvatures of the final relaxed structures can be read from the sizes of the polygons. Thus relying only on the topological information we could describe the shape of the tubular structures and their conductivity behaviors.

  14. Probing Structural and Electronic Dynamics with Ultrafast Electron Microscopy

    SciTech Connect

    Plemmons, DA; Suri, PK; Flannigan, DJ

    2015-05-12

    In this Perspective, we provide an overview,of the field of ultrafast electron microscopy (UEM). We begin by briefly discussing the emergence of methods for probing ultrafast structural dynamics and the information that can be obtained. Distinctions are drawn between the two main types a probes for femtosecond (fs) dynamics fast electrons and X-ray photons and emphasis is placed on hour the nature of charged particles is exploited in ultrafast electron-based' experiments:. Following this, we describe the versatility enabled by the ease with which electron trajectories and velocities can be manipulated with transmission electron microscopy (TEM): hardware configurations, and we emphasize how this is translated to the ability to measure scattering intensities in real, reciprocal, and energy space from presurveyed and selected rianoscale volumes. Owing to decades of ongoing research and development into TEM instrumentation combined with advances in specimen holder technology, comprehensive experiments can be conducted on a wide range of materials in various phases via in situ methods. Next, we describe the basic operating concepts, of UEM, and we emphasize that its development has led to extension of several of the formidable capabilities of TEM into the fs domain, dins increasing the accessible temporal parameter spade by several orders of magnitude. We then divide UEM studies into those conducted in real (imaging), reciprocal (diffraction), and energy (spectroscopy) spate. We begin each of these sections by providing a brief description of the basic operating principles and the types of information that can be gathered followed by descriptions of how these approaches are applied in UM, the type of specimen parameter space that can be probed, and an example of the types of dynamics that can be resolved. We conclude with an Outlook section, wherein we share our perspective on some future directions of the field pertaining to continued instrument development and

  15. Electronic structure of worm-eaten graphene

    NASA Astrophysics Data System (ADS)

    Negishi, Hayato; Takeda, Kyozaburo

    2017-02-01

    We theoretically study the electronic structure of graphenes having several kinds of imperfections such as atomic vacancies and heteroatom replacements. We consider 12 different configurations of vacancies and 39 different geometries of heteroatom replacements in order to approximately take into account the random conformations of imperfections. To systematically provide a perspective understanding of the defect π and σ states caused by atomistic voids and/or vacancies and heteroatom replacements, we have carried out a tight-binding (TB) calculation. We study the orbital hybridization to clarify the origin and formation of π and σ defect states arising from such imperfections. We also discuss the electronic structure around the Fermi level through the TB band calculation.

  16. Electronic structure investigation of biphenylene films

    NASA Astrophysics Data System (ADS)

    Totani, R.; Grazioli, C.; Zhang, T.; Bidermane, I.; Lüder, J.; de Simone, M.; Coreno, M.; Brena, B.; Lozzi, L.; Puglia, C.

    2017-02-01

    Photoelectron Spectroscopy (PS) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy have been used to investigate the occupied and empty density of states of biphenylene films of different thicknesses, deposited onto a Cu(111) crystal. The obtained results have been compared to previous gas phase spectra and single molecule Density Functional Theory (DFT) calculations to get insights into the possible modification of the molecular electronic structure in the film induced by the adsorption on a surface. Furthermore, NEXAFS measurements allowed characterizing the variation of the molecular arrangement with the film thickness and helped to clarify the substrate-molecule interaction.

  17. Atomic and Electronic Structure of Solids

    NASA Astrophysics Data System (ADS)

    Kaxiras, Efthimios

    2003-01-01

    Preface; Acknowledgements; Part I. Crystalline Solids: 1. Atomic structure of crystals; 2. The single-particle approximation; 3. Electrons in crystal potential; 4. Band structure of crystals; 5. Applications of band theory; 6. Lattice vibrations; 7. Magnetic behaviour of solids; 8. Superconductivity; Part II. Defects, Non-Crystalline Solids and Finite Structures: 9. Defects I: point defects; 10. Defects II: line defects; 11. Defects III: surfaces and interfaces; 12. Non-crystalline solids; 13. Finite structures; Part III. Appendices: A. Elements of classical electrodynamics; B. Elements of quantum mechanics; C. Elements of thermodynamics; D. Elements of statistical mechanics; E. Elements of elasticity theory; F. The Madelung energy; G. Mathematical tools; H. Nobel Prize citations; I. Units and symbols; References; Index.

  18. Controlling the Electronic Structure of Bilayer Graphene

    NASA Astrophysics Data System (ADS)

    Ohta, Taisuke; Bostwick, Aaron; McChesney, Jessica; Seyller, Thomas; Horn, Karsten; Rotenberg, Eli

    2007-03-01

    Carbon-based materials such as carbon nanotubes, graphite intercalation compounds, fullerenes, and ultrathin graphite films exhibit many exotic phenomena such as superconductivity and an anomalous quantum Hall effect. These findings have caused renewed interest in the electronic structure of ultrathin layers of graphene: a single honeycomb carbon layer that is the building block for these materials. There is a strong motivation to incorporate graphene multilayers into atomic-scale devices, spurred on by rapid progress in their fabrication and manipulation. We have synthesized bilayer graphene thin films deposited on insulating silicon carbide and characterized their electronic band structure using angle-resolved photoemission. By selectively adjusting the carrier concentration in each layer, changes in the Coulomb potential led to control of the gap between valence and conduction bands [1]. This control over the band structure suggests the potential application of bilayer graphene to switching functions in atomic scale electronic devices. [1] T. Ohta, A. Bostwick, T. Seyller, K. Horn, E. Rotenberg, Science, 313, 951 (2006).

  19. Electronic structure theory of the superheavy elements

    NASA Astrophysics Data System (ADS)

    Eliav, Ephraim; Fritzsche, Stephan; Kaldor, Uzi

    2015-12-01

    High-accuracy calculations of atomic properties of the superheavy elements (SHE) up to element 122 are reviewed. The properties discussed include ionization potentials, electron affinities and excitation energies, which are associated with the spectroscopic and chemical behavior of these elements, and are therefore of considerable interest. Accurate predictions of these quantities require high-order inclusion of relativity and electron correlation, as well as large, converged basis sets. The Dirac-Coulomb-Breit Hamiltonian, which includes all terms up to second order in the fine-structure constant α, serves as the framework for the treatment; higher-order Lamb shift terms are considered in some selected cases. Electron correlation is treated by either the multiconfiguration self-consistent-field approach or by Fock-space coupled cluster theory. The latter is enhanced by the intermediate Hamiltonian scheme, allowing the use of larger model (P) spaces. The quality of the calculations is assessed by applying the same methods to lighter homologs of the SHEs and comparing with available experimental information. Very good agreement is obtained, within a few hundredths of an eV, and similar accuracy is expected for the SHEs. Many of the properties predicted for the SHEs differ significantly from what may be expected by straightforward extrapolation of lighter homologs, demonstrating that the structure and chemistry of SHEs are strongly affected by relativity. The major scientific challenge of the calculations is to find the electronic structure and basic atomic properties of the SHE and assign its proper place in the periodic table. Significant recent developments include joint experimental-computational studies of the excitation spectrum of Fm and the ionization energy of Lr, with excellent agreement of experiment and theory, auguring well for the future of research in the field.

  20. Actinide electronic structure and atomic forces

    NASA Astrophysics Data System (ADS)

    Albers, R. C.; Rudin, Sven P.; Trinkle, Dallas R.; Jones, M. D.

    2000-07-01

    We have developed a new method[1] of fitting tight-binding parameterizations based on functional forms developed at the Naval Research Laboratory.[2] We have applied these methods to actinide metals and report our success using them (see below). The fitting procedure uses first-principles local-density-approximation (LDA) linear augmented plane-wave (LAPW) band structure techniques[3] to first calculate an electronic-structure band structure and total energy for fcc, bcc, and simple cubic crystal structures for the actinide of interest. The tight-binding parameterization is then chosen to fit the detailed energy eigenvalues of the bands along symmetry directions, and the symmetry of the parameterization is constrained to agree with the correct symmetry of the LDA band structure at each eigenvalue and k-vector that is fit to. By fitting to a range of different volumes and the three different crystal structures, we find that the resulting parameterization is robust and appears to accurately calculate other crystal structures and properties of interest.

  1. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOEpatents

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  2. Electronic structure interpolation via atomic orbitals.

    PubMed

    Chen, Mohan; Guo, G-C; He, Lixin

    2011-08-17

    We present an efficient scheme for accurate electronic structure interpolation based on systematically improvable optimized atomic orbitals. The atomic orbitals are generated by minimizing the spillage value between the atomic basis calculations and the converged plane wave basis calculations on some coarse k-point grid. They are then used to calculate the band structure of the full Brillouin zone using the linear combination of atomic orbitals algorithms. We find that usually 16-25 orbitals per atom can give an accuracy of about 10 meV compared to the full ab initio calculations, and the accuracy can be systematically improved by using more atomic orbitals. The scheme is easy to implement and robust, and works equally well for metallic systems and systems with complicated band structures. Furthermore, the atomic orbitals have much better transferability than Shirley's basis and Wannier functions, which is very useful for perturbation calculations.

  3. Electronic bandstructure of semiconductor dilute bismide structures

    NASA Astrophysics Data System (ADS)

    Erucar, T.; Nutku, F.; Donmez, O.; Erol, A.

    2017-02-01

    In this work electronic band structure of dilute bismide GaAs/GaAs1-xBix quantum well structures with 1.8% and 3.75% bismuth compositions have been investigated both experimentally and theoretically. Photoluminescence (PL) measurements reveal that effective bandgap of the samples decreases approximately 65 meV per bismuth concentration. Temperature dependence of the effective bandgap is obtained to be higher for the sample with higher bismuth concentration. Moreover, both asymmetric characteristic at the low energy tail of the PL and full width at half maximum (FWHM) of PL peak increase with increasing bismuth composition as a result of increased Bi related defects located above valence band (VB). In order to explain composition dependence of the effective bandgap quantitatively, valence band anti-crossing (VBAC) model is used. Bismuth composition and temperature dependence of effective bandgap in a quantum well structure is modeled by solving Schrödinger equation and compared with experimental PL data.

  4. Extraordinary electronic properties in uncommon structure types

    NASA Astrophysics Data System (ADS)

    Ali, Mazhar Nawaz

    In this thesis I present the results of explorations into several uncommon structure types. In Chapter 1 I go through the underlying idea of how we search for new compounds with exotic properties in solid state chemistry. The ideas of exploring uncommon structure types, building up from the simple to the complex, using chemical intuition and thinking by analogy are discussed. Also, the history and basic concepts of superconductivity, Dirac semimetals, and magnetoresistance are briefly reviewed. In chapter 2, the 1s-InTaS2 structural family is introduced along with the discovery of a new member of the family, Ag0:79VS2; the synthesis, structure, and physical properties of two different polymorphs of the material are detailed. Also in this chapter, we report the observation of superconductivity in another 1s structure, PbTaSe2. This material is especially interesting due to it being very heavy (resulting in very strong spin orbit coulping (SOC)), layered, and noncentrosymmetric. Electronic structure calculations reveal the presence of a bulk 3D Dirac cone (very similar to graphene) that is gapped by SOC originating from the hexagonal Pb layer. In Chapter 3 we show the re-investigation of the crystal structure of the 3D Dirac semimetal, Cd3As2. It is found to be centrosymmetric, rather than noncentrosymmetric, and as such all bands are spin degenerate and there is a 4-fold degenerate bulk Dirac point at the Fermi level, making Cd3As2 a 3D electronic analog to graphene. Also, for the first time, scanning tunneling microscopy experiments identify a 2x2 surface reconstruction in what we identify as the (112) cleavage plane of single crystals; needle crystals grow with a [110] long axis direction. Lastly, in chapter 4 we report the discovery of "titanic" (sadly dubbed ⪉rge, nonsaturating" by Nature editors and given the acronym XMR) magnetoresistance (MR) in the non-magnetic, noncentrosymmetric, layered transition metal dichalcogenide WTe2; over 13 million% at 0.53 K in

  5. Structural and electronic properties of fluorographene.

    PubMed

    Samarakoon, Duminda K; Chen, Zhifan; Nicolas, Chantel; Wang, Xiao-Qian

    2011-04-04

    The structural and electronic characteristics of fluorinated graphene are investigated based on first-principles density-functional calculations. A detailed analysis of the energy order for stoichiometric fluorographene membranes indicates that there exists prominent chair and stirrup conformations, which correlate with the experimentally observed in-plane lattice expansion contrary to a contraction in graphane. The optical response of fluorographene is investigated using the GW-Bethe-Salpeter equation approach. The results are in good conformity with the experimentally observed optical gap and reveal predominant charge-transfer excitations arising from strong electron-hole interactions. The appearance of bounded excitons in the ultraviolet region can result in an excitonic Bose-Einstein condensate in fluorographene.

  6. Pu electronic structure and photoelectron spectroscopy

    SciTech Connect

    Joyce, John J; Durakiewicz, Tomasz; Graham, Kevin S; Bauer, Eric D; Moore, David P; Mitchell, Jeremy N; Kennison, John A; Martin, Richard L; Roy, Lindsay E; Scuseria, G. E.

    2010-01-01

    The electronic structure of PuCoGa{sub 5}, Pu metal, and PuO{sub 2} is explored using photoelectron spectroscopy. Ground state electronic properties are inferred from temperature dependent photoemission near the Fermi energy for Pu metal. Angle-resolved photoemission details the energy vs. crystaJ momentum landscape near the Fermi energy for PuCoGa{sub 5} which shows significant dispersion in the quasiparticle peak near the Fermi energy. For the Mott insulators AnO{sub 2}(An = U, Pu) the photoemission results are compared against hybrid functional calculations and the model prediction of a cross over from ionic to covalent bonding is found to be reasonable.

  7. Electronic Structure of Buried Interfaces - Oral Presentation

    SciTech Connect

    Porter, Zachary

    2015-08-25

    In the electronics behind computer memory storage, the speed and size are dictated by the performance of permanent magnets inside devices called read heads. Complicated magnets made of stacked layers of thin films can be engineered to have properties that yield more energy storage and faster switching times compared to conventional iron or cobalt magnets. The reason is that magnetism is a result of subtle interactions amongst electrons; just how neurons come together on large scales to make cat brains and dog brains, ensembles of electrons interact and become ferromagnets and paramagnets. These interactions make magnets too difficult to study in their entirety, so I focus on the interfaces between layers, which are responsible for the coupling materials physicists hope to exploit to produce next-generation magnets. This project, I study a transition metal oxide material called LSCO, Lanthanum Cobaltite, which can be a paramagnet or a ferromagnet depending on how you tweak the electronic structure. It exhibits an exciting behavior: its sum is greater than the sum of its parts. When another similar material called a LSMO, Lanthanum Manganite, is grown on top of it, their interface has a different type of magnetism from the LSCO or the LSMO! I hope to explain this by demonstrating differently charged ions in the interface. The typical method for quantifying this is x-ray absorption, but all conventional techniques look at every layer simultaneously, averaging the interfaces and the LSCO layers that we want to characterize separately. Instead, I must use a new reflectivity technique, which tracks the intensity of reflected x-rays at different angles, at energies near the absorption peaks of certain elements, to track changes in the electronic structure of the material. The samples were grown by collaborators at the Takamura group at U.C. Davis and probed with this “resonant reflectivity” technique on Beamline 2-1 at the Stanford Synchrotron Radiation Lightsource

  8. Electronic Structure of LaSb_2

    NASA Astrophysics Data System (ADS)

    Browne, Dana A.; Kurtz, Richard

    2004-03-01

    LaSb2 is a nonmagnetic material that exhibits a large linear magnetoresistance. We have calculated its electronic structure using a full potential LAPW GGA density functional method including the spin-orbit interaction. We find that the Fermi surface consists of both two dimensional sheets and three dimensional bands. Our results are consistent with recent dHvA measurements^1. We discuss the possibility of CDW formation based on nesting of the sheets as well as compare with photoemission^2 and neutron scattering. ^1 R.G. Goodrich et al, submitted to Phys Rev B. ^2 A. I. Acatrinei et al, J. Phys.: Condens. Matter 15, L511 (2003).

  9. Structural, electronic and optical properties of carbonnitride

    SciTech Connect

    Cohen, Marvin L.

    1996-01-31

    Carbon nitride was proposed as a superhard material and a structural prototype, Beta-C3N4, was examined using several theoretical models. Some reports claiming experimental verifications have been made recently. The current status of the theory and experiment is reviewed, and a detailed discussion is presented of calculations of the electronic and optical properties of this material. These calculations predict that Beta-C3N4 will have a minimum gap which is indirect at 6.4 plus or minus 0.5 eV. A discussion of the possibility of carbon nitride nanotubes is also presented.

  10. Surface structure and electronic properties of materials

    NASA Technical Reports Server (NTRS)

    Siekhaus, W. J.; Somorjai, G. A.

    1975-01-01

    A surface potential model is developed to explain dopant effects on chemical vapor deposition. Auger analysis of the interaction between allotropic forms of carbon and silicon films has shown Si-C formation for all forms by glassy carbon. LEED intensity measurements have been used to determine the mean square displacement of surface atoms of silicon single crystals, and electron loss spectroscopy has shown the effect of structure and impurities on surface states located within the band gap. A thin film of Al has been used to enhance film crystallinity at low temperature.

  11. Electronic structure of nonstoichiometric cubic hydrides

    SciTech Connect

    Switendick, A.C.

    1980-01-01

    Using the supercell approach we have calculated the electronic structure of Y/sub 4/H/sub 8/, Y/sub 4/H/sub 9/, Y/sub 4/H/sub 11/, and Y/sub 4/H/sub 12/ as prototypic of nonstoichiometric cubic di- and trihydrides. The nature of the interaction between the yttrium and the octahedral and tetrahedral hydrogens is shown by the relative amount of charge contained in the crystal spheres. Each added hydrogen lowers one band which was already partially filled. The charge on both the octahedral and tetrahedral sites is very similar and significantly more than is contained in a comparable atomic sphere.

  12. Analysis of boron carbides' electronic structure

    NASA Technical Reports Server (NTRS)

    Howard, Iris A.; Beckel, Charles L.

    1986-01-01

    The electronic properties of boron-rich icosahedral clusters were studied as a means of understanding the electronic structure of the icosahedral borides such as boron carbide. A lower bound was estimated on bipolaron formation energies in B12 and B11C icosahedra, and the associated distortions. While the magnitude of the distortion associated with bipolaron formation is similar in both cases, the calculated formation energies differ greatly, formation being much more favorable on B11C icosahedra. The stable positions of a divalent atom relative to an icosahedral borane was also investigated, with the result that a stable energy minimum was found when the atom is at the center of the borane, internal to the B12 cage. If incorporation of dopant atoms into B12 cages in icosahedral boride solids is feasible, novel materials might result. In addition, the normal modes of a B12H12 cluster, of the C2B10 cage in para-carborane, and of a B12 icosahedron of reduced (D sub 3d) symmetry, such as is found in the icosahedral borides, were calculated. The nature of these vibrational modes will be important in determining, for instance, the character of the electron-lattice coupling in the borides, and in analyzing the lattice contribution to the thermal conductivity.

  13. Electron beam coupling to a metamaterial structure

    SciTech Connect

    French, David M.; Shiffler, Don; Cartwright, Keith

    2013-08-15

    Microwave metamaterials have shown promise in numerous applications, ranging from strip lines and antennas to metamaterial-based electron beam driven devices. In general, metamaterials allow microwave designers to obtain electromagnetic characteristics not typically available in nature. High Power Microwave (HPM) sources have in the past drawn inspiration from work done in the conventional microwave source community. In this article, the use of metamaterials in an HPM application is considered by using an effective medium model to determine the coupling of an electron beam to a metamaterial structure in a geometry similar to that of a dielectric Cerenkov maser. Use of the effective medium model allows for the analysis of a wide range of parameter space, including the “mu-negative,”“epsilon-negative,” and “double negative” regimes of the metamaterial. The physics of such a system are modeled analytically and by utilizing the particle-in-cell code ICEPIC. For this geometry and effective medium representation, optimum coupling of the electron beam to the metamaterial, and thus the optimum microwave or RF production, occurs in the epsilon negative regime of the metamaterial. Given that HPM tubes have been proposed that utilize a metamaterial, this model provides a rapid method of characterizing a source geometry that can be used to quickly understand the basic physics of such an HPM device.

  14. Experimental Benchmarking of Pu Electronic Structure

    SciTech Connect

    Tobin, J.G.; Moore, K.T.; Chung, B.W.; Wall, M.A.; Schwartz, A.J.; Ebbinghaus, B.B.; Butterfield, M.T.; Teslich, Jr., N.E.; Bliss, R.A.; Morton, S.A.; Yu, S.W.; Komesu, T.; Waddill, G.D.; van der Laan, G.; Kutepov, A.L.

    2008-10-30

    The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy, x-ray absorption spectroscopy, electron energy loss spectroscopy, Fano Effect measurements, and Bremstrahlung Isochromat Spectroscopy, including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples.

  15. Experimental Benchmarking of Pu Electronic Structure

    SciTech Connect

    Tobin, J G; Moore, K T; Chung, B W; Wall, M A; Schwartz, A J; Ebbinghaus, B B; Butterfield, M T; Teslich, Jr., N E; Bliss, R A; Morton, S A; Yu, S W; Komesu, T; Waddill, G D; der Laan, G v; Kutepov, A L

    2005-10-13

    The standard method to determine the band structure of a condensed phase material is to (1) obtain a single crystal with a well defined surface and (2) map the bands with angle resolved photoelectron spectroscopy (occupied or valence bands) and inverse photoelectron spectroscopy (unoccupied or conduction bands). Unfortunately, in the case of Pu, the single crystals of Pu are either nonexistent, very small and/or having poorly defined surfaces. Furthermore, effects such as electron correlation and a large spin-orbit splitting in the 5f states have further complicated the situation. Thus, we have embarked upon the utilization of unorthodox electron spectroscopies, to circumvent the problems caused by the absence of large single crystals of Pu with well-defined surfaces. Our approach includes the techniques of resonant photoelectron spectroscopy [1], x-ray absorption spectroscopy [1,2,3,4], electron energy loss spectroscopy [2,3,4], Fano Effect measurements [5], and Bremstrahlung Isochromat Spectroscopy [6], including the utilization of micro-focused beams to probe single-crystallite regions of polycrystalline Pu samples. [2,3,6

  16. Electronic-structural dynamics in graphene.

    PubMed

    Gierz, Isabella; Cavalleri, Andrea

    2016-09-01

    We review our recent time- and angle-resolved photoemission spectroscopy experiments, which measure the transient electronic structure of optically driven graphene. For pump photon energies in the near infrared ([Formula: see text]), we have discovered the formation of a population-inverted state near the Dirac point, which may be of interest for the design of THz lasing devices and optical amplifiers. At lower pump photon energies ([Formula: see text]), for which interband absorption is not possible in doped samples, we find evidence for free carrier absorption. In addition, when mid-infrared pulses are made resonant with an infrared-active in-plane phonon of bilayer graphene ([Formula: see text]), a transient enhancement of the electron-phonon coupling constant is observed, providing interesting perspective for experiments that report light-enhanced superconductivity in doped fullerites in which a similar lattice mode was excited. All the studies reviewed here have important implications for applications of graphene in optoelectronic devices and for the dynamical engineering of electronic properties with light.

  17. Electronic-structural dynamics in graphene

    PubMed Central

    Gierz, Isabella; Cavalleri, Andrea

    2016-01-01

    We review our recent time- and angle-resolved photoemission spectroscopy experiments, which measure the transient electronic structure of optically driven graphene. For pump photon energies in the near infrared (ℏωpump=950 meV), we have discovered the formation of a population-inverted state near the Dirac point, which may be of interest for the design of THz lasing devices and optical amplifiers. At lower pump photon energies (ℏωpump<400 meV), for which interband absorption is not possible in doped samples, we find evidence for free carrier absorption. In addition, when mid-infrared pulses are made resonant with an infrared-active in-plane phonon of bilayer graphene (ℏωpump=200 meV), a transient enhancement of the electron-phonon coupling constant is observed, providing interesting perspective for experiments that report light-enhanced superconductivity in doped fullerites in which a similar lattice mode was excited. All the studies reviewed here have important implications for applications of graphene in optoelectronic devices and for the dynamical engineering of electronic properties with light. PMID:27822486

  18. The CECAM Electronic Structure Library: community-driven development of software libraries for electronic structure simulations

    NASA Astrophysics Data System (ADS)

    Oliveira, Micael

    The CECAM Electronic Structure Library (ESL) is a community-driven effort to segregate shared pieces of software as libraries that could be contributed and used by the community. Besides allowing to share the burden of developing and maintaining complex pieces of software, these can also become a target for re-coding by software engineers as hardware evolves, ensuring that electronic structure codes remain at the forefront of HPC trends. In a series of workshops hosted at the CECAM HQ in Lausanne, the tools and infrastructure for the project were prepared, and the first contributions were included and made available online (http://esl.cecam.org). In this talk I will present the different aspects and aims of the ESL and how these can be useful for the electronic structure community.

  19. Electronic structure of one-dimensional cuprates

    NASA Astrophysics Data System (ADS)

    Maiti, K.; Sarma, D. D.; Mizokawa, T.; Fujimori, A.

    1998-01-01

    We have investigated the electronic structures of one-dimensional antiferromagnetic insulators Ca2CuO3 and Sr2CuO3 combining electron spectroscopic measurements and various calculations. While calculations based on a local-spin-density approach for the real magnetic structures fail to yield an insulating state, from our experiments we estimate the intrinsic band gaps in these materials to be about 1.7 eV (Ca2CuO3) and 1.5 eV (Sr2CuO3). Analysis of the core-level and the valence-band spectra in terms of model many-body Hamiltonians show that the charge-transfer energy Δ for these one-dimensional systems is significantly smaller than other cuprates, such as the high-Tc oxides (two-dimensional) and CuO (three-dimensional). Such a small Δ suggests the presence of the bare upper Hubbard band within the oxygen p bandwidth and thus provides an example of a correlated covalent insulator.

  20. Structure and navigation for electronic publishing

    NASA Astrophysics Data System (ADS)

    Tillinghast, John; Beretta, Giordano B.

    1998-01-01

    The sudden explosion of the World Wide Web as a new publication medium has given a dramatic boost to the electronic publishing industry, which previously was a limited market centered around CD-ROMs and on-line databases. While the phenomenon has parallels to the advent of the tabloid press in the middle of last century, the electronic nature of the medium brings with it the typical characteristic of 4th wave media, namely the acceleration in its propagation speed and the volume of information. Consequently, e-publications are even flatter than print media; Shakespeare's Romeo and Juliet share the same computer screen with a home-made plagiarized copy of Deep Throat. The most touted tool for locating useful information on the World Wide Web is the search engine. However, due to the medium's flatness, sought information is drowned in a sea of useless information. A better solution is to build tools that allow authors to structure information so that it can easily be navigated. We experimented with the use of ontologies as a tool to formulate structures for information about a specific topic, so that related concepts are placed in adjacent locations and can easily be navigated using simple and ergonomic user models. We describe our effort in building a World Wide Web based photo album that is shared among a small network of people.

  1. Electronic structure of FeS

    NASA Astrophysics Data System (ADS)

    Miao, J.; Niu, X. H.; Xu, D. F.; Yao, Q.; Chen, Q. Y.; Ying, T. P.; Li, S. Y.; Fang, Y. F.; Zhang, J. C.; Ideta, S.; Tanaka, K.; Xie, B. P.; Feng, D. L.; Chen, Fei

    2017-05-01

    Here we report the electronic structure of FeS, a recently identified iron-based superconductor. Our high-resolution angle-resolved photoemission spectroscopy studies show two holelike (α and β ) and two electronlike (η and δ ) Fermi pockets around the Brillouin zone center and corner, respectively, all of which exhibit moderate dispersion along kz. However, a third holelike band (γ ) is not observed, which is expected around the zone center from band calculations and is common in iron-based superconductors. Since this band has the highest renormalization factor and is known to be the most vulnerable to defects, its absence in our data is likely due to defect scattering—and yet superconductivity can exist without coherent quasiparticles in the γ band. This may help resolve the current controversy on the superconducting gap structure of FeS. Moreover, by comparing the β bandwidths of various iron chalcogenides, including FeS, FeSe1 -xSx , FeSe, and FeSe1 -xTex , we find that the β bandwidth of FeS is the broadest. However, the band renormalization factor of FeS is still quite large, when compared with the band calculations, which indicates sizable electron correlations. This explains why the unconventional superconductivity can persist over such a broad range of isovalent substitution in FeSe1 -xTex and FeSe1 -xSx .

  2. Multigrid Methods in Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Briggs, Emil

    1996-03-01

    Multigrid techniques have become the method of choice for a broad range of computational problems. Their use in electronic structure calculations introduces a new set of issues when compared to traditional plane wave approaches. We have developed a set of techniques that address these issues and permit multigrid algorithms to be applied to the electronic structure problem in an efficient manner. In our approach the Kohn-Sham equations are discretized on a real-space mesh using a compact representation of the Hamiltonian. The resulting equations are solved directly on the mesh using multigrid iterations. This produces rapid convergence rates even for ill-conditioned systems with large length and/or energy scales. The method has been applied to both periodic and non-periodic systems containing over 400 atoms and the results are in very good agreement with both theory and experiment. Example applications include a vacancy in diamond, an isolated C60 molecule, and a 64-atom cell of GaN with the Ga d-electrons in valence which required a 250 Ry cutoff. A particular strength of a real-space multigrid approach is its ready adaptability to massively parallel computer architectures. The compact representation of the Hamiltonian is especially well suited to such machines. Tests on the Cray-T3D have shown nearly linear scaling of the execution time up to the maximum number of processors (512). The MPP implementation has been used for studies of a large Amyloid Beta Peptide (C_146O_45N_42H_210) found in the brains of Alzheimers disease patients. Further applications of the multigrid method will also be described. (in collaboration D. J. Sullivan and J. Bernholc)

  3. Structural, electronic and magnetic properties of binary transition metal aluminum clusters: absence of electronic shell structure.

    PubMed

    Chauhan, Vikas; Singh, Akansha; Majumder, Chiranjib; Sen, Prasenjit

    2014-01-08

    Single Cr, Mn, Fe, Co and Ni doped Al clusters having up to 12 Al atoms are studied using density functional methods. The global minima of structure for all the clusters are identified, and their relative stability and electronic and magnetic properties are studied. FeAl4 and CoAl3 are found to have enhanced stability and aromatic behavior. In contrast to binary transition metal alkali and transition metal alkaline earth clusters, spherical shell models cannot describe the electronic structure of transition metal aluminum clusters.

  4. Electronic Structure and Bonding in Complex Biomolecule

    NASA Astrophysics Data System (ADS)

    Ouyang, Lizhi

    2005-03-01

    For over a century vitamin B12 and its enzyme cofactor derivates have persistently attracted research efforts for their vital biological role, unique Co-C bonding, rich red-ox chemistry, and recently their candidacies as drug delivery vehicles etc. However, our understanding of this complex metalorganic molecule's efficient enzyme activated catalytic power is still controversial. We have for the first time calculated the electronic structure, Mulliken effective charge and bonding of a whole Vitamin B12 molecule without any structural simplification by first- principles approaches based on density functional theory using structures determined by high resolution X-ray diffraction. A partial density of states analysis shows excellent agreement with X-ray absorption data and has been used successfully to interpret measured optical absorption spectra. Mulliken bonding analysis of B12 and its derivatives reveal noticeable correlations between the two axial ligands which could be exploited by the enzyme to control the catalytic process. Our calculated X-ray near edge structure of B12 and its derivates using Slater's transition state theory are also in good agreement with experiments. The same approach has been applied to other B12 derivatives, ferrocene peptides, and recently DNA molecules.

  5. Electronic structure of Ca, Sr, and Ba under pressure.

    NASA Technical Reports Server (NTRS)

    Animalu, A. O. E.; Heine, V.; Vasvari, B.

    1967-01-01

    Electronic band structure calculations phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure electronic band structure calculations for fcc phase of Ca, Sr and Ba over wide range of atomic volumes under pressure

  6. Study of electronic structures of solids with strongly interacting electrons

    NASA Astrophysics Data System (ADS)

    Su, Yen-Sheng

    This work contains studies of two classes of perovskite transition metal oxides. The first class is the layered perovskite cuprates and the related nickelate. The second class is the three dimensional perovskite manganites. Both model and ab initio calculations are carried out for the two classes of systems. The dissertation is therefore divided into the following four parts. The first part is about the 3-band Hubbard model. The model is commonly used for describing the electronic properties of the important CuO2 layers in the crystals of high-Tc superconducting cuprates, such as doped La2CuO4 and YBa2Cu3O 7. The straightforward perturbation expansion on the model taking tpd/ɛpd (~0.36 for the cuprates) as the small parameter does not converge. In this work, I show that there exist canonical transformations on the model Hamiltonian such that the perturbation expansion based on the transformed Hamiltonians converges. In the second part, crystal Hartree-Fock calculations are carried out for La2NiO4 and La2CuO4. The results predict correctly that these two materials are antiferromagnetic insulators, in contrast to the wrong predictions made by the density functional calculations using the local spin density approximation (LSDA). The spin form factors of the materials are also calculated. The results agree with previous theoretical works using an embedded cluster model. The calculated spin form factor of La2CuO4 is consistent with the few experimental data currently available, while the results for La2NiO4 show a large discrepancy between theory and experiment. We question the accuracy of the experimental results of La2NiO4 and call for more experiments to settle the issue. In the third part, crystal Hartree-Fock calculations are carried out for LaMnO3. Our main focus is on the magnetic and orbital orderings, the effect of the crystal distortion from the cubic perovskite structure, and the analysis of the projected density of states. In addition, we also find

  7. Reversible Hydrogen Storage Materials – Structure, Chemistry, and Electronic Structure

    SciTech Connect

    Robertson, Ian M.; Johnson, Duane D.

    2014-06-21

    To understand the processes involved in the uptake and release of hydrogen from candidate light-weight metal hydride storage systems, a combination of materials characterization techniques and first principle calculation methods have been employed. In addition to conventional microstructural characterization in the transmission electron microscope, which provides projected information about the through thickness microstructure, electron tomography methods were employed to determine the three-dimensional spatial distribution of catalyst species for select systems both before and after dehydrogenation. Catalyst species identification as well as compositional analysis of the storage material before and after hydrogen charging and discharging was performed using a combination of energy dispersive spectroscopy, EDS, and electron energy loss spectroscopy, EELS. The characterization effort was coupled with first-principles, electronic-structure and thermodynamic techniques to predict and assess meta-stable and stable phases, reaction pathways, and thermodynamic and kinetic barriers. Systems studied included:NaAlH4, CaH2/CaB6 and Ca(BH4)2, MgH2/MgB2, Ni-Catalyzed Magnesium Hydride, TiH2-Catalyzed Magnesium Hydride, LiBH4, Aluminum-based systems and Aluminum

  8. Electronic band structure of defect chalcopyrites

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaoshu; Lambrecht, Walter R. L.

    2001-03-01

    The defect chalcopyrites of chemical composition II-III-VI4 in which II, III and VI mean group-II elements such as Cd or Hg, group-III elements such as Al and Ga and group-VI elements such as S, Se, Te, form an interesting family of semiconductor compounds with potential nonlinear optical applications. They can be thought of as derived from the regular I-III-VI2 chalcopyrites by doubling the formula unit and replacing the group I element, for example, Ag by the group-II element and a vacancy in an ordered manner. The chalcopyrites themselves are derived from II-VI compounds by replacing the group-II by a group I and a group-III element. In this contribution we present electronic band structure calculations of some of these compounds, calculated using the linear muffin-tin orbital method combined with the local density functional approximation. We discuss the relation of the band structures of the corresponding zincblende, chalcopyrite and defect chalcopyrite compounds. In particular, the role of the group I or group II d-band energy will be shown to be important. The trends with chemical substutions and the effects of structural distortions c/a and internal parameters accompanying the chemical distortion will be discussed.

  9. Electron Liquids in Semiconductor Quantum Structures

    SciTech Connect

    Aron Pinczuk

    2009-05-25

    The groups led by Stormer and Pinczuk have focused this project on goals that seek the elucidation of novel many-particle effects that emerge in two-dimensional electron systems (2DES) as the result from fundamental quantum interactions. This experimental research is conducted under extreme conditions of temperature and magnetic field. From the materials point of view, the ultra-high mobility systems in GaAs/AlGaAs quantum structures continue to be at the forefront of this research. The newcomer materials are based on graphene, a single atomic layer of graphite. The graphene research is attracting enormous attention from many communities involved in condensed matter research. The investigated many-particle phenomena include the integer and fractional quantum Hall effect, composite fermions, and Dirac fermions, and a diverse group of electron solid and liquid crystal phases. The Stormer group performed magneto-transport experiments and far-infrared spectroscopy, while the Pinczuk group explores manifestations of such phases in optical spectra.

  10. Silicene oxides: formation, structures and electronic properties

    PubMed Central

    Wang, Rong; Pi, Xiaodong; Ni, Zhenyi; Liu, Yong; Lin, Shisheng; Xu, Mingsheng; Yang, Deren

    2013-01-01

    Understanding the oxidation of silicon has been critical to the success of all types of silicon materials, which are the cornerstones of modern silicon technologies. For the recent experimentally obtained two-dimensional silicene, oxidation should also be addressed to enable the development of silicene-based devices. Here we focus on silicene oxides (SOs) that result from the partial or full oxidation of silicene in the framework of density functional theory. It is found that the formation of SOs greatly depends on oxidation conditions, which concern the oxidizing agents of oxygen and hydroxyl. The honeycomb lattice of silicene may be preserved, distorted or destroyed after oxidation. The charge state of Si in partially oxidized silicene ranges from +1 to +3, while that in fully oxidized silicene is +4. Metals, semimetals, semiconductors and insulators can all be found among the SOs, which show a wide spectrum of electronic structures. Our work indicates that the oxidation of silicene should be exquisitely controlled to obtain specific SOs with desired electronic properties. PMID:24336409

  11. Electronic structures of ytterbocene-imine complexes

    SciTech Connect

    Da Re, R. E.; Kuehl, C. J.; John, K. D.; Morris, D. E.

    2004-01-01

    The electronic structures of complexes of the form [(C{sub 5}Me{sub 5}){sub 2}Yb(L)]{sup +/0} (L = bipyridine, phenanthroline, terpyridine) have been probed using cyclic voltammetry and electronic spectroscopy. Remarkably, the voltammetric data reveal that the imine-based LUMO is stabilized and the redox-active metal f orbital is destabilized by ca. 1 V each upon formation of the ytterbocene-imine adduct, which is presumably responsible for the [(f){sup 13}({pi}*(L)){sup 1}] charge-transfer ground state characteristic of these complexes. The ca. 0.8 V separation between ligand-based oxidation and metal-based reduction waves for each ytterbocene adduct correlates with the energy of its optically promoted {pi}*(L)-f(Yb) charge transfer (LMCT) transition (ca. 5000 cm{sup -1}). The coupling between this LMCT excited state and the {sup 2}F{sub 7/2} ground and {sup 2}F{sub 5/2} excited states of Yb(III) leads to unusually large intensities ({var_epsilon} {approx} 1000) for the metal-localized f-f bands, which will be discussed in the context of an intensity borrowing mechanism that invokes exchange between the ligand-based {sup 2}S and metal-based {sup 2}F spin states.

  12. Electronic structures of reconstructed zigzag silicene nanoribbons

    SciTech Connect

    Ding, Yi E-mail: wangyanli-04@tsinghua.org.cn; Wang, Yanli E-mail: wangyanli-04@tsinghua.org.cn

    2014-02-24

    Edge states and magnetism are crucial for spintronic applications of nanoribbons. Here, using first-principles calculations, we explore structural stabilities and electronic properties of zigzag silicene nanoribbons (ZSiNRs) with Klein and pentagon-heptagon reconstructions. Comparing to unreconstructed zigzag edges, deformed bare pentagon-heptagon ones are favored under H-poor conditions, while H-rich surroundings stabilize di-hydrogenated Klein edges. These Klein edges have analogous magnetism to zigzag ones, which also possess the electric-field-induced half-metallicity of nanoribbons. Moreover, diverse magnetic states can be achieved by asymmetric Klein and zigzag edges into ZSiNRs, which could be transformed from antiferromagnetic-semiconductors to bipolar spin-gapless-semiconductors and ferromagnetic-metals depending on edge hydrogenations.

  13. Electronic structures of reconstructed zigzag silicene nanoribbons

    NASA Astrophysics Data System (ADS)

    Ding, Yi; Wang, Yanli

    2014-02-01

    Edge states and magnetism are crucial for spintronic applications of nanoribbons. Here, using first-principles calculations, we explore structural stabilities and electronic properties of zigzag silicene nanoribbons (ZSiNRs) with Klein and pentagon-heptagon reconstructions. Comparing to unreconstructed zigzag edges, deformed bare pentagon-heptagon ones are favored under H-poor conditions, while H-rich surroundings stabilize di-hydrogenated Klein edges. These Klein edges have analogous magnetism to zigzag ones, which also possess the electric-field-induced half-metallicity of nanoribbons. Moreover, diverse magnetic states can be achieved by asymmetric Klein and zigzag edges into ZSiNRs, which could be transformed from antiferromagnetic-semiconductors to bipolar spin-gapless-semiconductors and ferromagnetic-metals depending on edge hydrogenations.

  14. Multilevel domain decomposition for electronic structure calculations

    SciTech Connect

    Barrault, M. . E-mail: maxime.barrault@edf.fr; Cances, E. . E-mail: cances@cermics.enpc.fr; Hager, W.W. . E-mail: hager@math.ufl.edu; Le Bris, C. . E-mail: lebris@cermics.enpc.fr

    2007-03-01

    We introduce a new multilevel domain decomposition method (MDD) for electronic structure calculations within semi-empirical and density functional theory (DFT) frameworks. This method iterates between local fine solvers and global coarse solvers, in the spirit of domain decomposition methods. Using this approach, calculations have been successfully performed on several linear polymer chains containing up to 40,000 atoms and 200,000 atomic orbitals. Both the computational cost and the memory requirement scale linearly with the number of atoms. Additional speed-up can easily be obtained by parallelization. We show that this domain decomposition method outperforms the density matrix minimization (DMM) method for poor initial guesses. Our method provides an efficient preconditioner for DMM and other linear scaling methods, variational in nature, such as the orbital minimization (OM) procedure.

  15. Structure, Stability and Electronic Properties of Nanodiamonds

    NASA Astrophysics Data System (ADS)

    Galli, Giulia

    Diamond nanoparticles, or nanodiamonds, have the most disparate origins. They are found in crude oil at concentrations up to thousands of parts per million, in meteorites, interstellar dust, and protoplanetary nebulae, as well as in certain sediment layers on Earth. They can also be produced in the laboratory by chemical vapor deposition or by detonating high explosive materials. Here we summarize what is known about nanodiamond sources; we then describe the atomic and electronic structure, and stability of diamond nanoparticles, highlighting the role of theory and computations in understanding and predicting their properties. Possible technological applications of thin films composed of nanodiamonds, ranging from micro-resonators to substrates for drug delivery, are briefly discussed.

  16. Scattering of an electronic wave packet by a one-dimensional electron-phonon-coupled structure

    NASA Astrophysics Data System (ADS)

    Brockt, C.; Jeckelmann, E.

    2017-02-01

    We investigate the scattering of an electron by phonons in a small structure between two one-dimensional tight-binding leads. This model mimics the quantum electron transport through atomic wires or molecular junctions coupled to metallic leads. The electron-phonon-coupled structure is represented by the Holstein model. We observe permanent energy transfer from the electron to the phonon system (dissipation), transient self-trapping of the electron in the electron-phonon-coupled structure (due to polaron formation and multiple reflections at the structure edges), and transmission resonances that depend strongly on the strength of the electron-phonon coupling and the adiabaticity ratio. A recently developed TEBD algorithm, optimized for bosonic degrees of freedom, is used to simulate the quantum dynamics of a wave packet launched against the electron-phonon-coupled structure. Exact results are calculated for a single electron-phonon site using scattering theory and analytical approximations are obtained for limiting cases.

  17. Spatially resolved electronic structure of twisted graphene

    NASA Astrophysics Data System (ADS)

    Yao, Qirong; van Bremen, Rik; Slotman, Guus J.; Zhang, Lijie; Haartsen, Sebastiaan; Sotthewes, Kai; Bampoulis, Pantelis; de Boeij, Paul L.; van Houselt, Arie; Yuan, Shengjun; Zandvliet, Harold J. W.

    2017-06-01

    We have used scanning tunneling microscopy and spectroscopy to resolve the spatial variation of the density of states of twisted graphene layers on top of a highly oriented pyrolytic graphite substrate. Owing to the twist a moiré pattern develops with a periodicity that is substantially larger than the periodicity of a single layer graphene. The twisted graphene layer has electronic properties that are distinctly different from that of a single layer graphene due to the nonzero interlayer coupling. For small twist angles (˜1∘-3 .5∘) the integrated differential conductivity spectrum exhibits two well-defined Van Hove singularities. Spatial maps of the differential conductivity that are recorded at energies near the Fermi level exhibit a honeycomb structure that is comprised of two inequivalent hexagonal sublattices. For energies | E -EF |>0.3 eV the hexagonal structure in the differential conductivity maps vanishes. We have performed tight-binding calculations of the twisted graphene system using the propagation method, in which a third graphene layer is added to mimic the substrate. This third layer lowers the symmetry and explains the development of the two hexagonal sublattices in the moiré pattern. Our experimental results are in excellent agreement with the tight-binding calculations.

  18. Nonlinearity in structural and electronic materials

    SciTech Connect

    Bishop, A.R.; Beardmore, K.M.; Ben-Naim, E.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project strengthens a nonlinear technology base relevant to a variety of problems arising in condensed matter and materials science, and applies this technology to those problems. In this way the controlled synthesis of, and experiments on, novel electronic and structural materials provide an important focus for nonlinear science, while nonlinear techniques help advance the understanding of the scientific principles underlying the control of microstructure and dynamics in complex materials. This research is primarily focused on four topics: (1) materials microstructure: growth and evolution, and porous media; (2) textures in elastic/martensitic materials; (3) electro- and photo-active polymers; and (4) ultrafast photophysics in complex electronic materials. Accomplishments included the following: organization of a ``Nonlinear Materials`` seminar series and international conferences including ``Fracture, Friction and Deformation,`` ``Nonequilibrium Phase Transitions,`` and ``Landscape Paradigms in Physics and Biology``; invited talks at international conference on ``Synthetic Metals,`` ``Quantum Phase Transitions,`` ``1996 CECAM Euroconference,`` and the 1995 Fall Meeting of the Materials Research Society; large-scale simulations and microscopic modeling of nonlinear coherent energy storage at crack tips and sliding interfaces; large-scale simulation and microscopic elasticity theory for precursor microstructure and dynamics at solid-solid diffusionless phase transformations; large-scale simulation of self-assembling organic thin films on inorganic substrates; analysis and simulation of smoothing of rough atomic surfaces; and modeling and analysis of flux pattern formation in equilibrium and nonequilibrium Josephson junction arrays and layered superconductors.

  19. RESCU: A real space electronic structure method

    NASA Astrophysics Data System (ADS)

    Michaud-Rioux, Vincent; Zhang, Lei; Guo, Hong

    2016-02-01

    In this work we present RESCU, a powerful MATLAB-based Kohn-Sham density functional theory (KS-DFT) solver. We demonstrate that RESCU can compute the electronic structure properties of systems comprising many thousands of atoms using modest computer resources, e.g. 16 to 256 cores. Its computational efficiency is achieved from exploiting four routes. First, we use numerical atomic orbital (NAO) techniques to efficiently generate a good quality initial subspace which is crucially required by Chebyshev filtering methods. Second, we exploit the fact that only a subspace spanning the occupied Kohn-Sham states is required, and solving accurately the KS equation using eigensolvers can generally be avoided. Third, by judiciously analyzing and optimizing various parts of the procedure in RESCU, we delay the O (N3) scaling to large N, and our tests show that RESCU scales consistently as O (N2.3) from a few hundred atoms to more than 5000 atoms when using a real space grid discretization. The scaling is better or comparable in a NAO basis up to the 14,000 atoms level. Fourth, we exploit various numerical algorithms and, in particular, we introduce a partial Rayleigh-Ritz algorithm to achieve efficiency gains for systems comprising more than 10,000 electrons. We demonstrate the power of RESCU in solving KS-DFT problems using many examples running on 16, 64 and/or 256 cores: a 5832 Si atoms supercell; a 8788 Al atoms supercell; a 5324 Cu atoms supercell and a small DNA molecule submerged in 1713 water molecules for a total 5399 atoms. The KS-DFT is entirely converged in a few hours in all cases. Our results suggest that the RESCU method has reached a milestone of solving thousands of atoms by KS-DFT on a modest computer cluster.

  20. Experimental and theoretical electronic structure of quinacridone

    NASA Astrophysics Data System (ADS)

    Lüftner, Daniel; Refaely-Abramson, Sivan; Pachler, Michael; Resel, Roland; Ramsey, Michael G.; Kronik, Leeor; Puschnig, Peter

    2014-08-01

    The energy positions of frontier orbitals in organic electronic materials are often studied experimentally by (inverse) photoemission spectroscopy and theoretically within density functional theory. However, standard exchange-correlation functionals often result in too small fundamental gaps, may lead to wrong orbital energy ordering, and do not capture polarization-induced gap renormalization. Here we examine these issues and a strategy for overcoming them by studying the gas phase and bulk electronic structure of the organic molecule quinacridone (5Q), a promising material with many interesting properties for organic devices. Experimentally we perform angle-resolved photoemission spectroscopy (ARUPS) on thin films of the crystalline β phase of 5Q. Theoretically we employ an optimally tuned range-separated hybrid functional (OT-RSH) within density functional theory. For the gas phase molecule, our OT-RSH result for the ionization potential (IP) represents a substantial improvement over the semilocal PBE and the PBE0 hybrid functional results, producing an IP in quantitative agreement with experiment. For the bulk crystal we take into account the correct screening in the bulk, using the recently developed optimally tuned screened range-separated hybrid (OT-SRSH) approach, while retaining the optimally tuned parameters for the range separation and the short-range Fock exchange. This leads to a band gap narrowing due to polarization effects and results in a valence band spectrum in excellent agreement with experimental ARUPS data, with respect to both peak positions and heights. Finally, full-frequency G0W0 results based on a hybrid functional starting point are shown to agree with the OT-SRSH approach, improving substantially on the PBE-starting point.

  1. Experimental Electronic Structure of Be_2C

    NASA Astrophysics Data System (ADS)

    Tsuei, K.-D.; Tzeng, C.-T.; Lo, W.-S.; Yuh, J.-Y.; Chu, R.-Y.

