Description of a Mobile-based Electronic Informed Consent System Development.
Hwang, Min-A; Kwak, In Ja
2015-01-01
Seoul National University Hospital constructed and implemented a computer-based informed consent system in December 2011. As of 2013, 30% of the informed consents were still filled out manually on paper. Patients and medical staff continuously suggested the implementation of a system for electronic informed consent using portable devices. Therefore, a mobile-based system for electronic informed consent was developed in 2013 to prevent the issues that arise with computer-based systems and paper informed consent. The rate of filling out electronic informed consent increased from 69% to 95% following the implementation of the mobile-based electronic informed consent. This construction of a mobile-based electronic informed consent system would be a good reference point for the development of a mobile-based Electronic Medical Record and for various mobile system environments in medical institutions.
Controlled cooling of an electronic system based on projected conditions
David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.
2016-05-17
Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.
Controlled cooling of an electronic system based on projected conditions
David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.
2015-08-18
Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.
[Electronic poison information management system].
Kabata, Piotr; Waldman, Wojciech; Kaletha, Krystian; Sein Anand, Jacek
2013-01-01
We describe deployment of electronic toxicological information database in poison control center of Pomeranian Center of Toxicology. System was based on Google Apps technology, by Google Inc., using electronic, web-based forms and data tables. During first 6 months from system deployment, we used it to archive 1471 poisoning cases, prepare monthly poisoning reports and facilitate statistical analysis of data. Electronic database usage made Poison Center work much easier.
Al-Jedai, Ahmed H; Algain, Roaa A; Alghamidi, Said A; Al-Jazairi, Abdulrazaq S; Amin, Rashid; Bin Hussain, Ibrahim Z
2017-10-01
In the last few decades, changes to formulary management processes have taken place in institutions with closed formulary systems. However, many P&T committees continued to operate using traditional paper-based systems. Paper-based systems have many limitations, including confidentiality, efficiency, open voting, and paper wastage. This becomes more challenging when dealing with a multisite P&T committee that handles formulary matters across the whole health care system. In this paper, we discuss the implementation of the first paperless, completely electronic, Web-based formulary management system across a large health care system in the Middle East. We describe the transitioning of a multisite P&T committee in a large tertiary care institution from a paper-based to an all-electronic system. The challenges and limitations of running a multisite P&T committee utilizing a paper system are discussed. The design and development of a Web-based committee floor management application that can be used from notebooks, tablets, and hand-held devices is described. Implementation of a flexible, interactive, easy-to-use, and efficient electronic formulary management system is explained in detail. The development of an electronic P&T committee meeting system that encompasses electronic document sharing, voting, and communication could help multisite health care systems unify their formularies across multiple sites. Our experience might not be generalizable to all institutions because this depends heavily on system features, existing processes and workflow, and implementation across different sites.
Min, Yul Ha; Park, Hyeoun-Ae; Chung, Eunja; Lee, Hyunsook
2013-12-01
The purpose of this paper is to describe the components of a next-generation electronic nursing records system ensuring full semantic interoperability and integrating evidence into the nursing records system. A next-generation electronic nursing records system based on detailed clinical models and clinical practice guidelines was developed at Seoul National University Bundang Hospital in 2013. This system has two components, a terminology server and a nursing documentation system. The terminology server manages nursing narratives generated from entity-attribute-value triplets of detailed clinical models using a natural language generation system. The nursing documentation system provides nurses with a set of nursing narratives arranged around the recommendations extracted from clinical practice guidelines. An electronic nursing records system based on detailed clinical models and clinical practice guidelines was successfully implemented in a hospital in Korea. The next-generation electronic nursing records system can support nursing practice and nursing documentation, which in turn will improve data quality.
A Framework for Model-Based Diagnostics and Prognostics of Switched-Mode Power Supplies
2014-10-02
system. Some highlights of the work are included but not only limited to the following aspects: first, the methodology is based on electronic ... electronic health management, with the goal of expanding the realm of electronic diagnostics and prognostics. 1. INTRODUCTION Electronic systems such...as electronic controls, onboard computers, communications, navigation and radar perform many critical functions in onboard military and commercial
Al-Jedai, Ahmed H.; Algain, Roaa A.; Alghamidi, Said A.; Al-Jazairi, Abdulrazaq S.; Amin, Rashid; Bin Hussain, Ibrahim Z.
2017-01-01
Purpose In the last few decades, changes to formulary management processes have taken place in institutions with closed formulary systems. However, many P&T committees continued to operate using traditional paper-based systems. Paper-based systems have many limitations, including confidentiality, efficiency, open voting, and paper wastage. This becomes more challenging when dealing with a multisite P&T committee that handles formulary matters across the whole health care system. In this paper, we discuss the implementation of the first paperless, completely electronic, Web-based formulary management system across a large health care system in the Middle East. Summary We describe the transitioning of a multisite P&T committee in a large tertiary care institution from a paper-based to an all-electronic system. The challenges and limitations of running a multisite P&T committee utilizing a paper system are discussed. The design and development of a Web-based committee floor management application that can be used from notebooks, tablets, and hand-held devices is described. Implementation of a flexible, interactive, easy-to-use, and efficient electronic formulary management system is explained in detail. Conclusion The development of an electronic P&T committee meeting system that encompasses electronic document sharing, voting, and communication could help multisite health care systems unify their formularies across multiple sites. Our experience might not be generalizable to all institutions because this depends heavily on system features, existing processes and workflow, and implementation across different sites. PMID:29018301
Kim, Hwa Sun; Cho, Hune; Lee, In Keun
2011-06-01
We design and develop an electronic claim system based on an integrated electronic health record (EHR) platform. This system is designed to be used for ambulatory care by office-based physicians in the United States. This is achieved by integrating various medical standard technologies for interoperability between heterogeneous information systems. The developed system serves as a simple clinical data repository, it automatically fills out the Centers for Medicare and Medicaid Services (CMS)-1500 form based on information regarding the patients and physicians' clinical activities. It supports electronic insurance claims by creating reimbursement charges. It also contains an HL7 interface engine to exchange clinical messages between heterogeneous devices. The system partially prevents physician malpractice by suggesting proper treatments according to patient diagnoses and supports physicians by easily preparing documents for reimbursement and submitting claim documents to insurance organizations electronically, without additional effort by the user. To show the usability of the developed system, we performed an experiment that compares the time spent filling out the CMS-1500 form directly and time required create electronic claim data using the developed system. From the experimental results, we conclude that the system could save considerable time for physicians in making claim documents. The developed system might be particularly useful for those who need a reimbursement-specialized EHR system, even though the proposed system does not completely satisfy all criteria requested by the CMS and Office of the National Coordinator for Health Information Technology (ONC). This is because the criteria are not sufficient but necessary condition for the implementation of EHR systems. The system will be upgraded continuously to implement the criteria and to offer more stable and transparent transmission of electronic claim data.
Electrically induced spontaneous emission in open electronic system
NASA Astrophysics Data System (ADS)
Wang, Rulin; Zhang, Yu; Yam, Chiyung; Computation Algorithms Division (CSRC) Team; Theoretical; Computational Chemistry (HKU) Collaboration
A quantum mechanical approach is formulated for simulation of electroluminescence process in open electronic system. Based on nonequilibrium Green's function quantum transport equations and combining with photon-electron interaction, this method is used to describe electrically induced spontaneous emission caused by electron-hole recombination. The accuracy and reliability of simulation depends critically on correct description of the electronic band structure and the electron occupancy in the system. In this work, instead of considering electron-hole recombination in discrete states in the previous work, we take continuous states into account to simulate the spontaneous emission in open electronic system, and discover that the polarization of emitted photon is closely related to its propagation direction. Numerical studies have been performed to silicon nanowire-based P-N junction with different bias voltage.
A New Design Method of Automotive Electronic Real-time Control System
NASA Astrophysics Data System (ADS)
Zuo, Wenying; Li, Yinguo; Wang, Fengjuan; Hou, Xiaobo
Structure and functionality of automotive electronic control system is becoming more and more complex. The traditional manual programming development mode to realize automotive electronic control system can't satisfy development needs. So, in order to meet diversity and speedability of development of real-time control system, combining model-based design approach and auto code generation technology, this paper proposed a new design method of automotive electronic control system based on Simulink/RTW. Fristly, design algorithms and build a control system model in Matlab/Simulink. Then generate embedded code automatically by RTW and achieve automotive real-time control system development in OSEK/VDX operating system environment. The new development mode can significantly shorten the development cycle of automotive electronic control system, improve program's portability, reusability and scalability and had certain practical value for the development of real-time control system.
[Application of electronic fence technology based on GIS in Oncomelania hupensis snail monitoring].
Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang
2017-07-27
To study the application of Geographic Information System (GIS) electronic fence technique in Oncomelania hupensis snail monitoring. The electronic fence was set around the history and existing snail environments in the electronic map, the information about snail monitoring and controlling was linked to the electronic fence, and the snail monitoring information system was established on these bases. The monitoring information was input through the computer and smart phone. The electronic fence around the history and existing snail environments was set in the electronic map (Baidu map), and the snail monitoring information system and smart phone APP were established. The monitoring information was input and upload real-time, and the snail monitoring information was demonstrated in real time on Baidu map. By using the electronic fence technology based on GIS, the unique "environment electronic archives" for each snail monitoring environment can be established in the electronic map, and real-time, dynamic monitoring and visual management can be realized.
High Temperature Pt/Alumina Co-Fired System for 500 C Electronic Packaging Applications
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu; Neudeck, Philip G.; Spry, David J.; Beheim, Glenn M.; Hunter, Gary W.
2015-01-01
Gold thick-film metallization and 96 alumina substrate based prototype packaging system developed for 500C SiC electronics and sensors is briefly reviewed, the needs of improvement are discussed. A high temperature co-fired alumina material system based packaging system composed of 32-pin chip-level package and printed circuit board is discussed for packaging 500C SiC electronics and sensors.
Controlled cooling of an electronic system for reduced energy consumption
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.
Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the coolingmore » system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.« less
Molecular engineering of phosphole-based conjugated materials
NASA Astrophysics Data System (ADS)
Ren, Yi
The work in this thesis focuses on the molecular engineering of phosphorus-based conjugated materials. In the first part (Chapters Two and Three), new phosphorus-based conjugated systems were designed and synthesized to study the effect of the heteroelement on the electronic properties of the π-conjugated systems. The second part (Chapters Four and Five) deals with the self-assembly features of specifically designed phosphorus-based conjugated systems. In Chapter Two, electron-poor and electron-rich aromatic substituents were introduced to the dithienophosphole core in order to balance the electron-accepting and electron-donating character of the systems. Furthermore, an intriguing intramolecular charge transfer process could be observed between two dithienophosphole cores in a bridged bisphosphole-system. In Chapter Three, a secondary heteroelement (Si, P, S) was incorporated in the phosphorus-based conjugated systems. Extensive structure-property studies revealed that the secondary heteroelement can effectively manipulate the communication in phosphinine-based systems. The study of a heterotetracene system allowed for selectively applying distinct heteroatom (S/P) chemistries, which offers a powerful tool for the modification of the electronic structure of the system. More importantly, the heteroatom-specific electronic nature (S/P) can be utilized to selectively control different photophysical aspects (energy gap and fluorescence quantum yield). Furthermore, additional molecular engineering of the heterotetracene provided access to well-defined 1D microstructures, which opened the door for designing multi-functional self-assembled phosphorus-based materials. In Chapter Four, the self-organizing phosphole-lipid system is introduced, which combines the features of phospholipids with the electronics of phospholes. Its amphiphilic nature induces intriguing self-assembly features - liquid crystal and soft crystal architectures, both exhibiting well-organized lamellar structure at a wide range of temperatures. Importantly, its dynamic structure endows the phosphole-lipid system with intriguing external stimuli-responsive features allowing for the modification of the emission of the system without further chemical modification. Chapter Five describes how further molecular engineering allowed for access to a series of new highly fluorescent phosphole-lipid organogels. Remarkably, the external-stimuli responsive features of the system can be amplified in a donor-acceptor system accessible through changes in long distance fluorescence resonance energy transfer processes. In addition, the first fluorescent liquid phospholes could also be accessed in the context of the work on the new phosphole-lipid system.
NASA Astrophysics Data System (ADS)
Wan, Chang Jin; Zhu, Li Qiang; Zhou, Ju Mei; Shi, Yi; Wan, Qing
2013-10-01
In neuroscience, signal processing, memory and learning function are established in the brain by modifying ionic fluxes in neurons and synapses. Emulation of memory and learning behaviors of biological systems by nanoscale ionic/electronic devices is highly desirable for building neuromorphic systems or even artificial neural networks. Here, novel artificial synapses based on junctionless oxide-based protonic/electronic hybrid transistors gated by nanogranular phosphorus-doped SiO2-based proton-conducting films are fabricated on glass substrates by a room-temperature process. Short-term memory (STM) and long-term memory (LTM) are mimicked by tuning the pulse gate voltage amplitude. The LTM process in such an artificial synapse is due to the proton-related interfacial electrochemical reaction. Our results are highly desirable for building future neuromorphic systems or even artificial networks via electronic elements.In neuroscience, signal processing, memory and learning function are established in the brain by modifying ionic fluxes in neurons and synapses. Emulation of memory and learning behaviors of biological systems by nanoscale ionic/electronic devices is highly desirable for building neuromorphic systems or even artificial neural networks. Here, novel artificial synapses based on junctionless oxide-based protonic/electronic hybrid transistors gated by nanogranular phosphorus-doped SiO2-based proton-conducting films are fabricated on glass substrates by a room-temperature process. Short-term memory (STM) and long-term memory (LTM) are mimicked by tuning the pulse gate voltage amplitude. The LTM process in such an artificial synapse is due to the proton-related interfacial electrochemical reaction. Our results are highly desirable for building future neuromorphic systems or even artificial networks via electronic elements. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr02987e
Electronic Procedures for Medical Operations
NASA Technical Reports Server (NTRS)
2015-01-01
Electronic procedures are replacing text-based documents for recording the steps in performing medical operations aboard the International Space Station. S&K Aerospace, LLC, has developed a content-based electronic system-based on the Extensible Markup Language (XML) standard-that separates text from formatting standards and tags items contained in procedures so they can be recognized by other electronic systems. For example, to change a standard format, electronic procedures are changed in a single batch process, and the entire body of procedures will have the new format. Procedures can be quickly searched to determine which are affected by software and hardware changes. Similarly, procedures are easily shared with other electronic systems. The system also enables real-time data capture and automatic bookmarking of current procedure steps. In Phase II of the project, S&K Aerospace developed a Procedure Representation Language (PRL) and tools to support the creation and maintenance of electronic procedures for medical operations. The goal is to develop these tools in such a way that new advances can be inserted easily, leading to an eventual medical decision support system.
Fully printable, strain-engineered electronic wrap for customizable soft electronics.
Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek
2017-03-24
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.
Fully printable, strain-engineered electronic wrap for customizable soft electronics
NASA Astrophysics Data System (ADS)
Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek
2017-03-01
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form.
Fully printable, strain-engineered electronic wrap for customizable soft electronics
Byun, Junghwan; Lee, Byeongmoon; Oh, Eunho; Kim, Hyunjong; Kim, Sangwoo; Lee, Seunghwan; Hong, Yongtaek
2017-01-01
Rapid growth of stretchable electronics stimulates broad uses in multidisciplinary fields as well as industrial applications. However, existing technologies are unsuitable for implementing versatile applications involving adaptable system design and functions in a cost/time-effective way because of vacuum-conditioned, lithographically-predefined processes. Here, we present a methodology for a fully printable, strain-engineered electronic wrap as a universal strategy which makes it more feasible to implement various stretchable electronic systems with customizable layouts and functions. The key aspects involve inkjet-printed rigid island (PRI)-based stretchable platform technology and corresponding printing-based automated electronic functionalization methodology, the combination of which provides fully printed, customized layouts of stretchable electronic systems with simplified process. Specifically, well-controlled contact line pinning effect of printed polymer solution enables the formation of PRIs with tunable thickness; and surface strain analysis on those PRIs leads to the optimized stability and device-to-island fill factor of strain-engineered electronic wraps. Moreover, core techniques of image-based automated pinpointing, surface-mountable device based electronic functionalizing, and one-step interconnection networking of PRIs enable customized circuit design and adaptable functionalities. To exhibit the universality of our approach, multiple types of practical applications ranging from self-computable digital logics to display and sensor system are demonstrated on skin in a customized form. PMID:28338055
Electronics of the data acquisition system of the DANSS detector based on silicon photomultipliers
NASA Astrophysics Data System (ADS)
Svirida, D.
2018-01-01
The electronics of the data acquisition system based on silicon photomultipliers is briefly described. The elements and modules of the system were designed and constructed at ITEP especially for the DANSS detector. Examples of digitized signals obtained with the presented electronic modules and selected results on processing of the DANSS engineering data-taking run in spring 2016 are given.
An ANFIS-based on B2C electronic commerce transaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Juan, E-mail: linjuanliucaihong@qq.com; Liu, Chenlian, E-mail: chenglian.liu@gmail.com; Guo, Yongning, E-mail: guoyn@163.com
2014-10-06
The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.
An ANFIS-based on B2C electronic commerce transaction
NASA Astrophysics Data System (ADS)
Lin, Juan; Liu, Chenlian; Guo, Yongning
2014-10-01
The purpose of this study is to use an adaptive-network-based fuzzy inference system to model a fuzzy logic-based system (FIS) for supporting decision-making process in B2C electronic commerce transaction. Firstly we introduce FIS in B2C electronic commerce transaction and ANFIS. Then we use ANFIS to model FIS with different membership functions(MF). Lastly we give a conclusion.
ARM-based control system for terry rapier loom
NASA Astrophysics Data System (ADS)
Shi, Weimin; Gu, Yeqing; Wu, Zhenyu; Wang, Fan
2007-12-01
In this paper, a novel ARM-based mechatronics control technique applied in terry rapier loom was presented. Electronic weft selection, electronic fluff, electronic let-off and take-up motions system, which consists of position and speedcontrolled servomechanisms, were studied. The control system configuration, operation principle, and mathematical models of electronic drives system were analyzed. The synchronism among all mechanical motions and an improved intelligent control algorithm for the warp let-off tension control was discussed. The result indict that, by applying electronic and embedded control techniques and the individual servomechanisms, the electronic weft selection, electronic let-off device and electronic take-up device in HGA732T terry rapier loom have greatly simplified the initial complicated mechanism, kept the warp tension constant from full to empty beam, set the variable weft density, eliminated the start mark effectively, promoted its flexibility, reliability and properties, and improved the fabric quality.
Secure electronic commerce communication system based on CA
NASA Astrophysics Data System (ADS)
Chen, Deyun; Zhang, Junfeng; Pei, Shujun
2001-07-01
In this paper, we introduce the situation of electronic commercial security, then we analyze the working process and security for SSL protocol. At last, we propose a secure electronic commerce communication system based on CA. The system provide secure services such as encryption, integer, peer authentication and non-repudiation for application layer communication software of browser clients' and web server. The system can implement automatic allocation and united management of key through setting up the CA in the network.
Thai, L H; Nhat, L M; Shah, N; Lyss, S; Ackers, M
2017-12-21
Setting: Since 2011, tuberculosis (TB) clinics in Ho Chi Minh City (HCMC), Viet Nam, have been entering data from a paper-based TB treatment register into an electronic database known as VITIMES (Viet Nam TB Information Management Electronic System), which is currently used in parallel with the paper system. Objective: To evaluate the sensitivity, completeness and agreement of data in VITIMES with that of paper-based registers among TB patients co-infected with the human immunodeficiency virus (HIV) being treated for TB in HCMC. Design: This was a retrospective data review of all TB-HIV patients receiving anti-tuberculosis treatment in each of the 24 district TB clinics in HCMC in 2013. Data were abstracted from the paper-based TB treatment registers at district level and extracted electronically at the provincial level. Records were matched based on name, age and address. The sensitivity, completeness and agreement of the electronic data were compared with data from the paper system. Results: The findings showed that the electronic system had high sensitivity (99.2%), high completeness (87-99%) and high agreement (κ 0.78-0.97) for all variables. Conclusion: The results of this study suggest that data are being correctly entered into VITIMES and that patient data can be directly entered into VITIMES instead of having a parallel, paper-based system.
Nhat, L. M.; Shah, N.; Lyss, S.; Ackers, M.
2017-01-01
Setting: Since 2011, tuberculosis (TB) clinics in Ho Chi Minh City (HCMC), Viet Nam, have been entering data from a paper-based TB treatment register into an electronic database known as VITIMES (Viet Nam TB Information Management Electronic System), which is currently used in parallel with the paper system. Objective: To evaluate the sensitivity, completeness and agreement of data in VITIMES with that of paper-based registers among TB patients co-infected with the human immunodeficiency virus (HIV) being treated for TB in HCMC. Design: This was a retrospective data review of all TB-HIV patients receiving anti-tuberculosis treatment in each of the 24 district TB clinics in HCMC in 2013. Data were abstracted from the paper-based TB treatment registers at district level and extracted electronically at the provincial level. Records were matched based on name, age and address. The sensitivity, completeness and agreement of the electronic data were compared with data from the paper system. Results: The findings showed that the electronic system had high sensitivity (99.2%), high completeness (87–99%) and high agreement (κ 0.78–0.97) for all variables. Conclusion: The results of this study suggest that data are being correctly entered into VITIMES and that patient data can be directly entered into VITIMES instead of having a parallel, paper-based system. PMID:29584795
NASA Astrophysics Data System (ADS)
Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.
2018-01-01
An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.
[Implementation of Oncomelania hupensis monitoring system based on Baidu Map].
Zhi-Hua, Chen; Yi-Sheng, Zhu; Zhi-Qiang, Xue; Xue-Bing, Li; Yi-Min, Ding; Li-Jun, Bi; Kai-Min, Gao; You, Zhang
2017-10-25
To construct the Oncomelania hupensis snail monitoring system based on the Baidu Map. The environmental basic information about historical snail environment and existing snail environment, etc. was collected with the monitoring data about different kinds of O. hupensis snails, and then the O. hupensis snail monitoring system was built. Geographic Information System (GIS) and the electronic fence technology and Application Program Interface (API) were applied to set up the electronic fence of the snail surveillance environments, and the electronic fence was connected to the database of the snail surveillance. The O. hupensis snail monitoring system based on the Baidu Map were built up, including three modules of O. hupensis Snail Monitoring Environmental Database, Dynamic Monitoring Platform and Electronic Map. The information about monitoring O. hupensis snails could be obtained through the computer and smartphone simultaneously. The O. hupensis snail monitoring system, which is based on Baidu Map, is a visible platform to follow the process of snailsearching and molluscaciding.
[New electronic data carriers in Bosnia-Herzegovina].
Masić, I; Pandza, H; Knezević, Z; Toromanović, S
1999-01-01
Bosnia and Herzegovina has been developing new Health Care System based on Electronic Registration Card. Developing countries proceeded from the manual and semiautomatic method of medical data processing to the new method of entering, storage, transfer, searching and protection of data using electronic equipment. Currently, many European countries have developed a Medical Card Based Electronic Information System. Both technologies offer the advantages and disadvantages. Three types of electronic card are currently in use: Hybrid Card, Smart Card and Laser Card. Hybrid Card offers characteristics of both Smart Card and Laser Card. The differences among these cards, such as a capacity, total price, price per byte, security system are discussed here. The dilemma is, which card should be used as a data carrier. The Electronic Family Registration Card is a question of strategic interest for B&H, but also a big investment. We should avoid the errors of other countries that have been developing card-based system. In this article we present all mentioned cards and compare advantages and disadvantages of different technologies.
Why NASA and the Space Electronics Community Cares About Cyclotrons
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.
2017-01-01
NASA and the space community are faced with the harsh reality of operating electronic systems in the space radiation environment. Systems need to work reliably (as expected for as long as expected) and be available during critical operations such as docking or firing a thruster. This talk will provide a snapshot of the import of ground-based research on the radiation performance of electronics. Discussion topics include: 1) The space radiation environment hazard, 2) Radiation effects on electronics, 3) Simulation of effects with cyclotrons (and other sources), 4) Risk prediction for space missions, and, 5) Real-life examples of both ground-based testing and space-based anomalies and electronics performance. The talk will conclude with a discussion of the current state of radiation facilities in North America for ground-based electronics testing.
The research on electronic commerce security payment system based on set protocol
NASA Astrophysics Data System (ADS)
Guo, Hongliang
2012-04-01
With the rapid development of network technology, online transactions have become more and more common. In this paper, we firstly introduce the principle and the basic principal and technical foundation of SET, and then we analyze the progress of designing a system in the foundation of the procedure of the electronic business based on SET. On this basis, we design a system of the Payment System for Electronic Business. It will not only take on crucial realism signification for large-scale, medium-sized and mini-type corporations, but also provide guide meaning with programmer and design-developer to realize Electronic Commerce (EC).
Electronic Data Collection Options for Practice-Based Research Networks
Pace, Wilson D.; Staton, Elizabeth W.
2005-01-01
PURPOSE We wanted to describe the potential benefits and problems associated with selected electronic methods of collecting data within practice-based research networks (PBRNs). METHODS We considered a literature review, discussions with PBRN researchers, industry information, and personal experience. This article presents examples of selected PBRNs’ use of electronic data collection. RESULTS Collecting research data in the geographically dispersed PBRN environment requires considerable coordination to ensure completeness, accuracy, and timely transmission of the data, as well as a limited burden on the participants. Electronic data collection, particularly at the point of care, offers some potential solutions. Electronic systems allow use of transparent decision algorithms and improved data entry and data integrity. These systems may improve data transfer to the central office as well as tracking systems for monitoring study progress. PBRNs have available to them a wide variety of electronic data collection options, including notebook computers, tablet PCs, personal digital assistants (PDAs), and browser-based systems that operate independent of or over the Internet. Tablet PCs appear particularly advantageous for direct patient data collection in an office environment. PDAs work well for collecting defined data elements at the point of care. Internet-based systems work well for data collection that can be completed after the patient visit, as most primary care offices do not support Internet connectivity in examination rooms. CONCLUSIONS When planning to collect data electronically, it is important to match the electronic data collection method to the study design. Focusing an inappropriate electronic data collection method onto users can interfere with accurate data gathering and may also anger PBRN members. PMID:15928215
Electronic data collection options for practice-based research networks.
Pace, Wilson D; Staton, Elizabeth W
2005-01-01
We wanted to describe the potential benefits and problems associated with selected electronic methods of collecting data within practice-based research networks (PBRNs). We considered a literature review, discussions with PBRN researchers, industry information, and personal experience. This article presents examples of selected PBRNs' use of electronic data collection. Collecting research data in the geographically dispersed PBRN environment requires considerable coordination to ensure completeness, accuracy, and timely transmission of the data, as well as a limited burden on the participants. Electronic data collection, particularly at the point of care, offers some potential solutions. Electronic systems allow use of transparent decision algorithms and improved data entry and data integrity. These systems may improve data transfer to the central office as well as tracking systems for monitoring study progress. PBRNs have available to them a wide variety of electronic data collection options, including notebook computers, tablet PCs, personal digital assistants (PDAs), and browser-based systems that operate independent of or over the Internet. Tablet PCs appear particularly advantageous for direct patient data collection in an office environment. PDAs work well for collecting defined data elements at the point of care. Internet-based systems work well for data collection that can be completed after the patient visit, as most primary care offices do not support Internet connectivity in examination rooms. When planning to collect data electronically, it is important to match the electronic data collection method to the study design. Focusing an inappropriate electronic data collection method onto users can interfere with accurate data gathering and may also anger PBRN members.
Electronic properties of a molecular system with Platinum
NASA Astrophysics Data System (ADS)
Ojeda, J. H.; Medina, F. G.; Becerra-Alonso, David
2017-10-01
The electronic properties are studied using a finite homogeneous molecule called Trans-platinum-linked oligo(tetraethenylethenes). This system is composed of individual molecules such as benzene rings, platinum, Phosphore and Sulfur. The mechanism for the study of the electron transport through this system is based on placing the molecule between metal contacts to control the current through the molecular system. We study this molecule based on the tight-binding approach for the calculation of the transport properties using the Landauer-Büttiker formalism and the Fischer-Lee relationship, based on a semi-analytic Green's function method within a real-space renormalization approach. Our results show a significant agreement with experimental measurements.
Ahmadi, Maryam; Ghazisaeidi, Marjan; Bashiri, Azadeh
2015-03-18
In order to better designing of electronic health record system in Iran, integration of health information systems based on a common language must be done to interpret and exchange this information with this system is required. This study provides a conceptual model of radiology reporting system using unified modeling language. The proposed model can solve the problem of integration this information system with the electronic health record system. By using this model and design its service based, easily connect to electronic health record in Iran and facilitate transfer radiology report data. This is a cross-sectional study that was conducted in 2013. The study population was 22 experts that working at the Imaging Center in Imam Khomeini Hospital in Tehran and the sample was accorded with the community. Research tool was a questionnaire that prepared by the researcher to determine the information requirements. Content validity and test-retest method was used to measure validity and reliability of questioner respectively. Data analyzed with average index, using SPSS. Also Visual Paradigm software was used to design a conceptual model. Based on the requirements assessment of experts and related texts, administrative, demographic and clinical data and radiological examination results and if the anesthesia procedure performed, anesthesia data suggested as minimum data set for radiology report and based it class diagram designed. Also by identifying radiology reporting system process, use case was drawn. According to the application of radiology reports in electronic health record system for diagnosing and managing of clinical problem of the patient, with providing the conceptual Model for radiology reporting system; in order to systematically design it, the problem of data sharing between these systems and electronic health records system would eliminate.
ERIC Educational Resources Information Center
Stevenson, Kimberly
This master's thesis describes the development of an expert system and interactive videodisc computer-based instructional job aid used for assisting in the integration of electron beam lithography devices. Comparable to all comprehensive training, expert system and job aid development require a criterion-referenced systems approach treatment to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.
Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the coolingmore » system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.« less
Takeda, Toshihiro; Ueda, Kanayo; Nakagawa, Akito; Manabe, Shirou; Okada, Katsuki; Mihara, Naoki; Matsumura, Yasushi
2017-01-01
Electronic health record (EHR) systems are necessary for the sharing of medical information between care delivery organizations (CDOs). We developed a document-based EHR system in which all of the PDF documents that are stored in our electronic medical record system can be disclosed to selected target CDOs. An access control list (ACL) file was designed based on the HL7 CDA header to manage the information that is disclosed.
Programmable Hydrogel Ionic Circuits for Biologically Matched Electronic Interfaces.
Zhao, Siwei; Tseng, Peter; Grasman, Jonathan; Wang, Yu; Li, Wenyi; Napier, Bradley; Yavuz, Burcin; Chen, Ying; Howell, Laurel; Rincon, Javier; Omenetto, Fiorenzo G; Kaplan, David L
2018-06-01
The increased need for wearable and implantable medical devices has driven the demand for electronics that interface with living systems. Current bioelectronic systems have not fully resolved mismatches between engineered circuits and biological systems, including the resulting pain and damage to biological tissues. Here, salt/poly(ethylene glycol) (PEG) aqueous two-phase systems are utilized to generate programmable hydrogel ionic circuits. High-conductivity salt-solution patterns are stably encapsulated within PEG hydrogel matrices using salt/PEG phase separation, which route ionic current with high resolution and enable localized delivery of electrical stimulation. This strategy allows designer electronics that match biological systems, including transparency, stretchability, complete aqueous-based connective interface, distribution of ionic electrical signals between engineered and biological systems, and avoidance of tissue damage from electrical stimulation. The potential of such systems is demonstrated by generating light-emitting diode (LED)-based displays, skin-mounted electronics, and stimulators that deliver localized current to in vitro neuron cultures and muscles in vivo with reduced adverse effects. Such electronic platforms may form the basis of future biointegrated electronic systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Graph-based linear scaling electronic structure theory.
Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
Graph-based linear scaling electronic structure theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niklasson, Anders M. N., E-mail: amn@lanl.gov; Negre, Christian F. A.; Cawkwell, Marc J.
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
Wang, Fuliang; Mao, Peng; He, Hu
2016-02-17
Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10(-8) (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10(-8) to 5.08 × 10(-8) (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved.
ERIC Educational Resources Information Center
Kim, Paul; Olaciregui, Claudia
2008-01-01
An electronic portfolio system, designed to serve as a resource-based learning space, was tested in a fifth-grade science class. The control-group students accessed a traditional folder-based information display in the system and the experimental-group students accessed a concept map-based information display to review a science portfolio. The…
BPM System for Electron Cooling in the Fermilab Recycler Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joireman, Paul W.; Cai, Jerry; Chase, Brian E.
2004-11-10
We report a VXI based system used to acquire and process BPM data for the electron cooling system in the Fermilab Recycler ring. The BPM system supports acquisition of data from 19 BPM locations in five different sections of the electron cooling apparatus. Beam positions for both electrons and anti-protons can be detected simultaneously with a resolution of {+-}50 {mu}m. We calibrate the system independently for each beam type at each BPM location. We describe the system components, signal processing and modes of operation used in support of the electron-cooling project and present experimental results of system performance for themore » developmental electron cooling installation at Fermilab.« less
ERIC Educational Resources Information Center
Haga, Hirohide; Kaneda, Shigeo
2005-01-01
This article describes the survey of the usability of a novel content-based video retrieval system. This system combines video streaming and an electronic bulletin board system (BBS). Comments submitted to the BBS are used to index video data. Following the development of the prototype system an experimental survey with ten subjects was performed.…
Silicon PIN diode based electron-gamma coincidence detector system for Noble Gases monitoring.
Khrustalev, K; Popov, V Yu; Popov, Yu S
2017-08-01
We present a new second generation SiPIN based electron-photon coincidence detector system developed by Lares Ltd. for use in the Noble Gas measurement systems of the International Monitoring System and the On-site Inspection verification regimes of the Comprehensive Nuclear-Test Ban Treaty (CTBT). The SiPIN provide superior energy resolution for electrons. Our work describes the improvements made in the second generation detector cells and the potential use of such detector systems for other applications such as In-Situ Kr-85 measurements for non-proliferation purposes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-Powered Human-Interactive Transparent Nanopaper Systems.
Zhong, Junwen; Zhu, Hongli; Zhong, Qize; Dai, Jiaqi; Li, Wenbo; Jang, Soo-Hwan; Yao, Yonggang; Henderson, Doug; Hu, Qiyi; Hu, Liangbing; Zhou, Jun
2015-07-28
Self-powered human-interactive but invisible electronics have many applications in anti-theft and anti-fake systems for human society. In this work, for the first time, we demonstrate a transparent paper-based, self-powered, and human-interactive flexible system. The system is based on an electrostatic induction mechanism with no extra power system appended. The self-powered, transparent paper device can be used for a transparent paper-based art anti-theft system in museums or for a smart mapping anti-fake system in precious packaging and documents, by virtue of the advantages of adding/removing freely, having no impairment on the appearance of the protected objects, and being easily mass manufactured. This initial study bridges the transparent nanopaper with a self-powered and human-interactive electronic system, paving the way for the development of smart transparent paper electronics.
Automatic electronic fish tracking system
NASA Technical Reports Server (NTRS)
Osborne, P. W.; Hoffman, E.; Merriner, J. V.; Richards, C. E.; Lovelady, R. W.
1976-01-01
A newly developed electronic fish tracking system to automatically monitor the movements and migratory habits of fish is reported. The system is aimed particularly at studies of effects on fish life of industrial facilities which use rivers or lakes to dump their effluents. Location of fish is acquired by means of acoustic links from the fish to underwater Listening Stations, and by radio links which relay tracking information to a shore-based Data Base. Fish over 4 inches long may be tracked over a 5 x 5 mile area. The electronic fish tracking system provides the marine scientist with electronics which permit studies that were not practical in the past and which are cost-effective compared to manual methods.
Addressing Electronic Communications System Learning through a Radar-Based Active Learning Project
ERIC Educational Resources Information Center
Hernandez-Jayo, Unai; López-Garde, Juan-Manuel; Rodríguez-Seco, J. Emilio
2015-01-01
In the Master's of Telecommunication Engineering program at the University of Deusto, Spain, courses in communication circuit design, electronic instrumentation, advanced systems for signal processing and radiocommunication systems allow students to acquire concepts crucial to the fields of electronics and communication. During the educational…
A quality-based cost model for new electronic systems and products
NASA Astrophysics Data System (ADS)
Shina, Sammy G.; Saigal, Anil
1998-04-01
This article outlines a method for developing a quality-based cost model for the design of new electronic systems and products. The model incorporates a methodology for determining a cost-effective design margin allocation for electronic products and systems and its impact on manufacturing quality and cost. A spreadsheet-based cost estimating tool was developed to help implement this methodology in order for the system design engineers to quickly estimate the effect of design decisions and tradeoffs on the quality and cost of new products. The tool was developed with automatic spreadsheet connectivity to current process capability and with provisions to consider the impact of capital equipment and tooling purchases to reduce the product cost.
Real-time electron dynamics for massively parallel excited-state simulations
NASA Astrophysics Data System (ADS)
Andrade, Xavier
The simulation of the real-time dynamics of electrons, based on time dependent density functional theory (TDDFT), is a powerful approach to study electronic excited states in molecular and crystalline systems. What makes the method attractive is its flexibility to simulate different kinds of phenomena beyond the linear-response regime, including strongly-perturbed electronic systems and non-adiabatic electron-ion dynamics. Electron-dynamics simulations are also attractive from a computational point of view. They can run efficiently on massively parallel architectures due to the low communication requirements. Our implementations of electron dynamics, based on the codes Octopus (real-space) and Qball (plane-waves), allow us to simulate systems composed of thousands of atoms and to obtain good parallel scaling up to 1.6 million processor cores. Due to the versatility of real-time electron dynamics and its parallel performance, we expect it to become the method of choice to apply the capabilities of exascale supercomputers for the simulation of electronic excited states.
Permanent magnet synchronous motor servo system control based on μC/OS
NASA Astrophysics Data System (ADS)
Shi, Chongyang; Chen, Kele; Chen, Xinglong
2015-10-01
When Opto-Electronic Tracking system operates in complex environments, every subsystem must operate efficiently and stably. As a important part of Opto-Electronic Tracking system, the performance of PMSM(Permanent Magnet Synchronous Motor) servo system affects the Opto-Electronic Tracking system's accuracy and speed greatly[1][2]. This paper applied embedded real-time operating system μC/OS to the control of PMSM servo system, implemented SVPWM(Space Vector Pulse Width Modulation) algorithm in PMSM servo system, optimized the stability of PMSM servo system. Pointing on the characteristics of the Opto-Electronic Tracking system, this paper expanded μC/OS with software redundancy processes, remote debugging and upgrading. As a result, the Opto- Electronic Tracking system performs efficiently and stably.
Rossi, Megan; Campbell, Katrina Louise; Ferguson, Maree
2014-01-01
There is little doubt surrounding the benefits of the Nutrition Care Process and International Dietetics and Nutrition Terminology (IDNT) to dietetics practice; however, evidence to support the most efficient method of incorporating these into practice is lacking. The main objective of our study was to compare the efficiency and effectiveness of an electronic and a manual paper-based system for capturing the Nutrition Care Process and IDNT in a single in-center hemodialysis unit. A cohort of 56 adult patients receiving maintenance hemodialysis were followed for 12 months. During the first 6 months, patients received the usual standard care, with documentation via a manual paper-based system. During the following 6-month period (Months 7 to 12), nutrition care was documented by an electronic system. Workload efficiency, number of IDNT codes used related to nutrition-related diagnoses, interventions, monitoring and evaluation using IDNT, nutritional status using the scored Patient-Generated Subjective Global Assessment Tool of Quality of Life were the main outcome measures. Compared with paper-based documentation of nutrition care, our study demonstrated that an electronic system improved the efficiency of total time spent by the dietitian by 13 minutes per consultation. There were also a greater number of nutrition-related diagnoses resolved using the electronic system compared with the paper-based documentation (P<0.001). In conclusion, the implementation of an electronic system compared with a paper-based system in a population receiving hemodialysis resulted in significant improvements in the efficiency of nutrition care and effectiveness related to patient outcomes. Copyright © 2014 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.
Alumina Based 500 C Electronic Packaging Systems and Future Development
NASA Technical Reports Server (NTRS)
Chen, Liang-Yu
2012-01-01
NASA space and aeronautical missions for probing the inner solar planets as well as for in situ monitoring and control of next-generation aeronautical engines require high-temperature environment operable sensors and electronics. A 96% aluminum oxide and Au thick-film metallization based packaging system including chip-level packages, printed circuit board, and edge-connector is in development for high temperature SiC electronics. An electronic packaging system based on this material system was successfully tested and demonstrated with SiC electronics at 500 C for over 10,000 hours in laboratory conditions previously. In addition to the tests in laboratory environments, this packaging system has more recently been tested with a SiC junction field effect transistor (JFET) on low earth orbit through the NASA Materials on the International Space Station Experiment 7 (MISSE7). A SiC JFET with a packaging system composed of a 96% alumina chip-level package and an alumina printed circuit board mounted on a data acquisition circuit board was launched as a part of the MISSE7 suite to International Space Station via a Shuttle mission and tested on the orbit for eighteen months. A summary of results of tests in both laboratory and space environments will be presented. The future development of alumina based high temperature packaging using co-fired material systems for improved performance at high temperature and more feasible mass production will also be discussed.
Study on the E-commerce platform based on the agent
NASA Astrophysics Data System (ADS)
Fu, Ruixue; Qin, Lishuan; Gao, Yinmin
2011-10-01
To solve problem of dynamic integration in e-commerce, the Multi-Agent architecture of electronic commerce platform system based on Agent and Ontology has been introduced, which includes three major types of agent, Ontology and rule collection. In this architecture, service agent and rule are used to realize the business process reengineering, the reuse of software component, and agility of the electronic commerce platform. To illustrate the architecture, a simulation work has been done and the results imply that the architecture provides a very efficient method to design and implement the flexible, distributed, open and intelligent electronic commerce platform system to solve problem of dynamic integration in ecommerce. The objective of this paper is to illustrate the architecture of electronic commerce platform system, and the approach how Agent and Ontology support the electronic commerce platform system.
Family Registration Card as electronic medical carrier in Bosnia and Herzegovina.
Novo, Ahmed; Masic, Izet; Toromanovic, Selim; Loncarevic, Nedim; Junuzovic, Dzelaludin; Dizdarevic, Jadranka
2004-01-01
Medical documentation is a very important part of the medical documentalistics and is occupies a large part of daily work of medical staff working in Primary Health Care. Paper documentation is going to be replaced by electronic cards in Bosnia and Herzegovina and a new Health Care System is under development, based on an Electronic Family Registration Card. Developed countries proceeded from the manual and semiautomatic method of medical data processing to the new method of entering, storage, transferring, searching and protecting data, using electronic equipment. Currently, many European countries have developed a Medical Card Based Electronic Information System. Three types of electronic card are currently in use: a Hybrid Card, a Smart Card and a Laser Card. The dilemma is which card should be used as a data carrier. The Electronic Family Registration Cared is a question of strategic interest for B&H, but also a great investment. We should avoid the errors of other countries that have been developing card-based system. In this article we present all mentioned cards and compare advantages and disadvantages of different technologies.
A Theoretical Approach to Electronic Prescription System: Lesson Learned from Literature Review
Samadbeik, Mahnaz; Ahmadi, Maryam; Hosseini Asanjan, Seyed Masoud
2013-01-01
Context The tendency to use advanced technology in healthcare and the governmental policies have put forward electronic prescription. Electronic prescription is considered as the main solution to overcome the major drawbacks of the paper-based medication prescription, such as transcription errors. This study aims to provide practical information concerning electronic prescription system to a variety of stakeholders. Evidence Acquisition In this review study, PubMed, ISI Web of Science, Scopus, EMBASE databases, Iranian National Library Of Medicine (INLM) portal, Google Scholar, Google and Yahoo were searched for relevant English publications concerning the problems of paper-based prescription, and concept, features, levels, benefits, stakeholders and standards of electronic prescription system. Results There are many problems with the paper prescription system which, according to studies have jeopardized patients’ safety and negatively affected the outcomes of medication therapy. All of these problems are remedied through the implementation of e-prescriptions. Conclusions The sophistication of electronic prescription and integration with EHR will become a reality, if all its stakeholders collaborate in developing fast and secure electronic prescription systems. It is plausible that the required infrastructure should be provided for implementation of the national integrated electronic prescription systems in countries without the system. Given the barriers to the implementation and use, policymakers should consider multiple strategies and offer incentives to encourage e-prescription initiatives. This will result in widespread adoption of the system. PMID:24693376
Energy Systems Integration News | Energy Systems Integration Facility |
Control of Power Electronics in AC Systems and Microgrids. These courses will be part of a Professional Master's Program in Power Electronics offered through the university. Get more information on the program Scheme for the Voltage Control of a DFIG-Based Wind Power Plant, IEEE Transactions on Power Electronics
Wang, Fuliang; Mao, Peng; He, Hu
2016-01-01
Paper-based writing electronics has received a lot of interest recently due to its potential applications in flexible electronics. To obtain ultra-low resistivity paper-based writing electronics, we developed a kind of ink with high concentration of Ag Nano-particles (up to 80 wt%), as well as a related dispensing writing system consisting an air compressor machine and a dispenser. Additionally, we also demonstrated the writability and practical application of our proposed ink and writing system. Based on the study on the effect of sintering time and pressure, we found the optimal sintering time and pressure to obtain high quality Ag NPs wires. The electrical conductivity of nano-silver paper-based electronics has been tested using the calculated resistivity. After hot-pressure sintering at 120 °C, 25 MPa pressure for 20 minutes, the resistivity of silver NPs conductive tracks was 3.92 × 10−8 (Ωm), only 2.45 times of bulk silver. The mechanical flexibility of nano-silver paper-based electronics also has been tested. After 1000 bending cycles, the resistivity slightly increased from the initial 4.01 × 10−8 to 5.08 × 10−8 (Ωm). With this proposed ink preparation and writing system, a kind of paper-based writing electronics with ultra-low resistivity and good mechanical flexibility was achieved. PMID:26883558
Hybrid electronic/optical synchronized chaos communication system.
Toomey, J P; Kane, D M; Davidović, A; Huntington, E H
2009-04-27
A hybrid electronic/optical system for synchronizing a chaotic receiver to a chaotic transmitter has been demonstrated. The chaotic signal is generated electronically and injected, in addition to a constant bias current, to a semiconductor laser to produce an optical carrier for transmission. The optical chaotic carrier is photodetected to regenerate an electronic signal for synchronization in a matched electronic receiver The system has been successfully used for the transmission and recovery of a chaos masked message that is added to the chaotic optical carrier. Past demonstrations of synchronized chaos based, secure communication systems have used either an electronic chaotic carrier or an optical chaotic carrier (such as the chaotic output of various nonlinear laser systems). This is the first electronic/optical hybrid system to be demonstrated. We call this generation of a chaotic optical carrier by electronic injection.
Integrated control system for electron beam processes
NASA Astrophysics Data System (ADS)
Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.
2018-03-01
The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.
Data base systems in electronic design engineering
NASA Technical Reports Server (NTRS)
Williams, D.
1980-01-01
The concepts of an integrated design data base system (DBMS) as it might apply to an electronic design company are discussed. Data elements of documentation, project specifications, project tracking, firmware, software, electronic and mechanical design can be integrated and managed through a single DBMS. Combining the attributes of a DBMS data handler with specialized systems and functional data can provide users with maximum flexibility, reduced redundancy, and increased overall systems performance. Although some system overhead is lost due to redundancy in transitory data, it is believed the combination of the two data types is advisable rather than trying to do all data handling through a single DBMS.
Modeling and Verification of Dependable Electronic Power System Architecture
NASA Astrophysics Data System (ADS)
Yuan, Ling; Fan, Ping; Zhang, Xiao-fang
The electronic power system can be viewed as a system composed of a set of concurrently interacting subsystems to generate, transmit, and distribute electric power. The complex interaction among sub-systems makes the design of electronic power system complicated. Furthermore, in order to guarantee the safe generation and distribution of electronic power, the fault tolerant mechanisms are incorporated in the system design to satisfy high reliability requirements. As a result, the incorporation makes the design of such system more complicated. We propose a dependable electronic power system architecture, which can provide a generic framework to guide the development of electronic power system to ease the development complexity. In order to provide common idioms and patterns to the system *designers, we formally model the electronic power system architecture by using the PVS formal language. Based on the PVS model of this system architecture, we formally verify the fault tolerant properties of the system architecture by using the PVS theorem prover, which can guarantee that the system architecture can satisfy high reliability requirements.
NATIONAL ELECTRONIC DISEASE SURVEILLANCE SYSTEM (NEDSS)
The National Electronic Disease Surveillance System (NEDSS) project is a public health initiative to provide a standard-based, integrated approach to disease surveillance and to connect public health surveillance to the burgeoning clinical information systems infrastructure. NEDS...
NASA Astrophysics Data System (ADS)
Gladen, R. W.; Chirayath, V. A.; McDonald, A. D.; Fairchild, A. J.; Chrysler, M. D.; Imam, S. K.; Koymen, A. R.; Weiss, A. H.
We describe herein a digital data acquisition system for a time-of-flight Positron annihilation-induced Auger Electron Spectrometer. This data acquisition system consists of a high-speed digitizer collecting signals induced by Auger electrons and annihilation gammas in a multi-channel plate electron detector and a BaF2 gamma detector, respectively. The time intervals between these two signals is used to determine the times of flight of the Auger electrons, which are analyzed by algorithms based on traditional nuclear electronics methods. Ultimately, this digital data acquisition system will be expanded to incorporate the first coincidence measurements of Auger electron and annihilation gamma energies.
Auditing The Completeness and Legibility of Computerized Radiological Request Forms.
Al Muallem, Yahya; Al Dogether, Majed; Househ, Mowafa; Saddik, Basema
2017-11-04
Certain Saudi healthcare organizations transfer outpatients to medical imaging departments for radiological examinations in a manual process that relies on the use of paper-based forms. With the increased implementation of electronic medical records in Saudi Hospitals, little is known about the completeness and legibility of information captured in electronic-based medical imaging forms. The purpose of this study is to audit the completeness and legibility of medical imaging paper-based forms in comparison with electronic-based medical imaging forms. As a secondary objective, we also examined the number of errors found on the forms.An observational retrospective cross-sectional study was utilized to audit the completeness and legibility of both paper and electronic forms collected between March 1 and May 15, 2015. The study measured the association among categorical variables using Chi-Square analysis. The results of this investigation show a significant association between form completion and type of record (i.e., paper vs. electronic) where electronic-based systems were found to be more complete than paper-based records. Electrnoic based records were also found to improve form legibility, promote user adherence to complete the forms and minimize entry errors. In conclusion, electronic-based medical imaging forms are more complete and legible than paper based forms. Future studies should evaluate other hospitals and compare both legibility and completeness of electronic-based medical imaging forms and conduct usability evaluation studies with users to explore the impacts of system design on both completeness and legibility of electronic forms, in general, but more specifically, electronic-based medical imaging forms.
Advanced High Energy Density Secondary Batteries with Multi‐Electron Reaction Materials
Luo, Rui; Huang, Yongxin; Li, Li
2016-01-01
Secondary batteries have become important for smart grid and electric vehicle applications, and massive effort has been dedicated to optimizing the current generation and improving their energy density. Multi‐electron chemistry has paved a new path for the breaking of the barriers that exist in traditional battery research and applications, and provided new ideas for developing new battery systems that meet energy density requirements. An in‐depth understanding of multi‐electron chemistries in terms of the charge transfer mechanisms occuring during their electrochemical processes is necessary and urgent for the modification of secondary battery materials and development of secondary battery systems. In this Review, multi‐electron chemistry for high energy density electrode materials and the corresponding secondary battery systems are discussed. Specifically, four battery systems based on multi‐electron reactions are classified in this review: lithium‐ and sodium‐ion batteries based on monovalent cations; rechargeable batteries based on the insertion of polyvalent cations beyond those of alkali metals; metal–air batteries, and Li–S batteries. It is noted that challenges still exist in the development of multi‐electron chemistries that must be overcome to meet the energy density requirements of different battery systems, and much effort has more effort to be devoted to this. PMID:27840796
NASA Astrophysics Data System (ADS)
Blum, Volker
This talk describes recent advances of a general, efficient, accurate all-electron electronic theory approach based on numeric atom-centered orbitals; emphasis is placed on developments related to materials for energy conversion and their discovery. For total energies and electron band structures, we show that the overall accuracy is on par with the best benchmark quality codes for materials, but scalable to large system sizes (1,000s of atoms) and amenable to both periodic and non-periodic simulations. A recent localized resolution-of-identity approach for the Coulomb operator enables O (N) hybrid functional based descriptions of the electronic structure of non-periodic and periodic systems, shown for supercell sizes up to 1,000 atoms; the same approach yields accurate results for many-body perturbation theory as well. For molecular systems, we also show how many-body perturbation theory for charged and neutral quasiparticle excitation energies can be efficiently yet accurately applied using basis sets of computationally manageable size. Finally, the talk highlights applications to the electronic structure of hybrid organic-inorganic perovskite materials, as well as to graphene-based substrates for possible future transition metal compound based electrocatalyst materials. All methods described here are part of the FHI-aims code. VB gratefully acknowledges contributions by numerous collaborators at Duke University, Fritz Haber Institute Berlin, TU Munich, USTC Hefei, Aalto University, and many others around the globe.
Health care and privacy law in electronic commerce.
Wright, B
1994-01-01
As electronic data interchange (EDI) continues to gain acceptance and use, questions regarding protection of the confidentiality of private healthcare information have arisen. This article explains how a computer-based information system equipped with appropriate safeguards can be far better at ensuring privacy than a paper-based system.
A Model for Web-based Information Systems in E-Retailing.
ERIC Educational Resources Information Center
Wang, Fang; Head, Milena M.
2001-01-01
Discusses the use of Web-based information systems (WIS) by electronic retailers to attract and retain consumers and deliver business functions and strategy. Presents an abstract model for WIS design in electronic retailing; discusses customers, business determinants, and business interface; and suggests future research. (Author/LRW)
Python based integration of GEM detector electronics with JET data acquisition system
NASA Astrophysics Data System (ADS)
Zabołotny, Wojciech M.; Byszuk, Adrian; Chernyshova, Maryna; Cieszewski, Radosław; Czarski, Tomasz; Dalley, Simon; Hogben, Colin; Jakubowska, Katarzyna L.; Kasprowicz, Grzegorz; Poźniak, Krzysztof; Rzadkiewicz, Jacek; Scholz, Marek; Shumack, Amy
2014-11-01
This paper presents the system integrating the dedicated measurement and control electronic systems for Gas Electron Multiplier (GEM) detectors with the Control and Data Acquisition system (CODAS) in the JET facility in Culham, England. The presented system performs the high level procedures necessary to calibrate the GEM detector and to protect it against possible malfunctions or dangerous changes in operating conditions. The system also allows control of the GEM detectors from CODAS, setting of their parameters, checking their state, starting the plasma measurement and to reading the results. The system has been implemented using the Python language, using the advanced libraries for implementation of network communication protocols, for object based hardware management and for data processing.