    1998-03-01

    The insulating Be_2C thin films have been successfully prepared on a Be surface. LEED pattern shows that the films have (100) orientation along the surface normal. We have used angle-resolved photoemission to map out the occupied bulk band dispersion along Γ-X direction. The band gap edges at X point are 6.5 and 11.7 eV below the valence band maximum which is located at Γ point. These values are in good agreement with theoretical calculations. [1,2] In addition two surface states are observed. One is 0.5 eV above VBM. The other is located at 9.5 eV below VBM in the middle of the band gap at X point. The unoccupied bulk electronic structure is measured using C 1s near edge x-ray absorption spectroscopy. The spectrum is similar in shape to an energy loss spectrum [3] and p-PDOS from the calculation, [2] while the relative peak positions are different. [1] J.L. Corkill and M.L. Cohen, Phy. Rev. B 48, 17138 (1993). [2] C.H. Lee, W.R. Lambrecht, and B. Segall, Phys. Rev. B 51, 10392 (1995). [3] M.M. Disko, J.C.H. Spence, O.F. Sankey, and D. Saldin, Phys. Rev. B 33, 5642 (1986).

  2. Electronic structure of cyclohexane on Ni(111)

    NASA Astrophysics Data System (ADS)

    Huber, W.; Zebisch, P.; Bornemann, T.; Steinrück, H.-P.

    1990-12-01

    Mono- and multilayers of cyclohexane adsorbed on a Ni(111) surface have been studied by angle resolved UV photoelectron spectroscopy (ARUPS) using linearly polarized synchrotron radiation, temperature programmed desorption (TPD) and low energy electron diffraction (LEED). Cyclohexane is molecularly adsorbed on Ni(111) at temperatures below 200 K and desorbs without dehydrogenation. Desorption from the first layer exhibits zeroth-order desorption behavior indicative of desorption from two-dimensional islands. The first layer exhibits a well ordered ( 7 × 7)R19.1° LEED structure starting at coverages of 0.04 ML up to the saturation coverage of 0.143 ML, also indicative of island formation. For cyclohexane in the first layer the binding energies of the various molecular levels are, apart from an overall shift to smaller values by 0.7 eV, within ± 0.1 eV identical to those of condensed cyclohexane. This absence of chemical shifts indicates that there is only very weak (if any) chemical interaction between cyclohexane and the Ni(111) surface. From the normal emission ARUPS spectra and symmetry selection rules we conclude that the symmetry of cyclohexane adsorbed on Ni(111) is lower than C 3v. This is attributed to a slightly inclined adsorption geometry with intramolecular C 3v symmetry of the adsorbed molecules.

  3. Electronic Structure and Dynamics of Nitrosyl Porphyrins

    PubMed Central

    Scheidt, W. Robert; Barabanschikov, Alexander; Pavlik, Jeffrey W.; Silvernail, Nathan J.; Sage, J. Timothy

    2010-01-01

    fully successful at capturing the interaction between the axial NO and imidazole ligands. This supports previous conclusions that hemeNO complexes exhibit an unusual degree of variability with respect to computational method, and we speculate that this variability hints at a genuine electronic instability that a protein can exploit to tune reactivity. We anticipate that ongoing characterization of heme-NO complexes will deepen our understanding of their structure, dynamics, and reactivity. PMID:20666384

  4. Electronic structure and dynamics of nitrosyl porphyrins.

    PubMed

    Scheidt, W Robert; Barabanschikov, Alexander; Pavlik, Jeffrey W; Silvernail, Nathan J; Sage, J Timothy

    2010-07-19

    functionals are not fully successful at capturing the trans interaction between the axial NO and imidazole ligands. This supports previous conclusions that heme-NO complexes exhibit an unusual degree of variability with respect to the computational method, and we speculate that this variability hints at a genuine electronic instability that a protein can exploit to tune its reactivity. We anticipate that ongoing characterization of heme-NO complexes will deepen our understanding of their structure, dynamics, and reactivity.

  5. Probing Actinide Electronic Structure through Pu Cluster Calculations

    SciTech Connect

    Ryzhkov, Mickhail V.; Mirmelstein, Alexei; Yu, Sung-Woo; Chung, Brandon W.; Tobin, James G.

    2013-02-26

    The calculations for the electronic structure of clusters of plutonium have been performed, within the framework of the relativistic discrete-variational method. Moreover, these theoretical results and those calculated earlier for related systems have been compared to spectroscopic data produced in the experimental investigations of bulk systems, including photoelectron spectroscopy. Observation of the changes in the Pu electronic structure as a function of size provides powerful insight for aspects of bulk Pu electronic structure.

  6. Graph-based linear scaling electronic structure theory

    NASA Astrophysics Data System (ADS)

    Niklasson, Anders M. N.; Mniszewski, Susan M.; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Mohd-Yusof, Jamal; Germann, Timothy C.; Wall, Michael E.; Bock, Nicolas; Rubensson, Emanuel H.; Djidjev, Hristo

    2016-06-01

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  7. Probing Actinide Electronic Structure through Pu Cluster Calculations

    DOE PAGES

    Ryzhkov, Mickhail V.; Mirmelstein, Alexei; Yu, Sung-Woo; ...

    2013-02-26

    The calculations for the electronic structure of clusters of plutonium have been performed, within the framework of the relativistic discrete-variational method. Moreover, these theoretical results and those calculated earlier for related systems have been compared to spectroscopic data produced in the experimental investigations of bulk systems, including photoelectron spectroscopy. Observation of the changes in the Pu electronic structure as a function of size provides powerful insight for aspects of bulk Pu electronic structure.

  8. Graph-based linear scaling electronic structure theory.

    PubMed

    Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo

    2016-06-21

    We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.

  9. Dramatic changes in electronic structure revealed by fractionally charged nuclei

    NASA Astrophysics Data System (ADS)

    Cohen, Aron J.; Mori-Sánchez, Paula

    2014-01-01

    Discontinuous changes in the electronic structure upon infinitesimal changes to the Hamiltonian are demonstrated. These are revealed in one and two electron molecular systems by full configuration interaction (FCI) calculations when the realm of the nuclear charge is extended to be fractional. FCI electron densities in these systems show dramatic changes in real space and illustrate the transfer, hopping, and removal of electrons. This is due to the particle nature of electrons seen in stretched systems and is a manifestation of an energy derivative discontinuity at constant number of electrons. Dramatic errors of density functional theory densities are seen in real space as this physics is missing from currently used approximations. The movements of electrons in these simple systems encapsulate those in real physical processes, from chemical reactions to electron transport and pose a great challenge for the development of new electronic structure methods.

  10. Affordable, Lightweight, Highly Conductive Polymer Composite Electronic Packaging Structures

    DTIC Science & Technology

    1996-06-01

    matrix composite materials and how various material designs can be utilized in various structural/thermal configurations to produce electronic housings and...conductive polymer composite electronic packaging (i.e., electronic housings and heat sinks). The research will center on predominately polymer

  11. Electronic spectroscopy and electronic structure of diatomic CrC

    NASA Astrophysics Data System (ADS)

    Brugh, Dale J.; Morse, Michael D.; Kalemos, Apostolos; Mavridis, Aristides

    2010-07-01

    Optical spectra of jet-cooled diatomic CrC have been recorded in the near infrared region using resonant two-photon ionization spectroscopy combined with mass-selective detection of the resulting ions. Several weak transitions have been observed, along with one relatively strong band near 842 nm. Rotational resolution and analysis of this band confirms that the ground state is of Σ3- symmetry. Ab initio calculations have been performed that demonstrate that the ground state is highly multiconfigurational in nature, with a leading configuration of 1σ22σ21π41δ2 for the ten valence electrons. From the rotational analysis of the 842 nm Σ3-←X Σ3- band, the derived spectroscopic constants of the ground and excited states for C52rC12 are B0″=0.659 97(49), λ0″=6.74(24), γ0″=-0.066(20), T0=11 870.7660(65), B'=0.608 29(39), λ'=7.11(24), and γ'=0.144(17) cm-1. Here and throughout this article, 1σ error limits are reported in parentheses. These rotational constants may be inverted to provide the bond lengths in the ground and excited states, r0″=1.6188(6) Å and r'=1.6861(5) Å, respectively. Ab initio calculations show that the upper state is the third state of Σ3- symmetry.

  12. Velocity-space structure of runaway electrons

    SciTech Connect

    Fuchs, V.; Cairns, R.A.; Lashmore-Davies, C.N.; Shoucri, M.M.

    1986-09-01

    The region of velocity space is determined in which electron runaway occurs because of a dc electric field. Phase-space analysis of the relaxation equations describing test electrons, corroborated by two-dimensional (2-D) numerical integration of the Fokker--Planck equation, reveals that the Dreicer condition for runaway v-italic/sup 2//sub parallel/> or =(2+Z-italic/sub i-italic/)E-italic/sub c-italic//E-italic is only sufficient. A weaker condition v-italic/sup 2//sub parallel/> or =(2+Z-italic/sub i-italic/)/sup 1//sup ///sup 2/E-italic/sub c-italic//E-italic is established, and it is shown, in general, that runaway in velocity space only occurs for those electrons that are outside one of the separatrices of the relaxation equations. The scaling with v-italic/sub parallel/ of the parallel distribution function and of the perpendicular temperature is also derived.

  13. Lewis Structures Are Models for Predicting Molecular Structure, Not Electronic Structure

    NASA Astrophysics Data System (ADS)

    Purser, Gordon H.

    1999-07-01

    This article argues against a close relationship between Lewis dot structures and electron structure obtained from quantum mechanical calculations. Lewis structures are a powerful tool for structure prediction, though they are classical models of bonding and do not predict electronic structure. The "best" Lewis structures are those that, when combined with the VSEPR model, allow the accurate prediction of molecular properties, such as polarity, bond length, bond angle, and bond strength. These structures are achieved by minimizing formal charges within the molecule, even if it requires an expanded octet on atoms beyond the second period. Lewis structures that show an expanded octet do not imply full d-orbital involvement in the bonding. They suggest that the presence of low-lying d-orbitals is important in producing observed molecular structures. Based on this work, the presence of electron density, not a large separation in charge, is responsible for the short bond lengths and large angles in species containing nonmetal atoms from beyond the second period. This result contradicts results obtained from natural population analysis, a method that attempts to derive Lewis structures from molecular orbital calculations.

  14. The change of the electronic structure of alkali halide films on W(110) under electron bombardment

    NASA Astrophysics Data System (ADS)

    Dieckhoff, S.; Maus-Friedrichs, W.; Kempter, V.

    1992-03-01

    NaCl and Csl films of up to four layers were deposited onto W(110) surfaces and investigated by metastable impact electron spectroscopy (MIES), UPS and AES. The electronic structure of the films under electron bombardment was then studied by MIES/UPS. The results are compared with the corresponding ones obtained by thermal desorption spectroscopy (TDS). An interpretation of the results is attempted on the basis of existing theories for desorption induced by electronic transitions (DIET) of alkali halides.

  15. Variational fitting methods for electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Dunlap, Brett I.; Rösch, Notker; Trickey, S. B.

    2010-11-01

    We review the basics and the evolution of a powerful and widely applicable general approach to the systematic reduction of computational burden in many-electron calculations. Variational fitting of electron densities (either total or partial) has the great advantage, for quantum mechanical calculations, that it respects the stationarity property, which is at the heart of the success of the basis set expansion methods ubiquitous in computational chemistry and materials physics. The key point is easy. In a finite system, independent of whether the fitted charge distribution is constrained to contain the proper amount of charge, variational fitting guarantees that the quantum mechanical total energy retains the stationarity property. Thus, many-electron quantum mechanics with variational fitting of an electronic density in an incomplete density-fitting basis set behaves similarly as the exact quantum mechanical energy does when evaluated with an incomplete basis set to fit wavefunctions or spin-orbitals. Periodically bounded systems are a bit more subtle but the essential stationarity is preserved. This preservation of an exact property is quite distinct from truncation of the resolution of the identity in a basis. Variational fitting has proven to have benefits far beyond the original objective of making a Gaussian-orbital basis calculation of an early density functional computationally feasible. We survey many of those developments briefly, with guidance to the pertinent literature and a few remarks about the connections with Quantum Theory Project.

  16. Anionic substituent control of the electronic structure of aromatic nitrenes.

    PubMed

    Rau, Nathan J; Welles, Emily A; Wenthold, Paul G

    2013-01-16

    The electronic structures of phenylnitrenes with anionic π-donating substituents are investigated by using mass spectrometry and electronic structure calculations. Reactions of para-CH(2)(-)-substituted phenylnitrene, formed by dissociative deprotonation of p-azidotoluene, with CS(2) and NO indicate that it has a closed-shell singlet ground state, whereas reactions of p-oxidophenylnitrene formed by dissociative deprotonation of p-azidophenol indicate either a triplet ground state or a singlet with a small singlet-triplet splitting. The ground electronic state assignments based on ion reactivity are consistent with electronic structure calculations. The stability of the closed-shell singlet states in nitrenes is shown by Natural Resonance Theory to be very sensitive to the amount of deprotonated-imine character in the wave function, such that large changes in state energies can be achieved by small modifications of the electronic structure.

  17. Syntheses and electronic structures of decamethylmetallocenes

    SciTech Connect

    Robbins, J.L.

    1981-04-01

    The synthesis of decamethylmanganocene ((eta-C/sub 5/(CH/sub 3/)/sub 5/)/sub 2/Mn or (Me/sub 5/Cp)/sub 2/Mn)) is described. Magnetic susceptibility and electron paramagnetic resonance (EPR) studies show that (Me/sub 5/Cp)/sub 2/Mn is a low-spin, 17-electron compound with an orbitally degenerate, /sup 2/E/sub 2g/ (e/sub 2g//sup 3/ a/sub 1g//sup 2/) ground state. An x-ray crystallographic study of (Me/sub 5/Cp)/sub 2/Mn shows that it is a monomeric, D/sub 5d/ decamethylmetallocene with metal to ring carbon distances that are about 0.3 A shorter than those determined for high-spin manganocenes. The syntheses of new (Me/sub 5/Cp)/sub 2/M (M = Mg,V,Cr,Co, and Ni) and ((Me/sub 5/Cp)/sub 2/M)PF/sub 6/ (M = Cr,Co, and Ni) compounds are described. In addition, a preparative route to a novel, dicationic decamethylmetallocene, ((Me/sub 5/Cp)/sub 2/Ni)(PF/sub 6/)/sub 2/ is reported. Infrared, nuclear magnetic resonance, magnetic susceptibility, and/or x-ray crystallographic studies indicate that all the above compounds are D/sub 5d/ or D/sub 5h/ decamethylmetallocenes with low-spin electronic configurations. Cyclic voltammetry studies verify the reversibility and the one-electron nature of the (Me/sub 5/Cp)/sub 2/M ..-->.. ((Me/sub 5/Cp)/sub 2/M)/sup +/ (M = Cr,Mn,Fe,Co,Ni), ((Me/sub 5/Cp)/sub 2/Mn)/sup -/ ..-->.. (Me/sub 5/Cp)/sub 2/Mn and ((Me/sub 5/Cp)/sub 2/Ni)/sup +/ ..-->.. (Me/sub 5/Cp)/sub 2/Ni)/sup 2 +/ redox reactions. These studies reveal that the neutral decamethylmetallocenes are much more easily oxidized than their metallocene counterparts. This result attests to the electron-donating properties of the ten substituent methyl groups. Proton and carbon-13 NMR data are reported for the diamagnetic Mg(II), Mn(I), Fe(II), Co(III), and Ni(IV) decamethylmetallocenes and for ((Me/sub 5/Cp)/sub 2/V(CO)/sub 2/)/sup +/. The uv-visible absorption spectra of the 15-, 18- and 20- electron decamethylmetallocenes are also reported.

  18. Electronic structure and optical properties of solid C 60

    NASA Astrophysics Data System (ADS)

    Mattesini, M.; Ahuja, R.; Sa, L.; Hugosson, H. W.; Johansson, B.; Eriksson, O.

    2009-06-01

    The electronic structure and the optical properties of face-centered-cubic C 60 have been investigated by using an all-electron full-potential method. Our ab initio results show that the imaginary dielectric function for high-energy values looks very similar to that of graphite, revealing close electronic structure similarities between the two systems. We have also identified the origin of different peaks in the dielectric function of fullerene by means of the calculated electronic density of states. The computed optical spectrum compares fairly well with the available experimental data for the Vis-UV absorption spectrum of solid C 60.

  19. Study of the electronic structures of high T c cuprate superconductors by electron energy loss and secondary electron emission spectroscopies

    NASA Astrophysics Data System (ADS)

    Jayaram, V.; Kulkarni, G. U.; Rao, C. N. R.

    1989-10-01

    Energy loss spectra of superconducting YBa 2Cu 3O 6.9' Bi 1.5Pb 0.5Ca 2.5Sr 1.5Cu 3O 10+δ and Tl 2CaBa 2Cu 3O 8 obtained at primary electron energies in the 170-310 eV range show features reflecting the commonalities in their electronic structures. The relative intensity of the plasmon peak shows a marked drop across the transition temperature. Secondary electron emission spectra of the cuprates also reveal some features of the electronic structure.

  20. Electron Precipitation Associated with Small-Scale Auroral Structures

    NASA Astrophysics Data System (ADS)

    Michell, R.; Samara, M.; Grubbs, G. A., II; Hampton, D. L.; Bonnell, J. W.; Ogasawara, K.

    2014-12-01

    We present results from the Ground-to-Rocket Electrons Electrodynamics Correlative Experiment (GREECE) sounding rocket mission, where we combined high-resolution ground-based auroral imaging with high time-resolution precipitating electron measurements. The GREECE payload successfully launched from Poker Flat, Alaska on 03 March 2014 and reached an apogee of approximately 335 km. The narrow field-of-view auroral imaging was taken from Venetie, AK, which is directly under apogee. This enabled the small-scale auroral features at the magnetic footpoint of the rocket payload to be imaged in detail. The electron precipitation was measured with the Acute Precipitating Electron Spectrometer (APES) onboard the payload. Features in the electron data are matched up with their corresponding auroral structures and boundaries, enabling measurement of the exact electron distributions responsible for the specific small-scale auroral features. These electron distributions will then be used to infer what the potential electron acceleration processes were.

  1. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics.

    PubMed

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-31

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  2. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    PubMed Central

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-01-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics. PMID:27796343

  3. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    NASA Astrophysics Data System (ADS)

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  4. Multifunctional structural electronic packaging for smallsat spacecraft design

    SciTech Connect

    Davis, W.E.; Lee, E.; Bohner, R.; Carson, B.

    1996-03-01

    Future smallsat missions require sophisticated payloads and instrumentation that need to be packaged in a weight and volume constrained design. A high degree of signal processing performance coupled with less physical volume requires innovative electronics packaging concepts that achieve smaller area and volume, are lightweight and are highly reliable. This paper describes the development of a multifunctional structural electronics packaging approach that combines advanced electronics packaging with lightweight structures and thermal management technology by laminating printed circuits integrally into the structural facesheets/panels. The primary constituents are a sandwich structure comprised of: (1) Integrated circuits (ICs)/chip carriers or chips-on-film mounted on a multilayered PWB; (2) Carbon fiber composite constraining core layers laminated within the PWB itself, or on a carbon fiber composite internal facesheet; (3) a sandwich structure core that matches the thermal coefficient of expansion (TCE) of the electronics components; and, (4) an external radiating facesheet. {copyright} {ital 1996 American Institute of Physics.}

  5. Structural phase transition and electronic properties of NdBi

    SciTech Connect

    Sahu, Ashvini K.; Patiya, Jagdish; Sanyal, Sankar P.

    2015-06-24

    The structural and electronic properties of NdBi from an electronic structure calculation have been presented. The calculation is performed using self-consistent tight binding linear muffin tin orbital (TB-LMTO) method within the local density approximation (LDA). The calculated equilibrium structural parameters are in good agreement with the available experimental results. It is found that this compound shows metallic behavior under ambient condition and undergoes a structural phase transition from the NaCl structure to the CsCl structure at the pressure 20.1 GPa. The electronic structures of NdBi under pressure are investigated. It is found that NdBi have metallization and the hybridizations of atoms in NdBi under pressure become stronger.

  6. Electronic structure and magnetic anisotropy of CrO2

    NASA Astrophysics Data System (ADS)

    Toropova, Antonina; Savrasov, Sergej; Oudovenko, Viktor

    2005-03-01

    The problem of importance of strong correlations for the electronic structure, transport and magnetic properties of half--metallic ferromagnetic CrO2 is addressed by performing density functional based electronic structure calculations in the local spin density approximation (LSDA) as well as using the LSDA+U method. In both schemes we compute electronic structure, optical conductivity and magnetic anisotropy energy for chromium dioxide. It is shown that the corresponding low-- temperature experimental data are best fitted without accounting for the Hubbard U corrections. We conclude that the ordered phase of CrO2 is weakly correlated.

  7. Writing silica structures in liquid with scanning transmission electron microscopy.

    PubMed

    van de Put, Marcel W P; Carcouët, Camille C M C; Bomans, Paul H H; Friedrich, Heiner; de Jonge, Niels; Sommerdijk, Nico A J M

    2015-02-04

    Silica nanoparticles are imaged in solution with scanning transmission electron microscopy (STEM) using a liquid cell with silicon nitride (SiN) membrane windows. The STEM images reveal that silica structures are deposited in well-defined patches on the upper SiN membranes upon electron beam irradiation. The thickness of the deposits is linear with the applied electron dose. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) demonstrate that the deposited patches are a result of the merging of the original 20 nm-diameter nanoparticles, and that the related surface roughness depends on the electron dose rate used. Using this approach, sub-micrometer scale structures are written on the SiN in liquid by controlling the electron exposure as function of the lateral position. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electronic Structure of PbSe Nanowires

    NASA Astrophysics Data System (ADS)

    Avdeev, I. D.; Nestoklon, M. O.

    2016-11-01

    We present the tight binding calculations of the lead selenide nanowires: energy spectra of quantum confined states as a function of nanowire radius, dispersion in the full Brillouin zone, and the radial part of local electronic state density, which helps us to recognise valley splitting in the spectra. Also, we compare our results to KP perturbation theory predictions. We show that the value of the valley splitting is comparable with the distance between two levels of size quantization and that it strongly depends on the arrangement of the atoms in the wire.

  9. Structural and electronic parameters of ferroelectric KWOF

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Gavrilova, T. A.; Kesler, V. G.; Molokeev, M. S.; Aleksandrov, K. S.

    2010-11-01

    The low-temperature ferroelectric G2 polymorph of K 3WO 3F 3 oxyfluoride is formed by chemical synthesis. The electronic parameters of G2-K 3WO 3F 3 have been measured by X-ray photoelectron spectroscopy under excitation with Al Kα radiation (1486.6 eV). Detailed spectra have been recorded for all element core levels and Auger lines. The chemical bonding effects in the WO 3F 3 and WO 6 octahedrons are considered by using the binding energy difference ΔBE(O-W)=BE(O 1s)-BE(W 4f).

  10. Electronic-structure calculation for metals by local optimization

    NASA Astrophysics Data System (ADS)

    Woodward, C.; Min, B. I.; Benedek, R.; Garner, J.

    1989-03-01

    Recent work by Car and Parrinello has generated considerable interest in the calculation of electronic structure by nonlinear optimization. The technique introduced by these authors, dynamical simulated annealing, is designed for problems that involve energy barriers. When local optimization suffices to determine the energy minimum, more direct methods are available. In this paper we apply the algorithm suggested by Williams and Soler to calculate the electronic structure of metals, using a plane-wave expansion for the electronic orbitals and an electron-ion pseudopotential of the Kleinman-Bylander form. Radial pseudopotentials were taken from the compilation of Bachelet, Hamann, and Schlüter. Calculations are performed to optimize the electronic structure (i) with fixed atomic configuration, or (ii) with the atomic volume being optimized simultaneously. It is found that the dual optimization (ii) converges in essentially the same number of steps as the static lattice optimization (i). Numerical results are presented for Li, K, Al, and simple-cubic P.

  11. Basis functions for electronic structure calculations on spheres

    SciTech Connect

    Gill, Peter M. W. Loos, Pierre-François Agboola, Davids

    2014-12-28

    We introduce a new basis function (the spherical Gaussian) for electronic structure calculations on spheres of any dimension D. We find general expressions for the one- and two-electron integrals and propose an efficient computational algorithm incorporating the Cauchy-Schwarz bound. Using numerical calculations for the D = 2 case, we show that spherical Gaussians are more efficient than spherical harmonics when the electrons are strongly localized.

  12. Electronic structure in real time: mapping valence electron rearrangements during chemical reactions.

    PubMed

    Wernet, Philippe

    2011-10-14

    The interest in following the evolution of the valence electronic structure of atoms and molecules during chemical reactions on a femtosecond time scale is discussed. By explicitly mapping the occupied part of the electronic structure with femtosecond pump-probe schemes one essentially follows the electrons making the bonds while the bonds change. This holds the key to unprecedented insight into chemical bonding in short-lived intermediates and reveals the coupled motion of electrons and nuclei. Examples from the recent literature on small molecules and anionic clusters in the gas phase and on atoms and molecules on surfaces using lab-based femtosecond laser methods are used to demonstrate the case. They highlight how the evolution of the valence electronic structure can be probed with time-resolved photoelectron spectroscopy with ultraviolet (UV) probe photon energies of up to 6 eV. It is shown how new insight can be gained by extending the probing wavelength into the vacuum-ultraviolet (VUV) region to photon energies of 20 eV and more by accessing the whole occupied valence electronic structure with time-resolved VUV photoelectron spectroscopy. Finally, the importance of soft X-ray free-electron lasers with probe photon energies of several hundred eV and femtosecond pulses and in particular the key role of femtosecond time-resolved soft X-ray emission spectroscopy or resonant inelastic X-ray scattering for mapping the electronic structure during chemical reactions is discussed.

  13. Stacking dependent electronic structures of transition metal dichalcogenides heterobilayer

    NASA Astrophysics Data System (ADS)

    Lee, Yea-Lee; Park, Cheol-Hwan; Ihm, Jisoon

    The systematic study of the electronic structures and optical properties of the transition metal dichalcogenides (TMD) heterobilayers can significantly improve the designing of new electronic and optoelectronic devices. Here, we theoretically study the electronic structures and optical properties of TMD heterobilayers using the first-principles methods. The band structures of TMD heterobilayer are shown to be determined by the band alignments of the each layer, the weak interlayer interactions, and angle dependent stacking patterns. The photoluminescence spectra are investigated using the calculated band structures, and the optical absorption spectra are examined by the GW approximations including the electron-hole interaction through the solution of the Bethe-Salpeter equation. It is expected that the weak interlayer interaction gives rise to the substantial interlayer optical transition which will be corresponding to the interlayer exciton.

  14. Secondary electron emission from surfaces with small structure

    NASA Astrophysics Data System (ADS)

    Dzhanoev, A. R.; Spahn, F.; Yaroshenko, V.; Lühr, H.; Schmidt, J.

    2015-09-01

    It is found that for objects possessing small surface structures with differing radii of curvature the secondary electron emission (SEE) yield may be significantly higher than for objects with smooth surfaces of the same material. The effect is highly pronounced for surface structures of nanometer scale, often providing a more than 100 % increase of the SEE yield. The results also show that the SEE yield from surfaces with structure does not show a universal dependence on the energy of the primary, incident electrons as it is found for flat surfaces in experiments. We derive conditions for the applicability of the conventional formulation of SEE using the simplifying assumption of universal dependence. Our analysis provides a basis for studying low-energy electron emission from nanometer structured surfaces under a penetrating electron beam important in many technological applications.

  15. Linear Scaling Electronic Structure Methods with Periodic Boundary Conditions

    SciTech Connect

    Gustavo E. Scuseria

    2008-02-08

    The methodological development and computational implementation of linear scaling quantum chemistry methods for the accurate calculation of electronic structure and properties of periodic systems (solids, surfaces, and polymers) and their application to chemical problems of DOE relevance.

  16. Electron Diffraction Determination of Nanoscale Structures

    SciTech Connect

    Parks, Joel H

    2013-03-01

    Dominant research results on adsorption on gold clusters are reviewed, including adsorption of H{sub 2}O and O{sub 2} on gold cluster cations and anions, kinetics of CO adsorption to middle sized gold cluster cations, adsorption of CO on Au{sub n}{sup +} with induced changes in structure, and H{sub 2}O enhancement of CO adsorption.

  17. Fine structures of electron distribution functions in the electron diffusion region during magnetic reconnection

    NASA Astrophysics Data System (ADS)

    Bessho, N.; Shuster, J. R.; Chen, L. J.

    2014-12-01

    We study the origin and evolution of fine structures in electron distribution functions in the electron diffusion region (EDR) during anti-parallel magnetic reconnection. In the EDR, electron non-gyrotropic motion causes a variety of fine structures in electron distributions. Recently, Ng et al. 2011 and 2012 reported that striations in the electron distribution near the X-line are due to particle reflections. We have advanced the understanding of the formation mechanism of striations near the X-line by means of analytical analysis and particle tracing in particle-in-cell (PIC) simulations. Based on an approximation that nonlinear terms are negligible in the EDR, we derive a formula for the separation of striations, and explain the triangular shape of the distribution. We also show that an electron distribution with striations in the horizontal (p_x) direction evolves within about 8 ion cyclotron oscillations into a fork-like structure exhibiting three branches in the vertical (p_y) direction. We show by theory and PIC simulation that the length of the EDR is proportional to p_s^2, where p_s is the separation of the outer branches. Away from the X-line toward the end of electron outflows, electron distribution functions show arcs, swirls, and rings. The arcs and swirls are caused by partial gyration of accelerated electrons around the normal magnetic field. Near the end of the EDR, rings are formed in electron distributions due to magnetization process of electrons. Predictions of various structures of the EDR electron distributions will enable identifications of EDR crossings at different locations based on satellite measurements.

  18. Change of Electronic Structures by Dopant-Induced Local Strain

    NASA Astrophysics Data System (ADS)

    Hyeong Kim, Gyu; Jeong, Sukmin

    2015-06-01

    Ag-induced Si(111)- surfaces (-Ag) exhibit unusual electronic structures that cannot be explained by the conventional rigid band model and charge transfer model. The (-Ag surfaces feature a free-electron-like parabolic band, the S1 band, that selectively shifts downward upon the adsorption of noble metal or alkali metal adatoms. Furthermore, the downward shift of S1 is independent of the type of dopants, Au, Ag, and Na. According to charge transfer analysis, Au adatoms accumulate electrons from the substrate and become negatively charged, whereas Na adatoms become positively charged, which indicates that S1 should shift in the opposite direction for both the adatoms. Investigation of calculated structures, calculation of model structures, and tight-binding analysis disclose that the changes in the electronic structure are closely related to the average Ag-Ag distance in the substrate and have their origin in the local strain induced by dopants (adatoms). This explanation implies that the electronic structure is irrespective of the dopant characters itself and paves a new way for understanding the electronic structures associated with the presence of dopants.

  19. Electronic Structure Investigations of Aluminum Clusters

    DTIC Science & Technology

    2007-11-27

    EOARD, high energy density matter, Propellants, aluminium clusters 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON BARRETT A. FLAKE...la ser ablation source . Structures of the AICC H isomers halle been optim ized using density functional theory (OFT) and the excitation energies ...gra in composi tion, ioni1.ation balance, mass loss and elementa[ depletions from evolved Slars . To date, nine molecules containing the metals

  20. Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy

    NASA Technical Reports Server (NTRS)

    Kaiser, W. J.; Bell, L. D.

    1988-01-01

    A new technique for spectroscopic investigation of subsurface interface electronic structure has been developed. The method, ballistic-electron-emission microscopy (BEEM), is based on scanning tunneling microscopy. BEEM makes possible, for the first time, direct imaging of subsurface interface properties with nanometer spatial resolution. The first application of BEEM to subsurface Schottky-barrier interfaces is reported.

  1. Direct investigation of subsurface interface electronic structure by ballistic-electron-emission microscopy

    NASA Technical Reports Server (NTRS)

    Kaiser, W. J.; Bell, L. D.

    1988-01-01

    A new technique for spectroscopic investigation of subsurface interface electronic structure has been developed. The method, ballistic-electron-emission microscopy (BEEM), is based on scanning tunneling microscopy. BEEM makes possible, for the first time, direct imaging of subsurface interface properties with nanometer spatial resolution. The first application of BEEM to subsurface Schottky-barrier interfaces is reported.

  2. Structural properties of amorphous silicon produced by electron irradiation

    SciTech Connect

    Yamasaki, J.; Takeda, S.

    1999-07-01

    The structural properties of the amorphous Si (a-Si), which was created from crystalline silicon by 2 MeV electron irradiation at low temperatures about 25 K, are examined in detail by means of transmission electron microscopy and transmission electron diffraction. The peak positions in the radial distribution function (RDF) of the a-Si correspond well to those of a-Si fabricated by other techniques. The electron-irradiation-induced a-Si returns to crystalline Si after annealing at 550 C.

  3. Distinct electronic structure for the extreme magnetoresistance in YSb

    DOE PAGES

    He, Junfeng; Zhang, Chaofan; Ghimire, Nirmal J.; ...

    2016-12-23

    An extreme magnetoresistance (XMR) has recently been observed in several nonmagnetic semimetals. Increasing experimental and theoretical evidence indicates that the XMR can be driven by either topological protection or electron-hole compensation. Moreover, by investigating the electronic structure of a XMR material, YSb, we present spectroscopic evidence for a special case which lacks topological protection and perfect electron-hole compensation. Further investigations reveal that a cooperative action of a substantial difference between electron and hole mobility and a moderate carrier compensation might contribute to the XMR in YSb.

  4. Distinct electronic structure for the extreme magnetoresistance in YSb

    SciTech Connect

    He, Junfeng; Zhang, Chaofan; Ghimire, Nirmal J.; Liang, Tian; Jia, Chunjing; Jiang, Juan; Tang, Shujie; Chen, Sudi; He, Yu; Mo, S. -K.; Hwang, C. C.; Hashimoto, M.; Lu, D. H.; Moritz, B.; Devereaux, T. P.; Chen, Y. L.; Mitchell, J. F.; Shen, Z. -X.

    2016-12-23

    An extreme magnetoresistance (XMR) has recently been observed in several nonmagnetic semimetals. Increasing experimental and theoretical evidence indicates that the XMR can be driven by either topological protection or electron-hole compensation. Moreover, by investigating the electronic structure of a XMR material, YSb, we present spectroscopic evidence for a special case which lacks topological protection and perfect electron-hole compensation. Further investigations reveal that a cooperative action of a substantial difference between electron and hole mobility and a moderate carrier compensation might contribute to the XMR in YSb.

  5. Electronic structure modulation of graphene edges by chemical functionalization

    NASA Astrophysics Data System (ADS)

    Taira, Remi; Yamanaka, Ayaka; Okada, Susumu

    2016-11-01

    Using the density functional theory with the effective screening medium method, we study the electronic properties of graphene nanoribbons with zigzag edges that are terminated by hydrogen and ketone, hydroxyl, carbonyl, and carboxyl functional groups. Our calculations showed that the work function and electronic structures of the edges of the nanoribbons are sensitive to the functional groups attached to the edges. The nearly free electron state emerges in the vacuum region outside the hydroxylated edges and crosses the Fermi level, indicating the possibility of negative electron affinity at the edges.

  6. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, J.R.

    1984-10-10

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  7. Electron beam enhanced surface modification for making highly resolved structures

    DOEpatents

    Pitts, John R.

    1986-01-01

    A method for forming high resolution submicron structures on a substrate is provided by direct writing with a submicron electron beam in a partial pressure of a selected gas phase characterized by the ability to dissociate under the beam into a stable gaseous leaving group and a reactant fragment that combines with the substrate material under beam energy to form at least a surface compound. Variations of the method provide semiconductor device regions on doped silicon substrates, interconnect lines between active sites, three dimensional electronic chip structures, electron beam and optical read mass storage devices that may include color differentiated data areas, and resist areas for use with selective etching techniques.

  8. Solitary structures with ion and electron thermal anisotropy

    NASA Astrophysics Data System (ADS)

    Khusroo, Murchana; Bora, Madhurjya P.

    2015-11-01

    The formation of electrostatic solitary structures is analysed for a magnetised plasma with ion and electron thermal anisotropies. The ion thermal anisotropy is modelled with the help of the Chew-Goldberger-Low (CGL) double adiabatic equations of state while the electrons are treated as inertia-less species with an anisotropic bi-Maxwellian velocity distribution function. A negative electron thermal anisotropy ≤ft({{T}e\\bot}/{{T}e\\parallel}>1\\right) is found to help form large amplitude solitary structures which are in agreement with observational data.

  9. Electronic structure calculations of ESR parameters of melanin units.

    PubMed

    Batagin-Neto, Augusto; Bronze-Uhle, Erika Soares; Graeff, Carlos Frederico de Oliveira

    2015-03-21

    Melanins represent an important class of natural pigments present in plants and animals that are currently considered to be promising materials for applications in optic and electronic devices. Despite their interesting properties, some of the basic features of melanins are not satisfactorily understood, including the origin of their intrinsic paramagnetism. A number of experiments have been performed to investigate the electron spin resonance (ESR) response of melanin derivatives, but until now, there has been no consensus regarding the real structure of the paramagnetic centers involved. In this work, we have employed electronic structure calculations to evaluate the ESR parameters of distinct melanin monomers and dimers in order to identify the possible structures associated with unpaired spins in this biopolymer. The g-factors and hyperfine constants of the cationic, anionic and radicalar structures were investigated. The results confirm the existence of at least two distinct paramagnetic centers in melanin structure, identifying the chemical species associated with them and their roles in electrical conductivity.

  10. Electron-interface phonon interaction in multiple quantum well structures

    NASA Astrophysics Data System (ADS)

    Sun, J. P.; Teng, H. B.; Haddad, G. I.; Stroscio, M. A.

    1998-08-01

    Intersubband relaxation rates due to electron interactions with the interface phonons are evaluated for multiple quantum well structures designed for step quantum well lasers operating at mid-infrared to submillimetre wavelengths. The interface phonon modes and electron-phonon interaction Hamiltonians for the structures are derived using the transfer matrix method, based on the macroscopic dielectric continuum model, whereas the electron wavefunctions are obtained by solving the Schrödinger equation. Fermi's golden rule is employed to calculate the electron relaxation rates between the subbands in these structures. The relaxation rates for two different structures are examined and compared with those calculated using the bulk phonon modes and the Fröhlich interaction Hamiltonian. The sum rule for the relationship between the form factors of the various localized phonon modes and the bulk phonon modes is verified. The results obtained in this work illustrate that the transfer matrix method provides a convenient way for deriving the properties of the interface phonon modes in different structures of current interest and that, for preferential electron relaxation in intersubband laser structures, the effects of the interface phonon modes are significant and should be considered for optimal design of these laser structures.

  11. Nano-structured electron transporting materials for perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-01

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  12. Nano-structured electron transporting materials for perovskite solar cells.

    PubMed

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-28

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells.

  13. Structural complexities in the active layers of organic electronics.

    PubMed

    Lee, Stephanie S; Loo, Yueh-Lin

    2010-01-01

    The field of organic electronics has progressed rapidly in recent years. However, understanding the direct structure-function relationships between the morphology in electrically active layers and the performance of devices composed of these materials has proven difficult. The morphology of active layers in organic electronics is inherently complex, with heterogeneities existing across multiple length scales, from subnanometer to micron and millimeter range. A major challenge still facing the organic electronics community is understanding how the morphology across all of the length scales in active layers collectively determines the device performance of organic electronics. In this review we highlight experiments that have contributed to the elucidation of structure-function relationships in organic electronics and also point to areas in which knowledge of such relationships is still lacking. Such knowledge will lead to the ability to select active materials on the basis of their inherent properties for the fabrication of devices with prespecified characteristics.

  14. MATERIALS WITH COMPLEX ELECTRONIC/ATOMIC STRUCTURES

    SciTech Connect

    D. M. PARKIN; L. CHEN; ET AL

    2000-09-01

    We explored both experimentally and theoretically the behavior of materials at stresses close to their theoretical strength. This involves the preparation of ultra fine scale structures by a variety of fabrication methods. In the past year work has concentrated on wire drawing of in situ composites such as Cu-Ag and Cu-Nb. Materials were also fabricated by melting alloys in glass and drawing them into filaments at high temperatures by a method known as Taylor wire technique. Cu-Ag microwires have been drawn by this technique to produce wires 10 {micro}m in diameter that consist of nanoscale grains of supersaturated solid solution. Organogels formed from novel organic gelators containing cholesterol tethered to squaraine dyes or trans-stilbene derivatives have been studied from several different perspectives. The two types of molecules are active toward several organic liquids, gelling in some cases at w/w percentages as low as 0.1. While relatively robust, acroscopically dry gels are formed in several cases, studies with a variety of probes indicate that much of the solvent may exist in domains that are essentially liquid-like in terms of their microenvironment. The gels have been imaged by atomic force microscopy and conventional and fluorescence microscopy, monitoring both the gelator fluorescence in the case of the stilbene-cholesterol gels and, the fluorescence of solutes dissolved in the solvent. Remarkably, our findings show that several of the gels are composed of similarly appearing fibrous structures visible at the nano-, micro-, and macroscale.

  15. Structural and electronic properties of B2-CdNb

    NASA Astrophysics Data System (ADS)

    Galav, K. L.; Maurya, V.; Joshi, K. B.

    2017-05-01

    The first-principles total energy calculations are coupled with the Murnaghan equation of state to predict lattice constant and the bulk modulus of hypothetical B2 crystal structure of CdNb intermetallic. The calculations for structure determination are performed deploying the linear combination of atomic orbitals method within the framework of density functional theory. After settling the structure, electronic properties such as partial density of states, total density of states, two dimensional electron momentum density etc. are calculated. All electronic properties and the Fermi surface are obtained by applying the linear augmented plane wave method. Features of the Fermi surface are interpreted in terms of bands and the two dimensional electron momentum density distribution.

  16. Electronic band structure of surface-doped black phosphorus

    NASA Astrophysics Data System (ADS)

    Kim, Jimin; Ryu, Sae Hee; Sohn, Yeongsup; Kim, Keun Su

    2015-03-01

    There are rapidly growing interests in the study of few-layer black phosphorus owing to its promising device characteristics that may impact our future electronics technology. The low-energy band structure of black phosphorus has been widely predicted to be controllable by external perturbations, such as strain and doping. In this work, we attempt to control the electronic band structure of black phosphorous by in-situ surface deposition of alkali-metal atoms. We found that surface doping induces steep band bending towards the bulk, leading to the emergence of new 2D electronic states that are confined within only few phosphorene layers of black phosphorus. Using angle-resolved photoemission spectroscopy, we directly measured the electronic band structure and its evolution as a function of dopant density. Supported by IBS.

  17. Electronic structure of a graphene superlattice with massive Dirac fermions

    SciTech Connect

    Lima, Jonas R. F.

    2015-02-28

    We study the electronic and transport properties of a graphene-based superlattice theoretically by using an effective Dirac equation. The superlattice consists of a periodic potential applied on a single-layer graphene deposited on a substrate that opens an energy gap of 2Δ in its electronic structure. We find that extra Dirac points appear in the electronic band structure under certain conditions, so it is possible to close the gap between the conduction and valence minibands. We show that the energy gap E{sub g} can be tuned in the range 0 ≤ E{sub g} ≤ 2Δ by changing the periodic potential. We analyze the low energy electronic structure around the contact points and find that the effective Fermi velocity in very anisotropic and depends on the energy gap. We show that the extra Dirac points obtained here behave differently compared to previously studied systems.

  18. Spectrographic studies: Electron induced luminescence in optical materials

    NASA Technical Reports Server (NTRS)

    Romanko, J.; Miles, J. K.; Cheever, P. R.

    1971-01-01

    The spectral luminescence induced in UV grade sapphire, MgF2 and LiF2, three fused silicas, and three Corning glasses, by 1/2, 1, 2, and 3 MeV electrons was recorded. In the wavelength range from the LiF UV cutoff to the near visible, a plane-grating spectrograph with photographic recording at resolutions of 0.8 and 1.6 nm was utilized. Qualitative results based on relative density tracings of seven of the nine materials obtained from preliminary plates are given.

  19. Topological Insulators: Electronic Band Structure and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palaz, S.; Koc, H.; Mamedov, A. M.; Ozbay, E.

    2017-02-01

    In this study, we present the results of our ab initio calculation of the elastic constants, density of states, charge density, and Born effective charge tensors for ferroelectric (rhombohedral) and paraelectric phases (cubic) of the narrow band ferroelectrics (GeTe, SnTe) pseudopotentials. The related quantities such as bulk modulus and shear modulus using obtained elastic constants have also been estimated in the present work. The total and partial densities of states corresponding to the band structure of Sn(Ge)Te(S,Se) were calculated. We also calculated the Born effective charge tensor of an atom (for instance, Ge, Sn, Te, etc.), which is defined as the induced polarization of the solid along the main direction by a unit displacement in the perpendicular direction of the sublattice of an atom at the vanishing electric field.

  20. Electronic Structure and Transport in Magnetic Multilayers

    SciTech Connect

    2008-02-18

    ORNL assisted Seagate Recording Heads Operations in the development of CIPS pin Valves for application as read sensors in hard disk drives. Personnel at ORNL were W. H. Butler and Xiaoguang Zhang. Dr. Olle Heinonen from Seagate RHO also participated. ORNL provided codes and materials parameters that were used by Seagate to model CIP GMR in their heads. The objectives were to: (1) develop a linearized Boltzmann transport code for describing CIP GMR based on realistic models of the band structure and interfaces in materials in CIP spin valves in disk drive heads; (2) calculate the materials parameters needed as inputs to the Boltzmann code; and (3) transfer the technology to Seagate Recording Heads.

  1. The stabilities and electron structures of Al-Mg clusters with 18 and 20 valence electrons

    NASA Astrophysics Data System (ADS)

    Yang, Huihui; Chen, Hongshan

    2017-07-01

    The spherical jellium model predicts that metal clusters having 18 and 20 valence electrons correspond to the magic numbers and will show specific stabilities. We explore in detail the geometric structures, stabilities and electronic structures of Al-Mg clusters containing 18 and 20 valence electrons by using genetic algorithm combined with density functional theories. The stabilities of the clusters are governed by the electronic configurations and Mg/Al ratios. The clusters with lower Mg/Al ratios are more stable. The molecular orbitals accord with the shell structures predicted by the jellium model but the 2S level interweaves with the 1D levels and the 2S and 1D orbitals form a subgroup. The clusters having 20 valence electrons form closed 1S21P61D102S2 shells and show enhanced stability. The Al-Mg clusters with a valence electron count of 18 do not form closed shells because one 1D orbital is unoccupied. The ionization potential and electron affinity are closely related to the electronic configurations; their values are determined by the subgroups the HOMO or LUMO belong to. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80042-9

  2. Electronic correlation in magnetic contributions to structural energies

    NASA Astrophysics Data System (ADS)

    Haydock, Roger

    For interacting electrons the density of transitions [see http://arxiv.org/abs/1405.2288] replaces the density of states in calculations of structural energies. Extending previous work on paramagnetic metals, this approach is applied to correlation effects on the structural stability of magnetic transition metals. Supported by the H. V. Snyder Gift to the University of Oregon.

  3. Double layers and solitary structures in electron-positron-ion plasma with Kappa distributed trapped electrons

    NASA Astrophysics Data System (ADS)

    Ali Shan, Shaukat; Imtiaz, Nadia

    2017-10-01

    The effect of electron trapping in an electron-positron-ion plasma is modeled with κ-distributed electrons. The trapped electron number density is truncated to some finite order of the electrostatic potential Φ. Small amplitude solitary structures with Sagdeev potential approach and reductive perturbation method (through Schamel equation) are found to be modified under the impact of superthermality index κ and trapping efficiency β. A modified Schamel equation which gives rise to the small amplitude double layers (SIADLs) is obtained. The role of various plasma parameters in particular, the superthermality index, the positron concentration, and the electron trapping efficiency on the small amplitude ion acoustic double layers (SIADLs) has been investigated. It can be inferred from this investigation that these parameters play modifying character in the formation of nonlinear structures like solitary waves and SIADLs in e-p-i plasma.

  4. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    SciTech Connect

    Haynes, Christopher T. Burgess, David; Sundberg, Torbjorn; Camporeale, Enrico

    2015-01-15

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  5. Electron vortex magnetic holes: A nonlinear coherent plasma structure

    NASA Astrophysics Data System (ADS)

    Haynes, Christopher T.; Burgess, David; Camporeale, Enrico; Sundberg, Torbjorn

    2015-01-01

    We report the properties of a novel type of sub-proton scale magnetic hole found in two dimensional particle-in-cell simulations of decaying turbulence with a guide field. The simulations were performed with a realistic value for ion to electron mass ratio. These structures, electron vortex magnetic holes (EVMHs), have circular cross-section. The magnetic field depression is associated with a diamagnetic azimuthal current provided by a population of trapped electrons in petal-like orbits. The trapped electron population provides a mean azimuthal velocity and since trapping preferentially selects high pitch angles, a perpendicular temperature anisotropy. The structures arise out of initial perturbations in the course of the turbulent evolution of the plasma, and are stable over at least 100 electron gyroperiods. We have verified the model for the EVMH by carrying out test particle and PIC simulations of isolated structures in a uniform plasma. It is found that (quasi-)stable structures can be formed provided that there is some initial perpendicular temperature anisotropy at the structure location. The properties of these structures (scale size, trapped population, etc.) are able to explain the observed properties of magnetic holes in the terrestrial plasma sheet. EVMHs may also contribute to turbulence properties, such as intermittency, at short scale lengths in other astrophysical plasmas.

  6. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  7. Engineering the electronic band structure for multiband solar cells.

    PubMed

    López, N; Reichertz, L A; Yu, K M; Campman, K; Walukiewicz, W

    2011-01-14

    Using the unique features of the electronic band structure of GaN(x)As(1-x) alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the band anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  8. Electronic states in hybrid boron nitride and graphene structures

    NASA Astrophysics Data System (ADS)

    Zhao, M.; Huang, Y. H.; Ma, F.; Hu, T. W.; Xu, K. W.; Chu, Paul K.

    2013-08-01

    The energy bands and electronic states of hybrid boron nitride (BN) and graphene structures are studied by first principle calculations. The electronic states change from semi-metallic to insulating depending on the number of B and N atoms as well as domain symmetry. When there are unequal numbers of B and N atoms, mid-gap states usually appear around the Fermi level and the corresponding hybrid structure possesses magnetic and semi-metallic properties. However, when the numbers of B and N atoms are equal, a band gap exists indicative of a semiconducting or insulating nature which depends on the structural symmetry.

  9. Decoupling of structural and electronic phase transitions in VO2.

    PubMed

    Tao, Zhensheng; Han, Tzong-Ru T; Mahanti, Subhendra D; Duxbury, Phillip M; Yuan, Fei; Ruan, Chong-Yu; Wang, Kevin; Wu, Junqiao

    2012-10-19

    Using optical, TEM, and ultrafast electron diffraction experiments we find that single crystal VO(2) microbeams gently placed on insulating substrates or metal grids exhibit different behaviors, with structural and metal-insulator transitions occurring at the same temperature for insulating substrates, while for metal substrates a new monoclinic metal phase lies between the insulating monoclinic phase and the metallic rutile phase. The structural and electronic phase transitions in these experiments are strongly first order and we discuss their origins in the context of current understanding of multiorbital splitting, strong correlation effects, and structural distortions that act cooperatively in this system.

  10. Electronic structure and bonding in skutterudite-type phosphides

    NASA Astrophysics Data System (ADS)

    Llunell, Miquel; Alemany, Pere; Alvarez, Santiago; Zhukov, Vladlen P.; Vernes, Andreas

    1996-04-01

    The electronic structures of the skutterudite-type phosphides CoP3 and NiP3 have been investigated by means of first-principles linear muffin-tin orbital-atomic sphere approximation band-structure calculations. The presence of P4 rings in the skutterudite structure is of great importance in determining the nature of the electronic bands around the Fermi level, composed mainly of π-type molecular orbitals of these units. The metallic character found for NiP3 should be ascribed to the phosphorus framework rather than to the metal atoms.

  11. Structural stability, electronic structure and mechanical properties of actinide carbides AnC (An = U, Np)

    SciTech Connect

    Manikandan, M.; Santhosh, M.; Rajeswarapalanichamy, R.

    2016-05-06

    Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of actinide carbides AnC (An=U, Np) for three different crystal structures, namely NaCl, CsCl and ZnS. Among the considered structures, NaCl structure is found to be the most stable structure for these carbides at normal pressure. A pressure induced structural phase transition from NaCl to ZnS is observed. The electronic structure reveals that these carbides are metals. The calculated elastic constants indicate that these carbides are mechanically stable at normal pressure.

  12. Goeppert-Mayer Award Recipient: Electron Scattering and Nucleon Structure

    NASA Astrophysics Data System (ADS)

    Beise, Elizabeth

    1998-04-01

    Electron scattering from hydrogen and light nuclear targets has long been recognized as one of the best tools for understanding the electromagnetic structure of protons, neutrons and few-nucleon systems. In the last decade, considerable progress has been made in the field through advances in polarized beams and polarized targets. Improvements in polarized electron sources has made it feasible to also study the structure of the nucleon through parity-violating electron scattering, where the nucleon's neutral weak structure is probed. In this talk, a summary of the present experimental status of the nucleon's electroweak structure will be presented, with an emphasis on recent results from the MIT-Bates and Jefferson Laboratories.

  13. Advanced accelerating structures and their interaction with electron beams.

    SciTech Connect

    Gai, W.; High Energy Physics

    2008-01-01

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  14. Advanced Accelerating Structures and Their Interaction with Electron Beams

    SciTech Connect

    Gai Wei

    2009-01-22

    In this paper, we give a brief description of several advanced accelerating structures, such as dielectric loaded waveguides, photonic band gap, metamaterials and improved iris-loaded cavities. We describe wakefields generated by passing high current electron beams through these structures, and applications of wakefields to advanced accelerator schemes. One of the keys to success for high gradient wakefield acceleration is to develop high current drive beam sources. As an example, the high current RF photo injector at the Argonne Wakefield Accelerator, passed a {approx}80 nC electron beam through a high gradient dielectric loaded structure to achieve a 100 MV/m gradient. We will summarize recent related experiments on beam-structure interactions and also discuss high current electron beam generation and propagation and their applications to wakefield acceleration.

  15. Structure of a Bacterial Cell Surface Decaheme Electron Conduit

    SciTech Connect

    Clarke, Thomas A.; Edwards, Marcus; Gates, Andrew J.; Hall, Andrea; White, Gaye; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alex S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas; Fredrickson, Jim K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

    2011-05-23

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves deca-heme cytochromes that are located on the bacterial cell surface at the termini of trans-outermembrane (OM) electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular inter-cytochrome electron exchange along ‘nanowire’ appendages. We present a 3.2 Å crystal structure of one of these deca-heme cytochromes, MtrF, that allows the spatial organization of the ten hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65 Å octa-heme chain transects the length of the protein and is bisected by a planar 45 Å tetra-heme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g. minerals), soluble substrates (e.g. flavins) and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  16. Structure of a bacterial cell surface decaheme electron conduit

    PubMed Central

    Clarke, Thomas A.; Edwards, Marcus J.; Gates, Andrew J.; Hall, Andrea; White, Gaye F.; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alexander S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.

    2011-01-01

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along “nanowire” appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface. PMID:21606337

  17. Structure of a bacterial cell surface decaheme electron conduit.

    PubMed

    Clarke, Thomas A; Edwards, Marcus J; Gates, Andrew J; Hall, Andrea; White, Gaye F; Bradley, Justin; Reardon, Catherine L; Shi, Liang; Beliaev, Alexander S; Marshall, Matthew J; Wang, Zheming; Watmough, Nicholas J; Fredrickson, James K; Zachara, John M; Butt, Julea N; Richardson, David J

    2011-06-07

    Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors. In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membrane electron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transfer directly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellular intercytochrome electron exchange along "nanowire" appendages. We present a 3.2-Å crystal structure of one of these decaheme cytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes are organized across four domains in a unique crossed conformation, in which a staggered 65-Å octaheme chain transects the length of the protein and is bisected by a planar 45-Å tetraheme chain that connects two extended Greek key split β-barrel domains. The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g., flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transport chain on the cell surface.

  18. Membrane protein structures without crystals, by single particle electron cryomicroscopy

    PubMed Central

    Vinothkumar, Kutti R

    2015-01-01

    It is an exciting period in membrane protein structural biology with a number of medically important protein structures determined at a rapid pace. However, two major hurdles still remain in the structural biology of membrane proteins. One is the inability to obtain large amounts of protein for crystallization and the other is the failure to get well-diffracting crystals. With single particle electron cryomicroscopy, both these problems can be overcome and high-resolution structures of membrane proteins and other labile protein complexes can be obtained with very little protein and without the need for crystals. In this review, I highlight recent advances in electron microscopy, detectors and software, which have allowed determination of medium to high-resolution structures of membrane proteins and complexes that have been difficult to study by other structural biological techniques. PMID:26435463

  19. Electronic Structure and Phase Stability of PdPt Nanoparticles.

    PubMed

    Ishimoto, Takayoshi; Koyama, Michihisa

    2016-03-03

    To understand the origin of the physicochemical nature of bimetallic PdPt nanoparticles, we theoretically investigated the phase stability and electronic structure employing the PdPt nanoparticles models consisting of 711 atoms (ca. 3 nm). For the Pd-Pt core-shell nanoparticle, the PdPt solid-solution phase was found to be a thermodynamically stable phase in the nanoparticle as the result of difference in surface energy of Pd and Pt nanoparticles and configurational entropy effect, while it is well known that the Pd and Pt are the immiscible combination in the bulk phase. The electronic structure of nanoparticles is conducted to find that the electron transfer occurs locally within surface and subsurface layers. In addition, the electron transfer from Pd to Pt at the interfacial layers in core-shell nanoparticles is observed, which leads to unique geometrical and electronic structure changes. Our results show a clue for the tunability of the electronic structure of nanoparticles by controlling the arrangement in the nanoparticles.

  20. Structure and electronic properties of lead-selenide nanocrystal solids

    NASA Astrophysics Data System (ADS)

    Whitham, Kevin

    Recent advances in the controlled formation of nanocrystal superlattices have potential for creating materials with properties by design. The ability to tune nanocrystal size, shape and composition as well as symmetry of the superlattice opens routes to new materials. Calculations of such materials predict interesting electronic phenomena including topological states and Dirac cones, however experimental support is lacking. We have investigated electron localization in nanocrystal superlattices using a combination of advanced structural characterization techniques and charge transport measurements. Recent experimental efforts to improve the electronic properties of nanocrystal solids have focused on increasing inter-dot coupling. However, this approach only leads to electronic bands if the coupling energy can overcome energetic and translational disorder. We have investigated oriented-attachment as a method to create nanocrystal superlattices with increased coupling and translational order. We show that epitaxially connected superlattices form by a coherent phase transformation that is sensitive to structural defects and ligand length. In order to measure intrinsic electronic properties we demonstrate control over electronic defects by tailoring surface chemistry and device architecture. To probe charge transport in these structures we performed variable temperature field-effect measurements. By integrating structure analysis, surface chemistry, and transport measurements we find that carriers are localized to a few superlattice constants due to disorder. Importantly, our analysis shows that greater delocalization is possible by optimizing dot-to-dot bonding, thus providing a path forward to create quantum dot solids in which theoretically predicted properties can be realized.

  1. Parallel adaptive mesh refinement for electronic structure calculations

    SciTech Connect

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1996-12-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradients with multigrid preconditioning. We have parallelized our solver using an object-oriented adaptive mesh refinement framework.

  2. Variability of Protein Structure Models from Electron Microscopy.

    PubMed

    Monroe, Lyman; Terashi, Genki; Kihara, Daisuke

    2017-03-02

    An increasing number of biomolecular structures are solved by electron microscopy (EM). However, the quality of structure models determined from EM maps vary substantially. To understand to what extent structure models are supported by information embedded in EM maps, we used two computational structure refinement methods to examine how much structures can be refined using a dataset of 49 maps with accompanying structure models. The extent of structure modification as well as the disagreement between refinement models produced by the two computational methods scaled inversely with the global and the local map resolutions. A general quantitative estimation of deviations of structures for particular map resolutions are provided. Our results indicate that the observed discrepancy between the deposited map and the refined models is due to the lack of structural information present in EM maps and thus these annotations must be used with caution for further applications.

  3. Enhancement of electron mobility in asymmetric coupled quantum well structures

    SciTech Connect

    Das, S.; Nayak, R. K.; Sahu, T. Panda, A. K.

    2014-02-21

    We study the low temperature multisubband electron mobility in a structurally asymmetric GaAs/Al{sub x}Ga{sub 1-x}As delta doped double quantum well. We calculate the subband energy levels and wave functions through selfconsistent solution of the coupled Schrodinger equation and Poisson's equation. We consider ionized impurity scattering, interface roughness scattering, and alloy disorder scattering to calculate the electron mobility. The screening of the scattering potentials is obtained by using static dielectric response function formalism within the random phase approximation. We analyze, for the first time, the effect of asymmetric structure parameters on the enhancement of multisubband electron mobility through intersubband interactions. We show that the asymmetric variation of well width, doping concentration, and spacer width considerably influences the interplay of scattering mechanisms on mobility. Our results of asymmetry induced enhancement of electron mobility can be utilized for low temperature device applications.

  4. Electronic structure of tetraphenylporphyrin layers on Ag(100)

    NASA Astrophysics Data System (ADS)

    Classen, Andrej; Pöschel, Rebecca; Di Filippo, Gianluca; Fauster, Thomas; Malcıoǧlu, Osman Barış; Bockstedte, Michel

    2017-03-01

    The electronic structure of Mg and free-base tetraphenylporphyrin films on Ag(100) is investigated by one- and two-photon photoemission in combination with electronic structure calculations using density functional theory and the self-consistent G W0 method. We determine the two highest occupied and the nearly degenerate lowest unoccupied molecular orbitals. Higher unoccupied states are seen in an enhanced emission as a final-state effect. For photon energies close to the prominent absorption of the Soret band we observe a strong electron emission attributed to the break up of the bound electron-hole pairs in the S2 excited state. The experimental results on the occupied and unoccupied energy levels for the molecular films on Ag(100) nicely agree with calculated quasiparticle energies and experiments of the molecules in the gas phase.

  5. Many-Body Electronic Structure of Curium metal

    NASA Astrophysics Data System (ADS)

    Toropova, Antonina; Haule, Kristjan; Kotliar, Gabriel

    2006-03-01

    We report computer-based simulations for the many-body electronic structure of Curium metal. Cm belongs to the actinide series and has a half-filled shell with seven 5f electrons. As a function of pressure, curium exhibits five different crystallographic phases. At low temperatures all phases demonstrate either antiferromagnetic or ferrimagnetic ordering. In this study we perform LDA+DMFT calculations for the antiferromagnetic state of high-pressure fcc modification of Curium metal.

  6. Fundamental Electronic Structure Characteristics and Mechanical Behavior of Aerospace Materials

    DTIC Science & Technology

    2008-04-01

    Cr and Mo phases with Energy (eV) oxygen impurities, both substitutional and interstitial Figure 11: Electronic densities of states for positions...Meeting, March 12-16, 2006, San Antonio, TX. 17. "First-principles study of the Hume-Rothery electron concentration rule in AI-Cu- ( Fe ,Ru)- Si 1/1-cubic...unlimited 13 . SUPPLEMENTARY NOTES 20080502074 14. ABSTRACT To fulfill the great potential of intermetallic alloys for high temperature structural

  7. Structural and electronic properties of expanding fluid metals

    NASA Astrophysics Data System (ADS)

    Tamura, K.; Matsuda, K.; Inui, M.

    2008-03-01

    It has been theoretically predicted that interacting electron gas suffers a negative compressibility when the electron density is sufficiently reduced. Dielectric anomaly is another expression of compressional instability in which the static dielectric function of electron gas changes sign from positive to negative. In a medium with a negative dielectric function, like charges can attract. Expanding fluid alkali metals are the ideal system in which such instability of electron gas can be probed via the structural response of ions. We have performed x-ray diffraction and small angle x-ray scattering measurements using synchrotron radiation for expanding fluid rubidium and cesium. On the basis of the experimental results we discuss the existence of compressional instability and dielectric anomaly in three-dimensional electron gas.

  8. Heterogeneous electron transfer at nanoscopic electrodes: importance of electronic structures and electric double layers.

    PubMed

    Chen, Shengli; Liu, Yuwen; Chen, Junxiang

    2014-08-07

    Heterogeneous electron-transfer (ET) processes at solid electrodes play key roles in molecular electronics and electrochemical energy conversion and sensing. Electrode nanosization and/or nanostructurization are among the major current strategies for performance promotion in these fields. Besides, nano-sized/structured electrodes offer great opportunities to characterize electrochemical structures and processes with high spatial and temporal resolution. This review presents recent insights into the nanoscopic size and structure effects of electrodes and electrode materials on heterogeneous ET kinetics, by emphasizing the importance of the electric double-layer (EDL) at the electrode/electrolyte interface and the electronic structure of electrode materials. It is shown, by general conceptual analysis and recent example demonstrations of representative electrode systems including electrodes of nanometer sizes and gaps and of nanomaterials such as sp(2) hybridized nanocarbons and semiconductor quantum dots, how the heterogeneous ET kinetics, the electronic structures of electrodes, the EDL structures at the electrode/electrolyte interface and the nanoscopic electrode sizes and structures may be related.

  9. Vibrational stability and electronic structure of a B80 fullerene

    NASA Astrophysics Data System (ADS)

    Baruah, Tunna; Pederson, Mark R.; Zope, Rajendra R.

    2008-07-01

    We investigate the vibrational stability and the electronic structure of the proposed icosahedral fullerenelike cage structure of B80 [N. G. Szwacki, A. Sadrzadeh, and B. I. Yakobson, Phys. Rev. Lett. 98, 166804 (2007)], by an all electron density-functional theory using polarized Gaussian basis functions containing 41 basis functions per atom. The vibrational analysis of B80 indicates that the icosahedral structure is vibrationally unstable with seven imaginary frequencies. The equilibrium structure has Th symmetry and a smaller gap of 0.96 eV between the highest occupied and the lowest unoccupied molecular orbital energy levels compared to the icosahedral structure. The static dipole polarizability of a B80 cage is 149Å3 , and the first ionization energy is 6.4 eV. The B80 cage has rather large electron affinity of 3 eV making it a useful candidate as electron acceptor if it is synthesized. The infrared and Raman spectra of the highly symmetric structure are characterized by a few absorption peaks.

  10. Human enamel structure studied by high resolution electron microscopy

    SciTech Connect

    Wen, S.L. )

    1989-01-01

    Human enamel structural features are characterized by high resolution electron microscopy. The human enamel consists of polycrystals with a structure similar to Ca10(PO4)6(OH)2. This article describes the structural features of human enamel crystal at atomic and nanometer level. Besides the structural description, a great number of high resolution images are included. Research into the carious process in human enamel is very important for human beings. This article firstly describes the initiation of caries in enamel crystal at atomic and unit-cell level and secondly describes the further steps of caries with structural and chemical demineralization. The demineralization in fact, is the origin of caries in human enamel. The remineralization of carious areas in human enamel has drawn more and more attention as its potential application is realized. This process has been revealed by high resolution electron microscopy in detail in this article. On the other hand, the radiation effects on the structure of human enamel are also characterized by high resolution electron microscopy. In order to reveal this phenomenon clearly, a great number of electron micrographs have been shown, and a physical mechanism is proposed. 26 references.

  11. Electronic and optical properties of novel carbon structures

    NASA Astrophysics Data System (ADS)

    Matthews, Manyalibo Joseph

    Novel carbon structures in the form of fullerenes and disordered carbon clusters offer a wide variety of physical systems, possessing both long or short range order, which can generally be tuned through non- combustive heat-treatment at various elevated temperatures, THT. Due to the sheer complexity and diversity of the possible nanoscale arrangements, the optical and electronic properties of carbon structures with finite dimensions and crystallinity are still not fully understood. In this study, we focus mainly on the structures produced from carbonization of the hydrocarbon polymer polyparaphenylene (PPP), but we also present experimental results from carbons based on other precursors (e.g. mesophase pitch) which yield quite different structures with both comparable and contrasting physical properties. In terms of electronic properties, we show that in the low-THT PPP-based structures, which exemplify extreme disorder, the electronic states are strongly localized, giving rise to a Mott T1/4 hopping conductivity and self-trapped spin defects AS evidenced by low-temperature transport and electron spin resonance experiments. Electronic transitions which give rise to ~2-3 eV photoluminescent emissions in PPP-based structures are found to be influenced most strongly by residual semi-localized polymeric states which weakly couple to low-frequency PPP phonon modes. However, at intermediate heat-treatment temperatures (THT~ 1500[-]2500oC), all sp2-bonded carbon compounds in this study exhibit a characteristic phonon spectrum (as evidenced by Raman spectroscopy) in which disorder may be characterized by non-zone-center phonon scattering arising from finite crystallite sizes. Because of its intimate connection to carrier confinement and structural disorder, the anomalous 'disorder-induced' graphite D-band is thoroughly investigated by use of Raman spectroscopy, showing that strong dispersion effects are due to a photon-phonon coupling mediated by electronic transitions

  12. Momentum space analysis of the electronic structure of biphenyl

    NASA Astrophysics Data System (ADS)

    Morini, F.; Shojaei, S. H. Reza; Deleuze, M. S.

    2014-11-01

    The results of a yet to come experimental study of the electronic structure of biphenyl employing electron momentum spectroscopy (EMS) have been theoretically predicted, taking into account complications such as structural mobility in the electronic ground state, electronic correlation and relaxation, and a dispersion of the inner-valence ionization intensity to electronically excited (shake-up) configurations in the cation. The main purpose of this work is to explore the current limits of EMS in unraveling details of the molecular structure, namely the torsional characteristics of large and floppy aromatic molecules. At the benchmark ADC(3)/cc-pVDZ level of theory, the influence of the twist angle between the two phenyl rings is found to be extremely limited, except for individual orbital momentum profiles corresponding to ionization lines at electron binding energies ranging from 15 to 18 eV. When taking band overlap effects into account, this influence is deceptively far too limited to allow for any experimental determination of the torsional characteristics of biphenyl by means of EMS.

  13. Atomic and electronic structure of exfoliated black phosphorus

    SciTech Connect

    Wu, Ryan J.; Topsakal, Mehmet; Jeong, Jong Seok; Wentzcovitch, Renata M.; Mkhoyan, K. Andre; Low, Tony; Robbins, Matthew C.; Haratipour, Nazila; Koester, Steven J.

    2015-11-15

    Black phosphorus, a layered two-dimensional crystal with tunable electronic properties and high hole mobility, is quickly emerging as a promising candidate for future electronic and photonic devices. Although theoretical studies using ab initio calculations have tried to predict its atomic and electronic structure, uncertainty in its fundamental properties due to a lack of clear experimental evidence continues to stymie our full understanding and application of this novel material. In this work, aberration-corrected scanning transmission electron microscopy and ab initio calculations are used to study the crystal structure of few-layer black phosphorus. Directly interpretable annular dark-field images provide a three-dimensional atomic-resolution view of this layered material in which its stacking order and all three lattice parameters can be unambiguously identified. In addition, electron energy-loss spectroscopy (EELS) is used to measure the conduction band density of states of black phosphorus, which agrees well with the results of density functional theory calculations performed for the experimentally determined crystal. Furthermore, experimental EELS measurements of interband transitions and surface plasmon excitations are also consistent with simulated results. Finally, the effects of oxidation on both the atomic and electronic structure of black phosphorus are analyzed to explain observed device degradation. The transformation of black phosphorus into amorphous PO{sub 3} or H{sub 3}PO{sub 3} during oxidation may ultimately be responsible for the degradation of devices exposed to atmosphere over time.

  14. Theoretical studies of the electronic structure of small metal clusters

    NASA Technical Reports Server (NTRS)

    Jordan, K. D.

    1982-01-01

    Theoretical studies of the electronic structure of metal clusters, in particular clusters of Group IIA and IIB atoms were conducted. Early in the project it became clear that electron correlation involving d orbitals plays a more important role in the binding of these clusters than had been previously anticipated. This necessitated that computer codes for calculating two electron integrals and for constructing the resulting CI Hamiltonions be replaced with newer, more efficient procedures. Program modification, interfacing and testing were performed. Results of both plans are reported.

  15. Electronic structure of substituted 1,3-dioxanes

    SciTech Connect

    Bresler, I.D.; Akhmatdinov, R.T.; Kantor, E.A.; Rakhmankulov, D.L.

    1987-12-20

    The electronic structure of 1,3-dioxane was determined by the CNDO/2, MINDO/3, and MNDO methods, nonempirically on the STO-3GF basis set, and by photoelectron spectroscopy. It was shown that the direction of the acid-catalyzed reactions is determined by the composition and the energy of the HOMO, which is formed by a symmetrical combination of the unshared electron pairs of the oxygen atoms. In 5,5-dimethyl-1,3-dioxane the HOMO is an antisymmetric combination of the unshared electron pairs of the oxygen atoms.

  16. Structural and electronic properties of dense liquid and amorphous nitrogen

    SciTech Connect

    Boates, B; Bonev, S A

    2011-02-11

    We present first-principles calculations of the structural and electronic properties of liquid nitrogen in the pressure-temperature range of 0-200 GPa and 2000-6000 K. The molecular-polymerization and molecular-atomic liquid phase boundaries have been mapped over this region. We find the polymeric liquid to be metallic, similar to what has been reported for the higher-temperature atomic fluid. An explanation of the electronic properties is given based on the structure and bonding character of the transformed liquids. We discuss the structural and bonding differences between the polymeric liquid and insulating solid cubic-gauche nitrogen to explain the differences in their electronic properties. Furthermore, we discuss the mechanism responsible for charge transport in polymeric nitrogen systems to explain the conductivity of the polymeric fluid and the semi-conducting nature of low-temperature amorphous nitrogen.

  17. Electronic structure and enthalpy of hydrogen and helium mixtures

    NASA Astrophysics Data System (ADS)

    Ross, M.; Klepeis, J. E.; Schafer, K. J.; Barbee, T. W., III

    1992-11-01

    The first local density approximation (LDA) calculations of the electronic structure, equation of state, and enthalpy of mixing were carried out for a number of different compositions of hydrogen and helium in bcc and fcc lattices. These are fully quantum mechanical, self-consistent calculations utilizing state-of-the-art methods of electron band theory, which make no assumptions regarding pressure ionization. The major approximation in the LDA method is that the exchange and correlation energy is given by a free electron functional in terms of the local electron density. The majority of previous mixture calculations start with the assumption that both hydrogen and helium are pressure-ionized so that the electronic structure is approximately that of free or weakly screened electrons in the presence of positive ions. Stevenson used a hard-sphere mixture model for the ions with an ion-ion pseudopotential to account for electron screening and predicted that a mixture containing 7% helium by number, the composition believed to be present in Jupiter and Saturn, would phase separate at a temperature of about 7000 K at 8 Mbar. Subsequent calculations carried out for the fully ionized mixture and for a mixture of screened ions (linear response theory) have all arrived at predictions similar to those of Stevenson. MacFarlane and Hubbard performed Thomas-Fermi-Dirac calculations for mixing enthalpies of hydrogen and helium in bcc and fcc lattices and predicted that phase separation would not occur at any temperature.

  18. Electronic Structure Analysis for Proteins on the FMO Method

    NASA Astrophysics Data System (ADS)

    Kobori, Tomoki; Tsuneyuki, Shinji; Sodeyama, Keitaro; Akagi, Kazuto; Terakura, Kiyoyuki; Fukuyama, Hidetoshi

    2009-03-01

    The enormity and complexity of proteins have rendered their electronic structure calculation very costly. Although recently established Fragment Molecular Orbital (FMO) method enables us to calculate total energy of a huge protein precisely based on quantum mechanics, the method does not refer to one-electron orbitals and one-electron energy spectrum. In this paper we propose a method of analyzing electronic structure of a protein based on first principles calculation with reasonable accuracy and CPU cost. We construct one- electron Hamiltonian of proteins by assembling the output of the FMO method: fragment orbitals are determined by fragment monomer calculation, while interaction and overlap between fragment orbitals in different fragments are obtained from dimer calculation. After one-electron Hamiltonian matrix of the whole system is fabricated with the fragment orbital basis, one- electron energy spectrum is obtained by its diagonalization. If the matrix dimension is too large, unimportant orbitals are eliminated from the matrix so that the diagonalization of the Hamiltonian becomes feasible. The method is applicable to both the Hartree-Fock method and the density functional theory. In this paper, validity of the method is verified by some test calculations of small peptides.

  19. Electronic Structure and Effectively Unpaired Electron Density Topology in closo-Boranes: Nonclassical Three-Center Two-Electron Bonding.

    PubMed

    Lobayan, Rosana M; Bochicchio, Roberto C; Torre, Alicia; Lain, Luis

    2011-04-12

    This article provides a detailed study of the structure and bonding in closo-borane cluster compounds X2B3H3 (X = BH(-), P, SiH, CH, N), with particular emphasis on the description of the electron distribution using the topology of the quantum many-body effectively unpaired density. The close relationship observed between the critical points of this quantity and the localization of the electron cloud allows us to characterize the nonclassical bonding patterns of these systems. The obtained results confirm the suitability of the local rule to detect three-center two-electron bonds, which was conjectured in our previous study on boron hydrides.

  20. Banded Electron Structure Formation in the Inner Magnetosphere

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    Banded electron structures in energy-time spectrograms have been observed in the inner magnetosphere concurrent with a sudden relaxation of geomagnetic activity. In this study, the formation of these banded structures is considered with a global, bounce-averaged model of electron transport, and it is concluded that this structure is a natural occurrence when plasma sheet electrons are captured on closed drift paths near the Earth. These bands do not appear unless there is capture of plasma sheet electrons; convection along open drift paths making open pass around the Earth do not have time to develop this feature. The separation of high-energy bands from the injection population due to the preferential advection of the gradient-curvature drift creates spikes in the energy distribution, which overlap to form a series of bands in the energy spectrograms. The lowest band is the bulk of the injected population in the sub-key energy range. Using the Kp history for an observed banded structure event, a cloud of plasma sheet electrons is captured and the development of their distribution function is examined and discussed.

  1. Electronic structure and magnetic anisotropy of CrO2

    NASA Astrophysics Data System (ADS)

    Toropova, A.; Kotliar, G.; Savrasov, S. Y.; Oudovenko, V. S.

    2005-05-01

    The problem of importance of strong correlations for the electronic structure, transport, and magnetic properties of half-metallic ferromagnetic CrO2 is addressed by performing density functional electronic structure calculations in the local spin density approximation (LSDA) as well as using the LSDA+U method. It is shown that the corresponding low-temperature experimental data are best fitted without accounting for the Hubbard U corrections. We conclude that the ordered phase of CrO2 is weakly correlated.

  2. The electronic structure and chemical bonding of vitamin B12

    NASA Astrophysics Data System (ADS)

    Kurmaev, E. Z.; Moewes, A.; Ouyang, L.; Randaccio, L.; Rulis, P.; Ching, W. Y.; Bach, M.; Neumann, M.

    2003-05-01

    The electronic structure and chemical bonding of vitamin B12 (cyanocobalamin) and B12-derivative (methylcobalamin) are studied by means of X-ray emission (XES) and photoelectron (XPS) spectroscopy. The obtained results are compared with ab initio electronic structure calculations using the orthogonalized linear combination of the atomic orbital method (OLCAO). We show that the chemical bonding in vitamin B12 is characterized by the strong Co-C bond and relatively weak axial Co-N bond. It is further confirmed that the Co-C bond in cyanocobalamin is stronger than that of methylcobalamin resulting in their different biological activity.

  3. Structural and luminescent properties of electron-irradiated silicon

    SciTech Connect

    Sobolev, N. A.; Loshachenko, A. S.; Aruev, P. N.; Kalyadin, A. E.; Shek, E. I.; Zabrodskiy, V. V.; Shtel'makh, K. F.; Vdovin, V. I.; Xiang, Luelue; Yang, Deren

    2014-02-21

    Structural defects induced by electron irradiation of p-Cz-Si wafers were identified. The influence of the annealing conditions in a chlorine-containing atmosphere on the structural and luminescent properties of the samples was examined. Light-emitting diodes based on electron-irradiated and high-temperature-annealed wafers were fabricated by a vapour-phase epitaxy technique and their luminescence properties were studied. A high-intensity dislocation-related D1 line was observed at 1.6 μm in the room-temperature electroluminescence spectrum.

  4. Comparison of electronic structure between monolayer silicenes on Ag (111)

    NASA Astrophysics Data System (ADS)

    Chun-Liang, Lin; Ryuichi, Arafune; Maki, Kawai; Noriaki, Takagi

    2015-08-01

    The electronic structures of monolayer silicenes (4 × 4 and ) grown on Ag (111) surface are studied by scanning tunneling spectroscopy (STS) and density functional theory (DFT) calculations. While both phases have similar electronic structures around the Fermi level, significant differences are observed in the higher energy unoccupied states. The DFT calculations show that the contributions of Si 3pz orbitals to the unoccupied states are different because of their different buckled configurations. Project supported by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) through Grants-in-Aid for Scientific Research (Grant Nos. 24241040 and 25110008) and the World Premier International Research Center Initiative (WPI), MEXT, Japan.

  5. Electronic structure of Sn/Cu(100)-[Formula: see text].

    PubMed

    Martínez-Blanco, J; Joco, V; Fujii, J; Segovia, P; Michel, E G

    2009-02-04

    We present measurements of the Fermi surface and underlying band structure of Sn/Cu(100)-[Formula: see text]. This phase is observed for a coverage of 0.60-0.65 monolayers. Its electronic structure is characterized by a free-electron-like surface band folded with the reconstruction periodicity. At variance with other surface phases of Sn on Cu(100), no temperature-induced phase transition is observed for this phase from 100 K up to the desorption of Sn.

  6. Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

    PubMed Central

    Cataldo, Sebastiano; Pignataro, Bruno

    2013-01-01

    This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions. PMID:28809362

  7. Solving complex and disordered surface structures with electron diffraction

    SciTech Connect

    Van Hove, M.A.

    1987-10-01

    The past of surface structure determination with low-energy electron diffraction (LEED) will be briefly reviewed, setting the stage for a discussion of recent and future developments. The aim of these developments is to solve complex and disordered surface structures. Some efficient solutions to the theoretical and experimental problems will be presented. Since the theoretical problems dominate, the emphasis will be on theoretical approaches to the calculation of the multiple scattering of electrons through complex and disordered surfaces. 49 refs., 13 figs., 1 tab.

  8. Electronic Structure of Lanthanum Hydrides with Switchable Optical Properties

    SciTech Connect

    Ng, K.; Zhang, F.; Ng, K.; Zhang, F.; Anisimov, V.; Rice, T.; Anisimov, V.

    1997-02-01

    Recent dramatic changes in the optical properties of LaH{sub 2+x} and YH{sub 2+x} films discovered by Huiberts {ital et al.}[Nature (London) {bold 380}, 231 (1996)] suggest their electronic structure is described best by a local model. Electron correlation is important in H{sup -} centers and in explaining the transparent insulating behavior of LaH{sub 3}. The metal-insulator transition at x{approximately}0.8 takes place in a band of highly localized states centered on the H vacancies in the LaH{sub 3} structure. {copyright} {ital 1997} {ital The American Physical Society}

  9. Structural and luminescent properties of electron-irradiated silicon

    NASA Astrophysics Data System (ADS)

    Sobolev, N. A.; Aruev, P. N.; Kalyadin, A. E.; Shek, E. I.; Zabrodskiy, V. V.; Loshachenko, A. S.; Shtel`makh, K. F.; Vdovin, V. I.; Xiang, Luelue; Yang, Deren

    2014-02-01

    Structural defects induced by electron irradiation of p-Cz-Si wafers were identified. The influence of the annealing conditions in a chlorine-containing atmosphere on the structural and luminescent properties of the samples was examined. Light-emitting diodes based on electron-irradiated and high-temperature-annealed wafers were fabricated by a vapour-phase epitaxy technique and their luminescence properties were studied. A high-intensity dislocation-related D1 line was observed at 1.6 μm in the room-temperature electroluminescence spectrum.

  10. Studying Arabidopsis chloroplast structural organisation using transmission electron microscopy.

    PubMed

    Hyman, Stefan; Jarvis, R Paul

    2011-01-01

    Chloroplasts, as well as other, non-photosynthetic types of plastid, are characteristic structures within plant cells. They are relatively large organelles (typically 1-5 μm in diameter), and so can readily be analysed by electron microscopy. Chloroplast structure is remarkably complex, comprising at least six distinct sub-organellar compartments, and is sensitive to developmental changes, environmental effects, and genetic lesions. Transmission electron microscopy (TEM), therefore, represents a powerful technique for monitoring the effects of various changing parameters or treatments on the development and differentiation of these important organelles. We describe a method for the analysis of Arabidopsis plant material by TEM, primarily for the assessment of plastid ultrastructure.

  11. Electromagnetic Structure and Electron Acceleration in Shock–Shock Interaction

    NASA Astrophysics Data System (ADS)

    Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru; Mazelle, Christian X.

    2017-09-01

    A shock–shock interaction is investigated by using a one-dimensional full particle-in-cell simulation. The simulation reproduces the collision of two symmetrical high Mach number quasi-perpendicular shocks. The basic structure of the shocks and ion dynamics is similar to that obtained by previous hybrid simulations. The new aspects obtained here are as follows. Electrons are already strongly accelerated before the two shocks collide through multiple reflection. The reflected electrons self-generate waves upstream between the two shocks before they collide. The waves far upstream are generated through the right-hand resonant instability with the anomalous Doppler effect. The waves generated near the shock are due to firehose instability and have much larger amplitudes than those due to the resonant instability. The high-energy electrons are efficiently scattered by the waves so that some of them gain large pitch angles. Those electrons can be easily reflected at the shock of the other side. The accelerated electrons form a power-law energy spectrum. Due to the accelerated electrons, the pressure of upstream electrons increases with time. This appears to cause the deceleration of the approaching shock speed. The accelerated electrons having sufficiently large Larmor radii are further accelerated through the similar mechanism working for ions when the two shocks are colliding.

  12. Hartree-Fock electronic structure calculations for free atoms and immersed atoms in an electron gas

    NASA Astrophysics Data System (ADS)

    Walsh, Kenneth Charles

    Electronic structure calculations for free and immersed atoms are performed in the context of unrestricted Hartree-Fock Theory. Spherical symmetry is broken, lifting degeneracies in electronic configurations involving the magnetic quantum number mℓ. Basis sets, produced from density functional theory, are then explored for completeness. Comparison to spectroscopic data is done by a configurational interaction of the appropriate L and S symmetry. Finally, a perturbation technique by Lowdin is used to couple the bound atomic states to a neutral, uniform background electronic gas (jellium).

  13. Free electron laser-driven ultrafast rearrangement of the electronic structure in Ti

    PubMed Central

    Principi, E.; Giangrisostomi, E.; Cucini, R.; Bencivenga, F.; Battistoni, A.; Gessini, A.; Mincigrucci, R.; Saito, M.; Di Fonzo, S.; D'Amico, F.; Di Cicco, A.; Gunnella, R.; Filipponi, A.; Giglia, A.; Nannarone, S.; Masciovecchio, C.

    2015-01-01

    High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M2,3-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs. PMID:26798835

  14. First-principle simulations of electronic structure in semicrystalline polyethylene

    NASA Astrophysics Data System (ADS)

    Moyassari, A.; Unge, M.; Hedenqvist, M. S.; Gedde, U. W.; Nilsson, F.

    2017-05-01

    In order to increase our fundamental knowledge about high-voltage cable insulation materials, realistic polyethylene (PE) structures, generated with a novel molecular modeling strategy, have been analyzed using first principle electronic structure simulations. The PE structures were constructed by first generating atomistic PE configurations with an off-lattice Monte Carlo method and then equilibrating the structures at the desired temperature and pressure using molecular dynamics simulations. Semicrystalline, fully crystalline and fully amorphous PE, in some cases including crosslinks and short-chain branches, were analyzed. The modeled PE had a structure in agreement with established experimental data. Linear-scaling density functional theory (LS-DFT) was used to examine the electronic structure (e.g., spatial distribution of molecular orbitals, bandgaps and mobility edges) on all the materials, whereas conventional DFT was used to validate the LS-DFT results on small systems. When hybrid functionals were used, the simulated bandgaps were close to the experimental values. The localization of valence and conduction band states was demonstrated. The localized states in the conduction band were primarily found in the free volume (result of gauche conformations) present in the amorphous regions. For branched and crosslinked structures, the localized electronic states closest to the valence band edge were positioned at branches and crosslinks, respectively. At 0 K, the activation energy for transport was lower for holes than for electrons. However, at room temperature, the effective activation energy was very low (˜0.1 eV) for both holes and electrons, which indicates that the mobility will be relatively high even below the mobility edges and suggests that charge carriers can be hot carriers above the mobility edges in the presence of a high electrical field.

  15. Structural and electronic properties of monolayer group III monochalcogenides

    NASA Astrophysics Data System (ADS)

    Demirci, S.; Avazlı, N.; Durgun, E.; Cahangirov, S.

    2017-03-01

    We investigate the structural, mechanical, and electronic properties of the two-dimensional hexagonal structure of group III-VI binary monolayers, M X (M =B , Al, Ga, In and X =O , S, Se, Te) using first-principles calculations based on the density functional theory. The structural optimization calculations and phonon spectrum analysis indicate that all of the 16 possible binary compounds are thermally stable. In-plane stiffness values cover a range depending on the element types and can be as high as that of graphene, while the calculated bending rigidity is found to be an order of magnitude higher than that of graphene. The obtained electronic band structures show that M X monolayers are indirect band-gap semiconductors. The calculated band gaps span a wide optical spectrum from deep ultraviolet to near infrared. The electronic structure of oxides (M O ) is different from the rest because of the high electronegativity of oxygen atoms. The dispersions of the electronic band edges and the nature of bonding between atoms can also be correlated with electronegativities of constituent elements. The unique characteristics of group III-VI binary monolayers can be suitable for high-performance device applications in nanoelectronics and optics.

  16. New quinternary selenides: Syntheses, characterizations, and electronic structure calculations

    SciTech Connect

    Chung, Ming-Yan; Lee, Chi-Shen

    2013-06-01

    Five quinternary selenides, Sr₂.₆₃Y₀.₃₇Ge₀.₆₃Sb₂.₃₇Se₈ (I), Sr₂.₆₃La₀.₃₇Ge₀.₆₃Sb₂.₃₇Se₈ (II), Sr₂.₇₁La₀.₂₉Sn₀.₇₇Bi₂.₂₃Se₈ (III), Ba₂.₆₇ La₀.₃₃ Sn₀.₆₇Sb₂.₃₃Se₈ (IV), and Ba₂.₆₇ La₀.₃₃Sn₀.₆₇Bi₂.₃₃Se₈ (V), were synthesized by solid-state reaction in fused silica tubes. These compounds are isostructural and crystallize in the Sr₃GeSb₂Se₈ structural-type, which belongs to the orthorhombic space group Pnma (no. 62). Three structural units, 1[MSe₃], 1[M₄Se₁₀] (M=Tt, Pn) and M´ (M´=groups II and III element), comprise the entire one-dimensional structure, separated by M´. Measurements of electronic resistivity and diffused reflectance suggest that IV and V have semiconducting properties. Electronic structure calculations confirm the site preferences of Sr/La element discovered by crystal structure refinement. - Graphical abstract: Quinternary selenides Ae₂.₆₇M₀.₃₃Tt₀.₆₇Pn₂.₃₃Se₈ (Ae, M, Tt, Pn=Sr/Ba, Y/La, Ge/Sn, Sb/Bi) were synthesized and their site preferences were characterized by single-crystal X-ray diffraction and electronic structure calculation. Highlights: • Five new quinternary selenides were synthesized and characterized. • Structural units, 1[MSe₃] and 1[M₄Se₁₀] (M=Tt, Pn), construct the one-dimensional structure. • Calculations of electronic structure confirm site preference of Sr/La sites.

  17. Electron-Phonon Renormalization of Electronic Band Structures of C Allotropes and BN Polymorphs

    NASA Astrophysics Data System (ADS)

    Tutchton, Roxanne M.; Marchbanks, Christopher; Wu, Zhigang

    The effect of lattice vibration on electronic band structures has been mostly neglected in first-principles calculations because the electron-phonon (e-ph) renormalization of quasi-particle energies is often small (< 100 meV). However, in certain materials, such as diamond, the electron-phonon coupling reduces the band gap by nearly 0.5 eV, which is comparable to the many-body corrections of the electronic band structures calculated using the density functional theory (DFT). In this work, we compared two implementations of the Allen-Heine-Cardona theory in the EPW code and the ABINIT package respectively. Our computations of Si and diamond demonstrate that the ABINIT implementation converges much faster. Using this method, the e-ph renormalizations of electronic structures of three C allotropes (diamond, graphite, graphene) and four BN polymorphs (zincblend, wurtzite, mono-layer, and layered-hexagonal) were calculated. Our results suggest that (1) all of the zero-point renormalizations of band gaps in these materials, except for graphene, are larger than 100 meV, and (2) there are large variations in e-ph renormalization of band gaps due to differences in crystal structure. This work was supported by a U.S. DOE Early Career Award (Grant No. DE-SC0006433). Computations were carried out at the Golden Energy Computing Organization at CSM and the National Energy Research Scientific Computing Center (NERSC).

  18. Electronic structure of nitrides PuN and UN

    SciTech Connect

    Lukoyanov, A. V. Anisimov, V. I.

    2016-11-15

    The electronic structure of uranium and plutonium nitrides in ambient conditions and under pressure is investigated using the LDA + U + SO band method taking into account the spin–orbit coupling and the strong correlations of 5f electrons of actinoid ions. The parameters of these interactions for the equilibrium cubic structure are calculated additionally. The application of pressure reduces the magnetic moment in PuN due to predominance of the f{sup 6} configuration and the jj-type coupling. An increase in the occupancy of the 5f state in UN leads to a decrease in the magnetic moment, which is also detected in the trigonal structure of the UN{sub x} β phase (La{sub 2}O{sub 3}-type structure). The theoretical results are in good agreement with the available experimental data.

  19. Chiral phosphorus nanotubes: structure, bonding, and electronic properties.

    PubMed

    Fernández-Escamilla, H N; Quijano-Briones, J J; Tlahuice-Flores, A

    2016-05-14

    The study of black phosphorus nanotubes (PNTs) had been devoted to zigzag and armchair structures, with no consideration of chiral structures to date. In this communication, we studied the structural and electronic (band structure) properties of chiral nanotubes using a periodic plane wave-pseudopotential approach. We found that some chiral nanotubes display similar bandgaps and binding energies per atom (BEA) as armchair PNTs and Born-Oppenheimer molecular dynamics (BOMD) calculations attest their thermal stability. Interestingly, we determined that the bandgap is tuned by varying the PNTs chirality and it is not related to their diameters. This feature can be exploited in optical and electronic applications wherein a direct and sizable bandgap is required.

  20. Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure.

    PubMed

    Tapio, Kosti; Leppiniemi, Jenni; Shen, Boxuan; Hytönen, Vesa P; Fritzsche, Wolfgang; Toppari, J Jussi

    2016-11-09

    DNA based structures offer an adaptable and robust way to develop customized nanostructures for various purposes in bionanotechnology. One main aim in this field is to develop a DNA nanobreadboard for a controllable attachment of nanoparticles or biomolecules to form specific nanoelectronic devices. Here we conjugate three gold nanoparticles on a defined size TX-tile assembly into a linear pattern to form nanometer scale isolated islands that could be utilized in a room temperature single electron transistor. To demonstrate this, conjugated structures were trapped using dielectrophoresis for current-voltage characterization. After trapping only high resistance behavior was observed. However, after extending the islands by chemical growth of gold, several structures exhibited Coulomb blockade behavior from 4.2 K up to room temperature, which gives a good indication that self-assembled DNA structures could be used for nanoelectronic patterning and single electron devices.

  1. Electronic structure of nitrides PuN and UN

    NASA Astrophysics Data System (ADS)

    Lukoyanov, A. V.; Anisimov, V. I.

    2016-11-01

    The electronic structure of uranium and plutonium nitrides in ambient conditions and under pressure is investigated using the LDA + U + SO band method taking into account the spin-orbit coupling and the strong correlations of 5 f electrons of actinoid ions. The parameters of these interactions for the equilibrium cubic structure are calculated additionally. The application of pressure reduces the magnetic moment in PuN due to predominance of the f 6 configuration and the jj-type coupling. An increase in the occupancy of the 5 f state in UN leads to a decrease in the magnetic moment, which is also detected in the trigonal structure of the UN x β phase (La2O3-type structure). The theoretical results are in good agreement with the available experimental data.

  2. Stacking-dependent electronic structure of bilayer silicene

    SciTech Connect

    Fu, Huixia; Zhang, Jin; Ding, Zijing; Li, Hui E-mail: smeng@iphy.ac.cn; Meng, Sheng E-mail: smeng@iphy.ac.cn

    2014-03-31

    Bilayer silicene (BLS) is a class of material that possibly holds both topological and superconducting properties; however, its structure is not fully understood. By scanning stacking modes and lattice constants using first principles calculations, several meta-stable configurations are identified, including a slightly faulted-AA packing structure, named slide-2AA. Different from the metallic properties of conventional AA and AB stacking forms, band structure of slide-2AA bilayer presents a sizeable indirect energy gap of ∼1.16 eV. A metal-semiconductor phase transition along the sliding pathway with a small energy barrier is also observed, indicating its electronic properties can be easily tuned by applying small shear force along the BLS surface plane. Such unique quantitative relationship of structure and electronic properties has profound implications in nanoelectronics and electromechanical devices.

  3. Structural and electronic properties of small silicon clusters

    NASA Astrophysics Data System (ADS)

    Baturin, V. S.; Lepeshkin, S. V.; Magnitskaya, M. V.; Matsko, N. L.; Uspenskii, Yu A.

    2014-05-01

    The atomic structure and electronic spectrum of silicon nanoclusters (Si-ncs) Si7, Si10,Si10H16 and Si10H20 are calculated using the evolutionary algorithm with total energy computed within density functional theory and generalized gradient approximation (DFT-GGA). When analysing the low-energy structures, we pay significant attention to their symmetry and interatomic bond geometry. The candidate structures arising in the process of evolutionary algorithm convergence are also considered and classified by their topology and grouping near local energy minima. Possible ways to improve the convergence of evolutionary computation are discussed. Addressing qualitative criteria for the ground-state atomic structure of Si-ncs, we consider correlations between the density of electronic states and the total energetics of clusters in the ground state and low-energy-isomer configurations.

  4. Stacking-dependent electronic structure of bilayer silicene

    NASA Astrophysics Data System (ADS)

    Fu, Huixia; Zhang, Jin; Ding, Zijing; Li, Hui; Meng, Sheng

    2014-03-01

    Bilayer silicene (BLS) is a class of material that possibly holds both topological and superconducting properties; however, its structure is not fully understood. By scanning stacking modes and lattice constants using first principles calculations, several meta-stable configurations are identified, including a slightly faulted-AA packing structure, named slide-2AA. Different from the metallic properties of conventional AA and AB stacking forms, band structure of slide-2AA bilayer presents a sizeable indirect energy gap of ˜1.16 eV. A metal-semiconductor phase transition along the sliding pathway with a small energy barrier is also observed, indicating its electronic properties can be easily tuned by applying small shear force along the BLS surface plane. Such unique quantitative relationship of structure and electronic properties has profound implications in nanoelectronics and electromechanical devices.

  5. Effects of inverse degree on electronic structure and electron energy-loss spectrum in zinc ferrites

    NASA Astrophysics Data System (ADS)

    Sun, D.; Wang, M. X.; Zhang, Z. H.; Tao, H. L.; He, M.; Song, B.; Li, Q.

    2015-12-01

    First-principles calculations were performed to study the effects of inverse degree in zinc ferrite on electronic structure and properties. The electron energy-loss near-edge fine structure (ELNES) were simulated, and the splitting of peak and intensities of the oxygen K-edges can be used to identify the inversion of zinc ferrite. More Fe3+ transferring from the octahedral sites to the tetrahedral sites lead to the changing of the ligand shells surrounding the absorbing atom, accounting for the observed changing in ELNES. The standard criterion for determining the reversal extent of the cations in zinc ferrite by ELNES was given.

  6. Strain fields and electronic structure of CrN

    NASA Astrophysics Data System (ADS)

    Rojas, Tomas; Ulloa, Sergio E.

    Chromium nitride (CrN) has a promising future for its resistance to corrosion and hardness, and very interesting magnetic and electronic properties. CrN presents a phase transition in which the crystal structure, magnetic ordering and electronic properties change at a (Néel) temperature ~ 280 K . Thin films from different labs exhibit different conductance behavior at low temperature. We study the unusual electronic and magnetic properties of thin layers. For that purpose we develop a tight binding Hamiltonian based on the Slater-Koster approach, and estimate the interaction between the Cr-3d and N-2p orbitals, by analyzing the band structure and comparing it with ab initio calculations performed using the LSDA+U method. These calculations show the system to behave as a semiconductor below the Néel temperature. Based on our model we calculate the effective masses and analyze the effect of strain fields in the electronic structure in order to understand the electronic behavior near the phase transition. Supported by NSF DMR-1508325.

  7. Electronic structure of hydrogenated diamond: Microscopical insight into surface conductivity

    NASA Astrophysics Data System (ADS)

    Iacobucci, S.; Alippi, Paola; Calvani, P.; Girolami, M.; Offi, F.; Petaccia, L.; Trucchi, D. M.

    2016-07-01

    We have correlated the surface conductivity of hydrogen-terminated diamond to the electronic structure in the Fermi region. Significant density of electronic states (DOS) in proximity of the Fermi edge has been measured by photoelectron spectroscopy (PES) on surfaces exposed to air, corresponding to a p -type electric conductive regime, while upon annealing a depletion of the DOS has been achieved, resembling the diamond insulating state. The surface and subsurface electronic structure has been determined, exploiting the different probing depths of PES applied in a photon energy range between 7 and 31 eV. Ab initio density functional calculations including surface charge depletion and band-bending effects favorably compare with electronic states measured by angular-resolved photoelectron spectroscopy. Such states are organized in the energy-momentum space in a twofold structure: one, bulk-derived, band disperses in the Γ -X direction with an average hole effective mass of (0.43 ±0.02 ) m0 , where m0 is the bare electron mass; a second flatter band, with an effective mass of (2.2 ±0.9 ) m0 , proves that a hole gas confined in the topmost layers is responsible for the conductivity of the (2 ×1 ) hydrogen-terminated diamond (100 ) surface.