SiGe Based Low Temperature Electronics for Lunar Surface Applications
NASA Technical Reports Server (NTRS)
Mojarradi, Mohammad M.; Kolawa, Elizabeth; Blalock, Benjamin; Cressler, John
2012-01-01
The temperature at the permanently shadowed regions of the moon's surface is approximately -240 C. Other areas of the lunar surface experience temperatures that vary between 120 C and -180 C during the day and night respectively. To protect against the large temperature variations of the moon surface, traditional electronics used in lunar robotics systems are placed inside a thermally controlled housing which is bulky, consumes power and adds complexity to the integration and test. SiGe Based electronics have the capability to operate over wide temperature range like that of the lunar surface. Deploying low temperature SiGe electronics in a lander platform can minimize the need for the central thermal protection system and enable the development of a new generation of landers and mobility platforms with highly efficient distributed architecture. For the past five years a team consisting of NASA, university and industry researchers has been examining the low temperature and wide temperature characteristic of SiGe based transistors for developing electronics for wide temperature needs of NASA environments such as the Moon, Titan, Mars and Europa. This presentation reports on the status of the development of wide temperature SiGe based electronics for the landers and lunar surface mobility systems.
Note: An improved 3D imaging system for electron-electron coincidence measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip
We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.
Note: An improved 3D imaging system for electron-electron coincidence measurements
NASA Astrophysics Data System (ADS)
Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen
2015-09-01
We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.
Digital interface of electronic transformers based on embedded system
NASA Astrophysics Data System (ADS)
Shang, Qiufeng; Qi, Yincheng
2008-10-01
Benefited from digital interface of electronic transformers, information sharing and system integration in substation can be realized. An embedded system-based digital output scheme of electronic transformers is proposed. The digital interface is designed with S3C44B0X 32bit RISC microprocessor as the hardware platform. The μCLinux operation system (OS) is transplanted on ARM7 (S3C44B0X). Applying Ethernet technology as the communication mode in the substation automation system is a new trend. The network interface chip RTL8019AS is adopted. Data transmission is realized through the in-line TCP/IP protocol of uClinux embedded OS. The application result and character analysis show that the design can meet the real-time and reliability requirements of IEC60044-7/8 electronic voltage/current instrument transformer standards.
Hyper-Book: A Formal Model for Electronic Books.
ERIC Educational Resources Information Center
Catenazzi, Nadia; Sommaruga, Lorenzo
1994-01-01
Presents a model for electronic books based on the paper book metaphor. Discussion includes how the book evolves under the effects of its functional components; the use and impact of the model for organizing and presenting electronic documents in the context of electronic publishing; and the possible applications of a system based on the model.…
Quartz Crystal Microbalance Electronic Interfacing Systems: A Review.
Alassi, Abdulrahman; Benammar, Mohieddine; Brett, Dan
2017-12-05
Quartz Crystal Microbalance (QCM) sensors are actively being implemented in various fields due to their compatibility with different operating conditions in gaseous/liquid mediums for a wide range of measurements. This trend has been matched by the parallel advancement in tailored electronic interfacing systems for QCM sensors. That is, selecting the appropriate electronic circuit is vital for accurate sensor measurements. Many techniques were developed over time to cover the expanding measurement requirements (e.g., accommodating highly-damping environments). This paper presents a comprehensive review of the various existing QCM electronic interfacing systems. Namely, impedance-based analysis, oscillators (conventional and lock-in based techniques), exponential decay methods and the emerging phase-mass based characterization. The aforementioned methods are discussed in detail and qualitatively compared in terms of their performance for various applications. In addition, some theoretical improvements and recommendations are introduced for adequate systems implementation. Finally, specific design considerations of high-temperature microbalance systems (e.g., GaPO₄ crystals (GCM) and Langasite crystals (LCM)) are introduced, while assessing their overall system performance, stability and quality compared to conventional low-temperature applications.
Quartz Crystal Microbalance Electronic Interfacing Systems: A Review
Benammar, Mohieddine; Brett, Dan
2017-01-01
Quartz Crystal Microbalance (QCM) sensors are actively being implemented in various fields due to their compatibility with different operating conditions in gaseous/liquid mediums for a wide range of measurements. This trend has been matched by the parallel advancement in tailored electronic interfacing systems for QCM sensors. That is, selecting the appropriate electronic circuit is vital for accurate sensor measurements. Many techniques were developed over time to cover the expanding measurement requirements (e.g., accommodating highly-damping environments). This paper presents a comprehensive review of the various existing QCM electronic interfacing systems. Namely, impedance-based analysis, oscillators (conventional and lock-in based techniques), exponential decay methods and the emerging phase-mass based characterization. The aforementioned methods are discussed in detail and qualitatively compared in terms of their performance for various applications. In addition, some theoretical improvements and recommendations are introduced for adequate systems implementation. Finally, specific design considerations of high-temperature microbalance systems (e.g., GaPO4 crystals (GCM) and Langasite crystals (LCM)) are introduced, while assessing their overall system performance, stability and quality compared to conventional low-temperature applications. PMID:29206212
Power Electronics Thermal Management R&D (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waye, S.
2014-11-01
This project will investigate and develop thermal-management strategies for wide bandgap (WBG)-based power electronics systems. Research will be carried out to deal with thermal aspects at the module- and system-level. Module-level research will focus on die- and substrate-integrated cooling strategies and heat-transfer enhancement technologies. System-level research will focus on thermal-management strategies for the entire power electronics system to enable smart packaging solutions. One challenge with WBG device-based power electronics is that although losses in the form of heat may be lower, the footprint of the components is also likely to be reduced to reduce cost, weight, and volume. Combined withmore » higher operational temperatures, this creates higher heat fluxes which much be removed from a smaller footprint, requiring advanced cooling strategies.« less
Electronic structure and microscopic model of V(2)GeO(4)F(2)-a quantum spin system with S = 1.
Rahaman, Badiur; Saha-Dasgupta, T
2007-07-25
We present first-principles density functional calculations and downfolding studies of the electronic and magnetic properties of the oxide-fluoride quantum spin system V(2)GeO(4)F(2). We discuss explicitly the nature of the exchange paths and provide quantitative estimates of magnetic exchange couplings. A microscopic modelling based on analysis of the electronic structure of this systems puts it in the interesting class of weakly coupled alternating chain S = 1 systems. Based on the microscopic model, we make inferrences about its spin excitation spectra, which needs to be tested by rigorous experimental study.
Modular electronics packaging system
NASA Technical Reports Server (NTRS)
Hunter, Don J. (Inventor)
2001-01-01
A modular electronics packaging system includes multiple packaging slices that are mounted horizontally to a base structure. The slices interlock to provide added structural support. Each packaging slice includes a rigid and thermally conductive housing having four side walls that together form a cavity to house an electronic circuit. The chamber is enclosed on one end by an end wall, or web, that isolates the electronic circuit from a circuit in an adjacent packaging slice. The web also provides a thermal path between the electronic circuit and the base structure. Each slice also includes a mounting bracket that connects the packaging slice to the base structure. Four guide pins protrude from the slice into four corresponding receptacles in an adjacent slice. A locking element, such as a set screw, protrudes into each receptacle and interlocks with the corresponding guide pin. A conduit is formed in the slice to allow electrical connection to the electronic circuit.
Unified messaging solution for biosurveillance and disease surveillance.
Abellera, John P; Srinivasan, Arunkumar; Danos, C Scott; McNabb, Scott; Rhodes, Barry
2007-10-11
Biosurveillance and disease surveillance systems serve different purposes. However, the richness and quality of an existing data stream and infrastructure used in biosurveillance may prove beneficial for any state-based electronic disease surveillance system, especially if an electronic laboratory data feed does not exist between a hospital and state-based system. The use of an Enterprise Application Integration(EAI) engine, such as the BioSense Integrator,will be necessary to map heterogeneous messages into standard representations, then validate and route them [1] to a disparate system. This poster illustrates the use of an existing BioSense Integrator in order to create a unified message to support the exchange of electronic lab messages necessary for reportable disease notification. An evaluation of the infrastructure for data messaging will be examined and presented, along with a cost and benefit analysis between hospital and state-based system.
Development of clinical contents model markup language for electronic health records.
Yun, Ji-Hyun; Ahn, Sun-Ju; Kim, Yoon
2012-09-01
To develop dedicated markup language for clinical contents models (CCM) to facilitate the active use of CCM in electronic health record systems. Based on analysis of the structure and characteristics of CCM in the clinical domain, we designed extensible markup language (XML) based CCM markup language (CCML) schema manually. CCML faithfully reflects CCM in both the syntactic and semantic aspects. As this language is based on XML, it can be expressed and processed in computer systems and can be used in a technology-neutral way. CCML HAS THE FOLLOWING STRENGTHS: it is machine-readable and highly human-readable, it does not require a dedicated parser, and it can be applied for existing electronic health record systems.
Control Structures for VSC-based FACTS Devices under Normal and Faulted AC-systems
NASA Astrophysics Data System (ADS)
Babaei, Saman
This thesis is concerned with improving the Flexible AC Transmission Systems (FACTS) devices performance under the normal and fault AC-system conditions by proposing new control structures and also converter topologies. The combination of the increasing electricity demand and restrictions in expanding the power system infrastructures has urged the utility owners to deploy the utility-scaled power electronics in the power system. Basically, FACTS is referred to the application of the power electronics in the power systems. Voltage Source Converter (VSC) is the preferred building block of the FACTS devices and many other utility-scale power electronics applications. Despite of advances in the semiconductor technology and ultra-fast microprocessor based controllers, there are still many issues to address and room to improve[25]. An attempt is made in this thesis to address these important issues of the VSC-based FACTS devices and provide solutions to improve them.
Dynamism in Electronic Performance Support Systems.
ERIC Educational Resources Information Center
Laffey, James
1995-01-01
Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…
ERIC Educational Resources Information Center
Wlodyga, Linda J.
2010-01-01
In an attempt to prepare new graduate nurses to meet the demands of health care delivery systems, the use of computer-based clinical information systems that combine hands-on experience with computer based information systems was explored. Since the introduction of Electronic Medical Records (EMR) nearly two decades ago, the demand for nurses to…
78 FR 46005 - NPDES Electronic Reporting Rule
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... reports, and enforcement responses is provided (i.e., electronic rather than paper-based), it does not... is proposing a regulation that would require electronic reporting for current paper-based NPDES....regulations.gov Web site is an ``anonymous access'' system, which means EPA will not know your identity or...
Method and system for analyzing and classifying electronic information
McGaffey, Robert W.; Bell, Michael Allen; Kortman, Peter J.; Wilson, Charles H.
2003-04-29
A data analysis and classification system that reads the electronic information, analyzes the electronic information according to a user-defined set of logical rules, and returns a classification result. The data analysis and classification system may accept any form of computer-readable electronic information. The system creates a hash table wherein each entry of the hash table contains a concept corresponding to a word or phrase which the system has previously encountered. The system creates an object model based on the user-defined logical associations, used for reviewing each concept contained in the electronic information in order to determine whether the electronic information is classified. The data analysis and classification system extracts each concept in turn from the electronic information, locates it in the hash table, and propagates it through the object model. In the event that the system can not find the electronic information token in the hash table, that token is added to a missing terms list. If any rule is satisfied during propagation of the concept through the object model, the electronic information is classified.
Wang, Ning; Yu, Ping; Hailey, David
2015-08-01
The nursing care plan plays an essential role in supporting care provision in Australian aged care. The implementation of electronic systems in aged care homes was anticipated to improve documentation quality. Standardized nursing terminologies, developed to improve communication and advance the nursing profession, are not required in aged care practice. The language used by nurses in the nursing care plan and the effect of the electronic system on documentation quality in residential aged care need to be investigated. To describe documentation practice for the nursing care plan in Australian residential aged care homes and to compare the quantity and quality of documentation in paper-based and electronic nursing care plans. A nursing documentation audit was conducted in seven residential aged care homes in Australia. One hundred and eleven paper-based and 194 electronic nursing care plans, conveniently selected, were reviewed. The quantity of documentation in a care plan was determined by the number of phrases describing a resident problem and the number of goals and interventions. The quality of documentation was measured using 16 relevant questions in an instrument developed for the study. There was a tendency to omit 'nursing problem' or 'nursing diagnosis' in the nursing process by changing these terms (used in the paper-based care plan) to 'observation' in the electronic version. The electronic nursing care plan documented more signs and symptoms of resident problems and evaluation of care than the paper-based format (48.30 vs. 47.34 out of 60, P<0.01), but had a lower total mean quality score. The electronic care plan contained fewer problem or diagnosis statements, contributing factors and resident outcomes than the paper-based system (P<0.01). Both types of nursing care plan were weak in documenting measurable and concrete resident outcomes. The overall quality of documentation content for the nursing process was no better in the electronic system than in the paper-based system. Omission of the nursing problem or diagnosis from the nursing process may reflect a range of factors behind the practice that need to be understood. Further work is also needed on qualitative aspects of the nurse care plan, nurses' attitudes towards standardized terminologies and the effect of different documentation practice on care quality and resident outcomes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
iES - An Intelligent Electronic Sales Platform
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanton, V L; Korbe III, W; Gao, J G
Current e-commerce systems support online shopping based on electronic product catalogs. The major issues associated with catalog-based commerce systems are: difficulty in distinguishing one retailer from another, complex navigation with confusing links, and a lack of personalized service. This paper reports an intelligent solution to address these issues. Our solution will provide a more personalized sales experience through the use of a transaction-based knowledge model that includes both the rules used for reasoning as well as the corresponding actions. Based on this solution, we have developed an intelligent electronic sales platform that is supported by a framework which provides themore » desired personalization as well as extensibility and customization capabilities. This paper reports our design and development of this system and application examples.« less
Ndira, S P; Rosenberger, K D; Wetter, T
2008-01-01
To assess if electronic health record systems in developing countries can improve on timeliness, availability and accuracy of routine health reports and staff satisfaction after introducing the electronic system, compared to the paper-based alternative. The research was conducted with hospital staff of Tororo District Hospital in Uganda. A comparative intervention study with qualitative and quantitative methods was used to compare the paper-based (pre-test) to the electronic system (post-test) focusing on accuracy, availability and timeliness of monthly routine reports about mothers visiting the hospital; and staff satisfaction with the electronic system as outcome measures. Timeliness: pre-test 13 of 19 months delivered to the district timely, delivery dates for six months could not be established; post-test 100%. pre-test 79% of reports were present at the district health office; post-test 100%. Accuracy: pre-test 73.2% of selected reports could be independently confirmed as correct; post-test 71.2%. Difficulties were encountered in finding enough mothers through direct follow up to inquire on accuracy of information recorded about them. Staff interviews showed that the electronic system is appreciated by the majority of the hospital staff. Remaining obstacles include staff workload, power shortages, network breakdowns and parallel data entry (paper-based and electronic). While timeliness and availability improved, improvement of accuracy could not be established. Better approaches to ascertaining accuracy have to be devised, e.g. evaluation of intended use. For success, organizational, managerial and social challenges must be addressed beyond technical aspects.
Hong, Deokhwa; Lee, Hyunki; Kim, Min Young; Cho, Hyungsuck; Moon, Jeon Il
2009-07-20
Automatic optical inspection (AOI) for printed circuit board (PCB) assembly plays a very important role in modern electronics manufacturing industries. Well-developed inspection machines in each assembly process are required to ensure the manufacturing quality of the electronics products. However, generally almost all AOI machines are based on 2D image-analysis technology. In this paper, a 3D-measurement-method-based AOI system is proposed consisting of a phase shifting profilometer and a stereo vision system for assembled electronic components on a PCB after component mounting and the reflow process. In this system information from two visual systems is fused to extend the shape measurement range limited by 2pi phase ambiguity of the phase shifting profilometer, and finally to maintain fine measurement resolution and high accuracy of the phase shifting profilometer with the measurement range extended by the stereo vision. The main purpose is to overcome the low inspection reliability problem of 2D-based inspection machines by using 3D information of components. The 3D shape measurement results on PCB-mounted electronic components are shown and compared with results from contact and noncontact 3D measuring machines. Based on a series of experiments, the usefulness of the proposed sensor system and its fusion technique are discussed and analyzed in detail.
NASA Astrophysics Data System (ADS)
Yue, Fengfa; Li, Xingfei; Chen, Cheng; Tan, Wenbin
2017-12-01
In order to improve the control accuracy and stability of opto-electronic tracking system fixed on reef or airport under friction and external disturbance conditions, adaptive integral backstepping sliding mode control approach with friction compensation is developed to achieve accurate and stable tracking for fast moving target. The nonlinear observer and slide mode controller based on modified LuGre model with friction compensation can effectively reduce the influence of nonlinear friction and disturbance of this servo system. The stability of the closed-loop system is guaranteed by Lyapunov theory. The steady-state error of the system is eliminated by integral action. The adaptive integral backstepping sliding mode controller and its performance are validated by a nonlinear modified LuGre dynamic model of the opto-electronic tracking system in simulation and practical experiments. The experiment results demonstrate that the proposed controller can effectively realise the accuracy and stability control of opto-electronic tracking system.
SpecialNet. A National Computer-Based Communications Network.
ERIC Educational Resources Information Center
Morin, Alfred J.
1986-01-01
"SpecialNet," a computer-based communications network for educators at all administrative levels, has been established and is managed by National Systems Management, Inc. Users can send and receive electronic mail, share information on electronic bulletin boards, participate in electronic conferences, and send reports and other documents to each…
Integration of Evidence into a Detailed Clinical Model-based Electronic Nursing Record System
Park, Hyeoun-Ae; Jeon, Eunjoo; Chung, Eunja
2012-01-01
Objectives The purpose of this study was to test the feasibility of an electronic nursing record system for perinatal care that is based on detailed clinical models and clinical practice guidelines in perinatal care. Methods This study was carried out in five phases: 1) generating nursing statements using detailed clinical models; 2) identifying the relevant evidence; 3) linking nursing statements with the evidence; 4) developing a prototype electronic nursing record system based on detailed clinical models and clinical practice guidelines; and 5) evaluating the prototype system. Results We first generated 799 nursing statements describing nursing assessments, diagnoses, interventions, and outcomes using entities, attributes, and value sets of detailed clinical models for perinatal care which we developed in a previous study. We then extracted 506 recommendations from nine clinical practice guidelines and created sets of nursing statements to be used for nursing documentation by grouping nursing statements according to these recommendations. Finally, we developed and evaluated a prototype electronic nursing record system that can provide nurses with recommendations for nursing practice and sets of nursing statements based on the recommendations for guiding nursing documentation. Conclusions The prototype system was found to be sufficiently complete, relevant, useful, and applicable in terms of content, and easy to use and useful in terms of system user interface. This study has revealed the feasibility of developing such an ENR system. PMID:22844649
A strategy for electronic dissemination of NASA Langley technical publications
NASA Technical Reports Server (NTRS)
Roper, Donna G.; Mccaskill, Mary K.; Holland, Scott D.; Walsh, Joanne L.; Nelson, Michael L.; Adkins, Susan L.; Ambur, Manjula Y.; Campbell, Bryan A.
1994-01-01
To demonstrate NASA Langley Research Center's relevance and to transfer technology to external customers in a timely and efficient manner, Langley has formed a working group to study and recommend a course of action for the electronic dissemination of technical reports (EDTR). The working group identified electronic report requirements (e.g., accessibility, file format, search requirements) of customers in U.S. industry through numerous site visits and personal contacts. Internal surveys were also used to determine commonalities in document preparation methods. From these surveys, a set of requirements for an electronic dissemination system was developed. Two candidate systems were identified and evaluated against the set of requirements: the Full-Text Electronic Documents System (FEDS), which is a full-text retrieval system based on the commercial document management package Interleaf, and the Langley Technical Report Server (LTRS), which is a Langley-developed system based on the publicly available World Wide Web (WWW) software system. Factors that led to the selection of LTRS as the vehicle for electronic dissemination included searching and viewing capability, current system operability, and client software availability for multiple platforms at no cost to industry. This report includes the survey results, evaluations, a description of the LTRS architecture, recommended policy statement, and suggestions for future implementations.
Branstetter, M Laurie; Smith, Lynette S; Brooks, Andrea F
2014-07-01
Over the past decade, the federal government has mandated healthcare providers to incorporate electronic health records into practice by 2015. This technological update in healthcare documentation has generated a need for advanced practice RN programs to incorporate information technology into education. The National Organization of Nurse Practitioner Faculties created core competencies to guide program standards for advanced practice RN education. One core competency is Technology and Information Literacy. Educational programs are moving toward the utilization of electronic clinical tracking systems to capture students' clinical encounter data. The purpose of this integrative review was to evaluate current research on advanced practice RN students' documentation of clinical encounters utilizing electronic clinical tracking systems to meet advanced practice RN curriculum outcome goals in information technology as defined by the National Organization of Nurse Practitioner Faculties. The state of the science depicts student' and faculty attitudes, preferences, opinions, and data collections of students' clinical encounters. Although electronic clinical tracking systems were utilized to track students' clinical encounters, these systems have not been evaluated for meeting information technology core competency standards. Educational programs are utilizing electronic clinical tracking systems with limited evidence-based literature evaluating the ability of these systems to meet the core competencies in advanced practice RN programs.
ERIC Educational Resources Information Center
Razak, Rafiza Abdul; Yusop, Farrah Dina; Idris, Aizal Yusrina; Al-Sinaiyah, Yanbu; Halili, Siti Hajar
2016-01-01
The paper introduces Teacher Interactive Electronic Continuous Professional Development (TIE-CPD), an online interactive training system. The framework and methodology of TIE-CPD are designed with functionalities comparable with existing e-training systems. The system design and development literature offers several methodology and framework…
Tweya, Hannock; Feldacker, Caryl; Ben-Smith, Anne; Harries, Anthony D; Komatsu, Ryuichi; Jahn, Andreas; Phiri, Sam; Tassie, Jean-Michel
2012-07-20
Routine monitoring of patients on antiretroviral therapy (ART) is crucial for measuring program success and accurate drug forecasting. However, compiling data from patient registers to measure retention in ART is labour-intensive. To address this challenge, we conducted a pilot study in Malawi to assess whether patient ART retention could be determined using pharmacy records as compared to estimates of retention based on standardized paper- or electronic based cohort reports. Twelve ART facilities were included in the study: six used paper-based registers and six used electronic data systems. One ART facility implemented an electronic data system in quarter three and was included as a paper-based system facility in quarter two only. Routine patient retention cohort reports, paper or electronic, were collected from facilities for both quarter two [April-June] and quarter three [July-September], 2010. Pharmacy stock data were also collected from the 12 ART facilities over the same period. Numbers of ART continuation bottles recorded on pharmacy stock cards at the beginning and end of each quarter were documented. These pharmacy data were used to calculate the total bottles dispensed to patients in each quarter with intent to estimate the number of patients retained on ART. Information for time required to determine ART retention was gathered through interviews with clinicians tasked with compiling the data. Among ART clinics with paper-based systems, three of six facilities in quarter two and four of five facilities in quarter three had similar numbers of patients retained on ART comparing cohort reports to pharmacy stock records. In ART clinics with electronic systems, five of six facilities in quarter two and five of seven facilities in quarter three had similar numbers of patients retained on ART when comparing retention numbers from electronically generated cohort reports to pharmacy stock records. Among paper-based facilities, an average of 13 4 hours was needed to calculate patient retention for cohort reporting using patient registers as compared to 2.25 hours using pharmacy stock cards. The numbers of patients retained on ART as estimated using pharmacy stock records were largely similar to estimates based on either paper registers or electronic data system. Furthermore, less time and staff effort was needed to estimate ART patient retention using pharmacy stock records versus paper-based registers. Reinforcing ARV stock management may improve the precision of estimates.
Focused electron and ion beam systems
Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan
2004-07-27
An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.
Problems related to the integration of fault tolerant aircraft electronic systems
NASA Technical Reports Server (NTRS)
Bannister, J. A.; Adlakha, V.; Triyedi, K.; Alspaugh, T. A., Jr.
1982-01-01
Problems related to the design of the hardware for an integrated aircraft electronic system are considered. Taxonomies of concurrent systems are reviewed and a new taxonomy is proposed. An informal methodology intended to identify feasible regions of the taxonomic design space is described. Specific tools are recommended for use in the methodology. Based on the methodology, a preliminary strawman integrated fault tolerant aircraft electronic system is proposed. Next, problems related to the programming and control of inegrated aircraft electronic systems are discussed. Issues of system resource management, including the scheduling and allocation of real time periodic tasks in a multiprocessor environment, are treated in detail. The role of software design in integrated fault tolerant aircraft electronic systems is discussed. Conclusions and recommendations for further work are included.
Method for determiantion of the frequency-contrast characteristics of electronic-optic systems
NASA Astrophysics Data System (ADS)
Mardirossian, Garo; Zhekov, Zhivko
The frequency-contrast characteristics is an important criterion to judge the quality of electronic-optic systems, which boast an increasing application in space research, astronomy, martial art etc. The paper provides a brief description of the methods for determining the frequency-contrast characteristics of optic systems, developed at the Space Research Institute of the Bulgarian Academy of Science. The suggested methods have been used to develop a couple of electronic-optic systems participated in the designed ground-based and aerospace scientific-research equipment. Based on the obtained practical results, the conclusion was made that the methods provide to obtain sufficiently precise data, which coincide well with the results, obtained when using other methods.
Electronic Document Management Using Inverted Files System
NASA Astrophysics Data System (ADS)
Suhartono, Derwin; Setiawan, Erwin; Irwanto, Djon
2014-03-01
The amount of documents increases so fast. Those documents exist not only in a paper based but also in an electronic based. It can be seen from the data sample taken by the SpringerLink publisher in 2010, which showed an increase in the number of digital document collections from 2003 to mid of 2010. Then, how to manage them well becomes an important need. This paper describes a new method in managing documents called as inverted files system. Related with the electronic based document, the inverted files system will closely used in term of its usage to document so that it can be searched over the Internet using the Search Engine. It can improve document search mechanism and document save mechanism.
Development of Clinical Contents Model Markup Language for Electronic Health Records
Yun, Ji-Hyun; Kim, Yoon
2012-01-01
Objectives To develop dedicated markup language for clinical contents models (CCM) to facilitate the active use of CCM in electronic health record systems. Methods Based on analysis of the structure and characteristics of CCM in the clinical domain, we designed extensible markup language (XML) based CCM markup language (CCML) schema manually. Results CCML faithfully reflects CCM in both the syntactic and semantic aspects. As this language is based on XML, it can be expressed and processed in computer systems and can be used in a technology-neutral way. Conclusions CCML has the following strengths: it is machine-readable and highly human-readable, it does not require a dedicated parser, and it can be applied for existing electronic health record systems. PMID:23115739
The impact of automating laboratory request forms on the quality of healthcare services.
Dogether, Majed Al; Muallem, Yahya Al; Househ, Mowafa; Saddik, Basema; Khalifa, Mohamed
In recent decades, healthcare organizations have undergone a significant transformation with the integration of Information and Communication Technologies within healthcare operations to improve healthcare services. Various technologies such as Hospital Information Systems (HIS), Electronic Health Records (EHR) and Laboratory Information Systems (LIS) have been incorporated into healthcare services. The aim of this study is to evaluate the completeness of outpatients' laboratory paper based request forms in comparison with a electronic laboratory request system. This study was carried out in the laboratory department at King Abdulaziz Medical City (KAMC), National Guard Health Affairs, Riyadh, Saudi Arabia. We used a sample size calculator for comparing two proportions. We estimated the sample size to be 228 for each group. Any laboratory requests including paper and electronic forms were included. We categorized the clarity of the forms into understandable, readable, and unclear. A total of 57 incomplete paper forms or 25% were identified as being incomplete. For electronic forms, there were no incomplete fields, as all fields were mandatory, therefore, rendering them complete. The total of understandable paper-based laboratory forms was 11.4%. Additionally, it was found that the total of readable was 33.8% and the total for unclear was 54.8%, while for electronic-based forms, there were no unclear forms. Electronic based laboratory forms provide a more complete, accurate, clear, and understandable format than paper-based laboratory records. Based on these findings, KAMC should move toward the implementation of electronic-based laboratory request forms for the outpatient laboratory department. Copyright © 2016 King Saud Bin Abdulaziz University for Health Sciences. Published by Elsevier Ltd. All rights reserved.
Beam transport and monitoring for laser plasma accelerators
NASA Astrophysics Data System (ADS)
Nakamura, K.; Sokollik, T.; van Tilborg, J.; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W.
2012-12-01
The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.
Chen, Tuo; Tang, Xiaobin; Chen, Feida; Ni, Minxuan; Huang, Hai; Zhang, Yun; Chen, Da
2017-06-26
Radiation shielding of high-energy electrons is critical for successful space missions. However, conventional passive shielding systems exhibit several limitations, such as heavy configuration, poor shielding ability, and strong secondary bremsstrahlung radiation. In this work, an aluminum/vacuum multilayer structure was proposed based on the electron return effects induced by magnetic field. The shielding property of several configurations was evaluated by using the Monte Carlo method. Results showed that multilayer systems presented improved shielding ability to electrons, and less secondary x-ray transmissions than those of conventional systems. Moreover, the influences of magnetic flux density and number of layers on the shielding property of multilayer systems were investigated using a female Chinese hybrid reference phantom based on cumulative dose. In the case of two aluminum layers, the cumulative dose in a phantom gradually decreased with increasing magnetic flux density. The maximum decline rate was found within 0.4-1 Tesla. With increasing layers of configuration, the cumulative dose decreased and the shielding ability improved. This research provides effective shielding measures for future space radiation protection in high-energy electron environments.
A Novel Electronic Data Collection System for Large-Scale Surveys of Neglected Tropical Diseases
King, Jonathan D.; Buolamwini, Joy; Cromwell, Elizabeth A.; Panfel, Andrew; Teferi, Tesfaye; Zerihun, Mulat; Melak, Berhanu; Watson, Jessica; Tadesse, Zerihun; Vienneau, Danielle; Ngondi, Jeremiah; Utzinger, Jürg; Odermatt, Peter; Emerson, Paul M.
2013-01-01
Background Large cross-sectional household surveys are common for measuring indicators of neglected tropical disease control programs. As an alternative to standard paper-based data collection, we utilized novel paperless technology to collect data electronically from over 12,000 households in Ethiopia. Methodology We conducted a needs assessment to design an Android-based electronic data collection and management system. We then evaluated the system by reporting results of a pilot trial and from comparisons of two, large-scale surveys; one with traditional paper questionnaires and the other with tablet computers, including accuracy, person-time days, and costs incurred. Principle Findings The electronic data collection system met core functions in household surveys and overcame constraints identified in the needs assessment. Pilot data recorders took 264 (standard deviation (SD) 152 sec) and 260 sec (SD 122 sec) per person registered to complete household surveys using paper and tablets, respectively (P = 0.77). Data recorders felt a lack of connection with the interviewee during the first days using electronic devices, but preferred to collect data electronically in future surveys. Electronic data collection saved time by giving results immediately, obviating the need for double data entry and cross-correcting. The proportion of identified data entry errors in disease classification did not differ between the two data collection methods. Geographic coordinates collected using the tablets were more accurate than coordinates transcribed on a paper form. Costs of the equipment required for electronic data collection was approximately the same cost incurred for data entry of questionnaires, whereas repeated use of the electronic equipment may increase cost savings. Conclusions/Significance Conducting a needs assessment and pilot testing allowed the design to specifically match the functionality required for surveys. Electronic data collection using an Android-based technology was suitable for a large-scale health survey, saved time, provided more accurate geo-coordinates, and was preferred by recorders over standard paper-based questionnaires. PMID:24066147
Peptide π-Electron Conjugates: Organic Electronics for Biology?
Ardoña, Herdeline Ann M; Tovar, John D
2015-12-16
Highly ordered arrays of π-conjugated molecules are often viewed as a prerequisite for effective charge-transporting materials. Studies involving these materials have traditionally focused on organic electronic devices, with more recent emphasis on biological systems. In order to facilitate the transition to biological environments, biomolecules that can promote hierarchical ordering and water solubility are often covalently appended to the π-electron unit. This review highlights recent work on π-conjugated systems bound to peptide moieties that exhibit self-assembly and aims to provide an overview on the development and emerging applications of peptide-based supramolecular π-electron systems.
Method for secure electronic voting system: face recognition based approach
NASA Astrophysics Data System (ADS)
Alim, M. Affan; Baig, Misbah M.; Mehboob, Shahzain; Naseem, Imran
2017-06-01
In this paper, we propose a framework for low cost secure electronic voting system based on face recognition. Essentially Local Binary Pattern (LBP) is used for face feature characterization in texture format followed by chi-square distribution is used for image classification. Two parallel systems are developed based on smart phone and web applications for face learning and verification modules. The proposed system has two tire security levels by using person ID followed by face verification. Essentially class specific threshold is associated for controlling the security level of face verification. Our system is evaluated three standard databases and one real home based database and achieve the satisfactory recognition accuracies. Consequently our propose system provides secure, hassle free voting system and less intrusive compare with other biometrics.
Reliability-Based Electronics Shielding Design Tools
NASA Technical Reports Server (NTRS)
Wilson, J. W.; O'Neill, P. J.; Zang, T. A.; Pandolf, J. E.; Tripathi, R. K.; Koontz, Steven L.; Boeder, P.; Reddell, B.; Pankop, C.
2007-01-01
Shielding design on large human-rated systems allows minimization of radiation impact on electronic systems. Shielding design tools require adequate methods for evaluation of design layouts, guiding qualification testing, and adequate follow-up on final design evaluation.
The wireless data acquisition system based on Bluetooth
NASA Astrophysics Data System (ADS)
Cheng, En; Xu, Xiao-na; Wu, Si-long
2013-03-01
Bluetooth is one of the wireless communication technology, which is developing rapidly in recent years. As a result of low cost and short distance, Bluetooth can set up a special connection for portable electronic devices and stationary electronic equipment communication environment. The paper studies a data acquisition system based on Bluetooth. The system can collect the angle of motor rotation and send it to the Receiver through the Bluetooth. The results show that the system can be run normal.[1
NASA Astrophysics Data System (ADS)
Dinh Hoi, Bui; Yarmohammadi, Mohsen; Davoudiniya, Masoumeh
2018-03-01
In this work, we show that the magnetic phase transition in both semiconducting and metallic armchair graphene nanoribbons would be observed in the presence of electronic dopant. However, the mutual interactions between electrons are also considered based on theoretically tight-binding and Hubbard model calculations considering nearest neighbors within the framework of Green's function technique. This work showed that charge concentration of dopant in such system depending on the weak and strong mutual repulsions plays a crucial role in determining the magnetic phase. It follows from the obtained results that the ground state turns paramagnetic in a range of carrier concentrations by neglecting the electronic correlations. The inclusion of a Coulombic repulsion between electrons stops the phase transition and system remains in its ground state antiferromagnetic phase. Furthermore, we concluded that magnetic phases are insensitive to the electron-electron interaction at all weak and strong concentrations of dopant. In addition, this paper provides a controllable gap engineering by doping and inclusion of electron-electron repulsions for further studies on such system as a new potential nanomaterial for magnetic graphene nanoribbon-based applications.
Contract Monitoring in Agent-Based Systems: Case Study
NASA Astrophysics Data System (ADS)
Hodík, Jiří; Vokřínek, Jiří; Jakob, Michal
Monitoring of fulfilment of obligations defined by electronic contracts in distributed domains is presented in this paper. A two-level model of contract-based systems and the types of observations needed for contract monitoring are introduced. The observations (inter-agent communication and agents’ actions) are collected and processed by the contract observation and analysis pipeline. The presented approach has been utilized in a multi-agent system for electronic contracting in a modular certification testing domain.
General Electric Unattended Power System Study. Addendum
1980-05-01
AND NAVIGATION SYSTEMS ELECTRONIC SYSTEMS DIVISION AIR FORCE SYSTEMS COMMAND UNITED STATES AIR FORCE Hascom Air Force Base, Massachusetts DTIC C-3 B I...MITRE Corporation under Project No. 633A. The contract is sponsored by the Electronic Systems *Division, Air Force Systems Command, Hanscom Air Force...is delivered fully integrated, tested, and certified. The system consists of a combustion system, vapor generator, turbo- alternator, air -cooled
2009-01-01
Background Electronic guideline-based decision support systems have been suggested to successfully deliver the knowledge embedded in clinical practice guidelines. A number of studies have already shown positive findings for decision support systems such as drug-dosing systems and computer-generated reminder systems for preventive care services. Methods A systematic literature search (1990 to December 2008) of the English literature indexed in the Medline database, Embase, the Cochrane Central Register of Controlled Trials, and CRD (DARE, HTA and NHS EED databases) was conducted to identify evaluation studies of electronic multi-step guideline implementation systems in ambulatory care settings. Important inclusion criterions were the multidimensionality of the guideline (the guideline needed to consist of several aspects or steps) and real-time interaction with the system during consultation. Clinical decision support systems such as one-time reminders for preventive care for which positive findings were shown in earlier reviews were excluded. Two comparisons were considered: electronic multidimensional guidelines versus usual care (comparison one) and electronic multidimensional guidelines versus other guideline implementation methods (comparison two). Results Twenty-seven publications were selected for analysis in this systematic review. Most designs were cluster randomized controlled trials investigating process outcomes more than patient outcomes. With success defined as at least 50% of the outcome variables being significant, none of the studies were successful in improving patient outcomes. Only seven of seventeen studies that investigated process outcomes showed improvements in process of care variables compared with the usual care group (comparison one). No incremental effect of the electronic implementation over the distribution of paper versions of the guideline was found, neither for the patient outcomes nor for the process outcomes (comparison two). Conclusions There is little evidence at the moment for the effectiveness of an increasingly used and commercialised instrument such as electronic multidimensional guidelines. After more than a decade of development of numerous electronic systems, research on the most effective implementation strategy for this kind of guideline-based decision support systems is still lacking. This conclusion implies a considerable risk towards inappropriate investments in ineffective implementation interventions and in suboptimal care. PMID:20042070
Density functional theory and an experimentally-designed energy functional of electron density.
Miranda, David A; Bueno, Paulo R
2016-09-21
We herein demonstrate that capacitance spectroscopy (CS) experimentally allows access to the energy associated with the quantum mechanical ground state of many-electron systems. Priorly, electrochemical capacitance, C [small mu, Greek, macron] [ρ], was previously understood from conceptual and computational density functional theory (DFT) calculations. Thus, we herein propose a quantum mechanical experiment-based variational method for electron charging processes based on an experimentally-designed functional of the ground state electron density. In this methodology, the electron state density, ρ, and an energy functional of the electron density, E [small mu, Greek, macron] [ρ], can be obtained from CS data. CS allows the derivative of the electrochemical potential with respect to the electron density, (δ[small mu, Greek, macron][ρ]/δρ), to be obtained as a unique functional of the energetically minimised system, i.e., β/C [small mu, Greek, macron] [ρ], where β is a constant (associated with the size of the system) and C [small mu, Greek, macron] [ρ] is an experimentally observable quantity. Thus the ground state energy (at a given fixed external potential) can be obtained simply as E [small mu, Greek, macron] [ρ], from the experimental measurement of C [small mu, Greek, macron] [ρ]. An experimental data-set was interpreted to demonstrate the potential of this quantum mechanical experiment-based variational principle.
Cross-Media Electronic Reporting Rule
Cross-Media Electronic Reporting Regulation (CROMERR) sets performance-based, technology-neutral standards for systems that states, tribes, and local governments use to receive electronic reports from facilities they regulate under EPA-authorized programs.
Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices
Hubertus J. J. van Dam
2016-04-27
Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of noninteracting particles, is the workhorse of the theory. The particular form of the Kohn-Sham wave function admits only idempotent one-electron density matrices whereas wave functions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept and introducing a suitable dot product as well as a probability density, a noninteracting system can be chosen that can represent the one-electron density matrix of any system, even one with fractionalmore » occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. This produces energy levels that are akin to Hartree-Fock orbital energies such that conventional analyses based on Koopmans' theorem are available. Lastly, this system is convenient in formalisms that depend on creation and annihilation operators as they are trivially applied to single-determinant wave functions.« less
Portable data collection terminal in the automated power consumption measurement system
NASA Astrophysics Data System (ADS)
Vologdin, S. V.; Shushkov, I. D.; Bysygin, E. K.
2018-01-01
Aim of efficiency increasing, automation process of electric energy data collection and processing is very important at present time. High cost of classic electric energy billing systems prevent from its mass application. Udmurtenergo Branch of IDGC of Center and Volga Region developed electronic automated system called “Mobile Energy Billing” based on data collection terminals. System joins electronic components based on service-oriented architecture, WCF services. At present time all parts of Udmurtenergo Branch electric network are connected to “Mobile Energy Billing” project. System capabilities are expanded due to flexible architecture.
Unified computational model of transport in metal-insulating oxide-metal systems
NASA Astrophysics Data System (ADS)
Tierney, B. D.; Hjalmarson, H. P.; Jacobs-Gedrim, R. B.; Agarwal, Sapan; James, C. D.; Marinella, M. J.
2018-04-01
A unified physics-based model of electron transport in metal-insulator-metal (MIM) systems is presented. In this model, transport through metal-oxide interfaces occurs by electron tunneling between the metal electrodes and oxide defect states. Transport in the oxide bulk is dominated by hopping, modeled as a series of tunneling events that alter the electron occupancy of defect states. Electron transport in the oxide conduction band is treated by the drift-diffusion formalism and defect chemistry reactions link all the various transport mechanisms. It is shown that the current-limiting effect of the interface band offsets is a function of the defect vacancy concentration. These results provide insight into the underlying physical mechanisms of leakage currents in oxide-based capacitors and steady-state electron transport in resistive random access memory (ReRAM) MIM devices. Finally, an explanation of ReRAM bipolar switching behavior based on these results is proposed.
Liang, Jiajie; Chen, Yongsheng; Xu, Yanfei; Liu, Zhibo; Zhang, Long; Zhao, Xin; Zhang, Xiaoliang; Tian, Jianguo; Huang, Yi; Ma, Yanfeng; Li, Feifei
2010-11-01
Owing to its extraordinary electronic property, chemical stability, and unique two-dimensional nanostructure, graphene is being considered as an ideal material for the highly expected all-carbon-based micro/nanoscale electronics. Herein, we present a simple yet versatile approach to constructing all-carbon micro/nanoelectronics using solution-processing graphene films directly. From these graphene films, various graphene-based microcosmic patterns and structures have been fabricated using maskless computer-controlled laser cutting. Furthermore, a complete system involving a prototype of a flexible write-once-read-many-times memory card and a fast data-reading system has been demonstrated, with infinite data retention time and high reliability. These results indicate that graphene could be the ideal material for fabricating the highly demanded all-carbon and flexible devices and electronics using the simple and efficient roll-to-roll printing process when combined with maskless direct data writing.
Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System.
Xie, Ruihong; Zhang, Tao; Li, Jiaquan; Dai, Ming
2017-05-09
This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight) motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration) control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square) error is 1.253 mrad when tracking 10° 0.2 Hz signal.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-23
... engine and engine parts manufacturing,'' ``Motor vehicle electrical and electronic equipment... manufacturing,'' ``Other motor vehicle electrical and electronic equipment manufacturing,'' and ``All other motor vehicle parts manufacturing'' in the second column from the list of required NAICS codes for the...
Electronic construction collaboration system : phase III.
DOT National Transportation Integrated Search
2011-12-01
This phase of the electronic collaboration project involved two major efforts: 1) implementation of AEC Sync (formerly known as Attolist), a web-based project management system (WPMS), on the Broadway Viaduct Bridge Project and the Iowa Falls Arch Br...
A virtual university Web system for a medical school.
Séka, L P; Duvauferrier, R; Fresnel, A; Le Beux, P
1998-01-01
This paper describes a Virtual Medical University Web Server. This project started in 1994 by the development of the French Radiology Server. The main objective of our Medical Virtual University is to offer not only an initial training (for students) but also the Continuing Professional Education (for practitioners). Our system is based on electronic textbooks, clinical cases (around 4000) and a medical knowledge base called A.D.M. ("Aide au Diagnostic Medical"). We have indexed all electronic textbooks and clinical cases according to the ADM base in order to facilitate the navigation on the system. This system base is supported by a relational database management system. The Virtual Medical University, available on the Web Internet, is presently in the process of external evaluations.
Neuromimetic Circuits with Synaptic Devices Based on Strongly Correlated Electron Systems
NASA Astrophysics Data System (ADS)
Ha, Sieu D.; Shi, Jian; Meroz, Yasmine; Mahadevan, L.; Ramanathan, Shriram
2014-12-01
Strongly correlated electron systems such as the rare-earth nickelates (R NiO3 , R denotes a rare-earth element) can exhibit synapselike continuous long-term potentiation and depression when gated with ionic liquids; exploiting the extreme sensitivity of coupled charge, spin, orbital, and lattice degrees of freedom to stoichiometry. We present experimental real-time, device-level classical conditioning and unlearning using nickelate-based synaptic devices in an electronic circuit compatible with both excitatory and inhibitory neurons. We establish a physical model for the device behavior based on electric-field-driven coupled ionic-electronic diffusion that can be utilized for design of more complex systems. We use the model to simulate a variety of associate and nonassociative learning mechanisms, as well as a feedforward recurrent network for storing memory. Our circuit intuitively parallels biological neural architectures, and it can be readily generalized to other forms of cellular learning and extinction. The simulation of neural function with electronic device analogs may provide insight into biological processes such as decision making, learning, and adaptation, while facilitating advanced parallel information processing in hardware.
Systems and Methods for Fabricating Carbon Nanotube-Based Vacuum Electronic Devices
NASA Technical Reports Server (NTRS)
Manohara, Harish (Inventor); Toda, Risaku (Inventor); Del Castillo, Linda Y. (Inventor); Murthy, Rakesh (Inventor)
2015-01-01
Systems and methods in accordance with embodiments of the invention proficiently produce carbon nanotube-based vacuum electronic devices. In one embodiment a method of fabricating a carbon nanotube-based vacuum electronic device includes: growing carbon nanotubes onto a substrate to form a cathode; assembling a stack that includes the cathode, an anode, and a first layer that includes an alignment slot; disposing a microsphere partially into the alignment slot during the assembling of the stack such that the microsphere protrudes from the alignment slot and can thereby separate the first layer from an adjacent layer; and encasing the stack in a vacuum sealed container.
ERIC Educational Resources Information Center
Rastorfer, Darl
2011-01-01
From February 2008 through April 2011, School Health Connection, a program of the Louisiana Public Health Institute, developed an electronic health information management system for newly established school-based health centers in Greater New Orleans. School Health Connection was established as part of a broader effort to restore community health…
Electronic Learning Systems in Hong Kong Business Organizations: A Study of Early and Late Adopters
ERIC Educational Resources Information Center
Chan, Simon C. H.; Ngai, Eric W. T.
2012-01-01
Based on the diffusion of innovation theory (E. M. Rogers, 1983, 1995), the authors examined the antecedents of the adoption of electronic learning (e-learning) systems by using a time-based assessment model (R. C. Beatty, J. P. Shim, & M. C. Jones, 2001), which classified adopters into categories upon point in time when adopting e-learning…
NASA Astrophysics Data System (ADS)
Wu, W. Z.; Kim, Y.; Li, J. Y.; Teytelman, D.; Busch, M.; Wang, P.; Swift, G.; Park, I. S.; Ko, I. S.; Wu, Y. K.
2011-03-01
Electron beam coupled-bunch instabilities can limit and degrade the performance of storage ring based light sources. A longitudinal feedback system has been developed for the Duke storage ring to suppress multi-bunch beam instabilities which prevent stable, high-current operation of the storage ring based free-electron lasers (FELs) and an FEL driven Compton gamma source, the high intensity gamma-ray source (HIGS) at Duke University. In this work, we report the development of a state-of-the-art second generation longitudinal feedback system which employs a field programmable gate array (FPGA) based processor, and a broadband, high shunt-impedance kicker cavity. With two inputs and two outputs, the kicker cavity was designed with a resonant frequency of 937 MHz, a bandwidth of 97 MHz, and a shunt impedance of 1530 Ω. We also developed an S-matrix based technique to fully characterize the performance of the kicker cavity in the cold test. This longitudinal feedback system has been commissioned and optimized to stabilize high-current electron beams with a wide range of electron beam energies (250 MeV to 1.15 GeV) and a number of electron beam bunch modes, including the single-bunch mode and all possible symmetric bunch modes. This feedback system has become a critical instrument to ensure stable, high-flux operation of HIGS to produce nearly monochromatic, highly polarized Compton gamma-ray beams.
Munyisia, Esther N; Yu, Ping; Hailey, David
2011-02-01
To date few studies have compared nursing home caregivers' perceptions about the quality of information and benefits of nursing documentation in paper and electronic formats. With the increased interest in the use of information technology in nursing homes, it is important to obtain information on the benefits of newer approaches to nursing documentation so as to inform investment, organisational and care service decisions in the aged care sector. This study aims to investigate caregivers' perceptions about the quality of information and benefits of nursing documentation before and after the introduction of an electronic documentation system in a nursing home. A self-administered questionnaire survey was conducted three months before, and then six, 18 and 31 months after the introduction of an electronic documentation system. Further evidence was obtained through informal discussions with caregivers. Scores for questionnaire responses showed that the benefits of the electronic documentation system were perceived by the caregivers as provision of more accurate, legible and complete information, and reduction of repetition in data entry, with consequential managerial benefits. However, caregivers' perceptions of relevance and reliability of information, and of their communication and decision-making abilities were perceived to be similar either using an electronic or a paper-based documentation system. Improvement in some perceptions about the quality of information and benefits of nursing documentation was evident in the measurement conducted six months after the introduction of the electronic system, but were not maintained 18 or 31 months later. The electronic documentation system was perceived to perform better than the paper-based system in some aspects, with subsequent benefits to management of aged care services. In other areas, perceptions of additional benefits from the electronic documentation system were not maintained. In a number of attributes, there were similar perceptions on the two types of systems. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
A configurable electronics system for the ESS-Bilbao beam position monitors
NASA Astrophysics Data System (ADS)
Muguira, L.; Belver, D.; Etxebarria, V.; Varnasseri, S.; Arredondo, I.; del Campo, M.; Echevarria, P.; Garmendia, N.; Feuchtwanger, J.; Jugo, J.; Portilla, J.
2013-09-01
A versatile and configurable system has been developed in order to monitorize the beam position and to meet all the requirements of the future ESS-Bilbao Linac. At the same time the design has been conceived to be open and configurable so that it could eventually be used in different kinds of accelerators, independent of the charged particle, with minimal change. The design of the Beam Position Monitors (BPMs) system includes a test bench both for button-type pick-ups (PU) and striplines (SL), the electronic units and the control system. The electronic units consist of two main parts. The first part is an Analog Front-End (AFE) unit where the RF signals are filtered, conditioned and converted to base-band. The second part is a Digital Front-End (DFE) unit which is based on an FPGA board where the base-band signals are sampled in order to calculate the beam position, the amplitude and the phase. To manage the system a Multipurpose Controller (MC) developed at ESSB has been used. It includes the FPGA management, the EPICS integration and Archiver Instances. A description of the system and a comparison between the performance of both PU and SL BPM designs measured with this electronics system are fully described and discussed.
Beam transport and monitoring for laser plasma accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, K.; Sokollik, T.; Tilborg, J. van
The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system,more » XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.« less
Radio-frequency flexible and stretchable electronics: the need, challenges and opportunities
NASA Astrophysics Data System (ADS)
Jung, Yei Hwan; Seo, Jung-Hun; Zhang, Huilong; Lee, Juhwan; Cho, Sang June; Chang, Tzu-Hsuan; Ma, Zhenqiang
2017-05-01
Successful integration of ultrathin flexible or stretchable systems with new applications, such as medical devices and biodegradable electronics, have intrigued many researchers and industries around the globe to seek materials and processes to create high-performance, non-invasive and cost-effective electronics to match those of state-of-the-art devices. Nevertheless, the crucial concept of transmitting data or power wirelessly for such unconventional devices has been difficult to realize due to limitations of radio-frequency (RF) electronics in individual components that form a wireless circuitry, such as antenna, transmission line, active devices, passive devices etc. To overcome such challenges, these components must be developed in a step-by-step manner, as each component faces a number of different challenges in ultrathin formats. Here, we report on materials and design considerations for fabricating flexible and stretchable electronics systems that operate in the microwave level. High-speed flexible active devices, including cost effective Si-based strained MOSFETs, GaAs-based HBTs and GaN-based HEMTs, performing at multi-gigahertz frequencies are presented. Furthermore, flexible or stretchable passive devices, including capacitors, inductors and transmission lines that are vital parts of a microwave circuitry are also demonstrated. We also present unique applications using the presented flexible or stretchable RF components, including wearable RF electronics and biodegradable RF electronics, which were impossible to achieve using conventional rigid, wafer-based technology. Further opportunities like implantable systems exist utilizing such ultrathin RF components, which are discussed in this report as well.
ERIC Educational Resources Information Center
Wiggins, Rich
1993-01-01
Describes the Gopher system developed at the University of Minnesota for accessing information on the Internet. Highlights include the need for navigation tools; Gopher clients; FTP (File Transfer Protocol); campuswide information systems; navigational enhancements; privacy and security issues; electronic publishing; multimedia; and future…
ERIC Educational Resources Information Center
Hung, Wei-Chen; Chao, Chia-An
2007-01-01
This study has reviewed major design approaches for electronic performance support systems and identified two common problems: users' inability to comprehend screen-based material and poorly designed instructional scaffolds. This paper presents a design approach, called the "Matrix-Aided Performance System" ("MAPS"), which enables these problems…
Nanoscale inhomogeneity and photoacid generation dynamics in extreme ultraviolet resist materials
NASA Astrophysics Data System (ADS)
Wu, Ping-Jui; Wang, Yu-Fu; Chen, Wei-Chi; Wang, Chien-Wei; Cheng, Joy; Chang, Vencent; Chang, Ching-Yu; Lin, John; Cheng, Yuan-Chung
2018-03-01
The development of extreme ultraviolet (EUV) lithography towards the 22 nm node and beyond depends critically on the availability of resist materials that meet stringent control requirements in resolution, line edge roughness, and sensitivity. However, the molecular mechanisms that govern the structure-function relationships in current EUV resist systems are not well understood. In particular, the nanoscale structures of the polymer base and the distributions of photoacid generators (PAGs) should play a critical roles in the performance of a resist system, yet currently available models for photochemical reactions in EUV resist systems are exclusively based on homogeneous bulk models that ignore molecular-level details of solid resist films. In this work, we investigate how microscopic molecular organizations in EUV resist affect photoacid generations in a bottom-up approach that describes structure-dependent electron-transfer dynamics in a solid film model. To this end, molecular dynamics simulations and stimulated annealing are used to obtain structures of a large simulation box containing poly(4-hydroxystyrene) (PHS) base polymers and triphenylsulfonium based PAGs. Our calculations reveal that ion-pair interactions govern the microscopic distributions of the polymer base and PAG molecules, resulting in a highly inhomogeneous system with nonuniform nanoscale chemical domains. Furthermore, the theoretical structures were used in combination of quantum chemical calculations and the Marcus theory to evaluate electron transfer rates between molecular sites, and then kinetic Monte Carlo simulations were carried out to model electron transfer dynamics with molecular structure details taken into consideration. As a result, the portion of thermalized electrons that are absorbed by the PAGs and the nanoscale spatial distribution of generated acids can be estimated. Our data reveal that the nanoscale inhomogeneous distributions of base polymers and PAGs strongly affect the electron transfer and the performance of the resist system. The implications to the performances of EUV resists and key engineering requirements for improved resist systems will also be discussed in this work. Our results shed light on the fundamental structure dependence of photoacid generation and the control of the nanoscale structures as well as base polymer-PAG interactions in EVU resist systems, and we expect these knowledge will be useful for the future development of improved EUV resist systems.
Modern developments for ground-based monitoring of fire behavior and effects
Colin C. Hardy; Robert Kremens; Matthew B. Dickinson
2010-01-01
Advances in electronic technology over the last several decades have been staggering. The cost of electronics continues to decrease while system performance increases seemingly without limit. We have applied modern techniques in sensors, electronics and instrumentation to create a suite of ground based diagnostics that can be used in laboratory (~ 1 m2), field scale...
Goldblum, O M
2001-02-01
The objectives of this study were: 1) to establish criteria for evaluating handheld computerized prescribing systems; and 2) to evaluate out-of-box performance and features of a new, Palm Operating System (OS)-based, handheld, wireless wide area network (WWAN) prescribing system. The system consisted of a Palm Vx handheld organizer, a Novatel Minstrel V wireless modem, OmniSky wireless internet access and ePhysician ePad 1.1, the Palm OS electronic prescribing software program. A dermatologist familiar with healthcare information technology conducted an evaluation of the performance and features of a new, handheld, WWAN electronic prescribing system in an office practice during a three-month period in 2000. System performance, defined as transmission success rate, was determined from data collected during the three-month trial. Evaluation criteria consisted of an analysis of features found in electronic prescribing systems. All prescriptions written for all patients seen during a three-month period (August - November, 2000) were eligible for inclusion. Prescriptions written for patients who intended to fill them at pharmacies without known facsimile receiving capabilities were excluded from the study. The performance of the system was evaluated using data collected during the study. Criteria for evaluating features of electronic prescribing systems were developed and used to analyze the system employed in this study. During this three-month trial, 200 electronic prescriptions were generated for 132 patients included in the study. Of these prescriptions, 92.5 percent were successfully transmitted to pharmacies. Transmission failures resulted from incorrect facsimile numbers and non-functioning facsimile machines. Criteria established for evaluation of electronic prescribing systems included System (Hardware & Software), Costs, System Features, Printing & Transmission, Formulary & Insurance, Customization, Drug Safety and Security. This study is the first effort to establish comprehensive criteria for evaluating handheld prescribing systems and to evaluate the performance and features of a handheld, electronic prescribing system. The results demonstrated that the evaluated system: 1) was simple to install; 2) successfully interfaced with a commonly used practice management system; 3) was user-friendly and easy to operate; 4) offered a robust variety of standard features; and, 5) resulted in a high rate of success for transmitting electronic prescriptions. The criteria established for the evaluation of features of an electronic prescribing system can be used to critically evaluate the performance and features of other handheld and personal computer-based electronic prescribing systems.
Southwest Electronic One-Stop Shopping (EOSS) : field operational test : final evaluation report
DOT National Transportation Integrated Search
1999-06-01
This report presents an evaluation of the Southwest Electronic One-Stop Shopping System (EOSS) Operational Test. The system consisted of a PC-based software application that enabled interstate carriers to identify required commercial vehicle credenti...
Electronic flight bag (EFB) : 2007 industry review
DOT National Transportation Integrated Search
2007-04-01
This document, which is based on information from March 2007, proivdes an overview of Electronic Flight Bag (EFB) systems and capabilities, with particular focus on the systems' human interface. It updates the April 2005 EFB Industry Review (Yeh and ...
Lawpoolsri, Saranath; Khamsiriwatchara, Amnat; Liulark, Wongwat; Taweeseneepitch, Komchaluch; Sangvichean, Aumnuyphan; Thongprarong, Wiraporn; Kaewkungwal, Jaranit; Singhasivanon, Pratap
2014-05-12
School absenteeism is a common source of data used in syndromic surveillance, which can eventually be used for early outbreak detection. However, the absenteeism reporting system in most schools, especially in developing countries, relies on a paper-based method that limits its use for disease surveillance or outbreak detection. The objective of this study was to develop an electronic real-time reporting system on school absenteeism for syndromic surveillance. An electronic (Web-based) school absenteeism reporting system was developed to embed it within the normal routine process of absenteeism reporting. This electronic system allowed teachers to update students' attendance status via mobile tablets. The data from all classes and schools were then automatically sent to a centralized database for further analysis and presentation, and for monitoring temporal and spatial patterns of absent students. In addition, the system also had a disease investigation module, which provided a link between absenteeism data from schools and local health centers, to investigate causes of fever among sick students. The electronic school absenteeism reporting system was implemented in 7 primary schools in Bangkok, Thailand, with total participation of approximately 5000 students. During May-October 2012 (first semester), the percentage of absentees varied between 1% and 10%. The peak of school absenteeism (sick leave) was observed between July and September 2012, which coincided with the peak of dengue cases in children aged 6-12 years being reported to the disease surveillance system. The timeliness of a reporting system is a critical function in any surveillance system. Web-based application and mobile technology can potentially enhance the use of school absenteeism data for syndromic surveillance and outbreak detection. This study presents the factors that determine the implementation success of this reporting system.
A Flexible Electronic Commerce Recommendation System
NASA Astrophysics Data System (ADS)
Gong, Songjie
Recommendation systems have become very popular in E-commerce websites. Many of the largest commerce websites are already using recommender technologies to help their customers find products to purchase. An electronic commerce recommendation system learns from a customer and recommends products that the customer will find most valuable from among the available products. But most recommendation methods are hard-wired into the system and they support only fixed recommendations. This paper presented a framework of flexible electronic commerce recommendation system. The framework is composed by user model interface, recommendation engine, recommendation strategy model, recommendation technology group, user interest model and database interface. In the recommender strategy model, the method can be collaborative filtering, content-based filtering, mining associate rules method, knowledge-based filtering method or the mixed method. The system mapped the implementation and demand through strategy model, and the whole system would be design as standard parts to adapt to the change of the recommendation strategy.
Transmission control unit drive based on the AUTOSAR standard
NASA Astrophysics Data System (ADS)
Guo, Xiucai; Qin, Zhen
2018-03-01
It is a trend of automotive electronics industry in the future that automotive electronics embedded system development based on the AUTOSAR standard. AUTOSAR automotive architecture standard has proposed the transmission control unit (TCU) development architecture and designed its interfaces and configurations in detail. This essay has discussed that how to drive the TCU based on AUTOSAR standard architecture. The results show that driving the TCU with the AUTOSAR system improves reliability and shortens development cycles.
Strle, Drago; Štefane, Bogdan; Zupanič, Erik; Trifkovič, Mario; Maček, Marijan; Jakša, Gregor; Kvasič, Ivan; Muševič, Igor
2014-01-01
The article offers a comparison of the sensitivities for vapour trace detection of Trinitrotoluene (TNT) explosives of two different sensor systems: a chemo-mechanical sensor based on chemically modified Atomic Force Microscope (AFM) cantilevers based on Micro Electro Mechanical System (MEMS) technology with optical detection (CMO), and a miniature system based on capacitive detection of chemically functionalized planar capacitors with interdigitated electrodes with a comb-like structure with electronic detection (CE). In both cases (either CMO or CE), the sensor surfaces are chemically functionalized with a layer of APhS (trimethoxyphenylsilane) molecules, which give the strongest sensor response for TNT. The construction and calibration of a vapour generator is also presented. The measurements of the sensor response to TNT are performed under equal conditions for both systems, and the results show that CE system with ultrasensitive electronics is far superior to optical detection using MEMS. Using CMO system, we can detect 300 molecules of TNT in 10+12 molecules of N2 carrier gas, whereas the CE system can detect three molecules of TNT in 10+12 molecules of carrier N2. PMID:24977388
Calculation of the figure of merit for carbon nanotubes based devices
NASA Astrophysics Data System (ADS)
Vaseashta, Ashok
2004-03-01
The dimensionality of a system has a profound influence on its physical behavior. With advances in technology over the past few decades, it has become possible to fabricate and study reduced-dimensional systems in which electrons are strongly confined in one or more dimensions. In the case of 1-D electron systems, most of the results, such as conductance quantization, have been explained in terms of non-interacting electrons. In contrast to the cases of 2D and 3D systems, the question of what roles electron-electron interactions play in real 1-D systems has been difficult to address, because of the difficulty in obtaining long, relatively disorder free 1-D wires. Since their first discovery and fabrication in 1991, carbon nanotubes (CNTs) have received considerable attention because of the prospect of new fundamental science and many potential applications. Hence, it has been possible to conduct studies of the electrons in 1-D. Carbon nanotubes are of considerable technological importance due to their excellent mechanical, electrical, and chemical characteristics. The potential technological applications include electronics, opto-electronics and biomedical sensors. The applications of carbon nanotubes include quantum wire interconnects, diodes and transistors for computing, capacitors, data storage devices, field emitters, flat panel displays and terahertz oscillators. One of the most remarkable characteristics is the possibility of bandgap engineering by controlling the microstructure. Hence, a pentagon-heptagon defect in the hexagonal network can connect a metallic to a semiconductor nanotube, providing an Angstrom-scale hetero-junction with a device density approximately 10^4 times greater than present day microelectronics. Also, successfully contacted carbon nanotubes have exhibited a large number of useful quantum electronic and low dimensional transport phenomena, such as true quantum wire behaviors, room temperature field effect transistors, room temperature single electron transistors, Luttinger-liquid behavior, the Aharonov Bohm effect, and Fabry-Perot interference effects. Hence it is evident that CNT can be used for a variety of applications. To use CNT based devices, it is critical to know the relative advantage of using CNTs over other known electronic materials. The figure of merit for CNT based devices is not reported so far. It is the objective of this investigation to calculate the figure of merit and present such results. Such calculations will enable researchers to focus their research for specific device designs where CNT based devices show a marked improvement over conventional semiconductor devices.
The social act of electronic medication prescribing.
Aarts, Jos
2013-01-01
Prescribing medication is embedded in social norms and cultures. In modern Western health care professionals and policy makers have attempted to rationalize medicine by addressing cost-effectiveness of diagnostic and therapeutic treatments and the development of guidelines and protocols based on the outcomes of clinical studies. These notions of cost-effectiveness and evidence-based medicine have also been embedded in technology such as electronic prescribing systems. Such constraining systems may clash with the reality of clinical practice, where formal boundaries of responsibility and authorization are often blurred. Such systems may therefore even impede patient care. Medication is seen as the essence of medical practice. Prescribing is a social act. In a hospital medications may be aimed at treating a patient for a specific condition, in primary care the professional often meets the patient with her or his social and cultural notions of a health problem. The author argues that the design and implementation of electronic prescribing systems should address the social and cultural context of prescribing. Especially in primary care, where health problems are often ill defined and evidence-based medicine guidelines do not always work as intended, studies need to take into account the sociotechnical character of electronic prescribing systems.
Ionospheric Slant Total Electron Content Analysis Using Global Positioning System Based Estimation
NASA Technical Reports Server (NTRS)
Komjathy, Attila (Inventor); Mannucci, Anthony J. (Inventor); Sparks, Lawrence C. (Inventor)
2017-01-01
A method, system, apparatus, and computer program product provide the ability to analyze ionospheric slant total electron content (TEC) using global navigation satellite systems (GNSS)-based estimation. Slant TEC is estimated for a given set of raypath geometries by fitting historical GNSS data to a specified delay model. The accuracy of the specified delay model is estimated by computing delay estimate residuals and plotting a behavior of the delay estimate residuals. An ionospheric threat model is computed based on the specified delay model. Ionospheric grid delays (IGDs) and grid ionospheric vertical errors (GIVEs) are computed based on the ionospheric threat model.
NASA Astrophysics Data System (ADS)
Jiang, Xiao-Guo; Wang, Yuan; Zhang, Kai-Zhi; Yang, Guo-Jun; Shi, Jin-Shui; Deng, Jian-Jun; Li, Jin
2014-01-01
One kind of instantaneous electron beam emittance measurement system based on the optical transition radiation principle and double imaging optical method has been set up. It is mainly adopted in the test for the intense electron-beam produced by a linear induction accelerator. The system features two characteristics. The first one concerns the system synchronization signal triggered by the following edge of the main output waveform from a Blumlein switch. The synchronous precision of about 1 ns between the electron beam and the image capture time can be reached in this way so that the electron beam emittance at the desired time point can be obtained. The other advantage of the system is the ability to obtain the beam spot and beam divergence in one measurement so that the calculated result is the true beam emittance at that time, which can explain the electron beam condition. It provides to be a powerful beam diagnostic method for a 2.5 kA, 18.5 MeV, 90 ns (FWHM) electron beam pulse produced by Dragon I. The ability of the instantaneous measurement is about 3 ns and it can measure the beam emittance at any time point during one beam pulse. A series of beam emittances have been obtained for Dragon I. The typical beam spot is 9.0 mm (FWHM) in diameter and the corresponding beam divergence is about 10.5 mrad.
AI and workflow automation: The prototype electronic purchase request system
NASA Technical Reports Server (NTRS)
Compton, Michael M.; Wolfe, Shawn R.
1994-01-01
Automating 'paper' workflow processes with electronic forms and email can dramatically improve the efficiency of those processes. However, applications that involve complex forms that are used for a variety of purposes or that require numerous and varied approvals often require additional software tools to ensure that (1) the electronic form is correctly and completely filled out, and (2) the form is routed to the proper individuals and organizations for approval. The prototype electronic purchase request (PEPR) system, which has been in pilot use at NASA Ames Research Center since December 1993, seamlessly links a commercial electronics forms package and a CLIPS-based knowledge system that first ensures that electronic forms are correct and complete, and then generates an 'electronic routing slip' that is used to route the form to the people who must sign it. The PEPR validation module is context-sensitive, and can apply different validation rules at each step in the approval process. The PEPR system is form-independent, and has been applied to several different types of forms. The system employs a version of CLIPS that has been extended to support AppleScript, a recently-released scripting language for the Macintosh. This 'scriptability' provides both a transparent, flexible interface between the two programs and a means by which a single copy of the knowledge base can be utilized by numerous remote users.
High-performance green flexible electronics based on biodegradable cellulose nanofibril paper
Yei Hwan Jung; Tzu-Hsuan Chang; Huilong Zhang; Chunhua Yao; Qifeng Zheng; Vina W. Yang; Hongyi Mi; Munho Kim; Sang June Cho; Dong-Wook Park; Hao Jiang; Juhwan Lee; Yijie Qiu; Weidong Zhou; Zhiyong Cai; Shaoqin Gong; Zhenqiang Ma
2015-01-01
Todayâs consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems...
Power Supply Fault Tolerant Reliability Study
1991-04-01
easier to design than for equivalent bipolar transistors. MCDONNELL DOUGLAS ELECTRONICS SYSTEMS COMPANY 9. Base circuitry should be designed to drive...SWITCHING REGULATORS (Ref. 28), SWITCHING AND LINEAR POWER SUPPLY DESIGN (Ref. 25) 6. Sequence the turn-off/turn-on logic in an orderly and controllable ...for equivalent bipolar transistors. MCDONNELL DOUGLAS ELECTRONICS SYSTEMS COMPANY 8. Base circuitry should be designed to drive the transistor into
ERIC Educational Resources Information Center
Johnson-Leslie, Natalie A.
2009-01-01
In teacher education, electronic portfolios provide an authentic form of assessment documenting students' personal and professional growth. Using the engineered-based system, College LiveText, and an off-the-shelf general tool, HyperStudio, pre-service teachers constructed e-portfolios as part of their teacher preparation requirements. This case…
Cadieux, J. R.; Fugate, G. A.; King, III, G. S.
2015-02-07
Here, an alpha–gamma coincidence spectrometer has been developed for the measurement of selected actinide isotopes in the presence of high beta/gamma fields. The system is based on a PERALS® liquid scintillation counter for beta/alpha discrimination and was successfully tested with both high purity germanium and bismuth germanate, gamma-ray detectors using conventional analog electronics.
Javan Amoli, Amir Hossein; Maserat, Elham; Safdari, Reza; Zali, Mohammad Reza
2015-01-01
Decision making modalities for screening for many cancer conditions and different stages have become increasingly complex. Computer-based risk assessment systems facilitate scheduling and decision making and support the delivery of cancer screening services. The aim of this article was to survey electronic risk assessment system as an appropriate tool for the prevention of cancer. A qualitative design was used involving 21 face-to-face interviews. Interviewing involved asking questions and getting answers from exclusive managers of cancer screening. Of the participants 6 were female and 15 were male, and ages ranged from 32 to 78 years. The study was based on a grounded theory approach and the tool was a semi- structured interview. Researchers studied 5 dimensions, comprising electronic guideline standards of colorectal cancer screening, work flow of clinical and genetic activities, pathways of colorectal cancer screening and functionality of computer based guidelines and barriers. Electronic guideline standards of colorectal cancer screening were described in the s3 categories of content standard, telecommunications and technical standards and nomenclature and classification standards. According to the participations' views, workflow and genetic pathways of colorectal cancer screening were identified. The study demonstrated an effective role of computer-guided consultation for screening management. Electronic based systems facilitate real-time decision making during a clinical interaction. Electronic pathways have been applied for clinical and genetic decision support, workflow management, update recommendation and resource estimates. A suitable technical and clinical infrastructure is an integral part of clinical practice guidline of screening. As a conclusion, it is recommended to consider the necessity of architecture assessment and also integration standards.
An assembly system based on industrial robot with binocular stereo vision
NASA Astrophysics Data System (ADS)
Tang, Hong; Xiao, Nanfeng
2017-01-01
This paper proposes an electronic part and component assembly system based on an industrial robot with binocular stereo vision. Firstly, binocular stereo vision with a visual attention mechanism model is used to get quickly the image regions which contain the electronic parts and components. Secondly, a deep neural network is adopted to recognize the features of the electronic parts and components. Thirdly, in order to control the end-effector of the industrial robot to grasp the electronic parts and components, a genetic algorithm (GA) is proposed to compute the transition matrix and the inverse kinematics of the industrial robot (end-effector), which plays a key role in bridging the binocular stereo vision and the industrial robot. Finally, the proposed assembly system is tested in LED component assembly experiments, and the results denote that it has high efficiency and good applicability.
Electronic integrated disease surveillance system and pathogen asset control system.
Wahl, Tom G; Burdakov, Aleksey V; Oukharov, Andrey O; Zhilokov, Azamat K
2012-06-20
Electronic Integrated Disease Surveillance System (EIDSS) has been used to strengthen and support monitoring and prevention of dangerous diseases within One Health concept by integrating veterinary and human surveillance, passive and active approaches, case-based records including disease-specific clinical data based on standardised case definitions and aggregated data, laboratory data including sample tracking linked to each case and event with test results and epidemiological investigations. Information was collected and shared in secure way by different means: through the distributed nodes which are continuously synchronised amongst each other, through the web service, through the handheld devices. Electronic Integrated Disease Surveillance System provided near real time information flow that has been then disseminated to the appropriate organisations in a timely manner. It has been used for comprehensive analysis and visualisation capabilities including real time mapping of case events as these unfold enhancing decision making. Electronic Integrated Disease Surveillance System facilitated countries to comply with the IHR 2005 requirements through a data transfer module reporting diseases electronically to the World Health Organisation (WHO) data center as well as establish authorised data exchange with other electronic system using Open Architecture approach. Pathogen Asset Control System (PACS) has been used for accounting, management and control of biological agent stocks. Information on samples and strains of any kind throughout their entire lifecycle has been tracked in a comprehensive and flexible solution PACS.Both systems have been used in a combination and individually. Electronic Integrated Disease Surveillance System and PACS are currently deployed in the Republics of Kazakhstan, Georgia and Azerbaijan as a part of the Cooperative Biological Engagement Program (CBEP) sponsored by the US Defense Threat Reduction Agency (DTRA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
McElroy, Robert Dennis
From the 1991 until 2008 the Canberra Hybrid K-Edge Densitometer systems were provided with ICB-NIM (Integrated Control Bus – Nuclear Instrument Module) acquisition electronics. Newer electronics modules, such as the Lynx, were not supported under the VMS based operating system. The LYNX module was provided as the standard acquisition electronics following the release of the Windows based CHKED software. This report compares the electronics dead-time, gain shifts, detector resolution and measurement performance of the HKED system operated with the two types of acquisition modules. The comparison was performed using measurements obtained with the ORNL HKED system. The original intent ofmore » this study was to take advantage of both the timing and energy outputs from the HPGE detector to acquire data with both sets of electronics in parallel. Although this approach has been applied successfully with other systems, in this case we found the timing output produced a significant amount of noise such that a comparison between the electronics would be invalid. So the comparative measurements were performed sequentially. The ICB-NIM data was acquired over the course of 12 months with 255 measurements while the LYNX data was acquired over a period of 10 months with 75 measurements. To simplify the comparison, all data used in this study was acquired using the Canberra CHKED (V1.0) software package. The performance analysis was based primarily on the peak locations, peak widths and concentration values reported by the CHKED software. The raw spectra from the XRF measurements were also examined to extract additional 109Cd peak location and width data for the hybrid measurements (the standard hybrid report template does not report these values).« less
Identification of sandstone core damage using scanning electron microscopy
NASA Astrophysics Data System (ADS)
Ismail, Abdul Razak; Jaafar, Mohd Zaidi; Sulaiman, Wan Rosli Wan; Ismail, Issham; Shiunn, Ng Yinn
2017-12-01
Particles and fluids invasion into the pore spaces causes serious damage to the formation, resulting reduction in petroleum production. In order to prevent permeability damage for a well effectively, the damage mechanisms should be identified. In this study, water-based drilling fluid was compared to oil-based drilling fluids based on microscopic observation. The cores were damaged by several drilling fluid systems. Scanning electron microscope (SEM) was used to observe the damage mechanism caused by the drilling fluids. Results showed that the ester based drilling fluid system caused the most serious damage followed by synthetic oil based system and KCI-polymer system. Fine solids and filtrate migration and emulsion blockage are believed to be the major mechanisms controlling the changes in flow properties for the sandstone samples.
Aksiuta, E F; Ostashev, A V; Sergeev, E V; Aksiuta, V E
1997-01-01
The methods of the information (entropy) error theory were used to make a metrological analysis of the well-known commercial measuring systems for timing an anticipative reaction (AR) to the position of a moving object, which is based on the electromechanical, gas-discharge, and electron principles. The required accuracy of measurement was ascertained to be achieved only by using the systems based on the electron principle of moving object simulation and AR measurement.
A Quantum Proxy Weak Blind Signature Scheme Based on Controlled Quantum Teleportation
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Yu, Yao-Feng; Song, Qin; Gao, Lan-Xiang
2015-04-01
Proxy blind signature is applied to the electronic paying system, electronic voting system, mobile agent system, security of internet, etc. A quantum proxy weak blind signature scheme is proposed in this paper. It is based on controlled quantum teleportation. Five-qubit entangled state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement message blinding, so it could guarantee not only the unconditional security of the scheme but also the anonymity of the messages owner.
Clear as Glass: A Combined List of Print and Electronic Journals in the Knowledge Base
ERIC Educational Resources Information Center
Lowe, M. Sara
2008-01-01
The non-standard practice at Cowles Library at Drake University has been to display electronic journals and some print journals in the Knowledge Base while simultaneously listing print journals and some electronic journals in the online public access catalog (OPAC). The result was a system that made it difficult for patrons to determine our…
3 CFR - Managing Government Records
Code of Federal Regulations, 2012 CFR
2012-01-01
... opportunities for agency records management. Greater reliance on electronic communication and systems has... improving or maintaining its records management program, particularly with respect to managing electronic... litigation; and (vi) transitioning from paper-based records management to electronic records management where...
ERIC Educational Resources Information Center
Bayram, Servet
2005-01-01
The concept of Electronic Performance Support Systems (EPSS) is containing multimedia or computer based instruction components that improves human performance by providing process simplification, performance information and decision support system. EPSS has become a hot topic for organizational development, human resources, performance technology,…
Categories of Electronic Publications in a College Information System. AIR 1992 Annual Forum Paper.
ERIC Educational Resources Information Center
Taylor, Allan
This paper identifies and describes the categories of electronic publications (EPs) in a document-based communication and information system called JIMMY, developed by Queen Margaret College (Edinburgh, Scotland) for use by students and staff in general arts and paramedical courses. The use of computer-mediated communication systems like bulletin…
Emerging GaN-based HEMTs for mechanical sensing within harsh environments
NASA Astrophysics Data System (ADS)
Köck, Helmut; Chapin, Caitlin A.; Ostermaier, Clemens; Häberlen, Oliver; Senesky, Debbie G.
2014-06-01
Gallium nitride based high-electron-mobility transistors (HEMTs) have been investigated extensively as an alternative to Si-based power transistors by academia and industry over the last decade. It is well known that GaN-based HEMTs outperform Si-based technologies in terms of power density, area specific on-state resistance and switching speed. Recently, wide band-gap material systems have stirred interest regarding their use in various sensing fields ranging from chemical, mechanical, biological to optical applications due to their superior material properties. For harsh environments, wide bandgap sensor systems are deemed to be superior when compared to conventional Si-based systems. A new monolithic sensor platform based on the GaN HEMT electronic structure will enable engineers to design highly efficient propulsion systems widely applicable to the automotive, aeronautics and astronautics industrial sectors. In this paper, the advancements of GaN-based HEMTs for mechanical sensing applications are discussed. Of particular interest are multilayered heterogeneous structures where spontaneous and piezoelectric polarization between the interface results in the formation of a 2-dimensional electron gas (2DEG). Experimental results presented focus on the signal transduction under strained operating conditions in harsh environments. It is shown that a conventional AlGaN/GaN HEMT has a strong dependence of drain current under strained conditions, thus representing a promising future sensor platform. Ultimately, this work explores the sensor performance of conventional GaN HEMTs and leverages existing technological advances available in power electronics device research. The results presented have the potential to boost GaN-based sensor development through the integration of HEMT device and sensor design research.
Tomiki, Takeshi; Saitou, Naruya
2004-08-01
The four electron transfer energy metabolism systems, photosynthesis, aerobic respiration, denitrification, and sulfur respiration, are thought to be evolutionarily related because of the similarity of electron transfer patterns and the existence of some homologous proteins. How these systems have evolved is elusive. We therefore conducted a comprehensive homology search using PSI-BLAST, and phylogenetic analyses were conducted for the three homologous groups (groups 1-3) based on multiple alignments of domains defined in the Pfam database. There are five electron transfer types important for catalytic reaction in group 1, and many proteins bind molybdenum. Deletions of two domains led to loss of the function of binding molybdenum and ferredoxin, and these deletions seem to be critical for the electron transfer pattern changes in group 1. Two types of electron transfer were found in group 2, and all its member proteins bind siroheme and ferredoxin. Insertion of the pyridine nucleotide disulfide oxidoreductase domain seemed to be the critical point for the electron transfer pattern change in this group. The proteins belonging to group 3 are all flavin enzymes, and they bind flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN). Types of electron transfer in this group are divergent, but there are two common characteristics. NAD(P)H works as an electron donor or acceptor, and FAD or FMN transfers electrons from/to NAD(P)H. Electron transfer functions might be added to these common characteristics by the addition of functional domains through the evolution of group 3 proteins. Based on the phylogenetic analyses in this study and previous studies, we inferred the phylogeny of the energy metabolism systems as follows: photosynthesis (and possibly aerobic respiration) and the sulfur/nitrogen assimilation system first diverged, then the sulfur/nitrogen dissimilation system was produced from the latter system.
NASA Astrophysics Data System (ADS)
Sihombing, Oloan; Zendrato, Niskarto; Laia, Yonata; Nababan, Marlince; Sitanggang, Delima; Purba, Windania; Batubara, Diarmansyah; Aisyah, Siti; Indra, Evta; Siregar, Saut
2018-04-01
In the era of technological development today, the technology has become the need for the life of today's society. One is needed to create a smart home in turning on and off electronic devices via smartphone. So far in turning off and turning the home electronic device is done by pressing the switch or remote button, so in control of electronic device control less effective. The home smart design is done by simulation concept by testing system, network configuration, and wireless home gateway computer network equipment required by a smart home network on cisco packet tracer using Internet Thing (IoT) control. In testing the IoT home network wireless network gateway system, multiple electronic devices can be controlled and monitored via smartphone based on predefined configuration conditions. With the Smart Ho me can potentially increase energy efficiency, decrease energy usage costs, control electronics and change the role of residents.
Effectiveness-weighted control method for a cooling system
Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.
2015-12-15
Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
Effectiveness-weighted control of cooling system components
Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.
2015-12-22
Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.
Njuguna, Henry N; Caselton, Deborah L; Arunga, Geoffrey O; Emukule, Gideon O; Kinyanjui, Dennis K; Kalani, Rosalia M; Kinkade, Carl; Muthoka, Phillip M; Katz, Mark A; Mott, Joshua A
2014-12-24
For disease surveillance, manual data collection using paper-based questionnaires can be time consuming and prone to errors. We introduced smartphone data collection to replace paper-based data collection for an influenza sentinel surveillance system in four hospitals in Kenya. We compared the quality, cost and timeliness of data collection between the smartphone data collection system and the paper-based system. Since 2006, the Kenya Ministry of Health (MoH) with technical support from the Kenya Medical Research Institute/Centers for Disease Control and Prevention (KEMRI/CDC) conducted hospital-based sentinel surveillance for influenza in Kenya. In May 2011, the MOH replaced paper-based collection with an electronic data collection system using Field Adapted Survey Toolkit (FAST) on HTC Touch Pro2 smartphones at four sentinel sites. We compared 880 paper-based questionnaires dated Jan 2010-Jun 2011 and 880 smartphone questionnaires dated May 2011-Jun 2012 from the four surveillance sites. For each site, we compared the quality, cost and timeliness of each data collection system. Incomplete records were more likely seen in data collected using pen-and-paper compared to data collected using smartphones (adjusted incidence rate ratio (aIRR) 7, 95% CI: 4.4-10.3). Errors and inconsistent answers were also more likely to be seen in data collected using pen-and-paper compared to data collected using smartphones (aIRR: 25, 95% CI: 12.5-51.8). Smartphone data was uploaded into the database in a median time of 7 days while paper-based data took a median of 21 days to be entered (p < 0.01). It cost USD 1,501 (9.4%) more to establish the smartphone data collection system ($17,500) than the pen-and-paper system (USD $15,999). During two years, however, the smartphone data collection system was $3,801 (7%) less expensive to operate ($50,200) when compared to pen-and-paper system ($54,001). Compared to paper-based data collection, an electronic data collection system produced fewer incomplete data, fewer errors and inconsistent responses and delivered data faster. Although start-up costs were higher, the overall costs of establishing and running the electronic data collection system were lower compared to paper-based data collection system. Electronic data collection using smartphones has potential to improve timeliness, data integrity and reduce costs.
Highly parallel implementation of non-adiabatic Ehrenfest molecular dynamics
NASA Astrophysics Data System (ADS)
Kanai, Yosuke; Schleife, Andre; Draeger, Erik; Anisimov, Victor; Correa, Alfredo
2014-03-01
While the adiabatic Born-Oppenheimer approximation tremendously lowers computational effort, many questions in modern physics, chemistry, and materials science require an explicit description of coupled non-adiabatic electron-ion dynamics. Electronic stopping, i.e. the energy transfer of a fast projectile atom to the electronic system of the target material, is a notorious example. We recently implemented real-time time-dependent density functional theory based on the plane-wave pseudopotential formalism in the Qbox/qb@ll codes. We demonstrate that explicit integration using a fourth-order Runge-Kutta scheme is very suitable for modern highly parallelized supercomputers. Applying the new implementation to systems with hundreds of atoms and thousands of electrons, we achieved excellent performance and scalability on a large number of nodes both on the BlueGene based ``Sequoia'' system at LLNL as well as the Cray architecture of ``Blue Waters'' at NCSA. As an example, we discuss our work on computing the electronic stopping power of aluminum and gold for hydrogen projectiles, showing an excellent agreement with experiment. These first-principles calculations allow us to gain important insight into the the fundamental physics of electronic stopping.
[Development of a medical equipment support information system based on PDF portable document].
Cheng, Jiangbo; Wang, Weidong
2010-07-01
According to the organizational structure and management system of the hospital medical engineering support, integrate medical engineering support workflow to ensure the medical engineering data effectively, accurately and comprehensively collected and kept in electronic archives. Analyse workflow of the medical, equipment support work and record all work processes by the portable electronic document. Using XML middleware technology and SQL Server database, complete process management, data calculation, submission, storage and other functions. The practical application shows that the medical equipment support information system optimizes the existing work process, standardized and digital, automatic and efficient orderly and controllable. The medical equipment support information system based on portable electronic document can effectively optimize and improve hospital medical engineering support work, improve performance, reduce costs, and provide full and accurate digital data
Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates
Rogers, John A; Cao, Qing; Alam, Muhammad; Pimparkar, Ninad
2015-02-03
The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.
2010-01-01
Background The health care sector is an area of social and economic interest in several countries; therefore, there have been lots of efforts in the use of electronic health records. Nevertheless, there is evidence suggesting that these systems have not been adopted as it was expected, and although there are some proposals to support their adoption, the proposed support is not by means of information and communication technology which can provide automatic tools of support. The aim of this study is to identify the critical adoption factors for electronic health records by physicians and to use them as a guide to support their adoption process automatically. Methods This paper presents, based on the PRISMA statement, a systematic literature review in electronic databases with adoption studies of electronic health records published in English. Software applications that manage and process the data in the electronic health record have been considered, i.e.: computerized physician prescription, electronic medical records, and electronic capture of clinical data. Our review was conducted with the purpose of obtaining a taxonomy of the physicians main barriers for adopting electronic health records, that can be addressed by means of information and communication technology; in particular with the information technology roles of the knowledge management processes. Which take us to the question that we want to address in this work: "What are the critical adoption factors of electronic health records that can be supported by information and communication technology?". Reports from eight databases covering electronic health records adoption studies in the medical domain, in particular those focused on physicians, were analyzed. Results The review identifies two main issues: 1) a knowledge-based classification of critical factors for adopting electronic health records by physicians; and 2) the definition of a base for the design of a conceptual framework for supporting the design of knowledge-based systems, to assist the adoption process of electronic health records in an automatic fashion. From our review, six critical adoption factors have been identified: user attitude towards information systems, workflow impact, interoperability, technical support, communication among users, and expert support. The main limitation of the taxonomy is the different impact of the adoption factors of electronic health records reported by some studies depending on the type of practice, setting, or attention level; however, these features are a determinant aspect with regard to the adoption rate for the latter rather than the presence of a specific critical adoption factor. Conclusions The critical adoption factors established here provide a sound theoretical basis for research to understand, support, and facilitate the adoption of electronic health records to physicians in benefit of patients. PMID:20950458
A 50/50 electronic beam splitter in graphene nanoribbons as a building block for electron optics.
Lima, Leandro R F; Hernández, Alexis R; Pinheiro, Felipe A; Lewenkopf, Caio
2016-12-21
Based on the investigation of the multi-terminal conductance of a system composed of two graphene nanoribbons, in which one is on top of the other and rotated by [Formula: see text], we propose a setup for a 50/50 electronic beam splitter that neither requires large magnetic fields nor ultra low temperatures. Our findings are based on an atomistic tight-binding description of the system and on the Green function method to compute the Landauer conductance. We demonstrate that this system acts as a perfect 50/50 electronic beam splitter, in which its operation can be switched on and off by varying the doping (Fermi energy). We show that this device is robust against thermal fluctuations and long range disorder, as zigzag valley chiral states of the nanoribbons are protected against backscattering. We suggest that the proposed device can be applied as the fundamental element of the Hong-Ou-Mandel interferometer, as well as a building block of many devices in electron optics.
NASA Technical Reports Server (NTRS)
1998-01-01
SYMED, Inc., developed a unique electronic medical records and information management system. The S2000 Medical Interactive Care System (MICS) incorporates both a comprehensive and interactive medical care support capability and an extensive array of digital medical reference materials in either text or high resolution graphic form. The system was designed, in cooperation with NASA, to improve the effectiveness and efficiency of physician practices. The S2000 is a MS (Microsoft) Windows based software product which combines electronic forms, medical documents, records management, and features a comprehensive medical information system for medical diagnostic support and treatment. SYMED, Inc. offers access to its medical systems to all companies seeking competitive advantages.
Enhancement of High-Speed Infrared Array Electronics (Center Director's Discretionary Fund)
NASA Technical Reports Server (NTRS)
Sutherland, W. T.
1996-01-01
A state-of-the-art infrared detector was to be used as the sensor in a new spectrometer-camera for astronomical observations. The sensitivity of the detector required the use of low-noise, high-speed electronics in the system design. The key component in the electronic system was the pre-amplifier that amplified the low voltage signal coming from the detector. The system was designed based on the selection of the amplifier and that was driven by the maximum noise level, which would yield the desired sensitivity for the telescope system.
Graphene-Based Flexible and Stretchable Electronics.
Jang, Houk; Park, Yong Ju; Chen, Xiang; Das, Tanmoy; Kim, Min-Seok; Ahn, Jong-Hyun
2016-06-01
Graphene provides outstanding properties that can be integrated into various flexible and stretchable electronic devices in a conventional, scalable fashion. The mechanical, electrical, and optical properties of graphene make it an attractive candidate for applications in electronics, energy-harvesting devices, sensors, and other systems. Recent research progress on graphene-based flexible and stretchable electronics is reviewed here. The production and fabrication methods used for target device applications are first briefly discussed. Then, the various types of flexible and stretchable electronic devices that are enabled by graphene are discussed, including logic devices, energy-harvesting devices, sensors, and bioinspired devices. The results represent important steps in the development of graphene-based electronics that could find applications in the area of flexible and stretchable electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Quality of nursing documentation: Paper-based health records versus electronic-based health records.
Akhu-Zaheya, Laila; Al-Maaitah, Rowaida; Bany Hani, Salam
2018-02-01
To assess and compare the quality of paper-based and electronic-based health records. The comparison examined three criteria: content, documentation process and structure. Nursing documentation is a significant indicator of the quality of patient care delivery. It can be either paper-based or organised within the system known as the electronic health records. Nursing documentation must be completed at the highest standards, to ensure the safety and quality of healthcare services. However, the evidence is not clear on which one of the two forms of documentation (paper-based versus electronic health records is more qualified. A retrospective, descriptive, comparative design was used to address the study's purposes. A convenient number of patients' records, from two public hospitals, were audited using the Cat-ch-Ing audit instrument. The sample size consisted of 434 records for both paper-based health records and electronic health records from medical and surgical wards. Electronic health records were better than paper-based health records in terms of process and structure. In terms of quantity and quality content, paper-based records were better than electronic health records. The study affirmed the poor quality of nursing documentation and lack of nurses' knowledge and skills in the nursing process and its application in both paper-based and electronic-based systems. Both forms of documentation revealed drawbacks in terms of content, process and structure. This study provided important information, which can guide policymakers and administrators in identifying effective strategies aimed at enhancing the quality of nursing documentation. Policies and actions to ensure quality nursing documentation at the national level should focus on improving nursing knowledge, competencies, practice in nursing process, enhancing the work environment and nursing workload, as well as strengthening the capacity building of nursing practice to improve the quality of nursing care and patients' outcomes. © 2017 John Wiley & Sons Ltd.
Sefton, Gerri; Lane, Steven; Killen, Roger; Black, Stuart; Lyon, Max; Ampah, Pearl; Sproule, Cathryn; Loren-Gosling, Dominic; Richards, Caitlin; Spinty, Jean; Holloway, Colette; Davies, Coral; Wilson, April; Chean, Chung Shen; Carter, Bernie; Carrol, E D
2017-05-01
Pediatric Early Warning Scores are advocated to assist health professionals to identify early signs of serious illness or deterioration in hospitalized children. Scores are derived from the weighting applied to recorded vital signs and clinical observations reflecting deviation from a predetermined "norm." Higher aggregate scores trigger an escalation in care aimed at preventing critical deterioration. Process errors made while recording these data, including plotting or calculation errors, have the potential to impede the reliability of the score. To test this hypothesis, we conducted a controlled study of documentation using five clinical vignettes. We measured the accuracy of vital sign recording, score calculation, and time taken to complete documentation using a handheld electronic physiological surveillance system, VitalPAC Pediatric, compared with traditional paper-based charts. We explored the user acceptability of both methods using a Web-based survey. Twenty-three staff participated in the controlled study. The electronic physiological surveillance system improved the accuracy of vital sign recording, 98.5% versus 85.6%, P < .02, Pediatric Early Warning Score calculation, 94.6% versus 55.7%, P < .02, and saved time, 68 versus 98 seconds, compared with paper-based documentation, P < .002. Twenty-nine staff completed the Web-based survey. They perceived that the electronic physiological surveillance system offered safety benefits by reducing human error while providing instant visibility of recorded data to the entire clinical team.
Chang, Hsin Hsin; Chang, Ching Sheng
2008-01-01
Background Enhancing service efficiency and quality has always been one of the most important factors to heighten competitiveness in the health care service industry. Thus, how to utilize information technology to reduce work load for staff and expeditiously improve work efficiency and healthcare service quality is presently the top priority for every healthcare institution. In this fast changing modern society, e-health care systems are currently the best possible way to achieve enhanced service efficiency and quality under the restraint of healthcare cost control. The electronic medical record system and the online appointment system are the core features in employing e-health care systems in the technology-based service encounters. Methods This study implemented the Service Encounters Evaluation Model, the European Customer Satisfaction Index, the Attribute Model and the Overall Affect Model for model inference. A total of 700 copies of questionnaires from two authoritative southern Taiwan medical centers providing the electronic medical record system and the online appointment system service were distributed, among which 590 valid copies were retrieved with a response rate of 84.3%. We then used SPSS 11.0 and the Linear Structural Relationship Model (LISREL 8.54) to analyze and evaluate the data. Results The findings are as follows: (1) Technology-based service encounters have a positive impact on service quality, but not patient satisfaction; (2) After experiencing technology-based service encounters, the cognition of the service quality has a positive effect on patient satisfaction; and (3) Network security contributes a positive moderating effect on service quality and patient satisfaction. Conclusion It revealed that the impact of electronic workflow (online appointment system service) on service quality was greater than electronic facilities (electronic medical record systems) in technology-based service encounters. Convenience and credibility are the most important factors of service quality in technology-based service encounters that patients demand. Due to the openness of networks, patients worry that transaction information could be intercepted; also, the credibility of the hospital involved is even a bigger concern, as patients have a strong sense of distrust. Therefore, in the operation of technology-based service encounters, along with providing network security, it is essential to build an atmosphere of psychological trust. PMID:18419820
Chang, Hsin Hsin; Chang, Ching Sheng
2008-04-17
Enhancing service efficiency and quality has always been one of the most important factors to heighten competitiveness in the health care service industry. Thus, how to utilize information technology to reduce work load for staff and expeditiously improve work efficiency and healthcare service quality is presently the top priority for every healthcare institution. In this fast changing modern society, e-health care systems are currently the best possible way to achieve enhanced service efficiency and quality under the restraint of healthcare cost control. The electronic medical record system and the online appointment system are the core features in employing e-health care systems in the technology-based service encounters. This study implemented the Service Encounters Evaluation Model, the European Customer Satisfaction Index, the Attribute Model and the Overall Affect Model for model inference. A total of 700 copies of questionnaires from two authoritative southern Taiwan medical centers providing the electronic medical record system and the online appointment system service were distributed, among which 590 valid copies were retrieved with a response rate of 84.3%. We then used SPSS 11.0 and the Linear Structural Relationship Model (LISREL 8.54) to analyze and evaluate the data. The findings are as follows: (1) Technology-based service encounters have a positive impact on service quality, but not patient satisfaction; (2) After experiencing technology-based service encounters, the cognition of the service quality has a positive effect on patient satisfaction; and (3) Network security contributes a positive moderating effect on service quality and patient satisfaction. It revealed that the impact of electronic workflow (online appointment system service) on service quality was greater than electronic facilities (electronic medical record systems) in technology-based service encounters. Convenience and credibility are the most important factors of service quality in technology-based service encounters that patients demand. Due to the openness of networks, patients worry that transaction information could be intercepted; also, the credibility of the hospital involved is even a bigger concern, as patients have a strong sense of distrust. Therefore, in the operation of technology-based service encounters, along with providing network security, it is essential to build an atmosphere of psychological trust.
Southwest electronic one-stop shopping, motor carrier test report
DOT National Transportation Integrated Search
1997-12-22
The Electronic One-Stop System (EOSS) used in this credential test was designed to replace current normal credentialling procedures with a personal computer-based electronic method that allows users to prepare, apply for, and obtain certain types of ...
Southwest electronic one-stop shopping, state agency test report
DOT National Transportation Integrated Search
1997-12-22
The Electronic One-Stop System (EOSS) used in this credential test was designed to replace current normal credentialling procedures with a personal computer-based electronic method that allows users to prepare, apply for, and obtain certain types of ...
Design of metal cofactors activated by a protein–protein electron transfer system
Ueno, Takafumi; Yokoi, Norihiko; Unno, Masaki; Matsui, Toshitaka; Tokita, Yuichi; Yamada, Masako; Ikeda-Saito, Masao; Nakajima, Hiroshi; Watanabe, Yoshihito
2006-01-01
Protein-to-protein electron transfer (ET) is a critical process in biological chemistry for which fundamental understanding is expected to provide a wealth of applications in biotechnology. Investigations of protein–protein ET systems in reductive activation of artificial cofactors introduced into proteins remains particularly challenging because of the complexity of interactions between the cofactor and the system contributing to ET. In this work, we construct an artificial protein–protein ET system, using heme oxygenase (HO), which is known to catalyze the conversion of heme to biliverdin. HO uses electrons provided from NADPH/cytochrome P450 reductase (CPR) through protein–protein complex formation during the enzymatic reaction. We report that a FeIII(Schiff-base), in the place of the active-site heme prosthetic group of HO, can be reduced by NADPH/CPR. The crystal structure of the Fe(10-CH2CH2COOH-Schiff-base)·HO composite indicates the presence of a hydrogen bond between the propionic acid carboxyl group and Arg-177 of HO. Furthermore, the ET rate from NADPH/CPR to the composite is 3.5-fold faster than that of Fe(Schiff-base)·HO, although the redox potential of Fe(10-CH2CH2COOH-Schiff-base)·HO (−79 mV vs. NHE) is lower than that of Fe(Schiff-base)·HO (+15 mV vs. NHE), where NHE is normal hydrogen electrode. This work describes a synthetic metal complex activated by means of a protein–protein ET system, which has not previously been reported. Moreover, the result suggests the importance of the hydrogen bond for the ET reaction of HO. Our Fe(Schiff-base)·HO composite model system may provide insights with regard to design of ET biosystems for sensors, catalysts, and electronics devices. PMID:16769893
Chow, C B; Leung, M; Lai, Adela; Chow, Y H; Chung, Joanne; Tong, K M; Lit, Albert
2012-06-01
To describe the experience in the development of an electronic emergency department (ED)-based injury surveillance (IS) system in Hong Kong using data-mining and geo-spatial information technology (IT) for a Safe Community setup. This paper described the phased development of an emergency department-based IS system based on World Health Organization (WHO) injury surveillance Guideline to support safety promotion and injury prevention in a Safe Community in Hong Kong starting 2002. The initial ED data-based only collected data on name, sex, age, address, eight general categories of injury types (traffic, domestic, common assault, indecent assault, batter, industrial, self-harm and sports) and disposal from ED. Phase 1--manual data collection on International Classification of External Causes of Injury pre-event data; Phase 2--manual form was converted to electronic format using web-based data mining technology with built in data quality monitoring mechanism; Phase 3--integration of injury surveillance-data with in-patient hospital information; and Phase 4--geo-spatial information and body mapping were introduced to geo-code exact place of injury in an electronic map and site of injury on body map. It was feasible to develop a geo-spatial IS system at busy ED to collect valuable information for safety promotion and injury prevention at Safe Community setting. The keys for successful development and implementation involves engagement of all stakeholders at design and implementation of the system with injury prevention as ultimate goal, detail workflow planning at front end, support from the management, building on exiting system and appropriate utilisation of modern technology. Copyright © 2011 Elsevier Ltd. All rights reserved.
A study on agent-based secure scheme for electronic medical record system.
Chen, Tzer-Long; Chung, Yu-Fang; Lin, Frank Y S
2012-06-01
Patient records, including doctors' diagnoses of diseases, trace of treatments and patients' conditions, nursing actions, and examination results from allied health profession departments, are the most important medical records of patients in medical systems. With patient records, medical staff can instantly understand the entire medical information of a patient so that, according to the patient's conditions, more accurate diagnoses and more appropriate in-depth treatments can be provided. Nevertheless, in such a modern society with booming information technologies, traditional paper-based patient records have faced a lot of problems, such as lack of uniform formats, low data mobility, slow data transfer, illegible handwritings, enormous and insufficient storage space, difficulty of conservation, being easily damaged, and low transferability. To improve such drawbacks, reduce medical costs, and advance medical quality, paper-based patient records are modified into electronic medical records and reformed into electronic patient records. However, since electronic patient records used in various hospitals are diverse and different, in consideration of cost, it is rather difficult to establish a compatible and complete integrated electronic patient records system to unify patient records from heterogeneous systems in hospitals. Moreover, as the booming of the Internet, it is no longer necessary to build an integrated system. Instead, doctors can instantly look up patients' complete information through the Internet access to electronic patient records as well as avoid the above difficulties. Nonetheless, the major problem of accessing to electronic patient records cross-hospital systems exists in the security of transmitting and accessing to the records in case of unauthorized medical personnels intercepting or stealing the information. This study applies the Mobile Agent scheme to cope with the problem. Since a Mobile Agent is a program, which can move among hosts and automatically disperse arithmetic processes, and moves from one host to another in heterogeneous network systems with the characteristics of autonomy and mobility, decreasing network traffic, reducing transfer lag, encapsulating protocol, availability on heterogeneous platforms, fault-tolerance, high flexibility, and personalization. However, since a Mobile Agent contacts and exchanges information with other hosts or agents on the Internet for rapid exchange and access to medical information, the security is threatened. In order to solve the problem, this study proposes a key management scheme based on Lagrange interpolation formulas and hierarchical management structure to make Mobile Agents a more secure and efficient access control scheme for electronic patient record systems when applied to the access of patients' personal electronic patient records cross hospitals. Meanwhile, with the comparison of security and efficacy analyses being the feasibility of validation scheme and the basis of better efficiency, the security of Mobile Agents in the process of operation can be guaranteed, key management efficacy can be advanced, and the security of the Mobile Agent system can be protected.
A neural approach for improving the measurement capability of an electronic nose
NASA Astrophysics Data System (ADS)
Chimenti, M.; DeRossi, D.; Di Francesco, F.; Domenici, C.; Pieri, G.; Pioggia, G.; Salvetti, O.
2003-06-01
Electronic noses, instruments for automatic recognition of odours, are typically composed of an array of partially selective sensors, a sampling system, a data acquisition device and a data processing system. For the purpose of evaluating the quality of olive oil, an electronic nose based on an array of conducting polymer sensors capable of discriminating olive oil aromas was developed. The selection of suitable pattern recognition techniques for a particular application can enhance the performance of electronic noses. Therefore, an advanced neural recognition algorithm for improving the measurement capability of the device was designed and implemented. This method combines multivariate statistical analysis and a hierarchical neural-network architecture based on self-organizing maps and error back-propagation. The complete system was tested using samples composed of characteristic olive oil aromatic components in refined olive oil. The results obtained have shown that this approach is effective in grouping aromas into different categories representative of their chemical structure.
Electronic shift register memory based on molecular electron-transfer reactions
NASA Technical Reports Server (NTRS)
Hopfield, J. J.; Onuchic, Jose Nelson; Beratan, David N.
1989-01-01
The design of a shift register memory at the molecular level is described in detail. The memory elements are based on a chain of electron-transfer molecules incorporated on a very large scale integrated (VLSI) substrate, and the information is shifted by photoinduced electron-transfer reactions. The design requirements for such a system are discussed, and several realistic strategies for synthesizing these systems are presented. The immediate advantage of such a hybrid molecular/VLSI device would arise from the possible information storage density. The prospect of considerable savings of energy per bit processed also exists. This molecular shift register memory element design solves the conceptual problems associated with integrating molecular size components with larger (micron) size features on a chip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, M., E-mail: yosikawa@prc.tsukuba.ac.jp; Nagasu, K.; Shimamura, Y.
2014-11-15
A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.
Yoshikawa, M; Yasuhara, R; Nagasu, K; Shimamura, Y; Shima, Y; Kohagura, J; Sakamoto, M; Nakashima, Y; Imai, T; Ichimura, M; Yamada, I; Funaba, H; Kawahata, K; Minami, T
2014-11-01
A multi-pass Thomson scattering (TS) has the advantage of enhancing scattered signals. We constructed a multi-pass TS system for a polarisation-based system and an image relaying system modelled on the GAMMA 10 TS system. We undertook Raman scattering experiments both for the multi-pass setting and for checking the optical components. Moreover, we applied the system to the electron temperature measurements in the GAMMA 10 plasma for the first time. The integrated scattering signal was magnified by approximately three times by using the multi-pass TS system with four passes. The electron temperature measurement accuracy is improved by using this multi-pass system.