  8. Layer-stacking effect on electronic structures of bilayer arsenene

    NASA Astrophysics Data System (ADS)

    Mi, Kui; Xie, Jiafeng; Si, M. S.; Gao, C. X.

    2017-01-01

    A monolayer of orthorhombic arsenic (arsenene) is a promising candidate for nano-electronic devices due to the uniquely electronic properties. To further extend its practical applications, an additional layer is introduced to tune the electronic structures. Four layer-stacking manners, namely AA-, AB-, AB‧-, and AC-stacking, are constructed and studied through using first-principles calculations. Compared with monolayer, an indirect-direct gap transition is realized in AB-stacking. More importantly, a semimetal feature appears in the AC- and AB‧-stacked bilayers, leaving the electronic structure of AA-stacking trivial. In addition, the energy dispersion around Γ is largely tuned from the layer-stacking effect. To understand the underlying physics, the \\textbf{k}\\cdot\\textbf{p} approximation is taken to address this issue. Our results show that the level repulsion from the additional layer domaintes the anisotropy of energy dispersion around Γ. The works like ours would shed new light on the tunability of the electronic structure in layered arsenene.

  9. Molecular and electronic structure of electroactive self-assembled monolayers

    NASA Astrophysics Data System (ADS)

    Méndez De Leo, Lucila P.; de la Llave, Ezequiel; Scherlis, Damián; Williams, Federico J.

    2013-03-01

    Self-assembled monolayers (SAMs) containing electroactive functional groups are excellent model systems for the formation of electronic devices by self-assembly. In particular ferrocene-terminated alkanethiol SAMs have been extensively studied in the past. However, there are still open questions related with their electronic structure including the influence of the ferrocene group in the SAM-induced work function changes of the underlying metal. We have thus carried out a thorough experimental and theoretical investigation in order to determine the molecular and electronic structure of ferrocene-terminated alkanethiol SAMs on Au surfaces. In agreement with previous studies we found that the Fc-containing alkanethiol molecules adsorb forming a thiolate bond with the Au surface with a molecular geometry 30° tilted with respect to the surface normal. Measured surface coverages indicate the formation of a compact monolayer. We found for the first time that the ferrocene group has little influence on the observed work function decrease which is largely determined by the alkanethiol. Furthermore, the ferrocene moiety lies 14 Å above the metal surface covalently bonded to the alkanethiol SAM and its HOMO is located at -1.6 eV below the Fermi level. Our results provide new valuable insight into the molecular and electronic structure of electroactive SAMs which are of fundamental importance in the field of molecular electronics.

  10. Molecular and electronic structure of electroactive self-assembled monolayers.

    PubMed

    Méndez De Leo, Lucila P; de la Llave, Ezequiel; Scherlis, Damián; Williams, Federico J

    2013-03-21

    Self-assembled monolayers (SAMs) containing electroactive functional groups are excellent model systems for the formation of electronic devices by self-assembly. In particular ferrocene-terminated alkanethiol SAMs have been extensively studied in the past. However, there are still open questions related with their electronic structure including the influence of the ferrocene group in the SAM-induced work function changes of the underlying metal. We have thus carried out a thorough experimental and theoretical investigation in order to determine the molecular and electronic structure of ferrocene-terminated alkanethiol SAMs on Au surfaces. In agreement with previous studies we found that the Fc-containing alkanethiol molecules adsorb forming a thiolate bond with the Au surface with a molecular geometry 30° tilted with respect to the surface normal. Measured surface coverages indicate the formation of a compact monolayer. We found for the first time that the ferrocene group has little influence on the observed work function decrease which is largely determined by the alkanethiol. Furthermore, the ferrocene moiety lies 14 Å above the metal surface covalently bonded to the alkanethiol SAM and its HOMO is located at -1.6 eV below the Fermi level. Our results provide new valuable insight into the molecular and electronic structure of electroactive SAMs which are of fundamental importance in the field of molecular electronics.

  11. Structural and electronic properties of hexagonal yttrium trihydride

    SciTech Connect

    Wang, Y.; Chou, M.Y. )

    1995-03-15

    The structural and electronic properties of yttrium trihydride with metal atoms in the hexagonal-close-packed (hcp) structure are studied by the pseudopotential method within the local-density-functional approximation (LDA). It is found that the hydrogen positions within the metal lattice have a major role in determining these properties. Calculations confirmed that hexagonal YH[sub 3] with unusual wavelike hydrogen displacements (space group [ital D][sub 3[ital d

  12. Structure of electron transfer flavoprotein-ubiquinone oxidoreductase and electron transfer to the mitochondrial ubiquinone pool

    PubMed Central

    Zhang, Jian; Frerman, Frank E.; Kim, Jung-Ja P.

    2006-01-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a 4Fe4S flavoprotein located in the inner mitochondrial membrane. It catalyzes ubiquinone (UQ) reduction by ETF, linking oxidation of fatty acids and some amino acids to the mitochondrial respiratory chain. Deficiencies in ETF or ETF-QO result in multiple acyl-CoA dehydrogenase deficiency, a human metabolic disease. Crystal structures of ETF-QO with and without bound UQ were determined, and they are essentially identical. The molecule forms a single structural domain. Three functional regions bind FAD, the 4Fe4S cluster, and UQ and are closely packed and share structural elements, resulting in no discrete structural domains. The UQ-binding pocket consists mainly of hydrophobic residues, and UQ binding differs from that of other UQ-binding proteins. ETF-QO is a monotopic integral membrane protein. The putative membrane-binding surface contains an α-helix and a β-hairpin, forming a hydrophobic plateau. The UQ—flavin distance (8.5 Å) is shorter than the UQ—cluster distance (18.8 Å), and the very similar redox potentials of FAD and the cluster strongly suggest that the flavin, not the cluster, transfers electrons to UQ. Two possible electron transfer paths can be envisioned. First, electrons from the ETF flavin semiquinone may enter the ETF-QO flavin one by one, followed by rapid equilibration with the cluster. Alternatively, electrons may enter via the cluster, followed by equilibration between centers. In both cases, when ETF-QO is reduced to a two-electron reduced state (one electron at each redox center), the enzyme is primed to reduce UQ to ubiquinol via FAD. PMID:17050691

  13. Nature-Inspired Structural Materials for Flexible Electronic Devices.

    PubMed

    Liu, Yaqing; He, Ke; Chen, Geng; Leow, Wan Ru; Chen, Xiaodong

    2017-10-09

    Exciting advancements have been made in the field of flexible electronic devices in the last two decades and will certainly lead to a revolution in peoples' lives in the future. However, because of the poor sustainability of the active materials in complex stress environments, new requirements have been adopted for the construction of flexible devices. Thus, hierarchical architectures in natural materials, which have developed various environment-adapted structures and materials through natural selection, can serve as guides to solve the limitations of materials and engineering techniques. This review covers the smart designs of structural materials inspired by natural materials and their utility in the construction of flexible devices. First, we summarize structural materials that accommodate mechanical deformations, which is the fundamental requirement for flexible devices to work properly in complex environments. Second, we discuss the functionalities of flexible devices induced by nature-inspired structural materials, including mechanical sensing, energy harvesting, physically interacting, and so on. Finally, we provide a perspective on newly developed structural materials and their potential applications in future flexible devices, as well as frontier strategies for biomimetic functions. These analyses and summaries are valuable for a systematic understanding of structural materials in electronic devices and will serve as inspirations for smart designs in flexible electronics.

  14. Electron Diffraction and High-Resolution Electron Microscopy of Mineral Structures

    NASA Astrophysics Data System (ADS)

    Nord, Gordon L., Jr.

    This book is a well-written English translation of the original 1981 Russian edition, Strukturnoye issledovaniye mineralov metodami mikrodifraktsii i elechtronnoi mikroskopii vysokogo razresheniya. The 1987 English version has been extensively updated and includes references up to 1986. The book is essentially a text on the theoretical and experimental aspects of transmission electron microscopy and has chapters on the reciprocal lattice, electron diffraction (both kinematic and dynamic), and high-resolution electron microscopy.Electron diffraction is emphasized, especially its use for structure analysis of poorly crystalline and fine-grained phases not readily determined by the more exact X ray diffraction method. Two methods of electron diffraction are discussed: selected area electron diffraction (SAED) and oblique-texture electron diffraction (OTED); the latter technique is rarely used in the west and is never discussed in western electron microscopy texts. A SAED pattern is formed by isolating a small micrometer-size area with an aperture and obtaining single-crystal patterns from the diffracted beams. By tilting the sample and obtaining many patterns, a complete picture of the reciprocal lattice can be taken. An OTED pattern is formed when the incident electron beam passes through an inclined preparation consisting of a great number of thin platy crystals lying normal to the texture axis (axis normal to the support grid). To form an OTED pattern, the plates must all lie on a common face, such as a basal plane in phyllosilicates. Upon tilting the plates, an elliptical powder diffraction pattern is formed. Intensities measured from these patterns are used for a structural analysis of the platy minerals.

  15. Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function

    PubMed Central

    Begemann, Isabell; Galic, Milos

    2016-01-01

    Many core paradigms of contemporary neuroscience are based on information obtained by electron or light microscopy. Intriguingly, these two imaging techniques are often viewed as complementary, yet separate entities. Recent technological advancements in microscopy techniques, labeling tools, and fixation or preparation procedures have fueled the development of a series of hybrid approaches that allow correlating functional fluorescence microscopy data and ultrastructural information from electron micrographs from a singular biological event. As correlative light electron microscopy (CLEM) approaches become increasingly accessible, long-standing neurobiological questions regarding structure-function relation are being revisited. In this review, we will survey what developments in electron and light microscopy have spurred the advent of correlative approaches, highlight the most relevant CLEM techniques that are currently available, and discuss its potential and limitations with respect to neuronal and synapse-specific applications. PMID:27601992

  16. Superconducting properties and electronic structure of NaBi.

    PubMed

    Kushwaha, S K; Krizan, J W; Xiong, J; Klimczuk, T; Gibson, Q D; Liang, T; Ong, N P; Cava, R J

    2014-05-28

    Resistivity, dc magnetization, and heat capacity measurements are reported for superconducting NaBi. T(c), the electronic contribution to the specific heat γ, the ΔC(p)/γT(c) ratio, and the Debye temperature are found to be 2.15 K, 3.4 mJ mol(-1) K(-2), 0.78, and 140 K respectively. The calculated electron-phonon coupling constant (λ(ep) = 0.62) implies that NaBi is a moderately coupled superconductor. The upper critical field and coherence length are found to be 250 Oe and 115 nm, respectively. Electronic structure calculations show NaBi to be a good metal, in agreement with the experiments; the p(x) and p(y) orbitals of Bi dominate the electronic states at the Fermi Energy.

  17. Modulated structures in calcian dolomite: A study by electron microscopy

    NASA Astrophysics Data System (ADS)

    van Tendeloo, G.; Wenk, H. R.; Gronsky, R.

    1985-11-01

    Calcian dolomite from the Devonian Lost Burro formation has been investigated with electron microscopy techniques. Electron diffraction shows evidence for “c” and “d” type reflections which may occur independently and are indicative of ordered superstructures. High resolution electron microscopy combined with selected area optical diffraction is the basis for models to explain the superstructures in calcian dolomite. It is proposed that “c” reflections are due to ordered substitution of Mg by Ca in basal cation layers. “d” reflections result when the rhombohedral stacking of basal layers is interrupted by intercalation of additional Ca layers. During electron irradiation at 1 MeV the Mg-Ca distribution becomes disordered and the crystal structure attains calcite symmetry. The arrangement of CO3 groups remains ordered.

  18. Electronic Structure of Crystalline 4He at High Pressures

    SciTech Connect

    Mao, Ho Kwang; Shirley, Eric L.; Ding, Yang; Eng, Peter; Cai, Yong Q.; Chow, Paul; Xiao, Yuming; Jinfu Shu, A=Kao, Chi-Chang; Hemley, Russell J.; Kao, Chichang; Mao, Wendy L.; /Stanford U., Geo. Environ. Sci. /SLAC

    2011-01-10

    Using inelastic X-ray scattering techniques, we have succeeded in probing the high-pressure electronic structure of helium crystal at 300 K which has the widest known electronic energy bandgap of all materials, that was previously inaccessible to measurements due to the extreme energy and pressure range. We observed rich electron excitation spectrum, including a cut-off edge above 23 eV, a sharp exciton peak showing linear volume dependence, and a series of excitations and continuum at 26 to 45 eV. We determined electronic dispersion along the {Gamma}-M direction over two Brillouin zones, and provided a quantitative picture of the helium exciton beyond the simplified Wannier-Frenkel description.

  19. Electronic structure and isomer shifts of neptunium compounds

    NASA Astrophysics Data System (ADS)

    Svane, A.; Petit, L.; Temmerman, W. M.; Szotek, Z.

    2002-08-01

    The electronic structures of αNp metal and 28 Np compounds are calculated with the generalized gradient approximation to density-functional theory, implemented with the full-potential linear-muffin-tin-orbital method. The calculations are compared to experimental isomer shifts providing a calibration of the 237Np isomeric transition with a value of Δ=(-40.1+/-1.3)×10- 3 fm2 for the difference in nuclear radius between the excited isomeric level and the ground state. The isomer shift is primarily determined by the chemical environment. Decreasing the volume, either by external or chemical pressure, causes an f-->s+d charge transfer on Np, which leads to a higher electron contact density. The possible f-electron localization in Np compounds is discussed using self-interaction corrections, and it is concluded that f-electron localization has only a minor influence on the isomer shift.

  20. Combining UV photodissociation with electron transfer for peptide structure analysis.

    PubMed

    Shaffer, Christopher J; Marek, Ales; Pepin, Robert; Slovakova, Kristina; Turecek, Frantisek

    2015-03-01

    The combination of near-UV photodissociation with electron transfer and collisional activation provides a new tool for structure investigation of isolated peptide ions and reactive intermediates. Two new types of pulse experiments are reported. In the first one called UV/Vis photodissociation-electron transfer dissociation (UVPD-ETD), diazirine-labeled peptide ions are shown to undergo photodissociation in the gas phase to form new covalent bonds, guided by the ion conformation, and the products are analyzed by electron transfer dissociation. In the second experiment, called ETD-UVPD wherein synthetic labels are not necessary, electron transfer forms new cation-peptide radical chromophores that absorb at 355 nm and undergo specific backbone photodissociation reactions. The new method is applied to distinguish isomeric ions produced by ETD of arginine containing peptides. Copyright © 2015 John Wiley & Sons, Ltd.

  1. Electronic, magnetic, and geometric structure of metallo-carbohedrenes

    SciTech Connect

    Reddy, B.V.; Khanna, S.N.; Jena, P. )

    1992-12-04

    The energetics and the electronic, magnetic, and geometric structure of the metallocarbohedrene Ti[sub 8]C[sub 12] have been calculated self-consistently in the density functional formulation. The structure of Ti[sub 8]C[sub 12] is a distorted dodecahedron with a binding energy of 6.1 electron volts per atom. The unusual stability is derived from covalent-like bonding between carbon atoms and between titanium and carbon atoms with no appreciable interaction between titanium atoms. The density of states at the Fermi energy is high and is derived from a strong hybridization between titanium 3d and carbon sp electrons. Titanium sites carry a small magnetic moment of 0.35 Bohr magneton per atom and the cluster is only weakly magnetic. 13 refs., 3 figs., 1 tab.

  2. Surface crystallography and electronic structure of potassium yttrium tungstate

    SciTech Connect

    Atuchin, V. V.; Pokrovsky, L. D.; Khyzhun, O. Yu.; Sinelnichenko, A. K.; Ramana, C. V.

    2008-08-01

    Structural and electronic characteristics of KY(WO{sub 4}){sub 2} (KYW) (010) crystal surfaces have been studied using reflection high-energy electron diffraction (RHEED) and x-ray photoelectron spectroscopy (XPS). The results indicate that the crystal structure and chemical composition of the mechanically polished pristine surface is stoichiometrically well maintained as expected for KYW crystals. Combined measurements of RHEED and XPS as a function of 1.5 keV Ar{sup +} ion irradiation of the KYW (010) surfaces indicate amorphization, partial loss of potassium atoms, and partial transformation of chemical valence state of tungsten from W{sup 6+} to a lower valence state, W{sup 0} state predominantly, which induces electronic states at the top of valence band.

  3. Structural and electronic properties of a tetrahedral amorphous carbon surface

    NASA Astrophysics Data System (ADS)

    Dong, Jianjun; Drabold, D. A.

    1997-03-01

    We present ab initio studies of a model of tetrahedral amorphous carbon (ta-C) surface. Our methodology is LDA (with Harris functional and local basis) molecular dynamics simulations. The surface is modeled by a 216 atom slab supercell. Several candidate slabs are constructed by starting with the DTW model (B.R. Djordjevic, M.F. Thorpe and F. Wooten, Phys. Rev. B 52) 5685 (1995) and applying various simulated heating/quenching cycles. We analyze the structural and electronic properties of the surface , with special attention forcused on the electronic signatures of surface structural defects. Preliminary results indicate that the surface layer significantly graphitizes, and many surface gap states are present in the electronic density of states.

  4. Electronic and structural properties of alkali-halide cluster anions

    NASA Astrophysics Data System (ADS)

    Fatemi, Fredrik Kurosh

    We have used photoelectron spectroscopy to study alkali- halide clusters containing excess electrons. These measurements addressed five major aspects of the electronic and structural properties of the clusters. The underlying motivations for studying these clusters are to understand the transition from atomic to bulk behavior as a function of particle size and to identify those properties which are unique to clusters. We have observed excited states in many of the single excess electron clusters, and tested simple theoretical models against our experimental results. The two excess electron systems also contain excited states. However, the absorption of a photon in these systems often leads to the desorption of a negatively charged alkali ion. The abundance of various isomers of the cesium-halide systems depends strongly on the temperature of the source in which they are created, while those of the potassium and sodium halides do not. We have proven that this behavior indicates that the clusters undergo rapid structural interconversions on a subnanosecond time scale. The properties of alkali-halide clusters usually depend only on the type of alkali in the cluster. To understand the effect of different alkali ions on the electronic and structural properties of the clusters, we have examined mixed clusters which contain more than one alkali species. There properties are influenced most by the larger cations in single excess electron systems, and by the smaller cations in multiple excess electron particles. Finally, our measurements have shown that some of the potassium-rich potassium-iodide cluster anions (KI)m K- n( m=2- 7,n=1- 4) appear to separate into a purely metallic component K-n supported by an ionic component (KI)m. This behavior is clear for m = 2, 3, 4, and 6. For m = 5 and 7, the ions comprising the cluster show a high degree of mixing.

  5. Structural and electronic properties of perylene from first principles calculations.

    PubMed

    Fedorov, I A; Zhuravlev, Y N; Berveno, V P

    2013-03-07

    The electronic structure of crystalline perylene has been investigated within the framework of density functional theory including van der Waals interactions. The computations of the lattice parameters and cohesive energy have good agreement with experimental values. We have also calculated the binding distance and energy of perylene dimers, using different schemes, which include van der Waals interactions.

  6. Synchrotron-Radiation-based Investigationsof the Electronic Structure of Pu

    SciTech Connect

    Tobin, J; Chung, B; Terry, J; Schulze, R; Farr, J; Heinzelman, K; Rotenberg, E; Shuh, D

    2004-09-27

    Synchrotron radiation from the Advanced Light Source has been used to investigate the electronic structure of {alpha}-Pu and {delta}-Pu. Measurements include core level and valence band photoelectron spectroscopy, Resonant Photoelectron Spectroscopy (REPES), and X-ray Absorption Spectroscopy (XAS).

  7. Electronic Structure, Localization and 5f Occupancy in Pu Materials

    SciTech Connect

    Joyce, John J.; Beaux, Miles F.; Durakiewicz, Tomasz; Graham, Kevin S.; Bauer, Eric D.; Mitchell, Jeremy N.; Tobash, Paul H.; Richmond, Scott

    2012-05-03

    The electronic structure of delta plutonium ({delta}-Pu) and plutonium compounds is investigated using photoelectron spectroscopy (PES). Results for {delta}-Pu show a small component of the valence electronic structure which might reasonably be associated with a 5f{sup 6} configuration. PES results for PuTe are used as an indication for the 5f{sup 6} configuration due to the presence of atomic multiplet structure. Temperature dependent PES data on {delta}-Pu indicate a narrow peak centered 20 meV below the Fermi energy and 100 meV wide. The first PES data for PuCoIn5 indicate a 5f electronic structure more localized than the 5fs in the closely related PuCoGa{sub 5}. There is support from the PES data for a description of Pu materials with an electronic configuration of 5f{sup 5} with some admixture of 5f{sup 6} as well as a localized/delocalized 5f{sup 5} description.

  8. Electron Heat Flux in Pressure Balance Structures at Ulysses

    NASA Technical Reports Server (NTRS)

    Yamauchi, Yohei; Suess, Steven T.; Sakurai, Takashi; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Pressure balance structures (PBSs) are a common feature in the high-latitude solar wind near solar minimum. Rom previous studies, PBSs are believed to be remnants of coronal plumes and be related to network activity such as magnetic reconnection in the photosphere. We investigated the magnetic structures of the PBSs, applying a minimum variance analysis to Ulysses/Magnetometer data. At 2001 AGU Spring meeting, we reported that PBSs have structures like current sheets or plasmoids, and suggested that they are associated with network activity at the base of polar plumes. In this paper, we have analyzed high-energy electron data at Ulysses/SWOOPS to see whether bi-directional electron flow exists and confirm the conclusions more precisely. As a result, although most events show a typical flux directed away from the Sun, we have obtained evidence that some PBSs show bi-directional electron flux and others show an isotropic distribution of electron pitch angles. The evidence shows that plasmoids are flowing away from the Sun, changing their flow direction dynamically in a way not caused by Alfven waves. From this, we have concluded that PBSs are generated due to network activity at the base of polar plumes and their magnetic structures axe current sheets or plasmoids.

  9. Flat pack interconnection structure simplifies modular electronic assemblies

    NASA Technical Reports Server (NTRS)

    Katzin, L.

    1967-01-01

    Flat pack interconnection structure composed of stick modules simplifies modular electronic assemblies by allowing a single axis mother board. Two of the wiring planes are located in the stick module, which is the lower level of assembly, with the third wiring plane in the mother board.

  10. Highlighting material structure with transmission electron diffraction correlation coefficient maps.

    PubMed

    Kiss, Ákos K; Rauch, Edgar F; Lábár, János L

    2016-04-01

    Correlation coefficient maps are constructed by computing the differences between neighboring diffraction patterns collected in a transmission electron microscope in scanning mode. The maps are shown to highlight material structural features like grain boundaries, second phase particles or dislocations. The inclination of the inner crystal interfaces are directly deduced from the resulting contrast. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Electronic origin of structural transition in 122 Fe based superconductors

    NASA Astrophysics Data System (ADS)

    Ghosh, Haranath; Sen, Smritijit; Ghosh, Abyay

    2017-03-01

    Direct quantitative correlations between the orbital order and orthorhombicity is achieved in a number of Fe-based superconductors of 122 family. The former (orbital order) is calculated from first principles simulations using experimentally determined doping and temperature dependent structural parameters while the latter (the orthorhombicity) is taken from already established experimental studies; when normalized, both the above quantities quantitatively corresponds to each other in terms of their doping as well as temperature variations. This proves that the structural transition in Fe-based materials is electronic in nature due to orbital ordering. An universal correlations among various structural parameters and electronic structure are also obtained. Most remarkable among them is the mapping of two Fe-Fe distances in the low temperature orthorhombic phase, with the band energies Edxz, Edyz of Fe at the high symmetry points of the Brillouin zone. The fractional co-ordinate zAs of As which essentially determines anion height is inversely (directly) proportional to Fe-As bond distances (with exceptions of K doped BaFe2As2) for hole (electron) doped materials as a function of doping. On the other hand, Fe-As bond-distance is found to be inversely (directly) proportional to the density of states at the Fermi level for hole (electron) doped systems. Implications of these results to current issues of Fe based superconductivity are discussed.

  12. Emergent electronic structure of CaFe2As2.

    PubMed

    Ali, Khadiza; Maiti, Kalobaran

    2017-07-24

    CaFe2As2 exhibits collapsed tetragonal (cT) structure and varied exotic behaviour under pressure at low temperatures that led to debate on linking the structural changes to its exceptional electronic properties like superconductivity, magnetism, etc. Here, we investigate the electronic structure of CaFe2As2 forming in different structures employing density functional theory. The results indicate that the stability of the cT phase under pressure arises from the enhancement in hybridization induced effects and shift of the energy bands towards lower energies. The Fermi surface centered around Γ point gradually vanishes with the increase in pressure. Consequently, the nesting between the hole and electron Fermi surfaces associated to the spin density wave state disappears indicating a pathway to achieve the proximity to quantum fluctuations. The magnetic moment at the Fe sites diminishes in the cT phase consistent with the magnetic susceptibility results. Notably, the hybridization of Ca 4s states (Ca-layer may be treated as a charge reservoir layer akin to those in cuprate superconductors) is significantly enhanced in the cT phase revealing its relevance in its interesting electronic properties.

  13. The electronic structure of grain boundaries in Nb

    SciTech Connect

    Sowa, E.C.; Gonis, A. ); Zhang, X.G. )

    1990-11-01

    We present first-principles calculations of the electronic structure of Nb grain boundaries. These are the first such calculations for a bcc metal using the real-space multiple-scattering theory (RSMST). Local densities of states near a {Sigma}5 twist grain boundary are compared to those for bulk Nb. 5 refs., 1 fig.

  14. Geometric and electronic structures of potassium-adsorbed rubrene complexes

    SciTech Connect

    Li, Tsung-Lung; Lu, Wen-Cai

    2015-06-28

    The geometric and electronic structures of potassium-adsorbed rubrene complexes are studied in this article. It is found that the potassium-rubrene (K{sub 1}RUB) complexes inherit the main symmetry characteristics from their pristine counterparts and are thus classified into D{sub 2}- and C{sub 2h}-like complexes according to the relative orientations of the four phenyl side groups. The geometric structures of K{sub 1}RUB are governed by two general effects on the total energy: Deformation of the carbon frame of the pristine rubrene increases the total energy, while proximity of the potassium ion to the phenyl ligands decreases the energy. Under these general rules, the structures of D{sub 2}- and C{sub 2h}-like K{sub 1}RUB, however, exhibit their respective peculiarities. These peculiarities can be illustrated by their energy profiles of equilibrium structures. For the potassium adsorption-sites, the D{sub 2}-like complexes show minimum-energy basins, whereas the C{sub 2h}-like ones have single-point minimum-energies. If the potassium atom ever has the energy to diffuse from the minimum-energy site, the potassium diffusion path on the D{sub 2}-like complexes is most likely along the backbone in contrast to the C{sub 2h}-like ones. Although the electronic structures of the minimum-energy structures of D{sub 2}- and C{sub 2h}-like K{sub 1}RUB are very alike, decompositions of their total spectra reveal insights into the electronic structures. First, the spectral shapes are mainly determined by the facts that, in comparison with the backbone carbons, the phenyl carbons have more uniform chemical environments and far less contributions to the electronic structures around the valence-band edge. Second, the electron dissociated from the potassium atom mainly remains on the backbone and has little effects on the electronic structures of the phenyl groups. Third, the two phenyls on the same side of the backbone as the potassium atom have more similar chemical environments

  15. Writing Electron Dot Structures: Abstract of Issue 9905M

    NASA Astrophysics Data System (ADS)

    Magnell, Kenneth R.

    1999-10-01

    Writing Electron Dot Structures is a computer program for Mac OS that provides drill with feedback for students learning to write electron dot structures. While designed for students in the first year of college general chemistry it may also be used by high school chemistry students. A systematic method similar to that found in many general chemistry texts is employed:

    1. determine the number of valence shell electrons,
    2. select the central atom,
    3. construct a skeleton,
    4. add electrons to complete octets,
    5. examine the structure for resonance forms.
    During the construction of a structure, the student has the option of quitting, selecting another formula, or returning to a previous step. If an incorrect number of electrons is entered the student may not proceed until the correct number is entered. The symbol entered for the central atom must follow accepted upper/lower case practice, and entry of the correct symbol must be accomplished before proceeding to the next step. A periodic table is accessible and feedback provides assistance for these steps. Construction of the skeleton begins with the placement of the central atom. Atoms can be added, moved, or removed. Prompts and feedback keep the student informed of progress and problems. A correct skeleton is required before proceeding to the next step. Completion of the structure begins with the addition of electron pairs to form the required bonds. Remaining electrons are added to complete the formation of multiple bonds, assure compliance with the octet rule, and form expanded octets. Resonance forms are made by moving or removing and replacing electron pairs in the existing skeleton. Prompts and feedback guide the student through this process. A running tally of bond pairs, unshared pairs, octets, electrons used, and electrons remaining is provided during this step. Structural and Electronic Investigations of Complex Intermetallic Compounds

    SciTech Connect

    Ko, Hyunjin

    2008-01-01

    In solid state chemistry, numerous investigations have been attempted to address the relationships between chemical structure and physical properties. Such questions include: (1) How can we understand the driving forces of the atomic arrangements in complex solids that exhibit interesting chemical and physical properties? (2) How do different elements distribute themselves in a solid-state structure? (3) Can we develop a chemical understanding to predict the effects of valence electron concentration on the structures and magnetic ordering of systems by both experimental and theoretical means? Although these issues are relevant to various compound classes, intermetallic compounds are especially interesting and well suited for a joint experimental and theoretical effort. For intermetallic compounds, the questions listed above are difficult to answer since many of the constituent atoms simply do not crystallize in the same manner as in their separate, elemental structures. Also, theoretical studies suggest that the energy differences between various structural alternatives are small. For example, Al and Ga both belong in the same group on the Periodic Table of Elements and share many similar chemical properties. Al crystallizes in the fcc lattice with 4 atoms per unit cell and Ga crystallizes in an orthorhombic unit cell lattice with 8 atoms per unit cell, which are both fairly simple structures (Figure 1). However, when combined with Mn, which itself has a very complex cubic crystal structure with 58 atoms per unit cell, the resulting intermetallic compounds crystallize in a completely different fashion. At the 1:1 stoichiometry, MnAl forms a very simple tetragonal lattice with two atoms per primitive unit cell, while MnGa crystallizes in a complicated rhombohedral unit cell with 26 atoms within the primitive unit cell. The mechanisms influencing the arrangements of atoms in numerous crystal structures have been studied theoretically by calculating electronic

  16. Shigella flexneri Spa15 Crystal Structure Verified in Solution by Double Electron Electron Resonance

    PubMed Central

    Lillington, James E.D.; Lovett, Janet E.; Johnson, Steven; Roversi, Pietro; Timmel, Christiane R.; Lea, Susan M.

    2011-01-01

    Shigella flexneri Spa15 is a chaperone of the type 3 secretion system, which binds a number of effectors to ensure their stabilization prior to secretion. One of these effectors is IpgB1, a mimic of the human Ras-like Rho guanosine triphosphatase RhoG. In this study, Spa15 alone and in complex with IpgB1 has been studied by double electron electron resonance, an experiment that gives distance information showing the spacial separation of attached spin labels. This distance is explained by determining the crystal structure of the spin-labeled Spa15 where labels are seen to be buried in hydrophobic pockets. The double electron electron resonance experiment on the Spa15 complex with IpgB1 shows that IpgB1 does not bind Spa15 in the same way as is seen in the homologous Salmonella sp. chaperone:effector complex InvB:SipA. PMID:21075116

  17. Electronic states of semiconductor/metal/semiconductor quantum well structures

    NASA Astrophysics Data System (ADS)

    Huberman, M. L.; Maserjian, J.

    Quantum size effects are calculated in thin layered semiconductor-metal-semi-conductor structures using an ideal free-electron model for the metal layer. The physical insight thereby gained is used to make projections for the behavior of real material systems. The results suggest new quantum well structures having device applications. Structures with sufficiently high quality interfaces should exhibit effects such as negative differential resistance due to tunneling between allowed states. Similarly, optical detection by intersubband absorption may be possible. We also predict that ultrathin metal layers can behave as high density dopant sheets.

  18. Electronic structure of photo-degraded polypropylene ultrathin films

    NASA Astrophysics Data System (ADS)

    Zhou, P. H.; Kizilkaya, O.; Morikawa, E.

    2008-11-01

    Ultraviolet photoelectron spectroscopy (UPS) and near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy were used to study the electronic structure of photo-degraded ultra thin films of polypropylene. The films were exposed to a zero-order of synchrotron radiation light that led to degradation in the polypropylene chemical structure. UPS experimental results revealed the formation of carbon double bonds in the photo-degraded thin films. This formation was further confirmed with molecular orbital calculation and NEXAFS spectroscopy.

  19. Electronic structure tuning via surface modification in semimetallic nanowires

    NASA Astrophysics Data System (ADS)

    Sanchez-Soares, Alfonso; O'Donnell, Conor; Greer, James C.

    2016-12-01

    Electronic structure properties of nanowires (NWs) with diameters of 1.5 and 3 nm based on semimetallic α -Sn are investigated by employing density functional theory and perturbative GW methods. We explore the dependence of electron affinity, band structure, and band-gap values with crystallographic orientation, NW cross-sectional size, and surface passivants of varying electronegativity. We consider four chemical terminations in our study: methyl (CH3), hydrogen (H ), hydroxyl (OH ), and fluorine (F ). Results suggest a high degree of elasticity of Sn-Sn bonds within the Sn NWs' cores with no significant structural variations for nanowires with different surface passivants. Direct band gaps at Brillouin-zone centers are found for most studied structures with quasiparticle corrected band-gap magnitudes ranging from 0.25 to 3.54 eV in 1.5-nm-diameter structures, indicating an exceptional range of properties for semimetal NWs below the semimetal-to-semiconductor transition. Band-gap variations induced by changes in surface passivants indicate the possibility of realizing semimetal-semiconductor interfaces in NWs with constant cross-section and crystallographic orientation, allowing the design of novel dopant-free NW-based electronic devices.

  1. Ultrafast Structural Dynamics of Tertiary Amines upon Electronic Excitation

    NASA Astrophysics Data System (ADS)

    Cheng, Xinxin; Minitti, Michael P.; Deb, Sanghamitra; Zhang, Yao; Budarz, James; Weber, Peter M.

    2011-06-01

    The structural response of several tertiary amines to electronic excitation has been investigated using Rydberg Fingerprint Spectroscopy. The 3p Rydberg states are reached by excitation with a 5.93 eV photon while 3s states are populated by electronic relaxation from 3p state. We observe binding energy shifts on ultrafast time scales in all peaks that reflect the structural change of the molecular ion cores. The shifts are in the range of 15 meV to 30 meV, within time scales of less than 500 fs, depending on the specific molecular systems and the nature of the electronic state. In cases where the p states are spectrally separate, the trends of the energy shifts are different for the p_z and p_x_y Rydberg states whereas the p_z and s states are similar. This suggests that the response of the Rydberg states to structural displacements depends on the symmetry. Very fast binding energy shifts, observed on sub-picosecond time scales, are attributed to the structural adjustment from a pyramidal to a planar structure upon Rydberg excitation. The quantitative values of the binding energy shifts can also be affected by laser chirp, which we model using simulations.

  2. Electronic band structure and phonons in V2O5

    NASA Astrophysics Data System (ADS)

    Bhandari, Churna; Lambrecht, Walter R. L.

    2013-03-01

    Among the vanadium oxides, V2O5 presents special interest as a layered material. As for other layered materials, it is of interest to search for changes in its electronic structure and phonon spectrum in the monolayer modification of this material. For example, reduced screening may modify phonon modes affected by long-range Coulomb interactions. As a preliminary we here present a first-principles study of the bulk electronic band structure and the phonons at the Γ-point. Density functional calculations in the local density approximation were carried out for the electronic band structure and the density functional perturbation method was used for the phonon calculations. We used LDA and norm-conserving pseudopotentials in the abinit code. A group theoretical analysis is used to label the phonon modes. Non-analyticity is included for the LO modes. The band structures are in good agreement with previous work and yield an indirect band gap. Relaxed structural properties are also in good agreement with experiment. Simulated infrared and Raman spectra will be presented. Our results will be compared with experimental and previous theoretical work.

  3. Molecular and electronic structures of cerium and cerium suboxide clusters

    NASA Astrophysics Data System (ADS)

    Kafader, Jared O.; Topolski, Josey E.; Jarrold, Caroline Chick

    2016-10-01

    The anion photoelectron (PE) spectra of Ce2Oy- (y = 1, 2), Ce3Oy- (y = 0-4), Ce4Oy- (y = 0-2), and Ce5Oy- (y = 1, 2) are reported and analyzed with supporting results from density functional theory calculations. The PE spectra all exhibit an intense electronic transition to the neutral ground state, all falling in the range of 0.7 to 1.1 eV electron binding energy, with polarization dependence consistent with detachment from diffuse Ce 6s-based molecular orbitals. There is no monotonic increase in electron affinity with increasing oxidation. A qualitative picture of how electronic structure evolves with an oxidation state emerges from comparison between the spectra and the computational results. The electronic structure of the smallest metallic cluster observed in this study, Ce3, is similar to the bulk structure in terms of atomic orbital occupancy (4f 5d2 6s). Initial cerium cluster oxidation involves largely ionic bond formation via Ce 5d and O 2p orbital overlap (i.e., larger O 2p contribution), with Ce—O—Ce bridge bonding favored over Ce=O terminal bond formation. With subsequent oxidation, the Ce 5d-based molecular orbitals are depleted of electrons, with the highest occupied orbitals described as diffuse Ce 6s based molecular orbitals. In the y ≤ (x + 1) range of oxidation states, each Ce center has a singly occupied non-bonding 4f orbital. The PE spectrum of Ce3O4- is unique in that it exhibits a single nearly vertical transition. The highly symmetric structure predicted computationally is the same structure determined from Ce3O4+ IR predissociation spectra [A. M. Burow et al., Phys. Chem. Chem. Phys. 13, 19393 (2011)], indicating that this structure is stable in -1, 0, and +1 charge states. Spectra of clusters with x ≥ 3 exhibit considerable continuum signal above the ground state transition; the intensity of the continuum signal decreases with increasing oxidation. This feature is likely the result of numerous quasi-bound anion states or two-electron

  4. Biomechanics of DNA structures visualized by 4D electron microscopy

    PubMed Central

    Lorenz, Ulrich J.; Zewail, Ahmed H.

    2013-01-01

    We present a technique for in situ visualization of the biomechanics of DNA structural networks using 4D electron microscopy. Vibrational oscillations of the DNA structure are excited mechanically through a short burst of substrate vibrations triggered by a laser pulse. Subsequently, the motion is probed with electron pulses to observe the impulse response of the specimen in space and time. From the frequency and amplitude of the observed oscillations, we determine the normal modes and eigenfrequencies of the structures involved. Moreover, by selective “nano-cutting” at a given point in the network, it was possible to obtain Young’s modulus, and hence the stiffness, of the DNA filament at that position. This experimental approach enables nanoscale mechanics studies of macromolecules and should find applications in other domains of biological networks such as origamis. PMID:23382239

  5. Defective graphene and nanoribbons: electronic, magnetic and structural properties

    NASA Astrophysics Data System (ADS)

    Guerra, Thiago; Azevedo, Sérgio; Machado, Marcelo

    2016-03-01

    We make use of first-principles calculations, based on the density functional theory (DFT), to investigate the alterations at the structural, energetic, electronic and magnetic properties of graphene and zigzag graphene nanoribbons (ZGNRs) due to the inclusion of different types of line and punctual defects. For the graphene it is found that the inclusion of defects breaks the translational symmetry of the crystal with drastic changes at its electronic structure, going from semimetallic to semiconductor and metallic. Regarding the magnetic properties, no magnetization is observed for the defective graphene. We also show that the inclusion of defects at ZGNRs is a good way to create and control pronounced peaks at the Fermi level. Furthermore, defective ZGNRs structures show magnetic moment by supercell up to 2.0 μ B . For the non defective ZGNRs is observed a switch of the magnetic coupling between opposite ribbon edges from the antiferromagnetic to the ferrimagnetic and ferromagnetic configurations.

  6. Theoretical bioinorganic chemistry: the electronic structure makes a difference.

    PubMed

    Kirchner, Barbara; Wennmohs, Frank; Ye, Shengfa; Neese, Frank

    2007-04-01

    Theoretical bioinorganic and biomimetic chemistry involves the careful description of the electronic structure: for example, 'valence bond reading' of broken-symmetry density functional theory computations gives insight into the structure and bonding of metal-radical systems with complex electronic structures. Exploring the reactivities of such systems leads to the design of novel compounds with better reactivities. Combined quantum-mechanics/molecular-mechanics (QM/MM), where the QM part is a sophisticated ab initio method, aids in understanding nature's most complicated reaction mechanisms in atomic detail. First principles molecular dynamics simulations (Car-Parrinello simulations) open up exciting new avenues for studying transition metal centers and enable several questions to be addressed that cannot be resolved with either standard quantum chemical or traditional force-field methods.

  7. Characterization of electronic structure of periodically strained graphene

    SciTech Connect

    Aslani, Marjan; Garner, C. Michael Nishi, Yoshio; Kumar, Suhas; Nordlund, Dennis; Pianetta, Piero

    2015-11-02

    We induced periodic biaxial tensile strain in polycrystalline graphene by wrapping it over a substrate with repeating pillar-like structures with a periodicity of 600 nm. Using Raman spectroscopy, we determined to have introduced biaxial strains in graphene in the range of 0.4% to 0.7%. Its band structure was characterized using photoemission from valance bands, shifts in the secondary electron emission, and x-ray absorption from the carbon 1s levels to the unoccupied graphene conduction bands. It was observed that relative to unstrained graphene, strained graphene had a higher work function and higher density of states in the valence and conduction bands. We measured the conductivity of the strained and unstrained graphene in response to a gate voltage and correlated the changes in their behavior to the changes in the electronic structure. From these sets of data, we propose a simple band diagram representing graphene with periodic biaxial strain.

  8. Characterization of electronic structure of periodically strained graphene

    SciTech Connect

    Aslani, Marjan; Garner, C. Michael; Kumar, Suhas; Nordlund, Dennis; Pianetta, Piero; Nishi, Yoshio

    2015-11-03

    We induced periodic biaxial tensile strain in polycrystalline graphene by wrapping it over a substrate with repeating pillar-like structures with a periodicity of 600 nm. Using Raman spectroscopy, we determined to have introduced biaxial strains in graphene in the range of 0.4% to 0.7%. Its band structure was characterized using photoemission from valance bands, shifts in the secondary electron emission, and x-ray absorption from the carbon 1s levels to the unoccupied graphene conduction bands. It was observed that relative to unstrained graphene, strained graphene had a higher work function and higher density of states in the valence and conduction bands. Furthermore, we measured the conductivity of the strained and unstrained graphene in response to a gate voltage and correlated the changes in their behavior to the changes in the electronic structure. From these sets of data, we propose a simple band diagram representing graphene with periodic biaxial strain.

  9. Local atomic order, electronic structure and electron transport properties of Cu-Zr metallic glasses

    SciTech Connect

    Antonowicz, J. Pietnoczka, A.; Pękała, K.; Latuch, J.; Evangelakis, G. A.

    2014-05-28

    We studied atomic and electronic structures of binary Cu-Zr metallic glasses (MGs) using combined experimental and computational methods including X-ray absorption fine structure spectroscopy, electrical resistivity, thermoelectric power (TEP) measurements, molecular dynamics (MD) simulations, and ab-initio calculations. The results of MD simulations and extended X-ray absorption fine structure analysis indicate that atomic order of Cu-Zr MGs and can be described in terms of interpenetrating icosahedral-like clusters involving five-fold symmetry. MD configurations were used as an input for calculations of theoretical electronic density of states (DOS) functions which exhibits good agreement with the experimental X-ray absorption near-edge spectra. We found no indication of minimum of DOS at Fermi energy predicted by Mott's nearly free electron (NFE) model for glass-forming alloys. The theoretical DOS was subsequently used to test Mott's model describing the temperature variation of electrical resistivity and thermoelectric power of transition metal-based MGs. We demonstrate that the measured temperature variations of electrical resistivity and TEP remain in a contradiction with this model. On the other hand, the experimental temperature dependence of electrical resistivity can be explained by incipient localization of conduction electrons. It is shown that weak localization model works up to relatively high temperatures when localization is destroyed by phonons. Our results indicate that electron transport properties of Cu-Zr MGs are dominated by localization effects rather than by electronic structure. We suggest that NFE model fails to explain a relatively high glass-forming ability of binary Cu-Zr alloys.

  10. Local atomic order, electronic structure and electron transport properties of Cu-Zr metallic glasses

    NASA Astrophysics Data System (ADS)

    Antonowicz, J.; Pietnoczka, A.; Pekała, K.; Latuch, J.; Evangelakis, G. A.

    2014-05-01

    We studied atomic and electronic structures of binary Cu-Zr metallic glasses (MGs) using combined experimental and computational methods including X-ray absorption fine structure spectroscopy, electrical resistivity, thermoelectric power (TEP) measurements, molecular dynamics (MD) simulations, and ab-initio calculations. The results of MD simulations and extended X-ray absorption fine structure analysis indicate that atomic order of Cu-Zr MGs and can be described in terms of interpenetrating icosahedral-like clusters involving five-fold symmetry. MD configurations were used as an input for calculations of theoretical electronic density of states (DOS) functions which exhibits good agreement with the experimental X-ray absorption near-edge spectra. We found no indication of minimum of DOS at Fermi energy predicted by Mott's nearly free electron (NFE) model for glass-forming alloys. The theoretical DOS was subsequently used to test Mott's model describing the temperature variation of electrical resistivity and thermoelectric power of transition metal-based MGs. We demonstrate that the measured temperature variations of electrical resistivity and TEP remain in a contradiction with this model. On the other hand, the experimental temperature dependence of electrical resistivity can be explained by incipient localization of conduction electrons. It is shown that weak localization model works up to relatively high temperatures when localization is destroyed by phonons. Our results indicate that electron transport properties of Cu-Zr MGs are dominated by localization effects rather than by electronic structure. We suggest that NFE model fails to explain a relatively high glass-forming ability of binary Cu-Zr alloys.

  11. Electronic structure of α-oligothiophenes with various substituents

    NASA Astrophysics Data System (ADS)

    Vikramaditya, Talapunur; Saisudhakar, Mukka; Sumithra, Kanakamma

    2015-02-01

    Density functional theory is employed to investigate the effect of various substituents on the electronic structure of α-oligothiophenes. The effect of electron donating and withdrawing groups of oligothiophenes in the regio regular HT-HT form is studied. Depending on the type of substituent and the substitution pattern, large differences in the delocalization pattern are observed between the substituted and unsubstituted oligomers. It is found that the band gaps critically depend on the chemical structure and regioselectivity of the building blocks. For the 3-substitued systems, electron donating and electron withdrawing substituents are shown to decrease and increase band gaps respectively compared to unsubstituted systems. There are charge separation effects introduced as a result of lack of symmetry in some of the substituted oligothiophenes. A new strategy is explained to achieve low band gap materials by making use of the regioselective form with lesser symmetry. Push-pull substitution with an electron donor at one end of the conjugation and an acceptor the other end is also investigated. Comparisons of band gaps of the substituted oligothiophenes with the corresponding polymeric systems are also done.

  12. Electronic structure and the magneto-caloric effect.

    PubMed

    Gruber, C; Bedolla, P O; Mohn, P

    2013-10-30

    We present a theoretical investigation of the entropy changes upon the application of an external field leading to the magneto-caloric effect (MCE). The case of localized magnetic moments is treated within the Weiss molecular field model, but special emphasis is given to cases of itinerant electron magnetism. These are described within the Landau theory of phase transitions and the temperature dependence is included via spin fluctuations. Since the parameters of the Landau expansion can be calculated from first-principles calculations of the electronic and magnetic structure, an immediate connection to the electronic band structure and its properties becomes possible. We study ordinary ferromagnets, including magneto-volume coupling and itinerant electron metamagnets, where in a small external field range large changes of the magnetic moments occur. We find that such metamagnetic systems are the most promising candidates for a large MCE in itinerant electron systems. We apply our expressions to several transition metals and their alloys, as well as to the metamagnets YCo2 and Fe2P, and find reasonable agreement with available experimental data.

  13. Electronic structure of multi-walled carbon fullerenes

    NASA Astrophysics Data System (ADS)

    Doore, Keith; Cook, Matthew; Clausen, Eric; Lukashev, Pavel V.; Kidd, Tim E.; Stollenwerk, Andrew J.

    2017-02-01

    Despite an enormous amount of research on carbon based nanostructures, relatively little is known about the electronic structure of multi-walled carbon fullerenes, also known as carbon onions. In part, this is due to the very high computational expense involved in estimating electronic structure of large molecules. At the same time, experimentally, the exact crystal structure of the carbon onion is usually unknown, and therefore one relies on qualitative arguments only. In this work we present the results of a computational study on a series of multi-walled fullerenes and compare their electronic structures to experimental data. Experimentally, the carbon onions were fabricated using ultrasonic agitation of isopropanol alcohol and deposited onto the surface of highly ordered pyrolytic graphite using a drop cast method. Scanning tunneling microscopy images indicate that the carbon onions produced using this technique are ellipsoidal with dimensions on the order of 10 nm. The majority of differential tunneling spectra acquired on individual carbon onions are similar to that of graphite with the addition of molecular-like peaks, indicating that these particles span the transition between molecules and bulk crystals. A smaller, yet sizable number exhibited a semiconducting gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels. These results are compared with the electronic structure of different carbon onion configurations calculated using first-principles. Similar to the experimental results, the majority of these configurations are metallic with a minority behaving as semiconductors. Analysis of the configurations investigated here reveals that each carbon onion exhibiting an energy band gap consisted only of non-metallic fullerene layers, indicating that the interlayer interaction is not significant enough to affect the total density of states in these structures.

  14. Electronic structure and crystal phase stability of palladium hydrides

    NASA Astrophysics Data System (ADS)

    Houari, Abdesalem; Matar, Samir F.; Eyert, Volker

    2014-11-01

    The results of electronic structure calculations for a variety of palladium hydrides are presented. The calculations are based on density functional theory and used different local and semilocal approximations. The thermodynamic stability of all structures as well as the electronic and chemical bonding properties are addressed. For the monohydride, taking into account the zero-point energy is important to identify the octahedral Pd-H arrangement with its larger voids and, hence, softer hydrogen vibrational modes as favorable over the tetrahedral arrangement as found in the zincblende and wurtzite structures. Stabilization of the rocksalt structure is due to strong bonding of the 4d and 1s orbitals, which form a characteristic split-off band separated from the main d-band group. Increased filling of the formerly pure d states of the metal causes strong reduction of the density of states at the Fermi energy, which undermines possible long-range ferromagnetic order otherwise favored by strong magnetovolume effects. For the dihydride, octahedral Pd-H arrangement as realized, e.g., in the pyrite structure turns out to be unstable against tetrahedral arrangement as found in the fluorite structure. Yet, from both heat of formation and chemical bonding considerations, the dihydride turns out to be less favorable than the monohydride. Finally, the vacancy ordered defect phase Pd3H4 follows the general trend of favoring the octahedral arrangement of the rocksalt structure for Pd:H ratios less or equal to one.