NASA Astrophysics Data System (ADS)
Anderson, J.; Bauer, K.; Borga, A.; Boterenbrood, H.; Chen, H.; Chen, K.; Drake, G.; Dönszelmann, M.; Francis, D.; Guest, D.; Gorini, B.; Joos, M.; Lanni, F.; Lehmann Miotto, G.; Levinson, L.; Narevicius, J.; Panduro Vazquez, W.; Roich, A.; Ryu, S.; Schreuder, F.; Schumacher, J.; Vandelli, W.; Vermeulen, J.; Whiteson, D.; Wu, W.; Zhang, J.
2016-12-01
The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. The Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. The FELIX system, the design of the PCIe prototype card and the integration test results are presented in this paper.
Electronic structure, transport, and collective effects in molecular layered systems.
Hahn, Torsten; Ludwig, Tim; Timm, Carsten; Kortus, Jens
2017-01-01
The great potential of organic heterostructures for organic device applications is exemplified by the targeted engineering of the electronic properties of phthalocyanine-based systems. The transport properties of two different phthalocyanine systems, a pure copper phthalocyanine (CoPc) and a flourinated copper phthalocyanine-manganese phthalocyanine (F 16 CoPc/MnPc) heterostructure, are investigated by means of density functional theory (DFT) and the non-equilibrium Green's function (NEGF) approach. Furthermore, a master-equation-based approach is used to include electronic correlations beyond the mean-field-type approximation of DFT. We describe the essential theoretical tools to obtain the parameters needed for the master equation from DFT results. Finally, an interacting molecular monolayer is considered within a master-equation approach.
Single-chip microprocessor that communicates directly using light.
Sun, Chen; Wade, Mark T; Lee, Yunsup; Orcutt, Jason S; Alloatti, Luca; Georgas, Michael S; Waterman, Andrew S; Shainline, Jeffrey M; Avizienis, Rimas R; Lin, Sen; Moss, Benjamin R; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H; Cook, Henry M; Ou, Albert J; Leu, Jonathan C; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J; Popović, Miloš A; Stojanović, Vladimir M
2015-12-24
Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems--from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a 'zero-change' approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.
An Application of Artificial Intelligence to the Implementation of Electronic Commerce
NASA Astrophysics Data System (ADS)
Srivastava, Anoop Kumar
In this paper, we present an application of Artificial Intelligence (AI) to the implementation of Electronic Commerce. We provide a multi autonomous agent based framework. Our agent based architecture leads to flexible design of a spectrum of multiagent system (MAS) by distributing computation and by providing a unified interface to data and programs. Autonomous agents are intelligent enough and provide autonomy, simplicity of communication, computation, and a well developed semantics. The steps of design and implementation are discussed in depth, structure of Electronic Marketplace, an ontology, the agent model, and interaction pattern between agents is given. We have developed mechanisms for coordination between agents using a language, which is called Virtual Enterprise Modeling Language (VEML). VEML is a integration of Java and Knowledge Query and Manipulation Language (KQML). VEML provides application programmers with potential to globally develop different kinds of MAS based on their requirements and applications. We have implemented a multi autonomous agent based system called VE System. We demonstrate efficacy of our system by discussing experimental results and its salient features.
The hack attack - Increasing computer system awareness of vulnerability threats
NASA Technical Reports Server (NTRS)
Quann, John; Belford, Peter
1987-01-01
The paper discusses the issue of electronic vulnerability of computer based systems supporting NASA Goddard Space Flight Center (GSFC) by unauthorized users. To test the security of the system and increase security awareness, NYMA, Inc. employed computer 'hackers' to attempt to infiltrate the system(s) under controlled conditions. Penetration procedures, methods, and descriptions are detailed in the paper. The procedure increased the security consciousness of GSFC management to the electronic vulnerability of the system(s).
The Electronic Documentation Project in the NASA mission control center environment
NASA Technical Reports Server (NTRS)
Wang, Lui; Leigh, Albert
1994-01-01
NASA's space programs like many other technical programs of its magnitude is supported by a large volume of technical documents. These documents are not only diverse but also abundant. Management, maintenance, and retrieval of these documents is a challenging problem by itself; but, relating and cross-referencing this wealth of information when it is all on a medium of paper is an even greater challenge. The Electronic Documentation Project (EDP) is to provide an electronic system capable of developing, distributing and controlling changes for crew/ground controller procedures and related documents. There are two primary motives for the solution. The first motive is to reduce the cost of maintaining the current paper based method of operations by replacing paper documents with electronic information storage and retrieval. And, the other is to improve the efficiency and provide enhanced flexibility in document usage. Initially, the current paper based system will be faithfully reproduced in an electronic format to be used in the document viewing system. In addition, this metaphor will have hypertext extensions. Hypertext features support basic functions such as full text searches, key word searches, data retrieval, and traversal between nodes of information as well as speeding up the data access rate. They enable related but separate documents to have relationships, and allow the user to explore information naturally through non-linear link traversals. The basic operational requirements of the document viewing system are to: provide an electronic corollary to the current method of paper based document usage; supplement and ultimately replace paper-based documents; maintain focused toward control center operations such as Flight Data File, Flight Rules and Console Handbook viewing; and be available NASA wide.
Shulaker, Max M; Hills, Gage; Patil, Nishant; Wei, Hai; Chen, Hong-Yu; Wong, H-S Philip; Mitra, Subhasish
2013-09-26
The miniaturization of electronic devices has been the principal driving force behind the semiconductor industry, and has brought about major improvements in computational power and energy efficiency. Although advances with silicon-based electronics continue to be made, alternative technologies are being explored. Digital circuits based on transistors fabricated from carbon nanotubes (CNTs) have the potential to outperform silicon by improving the energy-delay product, a metric of energy efficiency, by more than an order of magnitude. Hence, CNTs are an exciting complement to existing semiconductor technologies. Owing to substantial fundamental imperfections inherent in CNTs, however, only very basic circuit blocks have been demonstrated. Here we show how these imperfections can be overcome, and demonstrate the first computer built entirely using CNT-based transistors. The CNT computer runs an operating system that is capable of multitasking: as a demonstration, we perform counting and integer-sorting simultaneously. In addition, we implement 20 different instructions from the commercial MIPS instruction set to demonstrate the generality of our CNT computer. This experimental demonstration is the most complex carbon-based electronic system yet realized. It is a considerable advance because CNTs are prominent among a variety of emerging technologies that are being considered for the next generation of highly energy-efficient electronic systems.
Quantum treatment of protons with the reduced explicitly correlated Hartree-Fock approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirjoosingh, Andrew; Pak, Michael V.; Brorsen, Kurt R.
2015-06-07
The nuclear-electronic orbital (NEO) approach treats select nuclei quantum mechanically on the same level as the electrons and includes nonadiabatic effects between the electrons and the quantum nuclei. The practical implementation of this approach is challenging due to the significance of electron-nucleus dynamical correlation. Herein, we present a general extension of the previously developed reduced NEO explicitly correlated Hartree-Fock (RXCHF) approach, in which only select electronic orbitals are explicitly correlated to each quantum nuclear orbital via Gaussian-type geminal functions. Approximations of the electronic exchange between the geminal-coupled electronic orbitals and the other electronic orbitals are also explored. This general approachmore » enables computationally tractable yet accurate calculations on molecular systems with quantum protons. The RXCHF method is applied to the hydrogen cyanide (HCN) and FHF{sup −} systems, where the proton and all electrons are treated quantum mechanically. For the HCN system, only the two electronic orbitals associated with the CH covalent bond are geminal-coupled to the proton orbital. For the FHF{sup −} system, only the four electronic orbitals associated with the two FH covalent bonds are geminal-coupled to the proton orbital. For both systems, the RXCHF method produces qualitatively accurate nuclear densities, in contrast to mean field-based NEO approaches. The development and implementation of the RXCHF method provide the framework to perform calculations on systems such as proton-coupled electron transfer reactions, where electron-proton nonadiabatic effects are important.« less
Component-Level Electronic-Assembly Repair (CLEAR) System Architecture
NASA Technical Reports Server (NTRS)
Oeftering, Richard C.; Bradish, Martin A.; Juergens, Jeffrey R.; Lewis, Michael J.; Vrnak, Daniel R.
2011-01-01
This document captures the system architecture for a Component-Level Electronic-Assembly Repair (CLEAR) capability needed for electronics maintenance and repair of the Constellation Program (CxP). CLEAR is intended to improve flight system supportability and reduce the mass of spares required to maintain the electronics of human rated spacecraft on long duration missions. By necessity it allows the crew to make repairs that would otherwise be performed by Earth based repair depots. Because of practical knowledge and skill limitations of small spaceflight crews they must be augmented by Earth based support crews and automated repair equipment. This system architecture covers the complete system from ground-user to flight hardware and flight crew and defines an Earth segment and a Space segment. The Earth Segment involves database management, operational planning, and remote equipment programming and validation processes. The Space Segment involves the automated diagnostic, test and repair equipment required for a complete repair process. This document defines three major subsystems including, tele-operations that links the flight hardware to ground support, highly reconfigurable diagnostics and test instruments, and a CLEAR Repair Apparatus that automates the physical repair process.
Leveraging Electronic Tablets for General Pediatric Care
McKee, S.; Dugan, T.M.; Downs, S.M.
2015-01-01
Summary Background We have previously shown that a scan-able paper based interface linked to a computerized clinical decision support system (CDSS) can effectively screen patients in pediatric waiting rooms and support the physician using evidence based care guidelines at the time of clinical encounter. However, the use of scan-able paper based interface has many inherent limitations including lacking real time communication with the CDSS and being prone to human and system errors. An electronic tablet based user interface can not only overcome these limitations, but may also support advanced functionality for clinical and research use. However, use of such devices for pediatric care is not well studied in clinical settings. Objective In this pilot study, we enhance our pediatric CDSS with an electronic tablet based user interface and evaluate it for usability as well as for changes in patient questionnaire completion rates. Methods Child Health Improvement through Computers Leveraging Electronic Tablets or CHICLET is an electronic tablet based user interface. It is developed to augment the existing scan-able paper interface to our CDSS. For the purposes of this study, we deployed CHICLET in one outpatient pediatric clinic. Usability factors for CHICLET were evaluated via caregiver and staff surveys. Results When compared to the scan-able paper based interface, we observed an 18% increase or 30% relative increase in question completion rates using CHICLET. This difference was statistically significant. Caregivers and staff survey results were positive for using CHICLET in clinical environment. Conclusions Electronic tablets are a viable interface for capturing patient self-report in pediatric waiting rooms. We further hypothesize that the use of electronic tablet based interfaces will drive advances in computerized clinical decision support and create opportunities for patient engagement. PMID:25848409
Identifying Effectiveness Criteria for Internet Payment Systems.
ERIC Educational Resources Information Center
Shon, Tae-Hwan; Swatman, Paula M. C.
1998-01-01
Examines Internet payment systems (IPS): third-party, card, secure Web server, electronic token, financial electronic data interchange (EDI), and micropayment based. Reports the results of a Delphi survey of experts identifying and classifying IPS effectiveness criteria and classifying types of IPS providers. Includes the survey invitation letter…
Using Blackboard and Skype for Mentoring Beginning Teachers
ERIC Educational Resources Information Center
Suk Hwang, Young; Vrongistinos, Konstantinos
2012-01-01
The purpose of this article is to examine the nature of the Blackboard and Skype-based electronic mentoring system for beginning teachers. The Quality Teachers for Quality Students project developed an electronic mentoring system between beginning teachers and experienced teachers to support beginning teachers' instructional and classroom…
NASA Astrophysics Data System (ADS)
Kim, Jung Rae
Bioelectrochemical system such as microbial fuel cells (MFCs) and microbial electrolysis cell are an emerging technology which converts biodegradable organic matter to electrical energy or hydrogen using a biofilm on the electrode as the biocatalyst. It has recently been shown that waste-to-energy technology based on MFC can treat organic contaminant in domestic or industrial wastewater and simultaneously produce electricity. The maximum power density increased up to 1kW/m3 based on reactor volume. Bioelectrochemical systems may reduce the energy consumption for wastewater treatment by replacing energy intensive aeration of present treatment systems, while generate electrical energy from waste. In addition, the biomass production in MFCs has been reported to be 10-50% of conventional wastewater treatment, leading to reduce environmental impact and disposal costs. Various electrochemically active bacteria metabolize biodegradable organic compounds then discharge electrons to an extracellular electron acceptor for bacterial respiration. These bacteria also transfer electrons to electrodes by direct electron transfer, electron mediators or shuttles, and electrically conductive nanowires. Investigation of bacterial electron transport mechanisms may improve understanding of the biomaterial involved and metabolic pathways as well as improving power from MFCs. Biofuel cell systems require interdisciplinary research ranging from electrochemistry, microbiology, material science and surface chemistry to engineering such as reactor design, operation and modelling. Collaboration within each study and integration of systems might increase the performance and feasibility of BES process for sustainable energy.
Hochlaf, Majdi; Pan, Yi; Lau, Kai-Chung; Majdi, Youssef; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Al Mogren, Muneerah Mogren; Schwell, Martin
2015-02-19
For fully understanding the light-molecule interaction dynamics at short time scales, recent theoretical and experimental studies proved the importance of accurate characterizations not only of the ground (D0) but also of the electronic excited states (e.g., D1) of molecules. While ground state investigations are currently straightforward, those of electronic excited states are not. Here, we characterized the à electronic state of ionic thymine (T(+)) DNA base using explicitly correlated coupled cluster ab initio methods and state-of-the-art synchrotron-based electron/ion coincidence techniques. The experimental spectrum is composed of rich and long vibrational progressions corresponding to the population of the low frequency modes of T(+)(Ã). This work challenges previous numerous works carried out on DNA bases using common synchrotron and VUV-based photoelectron spectroscopies. We provide hence a powerful theoretical and experimental framework to study the electronic structure of ionized DNA bases that could be generalized to other medium-sized biologically relevant systems.
Video Games: A Human Factors Guide to Visual Display Design and Instructional System Design
1984-04-01
Electronic video games have many of the same technological and psychological characteristics that are found in military computer-based systems. For...both of which employ video games as experimental stimuli, are presented here. The first research program seeks to identify and exploit the...characteristics of video games in the design of game-based training devices. The second program is designed to explore the effects of electronic video display
76 FR 17470 - Notice of Transportation Services' Transition From Paper to Electronic Fare Media
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-29
...] Notice of Transportation Services' Transition From Paper to Electronic Fare Media AGENCY: Office of the... planning to shift to electronic fare media in particular areas, beginning in New York and parts of the... to electronic fare media; thus, compelling the shift from a paper based system (vouchers) to an...
Unified Description of Inelastic Propensity Rules for Electron Transport through Nanoscale Junctions
NASA Astrophysics Data System (ADS)
Paulsson, Magnus; Frederiksen, Thomas; Ueba, Hiromu; Lorente, Nicolás; Brandbyge, Mads
2008-06-01
We present a method to analyze the results of first-principles based calculations of electronic currents including inelastic electron-phonon effects. This method allows us to determine the electronic and vibrational symmetries in play, and hence to obtain the so-called propensity rules for the studied systems. We show that only a few scattering states—namely those belonging to the most transmitting eigenchannels—need to be considered for a complete description of the electron transport. We apply the method on first-principles calculations of four different systems and obtain the propensity rules in each case.
Optically-pumped spin-exchange polarized electron source
NASA Astrophysics Data System (ADS)
Pirbhai, Munir Hussein
Polarized electron beams are an indispensable probe of spin-dependent phenomena in fields of atomic and molecular physics, magnetism and biophysics. While their uses have become widespread, the standard source based on negative electron affinity gallium arsenide (GaAs) remains technically complicated. This has hindered progress on many experiments involving spin-polarized electrons, especially those using target gas loads, which tend to adversely affect the performance of GaAs sources. A robust system based on an alternative way to make polarized electron beams has been devised in this study, which builds on previous work done in our lab. It involves spin-exchange collisions between free, unpolarized electrons and oriented rubidium atoms in the presence of a quenching gas. This system has less stringent vacuum requirements than those of GaAs sources, and is capable of operating in background pressures of ~1mTorr. Beams with ~24% polarization and 4μA of current have been recorded, which is comparable to the performance obtained with the earlier version built in our lab. The present system is however not as unstable as in the previous work, and has the potential to be developed into a "turn-key" source of polarized electron beams. It has also allowed us to undertake a study to find factors which affect the beam polarization in this scheme of producing polarized electrons. Such knowledge will help us to design better optically-pumped spin-exchange polarized electron sources.
Ghany, Ahmad; Vassanji, Karim; Kuziemsky, Craig; Keshavjee, Karim
2013-01-01
Electronic prescribing (e-prescribing) is expected to bring many benefits to Canadian healthcare, such as a reduction in errors and adverse drug reactions. As there currently is no functioning e-prescribing system in Canada that is completely electronic, we are unable to evaluate the performance of a live system. An alternative approach is to use simulation modeling for evaluation. We developed two discrete-event simulation models, one of the current handwritten prescribing system and one of a proposed e-prescribing system, to compare the performance of these two systems. We were able to compare the number of processes in each model, workflow efficiency, and the distribution of patients or prescriptions. Although we were able to compare these models to each other, using discrete-event simulation software was challenging. We were limited in the number of variables we could measure. We discovered non-linear processes and feedback loops in both models that could not be adequately represented using discrete-event simulation software. Finally, interactions between entities in both models could not be modeled using this type of software. We have come to the conclusion that a more appropriate approach to modeling both the handwritten and electronic prescribing systems would be to use a complex adaptive systems approach using agent-based modeling or systems-based modeling.
Kim, Min-Hye; Park, Chang-Han; Kim, Duk-In; Kim, Kyung-Mook; Kim, Hui-Kyu; Lim, Kyu-Hyoung; Song, Woo-Jung; Lee, Sang-Min; Kim, Sae-Hoon; Kwon, Hyouk-Soo; Park, Heung-Woo; Yoon, Chang-Jin; Cho, Sang-Heon; Min, Kyung-Up; Kim, You-Young; Chang, Yoon-Seok
2012-03-01
Contrast-media (CM) hypersensitivity is a well-known adverse drug reaction. Surveillance of adverse drug reactions usually depends on spontaneous reports. However, the rate of spontaneous reports is low. Recent progress in information technology enables the electronic search on signals of adverse drug reactions from electronic medical recording (EMR) systems. To analyze the incidence and clinical characteristics of CM hypersensitivity using an EMR-based surveillance system. The surveillance system used signals from standardized terms within the international classification of nursing practice terms that can indicate symptoms of CM hypersensitivity and from the order codes for procedures that used contrast media, antihistamine, and epinephrine. The search strategy was validated by allergists comparing the electronic search strategy versus manually reviewing medical charts over one month. The main study covered for one year period. Detection rate of the electronic search method was 0.9% (7/759), while that of the manual search method was 0.8% (6/759). EMR-based electronic search method was highly efficient: reduced the charts that needed to be reviewed by 96% (28/759). The sensitivity of electronic screening was 66.7%, specificity was 99.6%, and the negative predictive value was 99.7%. CM hypersensitivity reactions were noted in 266 among 12,483 cases (2.1%). Urticaria was the most frequent symptom (74.4%). CT was the most frequent procedure (3.6%) that induced CM hypersensitivity. A surveillance system using EMR may be a useful tool in the study of drug hypersensitivity epidemiology and may be used in an adverse drug reaction alarm system and as a clinical, decision making support system. Copyright © 2012 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Large-Scale Production of Carbon Nanotubes Using the Jefferson Lab Free Electron Laser
NASA Technical Reports Server (NTRS)
Holloway, Brian C.
2003-01-01
We report on our interdisciplinary program to use the Free Electron Laser (FEL) at the Thomas Jefferson National Accelerator Facility (J-Lab) for high-volume pulsed laser vaporization synthesis of carbon nanotubes. Based in part on the funding of from this project, a novel nanotube production system was designed, tested, and patented. Using this new system nanotube production rates over 100 times faster than conventional laser systems were achieved. Analysis of the material produced shows that it is of as high a quality as the standard laser-based materials.
Kuwata, Shigeki; Yamada, Hitomi; Park, Keunsik
2011-01-01
Document management systems (DMS) have widespread in major hospitals in Japan as a platform to digitize the paper-based records being out of coverage by EPR. This study aimed to examine longitudinal trends of actual use of DMS in a hospital in which EPR had been in operation, which would be conducive to planning the further information management system in the hospital. Degrees of utilization of electronic documents and templates with DMS were analyzed based on data extracted from a university-affiliated hospital with EPR. As a result, it was found that the number of electronic documents as well as scanned documents circulating at the hospital tended to increase. The result indicated that replacement of paper-based documents with electronic documents did not occur. Therefore it was anticipated that the need for DMS would continue to increase in the hospital. The methods used this study to analyze the trend of DMS utilization would be applicable to other hospitals with with a variety of DMS implementation, such as electronic storage by scanning documents or paper preservation that is compatible with EPR.
Testing and Comparison of Imaging Detectors for Electrons in the Energy Range 10-20 keV
NASA Astrophysics Data System (ADS)
Matheson, J.; Moldovan, G.; Kirkland, A.; Allinson, N.; Abrahams, J. P.
2017-11-01
Interest in direct detectors for low-energy electrons has increased markedly in recent years. Detection of electrons in the energy range up to low tens of keV is important in techniques such as photoelectron emission microscopy (PEEM) and electron backscatter diffraction (EBSD) on scanning electron microscopes (SEMs). The PEEM technique is used both in the laboratory and on synchrotron light sources worldwide. The ubiquity of SEMs means that there is a very large market for EBSD detectors for materials studies. Currently, the most widely used detectors in these applications are based on indirect detection of incident electrons. Examples include scintillators or microchannel plates (MCPs), coupled to CCD cameras. Such approaches result in blurring in scintillators/phosphors, distortions in optical systems, and inefficiencies due the limited active area of MCPs. In principle, these difficulties can be overcome using direct detection in a semiconductor device. Growing out of a feasibility study into the use of a direct detector for use on an XPEEM, we have built at Rutherford Appleton Laboratory a system to illuminate detectors with an electron beam of energy up to 20 keV . We describe this system in detail. It has been used to measure the performance of a custom back-thinned monolithic active pixel sensor (MAPS), a detector based on the Medipix2 chip, and a commercial detector based on MCPs. We present a selection of the results from these measurements and compare and contrast different detector types.
Pandey, Abhishek; Kreimeyer, Kory; Foster, Matthew; Botsis, Taxiarchis; Dang, Oanh; Ly, Thomas; Wang, Wei; Forshee, Richard
2018-01-01
Structured Product Labels follow an XML-based document markup standard approved by the Health Level Seven organization and adopted by the US Food and Drug Administration as a mechanism for exchanging medical products information. Their current organization makes their secondary use rather challenging. We used the Side Effect Resource database and DailyMed to generate a comparison dataset of 1159 Structured Product Labels. We processed the Adverse Reaction section of these Structured Product Labels with the Event-based Text-mining of Health Electronic Records system and evaluated its ability to extract and encode Adverse Event terms to Medical Dictionary for Regulatory Activities Preferred Terms. A small sample of 100 labels was then selected for further analysis. Of the 100 labels, Event-based Text-mining of Health Electronic Records achieved a precision and recall of 81 percent and 92 percent, respectively. This study demonstrated Event-based Text-mining of Health Electronic Record's ability to extract and encode Adverse Event terms from Structured Product Labels which may potentially support multiple pharmacoepidemiological tasks.
Validation of heart and lung teleauscultation on an Internet-based system.
Fragasso, Gabriele; De Benedictis, Marialuisa; Palloshi, Altin; Moltrasio, Marco; Cappelletti, Alberto; Carlino, Mauro; Marchisi, Angelo; Pala, Mariagrazia; Alfieri, Ottavio; Margonato, Alberto
2003-11-01
The feasibility and accuracy of an Internet-based system for teleauscultation was evaluated in 103 cardiac patients, who were auscultated by the same cardiologist with a conventional stethoscope and with an Internet-based method, using an electronic stethoscope and transmitting heart and lung sounds between computer work stations. In 92% of patients, the results of electronic and acoustic auscultation coincided, indicating that teleauscultation may be considered a reliable method for assessing cardiac patients and could, therefore, be adopted in the context of comprehensive telecare programs.
Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system
NASA Astrophysics Data System (ADS)
Manikandan, J.; Jayaraman, M.; Jayachandran, M.
2011-02-01
This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.
75 FR 27182 - Energy Conservation Program: Web-Based Compliance and Certification Management System
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-14
... Conservation Program: Web-Based Compliance and Certification Management System AGENCY: Office of Energy... certification reports to the Department of Energy (DOE) through an electronic Web-based tool, the Compliance and... following means: 1. Compliance and Certification Management System (CCMS)--via the Web portal: http...
The Intelligent Technologies of Electronic Information System
NASA Astrophysics Data System (ADS)
Li, Xianyu
2017-08-01
Based upon the synopsis of system intelligence and information services, this paper puts forward the attributes and the logic structure of information service, sets forth intelligent technology framework of electronic information system, and presents a series of measures, such as optimizing business information flow, advancing data decision capability, improving information fusion precision, strengthening deep learning application and enhancing prognostic and health management, and demonstrates system operation effectiveness. This will benefit the enhancement of system intelligence.
Automated RTOP Management System
NASA Technical Reports Server (NTRS)
Hayes, P.
1984-01-01
The structure of NASA's Office of Aeronautics and Space Technology electronic information system network from 1983 to 1985 is illustrated. The RTOP automated system takes advantage of existing hardware, software, and expertise, and provides: (1) computerized cover sheet and resources forms; (2) electronic signature and transmission; (3) a data-based information system; (4) graphics; (5) intercenter communications; (6) management information; and (7) text editing. The system is coordinated with Headquarters efforts in codes R,E, and T.
E-TIF: An Electronic Terminology Interchange Format.
ERIC Educational Resources Information Center
Melby, Alan
1995-01-01
Emphasizes the importance of terminology in an age of machine-based translation systems. Discusses differences between lexicography and terminology. Concludes with an argument for a new system based on the Text Encoding Initiative-based notions of elements and attributes. (CFR)
Effect of electron spin-spin interaction on level crossings and spin flips in a spin-triplet system
NASA Astrophysics Data System (ADS)
Jia, Wei; Hu, Fang-Qi; Wu, Ning; Zhao, Qing
2017-12-01
We study level crossings and spin flips in a system consisting of a spin-1 (an electron spin triplet) coupled to a nuclear spin of arbitrary size K , in the presence of a uniform magnetic field and the electron spin-spin interaction within the triplet. Through an analytical diagonalization based on the SU (3 ) Lie algebra, we find that the electron spin-spin interaction not only removes the curious degeneracy which appears in the absence of the interaction, but also produces some level anticrossings (LACs) for strong interactions. The real-time dynamics of the system shows that periodic spin flips occur at the LACs for arbitrary K , which might provide an option for nuclear or electron spin polarization.
Behavioral-Progress Monitoring Using the Electronic Daily Behavioral Report Card (e-DBRC) System
ERIC Educational Resources Information Center
Burke, Mack D.; Vannest, Kimberly J.
2008-01-01
In this article, the authors present an overview of a Web-based electronic system for behavioral-progress monitoring. Behavioral-progress monitoring is necessary to evaluate responsiveness to behavioral interventions, the effects of positive behavioral support, and the attainment of individualized education program goals and objectives. The…
Development of inorganic resists for electron beam lithography: Novel materials and simulations
NASA Astrophysics Data System (ADS)
Jeyakumar, Augustin
Electron beam lithography is gaining widespread utilization as the semiconductor industry progresses towards both advanced optical and non-optical lithographic technologies for high resolution patterning. The current resist technologies are based on organic systems that are imaged most commonly through chain scission, networking, or a chemically amplified polarity change in the material. Alternative resists based on inorganic systems were developed and characterized in this research for high resolution electron beam lithography and their interactions with incident electrons were investigated using Monte Carlo simulations. A novel inorganic resist imaging scheme was developed using metal-organic precursors which decompose to form metal oxides upon electron beam irradiation that can serve as inorganic hard masks for hybrid bilayer inorganic-organic imaging systems and also as directly patternable high resolution metal oxide structures. The electron beam imaging properties of these metal-organic materials were correlated to the precursor structure by studying effects such as interactions between high atomic number species and the incident electrons. Optimal single and multicomponent precursors were designed for utilization as viable inorganic resist materials for sub-50nm patterning in electron beam lithography. The electron beam imaging characteristics of the most widely used inorganic resist material, hydrogen silsesquioxane (HSQ), was also enhanced using a dual processing imaging approach with thermal curing as well as a sensitizer catalyzed imaging approach. The interaction between incident electrons and the high atomic number species contained in these inorganic resists was also studied using Monte Carlo simulations. The resolution attainable using inorganic systems as compared to organic systems can be greater for accelerating voltages greater than 50 keV due to minimized lateral scattering in the high density inorganic systems. The effects of loading nanoparticles in an electron beam resist was also investigated using a newly developed hybrid Monte Carlo approach that accounts for multiple components in a solid film. The resolution of the nanocomposite resist process was found to degrade with increasing nanoparticle loading. Finally, the electron beam patterning of self-assembled monolayers, which were found to primarily utilize backscattered electrons from the high atomic number substrate materials to form images, was also investigated and characterized. It was found that backscattered electrons limit the resolution attainable at low incident electron energies.
Electronic labelling in recycling of manufactured articles.
Olejnik, Lech; Krammer, Alfred
2002-12-01
The concept of a recycling system aiming at the recovery of resources from manufactured articles is proposed. The system integrates electronic labels for product identification and internet for global data exchange. A prototype for the recycling of electric motors has been developed, which implements a condition-based recycling decision system to automatically select the environmentally and economically appropriate recycling strategy, thereby opening a potential market for second-hand motors and creating a profitable recycling process itself. The project has been designed to evaluate the feasibility of electronic identification applied on a large number of motors and to validate the system in real field conditions.
32 CFR 989.35 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... documents electronically. Public review comments should be required in writing, rather than by electronic... measures will be tracked at bases and MAJCOMs through an appropriate environmental management system. (b...
32 CFR 989.35 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... documents electronically. Public review comments should be required in writing, rather than by electronic... measures will be tracked at bases and MAJCOMs through an appropriate environmental management system. (b...
32 CFR 989.35 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... documents electronically. Public review comments should be required in writing, rather than by electronic... measures will be tracked at bases and MAJCOMs through an appropriate environmental management system. (b...
32 CFR 989.35 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... documents electronically. Public review comments should be required in writing, rather than by electronic... measures will be tracked at bases and MAJCOMs through an appropriate environmental management system. (b...
32 CFR 989.35 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... documents electronically. Public review comments should be required in writing, rather than by electronic... measures will be tracked at bases and MAJCOMs through an appropriate environmental management system. (b...
Laser-plasma accelerator-based single-cycle attosecond undulator source
NASA Astrophysics Data System (ADS)
Tibai, Z.; Tóth, Gy.; Nagyváradi, A.; Sharma, A.; Mechler, M. I.; Fülöp, J. A.; Almási, G.; Hebling, J.
2018-06-01
Laser-plasma accelerators (LPAs), producing high-quality electron beams, provide an opportunity to reduce the size of free-electron lasers (FELs) to only a few meters. A complete system is proposed here, which is based on FEL technology and consists of an LPA, two undulators, and other magnetic devices. The system is capable to generate carrier-envelope phase stable attosecond pulses with engineered waveform. Pulses with up to 60 nJ energy and 90-400 attosecond duration in the 30-120 nm wavelength range are predicted by numerical simulation. These pulses can be used to investigate ultrafast field-driven electron dynamics in matter.
ASIL determination for motorbike's Electronics Throttle Control System (ETCS) mulfunction
NASA Astrophysics Data System (ADS)
Zaman Rokhani, Fakhrul; Rahman, Muhammad Taqiuddin Abdul; Ain Kamsani, Noor; Sidek, Roslina Mohd; Saripan, M. Iqbal; Samsudin, Khairulmizam; Khair Hassan, Mohd
2017-11-01
Electronics Throttle Control System (ETCS) is the principal electronic unit in all fuel injection engine motorbike, augmenting the engine performance efficiency in comparison to the conventional carburetor based engine. ETCS is regarded as a safety-critical component, whereby ETCS malfunction can cause unintended acceleration or deceleration event, which can be hazardous to riders. In this study, Hazard Analysis and Risk Assessment, an ISO26262 functional safety standard analysis has been applied on motorbike's ETCS to determine the required automotive safety integrity level. Based on the analysis, the established automotive safety integrity level can help to derive technical and functional safety measures for ETCS development.
Purohit, S; Joisa, Y S; Raval, J V; Ghosh, J; Tanna, R; Shukla, B K; Bhatt, S B
2014-11-01
Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.
Electronic circuitry development in a micropyrotechnic system for micropropulsion applications
NASA Astrophysics Data System (ADS)
Puig-Vidal, Manuel; Lopez, Jaime; Miribel, Pere; Montane, Enric; Lopez-Villegas, Jose M.; Samitier, Josep; Rossi, Carole; Camps, Thierry; Dumonteuil, Maxime
2003-04-01
An electronic circuitry is proposed and implemented to optimize the ignition process and the robustness of a microthruster. The principle is based on the integration of propellant material within a micromachined system. The operational concept is simply based on the combustion of an energetic propellant stored in a micromachined chamber. Each thruster contains three parts (heater, chamber, nozzle). Due to the one shot characteristic, microthrusters are fabricated in 2D array configuration. For the functioning of this kind of system, one critical point is the optimization of the ignition process as a function of the power schedule delivered by electronic devices. One particular attention has been paid on the design and implementation of an electronic chip to control and optimize the system ignition. Ignition process is triggered by electrical power delivered to a polysilicon resistance in contact with the propellant. The resistance is used to sense the temperature on the propellant which is in contact. Temperature of the microthruster node before the ignition is monitored via the electronic circuitry. A pre-heating process before ignition seems to be a good methodology to optimize the ignition process. Pre-heating temperature and pre-heating time are critical parameters to be adjusted. Simulation and experimental results will deeply contribute to improve the micropyrotechnic system. This paper will discuss all these point.
System comprising interchangeable electronic controllers and corresponding methods
NASA Technical Reports Server (NTRS)
Steele, Glen F. (Inventor); Salazar, George A. (Inventor)
2009-01-01
A system comprising an interchangeable electronic controller is provided with programming that allows the controller to adapt a behavior that is dependent upon the particular type of function performed by a system or subsystem component. The system reconfigures the controller when the controller is moved from one group of subsystem components to another. A plurality of application programs are provided by a server from which the application program for a particular electronic controller is selected. The selection is based on criteria such as a subsystem component group identifier that identifies the particular type of function associated with the system or subsystem group of components.
ERIC Educational Resources Information Center
Rizvi, Rubina Fatima
2017-01-01
Despite high Electronic Health Record (EHR) system adoption rates by hospital and office-based practices, many users remain highly dissatisfied with the current state of EHRs. Sub-optimal EHR usability as a result of insufficient incorporation of User-Centered Design (UCD) approach during System Development Life Cycle process (SDLC) is considered…
NASA Astrophysics Data System (ADS)
Hotta, Takashi
2005-04-01
In order to gain a deep insight into f-electron properties of filled skutterudite compounds from a microscopic viewpoint, we investigate the multiorbital Anderson model including Coulomb interactions, spin-orbit coupling, and crystalline electric field effect. First we examine the local f-electron state in detail in comparison with the results of LS and j-j coupling schemes. For each case of n=1--13, where n is the number of f electrons per rare-earth ion, the model is analyzed by using the numerical renormalization group (NRG) method to evaluate magnetic susceptibility and entropy of f electron. In particular, for the f 2-electron system corresponding to the Pr-based filled skutterudite, it is found that magnetic fluctuations significantly remain at low temperatures, even when the ground state is Γ1 singlet, if Γ_4(2) triplet is the excited state with small excitation energy. In order to make further step to construct a simplified model which can be treated even in a periodic system, we also analyze the Anderson model constructed based on the j-j coupling scheme by using the NRG method. It is clearly observed that the magnetic properties are quite similar to those of the original Anderson model. Then, we construct an orbital degenerate Hubbard model based on the j-j coupling scheme to investigate the mechanism of superconductivity of filled skutterudites. In the 2-site model, we carefully evaluate the superconducting pair susceptibility for the case of n=2 and find that the susceptibility for off-site Cooper pair is clearly enhanced only in a transition region in which the singlet and triplet ground states are interchanged. We envision a scenario that unconventional superconductivity induced by magnetic fluctuations may occur in the f 2-electron system with Γ1 ground state such as Pr-based filled skutterudite compounds.
NASA Astrophysics Data System (ADS)
Qiu, Yongfeng; Liu, Jinliang; Yang, Jianhua; Cheng, Xinbing; Yang, Xiao
2017-08-01
A compact control system based on Delphi and Field Programmable Gate Array(FPGA) is developed for a repetitive intense electron-beam accelerator(IEBA), whose output power is 10GW and pulse duration is 160ns. The system uses both hardware and software solutions. It comprises a host computer, a communication module and a main control unit. A device independent applications programming interface, devised using Delphi, is installed on the host computer. Stability theory of voltage in repetitive mode is analyzed and a detailed overview of the hardware and software configuration is presented. High voltage experiment showed that the control system fulfilled the requests of remote operation and data-acquisition. The control system based on a time-sequence control method is used to keep constant of the voltage of the primary capacitor in every shot, which ensured the stable and reliable operation of the electron beam accelerator in the repetitive mode during the experiment. Compared with the former control system based on Labview and PIC micro-controller developed in our laboratory, the present one is more compact, and with higher precision in the time dimension. It is particularly useful for automatic control of IEBA in the high power microwave effects research experiments where pulse-to-pulse reproducibility is required.
High-performance electronics for time-of-flight PET systems
NASA Astrophysics Data System (ADS)
Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.
High-performance electronics for time-of-flight PET systems.
Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W
2013-01-01
We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr 3 crystals respectively.
Bentz, Charles J; Davis, Nancy; Bayley, Bruce
2002-01-01
Despite evidence of its effectiveness, tobacco cessation is not systematically addressed in routine healthcare settings. Its measurement is part of the problem. A pilot study was designed to develop and implement two different tobacco tracking systems in two independent primary care offices that participated in an IPA Model health maintenance organization in Portland, Oregon. The first clinic, which utilized a paper-based charting system, implemented CPT-like tracking codes to measure and report tobacco-cessation activities, which were eventually included in the managed-care organization's (MCO) claims database. The second clinic implemented an electronic tracking system based on its computerized electronic medical record (EMR) charting system. This paper describes the pilot study, including the processes involved in building provider acceptance for the new tracking systems in these two clinics, the barriers and successes encountered during implementation, and the resources expended by the clinics and by the MCO during the pilot. The findings from the 3-month implementation period were that documentation of tobacco-use status remained stable at 42-45% in the paper-based clinic and increased from 79% to 88% in the EMR clinic. This pilot study demonstrated that Tracking Codes are a feasible preventive-care tracking system in paper-based medical offices. However, high levels of effort and support are needed, and a critical mass of insurers and health plans would need to adopt Tracking Codes before widespread use could be expected. Results of the EMR-based tracking system are also reviewed and discussed.
eRegistries: Electronic registries for maternal and child health.
Frøen, J Frederik; Myhre, Sonja L; Frost, Michael J; Chou, Doris; Mehl, Garrett; Say, Lale; Cheng, Socheat; Fjeldheim, Ingvild; Friberg, Ingrid K; French, Steve; Jani, Jagrati V; Kaye, Jane; Lewis, John; Lunde, Ane; Mørkrid, Kjersti; Nankabirwa, Victoria; Nyanchoka, Linda; Stone, Hollie; Venkateswaran, Mahima; Wojcieszek, Aleena M; Temmerman, Marleen; Flenady, Vicki J
2016-01-19
The Global Roadmap for Health Measurement and Accountability sees integrated systems for health information as key to obtaining seamless, sustainable, and secure information exchanges at all levels of health systems. The Global Strategy for Women's, Children's and Adolescent's Health aims to achieve a continuum of quality of care with effective coverage of interventions. The WHO and World Bank recommend that countries focus on intervention coverage to monitor programs and progress for universal health coverage. Electronic health registries - eRegistries - represent integrated systems that secure a triple return on investments: First, effective single data collection for health workers to seamlessly follow individuals along the continuum of care and across disconnected cadres of care providers. Second, real-time public health surveillance and monitoring of intervention coverage, and third, feedback of information to individuals, care providers and the public for transparent accountability. This series on eRegistries presents frameworks and tools to facilitate the development and secure operation of eRegistries for maternal and child health. In this first paper of the eRegistries Series we have used WHO frameworks and taxonomy to map how eRegistries can support commonly used electronic and mobile applications to alleviate health systems constraints in maternal and child health. A web-based survey of public health officials in 64 low- and middle-income countries, and a systematic search of literature from 2005-2015, aimed to assess country capacities by the current status, quality and use of data in reproductive health registries. eRegistries can offer support for the 12 most commonly used electronic and mobile applications for health. Countries are implementing health registries in various forms, the majority in transition from paper-based data collection to electronic systems, but very few have eRegistries that can act as an integrating backbone for health information. More mature country capacity reflected by published health registry based research is emerging in settings reaching regional or national scale, increasingly with electronic solutions. 66 scientific publications were identified based on 32 registry systems in 23 countries over a period of 10 years; this reflects a challenging experience and capacity gap for delivering sustainable high quality registries. Registries are being developed and used in many high burden countries, but their potential benefits are far from realized as few countries have fully transitioned from paper-based health information to integrated electronic backbone systems. Free tools and frameworks exist to facilitate progress in health information for women and children.
NASA Astrophysics Data System (ADS)
Kim, K.-h.; Oh, T.-s.; Park, K.-r.; Lee, J. H.; Ghim, Y.-c.
2017-11-01
One factor determining the reliability of measurements of electron temperature using a Thomson scattering (TS) system is transmittance of the optical bandpass filters in polychromators. We investigate the system performance as a function of electron temperature to determine reliable range of measurements for a given set of the optical bandpass filters. We show that such a reliability, i.e., both bias and random errors, can be obtained by building a forward model of the KSTAR TS system to generate synthetic TS data with the prescribed electron temperature and density profiles. The prescribed profiles are compared with the estimated ones to quantify both bias and random errors.
Practical Electronics. Technical Instruction Manual.
ERIC Educational Resources Information Center
Systems Operation Support, Inc., King of Prussia, PA.
This student instruction manual was developed as a part of "A Study of The Effectiveness of a Military-Type Computer-Based Instructional System When Used in Civilian High School Courses in Electronics and Auto Mechanics." (VT 006 916). The material emphasizes a troubleshooting strategy for repair of equipment based upon a logical and systematic…
Sefton, Gerri; Lane, Steven; Killen, Roger; Black, Stuart; Lyon, Max; Ampah, Pearl; Sproule, Cathryn; Loren-Gosling, Dominic; Richards, Caitlin; Spinty, Jean; Holloway, Colette; Davies, Coral; Wilson, April; Chean, Chung Shen; Carter, Bernie; Carrol, E.D.
2017-01-01
Pediatric Early Warning Scores are advocated to assist health professionals to identify early signs of serious illness or deterioration in hospitalized children. Scores are derived from the weighting applied to recorded vital signs and clinical observations reflecting deviation from a predetermined “norm.” Higher aggregate scores trigger an escalation in care aimed at preventing critical deterioration. Process errors made while recording these data, including plotting or calculation errors, have the potential to impede the reliability of the score. To test this hypothesis, we conducted a controlled study of documentation using five clinical vignettes. We measured the accuracy of vital sign recording, score calculation, and time taken to complete documentation using a handheld electronic physiological surveillance system, VitalPAC Pediatric, compared with traditional paper-based charts. We explored the user acceptability of both methods using a Web-based survey. Twenty-three staff participated in the controlled study. The electronic physiological surveillance system improved the accuracy of vital sign recording, 98.5% versus 85.6%, P < .02, Pediatric Early Warning Score calculation, 94.6% versus 55.7%, P < .02, and saved time, 68 versus 98 seconds, compared with paper-based documentation, P < .002. Twenty-nine staff completed the Web-based survey. They perceived that the electronic physiological surveillance system offered safety benefits by reducing human error while providing instant visibility of recorded data to the entire clinical team. PMID:27832032
NASA Astrophysics Data System (ADS)
Yang, J. L.; Sullivan, P.; Schumann, S.; Hancox, I.; Jones, T. S.
2012-01-01
We demonstrate organic discrete heterojunction photovoltaic cells based on fullerene (C60) and copper hexadecafluorophthalocyanine (F16CuPc), in which the C60 and F16CuPc act as the electron donor and the electron acceptor, respectively. The C60/F16CuPc cells fabricated with conventional and inverted architectures both exhibit comparable power conversion efficiencies. Furthermore, we show that the photocurrent in both cells is generated by a conventional exciton dissociation mechanism rather than the exciton recombination mechanism recently proposed for a similar C60/F16ZnPc system [Song et al., J. Am. Chem. Soc. 132, 4554 (2010)]. These results demonstrate that new unconventional material systems are a potential way to fabricate organic photovoltaic cells with inverted as well as conventional architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
Olalla, Carlos; Maksimovic, Dragan; Deline, Chris; ...
2017-04-26
Here, this paper quantifies the impact of distributed power electronics in photovoltaic (PV) systems in terms of end-of-life energy-capture performance and reliability. The analysis is based on simulations of PV installations over system lifetime at various degradation rates. It is shown how module-level or submodule-level power converters can mitigate variations in cell degradation over time, effectively increasing the system lifespan by 5-10 years compared with the nominal 25-year lifetime. An important aspect typically overlooked when characterizing such improvements is the reliability of distributed power electronics, as power converter failures may not only diminish energy yield improvements but also adversely affectmore » the overall system operation. Failure models are developed, and power electronics reliability is taken into account in this work, in order to provide a more comprehensive view of the opportunities and limitations offered by distributed power electronics in PV systems. Lastly, it is shown how a differential power-processing approach achieves the best mismatch mitigation performance and the least susceptibility to converter faults.« less
NASA Astrophysics Data System (ADS)
de Kok, Margreet M.
2014-10-01
Integration of electronics into materials and objects that have not been functionalized with electronics before, open up extensive possibilities to support mankind. By adding intelligence and/or operating power to materials in close skin contact like clothing, furniture or bandages the health of people can be monitored or even improved. Foil based electronics are interesting components to be integrated as they are thin, large area and cost effective available components Our developed technology of printed electronic structures to which components are reliably bonded, fulfills the promise. We have integrated these components into textiles and built wearable encapsulated products with foil based electronics. Foil components with organic and inorganic LEDs are interconnected and laminated onto electronic textiles by using conductive adhesives to bond the contact pads of the component to conductive yarns in the textile. Modelling and reliability testing under dynamic circumstances provided important insights in order to optimise the technology. The design of the interconnection and choice of conductive adhesive / underfill and lamination contributed to the durability of the system. Transition zones from laminated foil to textile are engineered to withstand dynamic use. As an example of a product, we have realized an electronic wristband that is encapsulated in rubber and has a number of sensor functionalities integrated on stretchable electronic circuits based on Cu and Ag. The encapsulation with silicone or polyurethanes was performed such, that charging and sensor/skin contacts are possible while simultaneously protecting the electronics from mechanical and environmental stresses.
Revealing electronic open quantum systems with subsystem TDDFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishtal, Alisa, E-mail: alisa.krishtal@rutgers.edu; Pavanello, Michele, E-mail: m.pavanello@rutgers.edu
2016-03-28
Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustratemore » the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.« less
Revealing electronic open quantum systems with subsystem TDDFT.
Krishtal, Alisa; Pavanello, Michele
2016-03-28
Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.
Revealing electronic open quantum systems with subsystem TDDFT
NASA Astrophysics Data System (ADS)
Krishtal, Alisa; Pavanello, Michele
2016-03-01
Open quantum systems (OQSs) are perhaps the most realistic systems one can approach through simulations. In recent years, describing OQSs with Density Functional Theory (DFT) has been a prominent avenue of research with most approaches based on a density matrix partitioning in conjunction with an ad-hoc description of system-bath interactions. We propose a different theoretical approach to OQSs based on partitioning of the electron density. Employing the machinery of subsystem DFT (and its time-dependent extension), we provide a novel way of isolating and analyzing the various terms contributing to the coupling between the system and the surrounding bath. To illustrate the theory, we provide numerical simulations on a toy system (a molecular dimer) and on a condensed phase system (solvated excimer). The simulations show that non-Markovian dynamics in the electronic system-bath interactions are important in chemical applications. For instance, we show that the superexchange mechanism of transport in donor-bridge-acceptor systems is a non-Markovian interaction between the donor-acceptor (OQS) with the bridge (bath) which is fully characterized by real-time subsystem time-dependent DFT.
Algorithm for fast event parameters estimation on GEM acquired data
NASA Astrophysics Data System (ADS)
Linczuk, Paweł; Krawczyk, Rafał D.; Poźniak, Krzysztof T.; Kasprowicz, Grzegorz; Wojeński, Andrzej; Chernyshova, Maryna; Czarski, Tomasz
2016-09-01
We present study of a software-hardware environment for developing fast computation with high throughput and low latency methods, which can be used as back-end in High Energy Physics (HEP) and other High Performance Computing (HPC) systems, based on high amount of input from electronic sensor based front-end. There is a parallelization possibilities discussion and testing on Intel HPC solutions with consideration of applications with Gas Electron Multiplier (GEM) measurement systems presented in this paper.
ISLE: Intelligent Selection of Loop Electronics. A CLIPS/C++/INGRES integrated application
NASA Technical Reports Server (NTRS)
Fischer, Lynn; Cary, Judson; Currie, Andrew
1990-01-01
The Intelligent Selection of Loop Electronics (ISLE) system is an integrated knowledge-based system that is used to configure, evaluate, and rank possible network carrier equipment known as Digital Loop Carrier (DLC), which will be used to meet the demands of forecasted telephone services. Determining the best carrier systems and carrier architectures, while minimizing the cost, meeting corporate policies and addressing area service demands, has become a formidable task. Network planners and engineers use the ISLE system to assist them in this task of selecting and configuring the appropriate loop electronics equipment for future telephone services. The ISLE application is an integrated system consisting of a knowledge base, implemented in CLIPS (a planner application), C++, and an object database created from existing INGRES database information. The embedibility, performance, and portability of CLIPS provided us with a tool with which to capture, clarify, and refine corporate knowledge and distribute this knowledge within a larger functional system to network planners and engineers throughout U S WEST.
Rapid Implementation of Inpatient Electronic Physician Documentation at an Academic Hospital
Hahn, J.S.; Bernstein, J.A.; McKenzie, R.B.; King, B.J.; Longhurst, C.A.
2012-01-01
Electronic physician documentation is an essential element of a complete electronic medical record (EMR). At Lucile Packard Children’s Hospital, a teaching hospital affiliated with Stanford University, we implemented an inpatient electronic documentation system for physicians over a 12-month period. Using an EMR-based free-text editor coupled with automated import of system data elements, we were able to achieve voluntary, widespread adoption of the electronic documentation process. When given the choice between electronic versus dictated report creation, the vast majority of users preferred the electronic method. In addition to increasing the legibility and accessibility of clinical notes, we also decreased the volume of dictated notes and scanning of handwritten notes, which provides the opportunity for cost savings to the institution. PMID:23620718
Electronic-To-Optical-To-Electronic Packet-Data Conversion
NASA Technical Reports Server (NTRS)
Monacos, Steve
1996-01-01
Space-time multiplexer (STM) cell-based communication system designed to take advantage of both high throughput attainable in optical transmission links and flexibility and functionality of electronic processing, storage, and switching. Long packets segmented and transmitted optically by wavelength-division multiplexing. Performs optoelectronic and protocol conversion between electronic "store-and-forward" protocols and optical "hot-potato" protocols.
Clinical Assistant Diagnosis for Electronic Medical Record Based on Convolutional Neural Network.
Yang, Zhongliang; Huang, Yongfeng; Jiang, Yiran; Sun, Yuxi; Zhang, Yu-Jin; Luo, Pengcheng
2018-04-20
Automatically extracting useful information from electronic medical records along with conducting disease diagnoses is a promising task for both clinical decision support(CDS) and neural language processing(NLP). Most of the existing systems are based on artificially constructed knowledge bases, and then auxiliary diagnosis is done by rule matching. In this study, we present a clinical intelligent decision approach based on Convolutional Neural Networks(CNN), which can automatically extract high-level semantic information of electronic medical records and then perform automatic diagnosis without artificial construction of rules or knowledge bases. We use collected 18,590 copies of the real-world clinical electronic medical records to train and test the proposed model. Experimental results show that the proposed model can achieve 98.67% accuracy and 96.02% recall, which strongly supports that using convolutional neural network to automatically learn high-level semantic features of electronic medical records and then conduct assist diagnosis is feasible and effective.
NASA Astrophysics Data System (ADS)
Havu, Vile; Blum, Volker; Scheffler, Matthias
2007-03-01
Numeric atom-centered local orbitals (NAO) are efficient basis sets for all-electron electronic structure theory. The locality of NAO's can be exploited to render (in principle) all operations of the self-consistency cycle O(N). This is straightforward for 3D integrals using domain decomposition into spatially close subsets of integration points, enabling critical computational savings that are effective from ˜tens of atoms (no significant overhead for smaller systems) and make large systems (100s of atoms) computationally feasible. Using a new all-electron NAO-based code,^1 we investigate the quantitative impact of exploiting this locality on two distinct classes of systems: Large light-element molecules [Alanine-based polypeptide chains (Ala)n], and compact transition metal clusters. Strict NAO locality is achieved by imposing a cutoff potential with an onset radius rc, and exploited by appropriately shaped integration domains (subsets of integration points). Conventional tight rc<= 3å have no measurable accuracy impact in (Ala)n, but introduce inaccuracies of 20-30 meV/atom in Cun. The domain shape impacts the computational effort by only 10-20 % for reasonable rc. ^1 V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, The FHI Ab Initio Molecular Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).
Improved model for detection of homogeneous production batches of electronic components
NASA Astrophysics Data System (ADS)
Kazakovtsev, L. A.; Orlov, V. I.; Stashkov, D. V.; Antamoshkin, A. N.; Masich, I. S.
2017-10-01
Supplying the electronic units of the complex technical systems with electronic devices of the proper quality is one of the most important problems for increasing the whole system reliability. Moreover, for reaching the highest reliability of an electronic unit, the electronic devices of the same type must have equal characteristics which assure their coherent operation. The highest homogeneity of the characteristics is reached if the electronic devices are manufactured as a single production batch. Moreover, each production batch must contain homogeneous raw materials. In this paper, we propose an improved model for detecting the homogeneous production batches of shipped lot of electronic components based on implementing the kurtosis criterion for the results of non-destructive testing performed for each lot of electronic devices used in the space industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, J.; Bauer, K.; Borga, A.
The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. Furthermore, the Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. Here, the FELIX system, the design of the PCIe prototypemore » card and the integration test results are presented.« less
Anderson, J.; Bauer, K.; Borga, A.; ...
2016-12-13
The ATLAS Phase-I upgrade (2019) requires a Trigger and Data Acquisition (TDAQ) system able to trigger and record data from up to three times the nominal LHC instantaneous luminosity. Furthermore, the Front-End LInk eXchange (FELIX) system provides an infrastructure to achieve this in a scalable, detector agnostic and easily upgradeable way. It is a PC-based gateway, interfacing custom radiation tolerant optical links from front-end electronics, via PCIe Gen3 cards, to a commodity switched Ethernet or InfiniBand network. FELIX enables reducing custom electronics in favour of software running on commercial servers. Here, the FELIX system, the design of the PCIe prototypemore » card and the integration test results are presented.« less
Wagler, Patrick F; Tangen, Uwe; Maeke, Thomas; McCaskill, John S
2012-07-01
The topic addressed is that of combining self-constructing chemical systems with electronic computation to form unconventional embedded computation systems performing complex nano-scale chemical tasks autonomously. The hybrid route to complex programmable chemistry, and ultimately to artificial cells based on novel chemistry, requires a solution of the two-way massively parallel coupling problem between digital electronics and chemical systems. We present a chemical microprocessor technology and show how it can provide a generic programmable platform for complex molecular processing tasks in Field Programmable Chemistry, including steps towards the grand challenge of constructing the first electronic chemical cells. Field programmable chemistry employs a massively parallel field of electrodes, under the control of latched voltages, which are used to modulate chemical activity. We implement such a field programmable chemistry which links to chemistry in rather generic, two-phase microfluidic channel networks that are separated into weakly coupled domains. Electric fields, produced by the high-density array of electrodes embedded in the channel floors, are used to control the transport of chemicals across the hydrodynamic barriers separating domains. In the absence of electric fields, separate microfluidic domains are essentially independent with only slow diffusional interchange of chemicals. Electronic chemical cells, based on chemical microprocessors, exploit a spatially resolved sandwich structure in which the electronic and chemical systems are locally coupled through homogeneous fine-grained actuation and sensor networks and play symmetric and complementary roles. We describe how these systems are fabricated, experimentally test their basic functionality, simulate their potential (e.g. for feed forward digital electrophoretic (FFDE) separation) and outline the application to building electronic chemical cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Hatada, Mika; Loew, Noya; Inose-Takahashi, Yuka; Okuda-Shimazaki, Junko; Tsugawa, Wakako; Mulchandani, Ashok; Sode, Koji
2018-06-01
Enzyme based electrochemical biosensors are divided into three generations according to their type of electron transfer from the cofactors of the enzymes to the electrodes. Although the 3rd generation sensors using direct electron transfer (DET) type enzymes are ideal, the number of enzyme types which possess DET ability is limited. In this study, we report of a glucose sensor using mediator-modified glucose dehydrogenase (GDH), that was fabricated by a new quick-and-easy method using the pre-functionalized amine reactive phenazine ethosulfate (arPES). Thus mediator-modified GDH obtained the ability to transfer electrons to bulky electron acceptors as well as electrodes. The concentration of glucose was successfully measured using electrodes with immobilized PES-modified GDH, without addition of external electron mediators. Therefore, continuous monitoring systems can be developed based on this "2.5th generation" electron transfer principle utilizing quasi-DET. Furthermore, we successfully modified two other diagnostically relevant enzymes, glucoside 3-dehydrogenase and lactate oxidase, with PES. Therefore, various kinds of diagnostic enzymes can achieve quasi-DET ability simply by modification with arPES, suggesting that continuous monitoring systems based on the 2.5th generation principle can be developed for various target molecules. Copyright © 2018 Elsevier B.V. All rights reserved.
Madathil, Kapil Chalil; Koikkara, Reshmi; Obeid, Jihad; Greenstein, Joel S.; Sanderson, Iain C.; Fryar, Katrina; Moskowitz, Jay; Gramopadhye, Anand K.
2013-01-01
Purpose Ethical and legal requirements for healthcare providers in the United States, stipulate that patients sign a consent form prior to undergoing medical treatment or participating in a research study. Currently, the majority of the hospitals obtain these consents using paper-based forms, which makes patient preference data cumbersome to store, search and retrieve. To address these issues, Health Sciences of South Carolina (HSSC), a collaborative of academic medical institutions and research universities in South Carolina, is developing an electronic consenting system, the Research Permissions Management System (RPMS). This article reports the findings of a study conducted to investigate the efficacy of the two proposed interfaces for this system – an iPad-based and touchscreen-based by comparing them to the paper-based and Topaz-based systems currently in use. Methods This study involved 50 participants: 10 hospital admission staff and 40 patients. The four systems were compared with respect to the time taken to complete the consenting process, the number of errors made by the patients, the workload experienced by the hospital staff and the subjective ratings of both patients and staff on post-test questionnaires. Results The results from the empirical study indicated no significant differences in the time taken to complete the tasks. More importantly, the participants found the new systems more usable than the conventional methods with the registration staff experiencing the least workload in the iPad and touchscreen-based conditions and the patients experiencing more privacy and control during the consenting process with the proposed electronic systems. In addition, they indicated better comprehension and awareness of what they were signing using the new interfaces. Discussion The results indicate the two methods proposed for capturing patient consents are at least as effective as the conventional methods, and superior in several important respects. While more research is needed, these findings suggest the viability of cautious adoption of electronic consenting systems, especially because these new systems appear to address the challenge of identifying the participants required for the complex research being conducted as the result of advances in the biomedical sciences. PMID:23757370
NASA Astrophysics Data System (ADS)
Xu, Wei; Li, Jing-Yi; Huang, Sen-Lin; Z. Wu, W.; Hao, H.; P., Wang; K. Wu, Y.
2014-10-01
The Duke storage ring is a dedicated driver for the storage ring based oscillator free-electron lasers (FELs), and the High Intensity Gamma-ray Source (HIGS). It is operated with a beam current ranging from about 1 mA to 100 mA per bunch for various operations and accelerator physics studies. High performance operations of the FEL and γ-ray source require a stable electron beam orbit, which has been realized by the global orbit feedback system. As a critical part of the orbit feedback system, the electron beam position monitors (BPMs) are required to be able to precisely measure the electron beam orbit in a wide range of the single-bunch current. However, the high peak voltage of the BPM pickups associated with high single-bunch current degrades the performance of the BPM electronics, and can potentially damage the BPM electronics. A signal conditioning method using low pass filters is developed to reduce the peak voltage to protect the BPM electronics, and to make the BPMs capable of working with a wide range of single-bunch current. Simulations and electron beam based tests are performed. The results show that the Duke storage ring BPM system is capable of providing precise orbit measurements to ensure highly stable FEL and HIGS operations.
Single-chip microprocessor that communicates directly using light
NASA Astrophysics Data System (ADS)
Sun, Chen; Wade, Mark T.; Lee, Yunsup; Orcutt, Jason S.; Alloatti, Luca; Georgas, Michael S.; Waterman, Andrew S.; Shainline, Jeffrey M.; Avizienis, Rimas R.; Lin, Sen; Moss, Benjamin R.; Kumar, Rajesh; Pavanello, Fabio; Atabaki, Amir H.; Cook, Henry M.; Ou, Albert J.; Leu, Jonathan C.; Chen, Yu-Hsin; Asanović, Krste; Ram, Rajeev J.; Popović, Miloš A.; Stojanović, Vladimir M.
2015-12-01
Data transport across short electrical wires is limited by both bandwidth and power density, which creates a performance bottleneck for semiconductor microchips in modern computer systems—from mobile phones to large-scale data centres. These limitations can be overcome by using optical communications based on chip-scale electronic-photonic systems enabled by silicon-based nanophotonic devices8. However, combining electronics and photonics on the same chip has proved challenging, owing to microchip manufacturing conflicts between electronics and photonics. Consequently, current electronic-photonic chips are limited to niche manufacturing processes and include only a few optical devices alongside simple circuits. Here we report an electronic-photonic system on a single chip integrating over 70 million transistors and 850 photonic components that work together to provide logic, memory, and interconnect functions. This system is a realization of a microprocessor that uses on-chip photonic devices to directly communicate with other chips using light. To integrate electronics and photonics at the scale of a microprocessor chip, we adopt a ‘zero-change’ approach to the integration of photonics. Instead of developing a custom process to enable the fabrication of photonics, which would complicate or eliminate the possibility of integration with state-of-the-art transistors at large scale and at high yield, we design optical devices using a standard microelectronics foundry process that is used for modern microprocessors. This demonstration could represent the beginning of an era of chip-scale electronic-photonic systems with the potential to transform computing system architectures, enabling more powerful computers, from network infrastructure to data centres and supercomputers.
Clark, Susan M; Fu, Kai-Mei C; Ladd, Thaddeus D; Yamamoto, Yoshihisa
2007-07-27
We describe a fast quantum computer based on optically controlled electron spins in charged quantum dots that are coupled to microcavities. This scheme uses broadband optical pulses to rotate electron spins and provide the clock signal to the system. Nonlocal two-qubit gates are performed by phase shifts induced by electron spins on laser pulses propagating along a shared waveguide. Numerical simulations of this scheme demonstrate high-fidelity single-qubit and two-qubit gates with operation times comparable to the inverse Zeeman frequency.
Sourty, Erwan; van Bavel, Svetlana; Lu, Kangbo; Guerra, Ralph; Bar, Georg; Loos, Joachim
2009-06-01
Two purely carbon-based functional polymer systems were investigated by bright-field conventional transmission electron microscopy (CTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). For a carbon black (CB) filled polymer system, HAADF-STEM provides high contrast between the CB agglomerates and the polymer matrix so that details of the interface organization easily can be revealed and assignment of the CB phase is straightforward. For a second system, the functional polymer blend representing the photoactive layer of a polymer solar cell, details of its nanoscale organization could be observed that were not accessible with CTEM. By varying the camera length in HAADF-STEM imaging, the contrast can be enhanced between crystalline and amorphous compounds due to diffraction contrast so that nanoscale interconnections between domains are identified. In general, due to its incoherent imaging characteristics HAADF-STEM allows for reliable interpretation of the data obtained.
A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV
NASA Astrophysics Data System (ADS)
Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.
2015-11-01
In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.
EAST: Developing an Electronic Assessment and Storage Tool.
ERIC Educational Resources Information Center
Edwards, Katherine I.; Fernandez, Eugenia; Milionis, Tracey M.; Williamson, David M.
2002-01-01
Describes the purpose, development, analysis, prototyping, and features of the Electronic Assessment and Storage Tool (EAST). The Web-based system aids curriculum assessment at Purdue School of Engineering and Technology at Indiana University Purdue University Indianapolis through the ability to easily store artifacts in electronic form, support…
USign--a security enhanced electronic consent model.
Li, Yanyan; Xie, Mengjun; Bian, Jiang
2014-01-01
Electronic consent becomes increasingly popular in the healthcare sector given the many benefits it provides. However, security concerns, e.g., how to verify the identity of a person who is remotely accessing the electronic consent system in a secure and user-friendly manner, also arise along with the popularity of electronic consent. Unfortunately, existing electronic consent systems do not pay sufficient attention to those issues. They mainly rely on conventional password based authentication to verify the identity of an electronic consent user, which is far from being sufficient given that identity theft threat is real and significant in reality. In this paper, we present a security enhanced electronic consent model called USign. USign enhances the identity protection and authentication for electronic consent systems by leveraging handwritten signatures everyone is familiar with and mobile computing technologies that are becoming ubiquitous. We developed a prototype of USign and conducted preliminary evaluation on accuracy and usability of signature verification. Our experimental results show the feasibility of the proposed model.
Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael
2015-04-10
A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.
Web-Based Evaluation System for Learning Management Systems
ERIC Educational Resources Information Center
Momani, Alaa
2010-01-01
E-learning systems have become an issue in recent years. A learning management system (LMS) is an electronic environment helps the educational society to communicate, exchange information, manage, and schedule the learning process. This study has provided a web-based evaluation system that may help the users to choose the convenient system…
Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard
2010-02-21
Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings.
Pesticide Electronic Application Submission Portal Updated with New Features
EPA has published an updated version of the Pesticide Submission Portal. This Web-based system for electronic submission of pesticide registration applications to EPA, with new features and functionality.
Pathways for tailoring the magnetostructural behavior of FeRh-based systems
NASA Astrophysics Data System (ADS)
Barua, Radhika
2014-03-01
The prediction of phase transition temperatures in functional materials provides dual benefits of supplying insight into fundamental drivers underlying the phase transition, as well as enabling new and improved technological applications that employ the material. In this work, studies focused on understanding the magnetostructural phase transition of FeRh as a function of elemental substitution, provides guidance for tailoring phase transitions in this compound, with possible extensions to other intermetallic-based magnetostructural compounds. Clear trends in the magnetostructural temperatures (Tt) of alloys of composition Fe(Rh1-xMx) or (Fe1-xMx) Rh (M = 3 d, 4 d or 5 d transition metals), as reported in literature since 1961, were identified and confirmed as a function of the valence band electron concentration ((s + d) electrons/atom) of the system. It is observed that substitution of 3 dor 4 delements (x <= 6.5 at%) into B2-ordered FeRh compounds causes Ttto increase to a maximum around a critical valence band electron concentration (ev *) of 8.50 electrons/atom and then decrease. Substitution of 5 delements echoes this trend but with an overall increase in Ttand a shift in ev * to 8.52 electrons/atom. For ev>8.65 electrons/atom, FeRh-based alloys cease to adopt the B2-ordered crystallographic structure in favor of the chemically disordered A1-type structure or the ordered L10-type structure. This phenomenological model has been confirmed through synthesis and characterization of FeRh alloys with Cu, Ni and Au additions. The success of this model in confirming existing data trends in chemically-substituted FeRh and predicting new composition-transition temperature correlations emphasizes the strong interplay between the electronic spin configuration, the electronic band structure, and crystal lattice of this system. Further these results provide pathways for tailoring the magnetostructural behavior and the associated functional response of FeRh-based systems for potential technological applications. Research was performed under the auspices of the U.S. Department of Energy (Contract No. DE-SC0005250).
78 FR 37998 - Electronic One Touch Bingo System
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-25
... decision regarding the classification of server based electronic bingo system games that can be played... Class II or Class III game. DATES: The agency must receive comments on or before August 26, 2013... from the regulated community regarding the status of one touch bingo as a Class II or a Class III game...
Overview of Silicon Carbide Technology: Device, Converter, System, and Application
Wang, Fei; Zhang, Zheyu
2016-12-28
This article overviews the silicon carbide (SiC) technology. The focus is on the benefits of SiC based power electronics for converters and systems, as well as their ability in enabling new applications. The challenges and research trends on the design and application of SiC power electronics are also discussed.
Diesel Technology: Electrical and Electronic Systems. Teacher Edition [and] Student Edition.
ERIC Educational Resources Information Center
Ready, Allan; Kauffman, Ricky; Bogle, Jerry
This document contains the materials for a competency-based course in diesel technology and electrical and electronic systems that is tied to measurable and observable learning outcomes identified and validated by an advisory committee of business and industry representatives and teachers. The competencies addressed align with the medium/heavy…
DOT National Transportation Integrated Search
2001-09-01
The State of New York received a grant from the I-95 Corridor Coalition to develop a proof-of-concept for an electronic credentialing system for the motor carrier industry. When fully developed, the system, which is a web-based solution, will enable ...
ERIC Educational Resources Information Center
Uraev, Nikolay N.; Mingaleev, Gaziz F.; Kushimov, Aleksandr T.; Kolesov, Nikolay A.
2016-01-01
This paper considers the methodological aspects of forming a development strategy for the regional socioeconomic system (by the example of radio-electronic enterprises in the Republic of Tatarstan). The paper suggests a conceptual scheme of the macro- and micro-factors' influence on the regional socioeconomic system. This scheme is based on the…
Carbon Nanotube-Based Membrane for Light-Driven, Simultaneous Proton and Electron Transport
Pilgrim, Gregory A.; Amori, Amanda R.; Hou, Zhentao; ...
2016-12-07
Here we discuss the photon driven transport of protons and electrons over hundreds of microns through a membrane based on vertically aligned single walled carbon nanotubes (SWNTs). Electrons are photogenerated in colloidal CdSe quantum dots that have been noncovalently attached to the carbon nanotube membrane and can be delivered at potentials capable of reducing earth-abundant molecular catalysts that perform proton reduction. Proton transport is driven by the electron photocurrent and is shown to be faster through the SWNT based membrane than through the commercial polymer Nafion. Furthermore, the potential utility of SWNT membranes for solar water splitting applications is demonstratedmore » through their excellent proton and electron transport properties as well as their ability to interact with other components of water splitting systems, such as small molecule electron acceptors.« less
Reactor protection system with automatic self-testing and diagnostic
Gaubatz, Donald C.
1996-01-01
A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically "identical" values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic.
Reactor protection system with automatic self-testing and diagnostic
Gaubatz, D.C.
1996-12-17
A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Automatic detection and discrimination against failed sensors allows the reactor protection system to automatically enter a known state when sensor failures occur. Cross communication of sensor readings allows comparison of four theoretically ``identical`` values. This permits identification of sensor errors such as drift or malfunction. A diagnostic request for service is issued for errant sensor data. Automated self test and diagnostic monitoring, sensor input through output relay logic, virtually eliminate the need for manual surveillance testing. This provides an ability for each division to cross-check all divisions and to sense failures of the hardware logic. 16 figs.
Research on application of modern household design and intellective household system
NASA Astrophysics Data System (ADS)
Zhang, Kaisheng; Zeng, Yuan; Fan, Junli
2009-07-01
People spend most of their lives indoors. To build a comfortable human environment, is always a dream for humankind. From ancient to now, the development of architecture imprints the progress of human civilization. However, for today's architecture, steel and concrete are only the surface. Intelligent technology will create its spirit and offer the soul. Nowadays, there's new meaning for the connotation of household design. This paper mainly discusses Design of Home Intelligent Electronic Assistant System Based on Embedded Module of S3C2410. Conerning the aspects of Home Security System, Automatic Meter Reading System, Automatic Control System for Electrical appliances, and Data Intelligence Communication System, it compactly describes the system's constitution diagram and hardware module, thus making better use of Home Intelligent Electronic Assistant System Based on Embedded Module.
Estimates of electronic coupling for excess electron transfer in DNA
NASA Astrophysics Data System (ADS)
Voityuk, Alexander A.
2005-07-01
Electronic coupling Vda is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of Vda for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in a π stack. Two approaches are considered. First, we employ the diabatic-state (DS) method in which donor and acceptor are represented with radical anions of the canonical base pairs adenine-thymine (AT) and guanine-cytosine (GC). In this approach, similar values of Vda are obtained with the standard 6-31G* and extended 6-31++G** basis sets. Second, the electronic couplings are derived from lowest unoccupied molecular orbitals (LUMOs) of neutral systems by using the generalized Mulliken-Hush or fragment charge methods. Because the radical-anion states of AT and GC are well reproduced by LUMOs of the neutral base pairs calculated without diffuse functions, the estimated values of Vda are in good agreement with the couplings obtained for radical-anion states using the DS method. However, when the calculation of a neutral stack is carried out with diffuse functions, LUMOs of the system exhibit the dipole-bound character and cannot be used for estimating electronic couplings. Our calculations suggest that the ET matrix elements Vda for models containing intrastrand thymine and cytosine bases are essentially larger than the couplings in complexes with interstrand pyrimidine bases. The matrix elements for excess electron transfer are found to be considerably smaller than the corresponding values for hole transfer and to be very responsive to structural changes in a DNA stack.
Electronic Equipment Proposal to Improve the Photovoltaic Systems Efficiency
NASA Astrophysics Data System (ADS)
Flores-Mena, J. E.; Juárez Morán, L. A.; Díaz Reyes, J.
2011-05-01
This paper reports a new technique proposal to improve the photovoltaic systems. It was made to design and implement an electronic system that will detect, capture, and transfer the maximum power of the photovoltaic (PV) panel to optimize the supplied power of a solar panel. The electronic system works on base technical proposal of electrical sweeping of electric characteristics using capacitive impedance. The maximum power is transformed and the solar panel energy is sent to an automotive battery. This electronic system reduces the energy lost originated when the solar radiation level decreases or the PV panel temperature is increased. This electronic system tracks, captures, and stores the PV module's maximum power into a capacitor. After, a higher voltage level step-up circuit was designed to increase the voltage of the PV module's maximum power and then its current can be sent to a battery. The experimental results show that the developed electronic system has 95% efficiency. The measurement was made to 50 W, the electronic system works rightly with solar radiation rate from 100 to 1,000 W m - 2 and the PV panel temperature rate changed from 1 to 75°C. The main advantage of this electronic system compared with conventional methods is the elimination of microprocessors, computers, and sophisticated numerical approximations, and it does not need any small electrical signals to track the maximum power. The proposed method is simple, fast, and it is also cheaper.
NASA Astrophysics Data System (ADS)
Khan, Yaser; Brumer, Paul
2012-11-01
A Hamiltonian based approach using spatially localized projection operators is introduced to give precise meaning to the chemically intuitive idea of the electronic energy on a quantum subsystem. This definition facilitates the study of electronic energy transfer in arbitrarily coupled quantum systems. In particular, the decomposition scheme can be applied to molecular components that are strongly interacting (with significant orbital overlap) as well as to isolated fragments. The result defines a consistent electronic energy at all internuclear distances, including the case of separated fragments, and reduces to the well-known Förster and Dexter results in their respective limits. Numerical calculations of coherent energy and charge transfer dynamics in simple model systems are presented and the effect of collisionally induced decoherence is examined.
NASA Astrophysics Data System (ADS)
Resita, I.; Ertikanto, C.
2018-05-01
This study aims to develop electronic module design based on Learning Content Development System (LCDS) to foster students’ multi representation skills in physics subject material. This study uses research and development method to the product design. This study involves 90 students and 6 physics teachers who were randomly chosen from 3 different Senior High Schools in Lampung Province. The data were collected by using questionnaires and analyzed by using quantitative descriptive method. Based on the data, 95% of the students only use one form of representation in solving physics problems. Representation which is tend to be used by students is symbolic representation. Students are considered to understand the concept of physics if they are able to change from one form to the other forms of representation. Product design of LCDS-based electronic module presents text, image, symbolic, video, and animation representation.
Molecular diodes based on conjugated diblock co-oligomers.
Ng, Man-Kit; Lee, Dong-Chan; Yu, Luping
2002-10-09
This report describes synthesis and characterization of a molecular diode based upon a diblock conjugated oligomer system. This system consists of two conjugated blocks with opposite electronic demand. The molecular structure exhibits a built-in electronic asymmetry, much like a semiconductor p-n junction. Electrical measurements by scanning tunneling spectroscopy (STS) clearly revealed a pronounced rectifying effect. Definitive proof for the molecular nature of the rectifying effect in this conjugated diblock molecule is provided by control experiments with a structurally similar reference compound.
Early childhood education: Status trends, and issues related to electronic delivery
NASA Technical Reports Server (NTRS)
Rothenberg, D.
1973-01-01
The status of, and trends and issues within, early childhood education which are related to the possibilities of electronic delivery of educational service are considered in a broader investigation of the role of large scale, satellite based educational telecommunications systems. Data are analyzed and trends and issues discussed to provide information useful to the system designer who wishes to identify and assess the opportunities for large scale electronic delivery in early childhood education.
Molecular electrostatics for probing lone pair-π interactions.
Mohan, Neetha; Suresh, Cherumuttathu H; Kumar, Anmol; Gadre, Shridhar R
2013-11-14
An electrostatics-based approach has been proposed for probing the weak interactions between lone pair containing molecules and π deficient molecular systems. For electron-rich molecules, the negative minima in molecular electrostatic potential (MESP) topography give the location of electron localization and the MESP value at the minimum (Vmin) quantifies the electron-rich character of that region. Interactive behavior of a lone pair bearing molecule with electron deficient π-systems, such as hexafluorobenzene, 1,3,5-trinitrobenzene, 2,4,6-trifluoro-1,3,5-triazine and 1,2,4,5-tetracyanobenzene explored within DFT brings out good correlation of the lone pair-π interaction energy (E(int)) with the Vmin value of the electron-rich system. Such interaction is found to be portrayed well with the Electrostatic Potential for Intermolecular Complexation (EPIC) model. On the basis of the precise location of MESP minimum, a prediction for the orientation of a lone pair bearing molecule with an electron deficient π-system is possible in the majority of the cases studied.
Performance of the Fully Digital FPGA-Based Front-End Electronics for the GALILEO Array
NASA Astrophysics Data System (ADS)
Barrientos, D.; Bellato, M.; Bazzacco, D.; Bortolato, D.; Cocconi, P.; Gadea, A.; González, V.; Gulmini, M.; Isocrate, R.; Mengoni, D.; Pullia, A.; Recchia, F.; Rosso, D.; Sanchis, E.; Toniolo, N.; Ur, C. A.; Valiente-Dobón, J. J.
2015-12-01
In this work we present the architecture and results of a fully digital Front End Electronics (FEE) read out system developed for the GALILEO array. The FEE system, developed in collaboration with the Advanced Gamma Tracking Array (AGATA) collaboration, is composed of three main blocks: preamplifiers, digitizers and preprocessing electronics. The slow control system contains a custom Linux driver, a dynamic library and a server implementing network services. This work presents the first results of the digital FEE system coupled with a GALILEO germanium detector, which has demonstrated the capability to achieve an energy resolution of 1.530/00 at an energy of 1.33 MeV, similar to the one obtained with a conventional analog system. While keeping a good performance in terms of energy resolution, digital electronics will allow to instrument the full GALILEO array with a versatile system with high integration and low power consumption and costs.
Larsson, Karin C; Kjäll, Peter; Richter-Dahlfors, Agneta
2013-09-01
A major challenge when creating interfaces for the nervous system is to translate between the signal carriers of the nervous system (ions and neurotransmitters) and those of conventional electronics (electrons). Organic conjugated polymers represent a unique class of materials that utilizes both electrons and ions as charge carriers. Based on these materials, we have established a series of novel communication interfaces between electronic components and biological systems. The organic electronic ion pump (OEIP) presented in this review is made of the polymer-polyelectrolyte system poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). The OEIP translates electronic signals into electrophoretic migration of ions and neurotransmitters. We demonstrate how spatio-temporally controlled delivery of ions and neurotransmitters can be used to modulate intracellular Ca(2+) signaling in neuronal cells in the absence of convective disturbances. The electronic control of delivery enables strict control of dynamic parameters, such as amplitude and frequency of Ca(2+) responses, and can be used to generate temporal patterns mimicking naturally occurring Ca(2+) oscillations. To enable further control of the ionic signals we developed the electrophoretic chemical transistor, an analog of the traditional transistor used to amplify and/or switch electronic signals. Finally, we demonstrate the use of the OEIP in a new "machine-to-brain" interface by modulating brainstem responses in vivo. This review highlights the potential of communication interfaces based on conjugated polymers in generating complex, high-resolution, signal patterns to control cell physiology. We foresee widespread applications for these devices in biomedical research and in future medical devices within multiple therapeutic areas. This article is part of a Special Issue entitled Organic Bioelectronics-Novel Applications in Biomedicine. Copyright © 2012 Elsevier B.V. All rights reserved.
Enhanced Learning through Electronic Communities: A Research Review.
ERIC Educational Resources Information Center
Burgstahler, Sheryl; Swift, Catherine
This report, in support of the project "Enhanced Learning through Electronic Communities," investigated successful practices of electronic communities. A literature review was conducted and a survey was sent to 15 system operators of networks that had a community-based focus with ancillary educational components and networks that focused primarily…
Use of Electronic Surveys in Course Evaluation.
ERIC Educational Resources Information Center
Moss, Jaclyn; Hendry, Graham
2002-01-01
Reviews evidence for the effectiveness of electronic surveys as evaluation methods for electronic courses and discusses issues in email and Web survey methodologies. Describes the successful use of Web-based surveys in the evaluation system of the University of Sydney Medical Program and includes recommendations for online survey use in course…
ERIC Educational Resources Information Center
Gardner, Susan G.; Ellis, Burl D.
Seven microcomputer-based training systems with videotape players/monitors were installed to provide electronic counter-countermeasures (ECCM) simulation training, drill and practice, and performance testing for three courses at a fleet combat training center. Narrated videotape presentations of simulated and live jamming followed by a drill and…
Commercialization of an S-band standing-wave electron accelerator for industrial applications
NASA Astrophysics Data System (ADS)
Moon, Jin-Hyeok; Kwak, Gyeong-Il; Han, Jae-Ik; Lee, Gyu-Baek; Jeon, Seong-Hwan; Kim, Jae-Young; Hwang, Cheol-Bin; Lee, Gi-Yong; Kim, Young-Man; Park, Sung-Ju
2016-09-01
An electron accelerator system has been developed for use in industrial, as well as possible medical, applications. Based on our experiences achieved during prototype system development and various electron beam acceleration tests, we have built a stable and compact system for sales purposes. We have integrated a self-developed accelerating cavity, an E-gun pulse driver, a radio-frequency (RF) power system, a vacuum system, a cooling system, etc. into a frame with a size of 1800 × 1000 × 1500 mm3. The accelerating structure is a side-coupled standing-wave type operating in the π/2 mode (tuned to~3 GHz). The RF power is provided by using a magnetron driven by a solid-state modulator. The electron gun is a triode type with a dispenser cathode (diameter of 11 mm). The system is capable of delivering a maximum 900-W average electron beam power with tight focusing at the target. Until now, we have performed various electron beam tests and X-ray beam tests after having built the system, have completed the beam assessment for commercializations, and have been preparing full-fledged sales activity. This article reports on our system development processes and on some of our early test results for commercializations.
NASA Astrophysics Data System (ADS)
Makarov, M.; Shchanikov, S.; Trantina, N.
2017-01-01
We have conducted a research into the major, in terms of their future application, properties of nanoscale objects, based on modelling these objects as free-standing physical elements beyond the structure of an engineering system designed for their integration as well as a part of a system that operates under the influence of the external environment. For the empirical research suggested within the scope of this work, we have chosen a nanoscale electronic element intended to be used while designing information processing systems with the parallel architecture - a memristor. The target function of the research was to provide the maximum fault-tolerance index of a memristor-based system when affected by all possible impacts of the internal destabilizing factors and external environment. The research results have enabled us to receive and classify all the factors predetermining the fault-tolerance index of the hardware implementation of a computing system based on the nanoscale electronic element base.
NASA Astrophysics Data System (ADS)
Totmeninov, E. M.; Pegel, I. V.; Tarakanov, V. P.
2017-06-01
Using numerical simulation, the operating mode of a relativistic Cherenkov microwave generator of the twistronic type has been demonstrated. The generator includes an electrodynamic system based on a backward-wave oscillator and modulating reflector with nonmonotonous, highly nonuniform energy exchange along the length of the system. The efficiency of power conversion from the electron beam to electromagnetic radiation is 56%, and the electronic efficiency is 66%. For an accelerating voltage of 340 kV and an electron beam current of 3.3 kA, the simulated generation power is 630 MW at a frequency of 9.7 GHz and a guiding magnetic field of 2.2 T.
A THz Spectroscopy System Based on Coherent Radiation from Ultrashort Electron Bunches
NASA Astrophysics Data System (ADS)
Saisut, J.; Rimjaem, S.; Thongbai, C.
2018-05-01
A spectroscopy system will be discussed for coherent THz transition radiation emitted from short electron bunches, which are generated from a system consisting of an RF gun with a thermionic cathode, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator for post-acceleration. The THz radiation is generated as backward transition radiation when electron bunches pass through an aluminum foil. The emitted THz transition radiation, which is coherent at wavelengths equal to and longer than the electron bunch length, is coupled to a Michelson interferometer. The performance of the spectroscopy system employing a Michelson interferometer is discussed. The radiation power spectra under different conditions are presented. As an example, the optical constant of a silicon wafer can be obtained using the dispersive Fourier transform spectroscopy (DFTS) technique.
Exact exchange-correlation potentials of singlet two-electron systems
NASA Astrophysics Data System (ADS)
Ryabinkin, Ilya G.; Ospadov, Egor; Staroverov, Viktor N.
2017-10-01
We suggest a non-iterative analytic method for constructing the exchange-correlation potential, v XC ( r ) , of any singlet ground-state two-electron system. The method is based on a convenient formula for v XC ( r ) in terms of quantities determined only by the system's electronic wave function, exact or approximate, and is essentially different from the Kohn-Sham inversion technique. When applied to Gaussian-basis-set wave functions, the method yields finite-basis-set approximations to the corresponding basis-set-limit v XC ( r ) , whereas the Kohn-Sham inversion produces physically inappropriate (oscillatory and divergent) potentials. The effectiveness of the procedure is demonstrated by computing accurate exchange-correlation potentials of several two-electron systems (helium isoelectronic series, H2, H3 + ) using common ab initio methods and Gaussian basis sets.
Real-Time Quantum Dynamics of Long-Range Electronic Excitation Transfer in Plasmonic Nanoantennas.
Ilawe, Niranjan V; Oviedo, M Belén; Wong, Bryan M
2017-08-08
Using large-scale, real-time, quantum dynamics calculations, we present a detailed analysis of electronic excitation transfer (EET) mechanisms in a multiparticle plasmonic nanoantenna system. Specifically, we utilize real-time, time-dependent, density functional tight binding (RT-TDDFTB) to provide a quantum-mechanical description (at an electronic/atomistic level of detail) for characterizing and analyzing these systems, without recourse to classical approximations. We also demonstrate highly long-range electronic couplings in these complex systems and find that the range of these couplings is more than twice the conventional cutoff limit considered by Förster resonance energy transfer (FRET)-based approaches. Furthermore, we attribute these unusually long-ranged electronic couplings to the coherent oscillations of conduction electrons in plasmonic nanoparticles. This long-range nature of plasmonic interactions has important ramifications for EET; in particular, we show that the commonly used "nearest-neighbor" FRET model is inadequate for accurately characterizing EET even in simple plasmonic antenna systems. These findings provide a real-time, quantum-mechanical perspective for understanding EET mechanisms and provide guidance in enhancing plasmonic properties in artificial light-harvesting systems.
Particle-hole symmetry in many-body theories of electron correlation
NASA Astrophysics Data System (ADS)
Kats, Daniel; Usvyat, Denis; Manby, Frederick R.
2018-06-01
Second-quantised creation and annihilation operators for fermionic particles anticommute, but the same is true for the creation and annihilation operators for holes. This introduces a symmetry into the quantum theory of fermions that is absent for bosons. In ab initio electronic structure theory, it is common to classify methods by the number of electrons for which the method returns exact results: for example Hartree-Fock theory is exact for one-electron systems, whereas coupled-cluster theory with single and double excitations is exact for two-electron systems. Here, we discuss the generalisation: methods based on approximate wavefunctions that are exact for n-particle systems are also exact for n-hole systems. Novel electron correlation methods that attempt to improve on the coupled-cluster framework sometimes retain this property, and sometimes lose it. Here, we argue for retaining particle-hole symmetry as a desirable design criterion of approximate electron correlation methods. Dispensing with it might lead to loss of n-representability of density matrices, and this in turn can lead to spurious long-range behaviour in the correlation energy.
Criticality of the electron-nucleus cusp condition to local effective potential-energy theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Xiaoyin; Sahni, Viraht; Graduate School of the City University of New York, 360 Fifth Avenue, New York, New York 10016
2003-01-01
Local(multiplicative) effective potential energy-theories of electronic structure comprise the transformation of the Schroedinger equation for interacting Fermi systems to model noninteracting Fermi or Bose systems whereby the equivalent density and energy are obtained. By employing the integrated form of the Kato electron-nucleus cusp condition, we prove that the effective electron-interaction potential energy of these model fermions or bosons is finite at a nucleus. The proof is general and valid for arbitrary system whether it be atomic, molecular, or solid state, and for arbitrary state and symmetry. This then provides justification for all prior work in the literature based on themore » assumption of finiteness of this potential energy at a nucleus. We further demonstrate the criticality of the electron-nucleus cusp condition to such theories by an example of the hydrogen molecule. We show thereby that both model system effective electron-interaction potential energies, as determined from densities derived from accurate wave functions, will be singular at the nucleus unless the wave function satisfies the electron-nucleus cusp condition.« less
The perspectives of femtosecond imaging and spectroscopy of complex materials using electrons
NASA Astrophysics Data System (ADS)
Ruan, Chong-Yu; Duxbury, Phiilp M.; Berz, Martin
2014-09-01
The coexistence of various electronic and structural phases that are close in free-energy is a hallmark in strongly correlated electron systems with emergent properties, such as metal-insulator transition, colossal magnetoresistance, and high-temperature superconductivity. The cooperative phase transitions from one functional state to another can involve entanglements between the electronically and structurally ordered states, hence deciphering the fundamental mechanisms is generally difficult and remains very active in condensed matter physics and functional materials research. We outline the recent ultrafast characterizations of 2D charge-density wave materials, including the nonequilibrium electron dynamics unveiled by ultrafast optical spectroscopy-based techniques sensitive to the electronic order parameter. We also describe the most recent findings from ultrafast electron crystallography, which provide structural aspects to correlate lattice dynamics with electronic evolutions to address the two sides of a coin in the ultrafast switching of a cooperative state. Combining these results brings forth new perspectives and a fuller picture in understanding lightmatter interactions and various switching mechanisms in cooperative systems with many potential applications. We also discuss the prospects of implementing new ultrafast electron imaging as a local probe incorporated with femtosecond select-area diffraction, imaging and spectroscopy to provide a full scope of resolution to tackle the more challenging complex phase transitions on the femtosecond-nanometer scale all at once based on a recent understanding of the spacespace- charge-driven emittance limitation on the ultimate performance of these devices. The projection shows promising parameter space for conducting ultrafast electron micordiffraction at close to single-shot level, which is supported by the latest experimental characterization of such a system.
Ab initio modeling of complex amorphous transition-metal-based ceramics.
Houska, J; Kos, S
2011-01-19
Binary and ternary amorphous transition metal (TM) nitrides and oxides are of great interest because of their suitability for diverse applications ranging from high-temperature machining to the production of optical filters or electrochromic devices. However, understanding of bonding in, and electronic structure of, these materials represents a challenge mainly due to the d electrons in their valence band. In the present work, we report ab initio calculations of the structure and electronic structure of ZrSiN materials. We focus on the methodology needed for the interpretation and automatic analysis of the bonding structure, on the effect of the length of the calculation on the convergence of individual quantities of interest and on the electronic structure of materials. We show that the traditional form of the Wannier function center-based algorithm fails due to the presence of d electrons in the valence band. We propose a modified algorithm, which allows one to analyze bonding structure in TM-based systems. We observe an appearance of valence p states of TM atoms in the electronic spectra of such systems (not only ZrSiN but also NbO(x) and WAuO), and examine the importance of the p states for the character of the bonding as well as for facilitating the bonding analysis. The results show both the physical phenomena and the computational methodology valid for a wide range of TM-based ceramics.
Development of an "Alert Framework" Based on the Practices in the Medical Front.
Sakata, Takuya; Araki, Kenji; Yamazaki, Tomoyoshi; Kawano, Koichi; Maeda, Minoru; Kushima, Muneo; Araki, Sanae
2018-05-09
At the University of Miyazaki Hospital (UMH), we have accumulated and semantically structured a vast amount of medical information since the activation of the electronic health record system approximately 10 years ago. With this medical information, we have decided to develop an alert system for aiding in medical treatment. The purpose of this investigation is to not only to integrate an alert framework into the electronic heath record system, but also to formulate a modeling method of this knowledge. A trial alert framework was developed for the staff in various occupational categories at the UMH. Based on findings of subsequent interviews, a more detailed and upgraded alert framework was constructed, resulting in the final model. Based on our current findings, an alert framework was developed with four major items. Based on the analysis of the medical practices from the trial model, it has been concluded that there are four major risk patterns that trigger the alert. Furthermore, the current alert framework contains detailed definitions which are easily substituted into the database, leading to easy implementation of the electronic health records.
NASA Technical Reports Server (NTRS)
2001-01-01
REI Systems, Inc. developed a software solution that uses the Internet to eliminate the paperwork typically required to document and manage complex business processes. The data management solution, called Electronic Handbooks (EHBs), is presently used for the entire SBIR program processes at NASA. The EHB-based system is ideal for programs and projects whose users are geographically distributed and are involved in complex management processes and procedures. EHBs provide flexible access control and increased communications while maintaining security for systems of all sizes. Through Internet Protocol- based access, user authentication and user-based access restrictions, role-based access control, and encryption/decryption, EHBs provide the level of security required for confidential data transfer. EHBs contain electronic forms and menus, which can be used in real time to execute the described processes. EHBs use standard word processors that generate ASCII HTML code to set up electronic forms that are viewed within a web browser. EHBs require no end-user software distribution, significantly reducing operating costs. Each interactive handbook simulates a hard-copy version containing chapters with descriptions of participants' roles in the online process.
Electrons and Phonons in Semiconductor Multilayers
NASA Astrophysics Data System (ADS)
Ridley, B. K.
1996-11-01
This book provides a detailed description of the quantum confinement of electrons and phonons in semiconductor wells, superlattices and quantum wires, and shows how this affects their mutual interactions. It discusses the transition from microscopic to continuum models, emphasizing the use of quasi-continuum theory to describe the confinement of optical phonons and electrons. The hybridization of optical phonons and their interactions with electrons are treated, as are other electron scattering mechanisms. The book concludes with an account of the electron distribution function in three-, two- and one-dimensional systems, in the presence of electrical or optical excitation. This text will be of great use to graduate students and researchers investigating low-dimensional semiconductor structures, as well as to those developing new devices based on these systems.
An XML-based system for the flexible classification and retrieval of clinical practice guidelines.
Ganslandt, T.; Mueller, M. L.; Krieglstein, C. F.; Senninger, N.; Prokosch, H. U.
2002-01-01
Beneficial effects of clinical practice guidelines (CPGs) have not yet reached expectations due to limited routine adoption. Electronic distribution and reminder systems have the potential to overcome implementation barriers. Existing electronic CPG repositories like the National Guideline Clearinghouse (NGC) provide individual access but lack standardized computer-readable interfaces necessary for automated guideline retrieval. The aim of this paper was to facilitate automated context-based selection and presentation of CPGs. Using attributes from the NGC classification scheme, an XML-based metadata repository was successfully implemented, providing document storage, classification and retrieval functionality. Semi-automated extraction of attributes was implemented for the import of XML guideline documents using XPath. A hospital information system interface was exemplarily implemented for diagnosis-based guideline invocation. Limitations of the implemented system are discussed and possible future work is outlined. Integration of standardized computer-readable search interfaces into existing CPG repositories is proposed. PMID:12463831
McCoy, A B; Wright, A; Krousel-Wood, M; Thomas, E J; McCoy, J A; Sittig, D F
2015-01-01
Clinical knowledge bases of problem-medication pairs are necessary for many informatics solutions that improve patient safety, such as clinical summarization. However, developing these knowledge bases can be challenging. We sought to validate a previously developed crowdsourcing approach for generating a knowledge base of problem-medication pairs in a large, non-university health care system with a widely used, commercially available electronic health record. We first retrieved medications and problems entered in the electronic health record by clinicians during routine care during a six month study period. Following the previously published approach, we calculated the link frequency and link ratio for each pair then identified a threshold cutoff for estimated problem-medication pair appropriateness through clinician review; problem-medication pairs meeting the threshold were included in the resulting knowledge base. We selected 50 medications and their gold standard indications to compare the resulting knowledge base to the pilot knowledge base developed previously and determine its recall and precision. The resulting knowledge base contained 26,912 pairs, had a recall of 62.3% and a precision of 87.5%, and outperformed the pilot knowledge base containing 11,167 pairs from the previous study, which had a recall of 46.9% and a precision of 83.3%. We validated the crowdsourcing approach for generating a knowledge base of problem-medication pairs in a large non-university health care system with a widely used, commercially available electronic health record, indicating that the approach may be generalizable across healthcare settings and clinical systems. Further research is necessary to better evaluate the knowledge, to compare crowdsourcing with other approaches, and to evaluate if incorporating the knowledge into electronic health records improves patient outcomes.
Wright, A.; Krousel-Wood, M.; Thomas, E. J.; McCoy, J. A.; Sittig, D. F.
2015-01-01
Summary Background Clinical knowledge bases of problem-medication pairs are necessary for many informatics solutions that improve patient safety, such as clinical summarization. However, developing these knowledge bases can be challenging. Objective We sought to validate a previously developed crowdsourcing approach for generating a knowledge base of problem-medication pairs in a large, non-university health care system with a widely used, commercially available electronic health record. Methods We first retrieved medications and problems entered in the electronic health record by clinicians during routine care during a six month study period. Following the previously published approach, we calculated the link frequency and link ratio for each pair then identified a threshold cutoff for estimated problem-medication pair appropriateness through clinician review; problem-medication pairs meeting the threshold were included in the resulting knowledge base. We selected 50 medications and their gold standard indications to compare the resulting knowledge base to the pilot knowledge base developed previously and determine its recall and precision. Results The resulting knowledge base contained 26,912 pairs, had a recall of 62.3% and a precision of 87.5%, and outperformed the pilot knowledge base containing 11,167 pairs from the previous study, which had a recall of 46.9% and a precision of 83.3%. Conclusions We validated the crowdsourcing approach for generating a knowledge base of problem-medication pairs in a large non-university health care system with a widely used, commercially available electronic health record, indicating that the approach may be generalizable across healthcare settings and clinical systems. Further research is necessary to better evaluate the knowledge, to compare crowdsourcing with other approaches, and to evaluate if incorporating the knowledge into electronic health records improves patient outcomes. PMID:26171079
Ambient multi-perceptive system with electronic mail for a residential health monitoring system.
Noury, N; Villemazet, C; Fleury, A; Barralon, P; Rumeau, P; Vuillerme, N; Baghai, R
2006-01-01
Based on several years of experiments, we propose a model of information systems for residential healthcare, and technical guide to select available hard and software technologies. An implementation is described, based on Emails. The system is under experimentation within the framework of the French national project AILISA.
Digital avionics: A cornerstone of aviation
NASA Technical Reports Server (NTRS)
Spitzer, Cary R.
1990-01-01
Digital avionics is continually expanding its role in communication (HF and VHF, satellite, data links), navigation (ground-based systems, inertial and satellite-based systems), and flight-by-wire control. Examples of electronic flight control system architecture, pitch, roll, and yaw control are presented. Modeling of complex hardware systems, electromagnetic interference, and software are discussed.
Nurses' Experiences of an Initial and Reimplemented Electronic Health Record Use.
Chang, Chi-Ping; Lee, Ting-Ting; Liu, Chia-Hui; Mills, Mary Etta
2016-04-01
The electronic health record is a key component of healthcare information systems. Currently, numerous hospitals have adopted electronic health records to replace paper-based records to document care processes and improve care quality. Integrating healthcare information system into traditional nursing daily operations requires time and effort for nurses to become familiarized with this new technology. In the stages of electronic health record implementation, smooth adoption can streamline clinical nursing activities. In order to explore the adoption process, a descriptive qualitative study design and focus group interviews were conducted 3 months after and 2 years after electronic health record system implementation (system aborted 1 year in between) in one hospital located in southern Taiwan. Content analysis was performed to analyze the interview data, and six main themes were derived, in the first stage: (1) liability, work stress, and anticipation for electronic health record; (2) slow network speed, user-unfriendly design for learning process; (3) insufficient information technology/organization support; on the second stage: (4) getting used to electronic health record and further system requirements, (5) benefits of electronic health record in time saving and documentation, (6) unrealistic information technology competence expectation and future use. It concluded that user-friendly design and support by informatics technology and manpower backup would facilitate this adoption process as well.
Evaluation of DNA damage induced by Auger electrons from 137Cs.
Watanabe, Ritsuko; Hattori, Yuya; Kai, Takeshi
2016-11-01
To understand the biological effect of external and internal exposure from 137 Cs, DNA damage spectrum induced by directly emitted electrons (γ-rays, internal conversion electrons, Auger electrons) from 137 Cs was compared with that induced by 137 Cs γ-rays. Monte Carlo track simulation method was used to calculate the microscopic energy deposition pattern in liquid water. Simulation was performed for the two simple target systems in microscale. Radiation sources were placed inside for one system and outside for another system. To simulate the energy deposition by directly emitted electrons from 137 Cs placed inside the system, the multiple ejections of electrons after internal conversion were considered. In the target systems, induction process of DNA damage was modeled and simulated for both direct energy deposition and the water radical reaction on the DNA. The yield and spatial distribution of simple and complex DNA damage including strand breaks and base lesions were calculated for irradiation by electrons and γ-rays from 137 Cs. The simulation showed that the significant difference in DNA damage spectrum was not caused by directly ejected electrons and γ-rays from 137 Cs. The result supports the existing perception that the biological effects by internal and external exposure by 137 Cs are equivalent.
Carrell, David S.; Halgrim, Scott; Tran, Diem-Thy; Buist, Diana S. M.; Chubak, Jessica; Chapman, Wendy W.; Savova, Guergana
2014-01-01
The increasing availability of electronic health records (EHRs) creates opportunities for automated extraction of information from clinical text. We hypothesized that natural language processing (NLP) could substantially reduce the burden of manual abstraction in studies examining outcomes, like cancer recurrence, that are documented in unstructured clinical text, such as progress notes, radiology reports, and pathology reports. We developed an NLP-based system using open-source software to process electronic clinical notes from 1995 to 2012 for women with early-stage incident breast cancers to identify whether and when recurrences were diagnosed. We developed and evaluated the system using clinical notes from 1,472 patients receiving EHR-documented care in an integrated health care system in the Pacific Northwest. A separate study provided the patient-level reference standard for recurrence status and date. The NLP-based system correctly identified 92% of recurrences and estimated diagnosis dates within 30 days for 88% of these. Specificity was 96%. The NLP-based system overlooked 5 of 65 recurrences, 4 because electronic documents were unavailable. The NLP-based system identified 5 other recurrences incorrectly classified as nonrecurrent in the reference standard. If used in similar cohorts, NLP could reduce by 90% the number of EHR charts abstracted to identify confirmed breast cancer recurrence cases at a rate comparable to traditional abstraction. PMID:24488511
Yamamoto, Hideo; Yoneda, Tarou; Satou, Shuji; Ishikawa, Toru; Hara, Misako
2009-12-20
By input of the actual dose of a drug given into a radiology information system, the system converting with an accounting system into a cost of the drug from the actual dose in the electronic medical record was built. In the drug master, the first unit was set as the cost of the drug, and we set the second unit as the actual dose. The second unit in the radiology information system was received by the accounting system through electronic medical record. In the accounting system, the actual dose was changed into the cost of the drug using the dose of conversion to the first unit. The actual dose was recorded on a radiology information system and electronic medical record. The actual dose was indicated on the accounting system, and the cost for the drug was calculated. About the actual dose of drug, cooperation of the information in a radiology information system and electronic medical record were completed. It was possible to decide the volume of drug from the correct dose of drug at the previous inspection. If it is necessary for the patient to have another treatment of medicine, it is important to know the actual dose of drug given. Moreover, authenticity of electronic medical record based on a statute has also improved.
ERIC Educational Resources Information Center
Kritzinger, E.; Padayachee, K.; Tolmay, M.
2010-01-01
The outcome of this paper is primarily to survey and analyse student interactions with electronic conferencing systems and to reflect on the impact of such a system on the students' learning within an open distance learning context. This pilot study is articulated within action research methodology to generate critical reflection on collaborative,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Tianyu; Mani, Ramesh G.; Wegscheider, Werner
2013-12-04
We present the results of a concurrent experimental study of microwave reflection and transport in the GaAs/AlGaAs two dimensional electron gas system and correlate observed features in the reflection with the observed transport features. The experimental results are compared with expectations based on theory.
DOT National Transportation Integrated Search
2001-05-01
The State of New York received a grant from the I-95 Corridor Coalition to develop a proof-of-concept for an electronic credentialing system for the motor carrier industry. When fully developed, the system, which is a web-based solution, will enable ...
Graphene-based terahertz photodetector by noise thermometry technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Ming-Jye, E-mail: mingjye@asiss.sinica.edu.tw; Institute of Physics, Academia Sinica, Taipei 11529, Taiwan; Wang, Ji-Wun
2014-01-20
We report the characteristics of graphene-based terahertz (THz) photodetector based on noise thermometry technique by measuring its noise power at frequency from 4 to 6 GHz. Hot electron system in graphene microbridge is generated after THz photon pumping and creates extra noise power. The equivalent noise temperature and electron temperature increase rapidly in low THz pumping regime and saturate gradually in high THz power regime which is attributed to a faster energy relaxation process involved by stronger electron-phonon interaction. Based on this detector, a conversion efficiency around 0.15 from THz power to noise power in 4–6 GHz span has been achieved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, M.; Morimoto, M.; Shima, Y.
2012-10-15
In the GAMMA 10 tandem mirror, the typical electron density is comparable to that of the peripheral plasma of torus-type fusion devices. Therefore, an effective method to increase Thomson scattering (TS) signals is required in order to improve signal quality. In GAMMA 10, the yttrium-aluminum-garnet (YAG)-TS system comprises a laser, incident optics, light collection optics, signal detection electronics, and a data recording system. We have been developing a multi-pass TS method for a polarization-based system based on the GAMMA 10 YAG TS. To evaluate the effectiveness of the polarization-based configuration, the multi-pass system was installed in the GAMMA 10 YAG-TSmore » system, which is capable of double-pass scattering. We carried out a Rayleigh scattering experiment and applied this double-pass scattering system to the GAMMA 10 plasma. The integrated scattering signal was made about twice as large by the double-pass system.« less
Utilizing IHE-based Electronic Health Record systems for secondary use.
Holzer, K; Gall, W
2011-01-01
Due to the increasing adoption of Electronic Health Records (EHRs) for primary use, the number of electronic documents stored in such systems will soar in the near future. In order to benefit from this development in secondary fields such as medical research, it is important to define requirements for the secondary use of EHR data. Furthermore, analyses of the extent to which an IHE (Integrating the Healthcare Enterprise)-based architecture would fulfill these requirements could provide further information on upcoming obstacles for the secondary use of EHRs. A catalog of eight core requirements for secondary use of EHR data was deduced from the published literature, the risk analysis of the IHE profile MPQ (Multi-Patient Queries) and the analysis of relevant questions. The IHE-based architecture for cross-domain, patient-centered document sharing was extended to a cross-patient architecture. We propose an IHE-based architecture for cross-patient and cross-domain secondary use of EHR data. Evaluation of this architecture concerning the eight core requirements revealed positive fulfillment of six and the partial fulfillment of two requirements. Although not regarded as a primary goal in modern electronic healthcare, the re-use of existing electronic medical documents in EHRs for research and other fields of secondary application holds enormous potential for the future. Further research in this respect is necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yubo; Zhang, Jiawei; Wang, Youwei
Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of themore » mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within ±0.2 eV.« less
NASA Technical Reports Server (NTRS)
Hopcroft, J.