  15. Electronic structure and crystal phase stability of palladium hydrides

    SciTech Connect

    Houari, Abdesalem; Matar, Samir F.; Eyert, Volker

    2014-11-07

    The results of electronic structure calculations for a variety of palladium hydrides are presented. The calculations are based on density functional theory and used different local and semilocal approximations. The thermodynamic stability of all structures as well as the electronic and chemical bonding properties are addressed. For the monohydride, taking into account the zero-point energy is important to identify the octahedral Pd-H arrangement with its larger voids and, hence, softer hydrogen vibrational modes as favorable over the tetrahedral arrangement as found in the zincblende and wurtzite structures. Stabilization of the rocksalt structure is due to strong bonding of the 4d and 1s orbitals, which form a characteristic split-off band separated from the main d-band group. Increased filling of the formerly pure d states of the metal causes strong reduction of the density of states at the Fermi energy, which undermines possible long-range ferromagnetic order otherwise favored by strong magnetovolume effects. For the dihydride, octahedral Pd-H arrangement as realized, e.g., in the pyrite structure turns out to be unstable against tetrahedral arrangement as found in the fluorite structure. Yet, from both heat of formation and chemical bonding considerations, the dihydride turns out to be less favorable than the monohydride. Finally, the vacancy ordered defect phase Pd{sub 3}H{sub 4} follows the general trend of favoring the octahedral arrangement of the rocksalt structure for Pd:H ratios less or equal to one.

  16. Electronic structures of Ascaris trypsin inhibitor in solution

    NASA Astrophysics Data System (ADS)

    Zheng, Haoping

    2003-11-01

    The electronic structures of Ascaris trypsin inhibitor in solution are obtained by the first-principles, all-electron, ab initio calculation using the self-consistent cluster-embedding (SCCE) method. The inhibitor, made up of 62 amino acid residues with 912 atoms, has two three-dimensional solution structures: 1ata and 1atb. The calculated ground-state energy of structure 1atb is lower than that of structure 1ata by 6.12 eV. The active sites are determined and explained: only structure 1atb has a N terminal at residue ARG+31. This shows that the structure 1atb is the stable and active form of the inhibitor, which is in agreement with the experimental results. The calculation reveals that some parts of the inhibitor can be easily changed while the inhibitor’s biological activity may be kept. This kind of information may be helpful in fighting viruses such as AIDS, SARS, and flu, since these viruses have higher variability. The calculation offers an independent theoretical estimate of the precision of structure determination.

  17. Electronic and structural reconstruction in titanate heterostructures from first principles

    NASA Astrophysics Data System (ADS)

    Mulder, Andrew T.; Fennie, Craig J.

    2014-03-01

    Recent advances in transition metal oxide heterostructures have opened new routes to create materials with novel functionalities and properties. One direction has been to combine a Mott insulating perovskite with an electronic d1 configuration, such as LaTiO3, with a band insulating d0 perovskite, such as SrTiO3. An exciting recent development is the demonstration of interfacial conductivity in GdTiO3/SrTiO3 heterostructures that display a complex structural motif of octahedral rotations and ferromagnetic properties similar to bulk GdTiO3. In this talk we present our first principles investigation of the interplay of structural, electronic, magnetic, and orbital degrees of freedom for a wide range of d1/d0 titanate heterostructures. We find evidence for both rotation driven ferroelectricity and a symmetry breaking electronic reconstruction with a concomitant structural distortion at the interface. We argue that these materials represent an ideal platform to realize novel functionalities such as the electric field control of electronic and magnetic properties.

  18. Toward the origin of exciton electronic structure in phycobiliproteins

    NASA Astrophysics Data System (ADS)

    Womick, Jordan M.; Miller, Stephen A.; Moran, Andrew M.

    2010-07-01

    Femtosecond laser spectroscopies are used to examine the electronic structures of two proteins found in the phycobilisome antenna of cyanobacteria, allophycocyanin (APC) and C-phycocyanin (CPC). The wave function composition involving the pairs of phycocyanobilin pigments (i.e., dimers) found in both proteins is the primary focus of this investigation. Despite their similar geometries, earlier experimental studies conducted in our laboratory and elsewhere observe clear signatures of exciton electronic structure in APC but not CPC. This issue is further investigated here using new experiments. Transient grating (TG) experiments employing broadband quasicontinuum probe pulses find a redshift in the signal spectrum of APC, which is almost twice that of CPC. Dynamics in the TG signal spectra suggest that the sub-100 fs dynamics in APC and CPC are respectively dominated by internal conversion and nuclear relaxation. A specialized technique, intraband electronic coherence spectroscopy (IECS), photoexcites electronic and nuclear coherences with nearly full suppression of signals corresponding to electronic populations. The main conclusion drawn by IECS is that dephasing of intraband electronic coherences in APC occurs in less than 25 fs. This result rules out correlated pigment fluctuations as the mechanism enabling exciton formation in APC and leads us to propose that the large Franck-Condon factors of APC promote wave function delocalization in the vibronic basis. For illustration, we compute the Hamiltonian matrix elements involving the electronic origin of the α84 pigment and the first excited vibronic level of the β84 pigment associated with a hydrogen out-of-plane wagging mode at 800 cm-1. For this pair of vibronic states, the -51 cm-1 coupling is larger than the 40 cm-1 energy gap, thereby making wave function delocalization a feasible prospect. By contrast, CPC possesses no pair of vibronic levels for which the intermolecular coupling is larger than the energy

  19. Toward the origin of exciton electronic structure in phycobiliproteins.

    PubMed

    Womick, Jordan M; Miller, Stephen A; Moran, Andrew M

    2010-07-14

    Femtosecond laser spectroscopies are used to examine the electronic structures of two proteins found in the phycobilisome antenna of cyanobacteria, allophycocyanin (APC) and C-phycocyanin (CPC). The wave function composition involving the pairs of phycocyanobilin pigments (i.e., dimers) found in both proteins is the primary focus of this investigation. Despite their similar geometries, earlier experimental studies conducted in our laboratory and elsewhere observe clear signatures of exciton electronic structure in APC but not CPC. This issue is further investigated here using new experiments. Transient grating (TG) experiments employing broadband quasicontinuum probe pulses find a redshift in the signal spectrum of APC, which is almost twice that of CPC. Dynamics in the TG signal spectra suggest that the sub-100 fs dynamics in APC and CPC are respectively dominated by internal conversion and nuclear relaxation. A specialized technique, intraband electronic coherence spectroscopy (IECS), photoexcites electronic and nuclear coherences with nearly full suppression of signals corresponding to electronic populations. The main conclusion drawn by IECS is that dephasing of intraband electronic coherences in APC occurs in less than 25 fs. This result rules out correlated pigment fluctuations as the mechanism enabling exciton formation in APC and leads us to propose that the large Franck-Condon factors of APC promote wave function delocalization in the vibronic basis. For illustration, we compute the Hamiltonian matrix elements involving the electronic origin of the alpha84 pigment and the first excited vibronic level of the beta84 pigment associated with a hydrogen out-of-plane wagging mode at 800 cm(-1). For this pair of vibronic states, the -51 cm(-1) coupling is larger than the 40 cm(-1) energy gap, thereby making wave function delocalization a feasible prospect. By contrast, CPC possesses no pair of vibronic levels for which the intermolecular coupling is larger than

  20. Grid-based electronic structure calculations: The tensor decomposition approach

    NASA Astrophysics Data System (ADS)

    Rakhuba, M. V.; Oseledets, I. V.

    2016-05-01

    We present a fully grid-based approach for solving Hartree-Fock and all-electron Kohn-Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 81923 and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.

  1. Grid-based electronic structure calculations: The tensor decomposition approach

    SciTech Connect

    Rakhuba, M.V.; Oseledets, I.V.

    2016-05-01

    We present a fully grid-based approach for solving Hartree–Fock and all-electron Kohn–Sham equations based on low-rank approximation of three-dimensional electron orbitals. Due to the low-rank structure the total complexity of the algorithm depends linearly with respect to the one-dimensional grid size. Linear complexity allows for the usage of fine grids, e.g. 8192{sup 3} and, thus, cheap extrapolation procedure. We test the proposed approach on closed-shell atoms up to the argon, several molecules and clusters of hydrogen atoms. All tests show systematical convergence with the required accuracy.

  2. Electronic structure and thermoelectric transport of black phosphorus

    NASA Astrophysics Data System (ADS)

    Craco, L.; Pereira, T. A. da Silva; Leoni, S.

    2017-08-01

    We investigate anisotropic electronic structure and thermal transport properties of bulk black phosphorus (BP). Using density functional dynamical mean-field theory we first derive a correlation-induced electronic reconstruction, showing band-selective Kondoesque physics in this elemental p -band material. The resulting correlated picture is expected to shed light onto the temperature and doping dependent evolution of resistivity, Seebeck coefficient, and thermal conductivity, as seen in experiments on bulk single crystal BP. Therein, large anisotropic particle-hole excitations are key to consistently understand thermoelectric transport responses of pure and doped BP.

  3. Multi-million atom electronic structure calculations for quantum dots

    NASA Astrophysics Data System (ADS)

    Usman, Muhammad

    Quantum dots grown by self-assembly process are typically constructed by 50,000 to 5,000,000 structural atoms which confine a small, countable number of extra electrons or holes in a space that is comparable in size to the electron wavelength. Under such conditions quantum dots can be interpreted as artificial atoms with the potential to be custom tailored to new functionality. In the past decade or so, these nanostructures have attracted significant experimental and theoretical attention in the field of nanoscience. The new and tunable optical and electrical properties of these artificial atoms have been proposed in a variety of different fields, for example in communication and computing systems, medical and quantum computing applications. Predictive and quantitative modeling and simulation of these structures can help to narrow down the vast design space to a range that is experimentally affordable and move this part of nanoscience to nano-Technology. Modeling of such quantum dots pose a formidable challenge to theoretical physicists because: (1) Strain originating from the lattice mismatch of the materials penetrates deep inside the buffer surrounding the quantum dots and require large scale (multi-million atom) simulations to correctly capture its effect on the electronic structure, (2) The interface roughness, the alloy randomness, and the atomistic granularity require the calculation of electronic structure at the atomistic scale. Most of the current or past theoretical calculations are based on continuum approach such as effective mass approximation or k.p modeling capturing either no or one of the above mentioned effects, thus missing some of the essential physics. The Objectives of this thesis are: (1) to model and simulate the experimental quantum dot topologies at the atomistic scale; (2) to theoretically explore the essential physics i.e. long range strain, linear and quadratic piezoelectricity, interband optical transition strengths, quantum confined

  4. Electronic structure of germanium selenide investigated using ultra-violet photo-electron spectroscopy

    NASA Astrophysics Data System (ADS)

    Mishra, P.; Lohani, H.; Kundu, A. K.; Patel, R.; Solanki, G. K.; Menon, Krishnakumar S. R.; Sekhar, B. R.

    2015-07-01

    The valence band electronic structure of GeSe single crystals has been investigated using angle resolved photoemission spectroscopy (ARPES) and x-ray photoelectron spectroscopy. The experimentally observed bands from ARPES, match qualitatively with our LDA-based band structure calculations along the Γ-Z, Γ-Y and Γ-T symmetry directions. The valence band maximum occurs nearly midway along the Γ-Z direction, at a binding energy of -0.5 eV, substantiating the indirect band gap of GeSe. Non-dispersive features associated with surface states and indirect transitions have been observed. The difference in hybridization of Se and Ge 4p orbitals leads to the variation of dispersion along the three symmetry directions. The predominance of the Se 4pz orbitals, evidenced from theoretical calculations, may be the cause for highly dispersive bands along the Γ-T direction. Detailed electronic structure analysis reveals the significance of the cation-anion 4p orbitals hybridization in the valence band dispersion of IV-VI semiconductors. This is the first comprehensive report of the electronic structure of a GeSe single crystal using ARPES in conjugation with theoretical band structure analysis.

  5. Antistiction technique using elastomer contact structure in woven electronic textiles

    NASA Astrophysics Data System (ADS)

    Yamashita, Takahiro; Takamatsu, Seiichi; Miyake, Koji; Itoh, Toshihiro

    2014-01-01

    In this paper, we present an antistiction technique using an elastomer contact structure in woven electronic textiles (e-textiles). A coating of poly(3,4-ethylenedioxythiophene):poly(4-styrene sulfonate) (PEDOT:PSS) in the form of a solid conductive film on a hemispherical silicone elastomer structure is employed in creating an electrical circuit embedded into the fabric of a woven e-textile, where the contact structure reduces the contact area and capillary force generated by the moisture in air between weft and warp ribbons. Stiction occurs between a weft and a warp without the contact structure under an RH of 80%, and the detachment of the stuck ribbon requires a delamination load of about 0.2 N. On the other hand, in the case of contact between the contact structure and the ribbon coated with plain PEDOT:PSS, stiction does not occur as the relative humidity increases from 20 to 80%.

  6. Fluctuation electron microscopy studies of complex structured materials

    NASA Astrophysics Data System (ADS)

    Zhao, Gongpu; Rougée, Annick; Buseck, Peter; Treacy, Michael

    2008-03-01

    Fluctuation electron microscopy (FEM) is a hybrid imaging-diffraction technique. This technique is particularly sensitive to paracrystalline structures of dimension 0.5-2 nm, which are difficult to detect by either imaging or diffraction techniques alone. It has been successfully deployed to study paracrystalline structures in amorphous silicon, germanium thin film. This technique has also been used to study metallic glasses and oxide glasses. Until now, FEM has not been used to study disordered geological materials. In this talk we present our FEM studies of shungite, a naturally occurring disordered carbonaceous material, reveal that trace quantities of tightly curved graphene structures such as C60, or fragments of C60, is present in shungite. We also present results from our study of metamict zircon, whose crystal structure is destroyed by self-radiation during naturally occurring α decay events. Work is in progress to study the structural evolution during the metamictization process.

  7. Electronic structures of solids made of C20 clusters

    NASA Astrophysics Data System (ADS)

    Hussain, M. B.; Xu, L. H.; Wu, S. Q.; Zhu, Z. Z.

    2017-02-01

    By performing first-principles calculations based on the density functional theory, we have investigated the optimized structures, cohesive energies and electronic properties of crystalline solids made of C20 clusters. A very interesting result is found from the optimized diamond structure made of C20's, where the dimered C20 clusters, i.e., (C20)2 dimmers, are formed. Such (C20)2 dimers are then condensed by weak van der Waals interaction between them, leading to the formation of a molecular solid. We also found that one-dimensional molecular solid could be formed when C20 clusters are head to head. Results on C20 clusters arranged in the two-dimensional graphene structure and in fcc structure both show that there are significant coalescences of neighboring C20 fullerenes, leading to metallic characters for both the graphene and fcc structures.

  8. Electronic and Thermal Properties of Graphene and Carbon Structures

    NASA Astrophysics Data System (ADS)

    Anthony, Gilmore; Khatun, Mahfuza

    2011-10-01

    We will present the general properties of carbon structures. The research involves the study of carbon structures: Graphene, Graphene nanoribbons (GNRs), and Carbon Nanotubes (CNTs). A review of electrical and thermal conduction phenomena of the structures will be discussed. Particularly carbon nanoribbons and CNTs have many interesting physical properties, and have the potential for device applications. Our research interests include the study of electronic structures, electrical and thermal transport properties of the carbon structures. Results are produced analytically as well as by simulation. The numerical simulations are conducted using various tools such as Visual Molecular Dynamics (VMD), Large Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), NanoHub at Purdue University and the Beowulf Cluster at Ball State University.

  9. Structural and electronic properties of bilayer and trilayer graphdiyne

    NASA Astrophysics Data System (ADS)

    Zheng, Qiye; Luo, Guangfu; Liu, Qihang; Quhe, Ruge; Zheng, Jiaxin; Tang, Kechao; Gao, Zhengxiang; Nagase, Shigeru; Lu, Jing

    2012-06-01

    Stimulated by the recent experimental synthesis of a new layered carbon allotrope-graphdiyne film, we provide the first systematic ab initio investigation of the structural and electronic properties of bilayer and trilayer graphdiyne and explore the possibility of tuning the energy gap via a homogeneous perpendicular electric field. Our results show that the most stable bilayer and trilayer graphdiyne both have their hexagonal carbon rings stacked in a Bernal way (AB and ABA style configuration, respectively). Bilayer graphdiyne with the most and the second most stable stacking arrangements have direct bandgaps of 0.35 eV and 0.14 eV, respectively; trilayer graphdiyne with stable stacking styles have bandgaps of 0.18-0.33 eV. The bandgaps of the semiconducting bilayer and trilayer graphdiyne generally decrease with increasing external vertical electric field, irrespective of the stacking style. Therefore, the possibility of tuning the electronic structure and optical absorption of bilayer and trilayer graphdiyne with an external electric field is suggested.Stimulated by the recent experimental synthesis of a new layered carbon allotrope-graphdiyne film, we provide the first systematic ab initio investigation of the structural and electronic properties of bilayer and trilayer graphdiyne and explore the possibility of tuning the energy gap via a homogeneous perpendicular electric field. Our results show that the most stable bilayer and trilayer graphdiyne both have their hexagonal carbon rings stacked in a Bernal way (AB and ABA style configuration, respectively). Bilayer graphdiyne with the most and the second most stable stacking arrangements have direct bandgaps of 0.35 eV and 0.14 eV, respectively; trilayer graphdiyne with stable stacking styles have bandgaps of 0.18-0.33 eV. The bandgaps of the semiconducting bilayer and trilayer graphdiyne generally decrease with increasing external vertical electric field, irrespective of the stacking style. Therefore, the

  10. Probing electronic structure of stoichiometric and defective Sn O2

    NASA Astrophysics Data System (ADS)

    Moreno, M. S.; Kas, J. J.; Ma, C.; Wang, F.; Rehr, J. J.; Malac, M.

    2017-06-01

    The electronic structure of stoichiometric tin dioxide (Sn O2 ) is studied by probing its unoccupied states using the fine structure in the electron energy-loss spectra (EELS) at the oxygen-K (O-K ) edge. The spectral measurements were performed both at room and at high temperatures (773 K) and compared to ab initio calculations carried out using the real-space multiple-scattering and linearized augmented-plane-wave methods. Important many-body effects are included via quasiparticle corrections calculated within the many-pole G W self-energy approximation. An additional energy-dependent damping is calculated to account for vibrational effects. Results from this paper demonstrated that quantitative agreement between theoretical and experimental spectra can be obtained when nonspherical potentials and quasiparticle self-energy effects are considered and vibrational broadening is included. Modifications of the electronic structure by single oxygen vacancies, both in the bulk and at the (110) surface, also are predicted. Our predictions support the use of O-K EELS as a probe of the defect structures in Sn O2 surfaces and nanoparticles.

  11. Electronic structural investigations of ruthenium compounds and anticancer prodrugs.

    PubMed

    Harris, Travis V; Szilagyi, Robert K; McFarlane Holman, Karen L

    2009-08-01

    Several Ru(III) compounds are propitious anticancer agents although the precise mechanisms of action remain unknown. With this paper we start to establish an experimental library of X-ray absorption spectroscopy (XAS) data for ten Ru compounds wherein the ligands [Cl(-), dimethyl sulfoxide, imidazole, and indazole] were varied systematically to provide electronic structural information for future use in correlating spectroscopic signatures with chemical properties. Despite the considerable difference in the coordination environments of the complexes studied, the overall differences in spectral features and electronic structures calculated using density functional theory are unexpectedly small. However, the differences in the electronic structure of the Ru(III) prodrugs KP1019 ([IndH][trans-RuCl(4)(Ind)(2)], Ind is indazole) and ICR ([ImH][trans-RuCl(4)(Im)(2)], Im is imidazole) observed in the XAS data show correlation with known chemical and biological activities in addition to the donor abilities of imidazole compared with indazole and reduction potentials of the complexes. These semiquantitative results lay the groundwork for future biochemical studies into the structure-function relationships of Ru-based anticancer drugs.

  12. Compressed Sensing Electron Tomography for Determining Biological Structure

    NASA Astrophysics Data System (ADS)

    Guay, Matthew D.; Czaja, Wojciech; Aronova, Maria A.; Leapman, Richard D.

    2016-06-01

    There has been growing interest in applying compressed sensing (CS) theory and practice to reconstruct 3D volumes at the nanoscale from electron tomography datasets of inorganic materials, based on known sparsity in the structure of interest. Here we explore the application of CS for visualizing the 3D structure of biological specimens from tomographic tilt series acquired in the scanning transmission electron microscope (STEM). CS-ET reconstructions match or outperform commonly used alternative methods in full and undersampled tomogram recovery, but with less significant performance gains than observed for the imaging of inorganic materials. We propose that this disparity stems from the increased structural complexity of biological systems, as supported by theoretical CS sampling considerations and numerical results in simulated phantom datasets. A detailed analysis of the efficacy of CS-ET for undersampled recovery is therefore complicated by the structure of the object being imaged. The numerical nonlinear decoding process of CS shares strong connections with popular regularized least-squares methods, and the use of such numerical recovery techniques for mitigating artifacts and denoising in reconstructions of fully sampled datasets remains advantageous. This article provides a link to the software that has been developed for CS-ET reconstruction of electron tomographic data sets.

  13. Electronic structure and insulating gap in epitaxial VO2 polymorphs

    DOE PAGES

    Lee, Shinbuhm; Meyer, Tricia L.; Sohn, Changhee; ...

    2015-12-24

    Here, determining the origin of the insulating gap in the monoclinic VO2(M1) is a long-standing issue. The difficulty of this study arises from the simultaneous occurrence of structural and electronic transitions upon thermal cycling. Here, we compare the electronic structure of the M1 phase with that of single crystalline insulating VO2(A) and VO2(B) thin films to better understand the insulating phase of VO2. As these A and B phases do not undergo a structural transition upon thermal cycling, we comparatively study the origin of the gap opening in the insulating VO2 phases. By x-ray absorption and optical spectroscopy, we findmore » that the shift of unoccupied t2g orbitals away from the Fermi level is a common feature, which plays an important role for the insulating behavior in VO2 polymorphs. The distinct splitting of the half-filled t2g orbital is observed only in the M1 phase, widening the bandgap up to ~0.6 eV. Our approach of comparing all three insulating VO2 phases provides insight into a better understanding of the electronic structure and the origin of the insulating gap in VO2.« less

  14. Real-time feedback from iterative electronic structure calculations.

    PubMed

    Vaucher, Alain C; Haag, Moritz P; Reiher, Markus

    2016-04-05

    Real-time feedback from iterative electronic structure calculations requires to mediate between the inherently unpredictable execution times of the iterative algorithm used and the necessity to provide data in fixed and short time intervals for real-time rendering. We introduce the concept of a mediator as a component able to deal with infrequent and unpredictable reference data to generate reliable feedback. In the context of real-time quantum chemistry, the mediator takes the form of a surrogate potential that has the same local shape as the first-principles potential and can be evaluated efficiently to deliver atomic forces as real-time feedback. The surrogate potential is updated continuously by electronic structure calculations and guarantees to provide a reliable response to the operator for any molecular structure. To demonstrate the application of iterative electronic structure methods in real-time reactivity exploration, we implement self-consistent semiempirical methods as the data source and apply the surrogate-potential mediator to deliver reliable real-time feedback.

  15. Compressed Sensing Electron Tomography for Determining Biological Structure

    PubMed Central

    Guay, Matthew D.; Czaja, Wojciech; Aronova, Maria A.; Leapman, Richard D.

    2016-01-01

    There has been growing interest in applying compressed sensing (CS) theory and practice to reconstruct 3D volumes at the nanoscale from electron tomography datasets of inorganic materials, based on known sparsity in the structure of interest. Here we explore the application of CS for visualizing the 3D structure of biological specimens from tomographic tilt series acquired in the scanning transmission electron microscope (STEM). CS-ET reconstructions match or outperform commonly used alternative methods in full and undersampled tomogram recovery, but with less significant performance gains than observed for the imaging of inorganic materials. We propose that this disparity stems from the increased structural complexity of biological systems, as supported by theoretical CS sampling considerations and numerical results in simulated phantom datasets. A detailed analysis of the efficacy of CS-ET for undersampled recovery is therefore complicated by the structure of the object being imaged. The numerical nonlinear decoding process of CS shares strong connections with popular regularized least-squares methods, and the use of such numerical recovery techniques for mitigating artifacts and denoising in reconstructions of fully sampled datasets remains advantageous. This article provides a link to the software that has been developed for CS-ET reconstruction of electron tomographic data sets. PMID:27291259

  16. Some Aspects of the Electronic Structure of Metals.

    NASA Astrophysics Data System (ADS)

    Rosenfeld, Aron Marcus

    This work is concerned with a number of applications and fundamental issues in the theory of metals. In the first part, conventional liquid metal transport theory is extended to crystalline simple metals near the melting point. The concept of an ion reference system is introduced for the solid to deal with coherent scattering effects and the ion dynamics are treated beyond the conventional one-phonon approximation by working directly with the ion structure factor. The change in resistivity on melting is calculated for fourteen elements and related to differences in structure between liquid and solid. The identification, during this work, of anomalous features in the structure factor of alkali metals is then pursued. Surveys of this function for several bcc metals are carried out based on lattice dynamical calculations, which reveal specific classes of structure. The origin of these in the phonon spectra is elucidated and their connection to structural phase transitions is discussed. The second part of the work deals with issues relating to the non-uniform electron density in a metal. First, the consistent treatment of static and dynamic properties of metals using interatomic potentials containing volume or mean density dependence is examined. The focus is on the discrepancy in the bulk modulus calculated via the methods of longwaves and homogeneous deformation. A resolution of this long-standing 'compressibility problem' is provided which hinges on taking account of local inhomogeneities in electron density that modulate the interatomic potentials. Finally, the quasiatom model, which provides a practical scheme for treating the embedding energy of an impurity atom in a non-uniform electronic host, is considered. The physical basis of this model is examined by re-deriving the embedding energy of a He atom in the uniform electron gas using an alternate model which focuses on orthogonality effects.

  17. Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Moeck, Peter

    2008-05-01

    Two novel strategies for the structurally identification of nanocrystals [1] from either a high resolution (HR) transmission electron microscopy (TEM) image or a precession electron diffractogram (PED) [2] are described (and demonstrated on a mixture of nanocrystalline maghemite and magnetite [3]). The structural information that can be extracted from a HRTEM image is the projected reciprocal lattice geometry, the plane symmetry group, a few structure factor amplitudes and phases. Except for the structure factor phases, the same kind of information can be extracted from a PED, but the information that can be used for structural fingerprinting is in this case not limited to the resolution of the TEM. Searching for this kind of information in (open access) databases (e.g. [4]) and matching it with high figures of merit to that of candidate structures allows for highly discriminatory identifications of nanocrystals. [1] P. Moeck, P. Fraundorf, Z. f"ur Kristallogr. 222 (2007) 634-645; open-access issue at http://www.atypon-link.com/OLD/doi/pdf/10.1524/zkri.2007.222.11.634; expanded version at arXiv:0706.2021 [2] http://www.nanomegas.com [3] P. Moeck, arXiv:0804.0063 [4] http://nanocrystallography.research.pdx.edu/CIF-searchable

  18. Structural, optical and electronic structure studies of Al doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Devi, Vanita; Kumar, Manish; Shukla, D. K.; Choudhary, R. J.; Phase, D. M.; Kumar, Ravindra; Joshi, B. C.

    2015-07-01

    Structural, optical and electronic structure of Al doped ZnO thin films grown using pulsed laser deposition on glass substrate are investigated. X-ray diffraction measurements reveal that all the films are textured along the c-axis and have wurtzite structure. Al doping in ZnO films leads to increase in grain size due to relaxation in compressive stress. Enhancement in band gap of ZnO films with the Al doping is also noticed which can be ascribed to the Brustein-Moss shift. The changes in the electronic structure caused by Al in the doped thin film samples are understood through X-ray absorption measurements.

  19. Electronic structure and energetics of graphene antidot lattice

    NASA Astrophysics Data System (ADS)

    Sakurai, Masahiro; Saito, Susumu; Takada, Yasutami

    2012-02-01

    We have made a systematic study of the electronic structure and the energetics of graphene with periodic array of vacancy clusters (graphene antidot lattice) in the framework of the density-functional theory (DFT). We find that the electronic property of the system is well controlled by its lattice periodicity. More specifically, this system can be either metallic or semiconducting, depending on its lattice geometry. Interestingly, some of them are predicted to be direct-gap semiconductors. For example, graphene sheet with high-symmetry arrangements of periodic circle-shape vacancies always has a direct fundamental gap [1]. The DFT total-energy calculations indicate that the geometry of hole edges plays an important role in determining its stability. [1] ``Electronic properties of graphene and boron-nitride based nanostructured materials'' M. Sakurai, Y. Sakai, and S. Saito, J. Phys.: Conf. Ser. 302 (2011) 012018.

  20. Sorting carbon nanotubes by electronic structure using density differentiation.

    PubMed

    Arnold, Michael S; Green, Alexander A; Hulvat, James F; Stupp, Samuel I; Hersam, Mark C

    2006-10-01

    The heterogeneity of as-synthesized single-walled carbon nanotubes (SWNTs) precludes their widespread application in electronics, optics and sensing. We report on the sorting of carbon nanotubes by diameter, bandgap and electronic type using structure-discriminating surfactants to engineer subtle differences in their buoyant densities. Using the scalable technique of density-gradient ultracentrifugation, we have isolated narrow distributions of SWNTs in which >97% are within a 0.02-nm-diameter range. Furthermore, using competing mixtures of surfactants, we have produced bulk quantities of SWNTs of predominantly a single electronic type. These materials were used to fabricate thin-film electrical devices of networked SWNTs characterized by either metallic or semiconducting behaviour.

  1. Anomalous electronic structure and magnetoresistance in TaAs2

    PubMed Central

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; Scott, B.; Wakeham, N.; Ghimire, N. J.; Bauer, E. D.; Thompson, J. D.; Ronning, F.

    2016-01-01

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions. PMID:27271852

  2. Anomalous electronic structure and magnetoresistance in TaAs2

    DOE PAGES

    Luo, Yongkang; McDonald, R. D.; Rosa, P. F. S.; ...

    2016-01-01

    We report that the change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. In conclusion, density functional calculations find that TaAs2 is a new topological semimetal [Z2 invariant (0;111)] withoutmore » Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.« less

  3. Electronic Structure of Crystalline 4He at High Pressure

    SciTech Connect

    Mao, H.K.; Cai, Y.; Shirley, E.L.; Ding, Y.; Eng, P.; Chow, P.; Xiao, Y.; Shu, J.; Hemley, R.J.; Kao, C.C.; Mao, W.L.

    2010-10-29

    Using inelastic x-ray scattering techniques, we have succeeded in probing the high-pressure electronic structure of helium at 300 K. Helium has the widest known valence-conduction band gap of all materials a property whose high-pressure response has been inaccessible to direct measurements. We observed a rich electron excitation spectrum, including a cutoff edge above 23 eV, a sharp exciton peak showing linear volume dependence, and a series of excitations and continuum at 26 to 45 eV. We determined the electronic dispersion along the {Gamma}-M direction over two Brillouin zones, and provided a quantitative picture of the helium exciton beyond the simplified Wannier-Frenkel description.

  4. Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons

    PubMed Central

    Huang, Han; Wei, Dacheng; Sun, Jiatao; Wong, Swee Liang; Feng, Yuan Ping; Neto, A. H. Castro; Wee, Andrew Thye Shen

    2012-01-01

    Graphene has attracted much interest in both academia and industry. The challenge of making it semiconducting is crucial for applications in electronic devices. A promising approach is to reduce its physical size down to the nanometer scale. Here, we present the surface-assisted bottom-up fabrication of atomically precise armchair graphene nanoribbons (AGNRs) with predefined widths, namely 7-, 14- and 21-AGNRs, on Ag(111) as well as their spatially resolved width-dependent electronic structures. STM/STS measurements reveal their associated electron scattering patterns and the energy gaps over 1 eV. The mechanism to form such AGNRs is addressed based on the observed intermediate products. Our results provide new insights into the local properties of AGNRs, and have implications for the understanding of their electrical properties and potential applications. PMID:23248746

  5. Approximate ab initio calculations of electronic structure of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Durandurdu, M.; Drabold, D. A.; Mousseau, N.

    2000-12-01

    We report on ab initio calculations of electronic states of two large and realistic models of amorphous silicon generated using a modified version of the Wooten-Winer-Weaire algorithm and relaxed, in both cases, with a Keating and a modified Stillinger-Weber potentials. The models have no coordination defects and a very narrow bond-angle distribution. We compute the electronic density-of-states and pay particular attention to the nature of the band-tail states around the electronic gap. All models show a large and perfectly clean optical gap and realistic Urbach tails. Based on these results and the extended quasi-one-dimensional stringlike structures observed for certain eigenvalues in the band tails, we postulate that the generation of model a-Si without localized states might be achievable under certain circumstances.

  6. DFT investigation on the electronic structure of Faujasite

    NASA Astrophysics Data System (ADS)

    Popeneciu, Horea; Calborean, Adrian; Tudoran, Cristian; Buimaga-Iarinca, Luiza

    2013-11-01

    We report here first-principle pseudopotential DFT calculations to investigate relevant aspects of the electronic structure of zeolites based FAU. Fundamental molecular issues of the band-gap and electronic population analysis were reviewed under GGA/RPBE level of theory, corroborated with a DZP basis set and Troullier-Martins norm conserving pseudo-potentials. The atom-projected density of states and the analysis of HOMO-LUMO frontier orbitals at Gamma point were performed. Their electronic transfers are discussed through the alignment and relative positions of orbitals in order to determine the way that the molecule interacts with adsorbed molecules and other practical applications. Mulliken population analysis was employed for describing atomic charge distribution in the chosen systems.

  7. {ELECTRONIC Structure and Spectroscopy of O_2 and O_2^+}

    NASA Astrophysics Data System (ADS)

    Vazquez, Gabriel J.; Lefebvre-Brion, H.; Liebermann, Hans P.

    2014-06-01

    We carried out a comprehensive SCF MRD--CI ab initio study of the electronic structure of O_2 and O_2^+. Potential energy curves (PECs) of about 150 electronic states of O_2 and about 100 of O_2^+, as well as a number of states of O_2++ were computed. The cc--pVQZ basis set augmented with diffuse functions was employed. Spectroscopic parameters (T_e, T_v, ω_e, ω_ex_e, B_e, D_e, D_0, μ, IP, etc.) are reported. A preliminary sample of the results will be presented. The electronic absorption spectrum of O_2 has proved difficult to analyze/interpret due to the unusually large number of electronic states which arise from the peculiar open--shell structure of both the oxygen atomic fragments and the O_2 molecule. For instance, there are 62 valence molecular electronic states which correlate to the six lowest dissociation limits resulting from the three valence O atom fragment states (^3P, ^1D, ^1S). In addition, there are several nlλ Rydberg series converging to the X^2Π_g ground ionic state and to the lowest two excited states of the cation, a^4Π_u_i and A^2Π_u. Furthermore, a number of interactions of various types among several electronic states result in rovibronic perturbations which manifest themselves, e.g., as irregular vibronic structure, hence severely complicating the assignment of the absorption features and the analysis and interpretation of the spectrum. An overview of the electronic states and spectroscopy of O_2 will be presented. A chief motivation of this study of O_2 was to try to provide a theoretical insight on the nature, energetic position, shape, and dissociation asymptotes, of electronic states located in the 4 eV energy region encompassed between the O_2^+ ground state X^2Π_g (IP=12.07 eV) and the first excited state of the cation a^4Π_u_i (IP=16.10 eV). This in order to aid in the interpretation of experimental data related to the mechanism(s) of the neutral dissociation of the O_2** (Rydberg) superexcited states, which competes with

  8. Transmission Electron Microscopy Characterization of Semiconductor Interfacial Structures

    NASA Astrophysics Data System (ADS)

    Robertson, Michael Dennis

    The epitaxial structure and characterization of semiconductor/semiconductor interfacial systems have been studied using transmission electron microscopy as the primary investigative technique. Geometrical and elastic energy theories of epitaxy, as they relate to interfacial structure, have been reviewed to establish the framework necessary for analyzing experimental semiconductor heterostructures. The diffracted electron intensities for cross-sectional semiconductor single layer and superlattice structures have been derived based on the kinematical theory. The expression for the kinematical intensity for electron diffraction from a superlattice was observed to be analogous to the diffraction of light by a diffraction grating. The effects of surface relaxation, present in all strained-layer specimens prepared for the transmission electron microscope, have been investigated using elasticity theory. Conditions where surface relaxation effects can be ignored have also been presented. In order to quantify elastic strains at the nanometer level using high resolution electron microscopy (HREM) images, a new strain analysis technique, based on the cumulative sum of deviations (CUSUM) in lattice-fringe spacings from a target value, has been developed. This technique accurately reproduced the strain profiles in simulated and experimental HREM images and proved to be robust even in the presence of high levels of experimental noise. The above theory and techniques have been applied to three experimental systems, covering three distinct regimes of lattice mismatch (lattice mismatch ranged from -3.4% to +14.6%). These three systems were In_{1-x}Ga_ {x}Sb (0 <=q x <=q 1) single layers on (001) GaAs, rm In_{1-x}Al_{x}Sb/InSb single layers and superlattices on (001) InSb, and a 20 period AlAs/GaAs superlattice on (001) GaAs.

  9. Quantum mirages formed by coherent projection of electronic structure

    PubMed

    Manoharan; Lutz; Eigler

    2000-02-03

    Image projection relies on classical wave mechanics and the use of natural or engineered structures such as lenses or resonant cavities. Well-known examples include the bending of light to create mirages in the atmosphere, and the focusing of sound by whispering galleries. However, the observation of analogous phenomena in condensed matter systems is a more recent development, facilitated by advances in nanofabrication. Here we report the projection of the electronic structure surrounding a magnetic Co atom to a remote location on the surface of a Cu crystal; electron partial waves scattered from the real Co atom are coherently refocused to form a spectral image or 'quantum mirage'. The focusing device is an elliptical quantum corral, assembled on the Cu surface. The corral acts as a quantum mechanical resonator, while the two-dimensional Cu surface-state electrons form the projection medium. When placed on the surface, Co atoms display a distinctive spectroscopic signature, known as the many-particle Kondo resonance, which arises from their magnetic moment. By positioning a Co atom at one focus of the ellipse, we detect a strong Kondo signature not only at the atom, but also at the empty focus. This behaviour contrasts with the usual spatially-decreasing response of an electron gas to a localized perturbation.

  10. Electronic absorption and ground state structure of carotenoid molecules.

    PubMed

    Mendes-Pinto, Maria M; Sansiaume, Elodie; Hashimoto, Hideki; Pascal, Andrew A; Gall, Andrew; Robert, Bruno

    2013-09-26

    Predicting the complete electronic structure of carotenoid molecules remains an extremely complex problem, particularly in anisotropic media such as proteins. In this paper, we address the electronic properties of nine relatively simple carotenoids by the combined use of electronic absorption and resonance Raman spectroscopies. Linear carotenoids exhibit an excellent correlation between (i) the inverse of their conjugation chain length N, (ii) the energy of their S0 → S2 electronic transition, and (iii) the position of their ν1 Raman band (corresponding to the stretching mode of their conjugated C═C bonds). For cyclic carotenoids such as β-carotene, this correlation is also observed between the latter two parameters (S0 → S2 energy and ν1 frequency), whereas their "nominal" conjugation length N does not follow the same relationship. We conclude that β-carotene and cyclic carotenoids in general exhibit a shorter effective conjugation length than that expected from their chemical structure. In addition, the effect of solvent polarizability on these molecular parameters was investigated for four of the carotenoids used in this study. We demonstrate that resonance Raman spectroscopy can discriminate between the different effects underlying shifts in the S0 → S2 transition of carotenoid molecules.

  11. Perspective: Explicitly correlated electronic structure theory for complex systems

    NASA Astrophysics Data System (ADS)

    Grüneis, Andreas; Hirata, So; Ohnishi, Yu-ya; Ten-no, Seiichiro

    2017-02-01

    The explicitly correlated approach is one of the most important breakthroughs in ab initio electronic structure theory, providing arguably the most compact, accurate, and efficient ansatz for describing the correlated motion of electrons. Since Hylleraas first used an explicitly correlated wave function for the He atom in 1929, numerous attempts have been made to tackle the significant challenges involved in constructing practical explicitly correlated methods that are applicable to larger systems. These include identifying suitable mathematical forms of a correlated wave function and an efficient evaluation of many-electron integrals. R12 theory, which employs the resolution of the identity approximation, emerged in 1985, followed by the introduction of novel correlation factors and wave function ansätze, leading to the establishment of F12 theory in the 2000s. Rapid progress in recent years has significantly extended the application range of explicitly correlated theory, offering the potential of an accurate wave-function treatment of complex systems such as photosystems and semiconductors. This perspective surveys explicitly correlated electronic structure theory, with an emphasis on recent stochastic and deterministic approaches that hold significant promise for applications to large and complex systems including solids.

  12. Optical and electronic structure description of metal-doped phthalocyanines.

    PubMed

    Leal, Luciano Almeida; da Cunha, Wiliam Ferreira; Ribeiro Junior, Luiz Antonio; Pereira, Tamires Lima; Blawid, Stefan Michael; de Sousa Junior, Rafael Timóteo; da Silva Filho, Demétrio Antonio

    2017-05-01

    Phthalocyanines represent a crucial class of organic compounds with high technological appeal. By doping the center of these systems with metals, one obtains the so-called metal-phthalocyanines, whose property of being an effective electron donor allows for potentially interesting uses in organic electronics. In this sense, investigating optical and electronic structure changes in the phthalocyanine profiles in the presence of different metals is of fundamental importance for evaluating the appropriateness of the resulting system as far as these uses are concerned. In the present work, we carry out this kind of effort for phthalocyanines doped with different metals, namely, copper, nickel, and magnesium. Density functional theory was applied to obtain the absorption spectra, and electronic and structural properties of the complexes. Our results suggest that depending on the dopant, a different level of change is achieved. Moreover, electrostatic potential energy mapping shows how the charge distribution can be affected by solar radiation. Our contribution is crucial in describing the best possible candidates for use in different organic photovoltaic applications. Graphical Abstract Representation of meta-phthalocyanine systems. All calculations of this work are based on varying metal position along z axis, considering the z-axis has its zero point matching with the center of phthalocyanine cavityconsidering.

  13. Electronic structure of Gd-doped MgO

    NASA Astrophysics Data System (ADS)

    Lukoyanov, A. V.; Anisimov, V. I.

    2016-02-01

    The electronic structure of Gd-doped MgO is investigated using the LSDA+U (local spin density approximation with U-correction) method and compared with the MgO structure. The total density of states obtained accounting for the correlation effects in the 4 f shell of gadolinium is found to be formed by the oxygen 2 p states at the valence band and the 4 f gadolinium occupied states, while the conduction band is represented by a mixture of empty electronic states. Magnetic properties of the calculated Gd-doped MgO are found to be formed solely by the Gd-4 f-magnetic moment of about 7μB, in good agreement with recent experimental results suggesting a ferromagnetic coupling of the local magnetic moments induced by Gd.

  14. Molecular structures of porphyrin-quinone models for electron transfer

    SciTech Connect

    Fajer, J.; Barkigia, K.M.; Melamed, D.; Sweet, R.M.; Kurreck, H.; Gersdorff, J. von; Plato, M.; Rohland, H.C.; Elger, G.; Moebius, K.

    1996-08-15

    Synthetic porphyrin-quinone complexes are commonly used to mimic electron transport in photosynthetic reaction centers and to probe the effects of energetics, distances, and relative orientations on rates of electron transfer between donor-acceptor couples. The structures of two such models have been determined by X-ray diffraction. The redox pairs consist of a zinc porphyrin covalently linked to benzoquinone in cis and trans configurations via a cyclohexanediyl bridge. The crystallographic studies were undertaken to provide a structural foundation for the extensive body of experimental and theoretical results that exists for these compounds in both the ground and photoinduced charge-separated states. The results validate conclusions reached from theoretical calculations, EPR and two-dimensional NMR results for these states. 15 refs., 6 figs., 2 tabs.

  15. Observation of Electronic Structure Minima in High-Harmonic Generation

    SciTech Connect

    Woerner, Hans Jakob; Villeneuve, D. M.; Niikura, Hiromichi; Bertrand, Julien B.; Corkum, P. B.

    2009-03-13

    We report detailed measurements of the high-harmonic spectra generated from argon atoms. The spectra exhibit a deep minimum that is shown to be independent of the laser intensity, and is thus a clear measure of the electronic structure of the atom. We show that exact field-free continuum wave functions reproduce the minimum, but plane wave and Coulomb wave functions do not. This remarkable observation suggests that electronic structure can be accurately determined in high-harmonic experiments despite the presence of the strong laser field. Our results clarify the relation between high-harmonic generation and photoelectron spectroscopy. The use of exact continuum functions also resolves the ambiguity associated with the choice of the dispersion relation.

  16. Electronic Structure Rearrangements in Hybrid Ribozyme/Protein Catalysis

    NASA Astrophysics Data System (ADS)

    Kang, Jiyoung; Kino, Hiori; Field, Martin J.; Tateno, Masaru

    2017-04-01

    We analyzed the electronic structural changes that occur in the reaction cycle of a biological catalyst composed of RNA and protein, and elucidated the dynamical rearrangements of the electronic structure that was obtained from our previous study in which ab initio quantum mechanics/molecular mechanics molecular dynamics simulations were performed. Notable results that we obtained include the generation of a reactive HOMO that is responsible for bond formation in the initial stages of the reaction, and the appearance of a reactive LUMO that is involved in the bond rupture that leads to products. We denote these changes as dynamical induction of the reactive HOMO (DIRH) and LUMO (DIRL), respectively. Interestingly, we also find that the induction of the reactive HOMO is enhanced by the formation of a low-barrier hydrogen bond (LBHB), which, to the best of our knowledge, represents a novel role for LBHBs in enzymatic systems.

  17. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations.

    PubMed

    Monastyrskii, Liubomyr S; Boyko, Yaroslav V; Sokolovskii, Bogdan S; Potashnyk, Vasylyna Ya

    2016-12-01

    An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method-the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range.

  18. Electronic Structure and Geometries of Small Compound Metal Clusters

    SciTech Connect

    1999-04-14

    During the tenure of the DOE grant DE-FG05-87EI145316 we have concentrated on equilibrium geometries, stability, and the electronic structure of transition metal-carbon clusters (met-cars), clusters designed to mimic the chemistry of atoms, and reactivity of homo-nuclear metal clusters and ions with various reactant molecules. It is difficult to describe all the research the authors have accomplished as they have published 38 papers. In this report, they outline briefly the salient features of their work on the following topics: (1) Designer Clusters: Building Blocks for a New Class of Solids; (2) Atomic Structure, Stability, and Electronic Properties of Metallo-Carbohedrenes; (3) Reactivity of Metal Clusters with H{sub 2} and NO; and (4) Anomalous Spectroscopy of Li{sub 4} Clusters.

  19. Fragment approach to the electronic structure of τ -boron allotrope

    NASA Astrophysics Data System (ADS)

    Karmodak, Naiwrit; Jemmis, Eluvathingal D.

    2017-04-01

    The presence of nonconventional bonding features is an intriguing part of elemental boron. The recent addition of τ boron to the family of three-dimensional boron allotropes is no exception. We provide an understanding of the electronic structure of τ boron using a fragment molecular approach, where the effect of symmetry reduction on skeletal bands of B12 and the B57 fragments are examined qualitatively by analyzing the projected density of states of these fragments. In spite of the structural resemblance to β boron, the reduction of symmetry from a rhombohedral space group to the orthorhombic one destabilizes the bands and reduces the electronic requirements. This suggests the presence of the partially occupied boron sites, as seen for a β boron unit cell, and draws the possibility for the existence of different energetically similar polymorphs. τ boron has a lower binding energy than β boron.

  20. Electronic Structure of Silicon Nanowires Matrix from Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Monastyrskii, Liubomyr S.; Boyko, Yaroslav V.; Sokolovskii, Bogdan S.; Potashnyk, Vasylyna Ya.

    2016-01-01

    An investigation of the model of porous silicon in the form of periodic set of silicon nanowires has been carried out. The electronic energy structure was studied using a first-principle band method—the method of pseudopotentials (ultrasoft potentials in the basis of plane waves) and linearized mode of the method of combined pseudopotentials. Due to the use of hybrid exchange-correlation potentials (B3LYP), the quantitative agreement of the calculated value of band gap in the bulk material with experimental data is achieved. The obtained results show that passivation of dangling bonds with hydrogen atoms leads to substantial transformation of electronic energy structure. At complete passivation of the dangling silicon bonds by hydrogen atoms, the band gap value takes the magnitude which substantially exceeds that for bulk silicon. The incomplete passivation gives rise to opposite effect when the band gap value decreases down the semimetallic range.

  1. Electronic structure of polyimide and related monomers: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Kowalczyk, Steven P.; Stafström, Sven; Brédas, J. L.; Salaneck, William R.; Jordan-Sweet, Jean L.

    1990-01-01

    The electronic structure of polymide and several related compounds was investigated theoretically and experimentally. The compounds include pyromellitic dianhydride, oxydianiline, and polyamic acid. Experimental electronic-structure determinations for poly(methyl phenylene oxide) and poly(vinyl methyl ketone) are also reported. The theoretical approach employed valence-effective-Hamiltonian calculations. Photoelectron spectroscopy (x-ray photoelectron spectroscopy, soft-x-ray photoelectron spectroscopy, and ultraviolet photoelectron spectroscopy) was used to experimentally measure the total valence-band density of states (VBDOS) from thin films of the above compounds. The theoretical VBDOS's were cross-section modulated to facilitate comparison with experiment. Very good agreement is found between the theoretical results and the experimental VBDOS's.

  2. Electronic structure of polymeric KC 60 - a crystal orbital analysis

    NASA Astrophysics Data System (ADS)

    Schulte, Joachim; Böhm, Michael C.

    1996-04-01

    The band structure of orthorhombic KC 60 is investigated by a crystal approach based on an intermediate neglect of differential orbital Hamiltonian. The title compound crystallizes in the space group Pnnm with covalent intermolecular carboncarbon bonds. Polymeric KC 60 is a metal with a low electronic density of states (DOS) at the Fermi energy ɛF. This metallic behaviour differs from the electronic ground state calculated for isotropic fcc KC 60 with potassium occupying the octahedral intersitial site. The reduced width of the conduction band in the fcc structure favours an insulating Mott state relative to the metallic configuration. The dimensionality of the title compound is discussed on the basis of intercell energies, the DOS profile and dispersion curves. The theoretical results are compared with experimental observations. Wiberg bond-indices are employed to describe the chemical bonding within the distorted C 60 soccerball.

  3. Phase Diagram and Electronic Structure of Praseodymium and Plutonium

    DOE PAGES

    Lanatà, Nicola; Yao, Yongxin; Wang, Cai-Zhuang; ...