1987-01-01
The potential benefits of automation in space are significant. The science base needed to support this automation not only will help control costs and reduce lead-time in the earth-based design and construction of space stations, but also will advance the nation's capability for computer design, simulation, testing, and debugging of sophisticated objects electronically. Progress in automation will require the ability to electronically represent, reason about, and manipulate objects. Discussed here is the development of representations, languages, editors, and model-driven simulation systems to support electronic prototyping. In particular, it identifies areas where basic research is needed before further progress can be made.
McMullin, S Troy; Lonergan, Thomas P; Rynearson, Charles S
2005-05-01
We reported previously the results of a 6-month controlled trial in which the use of a commercially available electronic prescribing system with integrated clinical decision support and evidence-based message capability was associated with significantly lower primary care drug costs. The original study focused on new prescriptions, defined as claims for a medication that the patient had not received in the previous 12 months. The main objectives of this follow-up report were to (a) determine if the 6-month savings on new prescriptions were sustained during 12 months of follow-up, (b) evaluate the impact of the computerized decision support system (CDSS) on all pharmacy claims and per-member-per-month (PMPM) expenditures, and (c) evaluate the prescribing behaviors within 8 high-cost therapeutic categories that were frequently targeted by the electronic messages to prescribers to help verify that the drug cost savings were due to the recommendations in the electronic prescribing system. Two database queries were performed to identify additional pharmacy claims data for all Network Health Plan patients who were cared for by the 38 primary care clinicians (32 physicians, 4 nurse practitioners, and 2 physician assistants) included in our original 6-month study. This follow-up analysis (a) identified all new prescription claims for the 2 groups of clinicians throughout the 12-month follow-up period (June 2002 through May 2003) and (b) assessed all pharmacy claims during the same 12-month period to provide more complete savings estimates and to examine between-group differences in PMPM expenditures. During 12 months of follow-up, clinicians using the electronic prescribing system continued to have lower prescription costs than the controls. Clinicians using the electronic prescribing system had average costs for 26,674 new prescriptions that were dollar 4.12 lower (95% confidence interval, dollar 1.53-dollar 6.71; P=0.003) and PMPM expenditures that were dollar 0.57 lower than expected based on the changes observed for 24,507 new prescriptions written by clinicians in the control group. The average drug cost savings on new prescriptions were dollar 482 per prescriber per month (PPPM), based upon prescription cost and dollar 465 PPPM based upon PMPM analysis. When all pharmacy claims (156,429) were analyzed, the intervention group.s average prescription cost was dollar 2.57 lower and their PMPM expenditures were dollar 1.07 lower than expected based on the changes observed in the control group. The average drug cost savings on all pharmacy claims were dollar 863 PPPM based on average prescription cost and dollar 873 PPPM based on PMPM analysis. The proportion of prescriptions for highcost drugs that were the target of the CDSS messages to prescribers was a relative 17.5% lower among the intervention group (35.8%) compared with the control group (43.4%; P=0.03). An electronic prescribing system with integrated decision support shifted prescribing behavior away from high-cost therapies and significantly lowered prescription drug costs. The savings associated with altered prescribing behavior offset the monthly subscription cost of the system.
Kim, J H; Ferziger, R; Kawaloff, H B; Sands, D Z; Safran, C; Slack, W V
2001-01-01
Even the most extensive hospital information system cannot support all the complex and ever-changing demands associated with a clinical database, such as providing department or personal data forms, and rating scales. Well-designed clinical dialogue programs may facilitate direct interaction of patients with their medical records. Incorporation of extensive and loosely structured clinical data into an existing medical record system is an essential step towards a comprehensive clinical information system, and can best be achieved when the practitioner and the patient directly enter the contents. We have developed a rapid prototyping and clinical conversational system that complements the electronic medical record system, with its generic data structure and standard communication interfaces based on Web technology. We believe our approach can enhance collaboration between consumer-oriented and provider-oriented information systems.
Improving the Effectiveness of Electronic Health Record-Based Referral Processes
2012-01-01
Electronic health records are increasingly being used to facilitate referral communication in the outpatient setting. However, despite support by technology, referral communication between primary care providers and specialists is often unsatisfactory and is unable to eliminate care delays. This may be in part due to lack of attention to how information and communication technology fits within the social environment of health care. Making electronic referral communication effective requires a multifaceted “socio-technical” approach. Using an 8-dimensional socio-technical model for health information technology as a framework, we describe ten recommendations that represent good clinical practices to design, develop, implement, improve, and monitor electronic referral communication in the outpatient setting. These recommendations were developed on the basis of our previous work, current literature, sound clinical practice, and a systems-based approach to understanding and implementing health information technology solutions. Recommendations are relevant to system designers, practicing clinicians, and other stakeholders considering use of electronic health records to support referral communication. PMID:22973874
Design and implementation of intelligent electronic warfare decision making algorithm
NASA Astrophysics Data System (ADS)
Peng, Hsin-Hsien; Chen, Chang-Kuo; Hsueh, Chi-Shun
2017-05-01
Electromagnetic signals and the requirements of timely response have been a rapid growth in modern electronic warfare. Although jammers are limited resources, it is possible to achieve the best electronic warfare efficiency by tactical decisions. This paper proposes the intelligent electronic warfare decision support system. In this work, we develop a novel hybrid algorithm, Digital Pheromone Particle Swarm Optimization, based on Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and Shuffled Frog Leaping Algorithm (SFLA). We use PSO to solve the problem and combine the concept of pheromones in ACO to accumulate more useful information in spatial solving process and speed up finding the optimal solution. The proposed algorithm finds the optimal solution in reasonable computation time by using the method of matrix conversion in SFLA. The results indicated that jammer allocation was more effective. The system based on the hybrid algorithm provides electronic warfare commanders with critical information to assist commanders in effectively managing the complex electromagnetic battlefield.
NASA Astrophysics Data System (ADS)
Kurkuchekov, V.; Kandaurov, I.; Trunev, Y.
2018-05-01
A simple and inexpensive X-ray diagnostic tool was designed for measuring the cross-sectional current density distribution in a low-relativistic pulsed electron beam produced in a source based on an arc-discharge plasma cathode and multiaperture diode-type electron optical system. The beam parameters were as follows: Uacc = 50–110 kV, Ibeam = 20–100 A, τbeam = 0.1–0.3 ms. The beam effective diameter was ca. 7 cm. Based on a pinhole camera, the diagnostic allows one to obtain a 2D profile of electron beam flux distribution on a flat metal target in a single shot. The linearity of the diagnostic system response to the electron flux density was established experimentally. Spatial resolution of the diagnostic was also estimated in special test experiments. The optimal choice of the main components of the diagnostic technique is discussed.
The Electronic Astrophysical Journal Letters Project
NASA Astrophysics Data System (ADS)
Dalterio, H. J.; Boyce, P. B.; Biemesderfer, C.; Warnock, A., III; Owens, E.; Fullton, J.
The American Astronomical Society has developed a comprehensive system for the electronic dissemination of refereed astronomical research results. Our current focus is the production of an electronic version of the Astrophysical Journal Letters. With the help of a recent National Science Foundation grant, we have developed a system that includes: LATEX-based manuscript preparation, electronic submission, peer review, production, development of a database of SGML-tagged manuscripts, collection of page charges and other fees, and electronic manuscript storage and delivery. Delivery options include World-Wide Web access through HTML browsers such as Mosaic and Netscape, an email gateway, and a stand-alone client accessible through astronomical software packages such as IRAF. Our goal is to increase the access and usefulness of the journal by providing enhanced features such as faster publication, advanced search capabilities, forward and backward referencing, links to underlying data and links to adjunct materials in a variety of media. We have based our journal on open standards and freely available network tools wherever possible.
NASA Astrophysics Data System (ADS)
Dalgleish, Hugh; Kirczenow, George
2004-03-01
Metal/Molecule/Metal junction systems forming molecular wires are currently the focus of intense study. Recently, spin-dependent electron transport in molecular wires with magnetic Ni electrodes has been studied theoretically, and spin-valve effects have been predicted.* Here we explore theoretically another magnetic molecular wire system, namely, ferromagnetic Fe nano-contacts bridged with 1,4-benzene-dithiolate (BDT). We estimate the essential structural and electronic parameters for this system based on ab initio density functional calculations (DFT) for some simple model systems involving thiol groups and Fe clusters as well as semi-empirical considerations and the known electronic structure of bulk Fe. We then use Lippmann-Schwinger and Green's function techniques together with the Landauer formalism to study spin-dependent transport. *E. G. Emberly and G. Kirczenow, Chem. Phys. 281, 311 (2002); R. Pati, L. Senapati, P.M. Ajayan and S.K. Nayak, Phys. Rev. B68, 100407 (2003).
Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.
Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro
2018-06-07
Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.
Kamel Boulos, M N; Roudsari, A V; Gordon, C; Muir Gray, J A
2001-01-01
In 1998, the U.K. National Health Service Information for Health Strategy proposed the implementation of a National electronic Library for Health to provide clinicians, healthcare managers and planners, patients and the public with easy, round the clock access to high quality, up-to-date electronic information on health and healthcare. The Virtual Branch Libraries are among the most important components of the National electronic Library for Health. They aim at creating online knowledge based communities, each concerned with some specific clinical and other health-related topics. This study is about the envisaged Dermatology Virtual Branch Libraries of the National electronic Library for Health. It aims at selecting suitable dermatology Web resources for inclusion in the forthcoming Virtual Branch Libraries after establishing preliminary quality benchmarking rules for this task. Psoriasis, being a common dermatological condition, has been chosen as a starting point. Because quality is a principal concern of the National electronic Library for Health, the study includes a review of the major quality benchmarking systems available today for assessing health-related Web sites. The methodology of developing a quality benchmarking system has been also reviewed. Aided by metasearch Web tools, candidate resources were hand-selected in light of the reviewed benchmarking systems and specific criteria set by the authors. Over 90 professional and patient-oriented Web resources on psoriasis and dermatology in general are suggested for inclusion in the forthcoming Dermatology Virtual Branch Libraries. The idea of an all-in knowledge-hallmarking instrument for the National electronic Library for Health is also proposed based on the reviewed quality benchmarking systems. Skilled, methodical, organized human reviewing, selection and filtering based on well-defined quality appraisal criteria seems likely to be the key ingredient in the envisaged National electronic Library for Health service. Furthermore, by promoting the application of agreed quality guidelines and codes of ethics by all health information providers and not just within the National electronic Library for Health, the overall quality of the Web will improve with time and the Web will ultimately become a reliable and integral part of the care space.
30 CFR 210.54 - Must I submit this royalty report electronically?
Code of Federal Regulations, 2010 CFR
2010-07-01
... with which either party may contract. (2) Web-based reporting—Reporters/payors may enter report data directly or upload files using the MMS electronic web form located at http://www.mrmreports.net. The... generated from a reporter's system application. (c) Refer to our electronic reporting guidelines in the MMS...
Social Dynamics within Electronic Networks of Practice
ERIC Educational Resources Information Center
Mattson, Thomas A., Jr.
2013-01-01
Electronic networks of practice (eNoP) are special types of electronic social structures focused on discussing domain-specific problems related to a skill-based craft or profession in question and answer style forums. eNoP have implemented peer-to-peer feedback systems in order to motivate future contributions and to distinguish contribution…
Electronic health record meets digital library: a new environment for achieving an old goal.
Humphreys, B L
2000-01-01
Linking the electronic health record to the digital library is a Web-era reformulation of the long-standing informatics goal of seamless integration of automated clinical data and relevant knowledge-based information to support informed decisions. The spread of the Internet, the development of the World Wide Web, and converging format standards for electronic health data and digital publications make effective linking increasingly feasible. Some existing systems link electronic health data and knowledge-based information in limited settings or limited ways. Yet many challenging informatics research problems remain to be solved before flexible and seamless linking becomes a reality and before systems become capable of delivering the specific piece of information needed at the time and place a decision must be made. Connecting the electronic health record to the digital library also requires positive resolution of important policy issues, including health data privacy, government encouragement of high-speed communications, electronic intellectual property rights, and standards for health data and for digital libraries. Both the research problems and the policy issues should be important priorities for the field of medical informatics.
Electronic Health Record Meets Digital Library
Humphreys, Betsy L.
2000-01-01
Linking the electronic health record to the digital library is a Web-era reformulation of the long-standing informatics goal of seamless integration of automated clinical data and relevant knowledge-based information to support informed decisions. The spread of the Internet, the development of the World Wide Web, and converging format standards for electronic health data and digital publications make effective linking increasingly feasible. Some existing systems link electronic health data and knowledge-based information in limited settings or limited ways. Yet many challenging informatics research problems remain to be solved before flexible and seamless linking becomes a reality and before systems become capable of delivering the specific piece of information needed at the time and place a decision must be made. Connecting the electronic health record to the digital library also requires positive resolution of important policy issues, including health data privacy, government envouragement of high-speed communications, electronic intellectual property rights, and standards for health data and for digital libraries. Both the research problems and the policy issues should be important priorities for the field of medical informatics. PMID:10984463
NASA Astrophysics Data System (ADS)
Darancet, Pierre; Ferretti, Andrea; Mayou, Didier; Olevano, Valerio
2007-03-01
We present an ab initio approach to electronic transport in nanoscale systems which includes electronic correlations through the GW approximation. With respect to Landauer approaches based on density-functional theory (DFT), we introduce a physical quasiparticle electronic-structure into a non-equilibrium Green's function theory framework. We use an equilibrium non-selfconsistent G^0W^0 self-energy considering both full non-hermiticity and dynamical effects. The method is applied to a real system, a gold mono-atomic chain. With respect to DFT results, the conductance profile is modified and reduced by to the introduction of diffusion and loss-of-coherence effects. The linear response conductance characteristic appear to be in agreement with experimental results.
Stretchable inorganic nanomembrane electronics for healthcare devices
NASA Astrophysics Data System (ADS)
Kim, Dae-Hyeong; Son, Donghee; Kim, Jaemin
2015-05-01
Flexible or stretchable electronic devices for healthcare technologies have attracted much attention in terms of usefulness to assist doctors in their operating rooms and to monitor patients' physical conditions for a long period of time. Each device to monitor the patients' physiological signals real-time, such as strain, pressure, temperature, and humidity, etc. has been reported recently. However, their limitations are found in acquisition of various physiological signals simultaneously because all the functions are not assembled in one skin-like electronic system. Here, we describe a skin-like, multi-functional healthcare system, which includes single crystalline silicon nanomembrane based sensors, nanoparticle-integrated non-volatile memory modules, electro-resistive thermal actuators, and drug delivery. Smart prosthetics coupled with therapeutic electronic system would provide new approaches to personalized healthcare.
Liu, Baozhen; Liu, Zhiguo; Wang, Xianwen
2015-06-01
A mobile operating room information management system with electronic medical record (EMR) is designed to improve work efficiency and to enhance the patient information sharing. In the operating room, this system acquires the information from various medical devices through the Client/Server (C/S) pattern, and automatically generates XML-based EMR. Outside the operating room, this system provides information access service by using the Browser/Server (B/S) pattern. Software test shows that this system can correctly collect medical information from equipment and clearly display the real-time waveform. By achieving surgery records with higher quality and sharing the information among mobile medical units, this system can effectively reduce doctors' workload and promote the information construction of the field hospital.
Zhang, Mingyuan; Velasco, Ferdinand T.; Musser, R. Clayton; Kawamoto, Kensaku
2013-01-01
Enabling clinical decision support (CDS) across multiple electronic health record (EHR) systems has been a desired but largely unattained aim of clinical informatics, especially in commercial EHR systems. A potential opportunity for enabling such scalable CDS is to leverage vendor-supported, Web-based CDS development platforms along with vendor-supported application programming interfaces (APIs). Here, we propose a potential staged approach for enabling such scalable CDS, starting with the use of custom EHR APIs and moving towards standardized EHR APIs to facilitate interoperability. We analyzed three commercial EHR systems for their capabilities to support the proposed approach, and we implemented prototypes in all three systems. Based on these analyses and prototype implementations, we conclude that the approach proposed is feasible, already supported by several major commercial EHR vendors, and potentially capable of enabling cross-platform CDS at scale. PMID:24551426
Hasar, U C
2009-05-01
A microcontroller-based noncontact and nondestructive microwave free-space measurement system for real-time and dynamic determination of complex permittivity of lossy liquid materials has been proposed. The system is comprised of two main sections--microwave and electronic. While the microwave section provides for measuring only the amplitudes of reflection coefficients, the electronic section processes these data and determines the complex permittivity using a general purpose microcontroller. The proposed method eliminates elaborate liquid sample holder preparation and only requires microwave components to perform reflection measurements from one side of the holder. In addition, it explicitly determines the permittivity of lossy liquid samples from reflection measurements at different frequencies without any knowledge on sample thickness. In order to reduce systematic errors in the system, we propose a simple calibration technique, which employs simple and readily available standards. The measurement system can be a good candidate for industrial-based applications.
Decker, Sandra L; Jamoom, Eric W; Sisk, Jane E
2012-05-01
By 2011 more than half of all office-based physicians were using electronic health record systems, but only about one-third of those physicians had systems with basic features such as the abilities to record information on patient demographics, view laboratory and imaging results, maintain problem lists, compile clinical notes, or manage computerized prescription ordering. Basic features are considered important to realize the potential of these systems to improve health care. We found that although trends in adoption of electronic health record systems across geographic regions converged from 2002 through 2011, adoption continued to lag for non-primary care specialists, physicians age fifty-five and older, and physicians in small (1-2 providers) and physician-owned practices. Federal policies are specifically aimed at encouraging primary care providers and small practices to achieve widespread use of electronic health records. To achieve their nationwide adoption, federal policies may also have to focus on encouraging adoption among non-primary care specialists, as well as addressing persistent gaps in the use of electronic record systems by practice size, physician age, and ownership status.
TECHNICAL NOTE: Portable audio electronics for impedance-based measurements in microfluidics
NASA Astrophysics Data System (ADS)
Wood, Paul; Sinton, David
2010-08-01
We demonstrate the use of audio electronics-based signals to perform on-chip electrochemical measurements. Cell phones and portable music players are examples of consumer electronics that are easily operated and are ubiquitous worldwide. Audio output (play) and input (record) signals are voltage based and contain frequency and amplitude information. A cell phone, laptop soundcard and two compact audio players are compared with respect to frequency response; the laptop soundcard provides the most uniform frequency response, while the cell phone performance is found to be insufficient. The audio signals in the common portable music players and laptop soundcard operate in the range of 20 Hz to 20 kHz and are found to be applicable, as voltage input and output signals, to impedance-based electrochemical measurements in microfluidic systems. Validated impedance-based measurements of concentration (0.1-50 mM), flow rate (2-120 µL min-1) and particle detection (32 µm diameter) are demonstrated. The prevailing, lossless, wave audio file format is found to be suitable for data transmission to and from external sources, such as a centralized lab, and the cost of all hardware (in addition to audio devices) is ~10 USD. The utility demonstrated here, in combination with the ubiquitous nature of portable audio electronics, presents new opportunities for impedance-based measurements in portable microfluidic systems.
Activity Theory Framework and Cognitive Perspectives in Designing Technology-Based Support Systems.
ERIC Educational Resources Information Center
Sheu, Feng-Ru
With the increased demand and interest in electronic performance support systems (EPSS), particularly for supporting knowledge-based problems solving expertise in the information age (Gustafson, 2000; Dickelman, 2000; Kasvi & Vartiainen, 2000), instructional designers are facing a new challenge designing a system that could deliver (or…
Quantum logic gates based on coherent electron transport in quantum wires.
Bertoni, A; Bordone, P; Brunetti, R; Jacoboni, C; Reggiani, S
2000-06-19
It is shown that the universal set of quantum logic gates can be realized using solid-state quantum bits based on coherent electron transport in quantum wires. The elementary quantum bits are realized with a proper design of two quantum wires coupled through a potential barrier. Numerical simulations show that (a) a proper design of the coupling barrier allows one to realize any one-qbit rotation and (b) Coulomb interaction between two qbits of this kind allows the implementation of the CNOT gate. These systems are based on a mature technology and seem to be integrable with conventional electronics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, J.; Gajdos, F.; Blumberger, J., E-mail: j.blumberger@ucl.ac.uk
2016-08-14
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on themore » adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.« less
NASA Astrophysics Data System (ADS)
Spencer, J.; Gajdos, F.; Blumberger, J.
2016-08-01
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.
Nsiah-Boateng, Eric; Asenso-Boadi, Francis; Dsane-Selby, Lydia; Andoh-Adjei, Francis-Xavier; Otoo, Nathaniel; Akweongo, Patricia; Aikins, Moses
2017-02-06
A robust medical claims review system is crucial for addressing fraud and abuse and ensuring financial viability of health insurance organisations. This paper assesses claims adjustment rate of the paper- and electronic-based claims reviews of the National Health Insurance Scheme (NHIS) in Ghana. The study was a cross-sectional comparative assessment of paper- and electronic-based claims reviews of the NHIS. Medical claims of subscribers for the year, 2014 were requested from the claims directorate and analysed. Proportions of claims adjusted by the paper- and electronic-based claims reviews were determined for each type of healthcare facility. Bivariate analyses were also conducted to test for differences in claims adjustments between healthcare facility types, and between the two claims reviews. The electronic-based review made overall adjustment of 17.0% from GHS10.09 million (USD2.64 m) claims cost whilst the paper-based review adjusted 4.9% from a total of GHS57.50 million (USD15.09 m) claims cost received, and the difference was significant (p < 0.001). However, there were no significant differences in claims cost adjustment rate between healthcare facility types by the electronic-based (p = 0.0656) and by the paper-based reviews (p = 0.6484). The electronic-based review adjusted significantly higher claims cost than the paper-based claims review. Scaling up the electronic-based review to cover claims from all accredited care providers could reduce spurious claims cost to the scheme and ensure long term financial sustainability.
High Bandwidth Optical Links for Micro-Satellite Support
NASA Technical Reports Server (NTRS)
Chao, Tien-Hsin (Inventor); Wilson, Keith E. (Inventor); Coste, Keith (Inventor)
2016-01-01
A method, systems, apparatus and device enable high bandwidth satellite communications. An onboard tracking detector, installed in a low-earth orbit satellite, detects a position of an incoming optical beam received/transmitted from a first ground station of one or more ground stations. Tracker electronics determine orientation information of the incoming optical beam based on the position. Control electronics receive the orientation information from the tracker electronics, and control a waveguide drive electronics. The waveguide drive electronics control a voltage that is provided to an electro-optic waveguide beam steering device. The electro-optic waveguide beam steering device steers an outgoing optical beam to one of the one or more ground stations based on the voltage.
Hassett, Leanne; Simpson, Grahame; Cotter, Rachel; Whiting, Diane; Hodgkinson, Adeline; Martin, Diane
2015-04-01
To investigate whether the introduction of an electronic goals system followed by staff training improved the quality, rating, framing and structure of goals written by a community-based brain injury rehabilitation team. Interrupted time series design. Two interventions were introduced six months apart. The first intervention comprised the introduction of an electronic goals system. The second intervention comprised a staff goal training workshop. An audit protocol was devised to evaluate the goals. A random selection of goal statements from the 12 months prior to the interventions (Time 1 baseline) were compared with all goal statements written after the introduction of the electronic goals system (Time 2) and staff training (Time 3). All goals were de-identified for client and time-period, and randomly ordered. A total of 745 goals (Time 1 n = 242; Time 2 n = 283; Time 3 n = 220) were evaluated. Compared with baseline, the introduction of the electronic goals system alone significantly increased goal rating, framing and structure (χ(2) tests 144.7, 18.9, 48.1, respectively, p < 0.001). The addition of staff training meant that the improvement in goal quality, which was only a trend at Time 2, was statistically significant at Time 3 (χ(2) 15.0, p ≤ 001). The training also led to a further significant increase in the framing and structuring of goals over the electronic goals system (χ(2) 11.5, 12.5, respectively, p ≤ 0.001). An electronic goals system combined with staff training improved the quality, rating, framing and structure of goal statements. © The Author(s) 2014.
Simulation of Non-Uniform Electron Beams in the Gyrotron Electron-Optical System
NASA Astrophysics Data System (ADS)
Louksha, O. I.; Trofimov, P. A.
2018-04-01
New calculated data on the effect of emission inhomogeneities on the quality of the electron beam, which is formed in an electron-optical system of a gyrotron, have been obtained. The calculations were based on emission current density distributions, which were measured for the different cathodes in the gyrotron of Peter the Great St. Petersburg Polytechnic University. A satisfactory agreement between the experimental and calculated data on the influence of emission nonuniformities on the velocity spread of electrons has been shown. The necessity of considering the real distribution of the emission current density over the cathode surface to determine the main parameters of the electron beam—the velocity and energy spreads of the electrons, spatial structure of the beam, and coefficient of reflection of electrons from the magnetic mirror—has been demonstrated. The maximum level of emission inhomogeneities, which are permissible for effective work of gyrotrons, has been discussed.
The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs
NASA Astrophysics Data System (ADS)
Tajima, H.; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Williams, D.
2008-04-01
AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off in the studies of these design concepts.
The Advanced Gamma-ray Imaging System (AGIS): Camera Electronics Designs
NASA Astrophysics Data System (ADS)
Tajima, Hiroyasu; Buckley, J.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Holder, J.; Horan, D.; Krawczynski, H.; Ong, R.; Swordy, S.; Wagner, R.; Wakely, S.; Williams, D.; Camera Electronics Working Group; AGIS Collaboration
2008-03-01
AGIS, a next generation of atmospheric Cherenkov telescope arrays, aims to achieve a sensitivity level of a milliCrab for gamma-ray observations in in the energy band of 40 GeV to 100 TeV. Such improvement requires cost reduction of individual components with high reliability in order to equip the order of 100 telescopes necessary to achieve the sensitivity goal. We are exploring several design concepts to reduce the cost of camera electronics while improving their performance. These design concepts include systems based on multi-channel waveform sampling ASIC optimized for AGIS, a system based on IIT (image intensifier tube) for large channel (order of 1 million channels) readout as well as a multiplexed FADC system based on the current VERITAS readout design. Here we present trade-off studies of these design concepts.
Strain Coupling of a Nitrogen-Vacancy Center Spin to a Diamond Mechanical Oscillator
NASA Astrophysics Data System (ADS)
Teissier, J.; Barfuss, A.; Appel, P.; Neu, E.; Maletinsky, P.
2014-07-01
We report on single electronic spins coupled to the motion of mechanical resonators by a novel mechanism based on crystal strain. Our device consists of single-crystal diamond cantilevers with embedded nitrogen-vacancy center spins. Using optically detected electron spin resonance, we determine the unknown spin-strain coupling constants and demonstrate that our system resides well within the resolved sideband regime. We realize coupling strengths exceeding 10 MHz under mechanical driving and show that our system has the potential to reach strong coupling. Our novel hybrid system forms a resource for future experiments on spin-based cantilever cooling and coherent spin-oscillator coupling.
Interface For Fault-Tolerant Control System
NASA Technical Reports Server (NTRS)
Shaver, Charles; Williamson, Michael
1989-01-01
Interface unit and controller emulator developed for research on electronic helicopter-flight-control systems equipped with artificial intelligence. Interface unit interrupt-driven system designed to link microprocessor-based, quadruply-redundant, asynchronous, ultra-reliable, fault-tolerant control system (controller) with electronic servocontrol unit that controls set of hydraulic actuators. Receives digital feedforward messages from, and transmits digital feedback messages to, controller through differential signal lines or fiber-optic cables (thus far only differential signal lines have been used). Analog signals transmitted to and from servocontrol unit via coaxial cables.
Navy Controls for Invoice, Receipt, Acceptance, and Property Transfer System Need Improvement
2016-02-25
iR APT as a web-based system to electronically invoice, receipt, and accept ser vices and product s from its contractors and vendors. The iR APT system...electronically shares document s bet ween DoD and it s contractors and vendors to eliminate redundant data entr y, increase data accuracy, and reduce...The iR APT system allows contractors to submit and track invoices and receipt and acceptance documents over the web and allows government personnel to
Radiation-Hardened Electronics for Advanced Communications Systems
NASA Technical Reports Server (NTRS)
Whitaker, Sterling
2015-01-01
Novel approach enables high-speed special-purpose processors Advanced reconfigurable and reprogrammable communication systems will require sub-130-nanometer electronics. Legacy single event upset (SEU) radiation-tolerant circuits are ineffective at speeds greater than 125 megahertz. In Phase I of this project, ICs, LLC, demonstrated new base-level logic circuits that provide SEU immunity for sub-130-nanometer high-speed circuits. In Phase II, the company developed an innovative self-restoring logic (SRL) circuit and a system approach that provides high-speed, SEU-tolerant solutions that are effective for sub-130-nanometer electronics scalable to at least 22-nanometer processes. The SRL system can be used in the design of NASA's next-generation special-purpose processors, especially reconfigurable communication processors.
Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability.
Wu, Hao; Huang, YongAn; Xu, Feng; Duan, Yongqing; Yin, Zhouping
2016-12-01
The rapid advancements of wearable electronics have caused a paradigm shift in consumer electronics, and the emerging development of stretchable electronics opens a new spectrum of applications for electronic systems. Playing a critical role as the power sources for independent electronic systems, energy harvesters with high flexibility or stretchability have been the focus of research efforts over the past decade. A large number of the flexible energy harvesters developed can only operate at very low strain level (≈0.1%), and their limited flexibility impedes their application in wearable or stretchable electronics. Here, the development of highly flexible and stretchable (stretchability >15% strain) energy harvesters is reviewed with emphasis on strategies of materials synthesis, device fabrication, and integration schemes for enhanced flexibility and stretchability. Due to their particular potential applications in wearable and stretchable electronics, energy-harvesting devices based on piezoelectricity, triboelectricity, thermoelectricity, and dielectric elastomers have been largely developed and the progress is summarized. The challenges and opportunities of assembly and integration of energy harvesters into stretchable systems are also discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conceptual Design of Electron-Beam Generated Plasma Tools
NASA Astrophysics Data System (ADS)
Agarwal, Ankur; Rauf, Shahid; Dorf, Leonid; Collins, Ken; Boris, David; Walton, Scott
2015-09-01
Realization of the next generation of high-density nanostructured devices is predicated on etching features with atomic layer resolution, no damage and high selectivity. High energy electron beams generate plasmas with unique features that make them attractive for applications requiring monolayer precision. In these plasmas, high energy beam electrons ionize the background gas and the resultant daughter electrons cool to low temperatures via collisions with gas molecules and lack of any accelerating fields. For example, an electron temperature of <0.6 eV with densities comparable to conventional plasma sources can be obtained in molecular gases. The chemistry in such plasmas can significantly differ from RF plasmas as the ions/radicals are produced primarily by beam electrons rather than those in the tail of a low energy distribution. In this work, we will discuss the conceptual design of an electron beam based plasma processing system. Plasma properties will be discussed for Ar, Ar/N2, and O2 plasmas using a computational plasma model, and comparisons made to experiments. The fluid plasma model is coupled to a Monte Carlo kinetic model for beam electrons which considers gas phase collisions and the effect of electric and magnetic fields on electron motion. The impact of critical operating parameters such as magnetic field, beam energy, and gas pressure on plasma characteristics in electron-beam plasma processing systems will be discussed. Partially supported by the NRL base program.
NASA Astrophysics Data System (ADS)
Aspera, Susan Meñez; Kasai, Hideaki; Kishi, Hirofumi; Awaya, Nobuyoshi; Ohnishi, Shigeo; Tamai, Yukio
2013-01-01
The resistance random access memory (RRAM™) device, with its electrically induced nanoscale resistive switching capacity, has attracted considerable attention as a future nonvolatile memory device. Here, we propose a mechanism of switching based on an oxygen vacancy migration-driven change in the electronic properties of the transition-metal oxide film stimulated by set pulse voltages. We used density functional theory-based calculations to account for the effect of oxygen vacancies and their migration on the electronic properties of HfO2 and Ta/HfO2 systems, thereby providing a complete explanation of the RRAM™ switching mechanism. Furthermore, computational results on the activation energy barrier for oxygen vacancy migration were found to be consistent with the set and reset pulse voltage obtained from experiments. Understanding this mechanism will be beneficial to effectively realizing the materials design in these devices.
A linear triple quantum dot system in isolated configuration
NASA Astrophysics Data System (ADS)
Flentje, Hanno; Bertrand, Benoit; Mortemousque, Pierre-André; Thiney, Vivien; Ludwig, Arne; Wieck, Andreas D.; Bäuerle, Christopher; Meunier, Tristan
2017-06-01
The scaling up of electron spin qubit based nanocircuits has remained challenging up till date and involves the development of efficient charge control strategies. Here, we report on the experimental realization of a linear triple quantum dot in a regime isolated from the reservoir. We show how this regime can be reached with a fixed number of electrons. Charge stability diagrams of the one, two, and three electron configurations where only electron exchange between the dots is allowed are observed. They are modeled with the established theory based on a capacitive model of the dot systems. The advantages of the isolated regime with respect to experimental realizations of quantum simulators and qubits are discussed. We envision that the results presented here will make more manipulation schemes for existing qubit implementations possible and will ultimately allow to increase the number of tunnel coupled quantum dots which can be simultaneously controlled.
Iida, Kenji; Noda, Masashi; Nobusada, Katsuyuki
2017-02-28
We have developed a theoretical approach for describing the electronic properties of hetero-interface systems under an applied electrode bias. The finite-temperature density functional theory is employed for controlling the chemical potential in their interfacial region, and thereby the electronic charge of the system is obtained. The electric field generated by the electronic charging is described as a saw-tooth-like electrostatic potential. Because of the continuum approximation of dielectrics sandwiched between electrodes, we treat dielectrics with thicknesses in a wide range from a few nanometers to more than several meters. Furthermore, the approach is implemented in our original computational program named grid-based coupled electron and electromagnetic field dynamics (GCEED), facilitating its application to nanostructures. Thus, the approach is capable of comprehensively revealing electronic structure changes in hetero-interface systems with an applied bias that are practically useful for experimental studies. We calculate the electronic structure of a SiO 2 -graphene-boron nitride (BN) system in which an electrode bias is applied between the graphene layer and an electrode attached on the SiO 2 film. The electronic energy barrier between graphene and BN is varied with an applied bias, and the energy variation depends on the thickness of the BN film. This is because the density of states of graphene is so low that the graphene layer cannot fully screen the electric field generated by the electrodes. We have demonstrated that the electronic properties of hetero-interface systems are well controlled by the combination of the electronic charging and the generated electric field.
Fault-tolerant reactor protection system
Gaubatz, Donald C.
1997-01-01
A reactor protection system having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Each division performs independently of the others (asynchronous operation). All communications between the divisions are asynchronous. Each chassis substitutes its own spare sensor reading in the 2/3 vote if a sensor reading from one of the other chassis is faulty or missing. Therefore the presence of at least two valid sensor readings in excess of a set point is required before terminating the output to the hardware logic of a scram inhibition signal even when one of the four sensors is faulty or when one of the divisions is out of service.
Fault-tolerant reactor protection system
Gaubatz, D.C.
1997-04-15
A reactor protection system is disclosed having four divisions, with quad redundant sensors for each scram parameter providing input to four independent microprocessor-based electronic chassis. Each electronic chassis acquires the scram parameter data from its own sensor, digitizes the information, and then transmits the sensor reading to the other three electronic chassis via optical fibers. To increase system availability and reduce false scrams, the reactor protection system employs two levels of voting on a need for reactor scram. The electronic chassis perform software divisional data processing, vote 2/3 with spare based upon information from all four sensors, and send the divisional scram signals to the hardware logic panel, which performs a 2/4 division vote on whether or not to initiate a reactor scram. Each chassis makes a divisional scram decision based on data from all sensors. Each division performs independently of the others (asynchronous operation). All communications between the divisions are asynchronous. Each chassis substitutes its own spare sensor reading in the 2/3 vote if a sensor reading from one of the other chassis is faulty or missing. Therefore the presence of at least two valid sensor readings in excess of a set point is required before terminating the output to the hardware logic of a scram inhibition signal even when one of the four sensors is faulty or when one of the divisions is out of service. 16 figs.
Bar code-based pre-transfusion check in pre-operative autologous blood donation.
Ohsaka, Akimichi; Furuta, Yoshiaki; Ohsawa, Toshiya; Kobayashi, Mitsue; Abe, Katsumi; Inada, Eiichi
2010-10-01
The objective of this study was to demonstrate the feasibility of a bar code-based identification system for the pre-transfusion check at the bedside in the setting of pre-operative autologous blood donation (PABD). Between July 2003 and December 2008 we determined the compliance rate and causes of failure of electronic bedside checking for PABD transfusion. A total of 5627 (9% of all transfusions) PABD units were administered without a single mistransfusion. The overall rate of compliance with electronic checking was 99%. The bar code-based identification system was applicable to the pre-transfusion check for PABD transfusion. Copyright © 2010 Elsevier Ltd. All rights reserved.
A Mis-recognized Medical Vocabulary Correction System for Speech-based Electronic Medical Record
Seo, Hwa Jeong; Kim, Ju Han; Sakabe, Nagamasa
2002-01-01
Speech recognition as an input tool for electronic medical record (EMR) enables efficient data entry at the point of care. However, the recognition accuracy for medical vocabulary is much poorer than that for doctor-patient dialogue. We developed a mis-recognized medical vocabulary correction system based on syllable-by-syllable comparison of speech text against medical vocabulary database. Using specialty medical vocabulary, the algorithm detects and corrects mis-recognized medical vocabularies in narrative text. Our preliminary evaluation showed 94% of accuracy in mis-recognized medical vocabulary correction.
On standardization of low symmetry crystal fields
NASA Astrophysics Data System (ADS)
Gajek, Zbigniew
2015-07-01
Standardization methods of low symmetry - orthorhombic, monoclinic and triclinic - crystal fields are formulated and discussed. Two alternative approaches are presented, the conventional one, based on the second-rank parameters and the standardization based on the fourth-rank parameters. Mainly f-electron systems are considered but some guidelines for d-electron systems and the spin Hamiltonian describing the zero-field splitting are given. The discussion focuses on premises for choosing the most suitable method, in particular on inadequacy of the conventional one. Few examples from the literature illustrate this situation.
An electromechanical material testing system for in situ electron microscopy and applications.
Zhu, Yong; Espinosa, Horacio D
2005-10-11
We report the development of a material testing system for in situ electron microscopy (EM) mechanical testing of nanostructures. The testing system consists of an actuator and a load sensor fabricated by means of surface micromachining. This previously undescribed nanoscale material testing system makes possible continuous observation of the specimen deformation and failure with subnanometer resolution, while simultaneously measuring the applied load electronically with nanonewton resolution. This achievement was made possible by the integration of electromechanical and thermomechanical components based on microelectromechanical system technology. The system capabilities are demonstrated by the in situ EM testing of free-standing polysilicon films, metallic nanowires, and carbon nanotubes. In particular, a previously undescribed real-time instrumented in situ transmission EM observation of carbon nanotubes failure under tensile load is presented here.
Prognostics for Electronics Components of Avionics Systems
NASA Technical Reports Server (NTRS)
Celaya, Jose R.; Saha, Bhaskar; Wysocki, Philip F.; Goebel, Kai F.
2009-01-01
Electronics components have and increasingly critical role in avionics systems and for the development of future aircraft systems. Prognostics of such components is becoming a very important research filed as a result of the need to provide aircraft systems with system level health management. This paper reports on a prognostics application for electronics components of avionics systems, in particular, its application to the Isolated Gate Bipolar Transistor (IGBT). The remaining useful life prediction for the IGBT is based on the particle filter framework, leveraging data from an accelerated aging tests on IGBTs. The accelerated aging test provided thermal-electrical overstress by applying thermal cycling to the device. In-situ state monitoring, including measurements of the steady-state voltages and currents, electrical transients, and thermal transients are recorded and used as potential precursors of failure.
Yoshikawa, Masayuki; Yasuhara, Ryo; Ohta, Koichi; Chikatsu, Masayuki; Shima, Yoriko; Kohagura, Junko; Sakamoto, Mizuki; Nakashima, Yousuke; Imai, Tsuyoshi; Ichimura, Makoto; Yamada, Ichihiro; Funaba, Hisamichi; Minami, Takashi
2016-11-01
High time resolved electron temperature measurements are useful for fluctuation study. A multi-pass Thomson scattering (MPTS) system is proposed for the improvement of both increasing the TS signal intensity and time resolution. The MPTS system in GAMMA 10/PDX has been constructed for enhancing the Thomson scattered signals for the improvement of measurement accuracy. The MPTS system has a polarization-based configuration with an image relaying system. We optimized the image relaying optics for improving the multi-pass laser confinement and obtaining the stable MPTS signals over ten passing TS signals. The integrated MPTS signals increased about five times larger than that in the single pass system. Finally, time dependent electron temperatures were obtained in MHz sampling.
Processing Satellite Data for Slant Total Electron Content Measurements
NASA Technical Reports Server (NTRS)
Stephens, Philip John (Inventor); Komjathy, Attila (Inventor); Wilson, Brian D. (Inventor); Mannucci, Anthony J. (Inventor)
2016-01-01
A method, system, and apparatus provide the ability to estimate ionospheric observables using space-borne observations. Space-borne global positioning system (GPS) data of ionospheric delay are obtained from a satellite. The space-borne GPS data are combined with ground-based GPS observations. The combination is utilized in a model to estimate a global three-dimensional (3D) electron density field.
Yamaji, Minoru; Hakoda, Yuma; Okamoto, Hideki; Tani, Fumito
2017-04-12
We prepared a variety of coumarin derivatives having expanded π-electron systems along the direction crossing the C 3 -C 4 bond of the coumarin skeleton via a photochemical cyclization process and investigated their photophysical features as a function of the number (n) of the added benzene rings based on emission and transient absorption measurements. Upon increasing n, the fluorescence quantum yields of the π-extended coumarins increased. Expanding the π-electron system on the C 3 -C 4 bond of the coumarin skeleton was found to be efficient for increasing the fluorescence ability more than that on the C 7 -C 8 bond. Introducing the methoxy group at the 7-position was also efficient for enhancing the fluorescence quantum yield and rate of the expanded coumarins. The non-radiative process from the fluorescence state was not substantially influenced by the expanded π-electron system. The competitive process with the fluorescence was found to be intersystem crossing to the triplet state based on the observations of the triplet-triplet absorption. The effects of the expanded π-electron systems on the fluorescence ability were investigated with the aid of TD-DFT calculations.
[Computer-aided Diagnosis and New Electronic Stethoscope].
Huang, Mei; Liu, Hongying; Pi, Xitian; Ao, Yilu; Wang, Zi
2017-05-30
Auscultation is an important method in early-diagnosis of cardiovascular disease and respiratory system disease. This paper presents a computer-aided diagnosis of new electronic auscultation system. It has developed an electronic stethoscope based on condenser microphone and the relevant intelligent analysis software. It has implemented many functions that combined with Bluetooth, OLED, SD card storage technologies, such as real-time heart and lung sounds auscultation in three modes, recording and playback, auscultation volume control, wireless transmission. The intelligent analysis software based on PC computer utilizes C# programming language and adopts SQL Server as the background database. It has realized play and waveform display of the auscultation sound. By calculating the heart rate, extracting the characteristic parameters of T1, T2, T12, T11, it can analyze whether the heart sound is normal, and then generate diagnosis report. Finally the auscultation sound and diagnosis report can be sent to mailbox of other doctors, which can carry out remote diagnosis. The whole system has features of fully function, high portability, good user experience, and it is beneficial to promote the use of electronic stethoscope in the hospital, at the same time, the system can also be applied to auscultate teaching and other occasions.
Tape transfer printing of a liquid metal alloy for stretchable RF electronics.
Jeong, Seung Hee; Hjort, Klas; Wu, Zhigang
2014-09-03
In order to make conductors with large cross sections for low impedance radio frequency (RF) electronics, while still retaining high stretchability, liquid-alloy-based microfluidic stretchable electronics offers stretchable electronic systems the unique opportunity to combine various sensors on our bodies or organs with high-quality wireless communication with the external world (devices/systems), without sacrificing enhanced user comfort. This microfluidic approach, based on printed circuit board technology, allows large area processing of large cross section conductors and robust contacts, which can handle a lot of stretching between the embedded rigid active components and the surrounding system. Although it provides such benefits, further development is needed to realize its potential as a high throughput, cost-effective process technology. In this paper, tape transfer printing is proposed to supply a rapid prototyping batch process at low cost, albeit at a low resolution of 150 μm. In particular, isolated patterns can be obtained in a simple one-step process. Finally, a stretchable radio frequency identification (RFID) tag is demonstrated. The measured results show the robustness of the hybrid integrated system when the tag is stretched at 50% for 3000 cycles.
Laerum, Hallvard; Karlsen, Tom H; Faxvaag, Arild
2003-01-01
It is not automatically given that the paper-based medical record can be eliminated after the introduction of an electronic medical record (EMR) in a hospital. Many keep and update the paper-based counterpart, and this limits the use of the EMR system. The authors have evaluated the physicians' clinical work practices and attitudes toward a system in a hospital that has eliminated the paper-based counterpart using scanning technology. Combined open-ended interviews (8 physicians) and cross-sectional survey (70 physicians) were conducted and compared with reference data from a previous national survey (69 physicians from six hospitals). The hospitals in the reference group were using the same EMR system without the scanning module. The questionnaire (English translation available as an online data supplement at
Realizing Ultrafast Electron Pulse Self-Compression by Femtosecond Pulse Shaping Technique.
Qi, Yingpeng; Pei, Minjie; Qi, Dalong; Yang, Yan; Jia, Tianqing; Zhang, Shian; Sun, Zhenrong
2015-10-01
Uncorrelated position and velocity distribution of the electron bunch at the photocathode from the residual energy greatly limit the transverse coherent length and the recompression ability. Here we first propose a femtosecond pulse-shaping method to realize the electron pulse self-compression in ultrafast electron diffraction system based on a point-to-point space-charge model. The positively chirped femtosecond laser pulse can correspondingly create the positively chirped electron bunch at the photocathode (such as metal-insulator heterojunction), and such a shaped electron pulse can realize the self-compression in the subsequent propagation process. The greatest advantage for our proposed scheme is that no additional components are introduced into the ultrafast electron diffraction system, which therefore does not affect the electron bunch shape. More importantly, this scheme can break the limitation that the electron pulse via postphotocathode static compression schemes is not shorter than the excitation laser pulse due to the uncorrelated position and velocity distribution of the initial electron bunch.
An embedded measurement system for the electrical characterization of EGFET as a pH sensor
NASA Astrophysics Data System (ADS)
Diniz Batista, Pablo
2014-02-01
This work presents the development of an electronic system for the electrical characterization of pH sensors based on the extended gate field effect transistor (EGFET). We designed an electronic circuit with a microcontroller (PIC15F14K50) as the main component in order to provide two programmable output voltages as well as circuits to measure electric current and voltages. The instrument performance analysis was carried out using a glass electrode as a sensitive membrane for investigating the EGFET operation as a pH sensor. The results show that the system is an alternative to the commercial equipment for the electrical characterization of sensors based on field effect devices. In addition, some of the key features expected of this electronic module are: low cost, flexibility, portability and communication with a personal computer using a USB port.
High-performance green flexible electronics based on biodegradable cellulose nanofibril paper
Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang
2015-01-01
Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials. PMID:26006731
High-performance green flexible electronics based on biodegradable cellulose nanofibril paper.
Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang
2015-05-26
Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.
High-performance green flexible electronics based on biodegradable cellulose nanofibril paper
NASA Astrophysics Data System (ADS)
Jung, Yei Hwan; Chang, Tzu-Hsuan; Zhang, Huilong; Yao, Chunhua; Zheng, Qifeng; Yang, Vina W.; Mi, Hongyi; Kim, Munho; Cho, Sang June; Park, Dong-Wook; Jiang, Hao; Lee, Juhwan; Qiu, Yijie; Zhou, Weidong; Cai, Zhiyong; Gong, Shaoqin; Ma, Zhenqiang
2015-05-01
Today's consumer electronics, such as cell phones, tablets and other portable electronic devices, are typically made of non-renewable, non-biodegradable, and sometimes potentially toxic (for example, gallium arsenide) materials. These consumer electronics are frequently upgraded or discarded, leading to serious environmental contamination. Thus, electronic systems consisting of renewable and biodegradable materials and minimal amount of potentially toxic materials are desirable. Here we report high-performance flexible microwave and digital electronics that consume the smallest amount of potentially toxic materials on biobased, biodegradable and flexible cellulose nanofibril papers. Furthermore, we demonstrate gallium arsenide microwave devices, the consumer wireless workhorse, in a transferrable thin-film form. Successful fabrication of key electrical components on the flexible cellulose nanofibril paper with comparable performance to their rigid counterparts and clear demonstration of fungal biodegradation of the cellulose-nanofibril-based electronics suggest that it is feasible to fabricate high-performance flexible electronics using ecofriendly materials.
Evaluation of Advanced COTS Passive Devices for Extreme Temperature Operation
NASA Technical Reports Server (NTRS)
Patterson, Richard; Hammoud, Ahmad; Dones, Keishla R.
2009-01-01
Electronic sensors and circuits are often exposed to extreme temperatures in many of NASA deep space and planetary surface exploration missions. Electronics capable of operation in harsh environments would be beneficial as they simplify overall system design, relax thermal management constraints, and meet operational requirements. For example, cryogenic operation of electronic parts will improve reliability, increase energy density, and extend the operational lifetimes of space-based electronic systems. Similarly, electronic parts that are able to withstand and operate efficiently in high temperature environments will negate the need for thermal control elements and their associated structures, thereby reducing system size and weight, enhancing its reliability, improving its efficiency, and reducing cost. Passive devices play a critical role in the design of almost all electronic circuitry. To address the needs of systems for extreme temperature operation, some of the advanced and most recently introduced commercial-off-the-shelf (COTS) passive devices, which included resistors and capacitors, were examined for operation under a wide temperature regime. The types of resistors investigated included high temperature precision film, general purpose metal oxide, and wirewound.
An automatic chip structure optical inspection system for electronic components
NASA Astrophysics Data System (ADS)
Song, Zhichao; Xue, Bindang; Liang, Jiyuan; Wang, Ke; Chen, Junzhang; Liu, Yunhe
2018-01-01
An automatic chip structure inspection system based on machine vision is presented to ensure the reliability of electronic components. It consists of four major modules, including a metallographic microscope, a Gigabit Ethernet high-resolution camera, a control system and a high performance computer. An auto-focusing technique is presented to solve the problem that the chip surface is not on the same focusing surface under the high magnification of the microscope. A panoramic high-resolution image stitching algorithm is adopted to deal with the contradiction between resolution and field of view, caused by different sizes of electronic components. In addition, we establish a database to storage and callback appropriate parameters to ensure the consistency of chip images of electronic components with the same model. We use image change detection technology to realize the detection of chip images of electronic components. The system can achieve high-resolution imaging for chips of electronic components with various sizes, and clearly imaging for the surface of chip with different horizontal and standardized imaging for ones with the same model, and can recognize chip defects.
Collaboration of Miniature Multi-Modal Mobile Smart Robots over a Network
2015-08-14
theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The views...theoretical research on mathematics of failures in sensor-network-based miniature multimodal mobile robots and electromechanical systems. The...independently evolving research directions based on physics-based models of mechanical, electromechanical and electronic devices, operational constraints
Li, Zhen-hua; Li, Hong-bin; Zhang, Zhi
2013-07-01
Electronic transformers are widely used in power systems because of their wide bandwidth and good transient performance. However, as an emerging technology, the failure rate of electronic transformers is higher than that of traditional transformers. As a result, the calibration period needs to be shortened. Traditional calibration methods require the power of transmission line be cut off, which results in complicated operation and power off loss. This paper proposes an online calibration system which can calibrate electronic current transformers without power off. In this work, the high accuracy standard current transformer and online operation method are the key techniques. Based on the clamp-shape iron-core coil and clamp-shape air-core coil, a combined clamp-shape coil is designed as the standard current transformer. By analyzing the output characteristics of the two coils, the combined clamp-shape coil can achieve verification of the accuracy. So the accuracy of the online calibration system can be guaranteed. Moreover, by employing the earth potential working method and using two insulating rods to connect the combined clamp-shape coil to the high voltage bus, the operation becomes simple and safe. Tests in China National Center for High Voltage Measurement and field experiments show that the proposed system has a high accuracy of up to 0.05 class.
Note: Design of transverse electron gun for electron beam based reactive evaporation system.
Maiti, Namita; Barve, U D; Bhatia, M S; Das, A K
2011-05-01
In this paper design of a 10 kV, 10 kW transverse electron gun, suitable for reactive evaporation, supported by simulation and modeling, is presented. Simulation of the electron beam trajectory helps in locating the emergence aperture after 90° bend and also in designing the crucible on which the beam is finally incident after 270° bend. The dimension of emergence aperture plays a vital role in designing the differential pumping system between the gun chamber and the substrate chamber. Experimental validation is done for beam trajectory by piercing a stainless steel plate at 90° position which is kept above the crucible.
Selishchev, S V
2004-01-01
The integration results of fundamental and applied medical-and-technical research made at the chair of biomedical systems, Moscow state institute of electronic engineering (technical university--MSIEE), are described in the paper. The chair is guided in its research activity by the traditions of higher education in Russia in the field of biomedical electronics and biomedical engineering. Its activities are based on the extrapolation of methods of electronic tools, computer technologies, physics, biology and medicine with due respect being paid to the requirements of practical medicine and to topical issues of research and design.
An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening
NASA Astrophysics Data System (ADS)
Wang, Weiya; Jia, Mengyu; Gao, Feng; Yang, Lihong; Qu, Pengpeng; Zou, Changping; Liu, Pengxi; Zhao, Huijuan
2015-02-01
The cervical cancer screening at a pre-cancer stage is beneficial to reduce the mortality of women. An opto-electronic joint detection system based on DSP aiming at early cervical cancer screening is introduced in this paper. In this system, three electrodes alternately discharge to the cervical tissue and three light emitting diodes in different wavelengths alternately irradiate the cervical tissue. Then the relative optical reflectance and electrical voltage attenuation curve are obtained by optical and electrical detection, respectively. The system is based on DSP to attain the portable and cheap instrument. By adopting the relative reflectance and the voltage attenuation constant, the classification algorithm based on Support Vector Machine (SVM) discriminates abnormal cervical tissue from normal. We use particle swarm optimization to optimize the two key parameters of SVM, i.e. nuclear factor and cost factor. The clinical data were collected on 313 patients to build a clinical database of tissue responses under optical and electrical stimulations with the histopathologic examination as the gold standard. The classification result shows that the opto-electronic joint detection has higher total coincidence rate than separate optical detection or separate electrical detection. The sensitivity, specificity, and total coincidence rate increase with the increasing of sample numbers in the training set. The average total coincidence rate of the system can reach 85.1% compared with the histopathologic examination.
Coincidence electron/ion imaging with a fast frame camera
NASA Astrophysics Data System (ADS)
Li, Wen; Lee, Suk Kyoung; Lin, Yun Fei; Lingenfelter, Steven; Winney, Alexander; Fan, Lin
2015-05-01
A new time- and position- sensitive particle detection system based on a fast frame CMOS camera is developed for coincidence electron/ion imaging. The system is composed of three major components: a conventional microchannel plate (MCP)/phosphor screen electron/ion imager, a fast frame CMOS camera and a high-speed digitizer. The system collects the positional information of ions/electrons from a fast frame camera through real-time centroiding while the arrival times are obtained from the timing signal of MCPs processed by a high-speed digitizer. Multi-hit capability is achieved by correlating the intensity of electron/ion spots on each camera frame with the peak heights on the corresponding time-of-flight spectrum. Efficient computer algorithms are developed to process camera frames and digitizer traces in real-time at 1 kHz laser repetition rate. We demonstrate the capability of this system by detecting a momentum-matched co-fragments pair (methyl and iodine cations) produced from strong field dissociative double ionization of methyl iodide. We further show that a time resolution of 30 ps can be achieved when measuring electron TOF spectrum and this enables the new system to achieve a good energy resolution along the TOF axis.
Analyzing Electronic Question/Answer Services: Framework and Evaluations of Selected Services.
ERIC Educational Resources Information Center
White, Marilyn Domas, Ed.
This report develops an analytical framework based on systems analysis for evaluating electronic question/answer or AskA services operated by a wide range of types of organizations, including libraries. Version 1.0 of this framework was applied in June 1999 to a selective sample of 11 electronic question/answer services, which cover a range of…
Ghoneim, Mohamed Tarek; Hussain, Muhammad Mustafa
2017-04-01
A highly manufacturable deep reactive ion etching based process involving a hybrid soft/hard mask process technology shows high aspect ratio complex geometry Lego-like silicon electronics formation enabling free-form (physically flexible, stretchable, and reconfigurable) electronic systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electronic-projecting Moire method applying CBR-technology
NASA Astrophysics Data System (ADS)
Kuzyakov, O. N.; Lapteva, U. V.; Andreeva, M. A.
2018-01-01
Electronic-projecting method based on Moire effect for examining surface topology is suggested. Conditions of forming Moire fringes and their parameters’ dependence on reference parameters of object and virtual grids are analyzed. Control system structure and decision-making subsystem are elaborated. Subsystem execution includes CBR-technology, based on applying case base. The approach related to analysing and forming decision for each separate local area with consequent formation of common topology map is applied.
Environmental Response Laboratory Network (ERLN) WebEDR Quick Reference Guide
The Web Electronic Data Review is a web-based system that performs automated data processing on laboratory-submitted Electronic Data Deliverables (EDDs). Enables users to perform technical audits on data, and against Measurement Quality Objectives (MQOs).
Effects of electronic excitation on cascade dynamics in nickel–iron and nickel–palladium systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
Using molecular dynamics simulations and the two-temperature model, we provide in this paper a comparison of the surviving damage from single ion irradiation events in nickel-based alloys, for cascades with and without taking into account the effects of the electronic excitations. We find that including the electronic effects impacts the amount of the resulting damage and the production of isolated defects. Finally, irradiation of nickel–palladium systems results in larger numbers of defects compared to nickel–iron systems, with similar numbers of isolated defects. We additionally investigate the mass effect on the two-temperature model in molecular dynamics simulations of cascades.
Effects of electronic excitation on cascade dynamics in nickel–iron and nickel–palladium systems
Zarkadoula, Eva; Samolyuk, German; Weber, William J.
2017-06-10
Using molecular dynamics simulations and the two-temperature model, we provide in this paper a comparison of the surviving damage from single ion irradiation events in nickel-based alloys, for cascades with and without taking into account the effects of the electronic excitations. We find that including the electronic effects impacts the amount of the resulting damage and the production of isolated defects. Finally, irradiation of nickel–palladium systems results in larger numbers of defects compared to nickel–iron systems, with similar numbers of isolated defects. We additionally investigate the mass effect on the two-temperature model in molecular dynamics simulations of cascades.
Methods for fabrication of flexible hybrid electronics
NASA Astrophysics Data System (ADS)
Street, Robert A.; Mei, Ping; Krusor, Brent; Ready, Steve E.; Zhang, Yong; Schwartz, David E.; Pierre, Adrien; Doris, Sean E.; Russo, Beverly; Kor, Siv; Veres, Janos
2017-08-01
Printed and flexible hybrid electronics is an emerging technology with potential applications in smart labels, wearable electronics, soft robotics, and prosthetics. Printed solution-based materials are compatible with plastic film substrates that are flexible, soft, and stretchable, thus enabling conformal integration with non-planar objects. In addition, manufacturing by printing is scalable to large areas and is amenable to low-cost sheet-fed and roll-to-roll processes. FHE includes display and sensory components to interface with users and environments. On the system level, devices also require electronic circuits for power, memory, signal conditioning, and communications. Those electronic components can be integrated onto a flexible substrate by either assembly or printing. PARC has developed systems and processes for realizing both approaches. This talk presents fabrication methods with an emphasis on techniques recently developed for the assembly of off-the-shelf chips. A few examples of systems fabricated with this approach are also described.
Filatov, Michael; Liu, Fang; Kim, Kwang S.; ...
2016-12-22
Here, the spin-restricted ensemble-referenced Kohn-Sham (REKS) method is based on an ensemble representation of the density and is capable of correctly describing the non-dynamic electron correlation stemming from (near-)degeneracy of several electronic configurations. The existing REKS methodology describes systems with two electrons in two fractionally occupied orbitals. In this work, the REKS methodology is extended to treat systems with four fractionally occupied orbitals accommodating four electrons and self-consistent implementation of the REKS(4,4) method with simultaneous optimization of the orbitals and their fractional occupation numbers is reported. The new method is applied to a number of molecular systems where simultaneous dissociationmore » of several chemical bonds takes place, as well as to the singlet ground states of organic tetraradicals 2,4-didehydrometaxylylene and 1,4,6,9-spiro[4.4]nonatetrayl.« less
NASA Astrophysics Data System (ADS)
Wang, RuLin; Zheng, Xiao; Kwok, YanHo; Xie, Hang; Chen, GuanHua; Yam, ChiYung
2015-04-01
Understanding electronic dynamics on material surfaces is fundamentally important for applications including nanoelectronics, inhomogeneous catalysis, and photovoltaics. Practical approaches based on time-dependent density functional theory for open systems have been developed to characterize the dissipative dynamics of electrons in bulk materials. The accuracy and reliability of such approaches depend critically on how the electronic structure and memory effects of surrounding material environment are accounted for. In this work, we develop a novel squared-Lorentzian decomposition scheme, which preserves the positive semi-definiteness of the environment spectral matrix. The resulting electronic dynamics is guaranteed to be both accurate and convergent even in the long-time limit. The long-time stability of electronic dynamics simulation is thus greatly improved within the current decomposition scheme. The validity and usefulness of our new approach are exemplified via two prototypical model systems: quasi-one-dimensional atomic chains and two-dimensional bilayer graphene.
Meat and Fish Freshness Inspection System Based on Odor Sensing
Hasan, Najam ul; Ejaz, Naveed; Ejaz, Waleed; Kim, Hyung Seok
2012-01-01
We propose a method for building a simple electronic nose based on commercially available sensors used to sniff in the market and identify spoiled/contaminated meat stocked for sale in butcher shops. Using a metal oxide semiconductor-based electronic nose, we measured the smell signature from two of the most common meat foods (beef and fish) stored at room temperature. Food samples were divided into two groups: fresh beef with decayed fish and fresh fish with decayed beef. The prime objective was to identify the decayed item using the developed electronic nose. Additionally, we tested the electronic nose using three pattern classification algorithms (artificial neural network, support vector machine and k-nearest neighbor), and compared them based on accuracy, sensitivity, and specificity. The results demonstrate that the k-nearest neighbor algorithm has the highest accuracy. PMID:23202222
Ashley, L; Jones, H; Thomas, J; Forman, D; Newsham, A; Morris, E; Johnson, O; Velikova, G; Wright, P
2011-01-01
Background: Understanding the psychosocial challenges of cancer survivorship, and identifying which patients experience ongoing difficulties, is a key priority. The ePOCS (electronic patient-reported outcomes from cancer survivors) project aims to develop and evaluate a cost-efficient, UK-scalable electronic system for collecting patient-reported outcome measures (PROMs), at regular post-diagnostic timepoints, and linking these with clinical data in cancer registries. Methods: A multidisciplinary team developed the system using agile methods. Design entailed process mapping the system's constituent parts, data flows and involved human activities, and undertaking usability testing. Informatics specialists built new technical components, including a web-based questionnaire tool and tracking database, and established component-connecting data flows. Development challenges were overcome, including patient usability and data linkage and security. Results: We have developed a system in which PROMs are completed online, using a secure questionnaire administration tool, accessed via a public-facing website, and the responses are linked and stored with clinical registry data. Patient monitoring and communications are semiautomated via a tracker database, and patient correspondence is primarily Email-based. The system is currently honed for clinician-led hospital-based patient recruitment. Conclusions: A feasibility test study is underway. Although there are possible challenges to sustaining and scaling up ePOCS, the system has potential to support UK epidemiological PROMs collection and clinical data linkage. PMID:22048035
Electronics and Algorithms for HOM Based Beam Diagnostics
NASA Astrophysics Data System (ADS)
Frisch, Josef; Baboi, Nicoleta; Eddy, Nathan; Nagaitsev, Sergei; Hensler, Olaf; McCormick, Douglas; May, Justin; Molloy, Stephen; Napoly, Olivier; Paparella, Rita; Petrosyan, Lyudvig; Ross, Marc; Simon, Claire; Smith, Tonee
2006-11-01
The signals from the Higher Order Mode (HOM) ports on superconducting cavities can be used as beam position monitors and to do survey structure alignment. A HOM-based diagnostic system has been installed to instrument both couplers on each of the 40 cryogenic accelerating structures in the DESY TTF2 Linac. The electronics uses a single stage down conversion from the 1.7 GHz HOM spectral line to a 20MHz IF which has been digitized. The electronics is based on low cost surface mount components suitable for large scale production. The analysis of the HOM data is based on Singular Value Decomposition. The response of the OM modes is calibrated using conventional BPMs.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Dykes, Patricia C; Spurr, Cindy; Gallagher, Joan; Li, Qi; Ives Erickson, Jeanette
2006-01-01
An important challenge associated with making the transition from paper to electronic documentation systems is achieving consensus regarding priorities for electronic conversion across diverse groups. In our work we focus on applying a systematic approach to evaluating the baseline state of nursing documentation across a large healthcare system and establishing a unified vision for electronic conversion. A review of the current state of nursing documentation across PHS was conducted using structured tools. Data from this assessment was employed to facilitate an evidence-based approach to decision-making regarding conversion to electronic documentation at local and PHS levels. In this paper we present highlights of the assessment process and the outcomes of this multi-site collaboration.
A Physics-Based Modeling Framework for Prognostic Studies
NASA Technical Reports Server (NTRS)
Kulkarni, Chetan S.
2014-01-01
Prognostics and Health Management (PHM) methodologies have emerged as one of the key enablers for achieving efficient system level maintenance as part of a busy operations schedule, and lowering overall life cycle costs. PHM is also emerging as a high-priority issue in critical applications, where the focus is on conducting fundamental research in the field of integrated systems health management. The term diagnostics relates to the ability to detect and isolate faults or failures in a system. Prognostics on the other hand is the process of predicting health condition and remaining useful life based on current state, previous conditions and future operating conditions. PHM methods combine sensing, data collection, interpretation of environmental, operational, and performance related parameters to indicate systems health under its actual application conditions. The development of prognostics methodologies for the electronics field has become more important as more electrical systems are being used to replace traditional systems in several applications in the aeronautics, maritime, and automotive fields. The development of prognostics methods for electronics presents several challenges due to the great variety of components used in a system, a continuous development of new electronics technologies, and a general lack of understanding of how electronics fail. Similarly with electric unmanned aerial vehicles, electrichybrid cars, and commercial passenger aircraft, we are witnessing a drastic increase in the usage of batteries to power vehicles. However, for battery-powered vehicles to operate at maximum efficiency and reliability, it becomes crucial to both monitor battery health and performance and to predict end of discharge (EOD) and end of useful life (EOL) events. We develop an electrochemistry-based model of Li-ion batteries that capture the significant electrochemical processes, are computationally efficient, capture the effects of aging, and are of suitable accuracy for reliable EOD prediction in a variety of usage profiles.
Vehicle Tracking System using Nanotechnology Satellites and Tags
NASA Technical Reports Server (NTRS)
Lorenzini, Dino A.; Tubis, Chris
1995-01-01
This paper describes a joint project to design, develop, and deploy a satellite based tracking system incorporating micro-nanotechnology components. The system consists of a constellation of 'nanosats', a satellite command station and data collection sites, and a large number of low-cost electronic 'tags'. Both government and commercial applications are envisioned for the satellite based tracking system. The projected low price for the tracking service is made possible by the lightweight nanosats and inexpensive electronic tags which use high production volume single chip transceivers and microprocessor devices. The nanosat consists of a five inch aluminum cube with body mounted solar panels (GaAs solar cells) on all six faces. A UHF turnstile antenna and a simple, spring release mechanism complete the external configuration of the spacecraft.
The precision-processing subsystem for the Earth Resources Technology Satellite.
NASA Technical Reports Server (NTRS)
Chapelle, W. E.; Bybee, J. E.; Bedross, G. M.
1972-01-01
Description of the precision processor, a subsystem in the image-processing system for the Earth Resources Technology Satellite (ERTS). This processor is a special-purpose image-measurement and printing system, designed to process user-selected bulk images to produce 1:1,000,000-scale film outputs and digital image data, presented in a Universal-Transverse-Mercator (UTM) projection. The system will remove geometric and radiometric errors introduced by the ERTS multispectral sensors and by the bulk-processor electron-beam recorder. The geometric transformations required for each input scene are determined by resection computations based on reseau measurements and image comparisons with a special ground-control base contained within the system; the images are then printed and digitized by electronic image-transfer techniques.
Addressing the Influence of Space Weather on Airline Navigation
NASA Technical Reports Server (NTRS)
Sparks, Lawrence
2012-01-01
The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances
Graphene based d-character Dirac Systems
NASA Astrophysics Data System (ADS)
Li, Yuanchang; Zhang, S. B.; Duan, Wenhui
From graphene to topological insulators, Dirac material continues to be the hot topics in condensed matter physics. So far, almost all of the theoretically predicted or experimentally observed Dirac materials are composed of sp -electrons. By using first-principles calculations, we find the new Dirac system of transition-metal intercalated epitaxial graphene on SiC(0001). Intrinsically different from the conventional sp Dirac system, here the Dirac-fermions are dominantly contributed by the transition-metal d-electrons, which paves the way to incorporate correlation effect with Dirac-cone physics. Many intriguing quantum phenomena are proposed based on this system, including quantum spin Hall effect with large spin-orbital gap, quantum anomalous Hall effect, 100% spin-polarized Dirac fermions and ferromagnet-to-topological insulator transition.
Huh, Jin Won; Lim, Chae-Man; Koh, Younsuck; Lee, Jury; Jung, Youn-Kyung; Seo, Hyun-Suk; Hong, Sang-Bum
2014-04-01
To evaluate the efficacy of a medical emergency team activated using 24-hour monitoring by electronic medical record-based screening criteria followed by immediate intervention by a skilled team. Retrospective cohort study. Academic tertiary care hospital with approximately 2,700 beds. A total of 3,030 events activated by a medical emergency team from March 1, 2008, to February 28, 2010. None. We collected data for all medical emergency team activations: patient characteristics, trigger type for medical emergency team (electronic medical record-based screening vs calling criteria), interventions during each event, outcomes of the medical emergency team intervention, and 28-day mortality after medical emergency team activation. We analyzed data for 2009, when the medical emergency team functioned 24 hours a day, 7 days a week (period 2), compared with that for 2008, when the medical emergency team functioned 12 hours a day, 7 days a week (period 1). The commonest cause of medical emergency team activation was respiratory distress (43.6%), and the medical emergency team performed early goal-directed therapy (21.3%), respiratory care (19.9%), and difficult airway management (12.3%). For patients on general wards, 51.3% (period 1) and 38.4% (period 2) of medical emergency team activations were triggered by the electronic medical record-based screening system (electronic medical record-triggered group). In 23.4%, activation occurred because of an abnormality in laboratory screening criteria. The commonest activation criterion from electronic medical record-based screening was respiratory rate (39.4%). Over half the patients were treated in the general ward, and one third of the patients were transferred to the ICU. The electronic medical record-triggered group had lower ICU admission with an odds ratio of 0.35 (95% CI, 0.22-0.55). In surgical patients, the electronic medical record-triggered group showed the lower 28-day mortality (10.5%) compared with the call-triggered group (26.7%) or the double-triggered group (33.3%) (odds ratio 0.365 with 95% CI, 0.154-0.867, p = 0.022). We successful managed the medical emergency team with electronic medical record-based screening criteria and a skilled intervention team. The electronic medical record-triggered group had lower ICU admission than the call-triggered group or the double-triggered group. In surgical patients, the electronic medical record-triggered group showed better outcome than other groups.
NASA Astrophysics Data System (ADS)
Cobo-Lopez, Sergio; Saeed Bahramy, Mohammad; Arita, Ryotaro; Akbari, Alireza; Eremin, Ilya
2018-04-01
We develop the realistic minimal electronic model for recently discovered BiS2 superconductors including the spin–orbit (SO) coupling based on the first-principles band structure calculations. Due to strong SO coupling, characteristic for the Bi-based systems, the tight-binding low-energy model necessarily includes p x , p y , and p z orbitals. We analyze a potential Cooper-pairing instability from purely repulsive interaction for the moderate electronic correlations using the so-called leading angular harmonics approximation. For small and intermediate doping concentrations we find the dominant instabilities to be {d}{x2-{y}2}-wave, and s ±-wave symmetries, respectively. At the same time, in the absence of the sizable spin fluctuations the intra and interband Coulomb repulsions are of the same strength, which yield the strongly anisotropic behavior of the superconducting gaps on the Fermi surface. This agrees with recent angle resolved photoemission spectroscopy findings. In addition, we find that the Fermi surface topology for BiS2 layered systems at large electron doping can resemble the doped iron-based pnictide superconductors with electron and hole Fermi surfaces maintaining sufficient nesting between them. This could provide further boost to increase T c in these systems.
Energy spectrum of cosmic-ray electrons at TeV energies.
Aharonian, F; Akhperjanian, A G; Barres de Almeida, U; Bazer-Bachi, A R; Becherini, Y; Behera, B; Benbow, W; Bernlöhr, K; Boisson, C; Bochow, A; Borrel, V; Braun, I; Brion, E; Brucker, J; Brun, P; Brucker, R; Bulik, T; Büsching, I; Boutelier, T; Carrigan, S; Chadwick, P M; Charbonnier, A; Chaves, R C G; Cheesebrough, A; Chounet, L M; Clapson, A C; Coignet, G; Costamante, L; Dalton, M; Degrange, B; Deil, C; Dickinson, H J; Djannati-Ataï, A; Domainko, W; Drury, L O'C; Dubois, F; Dubus, G; Dyks, J; Dyrda, M; Egberts, K; Emmanoulopoulos, D; Espigat, P; Farnier, C; Feinstein, F; Fiasson, A; Fontaine, G; Füsling, M; Gabici, S; Gallant, Y A; Gérard, L; Giebels, B; Glicenstein, J F; Glück, B; Goret, P; Hadjichristidis, C; Hauser, D; Hauser, M; Heinz, S; Heinzelmann, G; Henri, G; Hermann, G; Hinton, J A; Hoffmann, A; Hofmann, W; Holleran, M; Hoppe, S; Horns, D; Jacholkowska, A; de Jager, O C; Jung, I; Katarzyński, K; Kaufmann, S; Kendziorra, E; Kerschhaggl, M; Khangulyan, D; Khélifi, B; Keogh, D; Komin, Nu; Kosack, K; Lamanna, G; Lenain, J P; Lohse, T; Marandon, V; Martin, J M; Martineau-Huynh, O; Marcowith, A; Maurin, D; McComb, T J L; Medina, C; Moderski, R; Moulin, E; Naumann-Godo, M; de Naurois, M; Nedbal, D; Nekrassov, D; Niemiec, J; Nolan, S J; Ohm, S; Olive, J F; de Oña Wilhelmi, E; Orford, K J; Osborne, J L; Ostrowski, M; Panter, M; Pedaletti, G; Pelletier, G; Petrucci, P O; Pita, S; Pühlhofer, G; Punch, M; Quirrenbach, A; Raubenheimer, B C; Raue, M; Rayner, S M; Renaud, M; Rieger, F; Ripken, J; Rob, L; Rosier-Lees, S; Rowell, G; Rudak, B; Rulten, C B; Ruppel, J; Sahakian, V; Santangelo, A; Schlickeiser, R; Schöck, F M; Schröder, R; Schwanke, U; Schwarzburg, S; Schwemmer, S; Shalchi, A; Skilton, J L; Sol, H; Spangler, D; Stawarz, Ł; Steenkamp, R; Stegmann, C; Superina, G; Tam, P H; Tavernet, J P; Terrier, R; Tibolla, O; van Eldik, C; Vasileiadis, G; Venter, C; Vialle, J P; Vincent, P; Vivier, M; Völk, H J; Volpe, F; Wagner, S J; Ward, M; Zdziarski, A A; Zech, A
2008-12-31
The very large collection area of ground-based gamma-ray telescopes gives them a substantial advantage over balloon or satellite based instruments in the detection of very-high-energy (>600 GeV) cosmic-ray electrons. Here we present the electron spectrum derived from data taken with the High Energy Stereoscopic System (H.E.S.S.) of imaging atmospheric Cherenkov telescopes. In this measurement, the first of this type, we are able to extend the measurement of the electron spectrum beyond the range accessible to direct measurements. We find evidence for a substantial steepening in the energy spectrum above 600 GeV compared to lower energies.
Nanostructure studies of strongly correlated materials.
Wei, Jiang; Natelson, Douglas
2011-09-01
Strongly correlated materials exhibit an amazing variety of phenomena, including metal-insulator transitions, colossal magnetoresistance, and high temperature superconductivity, as strong electron-electron and electron-phonon couplings lead to competing correlated ground states. Recently, researchers have begun to apply nanostructure-based techniques to this class of materials, examining electronic transport properties on previously inaccessible length scales, and applying perturbations to drive systems out of equilibrium. We review progress in this area, particularly emphasizing work in transition metal oxides (Fe(3)O(4), VO(2)), manganites, and high temperature cuprate superconductors. We conclude that such nanostructure-based studies have strong potential to reveal new information about the rich physics at work in these materials.
Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics
NASA Astrophysics Data System (ADS)
Sato, Shunsuke A.; Kelly, Aaron; Rubio, Angel
2018-04-01
We introduce a simple ansatz for the wave function of a many-body system based on coupled forward and backward propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenfest mean-field theory in the limit that the forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model. Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over mean-field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations. This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an attractive route forward to the ab initio description of relaxation processes, such as thermalization, in condensed phase systems.
Lee, Stephen; Aranyosi, A J; Wong, Michelle D; Hong, Ji Hyung; Lowe, Jared; Chan, Carol; Garlock, David; Shaw, Scott; Beattie, Patrick D; Kratochvil, Zachary; Kubasti, Nick; Seagers, Kirsten; Ghaffari, Roozbeh; Swanson, Christina D
2016-04-15
In developing countries, the deployment of medical diagnostic technologies remains a challenge because of infrastructural limitations (e.g. refrigeration, electricity), and paucity of health professionals, distribution centers and transportation systems. Here we demonstrate the technical development and clinical testing of a novel electronics enabled microfluidic paper-based analytical device (EE-μPAD) for quantitative measurement of micronutrient concentrations in decentralized, resource-limited settings. The system performs immune-detection using paper-based microfluidics, instrumented with flexible electronics and optoelectronic sensors in a mechanically robust, ultrathin format comparable in size to a credit card. Autonomous self-calibration, plasma separation, flow monitoring, timing and data storage enable multiple devices to be run simultaneously. Measurements are wirelessly transferred to a mobile phone application that geo-tags the data and transmits it to a remote server for real time tracking of micronutrient deficiencies. Clinical tests of micronutrient levels from whole blood samples (n=95) show comparable sensitivity and specificity to ELISA-based tests. These results demonstrate instantaneous acquisition and global aggregation of diagnostics data using a fully integrated point of care system that will enable rapid and distributed surveillance of disease prevalence and geographical progression. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kovalev, V. M.
2018-04-01
A two-dimensional system with two nonequivalent valleys in the field of a strong circularly polarized electromagnetic wave is considered. It is assumed that the optical selection rules for a given polarization of light allow band-to-band transitions only in valleys of one, optically active, type (two-dimensional layer based on transition metal dichalcogenides, gapped graphene, etc.). This leads to the formation of photon-coupled electron-hole pairs, or an "optical insulator" state. It is assumed that the valleys of the second type (optically inactive) are populated with an equilibrium electron gas. The relaxation of elementary excitations in this hybrid system consisting of an electron gas and a gas of electron-hole pairs caused by the Coulomb interaction between the particles is investigated.
Quantum Theory of Orbital Magnetization and Its Generalization to Interacting Systems
NASA Astrophysics Data System (ADS)
Shi, Junren; Vignale, G.; Xiao, Di; Niu, Qian
2007-11-01
Based on standard perturbation theory, we present a full quantum derivation of the formula for the orbital magnetization in periodic systems. The derivation is generally valid for insulators with or without a Chern number, for metals at zero or finite temperatures, and at weak as well as strong magnetic fields. The formula is shown to be valid in the presence of electron-electron interaction, provided the one-electron energies and wave functions are calculated self-consistently within the framework of the exact current and spin-density functional theory.
NASA Astrophysics Data System (ADS)
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-01
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole
2018-04-13
We simulate the dynamics of a single-electron source, modeled as a quantum dot with on-site Coulomb interaction and tunnel coupling to an adjacent lead in time-dependent density-functional theory. Based on this system, we develop a time-nonlocal exchange-correlation potential by exploiting analogies with quantum-transport theory. The time nonlocality manifests itself in a dynamical potential step. We explicitly link the time evolution of the dynamical step to physical relaxation timescales of the electron dynamics. Finally, we discuss prospects for simulations of larger mesoscopic systems.
π vs σ-Radical States of One-Electron Oxidized DNA/RNA Bases: A Density Functional Theory Study
Kumar, Anil; Sevilla, Michael D.
2013-01-01
As a result of their inherent planarity, DNA base radicals generated by one electron oxidation/reduction or bond cleavage form π- or σ-radicals. While most DNA base systems form π-radicals there are a number of nucleobase analogs such as one-electron oxidized 6-azauraci1, 6-azacytosine, and 2-thiothymine or one-electron reduced 5-bromouracil that form more reactive σ-radicals. Elucidating the availability of these states within DNA, base radical electronic structure is important to the understanding of the reactivity of DNA base radicals in different environments. In this work, we address this question by the calculation of the relative energies of π- and σ-radical states in DNA/RNA bases and their analogs. We used density functional theory B3LYP/6-31++G** method to optimize the geometries of π- and σ-radicals in Cs symmetry (i.e., planar) in the gas phase and in solution using the polarized continuum model (PCM). The calculations predict that σ- and π-radical states in one electron oxidized bases of thymine, T(N3-H)•, and uracil, U(N3-H)• are very close in energy, i.e., the π-radical is only ca. 4 kcal/mol more stable than the σ-radical. For the one electron oxidized radicals of cytosine, C•+, C(N4-H)•, adenine, A•+, A(N6-H)•, and guanine, G•+, G(N2-H)•, G(N1-H)• the π-radicals are ca. 16 to 41 kcal/mol more stable than their corresponding σ-radicals. Inclusion of solvent (PCM) is found to stabilize the π- over σ-radical of each of the systems. U(N3-H)• with three discrete water molecules in the gas phase, is found to form a three-electron σ bond between N3 atom of uracil and O atom of a water molecule but on inclusion of full solvation and discrete hydration the π-radical remains most stable.. PMID:24000793
π- vs σ-radical states of one-electron-oxidized DNA/RNA bases: a density functional theory study.
Kumar, Anil; Sevilla, Michael D
2013-10-03
As a result of their inherent planarity, DNA base radicals generated by one-electron oxidation/reduction or bond cleavage form π- or σ-radicals. While most DNA base systems form π-radicals, there are a number of nucleobase analogues such as one-electron-oxidized 6-azauraci1, 6-azacytosine, and 2-thiothymine or one-electron reduced 5-bromouracil that form more reactive σ-radicals. Elucidating the availability of these states within DNA, base radical electronic structure is important to the understanding of the reactivity of DNA base radicals in different environments. In this work, we address this question by the calculation of the relative energies of π- and σ-radical states in DNA/RNA bases and their analogues. We used density functional theory B3LYP/6-31++G** method to optimize the geometries of π- and σ-radicals in Cs symmetry (i.e., planar) in the gas phase and in solution using the polarized continuum model (PCM). The calculations predict that σ- and π-radical states in one-electron-oxidized bases of thymine, T(N3-H)(•), and uracil, U(N3-H)(•), are very close in energy; i.e., the π-radical is only ca. 4 kcal/mol more stable than the σ-radical. For the one-electron-oxidized radicals of cytosine, C(•+), C(N4-H)(•), adenine, A(•+), A(N6-H)(•), and guanine, G(•+), G(N2-H)(•), G(N1-H)(•), the π-radicals are ca. 16-41 kcal/mol more stable than their corresponding σ-radicals. Inclusion of solvent (PCM) is found to stabilize the π- over σ-radical of each of the systems. U(N3-H)(•) with three discrete water molecules in the gas phase is found to form a three-electron σ bond between the N3 atom of uracil and the O atom of a water molecule, but on inclusion of full solvation and discrete hydration, the π-radical remains most stable.
Engineering the electronic structure of graphene superlattices via Fermi velocity modulation
NASA Astrophysics Data System (ADS)
Lima, Jonas R. F.
2017-01-01
Graphene superlattices have attracted much research interest in the last years, since it is possible to manipulate the electronic properties of graphene in these structures. It has been verified that extra Dirac points appear in the electronic structure of the system. The electronic structure in the vicinity of these points has been studied for a gapless and gapped graphene superlattice and for a graphene superlattice with a spatially modulated energy gap. In each case a different behavior was obtained. In this work we show that via Fermi velocity engineering it is possible to tune the electronic properties of a graphene superlattice to match all the previous cases studied. We also obtained new features of the system never observed before, reveling that the electronic structure of graphene is very sensitive to the modulation of the Fermi velocity. The results obtained here are relevant for the development of novel graphene-based electronic devices.
Apparatus, system, and method for synchronizing a timer key
Condit, Reston A; Daniels, Michael A; Clemens, Gregory P; Tomberlin, Eric S; Johnson, Joel A
2014-04-22
A timer key relating to monitoring a countdown time of a countdown routine of an electronic device is disclosed. The timer key comprises a processor configured to respond to a countdown time associated with operation of the electronic device, a display operably coupled with the processor, and a housing configured to house at least the processor. The housing has an associated structure configured to engage with the electronic device to share the countdown time between the electronic device and the timer key. The processor is configured to begin a countdown routine based at least in part on the countdown time, wherein the countdown routine is at least substantially synchronized with a countdown routine of the electronic device when the timer key is removed from the electronic device. A system and method for synchronizing countdown routines of a timer key and an electronic device are also disclosed.
Noncontact power/interrogation system for smart structures
NASA Astrophysics Data System (ADS)
Spillman, William B., Jr.; Durkee, S.
1994-05-01
The field of smart structures has been largely driven by the development of new high performance designed materials. Use of these materials has been generally limited due to the fact that they have not been in use long enough for statistical data bases to be developed on their failure modes. Real time health monitoring is therefore required for the benefits of structures using these materials to be realized. In this paper a non-contact method of powering and interrogating embedded electronic and opto-electronic systems is described. The technique utilizes inductive coupling between external and embedded coils etched on thin electronic circuit cards. The technique can be utilized to interrogate embedded sensors and to provide > 250 mW for embedded electronics. The system has been successfully demonstrated with a number of composite and plastic materials through material thicknesses up to 1 cm. An analytical description of the system is provided along with experimental results.
Zaitseva, A S; Arlyapov, V A; Yudina, N Yu; Alferov, S V; Reshetilov, A N
2017-03-01
We investigated the use of one- and two-mediator systems in amperometric BOD biosensors (BOD, biochemical oxygen demand) based on the yeast Debaryomyces hansenii. Screening of nine mediators potentially capable of electron transfer - ferrocene, 1,1'-dimethylferrocene, ferrocenecarboxaldehyde, ferroceneacetonitrile, neutral red, 2,6-dichlorophenolindophenol, thionine, methylene blue and potassium ferricyanide - showed only ferrocene and neutral red to be efficient electron carriers for the eukaryotes studied. Two-mediator systems based on combinations of the investigated compounds were used to increase the efficiency of electron transfer. The developed two-mediator biosensors exceeded their one-mediator analogs by their characteristics. The most preferable two-mediator system for developing a BOD biosensor was a ferrocene-methylene blue combination that ensured a satisfactory long-time stability (43 days), selectivity, sensitivity (the lower limit of the determined BOD 5 concentrations, 2.5mg О 2 /dm 3 ) and speed (assay time for one sample, not greater than 10min) of BOD determination. Analysis of water samples showed that the use of a ferrocene-methylene blue two-mediator system and the yeast D. hansenii enabled registration of data that highly correlated with the results of the standard method (R=0.9913). Copyright © 2017 Elsevier Inc. All rights reserved.
Developments on a SEM-based X-ray tomography system: Stabilization scheme and performance evaluation
NASA Astrophysics Data System (ADS)
Gomes Perini, L. A.; Bleuet, P.; Filevich, J.; Parker, W.; Buijsse, B.; Kwakman, L. F. Tz.
2017-06-01
Recent improvements in a SEM-based X-ray tomography system are described. In this type of equipment, X-rays are generated through the interaction between a highly focused electron-beam and a geometrically confined anode target. Unwanted long-term drifts of the e-beam can lead to loss of X-ray flux or decrease of spatial resolution in images. To circumvent this issue, a closed-loop control using FFT-based image correlation is integrated to the acquisition routine, in order to provide an in-line drift correction. The X-ray detection system consists of a state-of-the-art scientific CMOS camera (indirect detection), featuring high quantum efficiency (˜60%) and low read-out noise (˜1.2 electrons). The system performance is evaluated in terms of resolution, detectability, and scanning times for applications covering three different scientific fields: microelectronics, technical textile, and material science.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Hyun Suk; Sisto, Thomas J.; Peurifoy, Samuel
Nonfullerene electron acceptors have facilitated a recent surge in the efficiencies of organic solar cells, although fundamental studies of the nature of exciton dissociation at interfaces with nonfullerene electron acceptors are still relatively sparse. Semiconducting single-walled carbon nanotubes (s-SWCNTs), unique one-dimensional electron donors with molecule-like absorption and highly mobile charges, provide a model system for studying interfacial exciton dissociation. Here, we investigate excited-state photodynamics at the heterojunction between (6,5) s-SWCNTs and two perylene diimide (PDI)-based electron acceptors. Each of the PDI-based acceptors, hPDI2-pyr-hPDI2 and Trip-hPDI2, is deposited onto (6,5) s-SWCNT films to form a heterojunction bilayer. Transient absorption measurements demonstratemore » that photoinduced hole/electron transfer occurs at the photoexcited bilayer interfaces, producing long-lived separated charges with lifetimes exceeding 1.0 us. Both exciton dissociation and charge recombination occur more slowly for the hPDI2-pyr-hPDI2 bilayer than for the Trip-hPDI2 bilayer. To explain such differences, we discuss the potential roles of the thermodynamic charge transfer driving force available at each interface and the different molecular structure and intermolecular interactions of PDI-based acceptors. As a result, detailed photophysical analysis of these model systems can develop the fundamental understanding of exciton dissociation between organic electron donors and nonfullerene acceptors, which has not been systematically studied.« less
Kang, Hyun Suk; Sisto, Thomas J.; Peurifoy, Samuel; ...
2018-04-13
Nonfullerene electron acceptors have facilitated a recent surge in the efficiencies of organic solar cells, although fundamental studies of the nature of exciton dissociation at interfaces with nonfullerene electron acceptors are still relatively sparse. Semiconducting single-walled carbon nanotubes (s-SWCNTs), unique one-dimensional electron donors with molecule-like absorption and highly mobile charges, provide a model system for studying interfacial exciton dissociation. Here, we investigate excited-state photodynamics at the heterojunction between (6,5) s-SWCNTs and two perylene diimide (PDI)-based electron acceptors. Each of the PDI-based acceptors, hPDI2-pyr-hPDI2 and Trip-hPDI2, is deposited onto (6,5) s-SWCNT films to form a heterojunction bilayer. Transient absorption measurements demonstratemore » that photoinduced hole/electron transfer occurs at the photoexcited bilayer interfaces, producing long-lived separated charges with lifetimes exceeding 1.0 us. Both exciton dissociation and charge recombination occur more slowly for the hPDI2-pyr-hPDI2 bilayer than for the Trip-hPDI2 bilayer. To explain such differences, we discuss the potential roles of the thermodynamic charge transfer driving force available at each interface and the different molecular structure and intermolecular interactions of PDI-based acceptors. As a result, detailed photophysical analysis of these model systems can develop the fundamental understanding of exciton dissociation between organic electron donors and nonfullerene acceptors, which has not been systematically studied.« less
Server-Based and Server-Less Byod Solutions to Support Electronic Learning
2016-06-01
Knowledge Online NSD National Security Directive OS operating system OWA Outlook Web Access PC personal computer PED personal electronic device PDA...mobile devices, institute mobile device policies and standards, and promote the development and use of DOD mobile and web -enabled applications” (DOD...with an isolated BYOD web server, properly educated system administrators must carry out and execute the necessary, pre-defined network security
Structured electronic physiotherapy records.
Buyl, Ronald; Nyssen, Marc
2009-07-01
With the introduction of the electronic health record, physiotherapists too are encouraged to store their patient records in a structured digital format. The typical nature of a physiotherapy treatment requires a specific record structure to be implemented, with special attention to user-friendliness and communication with other healthcare providers. The objective of this study was to establish a framework for the electronic physiotherapy record and to define a model for the interoperability with the other healthcare providers involved in the patients' care. Although we started from the Belgian context, we used a generic approach so that the results can easily be extrapolated to other countries. The framework we establish here defines not only the different building blocks of the electronic physiotherapy record, but also describes the structure and the content of the exchanged data elements. Through a combined effort by all involved parties, we elaborated an eight-level structure for the electronic physiotherapy record. Furthermore we designed a server-based model for the exchange of data between electronic record systems held by physicians and those held by physiotherapists. Two newly defined XML messages enable data interchange: the physiotherapy prescription and the physiotherapy report. We succeeded in defining a solid, structural model for electronic physiotherapist record systems. Recent wide scale implementation of operational elements such as the electronic registry has proven to make the administrative work easier for the physiotherapist. Moreover, within the proposed framework all the necessary building blocks are present for further data exchange and communication with other healthcare parties in the future. Although we completed the design of the structure and already implemented some new aspects of the electronic physiotherapy record, the real challenge lies in persuading the end-users to start using these electronic record systems. Via a quality label certification procedure, based on adequate criteria, the Ministry of Health tries to promote the use of electronic physiotherapy records. We must keep in mind that physiotherapists will show an interest in electronic record keeping, only if this will lead to a positive return for them.
Two-dimensional materials based transparent flexible electronics
NASA Astrophysics Data System (ADS)
Yu, Lili; Ha, Sungjae; El-Damak, Dina; McVay, Elaine; Ling, Xi; Chandrakasan, Anantha; Kong, Jing; Palacios, Tomas
2015-03-01
Two-dimensional (2D) materials have generated great interest recently as a set of tools for electronics, as these materials can push electronics beyond traditional boundaries. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. These thin, lightweight, bendable, highly rugged and low-power devices may bring dramatic changes in information processing, communications and human-electronic interaction. In this report, for the first time, we demonstrate two complex transparent flexible systems based on molybdenum disulfide (MoS2) grown by chemical vapor method: a transparent active-matrix organic light-emitting diode (AMOLED) display and a MoS2 wireless link for sensor nodes. The 1/2 x 1/2 square inch, 4 x 5 pixels AMOLED structures are built on transparent substrates, containing MoS2 back plane circuit and OLEDs integrated on top of it. The back plane circuit turns on and off the individual pixel with two MoS2 transistors and a capacitor. The device is designed and fabricated based on SPICE simulation to achieve desired DC and transient performance. We have also demonstrated a MoS2 wireless self-powered sensor node. The system consists of as energy harvester, rectifier, sensor node and logic units. AC signals from the environment, such as near-field wireless power transfer, piezoelectric film and RF signal, are harvested, then rectified into DC signal by a MoS2 diode. CIQM, CICS, SRC.
Facilitating secondary use of medical data by using openEHR archetypes.
Kohl, Christian D; Garde, Sebastian; Knaup, Petra
2010-01-01
Clinical trials are of high importance for medical progress. But even though more and more clinical data is available in electronic patient records (EPRs) and more and more electronic data capture (EDC) systems are used in trials, there is still a gap which makes EPR / EDC interoperability difficult and hampers secondary use of medical routine data. The openEHR architecture for Electronic Health Records is based on a two level modeling approach which makes use of 'archetypes'. We want to analyze whether archetypes can help to bridge this gap by building an integrated EPR / EDC system based on openEHR archetypes. We used the 'openEHR Reference Framework and Application' (Opereffa) and existing archetypes for medical data. Furthermore, we developed dedicated archetypes to document study meta data. We developed a first prototype implementation of an archetype based integrated EPR / EDC system. Next steps will be the evaluation of an extended prototype in a real clinical trial scenario. Opereffa was a good starting point for our work. OpenEHR archetypes proved useful for secondary use of health data.
Oral, Bulent; Cullen, Regina M; Diaz, Danny L; Hod, Eldad A; Kratz, Alexander
2015-01-01
Downtimes of the laboratory information system (LIS) or its interface to the electronic medical record (EMR) disrupt the reporting of laboratory results. Traditionally, laboratories have relied on paper-based or phone-based reporting methods during these events. We developed a novel downtime procedure that combines advance placement of orders by clinicians for planned downtimes, the printing of laboratory results from instruments, and scanning of the instrument printouts into our EMR. The new procedure allows the analysis of samples from planned phlebotomies with no delays, even during LIS downtimes. It also enables the electronic reporting of all clinically urgent results during downtimes, including intensive care and emergency department samples, thereby largely avoiding paper- and phone-based communication of laboratory results. With the capabilities of EMRs and LISs rapidly evolving, information technology (IT) teams, laboratories, and clinicians need to collaborate closely, review their systems' capabilities, and design innovative ways to apply all available IT functions to optimize patient care during downtimes. Copyright© by the American Society for Clinical Pathology.
From a paper-based to an electronic registry in physiotherapy.
Buyl, Ronald; Nyssen, Marc
2008-01-01
During the past decade the healthcare industry has evolved from paper-based storage of clinical data into the digital era. Electronic healthcare records play a crucial role to meet the growing need for integrated data-storage and data communication. In this context a new law was issued in Belgium on December 7th, 2005, which requires physiotherapists (but also nurses and speech therapists) to keep an electronic version of the registry. This (electronic) registry contains all physiotherapeutic acts, starting from January 1, 2007. Up until that day, a paper version of the registry had to be created every month.This article describes the development of an electronic version of the registry that not only meets all legal constraints, but also enables to verify the traceability and inalterability of the generated documents, by means of SHA-256 codes. One of the major concerns of the process was that the rationale behind the electronic registry would conform well to the common practice of the physiotherapist. Therefore we opted for a periodic recording of a standardized "image" of the controllable data, in the patient database of the software-system, into the XML registry messages. The proposed XSLT schema can also form a basis for the development of tools that can be used by the controlling authorities. Hopefully the electronic registry for physiotherapists will be a first step towards the future development of a fully integrated electronic physiotherapy record.By means of a certification procedure for the software systems, we succeeded in developing a user friendly system that enables end-users that use a quality labeled software package, to automatically produce all the legally necessary documents concerning the registry. Moreover, we hope that this development will be an incentive for non-users to start working in an electronic way.
NASA Astrophysics Data System (ADS)
Oberhofer, Harald; Blumberger, Jochen
2010-12-01
We present a plane wave basis set implementation for the calculation of electronic coupling matrix elements of electron transfer reactions within the framework of constrained density functional theory (CDFT). Following the work of Wu and Van Voorhis [J. Chem. Phys. 125, 164105 (2006)], the diabatic wavefunctions are approximated by the Kohn-Sham determinants obtained from CDFT calculations, and the coupling matrix element calculated by an efficient integration scheme. Our results for intermolecular electron transfer in small systems agree very well with high-level ab initio calculations based on generalized Mulliken-Hush theory, and with previous local basis set CDFT calculations. The effect of thermal fluctuations on the coupling matrix element is demonstrated for intramolecular electron transfer in the tetrathiafulvalene-diquinone (Q-TTF-Q-) anion. Sampling the electronic coupling along density functional based molecular dynamics trajectories, we find that thermal fluctuations, in particular the slow bending motion of the molecule, can lead to changes in the instantaneous electron transfer rate by more than an order of magnitude. The thermal average, ( {< {| {H_ab } |^2 } > } )^{1/2} = 6.7 {mH}, is significantly higher than the value obtained for the minimum energy structure, | {H_ab } | = 3.8 {mH}. While CDFT in combination with generalized gradient approximation (GGA) functionals describes the intermolecular electron transfer in the studied systems well, exact exchange is required for Q-TTF-Q- in order to obtain coupling matrix elements in agreement with experiment (3.9 mH). The implementation presented opens up the possibility to compute electronic coupling matrix elements for extended systems where donor, acceptor, and the environment are treated at the quantum mechanical (QM) level.
Pettersson, Karin; Wiberg, Joanna; Ljungdahl, Thomas; Mårtensson, Jerker; Albinsson, Bo
2006-01-12
The rate of electron tunneling in molecular donor-bridge-acceptor (D-B-A) systems is determined both by the tunneling barrier width and height, that is, both by the distance between the donor and acceptor as well as by the energy gap between the donor and bridge moieties. These factors are therefore important to control when designing functional electron transfer systems, such as constructs for photovoltaics, artificial photosynthesis, and molecular scale electronics. In this paper we have investigated a set of D-B-A systems in which the distance and the energy difference between the donor and bridge states (DeltaEDB) are systematically varied. Zinc(II) and gold(III) porphyrins were chosen as electron donor and acceptor because of their suitable driving force for photoinduced electron transfer (-0.9 eV in butyronitrile) and well-characterized photophysics. We have previously shown, in accordance with the superexchange mechanism for electron transfer, that the electron transfer rate is proportional to the inverse of DeltaEDB in a series of zinc/gold porphyrin D-B-A systems with bridges of constant edge to edge distance (19.6 A) and varying DeltaEDB (3900-17 600 cm(-1)). Here, we use the same donor and acceptor but the bridge is shortened or extended giving a set of oligo-p-phenyleneethynylene bridges (OPE) with four different edge to edge distances ranging from 12.7 to 33.4 A. These two sets of D-B-A systems-ZnP-RB-AuP+ and ZnP-nB-AuP+-have one bridge in common, and hence, for the first time both the distance and DeltaEDB dependence of electron transfer can be studied simultaneously in a systematic way.
In situ measurements of thunderstorm electrical properties
NASA Technical Reports Server (NTRS)
Marshall, T. C.
1982-01-01
An airplane sensor to measure the charge, size and two dimensional shape of precipitation particles and large cloud particles was developed. The basic design of the instrument includes: the transducers and analog electronics, the analog to digital conversion electronics and a microprocessor based system to run the electronics and load the digital data onto magnetic tape. Prototype instrumentation for the proposed lightning mapper satellite was tested by flying it in a U-2 aircraft over severe storms in Oklahoma. Flight data are compared to data from ground based instruments.
NASA Astrophysics Data System (ADS)
Shevelev, M.; Aryshev, A.; Terunuma, N.; Urakawa, J.
2017-10-01
The interest in producing ultrashort electron bunches has risen sharply among scientists working on the design of high-gradient wakefield accelerators. One attractive approach generating electron bunches is to illuminate a photocathode with a train of femtosecond laser pulses. In this paper we describe the design and testing of a laser system for an rf gun based on a commercial titanium-sapphire laser technology. The technology allows the production of four femtosecond laser pulses with a continuously variable pulse delay. We also use the designed system to demonstrate the experimental generation of an electron microbunch train obtained by illuminating a cesium-telluride semiconductor photocathode. We use conventional diagnostics to characterize the electron microbunches produced and confirm that it may be possible to control the main parameter of an electron microbunch train.
Mobile agent application and integration in electronic anamnesis system.
Liu, Chia-Hui; Chung, Yu-Fang; Chen, Tzer-Shyong; Wang, Sheng-De
2012-06-01
Electronic anamnesis is to transform ordinary paper trails to digitally formatted health records, which include the patient's general information, health status, and follow-ups on chronic diseases. Its main purpose is to let the records could be stored for a longer period of time and could be shared easily across departments and hospitals. Which means hospital management could use less resource on maintaining ever-growing database and reduce redundancy, so less money would be spent for managing the health records. In the foreseeable future, building up a comprehensive and integrated medical information system is a must, because it is critical to hospital resource integration and quality improvement. If mobile agent technology is adopted in the electronic anamnesis system, it would help the hospitals to make the medical practices more efficiently and conveniently. Nonetheless, most of the hospitals today are still using paper-based health records to manage the medical information. The reason why the institutions continue using traditional practices to manage the records is because there is no well-trusted and reliable electronic anamnesis system existing and accepted by both institutions and patients. The threat of privacy invasion is one of the biggest concerns when the topic of electronic anamnesis is brought up, because the security threats drag us back from using such a system. So, the medical service quality is difficult to be improved substantially. In this case, we have come up a theory to remove such security threats and make electronic anamnesis more appealing for use. Our theory is to integrate the mobile agent technology with the backbone of electronic anamnesis to construct a hierarchical access control system to retrieve the corresponding information based upon the permission classes. The system would create a classification for permission among the users inside the medical institution. Under this framework, permission control center would distribute an access key to each user, so they would only allow using the key to access information correspondingly. In order to verify the reliability of the proposed system framework, we have also conducted a security analysis to list all the possible security threats that may harm the system and to prove the system is reliable and safe. If the system is adopted, the doctors would be able to quickly access the information while performing medical examinations. Hence, the efficiency and quality of healthcare service would be greatly improved.
Portable Electron-Beam Free-Form Fabrication System
NASA Technical Reports Server (NTRS)
Watson, J. Kevin; Petersen, Daniel D.; Taminger, Karen M.; Hafley, Robert A.
2005-01-01
A portable electron-beam free-form fabrication (EB F3) system, now undergoing development, is intended to afford a capability for manufacturing metal parts in nearly net sizes and shapes. Although the development effort is oriented toward the eventual use of systems like this one to supply spare metal parts aboard spacecraft in flight, the basic system design could also be adapted to terrestrial applications in which there are requirements to supply spare parts on demand at locations remote from warehouses and conventional manufacturing facilities. Prior systems that have been considered for satisfying the same requirements (including prior free-form fabrication systems) are not easily portable because of their bulk and massive size. The mechanical properties of the components that such systems produce are often inferior to the mechanical properties of the corresponding original, conventionally fabricated components. In addition, the prior systems are not efficient in the utilization of energy and of feedstock. In contrast, the present developmental system is designed to be sufficiently compact and lightweight to be easily portable, to utilize both energy and material more efficiently, and to produce components that have mechanical properties approximating those of the corresponding original components. The developmental EB F3 system will include a vacuum chamber and associated vacuum pumps, an electron-beam gun and an associated power supply, a multiaxis positioning subsystem, a precise wire feeder, and an instrumentation system for monitoring and control. The electron-beam gun, positioning subsystem, and wire feeder will be located inside the vacuum chamber (see figure). The electron beam gun and the wire feeder will be mounted in fixed positions inside the domed upper portion of the vacuum chamber. The positioning subsystem and ports for the vacuum pumps will be located on a base that could be dropped down to provide full access to the interior of the chamber when not under vacuum. During operation, wire will be fed to a fixed location, entering the melted pool created by the electron beam. Heated by the electron beam, the wire will melt and fuse to either the substrate or with the previously deposited metal wire fused on top of the positioning table. Based on a computer aided design (CAD) model and controlled by a computer, the positioning subsystem
Lenert, L A; Kirsh, D; Griswold, W G; Buono, C; Lyon, J; Rao, R; Chan, T C
2011-01-01
There is growing interest in the use of technology to enhance the tracking and quality of clinical information available for patients in disaster settings. This paper describes the design and evaluation of the Wireless Internet Information System for Medical Response in Disasters (WIISARD). WIISARD combined advanced networking technology with electronic triage tags that reported victims' position and recorded medical information, with wireless pulse-oximeters that monitored patient vital signs, and a wireless electronic medical record (EMR) for disaster care. The EMR system included WiFi handheld devices with barcode scanners (used by front-line responders) and computer tablets with role-tailored software (used by managers of the triage, treatment, transport and medical communications teams). An additional software system provided situational awareness for the incident commander. The WIISARD system was evaluated in a large-scale simulation exercise designed for training first responders. A randomized trial was overlaid on this exercise with 100 simulated victims, 50 in a control pathway (paper-based), and 50 in completely electronic WIISARD pathway. All patients in the electronic pathway were cared for within the WIISARD system without paper-based workarounds. WIISARD reduced the rate of the missing and/or duplicated patient identifiers (0% vs 47%, p<0.001). The total time of the field was nearly identical (38:20 vs 38:23, IQR 26:53-1:05:32 vs 18:55-57:22). Overall, the results of WIISARD show that wireless EMR systems for care of the victims of disasters would be complex to develop but potentially feasible to build and deploy, and likely to improve the quality of information available for the delivery of care during disasters.