    2015-01-29

    We develop a new implementation of the Gutzwiller approximation in combination with the local density approximation, which enables us to study complex 4f and 5f systems beyond the reach of previous approaches. We calculate from first principles the zero-temperature phase diagram and electronic structure of Pr and Pu, finding good agreement with the experiments. Our study of Pr indicates that its pressure-induced volume-collapse transition would not occur without change of lattice structure—contrarily to Ce. Our study of Pu shows that the most important effect originating the differentiation between the equilibrium densities of its allotropes is the competition between the Peierlsmore » effect and the Madelung interaction and not the dependence of the electron correlations on the lattice structure.« less

  4. Electronic structure of spontaneously strained graphene on hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    San-Jose, Pablo; Gutiérrez-Rubio, A.; Sturla, Mauricio; Guinea, Francisco

    2014-09-01

    Hexagonal boron nitride substrates have been shown to dramatically improve the electric properties of graphene. Recently, it has been observed that when the two honeycomb crystals are close to perfect alignment, strong lattice distortions develop in graphene due to the moiré adhesion landscape. Simultaneously, a gap opens at the Dirac point. Here, we derive a simple low-energy electronic model for graphene aligned with the substrate, taking into account spontaneous strains at equilibrium and pseudogauge fields. We carry out a detailed characterization of the modified band structure, gap, local and global density of states, and band topology in terms of physical parameters. We show that the overall electronic structure is strongly modified by the spontaneous strains.

  5. Structure and Process of Infrared Hot Electron Transistor Arrays

    PubMed Central

    Fu, Richard

    2012-01-01

    An infrared hot-electron transistor (IHET) 5 × 8 array with a common base configuration that allows two-terminal readout integration was investigated and fabricated for the first time. The IHET structure provides a maximum factor of six in improvement in the photocurrent to dark current ratio compared to the basic quantum well infrared photodetector (QWIP), and hence it improved the array S/N ratio by the same factor. The study also showed for the first time that there is no electrical cross-talk among individual detectors, even though they share the same emitter and base contacts. Thus, the IHET structure is compatible with existing electronic readout circuits for photoconductors in producing sensitive focal plane arrays. PMID:22778655

  6. Structure and process of infrared hot electron transistor arrays.

    PubMed

    Fu, Richard

    2012-01-01

    An infrared hot-electron transistor (IHET) 5 × 8 array with a common base configuration that allows two-terminal readout integration was investigated and fabricated for the first time. The IHET structure provides a maximum factor of six in improvement in the photocurrent to dark current ratio compared to the basic quantum well infrared photodetector (QWIP), and hence it improved the array S/N ratio by the same factor. The study also showed for the first time that there is no electrical cross-talk among individual detectors, even though they share the same emitter and base contacts. Thus, the IHET structure is compatible with existing electronic readout circuits for photoconductors in producing sensitive focal plane arrays.

  7. On the Electronic Structure of Cocaine and its Metabolites

    NASA Astrophysics Data System (ADS)

    Rincón, David A.; Dias Soeiro Cordeiro, Maria Natália; Mosquera, Ricardo A.

    2009-11-01

    This work aims at describing the electronic features of cocaine and how they are modified by the different substituents present in its metabolites. The QTAIM analysis of B3LYP and MP2 electron densities obtained with the 6-311++G** 6d basis set for cocaine and its principal metabolites indicates: (i) its positive charge is shared among the amino hydrogen, those of the methylamino group, and all of the hydrogens attached to the bicycle structure; (ii) the zwitterionic structure of benzoylecgonine can be described as two partial charges of 0.63 au, the negative one shared by the oxygens of the carboxylate group, whereas the positive charge is distributed among all the hydrogens that bear the positive charge in cocaine; (iii) its hydrogen bond is strengthened in the derivatives without benzoyloxy group and is also slightly strengthened as the size of the alkyl ester group at position 2 increases.

  8. Structural and electronic properties of arsenic nitrogen monolayer

    NASA Astrophysics Data System (ADS)

    Liu, Pei; Nie, Yao-zhuang; Xia, Qing-lin; Guo, Guang-hua

    2017-03-01

    We present our first-principles calculations of a new two-dimensional material, arsenic nitrogen monolayer. The structural, electronic, and mechanical properties are investigated in detail by means of density functional theory computations. The calculated binding energy and the phonon spectra demonstrate that the AsN can form stable monolayer in puckered honeycomb structure. It is a semiconductor with indirect band gap of 0.73 eV, and displays highly anisotropic mechanical properties. Strain has obvious influence on the electronic properties of AsN monolayer. It is found that in the armchair direction, a moderate compression strain (-12%) can trigger an indirect to direct band gap transition and a tensile strain of 18% can make the AsN becoming a stable metal. In the zigzag direction, a rather smaller strain than armchair direction (12% for compression and 8% for stretch) can induce the indirect band gap to metal transition.

  9. Atomic and electronic structure of Ni-Nb metallic glasses

    SciTech Connect

    Yuan, C. C.; Yang, Y.-F. Xi, X. K.

    2013-12-07

    Solid state {sup 93}Nb nuclear magnetic resonance spectroscopy has been employed to investigate the atomic and electronic structures in Ni-Nb based metallic glass (MG) model system. {sup 93}Nb nuclear magnetic resonance (NMR) isotropic metallic shift of Ni{sub 60}Nb{sub 35}Sn{sub 5} has been found to be ∼100 ppm lower than that of Ni{sub 60}Nb{sub 35}Zr{sub 5} MG, which is correlated with their intrinsic fracture toughness. The evolution of {sup 93}Nb NMR isotropic metallic shifts upon alloying is clearly an electronic origin, as revealed by both local hyperfine fields analysis and first-principle computations. This preliminary result indicates that, in addition to geometrical considerations, atomic form factors should be taken into a description of atomic structures for better understanding the mechanical behaviors of MGs.

  10. Strongly correlated electron materials. I. Theory of the quasiparticle structure

    SciTech Connect

    Lopez-Aguilar, F.; Costa-Quintana, J.; Puig-Puig, L. )

    1993-07-01

    In this paper we give a method for analyzing the renormalized electronic structure of the Hubbard systems. The first step is the determination of effective interactions from the random-phase approximation (RPA) and from an extended RPA (ERPA) that introduces vertex effects within the bubble polarization. The second step is the determination of the density of states deduced from the spectral functions. Its analysis leads us to conclude that these systems can exhibit three types of resonances in their electronic structures: the lower-, middle-, and upper-energy resonances. Furthermore, we analyze the conditions for which there is only one type of resonance and the causes that lead to the disappearance of the heavy-fermion state. We finally introduce the RPA and ERPA effective interactions within the strong-coupling theory and we give the conditions for obtaining coupling and superconductivity.

  11. Deflating the dimentionality curse in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Melnichuk, Ann

    Many-body problems whether classical or quantum suffer from what is known as a dimensionality curse. In solving physical problems, we are generally interested in quantifying interactions between physical entities and as the quantity of these entities increases, the number of interaction equations one must solve increases much faster. The work described in this dissertation presents several solutions for the reduction of the dimension of calculations of electronic structure of molecules. Techniques and examples are drawn from calculations of excited states, UV/Vis absorption cross sections, and high-level theoretical treatment of multi-reference electronic structure problems. The techniques described here may be combined to achieve highly accurate theoretical results for challenging examples at only a small fraction of the cost. Speed-up upwards of 500x were observed for several systems versus the established methods and several examples are presented which would not be otherwise practical to do given the current computational limitations.

  12. Atomic structures and electronic properties of phosphorene grain boundaries

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Zhou, Si; Zhang, Junfeng; Bai, Yizhen; Zhao, Jijun

    2016-06-01

    Grain boundary (GB) is one main type of defects in two-dimensional (2D) crystals, and has significant impact on the physical properties of 2D materials. Phosphorene, a recently synthesized 2D semiconductor, possesses a puckered honeycomb lattice and outstanding electronic properties. It is very interesting to know the possible GBs present in this novel material, and how their properties differ from those in the other 2D materials. Based on first-principles calculations, we explore the atomic structure, thermodynamic stability, and electronic properties of phosphorene GBs. A total of 19 GBs are predicted and found to be energetically stable with formation energies much lower than those in graphene. These GBs do not severely affect the electronic properties of phosphorene: the band gap of perfect phosphorene is preserved, and the electron mobilities are only moderately reduced in these defective systems. Our theoretical results provide vital guidance for experimental tailoring the electronic properties of phosphorene as well as the device applications using phosphorene materials.

  13. Electronic structure of charged bilayer and trilayer phosphorene

    NASA Astrophysics Data System (ADS)

    Jhun, Bukyoung; Park, Cheol-Hwan

    2017-08-01

    We have investigated the electronic structure of charged bilayer and trilayer phoshporene using first-principles density functional theory calculations. We find that the effective dielectric constant for an external electric field applied perpendicular to phosphorene layers increases with the charge density and is twice as large as in an undoped system if the electron density is around 5 ×1013 cm-2. It is known that if few-layer phosphorene is placed under such an electric field, the electron band gap decreases, and if the strength of the electric field is further increased, the band gap closes. We show that the electronic screening due to added charge carriers reduces the amount of this reduction in the band gap and increases the critical strength of the electric field for gap closure. If the electron density is around 4 ×1013 cm-2, for example, this critical field for trilayer phosphorene is 40% higher than that for a charge-neutral system. The results are directly relevant to experiments on few-layer phosphorene with top and bottom electrical gates and/or with chemical dopants.

  14. Phosphorene Nanoribbons: Electronic Structure and Electric Field Modulation

    NASA Astrophysics Data System (ADS)

    Soleimanikahnoj, Sina; Knezevic, Irena

    Phosphorene, a newcomer among the 2D van der Waals materials, has attracted the attention of many scientists due to its promising electronic properties. Monolayer phosphorene has a direct band gap of 2 eV located at the Gamma point of the Brillouin zone. Increasing the number of layers reduces the bandgap due to the van der Waals interaction. The direct nature of the bandgap makes phosphorene particularly favorable for electronic transport and optoelectronic applications. While multilayer phosphorene sheets have been studied, the electronic properties of their 1D counterparts are still unexplored. An accurate tight-binding model was recently proposed for multilayer phosphorene nanoribbons. Employing this model along with the non-equilibrium Green's function method, we calculate the band structure and electronic properties of phosphorene nanoribbons. We show that, depending on the edge termination, phosphorene nanoribbons can be metallic or semiconducting. Our analysis also shows that the electronic properties of phosphorene nanoribbons are highly tunable by in-plane and out-of-plane electric fields. In metallic ribbons, the conductance can be switched off by a threshold electric field, similar to field effect devices. Support by the NSF through the University of Wisconsin MRSEC Seed (NSF Award DMR-1121288).

  15. Crystallization of germanium-carbon alloys -- Structure and electronic transport

    SciTech Connect

    John, T.M.; Blaesing, J.; Veit, P.; Druesedau, T.

    1997-07-01

    Amorphous Ge{sub 1{minus}x}C{sub x} alloys were deposited by rf-magnetron sputtering from a germanium target in methane-argon atmosphere. Structural investigations were performed by means of wide and small angle X-ray scattering, X-ray reflectometry and cross-sectional transmission electron microscopy. The electronic transport properties were characterized using Hall-measurements and temperature depended conductivity. The results of X-ray techniques together with the electron microscopy clearly prove the existence of a segregation of the electronic conductivity in the as-prepared films follows the Mott' T{sup {minus}1/4} law, indicating transport by a hopping process. After annealing at 870 K, samples with x {le} 0.4 show crystallization of the Ge-clusters with a crystallite size being a function of x. After Ge-crystallization, the conductivity increases by 4 to 5 orders of magnitude. Above room temperature, electronic transport is determined by a thermally activated process. For lower temperatures, the {sigma}(T) curves show a behavior which is determined by the crystallite size and the free carrier concentration, both depending on the carbon content.

  16. Electronic structure and shearing in nanolaminated ternary carbides

    NASA Astrophysics Data System (ADS)

    Music, Denis; Sun, Zhimei; Voevodin, Andrey A.; Schneider, Jochen M.

    2006-07-01

    We have studied shearing in M 2AlC phases (M=Sc,Y,La,Ti,Zr,Hf,V,Nb,Ta,Cr,Mo,W) using ab initio calculations. We propose that these phases can be classified into two groups based on the valence electron concentration induced changes in C 44. One group comprises M=V B and VIB, where the C 44 values are approximately 170 GPa and independent of the corresponding MC. The other group includes M=IIIB and IVB, where the C 44 shows a linear dependency with the corresponding MC. This may be understood based on the electronic structure: shear resistant bands are filled in M 2AlC phases with M=V B and VIB, while they are not completely filled when M=IIIB and IVB. This notion is also consistent with our stress-strain analysis. These valence electron concentration induced changes in shear behaviour were compared to previously published valence electron concentration induced changes in compression behaviour [Z. Sun, D. Music, R. Ahuja, S. Li, J.M. Schneider, Phys. Rev. B 70 (2004) 092102]. These classification proposals exhibit identical critical valence electron concentration values for the group boundary. However, the physical mechanisms are not identical: the classification proposal for the bulk modulus is based on MC-A coupling, while shearing is based on MC-MC coupling.

  17. Electronic and chemical structure of metal-silicon interfaces

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Grunthaner, F. J.

    1984-01-01

    This paper reviews our current understanding of the near-noble metal silicides and the interfaces formed with Si(100). Using X-ray photoemission spectroscopy, we compare the chemical composition and electronic structure of the room temperature metal-silicon and reacted silicide-silicon interfaces. The relationship between the interfacial chemistry and the Schottky barrier heights for this class of metals on silicon is explored.

  18. The valence electronic structure and conformational flexibility of epichlorohydrin.

    PubMed

    Stranges, S; Alagia, M; Decleva, P; Stener, M; Fronzoni, G; Toffoli, D; Speranza, M; Catone, D; Turchini, S; Prosperi, T; Zema, N; Contini, G; Keheyan, Y

    2011-07-21

    The electronic structure of epichlorohydrin is investigated in the whole valence region by a combined experimental and theoretical study. The issue of controversial assignments of the molecular electronic structure is here addressed. Photoelectron spectra (PES) and Threshold Photoelectron spectra (TPES) of room temperature molecules in the gas phase are recorded. Geometries and energies of the stable conformers due to internal rotation of the C-C-C-Cl dihedral angle, gauche-II (g-II), gauche-I (g-I), and cis, are calculated, and the effect of the conformational flexibility on the photoionization energetics is studied by DFT and 2h-1p Configuration Interaction (CI) methods. Strong breakdown of the Koopmans Theorem (KT) is obtained for the four outermost ionizations, which are further investigated by higher level ab initio calculations. The full assignment of the spectrum is put on a firm basis by the combination of experimental and theoretical results. The orbital composition from correlated calculations is found closer to the DFT orbitals, which are then used to analyze the electronic structure of the molecule. The Highest Occupied Molecular Orbital (HOMO) and HOMO--2 are n(O)/n(Cl) mixed orbitals. The nature of each valence MO is generally preserved in all the conformers, although the magnitude of the n(O)/n(Cl) mixing in HOMO and HOMO--2 varies to some extent with the C-C-C-Cl dihedral angle. The low energy part of the HOMO PE band is predicted to be substantially affected by the conformational flexibility, as experimentally observed in the spectra. The rest of the spectrum is described in terms of the dominant conformer g-II, and a good agreement between experiment and theory is found. The inner-valence PE spectrum is characterized by satellite structures, due to electron correlation effects, which are interpreted by means of 2h-1p CI calculations.

  19. Electron spectra and structure of atomic and molecular clusters

    SciTech Connect

    Dehmer, Patricia M.

    1980-01-01

    Changes in electronic structure that occur during the stepwise transition from gas phase monomers to large clusters which resemble the condensed phase were studied. This basic information on weakly bound clusters is critical to the understanding of such phenomena as nucleation, aerosol formation, catalysis, and gas-to-particle conversion, yet there exist almost no experimental data on neutral particle energy levels or binding energies as a function of cluster size. (GHT)

  20. Final Technical Report: Electronic Structure Workshop (ES13)

    SciTech Connect

    Zhang, Shiwei

    2015-02-26

    The 25th Annual Workshop on Recent Developments in Electronic Structure Methods (ES2013) was successfully held at the College of William & Mary in Williamsburg VA on June 11-14, 2013. The workshop website is at http://es13.wm.edu/ , which contains updated information on the workshop and a permanent archive of the scientific contents. DOE's continued support has been instrumental to the success of the workshop.

  1. Electronic structure and superconductivity of FeSe-related superconductors.

    PubMed

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  2. Thick-Restart Lanczos Method for Electronic StructureCalculations

    SciTech Connect

    Simon, Horst D.; Wang, L.-W.; Wu, Kesheng

    1999-03-12

    This paper describes two recent innovations related to the classic Lanczos method for eigen- value problems, namely the thick-restart technique and dynamic restarting schemes. Combining these two new techniques we are able to implement an efficient eigenvalue problem solver. This paper will demonstrate its effectiveness on one particular class of problems for which this method is well suited: linear eigenvalue problems generated from non-selfconsistent electronic structure calculations.

  3. Structured electron beams from nano-engineered cathodes

    NASA Astrophysics Data System (ADS)

    Lueangaramwong, A.; Mihalcea, D.; Andonian, G.; Piot, P.

    2017-03-01

    The ability to engineer cathodes at the nano-scale have opened new possibilities such as enhancing quantum efficiency via surface-plasmon excitation, forming ultra-low-emittance beams, or producing structured electron beams. In this paper, we present numerical investigations of the beam dynamics associated with this class of cathode in the weak- and strong-field regimes. We finally discuss the possible applications of some of the achievable cathode patterns when coupled with other phase space manipulations.

  4. DFTB Parameters for the Periodic Table: Part 1, Electronic Structure.

    PubMed

    Wahiduzzaman, Mohammad; Oliveira, Augusto F; Philipsen, Pier; Zhechkov, Lyuben; van Lenthe, Erik; Witek, Henryk A; Heine, Thomas

    2013-09-10

    A parametrization scheme for the electronic part of the density-functional based tight-binding (DFTB) method that covers the periodic table is presented. A semiautomatic parametrization scheme has been developed that uses Kohn-Sham energies and band structure curvatures of real and fictitious homoatomic crystal structures as reference data. A confinement potential is used to tighten the Kohn-Sham orbitals, which includes two free parameters that are used to optimize the performance of the method. The method is tested on more than 100 systems and shows excellent overall performance.

  5. Cryo-Electron Microscopy of Biological Macromolecular Structures

    NASA Astrophysics Data System (ADS)

    Yonekura, Koji

    There are many huge macromolecular complexes in living organisms. They are often hard to crystallize because of their size, complexity and heterogeneity. Cryo-electron microscopy (cryo-EM) is a suitable method to analyze the structures of such biological macromolecules, because it can be applied to various forms of samples, e.g. two-dimensional crystal, helical assembly, spherical virus, dispersed particle, cell organelle and cell, although attainable resolution depends on the system. In this review, I introduce these techniques and examples of the structure analysis, and briefly review the perspective of cryo-EM.

  6. Mechanical Deformation and Electronic Structure of Carbon Nanotorus

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wu, Shi-Yu; Jayanthi, Chakram

    2000-03-01

    The mechanical deformation and the electronic structure of carbon nanotorus of various radii are studied using an order(N) non-orthogonal tight-binding molecular dynamics[1] at finite temperature. The onset of the development of kinks in the torus is investigated as a function of radius. The defect structures associated with the kinks are analyzed in terms of local bonding configurations and the bond charge between pairs of atoms. [1] C.S. Jayanthi, S.Y. Wu, J. Cocks, N.S. Luo, Z.L. Xie, M.Menon, and G. Yang, Phys. Rev. B57, 3799 (1998).

  7. Electronic structure of icosahedral cobalt-sulfur clusters

    SciTech Connect

    Hoffman, G.G.; Bashkin, J.K.; Karplus, M. )

    1990-11-21

    This paper uses the multiple scattering (MS)-X{alpha} method to calculate the electronic structure of several clusters that contain an octahedral Co{sub 8}S{sub 6} core. Two of the cluster are analogous to compounds that have been previously synthesized, and the results of these calculations are consistent with the experimentally observed spin states, absorption spectra, and structural similarity of these compounds. These clusters are of particular interest because they are related to the component structures of the mineral cobalt pentlandite. To obtain information that can be extended to cobalt pentlandite, the effects of oxidation state and added ligands to the core structure of the clusters are studied. An extended Hueckel theory (EHT) study of similar clusters has been performed by Burdett and Miller. The spectra from the two types of calculations correspond in general and the central conclusions of Burdett and Miller are supported by the MS-X{alpha} results.

  8. Cryo-electron tomography of cells: connecting structure and function

    PubMed Central

    Lučić, Vladan; Leis, Andrew

    2008-01-01

    Cryo-electron tomography (cryo-ET) allows the visualization of cellular structures under close-to-life conditions and at molecular resolution. While it is inherently a static approach, yielding structural information about supramolecular organization at a certain time point, it can nevertheless provide insights into function of the structures imaged, in particular, when supplemented by other approaches. Here, we review the use of experimental methods that supplement cryo-ET imaging of whole cells. These include genetic and pharmacological manipulations, as well as correlative light microscopy and cryo-ET. While these methods have mostly been used to detect and identify structures visualized in cryo-ET or to assist the search for a feature of interest, we expect that in the future they will play a more important role in the functional interpretation of cryo-tomograms. PMID:18566823

  9. Potassium under pressure: Electronic origin of complex structures

    NASA Astrophysics Data System (ADS)

    Degtyareva, V. F.

    2014-10-01

    Recent high-pressure X-ray diffraction studies of alkali metals revealed unusual complex structures that follow the body-centred and face-centred cubic structures on compression. The structural sequence of potassium under compression to 1 Mbar is as follows: bcc-fcc-h-g (tI19*), hP4-oP8-tI4-oC16. We consider configurations of Brillouin-Jones zones and the Fermi surface within a nearly-free-electron model in order to analyze the importance of these configurations for the crystal structure stability. Formation of Brillouin zone planes close to the Fermi surface is related to opening an energy gap at these planes and reduction of crystal energy. Under pressure, this mechanism becomes more important leading to appearance of complex low-symmetry structures. The stability of the post-fcc phases in K is attributed to the changes in the valence electron configuration under strong compression.

  10. Strain-driven electronic band structure modulation of si nanowires.

    PubMed

    Hong, Ki-Ha; Kim, Jongseob; Lee, Sung-Hoon; Shin, Jai Kwang

    2008-05-01

    One of the major challenges toward Si nanowire (SiNW) based photonic devices is controlling the electronic band structure of the Si nanowire to obtain a direct band gap. Here, we present a new strategy for controlling the electronic band structure of Si nanowires. Our method is attributed to the band structure modulation driven by uniaxial strain. We show that the band structure modulation with lattice strain is strongly dependent on the crystal orientation and diameter of SiNWs. In the case of [100] and [111] SiNWs, tensile strain enhances the direct band gap characteristic, whereas compressive strain attenuates it. [110] SiNWs have a different strain dependence in that both compressive and tensile strain make SiNWs exhibit an indirect band gap. We discuss the origin of this strain dependence based on the band features of bulk silicon and the wave functions of SiNWs. These results could be helpful for band structure engineering and analysis of SiNWs in nanoscale devices.

  11. Transmission electron microscopy in molecular structural biology: A historical survey.

    PubMed

    Harris, J Robin

    2015-09-01

    In this personal, historic account of macromolecular transmission electron microscopy (TEM), published data from the 1940s through to recent times is surveyed, within the context of the remarkable progress that has been achieved during this time period. The evolution of present day molecular structural biology is described in relation to the associated biological disciplines. The contribution of numerous electron microscope pioneers to the development of the subject is discussed. The principal techniques for TEM specimen preparation, thin sectioning, metal shadowing, negative staining and plunge-freezing (vitrification) of thin aqueous samples are described, with a selection of published images to emphasise the virtues of each method. The development of digital image analysis and 3D reconstruction is described in detail as applied to electron crystallography and reconstructions from helical structures, 2D membrane crystals as well as single particle 3D reconstruction of icosahedral viruses and macromolecules. The on-going development of new software, algorithms and approaches is highlighted before specific examples of the historical progress of the structural biology of proteins and viruses are presented.

  12. Electronic structure of ternary rhodium hydrides with lithium and magnesium.

    PubMed

    Becker, Jonas Nils; Bauer, Jessica; Giehr, Andreas; Chu, Pui Ieng; Kunkel, Nathalie; Springborg, Michael; Kohlmann, Holger

    2014-01-21

    Chemical bonding in and electronic structure of lithium and magnesium rhodium hydrides are studied theoretically using DFT methods. For Li3RhH4 with planar complex RhH4 structural units, Crystal Orbital Hamilton Populations reveal significant Rh−Rh interactions within infinite one-dimensional ∞ 1 [RhH4] stacks in addition to strong rhodium−hydrogen bonding. These metal−metal interactions are considerably weaker in the hypothetical, heavier homologue Na3RhH4. Both compounds are small-band gap semiconductors. The electronic structures of Li3RhH6 and Na3RhH6 with rhodium surrounded octahedrally by hydrogen, on the other hand, are compatible with a classical complex hydride model according to the limiting ionic formula (M+)3[RhH6]3− without any metal−metal interaction between the 18-electron hydridorhodate complexes. In MgRhH, building blocks of the composition (RhH2)4 are formed with strong rhodium−hydrogen and significant rhodium−rhodium bonding (bond lengths of 298 pm within Rh4 squares). These units are linked together to infinite two-dimensional layers ∞ 2 [(RhH2/2)4] via common hydrogen atoms. Li3RhH4 and MgRhH are accordingly examples for border cases of chemical bonding where the classical picture of hydridometalate complexes in complex hydrides is not sufficient to properly describe the chemical bonding situation.

  13. Optoelectronic properties and electronic structure of YCuOSe

    NASA Astrophysics Data System (ADS)

    Ueda, Kazushige; Takafuji, Kouhei; Yanagi, Hiroshi; Kamiya, Toshio; Hosono, Hideo; Hiramatsu, Hidenori; Hirano, Masahiro; Hamada, Noriaki

    2007-12-01

    YCuOSe was prepared by solid-state reaction, and its wide gap semiconducting properties were examined. The single phase of YCuOSe was obtained in a limited temperature range around 750°C and decomposed into Y2O2Se and Cu2Se at higher temperatures. The obtained YCuOSe sample showed a p-type semiconducting behavior with the electrical conductivity of 1.4×10-1Scm-1 at room temperature. The band gap of YCuOSe was estimated to be 2.58eV, which is much smaller than that of LaCuOSe (2.82eV). The electronic structure of YCuOSe was investigated by ultraviolet photoemission spectroscopy and energy band calculations to understand the differences in the electronic structures between LnCuOSe (Ln=La,Y). It was found that the Cu-Cu distance rather than the Cu-Se distance influences the electronic structures, and the smaller band gap of YCuOSe is attributed to the downshift of the Cu 4s energy level due to the smaller Cu-Cu distance and the consequent larger Cu-Cu interaction in YCuOSe.

  14. Biological Activity and Electronic Structure of the Aflatoxins

    PubMed Central

    Heathcote, J. G.; Hibbert, J. R.

    1974-01-01

    In theoretical studies of aromatic hydrocarbons, Pullman and Pullman (1969) used the molecular orbital method to correlate electronic structure with biological activity. They suggested that the interaction between carcinogens and their molecular receptors must occur through the K region of the carcinogenic molecule and involve a strong chemical binding of the type of an addition reaction. In the present work the electronic structures of aflatoxins B1, G1, 4-20 dehydro B1 and of versicolorin A have been determined by the simple Hückel molecular orbital method using a computer, in order to see whether the correlation between electronic structure and biological activity is applicable to these compounds also. Calculations show that the 2-3 pi-bond, which has the highest bond order of the aflatoxin molecules, should be the most susceptible to electrophilic attack and is the most probable location of the K region. This is in agreement with the experimental observation of Dutton and Heathcote (1968) that aflatoxins B1 and G1 hydrate rapidly in dilute acid to the hydroxyaflatoxins B2a and G2a with an apparent total loss of carcinogenicity. The calculations also show that aflatoxins B1 G1 and M1 have no suitable site for an L region and this probably accounts for their highly carcinogenic nature. PMID:4850776

  15. Structural basis of interprotein electron transfer in bacterial sulfite oxidation

    PubMed Central

    McGrath, Aaron P; Laming, Elise L; Casas Garcia, G Patricia; Kvansakul, Marc; Guss, J Mitchell; Trewhella, Jill; Calmes, Benoit; Bernhardt, Paul V; Kappler, Ulrike; Maher, Megan J

    2015-01-01

    Interprotein electron transfer underpins the essential processes of life and relies on the formation of specific, yet transient protein-protein interactions. In biological systems, the detoxification of sulfite is catalyzed by the sulfite-oxidizing enzymes (SOEs), which interact with an electron acceptor for catalytic turnover. Here, we report the structural and functional analyses of the SOE SorT from Sinorhizobium meliloti and its cognate electron acceptor SorU. Kinetic and thermodynamic analyses of the SorT/SorU interaction show the complex is dynamic in solution, and that the proteins interact with Kd = 13.5 ± 0.8 μM. The crystal structures of the oxidized SorT and SorU, both in isolation and in complex, reveal the interface to be remarkably electrostatic, with an unusually large number of direct hydrogen bonding interactions. The assembly of the complex is accompanied by an adjustment in the structure of SorU, and conformational sampling provides a mechanism for dissociation of the SorT/SorU assembly. DOI: http://dx.doi.org/10.7554/eLife.09066.001 PMID:26687009

  16. Electronic band structure of TiN/MgO nanostructures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazuaki; Takaki, Hirokazu; Shimono, Masato; Kobayashi, Nobuhiko; Hirose, Kenji

    2017-04-01

    Various nanostructured TiN(001)/MgO(001) superlattices based on a repeated slab model with a vacuum region have been investigated by the total energy pseudopotential method. They are rectangular and rectangular parallelepiped TiN(001) dot structures on MgO(001)-2×2 and 3×3 substrates. A rectangular TiN(001) structure on a MgO(001)-2×1 substrate has also been calculated. Their detailed electronic and internal lattice properties were investigated systematically. The internal atomic coordinates in a unit cell were fully relaxed. The rectangular TiN(001) structure on the MgO(001)-2×1 superlattice, which is not a dot owing to its periodicity, corresponds to metallicity. The electronic states of relaxed rectangular TiN(001) dot/MgO(001)-2×2 and MgO(001)-3×3 superlattices are semiconducting. All relaxed rectangular parallelepiped TiN(001) dot/MgO(001)-2×2 and MgO(001)-3×3 superlattices correspond to metallicity. The electronic properties depend on the shape of the TiN dot and the size of the MgO substrate.

  17. Cellular structural biology as revealed by cryo-electron tomography.

    PubMed

    Irobalieva, Rossitza N; Martins, Bruno; Medalia, Ohad

    2016-02-01

    Understanding the function of cellular machines requires a thorough analysis of the structural elements that underline their function. Electron microscopy (EM) has been pivotal in providing information about cellular ultrastructure, as well as macromolecular organization. Biological materials can be physically fixed by vitrification and imaged with cryo-electron tomography (cryo-ET) in a close-to-native condition. Using this technique, one can acquire three-dimensional (3D) information about the macromolecular architecture of cells, depict unique cellular states and reconstruct molecular networks. Technical advances over the last few years, such as improved sample preparation and electron detection methods, have been instrumental in obtaining data with unprecedented structural details. This presents an exciting opportunity to explore the molecular architecture of both individual cells and multicellular organisms at nanometer to subnanometer resolution. In this Commentary, we focus on the recent developments and in situ applications of cryo-ET to cell and structural biology. © 2016. Published by The Company of Biologists Ltd.

  18. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices.

    PubMed

    Chen, Duan; Wei, Guo-Wei

    2010-06-20

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence

  19. Modeling and simulation of electronic structure, material interface and random doping in nano electronic devices

    PubMed Central

    Chen, Duan; Wei, Guo-Wei

    2010-01-01

    The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano scale. By optimization of the energy functional, we derive consistently-coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence

  20. Electronic structure of free and doped actinides: N and Z dependences of energy levels and electronic structure parameters

    SciTech Connect

    Kulagin, N. . E-mail: nkulagin@bestnet.kharkov.ua

    2005-02-15

    Theoretical study of electronic structure of antinide ions and its dependence on N and Z are presented in this paper. The main 5f{sup N} and excited 5f{sup N}n'l'{sup N'} configurations of actinides have been studied using Hartree-Fock-Pauli approximation. Results of calculations of radial integrals and the energy of X-ray lines for all 5f ions with electronic state AC{sup +1}-AC{sup +4} show approximate dependence on N and Z. A square of N and cubic of Z are ewalized for the primary electronic parameters of the actinides. Theoretical values of radial integrals for free actinides and for ions in a cluster AC{sup +n}:[L]{sub k} are compared, too.

  1. Electronic Structure Approach to Tunable Electronic Properties of Hybrid Organic-Inorganic Perovskites

    NASA Astrophysics Data System (ADS)

    Liu, Garnett; Huhn, William; Mitzi, David B.; Kanai, Yosuke; Blum, Volker

    We present a study of the electronic structure of layered hybrid organic-inorganic perovskite (HOIP) materials using all-electron density-functional theory. Varying the nature of the organic and inorganic layers should enable systematically fine-tuning the carrier properties of each component. Using the HSE06 hybrid density functional including spin-orbit coupling (SOC), we validate the principle of tuning subsystem-specific parts of the electron band structures and densities of states in CH3NH3PbX3 (X=Cl, Br, I) compared to a modified organic component in layered (C6H5C2H4NH3) 2PbX4 (X=Cl, Br, I) and C20H22S4N2PbX4 (X=Cl, Br, I). We show that tunable shifts of electronic levels indeed arise by varying Cl, Br, I as the inorganic components, and CH3NH3+ , C6H5C2H4NH3+ , C20H22S4N22 + as the organic components. SOC is found to play an important role in splitting the conduction bands of the HOIP compounds investigated here. The frontier orbitals of the halide shift, increasing the gap, when Cl is substituted for Br and I.

  2. Putting structure into context: fitting of atomic models into electron microscopic and electron tomographic reconstructions.

    PubMed

    Volkmann, Niels

    2012-02-01

    A complete understanding of complex dynamic cellular processes such as cell migration or cell adhesion requires the integration of atomic level structural information into the larger cellular context. While direct atomic-level information at the cellular level remains inaccessible, electron microscopy, electron tomography and their associated computational image processing approaches have now matured to a point where sub-cellular structures can be imaged in three dimensions at the nanometer scale. Atomic-resolution information obtained by other means can be combined with this data to obtain three-dimensional models of large macromolecular assemblies in their cellular context. This article summarizes some recent advances in this field. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Glycine in an electronically excited state: ab initio electronic structure and dynamical calculations.

    PubMed

    Muchová, Eva; Slavícek, Petr; Sobolewski, Andrzej L; Hobza, Pavel

    2007-06-21

    The goal of this study is to explore the photochemical processes following optical excitation of the glycine molecule into its two low-lying excited states. We employed electronic structure methods at various levels to map the PES of the ground state and the two low-lying excited states of glycine. It follows from our calculations that the photochemistry of glycine can be regarded as a combination of photochemical behavior of amines and carboxylic acid. The first channel (connected to the presence of amino group) results in ultrafast decay, while the channels characteristic for the carboxylic group occur on a longer time scale. Dynamical calculations provided the branching ratio for these channels. We also addressed the question whether conformationally dependent photochemistry can be observed for glycine. While electronic structure calculations favor this possibility, the ab initio multiple spawning (AIMS) calculations showed only minor relevance of the reaction path resulting in conformationally dependent dynamics.

  4. Tictoid expanded pyridiniums: assessing structural, electrochemical, electronic, and photophysical features.

    PubMed

    Fortage, Jérôme; Tuyèras, Fabien; Peltier, Cyril; Dupeyre, Grégory; Calboréan, Adrian; Bedioui, Fethi; Ochsenbein, Philippe; Puntoriero, Fausto; Campagna, Sebastiano; Ciofini, Ilaria; Lainé, Philippe P

    2012-08-02

    In regard to semirigid donor-spacer-acceptor (D-S-A) dyads devised for photoinduced charge separation and built from an unsaturated spacer, there exists a strategy of design referred to as "geometrical decoupling" that consists in introducing an inner-S twist angle approaching 90° to minimize adverse D/A mutual electronic influence. The present work aims at gaining further insights into the actual impact of the use of bulky substituents (R) of the alkyl type on the electronic structure of spacers (S) of the oligo-p-phenylene type, which can be critical in the functioning of derived dyads. To this end, a series of 12 novel expanded pyridiniums (EPs), regarded as model S-A assemblies, was synthesized and its structural, electronic, and photophysical properties were investigated at both experimental and theoretical levels. These EPs result from the combination of 4 types of pyridinium-based acceptor moieties with the three following types of S subunits connected at position 4 of the pyridinum core: xylyl (X), xylyl-phenyl (XP), and xylyl-tolyl (XT). From comparison of collected data with those already reported for eight other EPs based on the same A components but linked to S fragments of two other types (i.e., phenyl, P, and biphenyl, PP), the following quantitative order in regard to the pivotal S-centered HOMO energy perturbation was derived (sorted by increasing destabilization): P < X ≪ PP ≈< XP ≈< XT. This indicates that spacers (S) are primarily distinguished on the basis of their mono- or biaryl composition and secondarily by their number of methyl substituents (R). The electron-donating inductive contribution of methyl substituents (HOMO destabilization) more than counterbalances the effect of conjugation disruption (HOMO stabilization). This "compensation effect" suggests that mildly electron-withdrawing hindering groups are better suited for "geometrical decoupling", given that high-energy S-centered occupied MOs can assist charge recombination

  5. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    SciTech Connect

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  6. Probing the bonding and electronic structure of single atom dopants in graphene with electron energy loss spectroscopy.

    PubMed

    Ramasse, Quentin M; Seabourne, Che R; Kepaptsoglou, Despoina-Maria; Zan, Recep; Bangert, Ursel; Scott, Andrew J

    2013-10-09

    A combination of scanning transmission electron microscopy, electron energy loss spectroscopy, and ab initio calculations reveal striking electronic structure differences between two distinct single substitutional Si defect geometries in graphene. Optimised acquisition conditions allow for exceptional signal-to-noise levels in the spectroscopic data. The near-edge fine structure can be compared with great accuracy to simulations and reveal either an sp(3)-like configuration for a trivalent Si or a more complicated hybridized structure for a tetravalent Si impurity.

  7. Atomic and electronic structures of an extremely fragile liquid

    PubMed Central

    Kohara, Shinji; Akola, Jaakko; Patrikeev, Leonid; Ropo, Matti; Ohara, Koji; Itou, Masayoshi; Fujiwara, Akihiko; Yahiro, Jumpei; Okada, Junpei T.; Ishikawa, Takehiko; Mizuno, Akitoshi; Masuno, Atsunobu; Watanabe, Yasuhiro; Usuki, Takeshi

    2014-01-01

    The structure of high-temperature liquids is an important topic for understanding the fragility of liquids. Here we report the structure of a high-temperature non-glass-forming oxide liquid, ZrO2, at an atomistic and electronic level. The Bhatia–Thornton number–number structure factor of ZrO2 does not show a first sharp diffraction peak. The atomic structure comprises ZrO5, ZrO6 and ZrO7 polyhedra with a significant contribution of edge sharing of oxygen in addition to corner sharing. The variety of large oxygen coordination and polyhedral connections with short Zr–O bond lifetimes, induced by the relatively large ionic radius of zirconium, disturbs the evolution of intermediate-range ordering, which leads to a reduced electronic band gap and increased delocalization in the ionic Zr–O bonding. The details of the chemical bonding explain the extremely low viscosity of the liquid and the absence of a first sharp diffraction peak, and indicate that liquid ZrO2 is an extremely fragile liquid. PMID:25520236

  8. Structural and electronic properties of chiral gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Garzon, Ignacio; Santizo, Itzel; Perez, Luis

    2008-03-01

    Chiral structures had been found as the most stable isomers of bare and thiolate-passivated gold nanoparticles of several sizes, from density functional calculations (DFT). These results provided theoretical support for the existence of chirality in metal clusters, suggested by the intense optical activity measured from the metal-based electronic transitions of size-separated glutathione-passivated gold nanoclusters, and more recently, of penicillamine-passivated gold clusters with metal core mean diameters of 0.57, 1.1, and 1.75 nm. A further structural analysis using the Hausdorff chirality measure, as well as, a semiclassical calculation of the circular dichroism spectrum, has confirmed the existence of chirality in Au nanoparticles. In this work, the structural and electronic properties of chiral Au nanoclusters are studied by using global optimization methods combined with semiempirical many body potentials and first principles density functional calculations. In particular, we study the Au34 cluster. For this system there exists experimental evidence on the energetic stability of a chiral structure with C3 symmetry. Our calculations theoretically confirm these results, providing further evidence on the existence of chiral gold nanoclusters.

  9. Stepwise deprotonation of sumanene: electronic structures, energetics and aromaticity alterations.

    PubMed

    Xu, Qi; Petrukhina, Marina A; Rogachev, Andrey Yu

    2017-08-16

    The first comprehensive theoretical investigation of structural, energetic, and electronic changes in a sumanene skeleton, C21H12, upon a step-wise deprotonation process is performed. This study is complemented by a detailed consideration of aromaticity in target bowl-shaped systems, including neutral sumanene and its three deprotonated anions, namely C21H11(1-), C21H10(2-), and C21H9(3-). In order to obtain the most reliable and method-independent characteristics, a set of aromatic descriptors of different nature has been applied. It included structure-based HOMA, topological descriptors PDI and FLU, as well as magnetic NICS and ACID. The calculation results reveal that the neutral sumanene can be best described as mechanically bent triphenylene, in which π-conjugation is mostly localized over three peripheral 6-membered rings. Sequential deprotonation changed the system from the localized mono-anionic to semi-localized di-anionic, and eventually to the fully delocalized tri-anionic sumanenyl species. Structural changes, namely, bond equalization upon the deprotonation process, are in excellent agreement with alterations observed in electronic structures and aromaticity. Deprotonation results in a significant reduction of the barrier for a bowl-to-bowl transition only in the tri-anionic sumanenyl system, whereas the first and the second deprotonation steps show no notable effect. This clearly indicates that only complete aromatization of the sumanene core in C21H9(3-) leads to a substantial increase of bowl flexibility.

  10. Electronic structure and optical properties of lightweight metal hydrides

    NASA Astrophysics Data System (ADS)

    van Setten, M. J.; Popa, V. A.; de Wijs, G. A.; Brocks, G.

    2007-01-01

    We study the dielectric functions of the series of simple hydrides LiH, NaH, MgH2 , and AlH3 , and of the complex hydrides Li3AlH6 , Na3AlH6 , LiAlH4 , NaAlH4 , and Mg(AlH4)2 , using first-principles density-functional theory and GW calculations. All compounds are large gap insulators with GW single-particle band gaps varying from 3.5eV in AlH3 to 6.6eV in LiAlH4 . Despite considerable differences between the band structures and the band gaps of the various compounds, their optical responses are qualitatively similar. In most of the spectra the optical absorption rises sharply above 6eV and has a strong peak around 8eV . The quantitative differences in the optical spectra are interpreted in terms of the structure and the electronic structure of the compounds. In the simple hydrides the valence bands are dominated by the hydrogen atoms, whereas the conduction bands have mixed contributions from the hydrogens and the metal cations. The electronic structure of the aluminium compounds is determined mainly by aluminium hydride complexes and their mutual interactions.

  11. Interdependence of spin structure, anion height and electronic structure of BaFe2As2

    NASA Astrophysics Data System (ADS)

    Sen, Smritijit; Ghosh, Haranath

    2016-05-01

    Superconducting as well as other electronic properties of Fe-based superconductors are quite sensitive to the structural parameters specially, on anion height which is intimately related to zAs, the fractional z co-ordinate of As atom. Due to presence of strong magnetic fluctuation in these Fe-based superconductors, optimized structural parameters (lattice parameters a, b, c) including zAs using density functional theory (DFT) under generalized gradient approximation (GGA) does not match experimental values accurately. In this work, we show that the optimized value of zAs is strongly influenced by the spin structures in the orthorhombic phase of BaFe2As2 system. We take all possible spin structures for the orthorhombic BaFe2As2 system and then optimize zAs. Using these optimized structures we calculate electronic structures like density of states, band structures etc., for each spin configurations. From these studies we show that the electronic structure, orbital order which is responsible for structural as well as related to nematic transition, are significantly influenced by the spin structures.

  12. An Electronic Health Record Based on Structured Narrative

    PubMed Central

    Johnson, Stephen B.; Bakken, Suzanne; Dine, Daniel; Hyun, Sookyung; Mendonça, Eneida; Morrison, Frances; Bright, Tiffani; Van Vleck, Tielman; Wrenn, Jesse; Stetson, Peter

    2008-01-01

    Objective To develop an electronic health record that facilitates rapid capture of detailed narrative observations from clinicians, with partial structuring of narrative information for integration and reuse. Design We propose a design in which unstructured text and coded data are fused into a single model called structured narrative. Each major clinical event (e.g., encounter or procedure) is represented as a document that is marked up to identify gross structure (sections, fields, paragraphs, lists) as well as fine structure within sentences (concepts, modifiers, relationships). Marked up items are associated with standardized codes that enable linkage to other events, as well as efficient reuse of information, which can speed up data entry by clinicians. Natural language processing is used to identify fine structure, which can reduce the need for form-based entry. Validation The model is validated through an example of use by a clinician, with discussion of relevant aspects of the user interface, data structures and processing rules. Discussion The proposed model represents all patient information as documents with standardized gross structure (templates). Clinicians enter their data as free text, which is coded by natural language processing in real time making it immediately usable for other computation, such as alerts or critiques. In addition, the narrative data annotates and augments structured data with temporal relations, severity and degree modifiers, causal connections, clinical explanations and rationale. Conclusion Structured narrative has potential to facilitate capture of data directly from clinicians by allowing freedom of expression, giving immediate feedback, supporting reuse of clinical information and structuring data for subsequent processing, such as quality assurance and clinical research. PMID:17947628

  13. Silicane nanoribbons: electronic structure and electric field modulation

    NASA Astrophysics Data System (ADS)

    Fang, D. Q.; Zhang, Y.; Zhang, S. L.

    2014-11-01

    We present electronic band structure, Gibbs free energy of formation, and electric field modulation calculations for silicane nanoribbons (NRs), i.e., completely hydrogenated or fluorinated silicene NRs, using density functional theory. We find that although the completely hydrogenated silicene (H-silicane) sheet in the chair-like configuration is an indirect-band-gap semiconductor, a direct band gap can be achieved in the zigzag H-silicane NRs by using Brillouin-zone folding. Compared to H-silicane NRs, the band gaps of completely fluorinated silicene (F-silicane) NRs reduce at least by half. For all silicane NRs considered here, the Gibbs free energy of formation is negative but shows different trends by changing the ribbon width for H-silicane NRs and F-silicane NRs. Furthermore, by analyzing the effect of transverse electric fields on the electronic properties of silicane NRs, we show that an external electric field can make the electrons and holes states spatially separated and even render silicane NRs self-doped. The tunable electronic properties of silicane NRs make them suitable for nanotechnology application.

  14. Quantum Monte Carlo finite temperature electronic structure of quantum dots

    NASA Astrophysics Data System (ADS)

    Leino, Markku; Rantala, Tapio T.

    2002-08-01

    Quantum Monte Carlo methods allow a straightforward procedure for evaluation of electronic structures with a proper treatment of electronic correlations. This can be done even at finite temperatures [1]. We test the Path Integral Monte Carlo (PIMC) simulation method [2] for one and two electrons in one and three dimensional harmonic oscillator potentials and apply it in evaluation of finite temperature effects of single and coupled quantum dots. Our simulations show the correct finite temperature excited state populations including degeneracy in cases of one and three dimensional harmonic oscillators. The simulated one and two electron distributions of a single and coupled quantum dots are compared to those from experiments and other theoretical (0 K) methods [3]. Distributions are shown to agree and the finite temperature effects are discussed. Computational capacity is found to become the limiting factor in simulations with increasing accuracy. Other essential aspects of PIMC and its capability in this type of calculations are also discussed. [1] R.P. Feynman: Statistical Mechanics, Addison Wesley, 1972. [2] D.M. Ceperley, Rev.Mod.Phys. 67, 279 (1995). [3] M. Pi, A. Emperador and M. Barranco, Phys.Rev.B 63, 115316 (2001).

  15. Structural Electronic and Magnetic Properties of Semiconductor Interfaces

    NASA Astrophysics Data System (ADS)

    Continenza, Alessandra

    1990-01-01

    This work is focussed on the structural, electronic and magnetic properties of semiconductor interfaces. The issues and the interest involved in these particular systems are various and have engaged both the scientific and the technological community for more than three decades. The technological interest toward semiconductors is obviously related to device applications while the scientific interest is mainly focussed on the understanding of some characteristic properties, such as potential barriers, carrier properties and band gaps, and how these can be modified by changing different external factors, such as epitaxial growth, strain effects, junctions and doping. A complete knowledge and understanding of these complex issues is, in fact, the basic requirement necessary in order to achieve the ability to "tune" basic properties "at will" and designing the "ad hoc" material for each different device application. We have performed a study of the magnetic, structural and electronic properties of a few particular examples of semiconductor interfaces and heterojunctions namely, rm Fe_{n}/(ZnSe)_ {m}, rm(InAs)_{n }/(InP)_{n} and rm( alpha-Sn)_{n}/(CdTe)_{n }, using the all-electron full-potential linearized augmented plane wave (FLAPW) method. Together with a study of the interface properties, we present results of calculations performed on all the pure constituents, in order to provide comparisons and to better understand how the bulk properties are modified by the interface. In particular, we have analyzed how the properties of these structures can be tailored by changing quantities such as the superlattice periodicity, the epitaxial strain and the interface morphology. We found that the relevance of these factors changes depending on the particular material under study and that it is possible, indeed, to model the characteristics electronic and transport properties of each structure by properly tuning the growth conditions. Our results are in very good agreement with

  16. Electronic Structure and Transport in Solids from First Principles

    NASA Astrophysics Data System (ADS)

    Mustafa, Jamal Ibrahim

    The focus of this dissertation is the determination of the electronic structure and trans- port properties of solids. We first review some of the theory and computational methodology used in the calculation of electronic structure and materials properties. Throughout the dissertation, we make extensive use of state-of-the-art software packages that implement density functional theory, density functional perturbation theory, and the GW approximation, in addition to specialized methods for interpolating matrix elements for extremely accurate results. The first application of the computational framework introduced is the determination of band offsets in semiconductor heterojunctions using a theory of quantum dipoles at the interface. This method is applied to the case of heterojunction formed between a new metastable phase of silicon, with a rhombohedral structure, and cubic silicon. Next, we introduce a novel method for the construction of localized Wannier functions, which we have named the optimized projection functions method (OPFM). We illustrate the method on a variety of systems and find that it can reliably construct localized Wannier functions with minimal user intervention. We further develop the OPFM to investigate a class of materials called topological insulators, which are insulating in the bulk but have conductive surface states. These properties are a result of a nontrivial topology in their band structure, which has interesting effects on the character of the Wannier functions. In the last sections of the main text, the noble metals are studied in great detail, including their electronic properties and carrier dynamics. In particular, we investigate, the Fermi surface properties of the noble metals, specifically electron-phonon scattering lifetimes, and subsequently the transport properties determined by carriers on the Fermi surface. To achieve this, a novel sampling technique is developed, with wide applicability to transport calculations

  17. Structure and Electronic Properties of Transition Metal Doped Kaolinite Nanoclay

    NASA Astrophysics Data System (ADS)

    Fu, Liangjie; Yang, Huaming

    2017-06-01

    In this work, a series of transition metal (Cr, Mn, Fe, and Co) doped kaolinite nanoclays were investigated by density functional theory (DFT) calculations. The influence of metal doping on geometric structure and electronic structure of kaolinite was analyzed. The ferromagnetic (FM), antiferromagnetic (AFM), and nonmagnetic (NM) states of transition metal (TM) doped kaolinite structures were studied. The crystal volume, lattice parameters, bond length, charge, and spin were calculated by dispersion-corrected density functional theory (DFT-D2). The results indicated that Cr3+ and Fe3+ dopants showed more stable under AFM state, while Mn3+ preferred both AFM and FM states, and Co3+ dopant preferred NM state. Also, the transition metal doping could induce lattice volume expansion and some dopant states in the band gap.

  18. Small-angle electron scattering of magnetic fine structures.

    PubMed

    Togawa, Yoshihiko

    2013-06-01

    Magnetic structures in magnetic artificial lattices and chiral magnetic orders in chiral magnets have been quantitatively analyzed in the reciprocal space by means of small-angle electron scattering (SAES) method. Lorentz deflection due to magnetic moments and Bragg diffraction due to periodicity are simultaneously recorded at an angle of the order of or less than 1 × 10(-6) rad, using a camera length of more than 100 m. The present SAES method, together with TEM real-space imaging methods such as in-situ Lorentz microscopy, is very powerful in analyzing magnetic fine structures in magnetic materials. Indeed, the existence of both a chiral helimagnetic structure and a chiral magnetic soliton lattice in a chiral magnet CrNb3S6 has been successfully verified for the first time using the present complementary methods.

  19. Electronic structure and charge transport properties of atomic carbon wires.

    PubMed

    Lambropoulos, K; Simserides, C

    2017-10-11

    Atomic carbon wires represent the ultimate one-atom-thick one-dimensional structure. We use a Tight-binding (TB) approach to determine the electronic structure of polyynic and cumulenic carbynes, in terms of their dispersion relations (for cyclic boundaries), eigenspectra (for fixed boundaries) and density of states (DOS). We further derive the transmission coefficient at zero-bias by attaching the carbynes to semi-infinite metallic leads, and demonstrate the effect of the coupling strength and asymmetry to the transparency of the system to incident carriers. Finally, we determine the current-voltage (I-V) characteristics of carbynes and study the effect of factors such as the weakening of the coupling of the system to one of the leads, the relative position of the Fermi levels of the carbyne and the leads, the leads' bandwidth and, finally, the difference in the energy structure between the leads. Our results confirm and reproduce some of the most recent experimental findings.

  20. Theory of silicon superlattices - Electronic structure and enhanced mobility

    NASA Technical Reports Server (NTRS)

    Moriarty, J. A.; Krishnamurthy, S.

    1983-01-01

    A realistic tight-binding band-structure model of silicon superlattices is formulated and used to study systems of potential applied interest, including periodic layered Si-Si(1-x)Ge(x) heterostructures. The results suggest a possible new mechanism for achieving enhanced transverse carrier mobility in such structures: reduced transverse conductivity effective masses associated with the superlattice band structure. For electrons in 100-line-oriented superlattices, a reduced conductivity mass arises intrinsically from the lower symmetry of the superlattice and its unique effect on the indirect bulk silicon band gap. An order of magnitude estimate of the range of mobility enhancement expected from this mechanism appears to be consistent with preliminary experimental results on Si-Si(1-x)Ge(x) superlattices.

  1. Cellular Electron Cryotomography: Toward Structural Biology In Situ.

    PubMed

    Oikonomou, Catherine M; Jensen, Grant J

    2017-06-20

    Electron cryotomography (ECT) provides three-dimensional views of macromolecular complexes inside cells in a native frozen-hydrated state. Over the last two decades, ECT has revealed the ultrastructure of cells in unprecedented detail. It has also allowed us to visualize the structures of macromolecular machines in their native context inside intact cells. In many cases, such machines cannot be purified intact for in vitro study. In other cases, the function of a structure is lost outside the cell, so that the mechanism can be understood only by observation in situ. In this review, we describe the technique and its history and provide examples of its power when applied to cell biology. We also discuss the integration of ECT with other techniques, including lower-resolution fluorescence imaging and higher-resolution atomic structure determination, to cover the full scale of cellular processes.

  2. Low energy electrons and swift ion track structure in PADC

    SciTech Connect

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  3. A Discontinuous Galerkin Framework for Electronic Structure Calculations

    NASA Astrophysics Data System (ADS)

    Baczewski, Andrew; Shanker, Balasubramaniam; Mahanti, Subhendra; Levine, Benjamin

    2012-02-01

    It is generally accepted that a good basis set for any calculation should possess a number of salient features, including systematic improvability, adaptive resolution of multiscale features, and fidelity in capturing the pertinent physics. Considering the progenitors of most modern electronic structure basis sets to be Gaussian-type orbitals or planewaves, descendants of these methods have inherited features that address either systematic improvability (planewaves) or adaptive resolution (Gaussians) separately, and use a variety of tricks to differentiate the core and valence physics. Discontinuous Galerkin methods provide a framework for defining adaptive local basis sets, that may be based on these canonical basis sets, that can be mixed and matched to simultaneously achieve all of these goals. Our group is presently developing a new electronic structure code to enable Density Functional and Hartree-Fock calculations within this framework, particularly in the context of all-electron formulations wherein the accurate resolution of both core and valence states is necessary. Numerous implementation details will be addressed, including the incorporation of hardware- and software-based acceleration, such as GPU-based parallelism, and fast electrostatics solvers.

  4. Electronic structure, aromaticity and spectra of hetero[8]circulenes

    NASA Astrophysics Data System (ADS)

    Baryshnikov, G. V.; Minaev, B. F.; Minaeva, V. A.

    2015-05-01

    The present review highlights recent advances in experimental and theoretical chemistry dealing with investigation of the electronic structures and physicochemical properties of hetero[8]circulenes. These compounds are the only representatives of planar heteroannulated cyclooctatetraenes. It is shown that high molecular symmetry of hetero[8]circulenes and the extended specific π-conjugated chain are the main factors responsible for high stability of the crystal packing modes and the optical and magnetic properties of these compounds. These effects also determine numerous selection rules for electronic and vibrational transitions in UV-Vis, IR and Raman spectra. Emphasis is given to the aromaticity of hetero[8]circulenes containing the inner antiaromatic cyclooctatetraene core. The planar structure of the latter is stabilized by a polyaromatic system composed of benzene rings and five-membered heterocycles. Due to high thermal and chemical stability of most hetero[8]circulenes combined with semiconducting properties, these compounds can be considered as promising materials for molecular electronics and nanophotonics, in particular for the production of organic light-emitting diodes and field-effect transistors. The bibliography includes 154 references.

  5. Low energy electrons and swift ion track structure in PADC

    DOE PAGES

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; ...

    2015-05-27

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d’Ions Lourds Dans l’Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particularmore » incident energies located on both sides of the Bragg-peak position. Lastly, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.« less

  6. Low energy electrons and swift ion track structure in PADC

    NASA Astrophysics Data System (ADS)

    Fromm, Michel; Quinto, Michele A.; Weck, Philippe F.; Champion, Christophe

    2015-10-01

    The current work aims at providing an accurate description of the ion track-structure in poly-allyl dyglycol carbonate (PADC) by using an up-to-date Monte-Carlo code-called TILDA-V (a French acronym for Transport d'Ions Lourds Dans l'Aqua & Vivo). In this simulation the ion track-structure in PADC is mainly described in terms of ejected electrons with a particular attention done to the Low Energy Electrons (LEEs). After a brief reminder of the most important channels through which LEEs are prone to break a chemical bond, we will report on the simulated energetic distributions of LEEs along an ion track in PADC for particular incident energies located on both sides of the Bragg-peak position. Finally, based on the rare data dealing with LEEs interaction with polymers or organic molecules, we will emphasise the role played by the LEEs in the formation of a latent track in PADC, and more particularly the one played by the sub-ionization electrons.

  7. The Electronic Structure of Transition Metal Coated Fullerenes

    NASA Astrophysics Data System (ADS)

    Patton, David C.; Pederson, Mark R.; Kaxiras, Efthimios

    1998-03-01

    Clusters composed of fullerene molecules with an outer shell of transition metal atoms in the composition C_60M_62 (M being a transition metal) have been produced with laser vaporisation techniques(F. Tast, N. Malinowski, S. Frank, M. Heinebrodt, I.M.L. Billas, and T. P. Martin, Z. Phys D 40), 351 (1997).. We have studied several of these very large systems with a parallel version of the all-electron NRLMOL cluster code. Optimized geometries of the metal encased fullerenes C_60Ti_62 and C_60V_62 are presented along with their HOMO-LUMO gaps, electron affinities, ionization energies, and cohesive energies. We compare the stability of these clusters to relaxed met-car structures (e.g. Ti_8C_12) and to relaxed rocksalt metal-carbide fragments (TiC)n with n=8 and 32. In addition to metal-coated fullerenes we consider the possibility of a trilayered structure consisting of a small shell of metal atoms enclosed by a metal coated fullerene. The nature of bonding in these systems is analyzed by studying the electronic charge distributions.

  8. Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Rouvimov, Sergei; Plachinda, Pavel; Moeck, Peter

    2010-03-01

    Three novel strategies for the structurally identification of nanocrystals in a transmission electron microscope are presented. Either a single high-resolution transmission electron microscopy image [1] or a single precession electron diffractogram (PED) [2] may be employed. PEDs from fine-grained crystal powders may also be utilized. Automation of the former two strategies is in progress and shall lead to statistically significant results on ensembles of nanocrystals. Open-access databases such as the Crystallography Open Database which provides more than 81,500 crystal structure data sets [3] or its mainly inorganic and educational subsets [4] may be utilized. [1] http://www.scientificjournals.org/journals 2007/j/of/dissertation.htm [2] P. Moeck and S. Rouvimov, in: {Drugs and the Pharmaceutical Sciences}, Vol. 191, 2009, 270-313 [3] http://cod.ibt.lt, http://www.crystallography.net, http://cod.ensicaen.fr, http://nanocrystallography.org, http://nanocrystallography.net, http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf [4] http://nanocrystallography.research.pdx.edu/CIF-searchable

  9. Electron microscopic examination of wastewater biofilm formation and structural components.

    PubMed Central

    Eighmy, T T; Maratea, D; Bishop, P L

    1983-01-01

    This research documents in situ wastewater biofilm formation, structure, and physiochemical properties as revealed by scanning and transmission electron microscopy. Cationized ferritin was used to label anionic sites of the biofilm glycocalyx for viewing in thin section. Wastewater biofilm formation paralleled the processes involved in marine biofilm formation. Scanning electron microscopy revealed a dramatic increase in cell colonization and growth over a 144-h period. Constituents included a variety of actively dividing morphological types. Many of the colonizing bacteria were flagellated. Filaments were seen after primary colonization of the surface. Transmission electron microscopy revealed a dominant gram-negative cell wall structure in the biofilm constituents. At least three types of glycocalyces were observed. The predominant glycocalyx possessed interstices and was densely labeled with cationized ferritin. Two of the glycocalyces appeared to mediate biofilm adhesion to the substratum. The results suggest that the predominant glycocalyx of this thin wastewater biofilm serves, in part, to: (i) enclose the bacteria in a matrix and anchor the biofilm to the substratum and (ii) provide an extensive surface area with polyanionic properties. Images PMID:6881965

  10. Novel electronic structures of superlattice composed of graphene and silicene

    SciTech Connect

    Yu, S.; Li, X.D.; Wu, S.Q.; Wen, Y.H.; Zhou, S.; Zhu, Z.Z.

    2014-02-01

    Highlights: • Graphene/silicene superlattices exhibit metallic electronic properties. • Dirac point of graphene is folded to the Γ-point in the superlattice system. • Significant changes in the transport properties of the graphene layers are expected. • Small amount of charge transfer from the graphene to the silicene layers is found. - Abstract: Superlattice is a major force in providing man-made materials with unique properties. Here we report a study of the structural and electronic properties of a superlattice made with alternate stacking of graphene and hexagonal silicene. Three possible stacking models, i.e., the top-, bridge- and hollow-stacking, are considered. The top-stacking is found to be the most stable pattern. Although both the free-standing graphene and silicene are semi-metals, our results suggest that the graphene and silicene layers in the superlattice both exhibit metallic electronic properties due to a small amount of charge transfer from the graphene to the silicene layers. More importantly, the Dirac point of graphene is folded to the Γ-point of the superlattice, instead of the K-point in the isolated graphene. Such a change in the Dirac point of graphene could lead to significant change in the transportation property of the graphene layer. Moreover, the band structure and the charge transfer indicate that the interaction between the stacking sheets in the graphene/silicene superlattice is more than just the van der Waals interaction.

  11. A systematic study of electronic structure from graphene to graphane.

    PubMed

    Chandrachud, Prachi; Pujari, Bhalchandra S; Haldar, Soumyajyoti; Sanyal, Biplab; Kanhere, D G

    2010-11-24

    While graphene is a semi-metal, a recently synthesized hydrogenated graphene called graphane is an insulator. We have probed the transformation of graphene upon hydrogenation to graphane within the framework of density functional theory. By analysing the electronic structure for 18 different hydrogen concentrations, we bring out some novel features of this transition. Our results show that the hydrogenation favours clustered configurations leading to the formation of compact islands. The analysis of the charge density and electron localization function (ELF) indicates that, as hydrogen coverage increases, the semi-metal turns into a metal, showing a delocalized charge density, then transforms into an insulator. The metallic phase is spatially inhomogeneous in the sense it contains islands of insulating regions formed by hydrogenated carbon atoms and metallic channels formed by contiguous bare carbon atoms. It turns out that it is possible to pattern the graphene sheet to tune the electronic structure. For example, removal of hydrogen atoms along the diagonal of the unit cell, yielding an armchair pattern at the edge, gives rise to a bandgap of 1.4 eV. We also show that a weak ferromagnetic state exists even for a large hydrogen coverage whenever there is a sublattice imbalance in the presence of an odd number of hydrogen atoms.

  12. Multiscale approach to the electronic structure of doped semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Sinai, Ofer; Hofmann, Oliver T.; Rinke, Patrick; Scheffler, Matthias; Heimel, Georg; Kronik, Leeor

    2015-02-01

    The inclusion of the global effects of semiconductor doping poses a unique challenge for first-principles simulations, because the typically low concentration of dopants renders an explicit treatment intractable. Furthermore, the width of the space-charge region (SCR) at charged surfaces often exceeds realistic supercell dimensions. Here, we present a multiscale technique that fully addresses these difficulties. It is based on the introduction of a charged sheet, mimicking the SCR-related field, along with free charge which mimics the bulk charge reservoir, such that the system is neutral overall. These augment a slab comprising "pseudoatoms" possessing a fractional nuclear charge matching the bulk doping concentration. Self-consistency is reached by imposing charge conservation and Fermi level equilibration between the bulk, treated semiclassically, and the electronic states of the slab, which are treated quantum-mechanically. The method, called CREST—the charge-reservoir electrostatic sheet technique—can be used with standard electronic structure codes. We validate CREST using a simple tight-binding model, which allows for comparison of its results with calculations encompassing the full SCR explicitly. Specifically, we show that CREST successfully predicts scenarios spanning the range from no to full Fermi level pinning. We then employ it with density functional theory, obtaining insight into the doping dependence of the electronic structures of the metallic "clean-cleaved" Si(111) surface and its semiconducting (2 ×1 ) reconstructions.

  13. Software abstractions and computational issues in parallel structure adaptive mesh methods for electronic structure calculations

    SciTech Connect

    Kohn, S.; Weare, J.; Ong, E.; Baden, S.

    1997-05-01

    We have applied structured adaptive mesh refinement techniques to the solution of the LDA equations for electronic structure calculations. Local spatial refinement concentrates memory resources and numerical effort where it is most needed, near the atomic centers and in regions of rapidly varying charge density. The structured grid representation enables us to employ efficient iterative solver techniques such as conjugate gradient with FAC multigrid preconditioning. We have parallelized our solver using an object- oriented adaptive mesh refinement framework.

  14. Structural phase transition and electronic properties in samarium chalcogenides

    SciTech Connect

    Panwar, Y. S.; Aynyas, Mahendra; Pataiya, J.; Sanyal, Sankar P.

    2016-05-06

    The electronic structure and high pressure properties of samarium monochalcogenides SmS, SmSe and SmTe have been reported by using tight binding linear muffin-tin-orbital (TB-LMTO) method within the local density approximation (LDA). The total energy as a function of volume is evaluated. It is found that these monochalcogenides are stable in NaCl-type structure under ambient pressure. We predict a structural phase transition from NaCl-type (B{sub 1}-phase) structure to CsCl-type (B{sub 2}-type) structure for these compounds. Phase transition pressures were found to be 1.7, 4.4 and 6.6 GPa, for SmS, SmSe and SmTe respectively. Apart from this, the lattice parameter (a{sub 0}), bulk modulus (B{sub 0}), band structure (BS) and density of states (DOS) are calculated. From energy band diagram we observed that these compounds exhibit metallic character. The calculated values of equilibrium lattice parameter and phase transition pressure are in general good agreement with available data.

  15. Removal of Vesicle Structures From Transmission Electron Microscope Images

    PubMed Central

    Jensen, Katrine Hommelhoff; Sigworth, Fred J.; Brandt, Sami Sebastian

    2016-01-01

    In this paper, we address the problem of imaging membrane proteins for single-particle cryo-electron microscopy reconstruction of the isolated protein structure. More precisely, we propose a method for learning and removing the interfering vesicle signals from the micrograph, prior to reconstruction. In our approach, we estimate the subspace of the vesicle structures and project the micrographs onto the orthogonal complement of this subspace. We construct a 2d statistical model of the vesicle structure, based on higher order singular value decomposition (HOSVD), by considering the structural symmetries of the vesicles in the polar coordinate plane. We then propose to lift the HOSVD model to a novel hierarchical model by summarizing the multidimensional HOSVD coefficients by their principal components. Along with the model, a solid vesicle normalization scheme and model selection criterion are proposed to make a compact and general model. The results show that the vesicle structures are accurately separated from the background by the HOSVD model that is also able to adapt to the asymmetries of the vesicles. This is a promising result and suggests even wider applicability of the proposed approach in learning and removal of statistical structures. PMID:26642456

  16. Studying the electronic and phononic structure of penta-graphane

    PubMed Central

    Einollahzadeh, Hamideh; Fazeli, Seyed Mahdi; Dariani, Reza Sabet

    2016-01-01

    Abstract In this paper, we theoretically consider a two dimensional nanomaterial which is a form of hydrogenated penta-graphene; we call it penta-graphane. This structure is obtained by adding hydrogen atoms to the sp2 bonded carbon atoms of penta-graphene. We investigate the thermodynamic and mechanical stability of penta-graphane. We also study the electronic and phononic structure of penta-graphane. Firstly, we use density functional theory with the revised Perdew–Burke–Ernzerhof approximation to compute the band structure. Then one–shot GW (G0W0) approach for estimating accurate band gap is applied. The indirect band gap of penta-graphane is 5.78 eV, which is close to the band gap of diamond. Therefore, this new structure is a good electrical insulator. We also investigate the structural stability of penta-graphane by computing the phonon structure. Finally, we calculate its specific heat capacity from the phonon density of states. Penta-graphane has a high specific heat capacity, and can potentially be used for storing and transferring energy. PMID:27877907

  17. Structural and electronic properties of cadmium sulfide clusters

    SciTech Connect

    Joswig, J.O.; Springborg, M.; Seifert, G.

    2000-03-30

    Crystalline cadmium sulfide is a semiconductor for which the wurtzite and zinc blend structures are energetically almost degenerate. Due to quantum-confinement effects, it is possible to tune the optical properties of finite cadmium sulfide clusters by varying their size. The authors report results of a theoretical study devoted to the properties of stoichiometric Cd{sub n}S{sub n} clusters as a function of their size n. The authors have optimized the structure, whereby the initial structures are spherical parts of either of the two crystal structures, and have studied systems with up to almost 200 atoms. The calculations were performed by using a simplified LCAO-DFT-LDA scheme. The results include the structure, electronic energy levels (in particular the frontier orbitals HOMO and LUMO), and stability as a function of size. The results allow for a unique definition of a surface region. The Mulliken populations indicate that the bonds within this region are more ionic than in the bulk. Furthermore, whereas the HOMO is delocalized over major parts of the nanoparticle, the LUMO is a surface state, which confirms recent experimental findings. Finally, the relative stability of the zinc blend and wurtzite structures is strongly dependent on the size of the system, and there is a close connection between the HOMO-LUMO energy gap and stability.

  18. Studying the electronic and phononic structure of penta-graphane.

    PubMed

    Einollahzadeh, Hamideh; Fazeli, Seyed Mahdi; Dariani, Reza Sabet

    2016-01-01

    In this paper, we theoretically consider a two dimensional nanomaterial which is a form of hydrogenated penta-graphene; we call it penta-graphane. This structure is obtained by adding hydrogen atoms to the sp(2) bonded carbon atoms of penta-graphene. We investigate the thermodynamic and mechanical stability of penta-graphane. We also study the electronic and phononic structure of penta-graphane. Firstly, we use density functional theory with the revised Perdew-Burke-Ernzerhof approximation to compute the band structure. Then one-shot GW (G0W0) approach for estimating accurate band gap is applied. The indirect band gap of penta-graphane is 5.78 eV, which is close to the band gap of diamond. Therefore, this new structure is a good electrical insulator. We also investigate the structural stability of penta-graphane by computing the phonon structure. Finally, we calculate its specific heat capacity from the phonon density of states. Penta-graphane has a high specific heat capacity, and can potentially be used for storing and transferring energy.

  19. Electronic structure of vortices pinned by columnar defects

    NASA Astrophysics Data System (ADS)

    Mel'Nikov, A. S.; Samokhvalov, A. V.; Zubarev, M. N.

    2009-04-01

    The electronic structure of a vortex line trapped by an insulating columnar defect in a type-II superconductor is analyzed within the Bogolubov-de Gennes theory. For quasiparticle trajectories with small impact parameters defined with respect to the vortex axis, the normal reflection of electrons and holes at the defect surface results in the formation of an additional subgap spectral branch. The increase in the impact parameter at this branch is accompanied by the decrease in the excitation energy. When the impact parameter exceeds the radius of the defect this branch transforms into the Caroli-de Gennes-Matricon one. As a result, the minigap in the quasiparticle spectrum increases with the increase in the defect radius. The scenario of the spectrum transformation is generalized for the case of arbitrary vorticity.

  20. Topological Signatures in the Electronic Structure of Graphene Spirals

    PubMed Central

    Avdoshenko, Stas M.; Koskinen, Pekka; Sevinçli, Haldun; Popov, Alexey A.; Rocha, Claudia G.

    2013-01-01

    Topology is familiar mostly from mathematics, but also natural sciences have found its concepts useful. Those concepts have been used to explain several natural phenomena in biology and physics, and they are particularly relevant for the electronic structure description of topological insulators and graphene systems. Here, we introduce topologically distinct graphene forms - graphene spirals - and employ density-functional theory to investigate their geometric and electronic properties. We found that the spiral topology gives rise to an intrinsic Rashba spin-orbit splitting. Through a Hamiltonian constrained by space curvature, graphene spirals have topologically protected states due to time-reversal symmetry. In addition, we argue that the synthesis of such graphene spirals is feasible and can be achieved through advanced bottom-up experimental routes that we indicate in this work. PMID:23568379

  1. Orientation and strain modulated electronic structures in puckered arsenene nanoribbons

    SciTech Connect

    Zhang, Z. Y.; Zhang, J. C.; Wang, Y. H.; Xue, D. S.; Si, M. S.; Cao, H. N.

    2015-06-15

    Orthorhombic arsenene was recently predicted as an indirect bandgap semiconductor. Here, we demonstrate that nanostructuring arsenene into nanoribbons successfully transform the bandgap to be direct. It is found that direct bandgaps hold for narrow armchair but wide zigzag nanoribbons, which is dominated by the competition between the in-plane and out-of-plane bondings. Moreover, straining the nanoribbons also induces a direct bandgap and simultaneously modulates effectively the transport property. The gap energy is largely enhanced by applying tensile strains to the armchair structures. In the zigzag ones, a tensile strain makes the effective mass of holes much higher while a compressive strain cause it much lower than that of electrons. Our results are crucial to understand and engineer the electronic properties of two dimensional materials beyond the planar ones like graphene.

  2. Electronic structure and magnetic state of transuranium metals under pressure.

    PubMed

    Lukoyanov, A V; Shorikov, A O; Bystrushkin, V B; Dyachenko, A A; Kabirova, L R; Tsiovkin, Yu Yu; Povzner, A A; Dremov, V V; Korotin, M A; Anisimov, V I

    2010-12-15

    The electronic structures of bcc Np, fcc Pu, Am, and Cm pure metals under pressure have been investigated employing the LDA + U method with spin-orbit coupling (LDA + U + SO). The magnetic state of the actinide ions was analyzed in both LS and jj coupling schemes to reveal the applicability of corresponding coupling bases. It was demonstrated that whereas Pu and Am are well described within the jj coupling scheme, Np and Cm can be described appropriately neither in a {mσ}, nor in a {jmj} basis, due to intermediate coupling scheme realization in these metals that requires some finer treatment. The LDA + U + SO results for the considered transuranium metals reveal band broadening and gradual 5f electron delocalization under pressure.

  3. The electronic structure of free aluminum clusters: Metallicity and plasmons

    SciTech Connect

    Andersson, Tomas; Zhang Chaofan; Svensson, Svante; Maartensson, Nils; Bjoerneholm, Olle; Tchaplyguine, Maxim

    2012-05-28

    The electronic structure of free aluminum clusters with {approx}3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  4. Electronic structure of graphene oxide and reduced graphene oxide monolayers

    SciTech Connect

    Sutar, D. S.; Singh, Gulbagh; Divakar Botcha, V.

    2012-09-03

    Graphene oxide (GO) monolayers obtained by Langmuir Blodgett route and suitably treated to obtain reduced graphene oxide (RGO) monolayers were studied by photoelectron spectroscopy. Upon reduction of GO to form RGO C1s x-ray photoelectron spectra showed increase in graphitic carbon content, while ultraviolet photoelectron spectra showed increase in intensity corresponding to C2p-{pi} electrons ({approx}3.5 eV). X-ray excited Auger transitions C(KVV) and plasmon energy loss of C1s photoelectrons have been analyzed to elucidate the valence band structure. The effective number of ({pi}+{sigma}) electrons as obtained from energy loss spectra was found to increase by {approx}28% on reduction of GO.

  5. Experimental Bench-marking of Pu Electronic Structure

    SciTech Connect

    Lawrence Livermore National Laboratory

    2007-07-31

    Our plan is to do Ce (as a Pu surrogate) this year and be ready to do Pu next year. The Fano (Spin-resolved Photoelectron Spectroscopy) measurements are essential to testing electron correlation in the occupied 5f states. BIS (Bremstrahlung Isochromat Spectroscopy or high energy Inverse Photoelectron Spectroscopy) experiments are crucial to a quantitative determination of the 5f unoccupied density of states (5f-UDOS). The 5f UDOS is the key to differentiation between a myriad of models of 5f electronic structure. During this time, we will work to converge to a solution for the Pu safety issues, with the plan to implement these in the next FY. Acceleration of this schedule and implementation of the safety plan in this FY will require a very significant increase in funding. Ultimately, results from the Pu experiments will be fed into calculations performed by P. Soderlind, A. Landa, and others.

  6. Protonated serotonin: Geometry, electronic structures and photophysical properties

    NASA Astrophysics Data System (ADS)

    Omidyan, Reza; Amanollahi, Zohreh; Azimi, Gholamhassan

    2017-07-01

    The geometry and electronic structures of protonated serotonin have been investigated by the aim of MP2 and CC2 methods. The relative stabilities, transition energies and geometry of sixteen different protonated isomers of serotonin have been presented. It has been predicted that protonation does not exhibit essential alteration on the S1 ← S0 electronic transition energy of serotonin. Instead, more complicated photophysical nature in respect to its neutral analogue is suggested for protonated system owing to radiative and non-radiative deactivation pathways. In addition to hydrogen detachment (HD), hydrogen/proton transfer (H/PT) processes from ammonium to indole ring along the NH+⋯ π hydrogen bond have been predicted as the most important photophysical consequences of SERH+ at S1 excited state. The PT processes is suggested to be responsible for fluorescence of SERH+ while the HD driving coordinate is proposed for elucidation of its nonradiative deactivation mechanism.

  7. Electronic structure basis for the extraordinary magnetoresistance in WTe2

    DOE PAGES

    Pletikosić, I.; Ali, Mazhar N.; Fedorov, A. V.; ...

    2014-11-19

    The electronic structure basis of the extremely large magnetoresistance in layered non-magnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at the Fermi level, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anisotropic, quasi one-dimensional Fermi surface from which the pronounced anisotropy of the magnetoresistance follows. As a result, a change in the Fermi surface with temperature was found and a high-density-of-states band that may take over conduction at higher temperatures and cause the observed turn-on behavior ofmore » the magnetoresistance in WTe₂ was identified.« less

  8. Structural and Electronic Properties of IV-VI Semiconductor Nanodots

    NASA Astrophysics Data System (ADS)

    Leitsmann, Roman; Bechstedt, Friedhelm

    2008-03-01

    The characterization of nanostructure properties versus dimension and surface passivation is of increasing importance for the nanotechnology. Especially the stoichiometry, geometry, and the electronic states of IV-VI semiconductor nanodots are of special interest [1,2]. We use ab initio methods to calculate structural and electronic properties of colloidal IV-VI semiconductor nanodots as a function of the dot diameter. A method to passivate the non-directional dangling bonds at the nanodot surfaces is derived and used to study the confinement effect on the HOMO (highest occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital) states. In addition we take the influence of relativistic (spin-orbit coupling -- SOC ) and excitonic effects into account. While the SOC leads to a considerable decrease of the HOMO-LUMO gap, excitonic effects play a minor role. [1] JACS 128, 10337 (2006) [2] JACS 129, 11354 (2007)

  9. Electronic Structures of Clusters of Hydrogen Vacancies on Graphene.

    PubMed

    Wu, Bi-Ru; Yang, Chih-Kai

    2015-10-15

    Hydrogen vacancies in graphane are products of incomplete hydrogenation of graphene. The missing H atoms can alter the electronic structure of graphane and therefore tune the electronic, magnetic, and optical properties of the composite. We systematically studied a variety of well-separated clusters of hydrogen vacancies in graphane, including the geometrical shapes of triangles, parallelograms, hexagons, and rectangles, by first-principles density functional calculation. The results indicate that energy levels caused by the missing H are generated in the broad band gap of pure graphane. All triangular clusters of H vacancies are magnetic, the larger the triangle the higher the magnetic moment. The defect levels introduced by the missing H in triangular and parallelogram clusters are spin-polarized and can find application in optical transition. Parallelograms and open-ended rectangles are antiferromagnetic and can be used for nanoscale registration of digital information.

  10. Electronic Structures of Clusters of Hydrogen Vacancies on Graphene

    NASA Astrophysics Data System (ADS)

    Wu, Bi-Ru; Yang, Chih-Kai

    2015-10-01

    Hydrogen vacancies in graphane are products of incomplete hydrogenation of graphene. The missing H atoms can alter the electronic structure of graphane and therefore tune the electronic, magnetic, and optical properties of the composite. We systematically studied a variety of well-separated clusters of hydrogen vacancies in graphane, including the geometrical shapes of triangles, parallelograms, hexagons, and rectangles, by first-principles density functional calculation. The results indicate that energy levels caused by the missing H are generated in the broad band gap of pure graphane. All triangular clusters of H vacancies are magnetic, the larger the triangle the higher the magnetic moment. The defect levels introduced by the missing H in triangular and parallelogram clusters are spin-polarized and can find application in optical transition. Parallelograms and open-ended rectangles are antiferromagnetic and can be used for nanoscale registration of digital information.

  11. Electronic Structures of Clusters of Hydrogen Vacancies on Graphene

    PubMed Central

    Wu, Bi-Ru; Yang, Chih-Kai

    2015-01-01

    Hydrogen vacancies in graphane are products of incomplete hydrogenation of graphene. The missing H atoms can alter the electronic structure of graphane and therefore tune the electronic, magnetic, and optical properties of the composite. We systematically studied a variety of well-separated clusters of hydrogen vacancies in graphane, including the geometrical shapes of triangles, parallelograms, hexagons, and rectangles, by first-principles density functional calculation. The results indicate that energy levels caused by the missing H are generated in the broad band gap of pure graphane. All triangular clusters of H vacancies are magnetic, the larger the triangle the higher the magnetic moment. The defect levels introduced by the missing H in triangular and parallelogram clusters are spin-polarized and can find application in optical transition. Parallelograms and open-ended rectangles are antiferromagnetic and can be used for nanoscale registration of digital information. PMID:26468677

  12. Electronic structure of (Ga,Mn)As revisited

    NASA Astrophysics Data System (ADS)

    Kanski, J.; Ilver, L.; Karlsson, K.; Ulfat, I.; Leandersson, M.; Sadowski, J.; Di Marco, I.

    2017-02-01

    The detailed nature of electronic states mediating ferromagnetic coupling in dilute magnetic semiconductors, specifically (Ga,Mn)As, has been an issue of long debate. Two confronting models have been discussed emphasizing host band versus impurity band carriers. Using angle resolved photoemission we show that the electronic structure of the (Ga,Mn)As system is significantly modified from that of GaAs throughout the valence band. Close to the Fermi energy, the presence of Mn induces a strong mixing of the bulk bands of GaAs, which results in the appearance of a highly dispersive band in the gap region of GaAs. For Mn concentrations above 1% the band reaches the Fermi level, and can thus host the delocalized holes needed for ferromagnetic coupling. Overall, our data provide a firm evidence of delocalized carriers belonging to the modified host valence band.

  13. Electronic structure of molecules using relativistic effective core potentials

    SciTech Connect

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies.

  14. Electronic structure of benzene adsorbed on Ni and Cu surfaces

    SciTech Connect

    Weinelt, M.; Nilsson, A.; Wassdahl, N.

    1997-04-01

    Benzene has for a long time served as a prototype adsorption system of large molecules. It adsorbs with the molecular plane parallel to the surface. The bonding of benzene to a transition metal is typically viewed to involve the {pi} system. Benzene adsorbs weakly on Cu and strongly on Ni. It is interesting to study how the adsorption strength is reflected in the electronic structure of the adsorbate-substrate complex. The authors have used X-ray Emission (XE) and X-ray Absorption (XA) spectroscopies to selectively study the electronic states localized on the adsorbed benzene molecule. Using XES the occupied states can be studies and with XAS the unoccupied states. The authors have used beamline 8.0 and the Swedish endstation equipped with a grazing incidence x-ray spectrometer and a partial yield absorption detector. The resolution in the XES and XAS were 0.5 eV and 0.05 eV, respectively.

  15. Electronic structure of para aminophenoxyl radical in water

    NASA Astrophysics Data System (ADS)

    Tripathi, G. N. R.

    2003-01-01

    The electronic structure of aqueous p-aminophenoxyl radical (H2NPhO•) has been examined by time-resolved resonance Raman spectroscopy and ab initio and density functional theories. The effects of hydrogen bonding and solvent reaction field on polarity of the radical have been visualized in terms of simple models. Calculations predict the dipole moment of the radical in its ground electronic state (2B1) to increase by 8(±2) D and the difference between the CN and CO bond lengths to decrease by ˜0.05 Å from gas phase to aqueous solution. This profound hydration effect converts the structure and chemical properties of H2NPhO• from a substituted phenoxyl radical in the gas phase to a semiquinone-like radical in water. The observation of vibrational modes enhanced in Raman by a non-Franck-Condon vibronic coupling mechanism has led to the identification of two very weakly absorbing electronic states of 2A2 symmetry in the 340-390 nm region, which borrow transition moment from close by strongly allowed electronic states of 2B1 symmetry at lower (˜440 nm) and higher (˜320 nm) energies. One of these transitions is parity forbidden (2B2g↔2B1g) in p-benzosemiquinone radical anion (PhO2-•) and p-phenylenediamine radical cation (Ph(NH2)2+•) and this is the first experimental evidence on energy location (3.44 eV) of this transition in an isoelectronic radical. The experiment and theory are combined to estimate the CO and CN bond lengths in H2NPhO• as ˜1.263 and ˜1.34 Å, respectively, in liquid water and ˜1.245 and ˜1.37 Å in the gas phase.

  16. Electronic structure and magnetic properties of zigzag blue phosphorene nanoribbons

    SciTech Connect

    Hu, Tao; Hong, Jisang

    2015-08-07

    We investigated the electronic structure and magnetism of zigzag blue phosphorene nanoribbons (ZBPNRs) using first principles density functional theory calculations by changing the widths of ZBPNRs from 1.5 to 5 nm. In addition, the effect of H and O passivation was explored as well. The ZBPNRs displayed intra-edge antiferromagnetic ground state with a semiconducting band gap of ∼0.35 eV; and this was insensitive to the edge structure relaxation effect. However, the edge magnetism of ZBPNRs disappeared with H-passivation. Moreover, the band gap of H-passivated ZBPNRs was greatly enhanced because the calculated band gap was ∼1.77 eV, and this was almost the same as that of two-dimensional blue phosphorene layer. For O-passivated ZBPNRs, we also found an intra-edge antiferromagnetic state. Besides, both unpassivated and O-passivated ZBPNRs preserved almost the same band gap. We predict that the electronic band structure and magnetic properties can be controlled by means of passivation. Moreover, the edge magnetism can be also modulated by the strain. Nonetheless, the intrinsic physical properties are size independent. This feature can be an advantage for device applications because it may not be necessary to precisely control the width of the nanoribbon.

  17. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    SciTech Connect

    Goldsbury, C.; Wall, J.; Baxa, U.; Simon, M. N.; Steven, A. C.; Engel, A.; Aebi, U.; Muller, S. A.

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR).

  18. Amyloid Structure and Assembly: Insights from Scanning Transmission Electron Microscopy

    PubMed Central

    Goldsbury, Claire; Baxa, Ulrich; Simon, Martha N.; Steven, Alasdair C.; Engel, Andreas; Wall, Joseph S.; Aebi, Ueli; Müller, Shirley A.

    2010-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases like Alzheimer’s disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies like Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). PMID:20868754

  19. Amyloid structure and assembly: insights from scanning transmission electron microscopy.

    PubMed

    Goldsbury, Claire; Baxa, Ulrich; Simon, Martha N; Steven, Alasdair C; Engel, Andreas; Wall, Joseph S; Aebi, Ueli; Müller, Shirley A

    2011-01-01

    Amyloid fibrils are filamentous protein aggregates implicated in several common diseases such as Alzheimer's disease and type II diabetes. Similar structures are also the molecular principle of the infectious spongiform encephalopathies such as Creutzfeldt-Jakob disease in humans, scrapie in sheep, and of the so-called yeast prions, inherited non-chromosomal elements found in yeast and fungi. Scanning transmission electron microscopy (STEM) is often used to delineate the assembly mechanism and structural properties of amyloid aggregates. In this review we consider specifically contributions and limitations of STEM for the investigation of amyloid assembly pathways, fibril polymorphisms and structural models of amyloid fibrils. This type of microscopy provides the only method to directly measure the mass-per-length (MPL) of individual filaments. Made on both in vitro assembled and ex vivo samples, STEM mass measurements have illuminated the hierarchical relationships between amyloid fibrils and revealed that polymorphic fibrils and various globular oligomers can assemble simultaneously from a single polypeptide. The MPLs also impose strong constraints on possible packing schemes, assisting in molecular model building when combined with high-resolution methods like solid-state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR). Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Characterization of electronic structure of periodically strained graphene

    DOE PAGES

    Aslani, Marjan; Garner, C. Michael; Kumar, Suhas; ...

    2015-11-03

    We induced periodic biaxial tensile strain in polycrystalline graphene by wrapping it over a substrate with repeating pillar-like structures with a periodicity of 600 nm. Using Raman spectroscopy, we determined to have introduced biaxial strains in graphene in the range of 0.4% to 0.7%. Its band structure was characterized using photoemission from valance bands, shifts in the secondary electron emission, and x-ray absorption from the carbon 1s levels to the unoccupied graphene conduction bands. It was observed that relative to unstrained graphene, strained graphene had a higher work function and higher density of states in the valence and conduction bands.more » Furthermore, we measured the conductivity of the strained and unstrained graphene in response to a gate voltage and correlated the changes in their behavior to the changes in the electronic structure. From these sets of data, we propose a simple band diagram representing graphene with periodic biaxial strain.« less

  1. Electronic structure and electron-phonon coupling in TiH$_2$

    SciTech Connect

    Shanavas, Kavungal Veedu; Lindsay, Lucas R.; Parker, David S.

    2016-06-15

    Calculations using first principles methods and strong coupling theory are carried out to understand the electronic structure and superconductivity in cubic and tetragonal TiH$_2$. A large electronic density of states at the Fermi level in the cubic phase arises from Ti-$t_{2g}$ states and leads to a structural instability against tetragonal distortion at low temperatures. However, constraining the in-plane lattice constants diminishes the energy gain associated with the tetragonal distortion, allowing the cubic phase to be stable at low temperatures. Furthermore, calculated phonon dispersions show decoupled acoustic and optic modes arising from Ti and H vibrations, respectively and frequencies of optic modes to be rather high. The cubic phase has a large electron-phonon coupling parameter $\\lambda$ and critical temperature of several K. Contribution of the hydrogen sublattice to $\\lambda$ is found to be small in this material, which we understand from strong coupling theory to be due to the small H-$s$ DOS at the Fermi level and high energy of hydrogen modes at the tetrahedral sites.

  2. Electronic structure and electron-phonon coupling in TiH$$_2$$

    DOE PAGES

    Shanavas, Kavungal Veedu; Lindsay, Lucas R.; Parker, David S.

    2016-06-15

    Calculations using first principles methods and strong coupling theory are carried out to understand the electronic structure and superconductivity in cubic and tetragonal TiHmore » $$_2$$. A large electronic density of states at the Fermi level in the cubic phase arises from Ti-$$t_{2g}$$ states and leads to a structural instability against tetragonal distortion at low temperatures. However, constraining the in-plane lattice constants diminishes the energy gain associated with the tetragonal distortion, allowing the cubic phase to be stable at low temperatures. Furthermore, calculated phonon dispersions show decoupled acoustic and optic modes arising from Ti and H vibrations, respectively and frequencies of optic modes to be rather high. The cubic phase has a large electron-phonon coupling parameter $$\\lambda$$ and critical temperature of several K. Contribution of the hydrogen sublattice to $$\\lambda$$ is found to be small in this material, which we understand from strong coupling theory to be due to the small H-$s$ DOS at the Fermi level and high energy of hydrogen modes at the tetrahedral sites.« less

  3. Atomic and electronic structure of polar oxide interfaces: Electron microscopy and density functional theory study

    NASA Astrophysics Data System (ADS)

    Lazarov, Vlado

    Polar oxide interfaces are formed when two polar oxide surfaces join. The apparent presence of an electric dipole moment in the repeat unit parallel to the surface/interface closely relate the polar oxide interfaces instability to that of the of polar oxide surfaces. In this thesis, we combined Electron Microscopy and Density Functional Theory to study how the interface polarity affects the atomic and electronic structure of polar oxide interfaces, by using Fe3O4(111)/MgO(111) as a model system. The formation of Fe nanoinclusions found at the interface and within the polar Fe3 O4(111) film is proposed to be new stabilization mechanism for the magnetite film. High-resolution electron microscopy imaging of the interface together with first principle calculations suggest an atomically abrupt substrate-film interface determined with Fe monolayer in octahedral position (FeB). This interface stacking (O/Mg/O/3FeB/O) provides lowest total interface (system) energy and the most effectively screening of the MgO(111) substrate surface polarity. The results of our study suggest that surface polarity could be used as an additional growth parameter in creating novel material structures, such as metals in oxide matrices.

  4. Electronic structure and electron-phonon coupling in TiH2

    PubMed Central

    Shanavas, K. V.; Lindsay, L.; Parker, D. S.

    2016-01-01

    Calculations using first principles methods and strong coupling theory are carried out to understand the electronic structure and superconductivity in cubic and tetragonal TiH2. A large electronic density of states at the Fermi level in the cubic phase arises from Ti-t2g states and leads to a structural instability towards tetragonal distortion at low temperatures. However, constraining the in-plane lattice constants diminishes the energy gain associated with the tetragonal distortion, allowing the cubic phase to be stable at low temperatures. Calculated phonon dispersions show decoupled acoustic and optic modes arising from Ti and H vibrations, respectively, and frequencies of optic modes to be rather high. The cubic phase has a large electron-phonon coupling parameter λ and critical temperature of several K. Contribution of the hydrogen sublattice to λ is found to be small in this material, which we understand from strong coupling theory to be due to the small H-s DOS at the Fermi level and high energy of hydrogen modes at the tetrahedral sites. PMID:27302645

  5. Growth and Electronic Structure of Heusler Compounds for Use in Electron Spin Based Devices

    NASA Astrophysics Data System (ADS)

    Patel, Sahil Jaykumar

    Spintronic devices, where information is carried by the quantum spin state of the electron instead of purely its charge, have gained considerable interest for their use in future computing technologies. For optimal performance, a pure spin current, where all electrons have aligned spins, must be generated and transmitted across many interfaces and through many types of materials. While conventional spin sources have historically been elemental ferromagnets, like Fe or Co, these materials pro duce only partially spin polarized currents. To increase the spin polarization of the current, materials like half-metallic ferromagnets, where there is a gap in the minority spin density of states around the Fermi level, or topological insulators, where the current transport is dominated by spin-locked surface states, show promise. A class of materials called Heusler compounds, with electronic structures that range from normal metals, to half metallic ferromagnets, semiconductors, superconductors and even topological insulators, interfaces well with existing device technologies, and through the use of molecular beam epitaxy (MBE) high quality heterostructures and films can be grown. This dissertation examines the electronic structure of surfaces and interfaces of both topological insulator (PtLuSb-- and PtLuBi--) and half-metallic ferromagnet (Co2MnSi-- and Co2FeSi--) III-V semiconductor heterostructures. PtLuSb and PtLuBi growth by MBE was demonstrated on Alx In1--xSb (001) ternaries. PtLuSb (001) surfaces were observed to reconstruct with either (1x3) or c(2x2) unit cells depending on Sb overpressure and substrate temperature. viii The electronic structure of these films was studied by scanning tunneling microscopy/spectroscopy (STM/STS) and photoemission spectroscopy. STS measurements as well as angle resolved photoemission spectropscopy (ARPES) suggest that PtLuSb has a zero-gap or semimetallic band structure. Additionally, the observation of linearly dispersing surface

  6. Temperature dependence of the electronic structure of semiconductors and insulators

    SciTech Connect

    Poncé, S. Gillet, Y.; Laflamme Janssen, J.; Gonze, X.; Marini, A.; Verstraete, M.

    2015-09-14

    The renormalization of electronic eigenenergies due to electron-phonon coupling (temperature dependence and zero-point motion effect) is sizable in many materials with light atoms. This effect, often neglected in ab initio calculations, can be computed using the perturbation-based Allen-Heine-Cardona theory in the adiabatic or non-adiabatic harmonic approximation. After a short description of the recent progresses in this field and a brief overview of the theory, we focus on the issue of phonon wavevector sampling convergence, until now poorly understood. Indeed, the renormalization is obtained numerically through a slowly converging q-point integration. For non-zero Born effective charges, we show that a divergence appears in the electron-phonon matrix elements at q → Γ, leading to a divergence of the adiabatic renormalization at band extrema. This problem is exacerbated by the slow convergence of Born effective charges with electronic wavevector sampling, which leaves residual Born effective charges in ab initio calculations on materials that are physically devoid of such charges. Here, we propose a solution that improves this convergence. However, for materials where Born effective charges are physically non-zero, the divergence of the renormalization indicates a breakdown of the adiabatic harmonic approximation, which we assess here by switching to the non-adiabatic harmonic approximation. Also, we study the convergence behavior of the renormalization and develop reliable extrapolation schemes to obtain the converged results. Finally, the adiabatic and non-adiabatic theories, with corrections for the slow Born effective charge convergence problem (and the associated divergence) are applied to the study of five semiconductors and insulators: α-AlN, β-AlN, BN, diamond, and silicon. For these five materials, we present the zero-point renormalization, temperature dependence, phonon-induced lifetime broadening, and the renormalized electronic band structure.

  7. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    SciTech Connect

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  8. Fine structure of subauroral electric field and electron content

    NASA Astrophysics Data System (ADS)

    Makarevich, Roman A.; Bristow, W. A.

    2014-05-01

    Small-scale structure of the plasma convection and electron content within the subauroral polarization stream (SAPS) is investigated. We present ionospheric observations during the main phase of the geomagnetic storm on 17 March 2013, during which a sequence of intense, highly localized, and fast-moving electric field (EF) structures within SAPS was observed by the Super Dual Auroral Radar Network Christmas Valley West (CVW) radar. The CVW EF measurements at 60 s resolution are analyzed in context of coincident GPS measurements of the total electron content (TEC) at 30 s resolution. The strong and narrow feature of the subauroral ion drift (SAID) was observed poleward of the TEC trough, with a TEC enhancement (peak) seen in the SAPS (SAID) region. The SAPS wave activity commenced ~2 h (15 min) after first appearance of SAPS (SAID). The SAPS structures appeared near the poleward edge of the trough, propagated westward, and merged with SAID near TEC peak. The propagation velocity was comparable with convection velocity within each EF structure. The SAPS TEC exhibited a general decrease toward the end of the period. On a smaller time scale, TEC exhibited a small but appreciable decrease within EF structures. The wavelet spectra of EF and TEC showed similar variations, with wave period of ~5 min period near onset and increasing to 8-10 min toward the end of the period with significant wave activity. A scenario is discussed, in which the SAPS wave activity may modify the ionospheric conductance and TEC at small scales, with large-scale magnetosphere-ionosphere feedback acting to continuously deplete TEC where/when such activity does not occur.

  9. DISSECTING STRUCTURAL AND ELECTRONIC EFFECTS IN INDUCIBLE NITRIC OXIDE SYNTHASE

    PubMed Central

    Hannibal, Luciana; Page, Richard C.; Haque, Mohammad Mahfuzul; Bolisetty, Karthik; Yu, Zhihao; Misra, Saurav; Stuehr, Dennis J.

    2015-01-01

    Nitric oxide synthases (NOS) are haem-thiolate enzymes that catalyse the conversion of L-Arginine (LArg) into NO and citrulline. Inducible NOS (iNOS) is responsible for delivery of NO in response to stressors during inflammation. The catalytic performance of iNOS is proposed to rely mainly on the haem midpoint potential and the ability of the substrate L-Arg to provide an H-bond for oxygen activation (O-O scission). We present a comparative study of native iNOS versus iNOS-mesohaem, and investigate the formation of a low-spin ferric haem-aquo or -hydroxo species (P) in iNOS mutant W188H substituted with mesohaem. iNOS-mesohaem and W188H-mesohaem were stable and dimeric, and presented substrate-binding affinities comparable to their native counterparts. Single turnover reactions catalysed by iNOSoxy with LArg (first reaction step) or N-hydroxyarginine (second reaction step) showed that mesohaem substitution triggered faster rates of FeIIO2 conversion and altered other key kinetic parameters. We elucidated the first crystal structure of a NOS substituted with mesohaem and found essentially identical features compared to the structure of iNOS carrying native haem. This facilitated the dissection of structural and electronic effects. Mesohaem substitution substantially reduced the build-up of species P in W188H iNOS during catalysis, thus increasing its proficiency toward NO synthesis. The marked structural similarities of iNOSoxy containing native haem or mesohaem indicate that the kinetic behaviour observed in mesohaem-substituted iNOS is most heavily influenced by electronic effects rather than structural alterations. PMID:25608846

  10. Electronic, structural, and optical properties of crystalline yttria

    SciTech Connect

    Xu, Y.; Gu, Z.; Ching, W.Y. |

    1997-12-01

    The electronic structure of crystalline Y{sub 2}O{sub 3} is investigated by first-principles calculations within the local-density approximation (LDA) of the density-functional theory. Results are presented for the band structure, the total density of states (DOS), the atom- and orbital-resolved partial DOS, effective charges, bond order, and charge-density distributions. Partial covalent character in the Y-O bonding is shown, and the nonequivalency of the two Y sites is demonstrated. The calculated electronic structure is compared with a variety of available experimental data. The total energy of the crystal is calculated as a function of crystal volume. A bulk modulus B of 183 Gpa and a pressure coefficient B{sup {prime}} of 4.01 are obtained, which are in good agreement with compression data. An LDA band gap of 4.54 eV at {Gamma} is obtained which increases with pressure at a rate of dE{sub g}/dP=0.012eV/Gpa at the equilibrium volume. Also investigated are the optical properties of Y{sub 2}O{sub 3} up to a photon energy of 20 eV. The calculated complex dielectric function and electron-energy-loss function are in good agreement with experimental data. A static dielectric constant of {var_epsilon}(0)=3.20 is obtained. It is also found that the bottom of the conduction band consists of a single band, and direct optical transition at {Gamma} between the top of the valence band and the bottom of the conduction band may be symmetry forbidden. {copyright} {ital 1997} {ital The American Physical Society}

  11. CIF2Cell: Generating geometries for electronic structure programs

    NASA Astrophysics Data System (ADS)

    Björkman, Torbjörn

    2011-05-01

    The CIF2Cell program generates the geometrical setup for a number of electronic structure programs based on the crystallographic information in a Crystallographic Information Framework (CIF) file. The program will retrieve the space group number, Wyckoff positions and crystallographic parameters, make a sensible choice for Bravais lattice vectors (primitive or principal cell) and generate all atomic positions. Supercells can be generated and alloys are handled gracefully. The code currently has output interfaces to the electronic structure programs ABINIT, CASTEP, CPMD, Crystal, Elk, Exciting, EMTO, Fleur, RSPt, Siesta and VASP. Program summaryProgram title: CIF2Cell Catalogue identifier: AEIM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 3 No. of lines in distributed program, including test data, etc.: 12 691 No. of bytes in distributed program, including test data, etc.: 74 933 Distribution format: tar.gz Programming language: Python (versions 2.4-2.7) Computer: Any computer that can run Python (versions 2.4-2.7) Operating system: Any operating system that can run Python (versions 2.4-2.7) Classification: 7.3, 7.8, 8 External routines: PyCIFRW [1] Nature of problem: Generate the geometrical setup of a crystallographic cell for a variety of electronic structure programs from data contained in a CIF file. Solution method: The CIF file is parsed using routines contained in the library PyCIFRW [1], and crystallographic as well as bibliographic information is extracted. The program then generates the principal cell from symmetry information, crystal parameters, space group number and Wyckoff sites. Reduction to a primitive cell is then performed, and the resulting cell is output to suitably named files along with documentation of the information source generated from any bibliographic information contained in the CIF

  12. Electronic structure of a copper(III) compound

    NASA Astrophysics Data System (ADS)

    Klimkans, Agris; Larsson, Sven

    2001-07-01

    The singlet ground state of a potassium cuprate system (KCuO2), represented by clusters of copper(III) and oxygen, consistent of one and three copper atoms embedded in the Madelung potential of the remainder of the crystal, is calculated using the complete active space-self-consistent field method. The ground state is found to be a 3d8 state with high σ covalency. The electron structure of hole doped high-Tc superconductors with similar copper ligation is shortly discussed on the basis of our results, which do not support the "hole on oxygen" model.

  13. Electronic structure and improper electric polarization of samarium orthoferrite

    NASA Astrophysics Data System (ADS)

    Triguk, V. V.; Makoed, I. I.; Ravinski, A. F.

    2016-12-01

    The band structure and distributions of the electron and spin densities of samarium orthoferrite have been calculated within the framework of the first-principles density functional theory in the LSDA + U approximation taking into account the collinear antiferromagnetic ordering of the magnetic moments of iron and samarium cations. The possibility of inducing a ferroelectric state at temperatures below the antiferromagnetic ordering temperature of the magnetic sublattice formed by samarium cations has been considered using the results of the group-theoretical analysis. In the high-temperature range, the formation of regions with a spontaneous electric polarization is possible in the presence of additional factors that reduce the symmetry of the crystal.

  14. Electronic Structure and Properties of Metal Cluster Isomers

    NASA Astrophysics Data System (ADS)

    Jena, Puru

    1997-03-01

    One of the most interesting features of clusters is that they exhibit many isomeric forms. The geometries, binding energies, and electronic structure of isomers of alkali and transition metal clusters have been studied using first principles calculations based on molecular orbital theory. The existence of energetically degenerate isomers manifests in many novel features in photoelectron spectroscopy, reactivity, and magnetic properties. The theoretical results will be used not only to explain recent anomalous experimental data but also to predict phenomena that could be verified by future experiments.

  15. Electronic Structure of the NaxCoO2 Surface

    NASA Astrophysics Data System (ADS)

    Pillay, D.; Johannes, M. D.; Mazin, I. I.

    2008-12-01

    The idea that surface effects may play an important role in suppressing eg' Fermi surface pockets on NaxCoO2 (0.333≤x≤0.75) has been frequently proposed to explain the discrepancy between local-density approximation calculations which find eg' hole pockets present and Angle resolved photoemission spectra (ARPES) experiments, which do not observe the hole pockets. Since ARPES is a surface sensitive technique, it is important to investigate the effects that surface formation will have on the electronic structure. We show that a combination of surface formation and contamination effects could resolve the ongoing controversy between ARPES experiments and theory.

  16. Electronic structure and properties of silicon-transition metal interfaces

    NASA Astrophysics Data System (ADS)

    Bisi, O.; Chiao, L. W.; Tu, K. N.

    1985-04-01

    We present a theoretical investigation of the reaction occurring at the interfaces between silicon and transition metals. Using the same approach successfully applied to the study of bulk suicides, the electronic properties of different models of silicon-nickel and silicon-palladium interfaces have been studied. The models investigated include: (a) epitaxial silicon-silicide interfaces; (b) isolated transition metal interstitials near the silicon surfaces; (c) adamantane geometry structures as metastable diffusion layer compounds. The theoretical results are used as a guide in order to interpret the available experimental photoemission data of these complex interfaces.

  17. STRUCTURE FOR SUB-ASSEMBLIES OF ELECTRONIC EQUIPMENT

    DOEpatents

    Bell, P.R.; Harris, C.C.

    1959-03-31

    Sub-assemblies for electronic systems, particularly a unit which is self- contained and which may be adapted for quick application to and detachment from a chassis or panel, are discussed. The disclosed structure serves the dual purpose of a cover or enclosure for a subassembly comprising a base plate and also acts as a clamp for retaining the base plate in position on a chassis. The clamping action is provided by flexible fingers projecting from the side walls of the cover and extending through grooves in the base plate to engage with the opposite side of the chassis.

  18. Electronic structure study on 2D hydrogenated Icosagens nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Marutheeswaran, S.; Ramaclus, Jerald V.; Paul, Dolon Chapa

    2014-12-01

    Metal nitride nanosheets has attracted remarkable importance in surface catalysis due to its characteristic ionic nature. In this paper, using density functional theory, we investigate geometric stability and electronic properties of hydrogenated Icosagen nitride nanosheets. Binding energy of the sheets reveals hydrogenation is providing more stability. Band structure of the hydrogenated sheets is found to be n-type semiconductor. Partial density of states shows metals (B, Al, Ga and In) and its hydrogens dominating in the Fermi region. Mulliken charge analysis indications that hydrogenated nanosheets are partially hydridic surface nature except boron nitride.

  19. Electronic structure calculation by nonlinear optimization: Application to metals

    NASA Astrophysics Data System (ADS)

    Benedek, R.; Min, B. I.; Woodward, C.; Garner, J.

    1988-04-01

    There is considerable interest in the development of novel algorithms for the calculation of electronic structure (e.g., at the level of the local-density approximation of density-functional theory). In this paper we consider a first-order equation-of-motion method. Two methods of solution are described, one proposed by Williams and Soler, and the other base on a Born-Dyson series expansion. The extension of the approach to metallic systems is outlined and preliminary numerical calculations for Zintl-phase NaTl are presented.

  20. Comparison of optimization methods for electronic-structure calculations

    NASA Astrophysics Data System (ADS)

    Garner, J.; Das, S. G.; Min, B. I.; Woodward, C.; Benedek, R.

    1989-06-01

    The performance of several local-optimization methods for calculating electronic structure is compared. The fictitious first-order equation of motion proposed by Williams and Soler is integrated numerically by three procedures: simple finite-difference integration, approximate analytical integration (the Williams-Soler algorithm), and the Born perturbation series. These techniques are applied to a model problem for which exact solutions are known, the Mathieu equation. The Williams-Soler algorithm and the second Born approximation converge equally rapidly, but the former involves considerably less computational effort and gives a more accurate converged solution. Application of the method of conjugate gradients to the Mathieu equation is discussed.

  1. 3-dimensional electronic structures of CaC6

    NASA Astrophysics Data System (ADS)

    Kyung, Wonshik; Kim, Yeongkwan; Han, Garam; Leem, Choonshik; Kim, Junsung; Kim, Yeongwook; Kim, Keunsu; Rotenberg, Eli; Kim, Changyoung; Postech Collaboration; Advanced Light Source Collaboration; Yonsei University Team

    2014-03-01

    There is still remaining issues on origin of superconductivity in graphite intercalation compounds, especially CaC6 because of its relatively high transition temperature than other GICs. There are two competing theories on where the superconductivity occurs in this material; intercalant metal or charge doped graphene layer. To elucidate this issue, it is necessary to confirm existence of intercalant driven band. Therefore, we performed 3 dimensional electronic structure studies with ARPES to find out 3d dispersive intercalant band. However, we could not observe it, instead observed 3d dispersive carbon band. This support the aspect of charge doped graphene superconductivity more than intercalant driving aspect.

  2. Electronic structures and transport properties of fluorinated boron nitride nanoribbons.

    PubMed

    Zeng, Jing; Chen, Ke-Qiu; Sun, Chang Q

    2012-06-14

    By applying the nonequilibrium Green's functions and the density-functional theory, we investigate the electronic structures and transport properties of fluorinated zigzag-edged boron nitride nanoribbons. The results show that the transition between half-metal and semiconductor in zigzag-edged boron nitride nanoribbons can be realized by fluorination at different sites or by the change of the fluorination level. Moreover, the negative differential resistance and varistor-type behaviors can also be observed in such fluorinated zigzag-edged boron nitride nanoribbon devices. Therefore, the fluorination of zigzag-edged boron nitride nanoribbons will provide the possibilities for a multifunctional molecular device design.

  3. The electronic structure of lithium transition metal oxides

    NASA Astrophysics Data System (ADS)

    Kocher, Michael P.

    Currently, LiCoO2 is the cathode in the majority of the batteries used in cellular phones and laptop computers. Due to the low abundance of cobalt, thermal instability and environmental concerns, there has been a strong effort to find an alternative material. This dissertation focuses on ab initio calculations of the electronic structure of several lithium transition metal oxides used as cathode material in Li-ion batteries, especially layered LiMn1/2Ni1/2O2 and LiMn1/3,Ni 1/3,Co1/3O2, and olivine structure LiFePO 4 and FePO4. These materials offer substantial increases in energy density and cycle life, and could be used in electric vehicles. Density Functional Theory (DFT) was used to calculate the electronic structure of LixMn1/2Ni1/2O2 and LixMn1/3,Ni1/3,Co1/3O2. To understand the fundamental characteristics of these materials, the spherical integrated charge and spin density, and angular momentum projected density of states was calculated to investigate the effect of insertion of Li. The observed changes of the integrated spin density suggest Ni is changing valence state as Li is removed. However, the integrated charge density shows no dependence on the Li concentration, which suggests that Ni remains in the same charge state. The electronic density of states reveals that the hybridized O p near the Fermi level are key component to charge compensation mechanism. This provides evidence that the O has a key role in the charge regulation during delithiation/lithiation and Ni is not changing from Ni2+ to Ni4+. The calculated projected density of states was compared with EELS measurements to further validate these findings. The electronic structure of LiFePO4 and FePO4 was calculated using DFT and DFT+U. The spherically integrated spin and charge densities show a small dependency of the Li concentration, but do not suggest a change from Fealpha to Fealpha+1. The projected density of states shows an increase in the hybridization of the O p and Fe d states as Li is

  4. Electronic band structure of magnetic bilayer graphene superlattices

    SciTech Connect

    Pham, C. Huy; Nguyen, T. Thuong

    2014-09-28

    Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  5. Electronic structure of disordered α-FeMn alloys

    NASA Astrophysics Data System (ADS)

    Paduani, C.; da Silva, E. G.

    1996-08-01

    Cluster calculations were performed with the first-principles discrete variational method, in the LSD approximation and spin-polarized case, to investigate the electronic structure of the ferromagnetic disordered α-FeMn alloys. We investigated the effect on the local magnetic properties at iron sites of the introduction of Mn atoms in their first and second neighborhoods. The calculated magnetic moment and hyperfine magnetic field ( Hc) for an isolated Mn atom in a bcc iron host were obtained as -3.15 μB and -230 kG, respectively, in good agreement with experimental results.

  6. 8th international conference on electronic spectroscopy and structure

    SciTech Connect

    Robinson, Art

    2000-10-16

    Gathering from 33 countries around the world, 408 registrants and a number of local drop-in participants descended on the Clark Kerr Campus of the University of California, Berkeley, from Monday, August 7 through Saturday, August 12, 2000 for the Eighth International Conference on Electronic Structure and Spectroscopy (ICESS8). At the conference, participants benefited from an extensive scientific program comprising more than 100 oral presentations (plenary lectures and invited and contributed talks) and 330 poster presentations, as well as ample time for socializing and a tour of the Advanced Light Source (ALS) at the nearby Lawrence Berkeley National Laboratory.

  7. Local electronic structures in electron-doped cuprates with coexisting orders

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Hu, Xiao

    2010-12-01

    Motivated by the observation of a so-called non-monotonic gap in recent angle-resolved photoemission spectroscopy measurement, we study the local electronic structure near impurities in electron-doped cuprates by considering the influence of antiferromagnetic (AF) spin-density-wave (SDW) order. We find that the evolution of density of states (DOS) with AF SDW order clearly indicates the non-monotonic d-wave gap behavior. More interestingly, the local DOS for spin-up is much different from that for spin-down with increasing AF SDW order. As a result, the impurity induced resonance state near the Fermi energy exhibits a spin-polarized feature. These features can be detected by spin-polarized scanning tunneling microscopy experiments.

  8. Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation

    NASA Astrophysics Data System (ADS)

    Man-Hong, Zhang

    2016-05-01

    By performing the electronic structure computation of a Si atom, we compare two iteration algorithms of Broyden electron density mixing in the literature. One was proposed by Johnson and implemented in the well-known VASP code. The other was given by Eyert. We solve the Kohn-Sham equation by using a conventional outward/inward integration of the differential equation and then connect two parts of solutions at the classical turning points, which is different from the method of the matrix eigenvalue solution as used in the VASP code. Compared to Johnson’s algorithm, the one proposed by Eyert needs fewer total iteration numbers. Project supported by the National Natural Science Foundation of China (Grant No. 61176080).

  9. X-ray and photoelectron spectroscopy of the structure, reactivity, and electronic structure of semiconductor nanocrystals

    SciTech Connect

    Hamad, Kimberly Sue

    2000-01-01

    Semiconductor nanocrystals are a system which has been the focus of interest due to their size dependent properties and their possible use in technological applications. Many chemical and physical properties vary systematically with the size of the nanocrystal and thus their study enables the investigation of scaling laws. Due to the increasing surface to volume ratio as size is decreased, the surfaces of nanocrystals are expected to have a large influence on their electronic, thermodynamic, and chemical behavior. In spite of their importance, nanocrystal surfaces are still relatively uncharacterized in terms of their structure, electronic properties, bonding, and reactivity. Investigation of nanocrystal surfaces is currently limited by what techniques to use, and which methods are suitable for nanocrystals is still being determined. This work presents experiments using x-ray and electronic spectroscopies to explore the structure, reactivity, and electronic properties of semiconductor (CdSe, InAs) nanocrystals and how they vary with size. Specifically, x-ray absorption near edge spectroscopy (XANES) in conjunction with multiple scattering simulations affords information about the structural disorder present at the surface of the nanocrystal. X-ray photoelectron spectroscopy (XPS) and ultra-violet photoelectron spectroscopy (UPS) probe the electronic structure in terms of hole screening, and also give information about band lineups when the nanocrystal is placed in electric contact with a substrate. XPS of the core levels of the nanocrystal as a function of photo-oxidation time yields kinetic data on the oxidation reaction occurring at the surface of the nanocrystal.

  10. Electron Beam Freeform Fabrication of Titanium Alloy Gradient Structures

    NASA Technical Reports Server (NTRS)

    Brice, Craig A.; Newman, John A.; Bird, Richard Keith; Shenoy, Ravi N.; Baughman, James M.; Gupta, Vipul K.

    2014-01-01

    Historically, the structural optimization of aerospace components has been done through geometric methods. A monolithic material is chosen based on the best compromise between the competing design limiting criteria. Then the structure is geometrically optimized to give the best overall performance using the single material chosen. Functionally graded materials offer the potential to further improve structural efficiency by allowing the material composition and/or microstructural features to spatially vary within a single structure. Thus, local properties could be tailored to the local design limiting criteria. Additive manufacturing techniques enable the fabrication of such graded materials and structures. This paper presents the results of a graded material study using two titanium alloys processed using electron beam freeform fabrication, an additive manufacturing process. The results show that the two alloys uniformly mix at various ratios and the resultant static tensile properties of the mixed alloys behave according to rule-of-mixtures. Additionally, the crack growth behavior across an abrupt change from one alloy to the other shows no discontinuity and the crack smoothly transitions from one crack growth regime into another.

  11. Structure and Electronic Properties of Cerium Orthophosphate: Theory and Experiment

    SciTech Connect

    Adelstein, Nicole; Mun, B. Simon; Ray, Hannah; Ross Jr, Phillip; Neaton, Jeffrey; De Jonghe, Lutgard

    2010-07-27

    Structural and electronic properties of cerium orthophosphate (CePO{sub 4}) are calculated using density functional theory (DFT) with the local spin-density approximation (LSDA+U), with and without gradient corrections (GGA-(PBE)+U), and compared to X-ray diffraction and photoemission spectroscopy measurements. The density of states is found to change significantly as the Hubbard parameter U, which is applied to the Ce 4f states, is varied from 0 to 5 eV. The calculated structural properties are in good agreement with experiment and do not change significantly with U. Choosing U = 3 eV for LDSA provides the best agreement between the calculated density of states and the experimental photoemission spectra.

  12. Electronic structure calculations toward new potentially AChE inhibitors

    NASA Astrophysics Data System (ADS)

    de Paula, A. A. N.; Martins, J. B. L.; Gargano, R.; dos Santos, M. L.; Romeiro, L. A. S.

    2007-10-01

    The main purpose of this study was the use of natural non-isoprenoid phenolic lipid of cashew nut shell liquid from Anacardium occidentale as lead material for generating new potentially candidates of acetylcholinesterase inhibitors. Therefore, we studied the electronic structure of 15 molecules derivatives from the cardanol using the following groups: methyl, acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, N, N-diethylamine, piperidine, pyrrolidine, and N-benzylamine. The calculations were performed at RHF level using 6-31G, 6-31G(d), 6-31+G(d) and 6-311G(d,p) basis functions. Among the proposed compounds we found that the structures with substitution by acetyl, N, N-dimethylcarbamoyl, N, N-dimethylamine, and pyrrolidine groups were better correlated to rivastigmine indicating possible activity.

  13. Atomic and electronic structure of twin growth defects in magnetite.

    PubMed

    Gilks, Daniel; Nedelkoski, Zlatko; Lari, Leonardo; Kuerbanjiang, Balati; Matsuzaki, Kosuke; Susaki, Tomofumi; Kepaptsoglou, Demie; Ramasse, Quentin; Evans, Richard; McKenna, Keith; Lazarov, Vlado K

    2016-02-15

    We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains.

  14. Electronic structure of Si vacancy centers in SiC

    NASA Astrophysics Data System (ADS)

    Soykal, Oney; Dev, Pratibha; Economou, Sophia

    2015-03-01

    The spin state of silicon vacancies in SiC is a promising candidate for applications in solid state quantum information technologies due to its long coherence time at room temperature, its technological availability and wide range of polytypism. Until recently, the electronic structure of this vacancy was not well understood. We have developed a group theoretical model that correctly predicts the spin 3/2 structure seen in recent experiments for the 4H-SiC defect. We have included several different mechanisms involved in the mixing of its spin states, such as crystal field splitting, spin-orbit coupling, spin-spin coupling, strain and Jahn-Teller interactions. We have also carried out DFT calculations that support and complement our analytical results.

  15. Electronic structure of interfaces between hexagonal and rhombohedral graphite

    NASA Astrophysics Data System (ADS)

    Taut, M.; Koepernik, K.

    2016-07-01

    An analysis of the electronic structure of interfaces between hexagonal (A B ) and rhombohedral (A B C ) graphite based on density functional theory is presented. Both of the two simplest interface structures host (localized) interface bands, which are located around the K point in the Brillouin zone, and which give rise to strong peaks in the density of states at the Fermi level. All interface bands near the Fermi energy are localized at monomers (single atoms with dangling pz orbitals), whereas those around 0.5 eV belong to pz-bonded trimers, which are introduced by the interface and which are not found in the two adjacent bulk substances. There is also an interface band at the (A B ) side of the interface which resembles one of the interface states near a stacking fault in (A B ) graphite.

  16. Interfacial Ga-As suboxide: Structural and electronic properties

    SciTech Connect

    Colleoni, Davide Pasquarello, Alfredo

    2015-07-20

    The structural and electronic properties of Ga-As suboxide representative of the transition region at the GaAs/oxide interface are studied through density functional calculations. Two amorphous models generated by quenches from the melt are taken under consideration. The absence of As–O bonds indicates that the structure is a mixture of GaAs and Ga-oxide, in accordance with photoemission experiments. The band edges of the models are found to be closely aligned to those of GaAs. The simulation of charging and discharging processes leads to the identification of an As-related defect with an energy level at ∼0.7 eV above the GaAs valence band maximum, in good agreement with the experimental density of interface states.

  17. Atomic and electronic structure of twin growth defects in magnetite

    PubMed Central

    Gilks, Daniel; Nedelkoski, Zlatko; Lari, Leonardo; Kuerbanjiang, Balati; Matsuzaki, Kosuke; Susaki, Tomofumi; Kepaptsoglou, Demie; Ramasse, Quentin; Evans, Richard; McKenna, Keith; Lazarov, Vlado K.

    2016-01-01

    We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains. PMID:26876049

  18. Atomic and electronic structure of twin growth defects in magnetite

    NASA Astrophysics Data System (ADS)

    Gilks, Daniel; Nedelkoski, Zlatko; Lari, Leonardo; Kuerbanjiang, Balati; Matsuzaki, Kosuke; Susaki, Tomofumi; Kepaptsoglou, Demie; Ramasse, Quentin; Evans, Richard; McKenna, Keith; Lazarov, Vlado K.

    2016-02-01

    We report the existence of a stable twin defect in Fe3O4 thin films. By using aberration corrected scanning transmission electron microscopy and spectroscopy the atomic structure of the twin boundary has been determined. The boundary is confined to the (111) growth plane and it is non-stoichiometric due to a missing Fe octahedral plane. By first principles calculations we show that the local atomic structural configuration of the twin boundary does not change the nature of the superexchange interactions between the two Fe sublattices across the twin grain boundary. Besides decreasing the half-metallic band gap at the boundary the altered atomic stacking at the boundary does not change the overall ferromagnetic (FM) coupling between the grains.

  19. Study of the electronic structure of short chain oligothiophenes

    NASA Astrophysics Data System (ADS)

    Grazioli, C.; Baseggio, O.; Stener, M.; Fronzoni, G.; de Simone, M.; Coreno, M.; Guarnaccio, A.; Santagata, A.; D'Auria, M.

    2017-02-01

    The electronic structure of short-chain thiophenes (thiophene, 2,2'-bithiophene, and 2,2':5',2″-terthiophene) in the gas phase has been investigated by combining the outcomes of Near-Edge X-ray-Absorption Fine-Structure (NEXAFS) and X-ray Photoemission Spectroscopy (XPS) at the C K-edge with those of density functional theory (DFT) calculations. The calculated NEXAFS spectra provide a comprehensive description of the main experimental features and allow their attribution. The evolution of the C1s NEXAFS spectral features is analyzed as a function of the number of thiophene rings; a tendency to stabilization for increasing chain length is found. The computation of the binding energy allows to assign the experimental XPS peaks to the different carbon sites on the basis of both the inductive effects generated by the presence of the S atom as well as of the differential aromaticity effects.

  20. Electronic structure and localized states in a model amorphous silicon

    NASA Astrophysics Data System (ADS)

    Allan, G.; Delerue, C.; Lannoo, M.

    1998-03-01

    The electronic structure of a model amorphous silicon (a-Si) represented by a supercell of 4096 silicon atoms [B.R. Djordjevic, M.F. Thorpe, and F. Wooten, Phys. Rev. B 52, 5685 (1995)] and of a model hydrogenated amorphous silicon (a-Si:H) that we have built from the a-Si model are calculated in the tight-binding approximation. The band edges near the gap are characterized by exponential tails of localized states induced mainly by the variations in bond angles. The spatial localization of the states is compared between a-Si and a-Si:H. Comparison with experiments suggests that the structural models give good descriptions of the amorphous materials.

  1. Radiation from relativistic electron beams in periodic structures

    SciTech Connect

    Babzien, M.; Batchelor, K.; Ben-Zvi, I.

    1995-12-31

    We present an experimental study of emission of radiation from relativistic electrons in a novel periodic structure. The MIT microwiggler is a pulsed ferromagnetic-core electromagnet consisting of 70 periods of 8.8 mm periodicity, generating an on-axis peak magnetic field of 4.2 kG. Each field pea in independently tunable. We employed a novel tuning scheme to reduce the RMS spread in the peak amplitudes to 0.08%, the lowest ever attained in a sub-cm magnetic field. A high brightness, 40 MeV pulsed electron beam produced by the LINAC at the Accelerator Test Facility at Brookhaven National Laboratory was injected into the short period wiggler and visible spontaneous emission was produced. Spectral density profiles were measured and the measured peak wavelength was shown to vary appropriately with beam energy. It is shown that the principal spectral broadening mechanisms are longitudinal energy spread in the electron beam and off-axis emission. Further work is planned at 50 MeV.

  2. Electronic structure and physicochemical properties of selected penicillins

    NASA Astrophysics Data System (ADS)

    Soriano-Correa, Catalina; Ruiz, Juan F. Sánchez; Raya, A.; Esquivel, Rodolfo O.

    Traditionally, penicillins have been used as antibacterial agents due to their characteristics and widespread applications with few collateral effects, which have motivated several theoretical and experimental studies. Despite the latter, their mechanism of biological action has not been completely elucidated. We present a theoretical study at the Hartree-Fock and density functional theory (DFT) levels of theory of a selected group of penicillins such as the penicillin-G, amoxicillin, ampicillin, dicloxacillin, and carbenicillin molecules, to systematically determine the electron structure of full ?-lactam antibiotics. Our results allow us to analyze the electronic properties of the pharmacophore group, the aminoacyl side-chain, and the influence of the substituents (R and X) attached to the aminoacyl side-chain at 6? (in contrast with previous studies focused at the 3? substituents), and to corroborate the results of previous studies performed at the semiempirical level, solely on the ?-lactam ring of penicillins. Besides, several density descriptors are determined with the purpose of analyzing their link to the antibacterial activity of these penicillin compounds. Our results for the atomic charges (fitted to the electrostatic potential), the bond orders, and several global reactivity descriptors, such as the dipole moments, ionization potential, hardness, and the electrophilicity index, led us to characterize: the active sites, the effect of the electron-attracting substituent properties and their physicochemical features, which altogether, might be important to understand the biological activity of these type of molecules.

  3. Electronic structure and bonding in transuranics: comparison with lanthanides

    SciTech Connect

    Ward, J.W.

    1983-01-01

    The physico-chemical properties of the actinide metals, alloys, and compounds show interesting parallels and contrasts with the rare earths, beyond uranium. At first there is a transition region where the unique bonding properties of the early actinides become less prominent, due to progressive f-electron localization. Nevertheless, in contrast to the rare earths, f-electron energies remain close to the Fermi level, resulting in complex behavior as a function of temperature, pressure and structure. Particularly interesting in this region are the metallic hydrides, whose chemistry is clearly rare-earth like, but whose electronic properties are entirely different. At americium a major localization and f-band narrowing occurs, but the explanation of americium behavior is obscured by the occurrence of the unique f/sup 6/ non-magnetic solid-state configuration. Beyond americium, it would appear that real rare-earth-like behavior finally begins; this has been born out by recent studies on the thermodynamics and cohesive energies of curium, berkelium, californium and einsteinium metals. However, a new complication arises almost immediately, in the onset of incipient stabilization of the divalent state, which already appears in californium, whose physico-chemical properties are remarkably similar to samarium. Einsteinium appears to be fully divalent, thus heralding the beginning of a mini-series of truly divalent metals.

  4. Dealing with the exponential wall in electronic structure calculations

    NASA Astrophysics Data System (ADS)

    Fulde, Peter; Stoll, Hermann

    2017-05-01

    An alternative to the density functional theory is the use of wavefunction based electronic structure calculations for solids. In order to perform them, the Exponential Wall (EW) problem has to be resolved. It is caused by an exponential increase of the number of configurations with increasing electron number N. There are different routes one may follow. One is to characterize a many-electron wavefunction by a vector in Liouville space with a cumulant metric rather than in Hilbert space. This removes the EW problem. Another is to model the solid by an impurity or fragment embedded in a bath which is treated at a much lower level than the former. This is the case in the Density Matrix Embedding Theory (DMET) or the Density Embedding Theory (DET). The latter two are closely related to a Schmidt decomposition of a system and to the determination of the associated entanglement. We show here the connection between the two approaches. It turns out that the DMET (or DET) has an identical active space as a previously used Local Ansatz, based on a projection and partitioning approach. Yet, the EW problem is resolved differently in the two cases. By studying a H10 ring, these differences are analyzed with the help of the method of increments.

  5. Automatic Segmentation and Quantification of Filamentous Structures in Electron Tomography

    PubMed Central

    Loss, Leandro A.; Bebis, George; Chang, Hang; Auer, Manfred; Sarkar, Purbasha; Parvin, Bahram

    2016-01-01

    Electron tomography is a promising technology for imaging ultrastructures at nanoscale resolutions. However, image and quantitative analyses are often hindered by high levels of noise, staining heterogeneity, and material damage either as a result of the electron beam or sample preparation. We have developed and built a framework that allows for automatic segmentation and quantification of filamentous objects in 3D electron tomography. Our approach consists of three steps: (i) local enhancement of filaments by Hessian filtering; (ii) detection and completion (e.g., gap filling) of filamentous structures through tensor voting; and (iii) delineation of the filamentous networks. Our approach allows for quantification of filamentous networks in terms of their compositional and morphological features. We first validate our approach using a set of specifically designed synthetic data. We then apply our segmentation framework to tomograms of plant cell walls that have undergone different chemical treatments for polysaccharide extraction. The subsequent compositional and morphological analyses of the plant cell walls reveal their organizational characteristics and the effects of the different chemical protocols on specific polysaccharides. PMID:28090597

  6. Electronic Structure Mediated Vibrational Coherence in Methyl Acetophenone Isomers

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Shu, Yinan; Lozovoy, Vadim; Levine, Benjamin; Dantus, Marcos

    2014-05-01

    The role of ground and excited state electronic structures in influencing the vibrational coherences in gas phase polyatomic molecules has been a hot topic for quite some time. Here we explore the time resolved dynamics of acetophenone and its methyl substituted isomer when excited by intense 800nm femtosecond pump and probe pulses. The parent ion yield show 500 fs modulations that die down within 3ps. Similar modulations having the same timescales in the parent ion yield are also observed for the p-methyl isomer. The o-methyl isomer however shows longer 1ps modulations. Interestingly enough no oscillations are observed for the meta isomer. Quantum chemical calculations at the CASSCF/6-311G level of theory predicts that upon excitation the neutral ground state is planar and the energy spacing between the levels is very small. Preliminary calculations also predict torsional motion coupled to electronic modulations on the D0 state and further calculations are being performed to ascertain the involvement of the D1 and D2 states. This could help us better understand the electronic effect of substitution on a benzene ring.

  7. Electronic Structure Mediated Vibrational Coherence in Methyl Acetophenone Isomers

    NASA Astrophysics Data System (ADS)

    Konar, Arkaprabha; Shu, Yinan; Levine, Benjamin; Lozovoy, Vadim; Dantus, Marcos

    2014-03-01

    The role of ground and excited state electronic structures in influencing the vibrational coherences in gas phase polyatomic molecules has been a hot topic for quite some time. Here we explore the time resolved dynamics of acetophenone and its methyl substituted isomer when excited by intense 800nm femtosecond pump and probe pulses. The parent ion yield show 500 fs modulations that die down within 3ps. Similar modulations having the same timescales in the parent ion yield are also observed for the p-methyl isomer. The o-methyl isomer however shows longer 1ps modulations. Interestingly enough no oscillations are observed for the meta isomer. Quantum chemical calculations at the CASSCF/6-311G level of theory predicts that upon excitation the neutral ground state is planar and the energy spacing between the levels is very small. Preliminary calculations also predict torsional motion coupled to electronic modulations on the D0 state and further calculations are being performed to ascertain the involvement of the D1 and D2 states. This could help us better understand the electronic effect of substitution on a benzene ring.

  8. Electronic Structure and Spectroscopy of HBr and HBr^+

    NASA Astrophysics Data System (ADS)

    Vazquez, Gabriel J.; Liebermann, H. P.; Lefebvre-Brion, H.

    2016-06-01

    We report preliminary ab initio electronic structure calculations of HBr and HBr^+. The computations were carried out employing the MRD-CI package, with a basis set of cc-pVQZ quality augmented with s--, p-- and d--type diffuse functions. In a first series of calculations, without inclusion of spin--orbit splitting, potential energy curves of about 20 doublet and quartet electronic states of HBr^+, and about 30 singlet and triplet (valence and Rydberg) states of HBr were computed. This exploratory step provides a perspective of the character, shape, leading configurations, energetics, and asymptotic behaviour of the electronic states. The calculations taking into account spin-orbit are currently being performed. Our study focuses mainly on the Rydberg states and their interactions with the repulsive valence states and with the bound valence ion-pair state. In particular, the current calculations seek to provide information that might be relevant to the interpretation of recent REMPI measurements which involve the interaction between the diabatic E^1Σ^+ Rydberg state and the diabatic V^1Σ^+ ion--pair state (which together constitute the adiabatic, double-well, B^1Σ^+ state). Several new states of both HBr and HBr^+ are reported. D. Zaouris, A. Kartakoullis, P. Glodic, P. C. Samartzis, H. R. Hródmarsson, Á. Kvaran, Phys. Chem. Chem. Phys., 17, 10468 (2015)

  9. Global Kinetic Modeling of Banded Electron Structures in the Plasmasphere

    NASA Technical Reports Server (NTRS)

    Liemohn, M. W.; Khazanov, G. V.

    1997-01-01

    Significant fluxes of 10 eV to 30 keV electrons have been detected in the plasmasphere, appearing as banded structures in energy with broad spatial extents and slowly evolving over several days. It is thought that these populations are decaying plasma sheet electrons injected into the corotating region of near-Earth space. This capture can occur when the convective electric field drops rapidly and the Alfven boundary suddenly outward, trapping the inner edge of the plasma sheet along closed drift paths. Our bounce-averaged kinetic model of superthermal electron transport is able to simulate this capture and the subsequent drift, diffusion, and decay of the plasma cloud. Results of this simulation will be shown and discussed, from the initial injection during the elevated convection to the final loss of the particles. It is thought that not only Coulomb collisions but also wave-particle interactions play a significant role in altering the plasma cloud. Quasilinear diffusion is currently being incorporated into the model and the importance of this mechanism will be examined. Also, the high anisotropy of the trapped population could be unstable and generate plasma waves. These and other processes will be investigated to determine the final fate of the cloud and to quantify where, how, and when the energy of the plasma cloud is deposited. Comparisons with CRRES observations of these events are shown to verify the model and explain the data.

  10. Test report: Shock test of the electron/proton spectrometer structural test unit

    NASA Technical Reports Server (NTRS)

    Vincent, D. L.

    1972-01-01

    A shock test of the electron-proton spectrometer structural test unit was conducted. The purpose of the shock test was to verify the structural integrity of the electron-spectrometer design and to obtain data on the shock response of the electronics and electronic housing. The test equipment is described and typical shock response data are provided.

  11. Electronic structure imperfections and chemical bonding at graphene interfaces

    NASA Astrophysics Data System (ADS)

    Schultz, Brian Joseph

    nanomaterial with lateral dimensions in the hundreds of microns if not larger, with a corresponding atomic vertical thickness poses significant difficulties. Graphene's unique structure is dominated by surface area or potentially hybridized interfaces; consequently, the true realization of this remarkable nanomaterial in device constructs relies on engineering graphene interfaces at the surface in order to controllably mold the electronic structure. Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy and the transmission mode analogue scanning transmission X-ray microscopy (STXM) are particularly useful tools to study the unoccupied states of graphene and graphene interfaces. In addition, polarized NEXAFS and STXM studies provide information on surface orientation, bond sterics, and the extent of substrate alignment before and after interfacial hybridization. The work presented in this dissertation is fundamentally informed by NEXAFS and STXM measurements on graphene/metal, graphene/dielectric, and graphene/organic interfaces. We start with a general review of the electronic structure of freestanding graphene and graphene interfaces in Chapter 1. In Chapter 2, we investigate freestanding single-layer graphene via STXM and NEXAFS demonstrating that electronic structure heterogeneities from synthesis and processing are ubiquitous in 2-dimensional graphene. We show the mapping of discrete charge transfer regions as a result of doped impurities that decorate the surfaces of graphene and that transfer processing imparts local electronic corrugations or ripples. In corroboration with density functional theory, definitive assignments to the spectral features, global steric orientations of the localized domains, and quantitative charge transfer schemes are evidenced. In the following chapters, we deliberately (Chapter 3) incorporate substitutional nitrogen into reduced graphene oxide to induce C--N charge redistribution and improve global conductivity, (Chapter 4

  12. Electronic structure of the interstitial lithium-associated electron trap in crystalline quartz

    NASA Astrophysics Data System (ADS)

    Wilson, T. M.; Weil, J. A.; Rao, P. S.

    1986-10-01

    A new, paramagnetic (S=1/2) defect, designated the [SiO4/Li]0 center, consisting of an interstitial lithium "atom," recently has been observed by Jani, Halliburton, and Halperin

    [Phys. Rev. Lett. 56, 1392 (1986)]
    in irradiated α-quartz. A model for this defect has been developed utilizing ab initio self-consistent-field, electronic-structure calculations. In this model, the interstitial lithium nucleus lies on a crystal twofold axis passing through two adjacent silicon ions, and has a nearly neutral charge but very low spin density. The properties calculated using this model are consistent with all the available experimental information for this defect.

  13. The structure of the hydrated electron in bulk and at interfaces: Does the hydrated electron occupy a cavity?

    NASA Astrophysics Data System (ADS)

    Casey, Jennifer Ryan

    Since its discovery over fifty years ago, the hydrated electron has been the subject of much interest. Hydrated electrons, which are free electrons in water, are found in fields ranging from biochemistry to radiation chemistry, so it is important that we understand the structure and dynamics of this species. Because of its high reactivity, the hydrated electron's structure has proven difficult to pin down, especially its molecular details. One-electron mixed quantum/classical molecular dynamics simulations have proven useful in helping elucidate the structure of the hydrated electron. The picture most commonly presented from these studies is one of the electron residing in a cavity, disrupting the local water structure much like an anion the size of bromide. Our group has recently proposed a completely different structure for the hydrated electron, which arose from rigorous calculations of a new electron-water potential. The picture that emerged was of an electron that does not occupy a cavity but instead draws water within itself; this non-cavity electron resides in a region of enhanced water density. The one-electron cavity and non-cavity models all predict similar experimental observables that probe the electronic structure of the hydrated electron, such as the optical absorption spectrum, which makes it difficult to determine which model most accurately describes the true structure of the hydrated electron. In this thesis, we work to calculate experimental observables for various simulated cavity and non-cavity models that are particularly sensitive to the local water structure near the electron, in an effort to distinguish the various models from each other. Two particular observables we are interested in are the resonance Raman spectrum and the temperature dependent optical absorption spectrum of the hydrated electron. We find that for both of these experiments, only the non-cavity model has qualitative agreement with experiment; the cavity models miss the

  14. Oxidation of rubrene thin films: an electronic structure study.

    PubMed

    Sinha, Sumona; Wang, C-H; Mukherjee, M; Mukherjee, T; Yang, Y-W

    2014-12-30

    The performances of organic semiconductor devices are crucially linked with their stability at the ambient atmosphere. The evolution of electronic structures of 20 nm thick rubrene films exposed to ambient environment with time has been studied by UV and X-ray photoemission spectroscopy (UPS and XPS), near edge X-ray absorption fine structure (NEXAFS) spectroscopy, and density functional theory (DFT). XPS, NEXAFS data, and DFT calculated values suggest the formation of rubrene-epoxide and rubrene-endoperoxide through reaction of tetracene backbone with oxygen of ambient environment. Angle dependent XPS measurement indicates that the entire probed depth of the films reacts with oxygen by spending only about 120 min in ambient environment. The HOMO peak of pristine rubrene films almost disappears by exposure of 120 min to ambient environment. The evolution of the valence band (occupied states) and NEXAFS (unoccupied states) spectra indicates that the films become more insulating with exposure as the HOMO-LUMO gap increases on oxidation. Oxygen induced chemical reaction completely destroys the delocalized nature of the electron distribution in the tetracene backbone of rubrene. The results are relevant to the performance and reliability of rubrene based devices in the environment.

  15. Dielectric Property Change of Ferroelectrics and Electronic Structures

    NASA Astrophysics Data System (ADS)

    Fujita, Masaki; Sekine, Rika; Sugihara, Sunao

    1999-09-01

    Electronic structures were investigated in relation to the relative permittivity of ferroelectrics such as the ABO3-type and A- and/or B-substituted materials, using amolecular orbital method. The A-site ions were Ba, Pb, Sr and Ca, andthe B-site ion was Zr. Calculation was performed using theDV-Xα (discrete variational Xα) method and the overlappopulation, which is related to the covalent bonding nature, was discussed together with the effective charge. As a result, the change from ferroelectric to paraelectric was found to be associated with the covalency between the A-site ion and Ti or Zr. Furthermore, the energy for π-bonding between O2p and Ti3d (or Zr4d in AZrO3) shifted toward the lower energy level by substitution of the A site with Ca to give a lower relative permittivity. Then, we studied the effect of quantitative changes of the amount (x = 0.25, 0.5, 0.75) of A-site ions in the (Ba1-x, Srx)TiO3 system on the electronic structures, and suggested that the bonding nature between O and Ti is related to the relative permittivity of the system.

  16. Structural enzymology using X-ray free electron lasers

    PubMed Central

    Kupitz, Christopher; Olmos, Jose L.; Holl, Mark; Tremblay, Lee; Pande, Kanupriya; Pandey, Suraj; Oberthür, Dominik; Hunter, Mark; Liang, Mengning; Aquila, Andrew; Tenboer, Jason; Calvey, George; Katz, Andrea; Chen, Yujie; Wiedorn, Max O.; Knoska, Juraj; Meents, Alke; Majriani, Valerio; Norwood, Tyler; Poudyal, Ishwor; Grant, Thomas; Miller, Mitchell D.; Xu, Weijun; Tolstikova, Aleksandra; Morgan, Andrew; Metz, Markus; Martin-Garcia, Jose M.; Zook, James D.; Roy-Chowdhury, Shatabdi; Coe, Jesse; Nagaratnam, Nirupa; Meza, Domingo; Fromme, Raimund; Basu, Shibom; Frank, Matthias; White, Thomas; Barty, Anton; Bajt, Sasa; Yefanov, Oleksandr; Chapman, Henry N.; Zatsepin, Nadia; Nelson, Garrett; Weierstall, Uwe; Spence, John; Schwander, Peter; Pollack, Lois; Fromme, Petra; Ourmazd, Abbas; Phillips, George N.; Schmidt, Marius

    2016-01-01

    Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions. PMID:28083542

  17. Mechanical properties and electronic structures of Fe-Al intermetallic

    NASA Astrophysics Data System (ADS)

    Liu, YaHui; Chong, XiaoYu; Jiang, YeHua; Zhou, Rong; Feng, Jing

    2017-02-01

    Using the first-principles calculations, the elastic properties, anisotropy properties, electronic structures, Debye temperature and stability of Fe-Al (Fe3Al, FeAl, FeAl2, Fe2Al5 and FeAl3) binary compounds were calculated. The formation enthalpy and cohesive energy of these Fe-Al compounds are negative, and show they are thermodynamically stable structures. Fe2Al5 has the lowest formation enthalpy, which shows the Fe2Al5 is the most stable of Fe-Al binary compounds. These Fe-Al compounds display disparate anisotropy due to the calculated different shape of the 3D curved surface of the Young's modulus and anisotropic index. Fe3Al has the biggest bulk modulus with the value 233.2 GPa. FeAl has the biggest Yong's modulus and shear modulus with the value 296.2 GPa and 119.8 GPa, respectively. The partial density of states, total density of states and electron density distribution maps of the binary Fe-Al binary compounds are analyzed. The bonding characteristics of these Fe-Al binary compounds are mainly combination by covalent bond and metallic bonds. Meanwhile, also exist anti-bond effect. Moreover, the Debye temperatures and sound velocity of these Fe-Al compounds are explored.

  18. Computational methods for the electronic structure of defects in insulators

    NASA Astrophysics Data System (ADS)

    Harker, A. H.

    It is clear that one of the weakest points of current theories of point defects is in the treatment of the electronic structure of the host lattice. One of the advantages of cluster calculations is that the defect and lattice can be treated together. Great care is needed to incorporate the electrostatic field of the lattice outside the cluster correctly. Polarisation and distortion can be handled by cluster models where they are of short range, that is, for neutral defects. For charged defects hybrid models similar to those used by Wood and Opik(7,8) will have to be developed. The final method may well involve three regions: an innermost region in which the electronic structure is calculated in detail and self-consistently; a second region with model ions, interacting with each other through potentials of Born-Mayer type and with the inner region through pseudopotentials; and an outer continuum. The distortion of the whole would be controlled by some efficient algorithm similar to that used in the lattice simulation methods discussed in Chapter (1).

  19. Structural enzymology using X-ray free electron lasers.

    PubMed

    Kupitz, Christopher; Olmos, Jose L; Holl, Mark; Tremblay, Lee; Pande, Kanupriya; Pandey, Suraj; Oberthür, Dominik; Hunter, Mark; Liang, Mengning; Aquila, Andrew; Tenboer, Jason; Calvey, George; Katz, Andrea; Chen, Yujie; Wiedorn, Max O; Knoska, Juraj; Meents, Alke; Majriani, Valerio; Norwood, Tyler; Poudyal, Ishwor; Grant, Thomas; Miller, Mitchell D; Xu, Weijun; Tolstikova, Aleksandra; Morgan, Andrew; Metz, Markus; Martin-Garcia, Jose M; Zook, James D; Roy-Chowdhury, Shatabdi; Coe, Jesse; Nagaratnam, Nirupa; Meza, Domingo; Fromme, Raimund; Basu, Shibom; Frank, Matthias; White, Thomas; Barty, Anton; Bajt, Sasa; Yefanov, Oleksandr; Chapman, Henry N; Zatsepin, Nadia; Nelson, Garrett; Weierstall, Uwe; Spence, John; Schwander, Peter; Pollack, Lois; Fromme, Petra; Ourmazd, Abbas; Phillips, George N; Schmidt, Marius

    2017-07-01

    Mix-and-inject serial crystallography (MISC) is a technique designed to image enzyme catalyzed reactions in which small protein crystals are mixed with a substrate just prior to being probed by an X-ray pulse. This approach offers several advantages over flow cell studies. It provides (i) room temperature structures at near atomic resolution, (ii) time resolution ranging from microseconds to seconds, and (iii) convenient reaction initiation. It outruns radiation damage by using femtosecond X-ray pulses allowing damage and chemistry to be separated. Here, we demonstrate that MISC is feasible at an X-ray free electron laser by studying the reaction of M. tuberculosis ß-lactamase microcrystals with ceftriaxone antibiotic solution. Electron density maps of the apo-ß-lactamase and of the ceftriaxone bound form were obtained at 2.8 Å and 2.4 Å resolution, respectively. These results pave the way to study cyclic and non-cyclic reactions and represent a new field of time-resolved structural dynamics for numerous substrate-triggered biological reactions.

  20. Electronic structure and conductivity of ferroelectric hexaferrite: Ab initio calculations

    NASA Astrophysics Data System (ADS)

    Knížek, K.; Novák, P.; Küpferling, M.

    2006-04-01

    Ba0.5Sr1.5Zn2Fe12O22 is a promising multiferroic compound in which the electric polarization is intimately connected to the magnetic state. In principle, ferroelectrity might exist above the room temperature, but the electrical conductivity that increases with increasing temperature limits it to temperatures below ≈130K . We present results of an ab initio electronic structure calculation of the (BaSr)Zn2Fe12O22 system. To improve the description of strongly correlated 3d electrons of iron, the GGA+U method is used. The results show that the electrical conductivity strongly depends on relative fractions of iron and zinc in the tetrahedral sublattice that belongs to the spinel block of the hexaferrite structure. If this sublattice is fully occupied by zinc, the system is an insulator with a gap of ≈1.5eV . If it is occupied equally by Fe and Zn the gap decreases by a factor of 2, and the system is metallic when this sublattice is filled by iron only.