Kirsh, D; Griswold, W G; Buono, C; Lyon, J; Rao, R; Chan, T C
2011-01-01
Background There is growing interest in the use of technology to enhance the tracking and quality of clinical information available for patients in disaster settings. This paper describes the design and evaluation of the Wireless Internet Information System for Medical Response in Disasters (WIISARD). Materials and methods WIISARD combined advanced networking technology with electronic triage tags that reported victims' position and recorded medical information, with wireless pulse-oximeters that monitored patient vital signs, and a wireless electronic medical record (EMR) for disaster care. The EMR system included WiFi handheld devices with barcode scanners (used by front-line responders) and computer tablets with role-tailored software (used by managers of the triage, treatment, transport and medical communications teams). An additional software system provided situational awareness for the incident commander. The WIISARD system was evaluated in a large-scale simulation exercise designed for training first responders. A randomized trial was overlaid on this exercise with 100 simulated victims, 50 in a control pathway (paper-based), and 50 in completely electronic WIISARD pathway. All patients in the electronic pathway were cared for within the WIISARD system without paper-based workarounds. Results WIISARD reduced the rate of the missing and/or duplicated patient identifiers (0% vs 47%, p<0.001). The total time of the field was nearly identical (38:20 vs 38:23, IQR 26:53–1:05:32 vs 18:55–57:22). Conclusion Overall, the results of WIISARD show that wireless EMR systems for care of the victims of disasters would be complex to develop but potentially feasible to build and deploy, and likely to improve the quality of information available for the delivery of care during disasters. PMID:21709162
Agent-based services for B2B electronic commerce
NASA Astrophysics Data System (ADS)
Fong, Elizabeth; Ivezic, Nenad; Rhodes, Tom; Peng, Yun
2000-12-01
The potential of agent-based systems has not been realized yet, in part, because of the lack of understanding of how the agent technology supports industrial needs and emerging standards. The area of business-to-business electronic commerce (b2b e-commerce) is one of the most rapidly developing sectors of industry with huge impact on manufacturing practices. In this paper, we investigate the current state of agent technology and the feasibility of applying agent-based computing to b2b e-commerce in the circuit board manufacturing sector. We identify critical tasks and opportunities in the b2b e-commerce area where agent-based services can best be deployed. We describe an implemented agent-based prototype system to facilitate the bidding process for printed circuit board manufacturing and assembly. These activities are taking place within the Internet Commerce for Manufacturing (ICM) project, the NIST- sponsored project working with industry to create an environment where small manufacturers of mechanical and electronic components may participate competitively in virtual enterprises that manufacture printed circuit assemblies.
Image-based electronic patient records for secured collaborative medical applications.
Zhang, Jianguo; Sun, Jianyong; Yang, Yuanyuan; Liang, Chenwen; Yao, Yihong; Cai, Weihua; Jin, Jin; Zhang, Guozhen; Sun, Kun
2005-01-01
We developed a Web-based system to interactively display image-based electronic patient records (EPR) for secured intranet and Internet collaborative medical applications. The system consists of four major components: EPR DICOM gateway (EPR-GW), Image-based EPR repository server (EPR-Server), Web Server and EPR DICOM viewer (EPR-Viewer). In the EPR-GW and EPR-Viewer, the security modules of Digital Signature and Authentication are integrated to perform the security processing on the EPR data with integrity and authenticity. The privacy of EPR in data communication and exchanging is provided by SSL/TLS-based secure communication. This presentation gave a new approach to create and manage image-based EPR from actual patient records, and also presented a way to use Web technology and DICOM standard to build an open architecture for collaborative medical applications.
Cho, Yeonchoo; Cho, Woo Jong; Youn, Il Seung; Lee, Geunsik; Singh, N Jiten; Kim, Kwang S
2014-11-18
CONSPECTUS: In chemical and biological systems, various interactions that govern the chemical and physical properties of molecules, assembling phenomena, and electronic transport properties compete and control the microscopic structure of materials. The well-controlled manipulation of each component can allow researchers to design receptors or sensors, new molecular architectures, structures with novel morphology, and functional molecules or devices. In this Account, we describe the structures and electronic and spintronic properties of π-molecular systems that are important for controlling the architecture of a variety of carbon-based systems. Although DFT is an important tool for describing molecular interactions, the inability of DFT to accurately represent dispersion interactions has made it difficult to properly describe π-interactions. However, the recently developed dispersion corrections for DFT have allowed us to include these dispersion interactions cost-effectively. We have investigated noncovalent interactions of various π-systems including aromatic-π, aliphatic-π, and non-π systems based on dispersion-corrected DFT (DFT-D). In addition, we have addressed the validity of DFT-D compared with the complete basis set (CBS) limit values of coupled cluster theory with single, double, and perturbative triple excitations [CCSD(T)] and Møller-Plesset second order perturbation theory (MP2). The DFT-D methods are still unable to predict the correct ordering in binding energies within the benzene dimer and the cyclohexane dimer. Nevertheless, the overall DFT-D predicted binding energies are in reasonable agreement with the CCSD(T) results. In most cases, results using the B97-D3 method closely reproduce the CCSD(T) results with the optimized energy-fitting parameters. On the other hand, vdW-DF2 and PBE0-TS methods estimate the dispersion energies from the calculated electron density. In these approximations, the interaction energies around the equilibrium point are reasonably close to the CCSD(T) results but sometimes slightly deviate from them because interaction energies were not particularly optimized with parameters. Nevertheless, because the electron cloud deforms when neighboring atoms/ions induce an electric field, both vdW-DF2 and PBE0-TS seem to properly reproduce the resulting change of dispersion interaction. Thus, improvements are needed in both vdW-DF2 and PBE0-TS to better describe the interaction energies, while the B97-D3 method could benefit from the incorporation of polarization-driven energy changes that show highly anisotropic behavior. Although the current DFT-D methods need further improvement, DFT-D is very useful for computer-aided molecular design. We have used these newly developed DFT-D methods to calculate the interactions between graphene and DNA nucleobases. Using DFT-D, we describe the design of molecular receptors of π-systems, graphene based electronic devices, metalloporphyrin half-metal based spintronic devices as graphene nanoribbon (GNR) analogs, and graphene based molecular electronic devices for DNA sequencing. DFT-D has also helped us understand quantum phenomena in materials and devices of π-systems including graphene.
Model based design of electronic throttle control
NASA Astrophysics Data System (ADS)
Cherian, Fenin; Ranjan, Ashish; Bhowmick, Pathikrit; Rammohan, A.
2017-11-01
With the advent of torque based Engine Management Systems, the precise control and robust performance of the throttle body becomes a key factor in the overall performance of the vehicle. Electronic Throttle Control provides benefits such as improved air-fuel ratio for improving the vehicle performance and lower exhausts emissions to meet the stringent emission norms. Modern vehicles facilitate various features such as Cruise Control, Traction Control, Electronic Stability Program and Pre-crash systems. These systems require control over engine power without driver intervention, which is not possible with conventional mechanical throttle system. Thus these systems are integrated to function with the electronic throttle control. However, due to inherent non-linearities in the throttle body, the control becomes a difficult task. In order to eliminate the influence of this hysteresis at the initial operation of the butterfly valve, a control to compensate the shortage must be added to the duty required for starting throttle operation when the initial operation is detected. Therefore, a lot of work is being done in this field to incorporate the various nonlinearities to achieve robust control. In our present work, the ETB was tested to verify the working of the system. Calibration of the TPS sensors was carried out in order to acquire accurate throttle opening angle. The response of the calibrated system was then plotted against a step input signal. A linear model of the ETB was prepared using Simulink and its response was compared with the experimental data to find out the initial deviation of the model from the actual system. To reduce this deviation, non-linearities from existing literature were introduced to the system and a response analysis was performed to check the deviation from the actual system. Based on this investigation, an introduction of a new nonlinearity parameter can be used in future to reduce the deviation further making the control of the ETB more precise and accurate.
Modulation of electronic structures of bases through DNA recognition of protein.
Hagiwara, Yohsuke; Kino, Hiori; Tateno, Masaru
2010-04-21
The effects of environmental structures on the electronic states of functional regions in a fully solvated DNA·protein complex were investigated using combined ab initio quantum mechanics/molecular mechanics calculations. A complex of a transcriptional factor, PU.1, and the target DNA was used for the calculations. The effects of solvent on the energies of molecular orbitals (MOs) of some DNA bases strongly correlate with the magnitude of masking of the DNA bases from the solvent by the protein. In the complex, PU.1 causes a variation in the magnitude among DNA bases by means of directly recognizing the DNA bases through hydrogen bonds and inducing structural changes of the DNA structure from the canonical one. Thus, the strong correlation found in this study is the first evidence showing the close quantitative relationship between recognition modes of DNA bases and the energy levels of the corresponding MOs. Thus, it has been revealed that the electronic state of each base is highly regulated and organized by the DNA recognition of the protein. Other biological macromolecular systems can be expected to also possess similar modulation mechanisms, suggesting that this finding provides a novel basis for the understanding for the regulation functions of biological macromolecular systems.
CAE "FOCUS" for modelling and simulating electron optics systems: development and application
NASA Astrophysics Data System (ADS)
Trubitsyn, Andrey; Grachev, Evgeny; Gurov, Victor; Bochkov, Ilya; Bochkov, Victor
2017-02-01
Electron optics is a theoretical base of scientific instrument engineering. Mathematical simulation of occurring processes is a base for contemporary design of complicated devices of the electron optics. Problems of the numerical mathematical simulation are effectively solved by CAE system means. CAE "FOCUS" developed by the authors includes fast and accurate methods: boundary element method (BEM) for the electric field calculation, Runge-Kutta- Fieghlberg method for the charged particle trajectory computation controlling an accuracy of calculations, original methods for search of terms for the angular and time-of-flight focusing. CAE "FOCUS" is organized as a collection of modules each of which solves an independent (sub) task. A range of physical and analytical devices, in particular a microfocus X-ray tube of high power, has been developed using this soft.
Reconfigurable microwave photonic in-phase and quadrature detector for frequency agile radar.
Emami, Hossein; Sarkhosh, Niusha
2014-06-01
A microwave photonic in-phase and quadrature detector is conceived and practically demonstrated. The detector has the ability to become electronically reconfigured to operate at any frequency over a wide range. This makes it an excellent candidate for frequency agile radars and other electronic warfare systems based on frequency hopping. The detector exhibits a very low amplitude and phase imbalance, which removes the need for any imbalance compensation technique. The system is designed based on the transversal filtering concept and reconfigurability is achieved via wavelength control in a dispersive fiber. The system operation was demonstrated over a frequency range of 3.5-35 GHz, with a maximum of -32 dB amplitude imbalance.
A hydrogel capsule as gate dielectric in flexible organic field-effect transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitru, L. M.; Manoli, K.; Magliulo, M.
2015-01-01
A jellified alginate based capsule serves as biocompatible and biodegradable electrolyte system to gate an organic field-effect transistor fabricated on a flexible substrate. Such a system allows operating thiophene based polymer transistors below 0.5 V through an electrical double layer formed across an ion-permeable polymeric electrolyte. Moreover, biological macro-molecules such as glucose-oxidase and streptavidin can enter into the gating capsules that serve also as delivery system. An enzymatic bio-reaction is shown to take place in the capsule and preliminary results on the measurement of the electronic responses promise for low-cost, low-power, flexible electronic bio-sensing applications using capsule-gated organic field-effect transistors.
Flat-panel detector, CCD cameras, and electron-beam-tube-based video for use in portal imaging
NASA Astrophysics Data System (ADS)
Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Way; Dallas, William J.
1998-07-01
This paper provides a comparison of some imaging parameters of four portal imaging systems at 6 MV: a flat panel detector, two CCD cameras and an electron beam tube based video camera. Measurements were made of signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. All systems have a linear response with respect to exposure, and with the exception of the electron beam tube based video camera, the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal-to-noise ratio, which is higher than that observed with both CCD-Cameras or with the electron beam tube based video camera. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The measurements of signal-and noise were complemented by images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center. These images were generated at an exposure of 1 MU. The flat-panel detector permits detection of Aluminum holes of 1.2 mm diameter and 1.6 mm depth, indicating the best signal-to-noise ratio. The CCD-cameras rank second and third in signal-to- noise ratio, permitting detection of Aluminum-holes of 1.2 mm diameter and 2.2 mm depth (CCD_1) and of 1.2 mm diameter and 3.2 mm depth (CCD_2) respectively, while the electron beam tube based video camera permits detection of only a hole of 1.2 mm diameter and 4.6 mm depth. Rank Order Filtering was applied to the raw images from the CCD-based systems in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-Camera and generate 'Salt and Pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise. The paper also presents data on the metal-phosphor's photon gain (the number of light-photons per interacting x-ray photon).
Mechanics and thermal management of stretchable inorganic electronics.
Song, Jizhou; Feng, Xue; Huang, Yonggang
2016-03-01
Stretchable electronics enables lots of novel applications ranging from wearable electronics, curvilinear electronics to bio-integrated therapeutic devices that are not possible through conventional electronics that is rigid and flat in nature. One effective strategy to realize stretchable electronics exploits the design of inorganic semiconductor material in a stretchable format on an elastomeric substrate. In this review, we summarize the advances in mechanics and thermal management of stretchable electronics based on inorganic semiconductor materials. The mechanics and thermal models are very helpful in understanding the underlying physics associated with these systems, and they also provide design guidelines for the development of stretchable inorganic electronics.
Mechanics and thermal management of stretchable inorganic electronics
Song, Jizhou; Feng, Xue; Huang, Yonggang
2016-01-01
Stretchable electronics enables lots of novel applications ranging from wearable electronics, curvilinear electronics to bio-integrated therapeutic devices that are not possible through conventional electronics that is rigid and flat in nature. One effective strategy to realize stretchable electronics exploits the design of inorganic semiconductor material in a stretchable format on an elastomeric substrate. In this review, we summarize the advances in mechanics and thermal management of stretchable electronics based on inorganic semiconductor materials. The mechanics and thermal models are very helpful in understanding the underlying physics associated with these systems, and they also provide design guidelines for the development of stretchable inorganic electronics. PMID:27547485
ETHERNET BASED EMBEDDED SYSTEM FOR FEL DIAGNOSTICS AND CONTROLS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jianxun Yan; Daniel Sexton; Steven Moore
2006-10-24
An Ethernet based embedded system has been developed to upgrade the Beam Viewer and Beam Position Monitor (BPM) systems within the free-electron laser (FEL) project at Jefferson Lab. The embedded microcontroller was mounted on the front-end I/O cards with software packages such as Experimental Physics and Industrial Control System (EPICS) and Real Time Executive for Multiprocessor System (RTEMS) running as an Input/Output Controller (IOC). By cross compiling with the EPICS, the RTEMS kernel, IOC device supports, and databases all of these can be downloaded into the microcontroller. The first version of the BPM electronics based on the embedded controller wasmore » built and is currently running in our FEL system. The new version of BPM that will use a Single Board IOC (SBIOC), which integrates with an Field Programming Gate Array (FPGA) and a ColdFire embedded microcontroller, is presently under development. The new system has the features of a low cost IOC, an open source real-time operating system, plug&play-like ease of installation and flexibility, and provides a much more localized solution.« less
Implementation of a web-based medication tracking system in a large academic medical center.
Calabrese, Sam V; Williams, Jonathan P
2012-10-01
Pharmacy workflow efficiencies achieved through the use of an electronic medication-tracking system are described. Medication dispensing turnaround times at the inpatient pharmacy of a large hospital were evaluated before and after transition from manual medication tracking to a Web-based tracking process involving sequential bar-code scanning and real-time monitoring of medication status. The transition was carried out in three phases: (1) a workflow analysis, including the identification of optimal points for medication scanning with hand-held wireless devices, (2) the phased implementation of an automated solution and associated hardware at a central dispensing pharmacy and three satellite locations, and (3) postimplementation data collection to evaluate the impact of the new tracking system and areas for improvement. Relative to the manual tracking method, electronic medication tracking allowed the capture of far more data points, enabling the pharmacy team to delineate the time required for each step of the medication dispensing process and to identify the steps most likely to involve delays. A comparison of baseline and postimplementation data showed substantial reductions in overall medication turnaround times with the use of the Web-based tracking system (time reductions of 45% and 22% at the central and satellite sites, respectively). In addition to more accurate projections and documentation of turnaround times, the Web-based tracking system has facilitated quality-improvement initiatives. Implementation of an electronic tracking system for monitoring the delivery of medications provided a comprehensive mechanism for calculating turnaround times and allowed the pharmacy to identify bottlenecks within the medication distribution system. Altering processes removed these bottlenecks and decreased delivery turnaround times.
Materials and processing approaches for foundry-compatible transient electronics.
Chang, Jan-Kai; Fang, Hui; Bower, Christopher A; Song, Enming; Yu, Xinge; Rogers, John A
2017-07-11
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for "green" electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are ( i ) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, ( ii ) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and ( iii ) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.
Materials and processing approaches for foundry-compatible transient electronics
NASA Astrophysics Data System (ADS)
Chang, Jan-Kai; Fang, Hui; Bower, Christopher A.; Song, Enming; Yu, Xinge; Rogers, John A.
2017-07-01
Foundry-based routes to transient silicon electronic devices have the potential to serve as the manufacturing basis for “green” electronic devices, biodegradable implants, hardware secure data storage systems, and unrecoverable remote devices. This article introduces materials and processing approaches that enable state-of-the-art silicon complementary metal-oxide-semiconductor (CMOS) foundries to be leveraged for high-performance, water-soluble forms of electronics. The key elements are (i) collections of biodegradable electronic materials (e.g., silicon, tungsten, silicon nitride, silicon dioxide) and device architectures that are compatible with manufacturing procedures currently used in the integrated circuit industry, (ii) release schemes and transfer printing methods for integration of multiple ultrathin components formed in this way onto biodegradable polymer substrates, and (iii) planarization and metallization techniques to yield interconnected and fully functional systems. Various CMOS devices and circuit elements created in this fashion and detailed measurements of their electrical characteristics highlight the capabilities. Accelerated dissolution studies in aqueous environments reveal the chemical kinetics associated with the underlying transient behaviors. The results demonstrate the technical feasibility for using foundry-based routes to sophisticated forms of transient electronic devices, with functional capabilities and cost structures that could support diverse applications in the biomedical, military, industrial, and consumer industries.
Im, Chae Ho; Kim, Changman; Song, Young Eun; Oh, Sang-Eun; Jeon, Byong-Hun; Kim, Jung Rae
2018-01-01
Conversion of C1 gas feedstock, including carbon monoxide (CO), into useful platform chemicals has attracted considerable interest in industrial biotechnology. Nevertheless, the low conversion yield and/or growth rate of CO-utilizing microbes make it difficult to develop a C1 gas biorefinery process. The Wood-Ljungdahl pathway which utilize CO is a pathway suffered from insufficient electron supply, in which the conversion can be increased further when an additional electron source like carbohydrate or hydrogen is provided. In this study, electrode-based electron transference using a bioelectrochemical system (BES) was examined to compensate for the insufficient reducing equivalent and increase the production of volatile fatty acids. The BES including neutral red (BES-NR), which facilitated electron transfer between bacteria and electrode, was compared with BES without neutral red and open circuit control. The coulombic efficiency based on the current input to the system and the electrons recovered into VFAs, was significantly higher in BES-NR than the control. These results suggest that the carbon electrode provides a platform to regulate the redox balance for improving the bioconversion of CO, and amending the conventional C1 gas fermentation. Copyright © 2017 Elsevier Ltd. All rights reserved.
System for Cooling of Electronic Components
NASA Astrophysics Data System (ADS)
Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.
2017-01-01
Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.
High Temperature Wireless Communication And Electronics For Harsh Environment Applications
NASA Technical Reports Server (NTRS)
Hunter, G. W.; Neudeck, P. G.; Beheim, G. M.; Ponchak, G. E.; Chen, L.-Y
2007-01-01
In order for future aerospace propulsion systems to meet the increasing requirements for decreased maintenance, improved capability, and increased safety, the inclusion of intelligence into the propulsion system design and operation becomes necessary. These propulsion systems will have to incorporate technology that will monitor propulsion component conditions, analyze the incoming data, and modify operating parameters to optimize propulsion system operations. This implies the development of sensors, actuators, and electronics, with associated packaging, that will be able to operate under the harsh environments present in an engine. However, given the harsh environments inherent in propulsion systems, the development of engine-compatible electronics and sensors is not straightforward. The ability of a sensor system to operate in a given environment often depends as much on the technologies supporting the sensor element as the element itself. If the supporting technology cannot handle the application, then no matter how good the sensor is itself, the sensor system will fail. An example is high temperature environments where supporting technologies are often not capable of operation in engine conditions. Further, for every sensor going into an engine environment, i.e., for every new piece of hardware that improves the in-situ intelligence of the components, communication wires almost always must follow. The communication wires may be within or between parts, or from the engine to the controller. As more hardware is added, more wires, weight, complexity, and potential for unreliability is also introduced. Thus, wireless communication combined with in-situ processing of data would significantly improve the ability to include sensors into high temperature systems and thus lead toward more intelligent engine systems. NASA Glenn Research Center (GRC) is presently leading the development of electronics, communication systems, and sensors capable of prolonged stable operation in harsh 500C environments. This has included world record operation of SiC-based transistor technology (including packaging) that has demonstrated continuous electrical operation at 500C for over 2000 hours. Based on SiC electronics, development of high temperature wireless communication has been on-going. This work has concentrated on maturing the SiC electronic devices for communication purposes as well as the passive components such as resistors and capacitors needed to enable a high temperature wireless system. The objective is to eliminate wires associated with high temperature sensors which add weight to a vehicle and can be a cause of sensor unreliability. This paper discusses the development of SiC based electronics and wireless communications technology for harsh environment applications such as propulsion health management systems and in Venus missions. A brief overview of the future directions in sensor technology is given including maturing of near-room temperature "Lick and Stick" leak sensor technology for possible implementation in the Crew Launch Vehicle program. Then an overview of high temperature electronics and the development of high temperature communication systems is presented. The maturity of related technologies such as sensor and packaging will also be discussed. It is concluded that a significant component of efforts to improve the intelligence of harsh environment operating systems is the development and implementation of high temperature wireless technology
Heo, Jae Sang; Eom, Jimi; Kim, Yong-Hoon; Park, Sung Kyu
2018-01-01
Wearable electronics are emerging as a platform for next-generation, human-friendly, electronic devices. A new class of devices with various functionality and amenability for the human body is essential. These new conceptual devices are likely to be a set of various functional devices such as displays, sensors, batteries, etc., which have quite different working conditions, on or in the human body. In these aspects, electronic textiles seem to be a highly suitable possibility, due to the unique characteristics of textiles such as being light weight and flexible and their inherent warmth and the property to conform. Therefore, e-textiles have evolved into fiber-based electronic apparel or body attachable types in order to foster significant industrialization of the key components with adaptable formats. Although the advances are noteworthy, their electrical performance and device features are still unsatisfactory for consumer level e-textile systems. To solve these issues, innovative structural and material designs, and novel processing technologies have been introduced into e-textile systems. Recently reported and significantly developed functional materials and devices are summarized, including their enhanced optoelectrical and mechanical properties. Furthermore, the remaining challenges are discussed, and effective strategies to facilitate the full realization of e-textile systems are suggested. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Delle Site, Luigi
2018-01-01
A theoretical scheme for the treatment of an open molecular system with electrons and nuclei is proposed. The idea is based on the Grand Canonical description of a quantum region embedded in a classical reservoir of molecules. Electronic properties of the quantum region are calculated at constant electronic chemical potential equal to that of the corresponding (large) bulk system treated at full quantum level. Instead, the exchange of molecules between the quantum region and the classical environment occurs at the chemical potential of the macroscopic thermodynamic conditions. The Grand Canonical Adaptive Resolution Scheme is proposed for the treatment of the classical environment; such an approach can treat the exchange of molecules according to first principles of statistical mechanics and thermodynamic. The overall scheme is build on the basis of physical consistency, with the corresponding definition of numerical criteria of control of the approximations implied by the coupling. Given the wide range of expertise required, this work has the intention of providing guiding principles for the construction of a well founded computational protocol for actual multiscale simulations from the electronic to the mesoscopic scale.
Solving the Capacitive Effect in the High-Frequency sweep for Langmuir Probe in SYMPLE
NASA Astrophysics Data System (ADS)
Pramila; Patel, J. J.; Rajpal, R.; Hansalia, C. J.; Anitha, V. P.; Sathyanarayana, K.
2017-04-01
Langmuir Probe based measurements need to be routinely carried out to measure various plasma parameters such as the electron density (ne), the electron temperature (Te), the floating potential (Vf), and the plasma potential (Vp). For this, the diagnostic electronics along with the biasing power supplies is installed in standard industrial racks with a 2KV isolation transformer. The Signal Conditioning Electronics (SCE) system is populated inside the 4U-chassis based system with the front-end electronics, designed using high common mode differential amplifiers which can measure small differential signal in presence of high common mode dc- bias or ac ramp voltage used for biasing the probes. DC-biasing of the probe is most common method for getting its I-V characteristic but method of biasing the probe with a sweep at high frequency encounters the problem of corruption of signal due to capacitive effect specially when the sweep period and the discharge time is very fast and die down in the order of μs or lesser. This paper presents and summarises the method of removing such effects encountered while measuring the probe current.
Electronic health systems: challenges faced by hospital-based providers.
Agno, Christina Farala; Guo, Kristina L
2013-01-01
The purpose of this article is to discuss specific challenges faced by hospitals adopting the use of electronic medical records and implementing electronic health record (EHR) systems. Challenges include user and information technology support; ease of technical use and software interface capabilities; compliance; and financial, legal, workforce training, and development issues. Electronic health records are essential to preventing medical errors, increasing consumer trust and use of the health system, and improving quality and overall efficiency. Government efforts are focused on ways to accelerate the adoption and use of EHRs as a means of facilitating data sharing, protecting health information privacy and security, quickly identifying emerging public health threats, and reducing medical errors and health care costs and increasing quality of care. This article will discuss physician and nonphysician staff training before, during, and after implementation; the effective use of EHR systems' technical features; the selection of a capable and secure EHR system; and the development of collaborative system implementation. Strategies that are necessary to help health care providers achieve successful implementation of EHR systems will be addressed.
Graphene-diamond interface: Gap opening and electronic spin injection
NASA Astrophysics Data System (ADS)
Ma, Yandong; Dai, Ying; Guo, Meng; Huang, Baibiao
2012-06-01
Creating a finite band gap, injecting electronic spin, and finding a suitable substrate are the three important challenges for building graphene-based devices. Here, first-principles calculations are performed to investigate the electronic and magnetic properties of graphene adsorbed on the (111) surface of diamond, which is synthesized experimentally [Nature10.1038/nature09979 472, 74 (2011); J. Appl. Phys.10.1063/1.3627370 110, 044324 (2011); Nano Lett.10.1021/nl204545q 12, 1603 (2012); ACS Nano10.1021/nn204362p 6, 1018 (2012)]. Our results reveal that the graphene adsorbed on the diamond surface is a semiconductor with a finite gap depending on the adsorption arrangements due to the variation of on-site energy induced by the diamond surface, with the extra advantage of maintaining main characters of the linear band dispersion of graphene. More interestingly, different from typical graphene/semiconductor hybrid systems, we find that electronic spin can arise ``intrinsically'' in graphene owing to the exchange proximity interaction between electrons in graphene and localized electrons in the diamond surface rather than the characteristic graphene states. These predications strongly revive this new synthesized system as a viable candidate to overcome all the aforementioned challenges, providing an ideal platform for future graphene-based electronics.
A new approach in the development of quality management systems for (micro)electronics
NASA Astrophysics Data System (ADS)
Bacivarov, Ioan C.; Bacivarov, Angelica; Gherghina, Cǎtǎlina
2016-12-01
This paper presents the new approach in the analysis of the Quality Management Systems (QMS) of companies, based on the revised standard ISO 9001:2015. In the first part of the paper, QMS based on ISO 9001 certification are introduced; the changes and the updates proposed for the new version of ISO 9001:2015 are critically analyzed, based on the documents elaborated by ISO/TC 176. The approach based on ISO 9001:2015 could be considered as "beginning of a new era in development of quality management systems". A comparison between the between the "old" standard ISO 9001:2008 and the "new" standard ISO 9001:2015 is made. In the second part of the paper, steps to be followed in a company to implement this new standard are presented. A peculiar attention is given to the new concept of risk-based thinking in order to support and improve application of the process based approach. The authors conclude that, by considering risk throughout the organization the likelihood of achieving stated objectives is improved, output is more consistent and customers can be confident that they will receive the expected results. Finally, the benefits of the new approach in the development of quality management systems are outlined, as well as how they are reflected in the management of companies in general and those in electronics field, in particular. As demonstrated in this paper, well understood and properly applied, the new approach based on the revised standard ISO9001:2015 could offer a better quality management for companies operating in electronics and beyond.
Tweya, Hannock; Feldacker, Caryl; Gadabu, Oliver Jintha; Ng'ambi, Wingston; Mumba, Soyapi L; Phiri, Dave; Kamvazina, Luke; Mwakilama, Shawo; Kanyerere, Henry; Keiser, Olivia; Mwafilaso, Johnbosco; Kamba, Chancy; Egger, Matthias; Jahn, Andreas; Simwaka, Bertha; Phiri, Sam
2016-03-05
Implementation of user-friendly, real-time, electronic medical records for patient management may lead to improved adherence to clinical guidelines and improved quality of patient care. We detail the systematic, iterative process that implementation partners, Lighthouse clinic and Baobab Health Trust, employed to develop and implement a point-of-care electronic medical records system in an integrated, public clinic in Malawi that serves HIV-infected and tuberculosis (TB) patients. Baobab Health Trust, the system developers, conducted a series of technical and clinical meetings with Lighthouse and Ministry of Health to determine specifications. Multiple pre-testing sessions assessed patient flow, question clarity, information sequencing, and verified compliance to national guidelines. Final components of the TB/HIV electronic medical records system include: patient demographics; anthropometric measurements; laboratory samples and results; HIV testing; WHO clinical staging; TB diagnosis; family planning; clinical review; and drug dispensing. Our experience suggests that an electronic medical records system can improve patient management, enhance integration of TB/HIV services, and improve provider decision-making. However, despite sufficient funding and motivation, several challenges delayed system launch including: expansion of system components to include of HIV testing and counseling services; changes in the national antiretroviral treatment guidelines that required system revision; and low confidence to use the system among new healthcare workers. To ensure a more robust and agile system that met all stakeholder and user needs, our electronic medical records launch was delayed more than a year. Open communication with stakeholders, careful consideration of ongoing provider input, and a well-functioning, backup, paper-based TB registry helped ensure successful implementation and sustainability of the system. Additional, on-site, technical support provided reassurance and swift problem-solving during the extended launch period. Even when system users are closely involved in the design and development of an electronic medical record system, it is critical to allow sufficient time for software development, solicitation of detailed feedback from both users and stakeholders, and iterative system revisions to successfully transition from paper to point-of-care electronic medical records. For those in low-resource settings, electronic medical records for integrated care is a possible and positive innovation.
Microcomputer-controlled world time display for public area viewing
NASA Astrophysics Data System (ADS)
Yep, S.; Rashidian, M.
1982-05-01
The design, development, and implementation of a microcomputer-controlled world clock is discussed. The system, designated international Time Display System (ITDS), integrates a Geochron Calendar Map and a microcomputer-based digital display to automatically compensate for daylight savings time, leap year, and time zone differences. An in-depth technical description of the design and development of the electronic hardware, firmware, and software systems is provided. Reference material on the time zones, fabrication techniques, and electronic subsystems are also provided.
Yin, Ge; Sako, Hiroshi; Gubbala, Ramesh V; Ueda, Shigenori; Yamaguchi, Akira; Abe, Hideki; Miyauchi, Masahiro
2018-04-17
Selective carbon dioxide photoreduction to produce formic acid was achieved under visible light irradiation using water molecules as electron donors, similar to natural plants, based on the construction of a Z-scheme light harvesting system modified with a Cu-Zn alloy nanoparticle co-catalyst. The faradaic efficiency of our Z-scheme system for HCOOH generation was over 50% under visible light irradiation.
ERIC Educational Resources Information Center
Lee, Yee Ming; Kwon, Junehee; Park, Eunhye; Wang, Yujia; Rushing, Keith
2017-01-01
Purpose/Objectives: This study investigated the use of electronic and paper-based point-of-service (POS) systems in school nutrition programs (SNPs), including associated challenges and the desired skills and existing training practices for personnel handling such systems. Methods: A questionnaire was developed based on interviews with 25 SNP…
Flexible and Secure Computer-Based Assessment Using a Single Zip Disk
ERIC Educational Resources Information Center
Ko, C. C.; Cheng, C. D.
2008-01-01
Electronic examination systems, which include Internet-based system, require extremely complicated installation, configuration and maintenance of software as well as hardware. In this paper, we present the design and development of a flexible, easy-to-use and secure examination system (e-Test), in which any commonly used computer can be used as a…
Integrating knowledge based functionality in commercial hospital information systems.
Müller, M L; Ganslandt, T; Eich, H P; Lang, K; Ohmann, C; Prokosch, H U
2000-01-01
Successful integration of knowledge-based functions in the electronic patient record depends on direct and context-sensitive accessibility and availability to clinicians and must suit their workflow. In this paper we describe an exemplary integration of an existing standalone scoring system for acute abdominal pain into two different commercial hospital information systems using Java/Corba technolgy.
Chakrabarty, Soubhik; Wasey, A H M Abdul; Thapa, Ranjit; Das, G P
2018-08-24
To realize a graphene based spintronic device, the prime challenge is to control the electronic structure of edges. In this work we find the origin of the spin filtering property in edge boron doped zigzag graphene nanoribbons (ZGNRs) and provide a guide to preparing a graphene based next-generation spin filter based device. Here, we unveil the role of orbitals (p-electron) to tune the electronic, magnetic and transport properties of edge B doped ZGNRs. When all the edge carbon atoms at one of the edges of ZGNRs are replaced by B (100% edge B doping), the system undergoes a semiconductor to metal transition. The role of passivation of the edge with single/double atomic hydrogen on the electronic properties and its relation with the p-electron is correlated in-depth. 50% edge B doped ZGNRs (50% of the edge C atoms at one of the edges are replaced by B) also show half-metallicity when the doped edge is left unpassivated. The half-metallic systems show 100% spin filtering efficiency for a wide range of bias voltages. Zero-bias transmission function of the other configurations shows asymmetric behavior for the up and down spin channels, thereby indicating their possible application potential in nano-spintronics.
Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics.
Yu, Lili; Lee, Yi-Hsien; Ling, Xi; Santos, Elton J G; Shin, Yong Cheol; Lin, Yuxuan; Dubey, Madan; Kaxiras, Efthimios; Kong, Jing; Wang, Han; Palacios, Tomás
2014-06-11
Two-dimensional (2D) materials have generated great interest in the past few years as a new toolbox for electronics. This family of materials includes, among others, metallic graphene, semiconducting transition metal dichalcogenides (such as MoS2), and insulating boron nitride. These materials and their heterostructures offer excellent mechanical flexibility, optical transparency, and favorable transport properties for realizing electronic, sensing, and optical systems on arbitrary surfaces. In this paper, we demonstrate a novel technology for constructing large-scale electronic systems based on graphene/molybdenum disulfide (MoS2) heterostructures grown by chemical vapor deposition. We have fabricated high-performance devices and circuits based on this heterostructure, where MoS2 is used as the transistor channel and graphene as contact electrodes and circuit interconnects. We provide a systematic comparison of the graphene/MoS2 heterojunction contact to more traditional MoS2-metal junctions, as well as a theoretical investigation, using density functional theory, of the origin of the Schottky barrier height. The tunability of the graphene work function with electrostatic doping significantly improves the ohmic contact to MoS2. These high-performance large-scale devices and circuits based on this 2D heterostructure pave the way for practical flexible transparent electronics.
Superconductor Digital Electronics: -- Current Status, Future Prospects
NASA Astrophysics Data System (ADS)
Mukhanov, Oleg
2011-03-01
Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The voltage bias regulation, determined by SFQ clock, enables the zero-power at zero-activity regimes, indispensable for sensor and quantum bit readout.
NASA Astrophysics Data System (ADS)
Cave, Robert J.; Newton, Marshall D.
1996-01-01
A new method for the calculation of the electronic coupling matrix element for electron transfer processes is introduced and results for several systems are presented. The method can be applied to ground and excited state systems and can be used in cases where several states interact strongly. Within the set of states chosen it is a non-perturbative treatment, and can be implemented using quantities obtained solely in terms of the adiabatic states. Several applications based on quantum chemical calculations are briefly presented. Finally, since quantities for adiabatic states are the only input to the method, it can also be used with purely experimental data to estimate electron transfer matrix elements.
Thin film transistors for flexible electronics: contacts, dielectrics and semiconductors.
Quevedo-Lopez, M A; Wondmagegn, W T; Alshareef, H N; Ramirez-Bon, R; Gnade, B E
2011-06-01
The development of low temperature, thin film transistor processes that have enabled flexible displays also present opportunities for flexible electronics and flexible integrated systems. Of particular interest are possible applications in flexible sensor systems for unattended ground sensors, smart medical bandages, electronic ID tags for geo-location, conformal antennas, radiation detectors, etc. In this paper, we review the impact of gate dielectrics, contacts and semiconductor materials on thin film transistors for flexible electronics applications. We present our recent results to fully integrate hybrid complementary metal oxide semiconductors comprising inorganic and organic-based materials. In particular, we demonstrate novel gate dielectric stacks and semiconducting materials. The impact of source and drain contacts on device performance is also discussed.
Validation study of an electronic method of condensed outcomes tools reporting in orthopaedics.
Farr, Jack; Verma, Nikhil; Cole, Brian J
2013-12-01
Patient-reported outcomes (PRO) instruments are a vital source of data for evaluating the efficacy of medical treatments. Historically, outcomes instruments have been designed, validated, and implemented as paper-based questionnaires. The collection of paper-based outcomes information may result in patients becoming fatigued as they respond to redundant questions. This problem is exacerbated when multiple PRO measures are provided to a single patient. In addition, the management and analysis of data collected in paper format involves labor-intensive processes to score and render the data analyzable. Computer-based outcomes systems have the potential to mitigate these problems by reformatting multiple outcomes tools into a single, user-friendly tool.The study aimed to determine whether the electronic outcomes system presented produces results comparable with the test-retest correlations reported for the corresponding orthopedic paper-based outcomes instruments.The study is designed as a crossover study based on consecutive orthopaedic patients arriving at one of two designated orthopedic knee clinics.Patients were assigned to complete either a paper or a computer-administered questionnaire based on a similar set of questions (Knee injury and Osteoarthritis Outcome Score, International Knee Documentation Committee form, 36-Item Short Form survey, version 1, Lysholm Knee Scoring Scale). Each patient completed the same surveys using the other instrument, so that all patients had completed both paper and electronic versions. Correlations between the results from the two modes were studied and compared with test-retest data from the original validation studies.The original validation studies established test-retest reliability by computing correlation coefficients for two administrations of the paper instrument. Those correlation coefficients were all in the range of 0.7 to 0.9, which was deemed satisfactory. The present study computed correlation coefficients between the paper and electronic modes of administration. These correlation coefficients demonstrated similar results with an overall value of 0.86.On the basis of the correlation coefficients, the electronic application of commonly used knee outcome scores compare variably to the traditional paper variants with a high rate of test-retest correlation. This equivalence supports the use of the condensed electronic outcomes system and validates comparison of scores between electronic and paper modes. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Converting information from paper to optical media
NASA Technical Reports Server (NTRS)
Deaton, Timothy N.; Tiller, Bruce K.
1990-01-01
The technology of converting large amounts of paper into electronic form is described for use in information management systems based on optical disk storage. The space savings and photographic nature of microfiche are combined in these systems with the advantages of computerized data (fast and flexible retrieval of graphics and text, simultaneous instant access for multiple users, and easy manipulation of data). It is noted that electronic imaging systems offer a unique opportunity to dramatically increase the productivity and profitability of information systems. Particular attention is given to the CALS (Computer-aided Aquisition and Logistic Support) system.
NASA Astrophysics Data System (ADS)
Enoki, Toshiaki; Kiguchi, Manabu
2018-03-01
Interest in utilizing organic molecules to fabricate electronic materials has existed ever since organic (molecular) semiconductors were first discovered in the 1950s. Since then, scientists have devoted serious effort to the creation of various molecule-based electronic systems, such as molecular metals and molecular superconductors. Single-molecule electronics and the associated basic science have emerged over the past two decades and provided hope for the development of highly integrated molecule-based electronic devices in the future (after the Si-based technology era has ended). Here, nanographenes (nano-sized graphene) with atomically precise structures are among the most promising molecules that can be utilized for electronic/spintronic devices. To manipulate single small molecules for an electronic device, a single molecular junction has been developed. It is a powerful tool that allows even small molecules to be utilized. External electric, magnetic, chemical, and mechanical perturbations can change the physical and chemical properties of molecules in a way that is different from bulk materials. Therefore, the various functionalities of molecules, along with changes induced by external perturbations, allows us to create electronic devices that we cannot create using current top-down Si-based technology. Future challenges that involve the incorporation of condensed matter physics, quantum chemistry calculations, organic synthetic chemistry, and electronic device engineering are expected to open a new era in single-molecule device electronic technology.
Telesoftware. CET Information Sheet No. 3.
ERIC Educational Resources Information Center
Council for Educational Technology, London (England).
Telesoftware provides the transmission of computer programs from one computer to another by either broadcast radio or television via telephone lines and offers a national electronic system for the distribution of computer programs. Telephone based telesoftware can be based on any viewdata system or locally established telephone lines between…
NASA Technical Reports Server (NTRS)
Shaver, Charles; Williamson, Michael
1986-01-01
The NASA Ames Research Center sponsors a research program for the investigation of Intelligent Flight Control Actuation systems. The use of artificial intelligence techniques in conjunction with algorithmic techniques for autonomous, decentralized fault management of flight-control actuation systems is explored under this program. The design, development, and operation of the interface for laboratory investigation of this program is documented. The interface, architecturally based on the Intel 8751 microcontroller, is an interrupt-driven system designed to receive a digital message from an ultrareliable fault-tolerant control system (UFTCS). The interface links the UFTCS to an electronic servo-control unit, which controls a set of hydraulic actuators. It was necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal sources for testing the equipment.
Roudsari, AV; Gordon, C; Gray, JA Muir
2001-01-01
Background In 1998, the U.K. National Health Service Information for Health Strategy proposed the implementation of a National electronic Library for Health to provide clinicians, healthcare managers and planners, patients and the public with easy, round the clock access to high quality, up-to-date electronic information on health and healthcare. The Virtual Branch Libraries are among the most important components of the National electronic Library for Health . They aim at creating online knowledge based communities, each concerned with some specific clinical and other health-related topics. Objectives This study is about the envisaged Dermatology Virtual Branch Libraries of the National electronic Library for Health . It aims at selecting suitable dermatology Web resources for inclusion in the forthcoming Virtual Branch Libraries after establishing preliminary quality benchmarking rules for this task. Psoriasis, being a common dermatological condition, has been chosen as a starting point. Methods Because quality is a principal concern of the National electronic Library for Health, the study includes a review of the major quality benchmarking systems available today for assessing health-related Web sites. The methodology of developing a quality benchmarking system has been also reviewed. Aided by metasearch Web tools, candidate resources were hand-selected in light of the reviewed benchmarking systems and specific criteria set by the authors. Results Over 90 professional and patient-oriented Web resources on psoriasis and dermatology in general are suggested for inclusion in the forthcoming Dermatology Virtual Branch Libraries. The idea of an all-in knowledge-hallmarking instrument for the National electronic Library for Health is also proposed based on the reviewed quality benchmarking systems. Conclusions Skilled, methodical, organized human reviewing, selection and filtering based on well-defined quality appraisal criteria seems likely to be the key ingredient in the envisaged National electronic Library for Health service. Furthermore, by promoting the application of agreed quality guidelines and codes of ethics by all health information providers and not just within the National electronic Library for Health, the overall quality of the Web will improve with time and the Web will ultimately become a reliable and integral part of the care space. PMID:11720947
ERIC Educational Resources Information Center
Palme, Jacob
The four papers contained in this document provide: (1) a survey of computer based mail and conference systems; (2) an evaluation of systems for both individually addressed mail and group addressing through conferences and distribution lists; (3) a discussion of various methods of structuring the text data in existing systems; and (4) a…
Radiation Field Forming for Industrial Electron Accelerators Using Rare-Earth Magnetic Materials
NASA Astrophysics Data System (ADS)
Ermakov, A. N.; Khankin, V. V.; Shvedunov, N. V.; Shvedunov, V. I.; Yurov, D. S.
2016-09-01
The article describes the radiation field forming system for industrial electron accelerators, which would have uniform distribution of linear charge density at the surface of an item being irradiated perpendicular to the direction of its motion. Its main element is non-linear quadrupole lens made with the use of rare-earth magnetic materials. The proposed system has a number of advantages over traditional beam scanning systems that use electromagnets, including easier product irradiation planning, lower instantaneous local dose rate, smaller size, lower cost. Provided are the calculation results for a 10 MeV industrial electron accelerator, as well as measurement results for current distribution in the prototype build based on calculations.
Electronic warfare - The next 15 years
NASA Astrophysics Data System (ADS)
Quirk, T. G.
1985-07-01
On the basis of current trends, it is projected that the EW systems available by the year 2000, including avionics, will be distinguished by their compatibility with stealthy vehicular platforms, high adaptability to combat scenarios, vehicle-conformal containers, and multifunction characteristics. Transmitters and receivers will perhaps be contained within a single IC, and AI techniques may be able to yield such capabilities as instantaneous signal digitalization. Fusion of electronic units will allow a single system to accommodate navigation, identification, communications, countermeasures, and fire control functions. VHSIC and GaAs electronics appear to be the two most fundamental technological bases for the aforementioned developments. The adaptive response of these systems is noted to radically depend on the pace of software development.
Manz, Stephanie; Casandruc, Albert; Zhang, Dongfang; Zhong, Yinpeng; Loch, Rolf A; Marx, Alexander; Hasegawa, Taisuke; Liu, Lai Chung; Bayesteh, Shima; Delsim-Hashemi, Hossein; Hoffmann, Matthias; Felber, Matthias; Hachmann, Max; Mayet, Frank; Hirscht, Julian; Keskin, Sercan; Hada, Masaki; Epp, Sascha W; Flöttmann, Klaus; Miller, R J Dwayne
2015-01-01
The long held objective of directly observing atomic motions during the defining moments of chemistry has been achieved based on ultrabright electron sources that have given rise to a new field of atomically resolved structural dynamics. This class of experiments requires not only simultaneous sub-atomic spatial resolution with temporal resolution on the 100 femtosecond time scale but also has brightness requirements approaching single shot atomic resolution conditions. The brightness condition is in recognition that chemistry leads generally to irreversible changes in structure during the experimental conditions and that the nanoscale thin samples needed for electron structural probes pose upper limits to the available sample or "film" for atomic movies. Even in the case of reversible systems, the degree of excitation and thermal effects require the brightest sources possible for a given space-time resolution to observe the structural changes above background. Further progress in the field, particularly to the study of biological systems and solution reaction chemistry, requires increased brightness and spatial coherence, as well as an ability to tune the electron scattering cross-section to meet sample constraints. The electron bunch density or intensity depends directly on the magnitude of the extraction field for photoemitted electron sources and electron energy distribution in the transverse and longitudinal planes of electron propagation. This work examines the fundamental limits to optimizing these parameters based on relativistic electron sources using re-bunching cavity concepts that are now capable of achieving 10 femtosecond time scale resolution to capture the fastest nuclear motions. This analysis is given for both diffraction and real space imaging of structural dynamics in which there are several orders of magnitude higher space-time resolution with diffraction methods. The first experimental results from the Relativistic Electron Gun for Atomic Exploration (REGAE) are given that show the significantly reduced multiple electron scattering problem in this regime, which opens up micron scale systems, notably solution phase chemistry, to atomically resolved structural dynamics.
``Making the Molecular Movie'': First Frames
NASA Astrophysics Data System (ADS)
Miller, R. J. Dwayne
2011-03-01
Femtosecond Electron Diffraction has enabled atomic resolution to structural changes as they occur, essentially watching atoms move in real time--directly observe transition states. This experiment has been referred to as ``making the molecular movie'' and has been previously discussed in the context of a gedanken experiment. With the recent development of femtosecond electron pulses with sufficient number density to execute single shot structure determinations, this experiment has been finally realized. A new concept in electron pulse generation was developed based on a solution to the N-body electron propagation problem involving up to 10,000 interacting electrons that has led to a new generation of extremely bright electron pulsed sources that minimizes space charge broadening effects. Previously thought intractable problems of determining t=0 and fully characterizing electron pulses on the femtosecond time scale have now been solved through the use of the laser pondermotive potential to provide a time dependent scattering source. Synchronization of electron probe and laser excitation pulses is now possible with an accuracy of 10 femtoseconds to follow even the fastest nuclear motions. The camera for the ``molecular movie'' is well in hand based on high bunch charge electron sources. Several movies depicting atomic motions during passage through structural transitions will be shown. Atomic level views of the simplest possible structural transition, melting, will be presented for a number of systems in which both thermal and purely electronically driven atomic displacements can be correlated to the degree of directional bonding. Optical manipulation of charge distributions and effects on interatomic forces/bonding can be directly observed through the ensuing atomic motions. New phenomena involving strongly correlated electron systems will be presented in which an exceptionally cooperative phase transitions has been observed. The primitive origin of molecular cooperativity has also been discovered in recent studies of molecular crystals. These new developments will be discussed in the context of developing the necessary technology to directly observe the structure-function correlation in biomolecules--the fundamental molecular basis of biological systems.
NASA Astrophysics Data System (ADS)
Wang, Xi Vincent; Wang, Lihui
2017-08-01
Cloud computing is the new enabling technology that offers centralised computing, flexible data storage and scalable services. In the manufacturing context, it is possible to utilise the Cloud technology to integrate and provide industrial resources and capabilities in terms of Cloud services. In this paper, a function block-based integration mechanism is developed to connect various types of production resources. A Cloud-based architecture is also deployed to offer a service pool which maintains these resources as production services. The proposed system provides a flexible and integrated information environment for the Cloud-based production system. As a specific type of manufacturing, Waste Electrical and Electronic Equipment (WEEE) remanufacturing experiences difficulties in system integration, information exchange and resource management. In this research, WEEE is selected as the example of Internet of Things to demonstrate how the obstacles and bottlenecks are overcome with the help of Cloud-based informatics approach. In the case studies, the WEEE recycle/recovery capabilities are also integrated and deployed as flexible Cloud services. Supporting mechanisms and technologies are presented and evaluated towards the end of the paper.
Collaborative Point Paper on Border Surveillance Technology
2007-06-01
Systems PLC LORHIS (Long Range Hyperspectral Imaging System ) can be configured for either manned or unmanned aircraft to automatically detect and...Airships, and/or Aerostats, (RF, Electro-Optical, Infrared, Video) • Land- based Sensor Systems (Attended/Mobile and Unattended: e.g., CCD, Motion, Acoustic...electronic surveillance technologies for intrusion detection and warning. These ground- based systems are primarily short-range, up to around 500 meters
A home-made system for IPCE measurement of standard and dye-sensitized solar cells.
Palma, Giuseppina; Cozzarini, Luca; Capria, Ennio; Fraleoni-Morgera, Alessandro
2015-01-01
A home-made system for incident photon-to-electron conversion efficiency (IPCE) characterization, based on a double-beam UV-Vis spectrophotometer, has been set up. In addition to its low cost (compared to the commercially available apparatuses), the double-beam configuration gives the advantage to measure, autonomously and with no need for supplementary equipment, the lamp power in real time, compensating possible variations of the spectral emission intensity and quality, thus reducing measurement times. To manage the optical and electronic components of the system, a custom software has been developed. Validations carried out on a common silicon-based photodiode and on a dye-sensitized solar cell confirm the possibility to adopt this system for determining the IPCE of solar cells, including dye-sensitized ones.
NASA Astrophysics Data System (ADS)
Yamaguchi, Masahiro; Haneishi, Hideaki; Fukuda, Hiroyuki; Kishimoto, Junko; Kanazawa, Hiroshi; Tsuchida, Masaru; Iwama, Ryo; Ohyama, Nagaaki
2006-01-01
In addition to the great advancement of high-resolution and large-screen imaging technology, the issue of color is now receiving considerable attention as another aspect than the image resolution. It is difficult to reproduce the original color of subject in conventional imaging systems, and that obstructs the applications of visual communication systems in telemedicine, electronic commerce, and digital museum. To breakthrough the limitation of conventional RGB 3-primary systems, "Natural Vision" project aims at an innovative video and still-image communication technology with high-fidelity color reproduction capability, based on spectral information. This paper summarizes the results of NV project including the development of multispectral and multiprimary imaging technologies and the experimental investigations on the applications to medicine, digital archives, electronic commerce, and computer graphics.
Electronic Self-report Assessment--Cancer (ESRA-C): Working towards an integrated survey system.
Karras, Bryant T; Wolpin, Seth; Lober, William B; Bush, Nigel; Fann, Jesse R; Berry, Donna L
2006-01-01
The Clinical Informatics Research Group and Biobehavioral Nursing and Health Systems at the University of Washington are working with interdisciplinary teams to improve patient care and tracking of patient-reported symptoms and outcomes by creating an extensible web-based survey and intervention platform. The findings and cumulative experience from these processes have led to incremental improvements and variations in each new implementation of the platform. This paper presents progress in the first year of a three-year NIH study entitled Electronic Self Report Assessment--Cancer (ESRA-C). The project's goals are to enhance and evaluate the web-based computerized patient self-reporting and assessment system at the Seattle Cancer Care Alliance. Preliminary work and lessons learned in the modification of the platform and enhancements to the system will be described.
An object-oriented mobile health system with usability features.
Escarfullet, Krystle; Moore, Cantera; Tucker, Shari; Wei, June
2012-01-01
Mobile health (m-health) comprises the concept of utilising mobile devices to carry out the task of viewing electronic medical records, reserving medical appointments with a patient's medical provider and electronically refilling prescriptions. This paper aims at developing a m-health system to improve usability from a user's perspective. Specifically, it first developed a m-health model by logically linking characteristics of the m-health system together based on information flows. Then, the system requirements were collected by using a developed questionnaire. These requirements were structured and further in-depth analysis was conducted by using an object-oriented approach based on unified modelling language, such as use-case, sequence and analysis class diagrams. This research will be beneficial to decision makers and developers in the mobile healthcare industry.
A system of {sup 99m}Tc production based on distributed electron accelerators and thermal separation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, R.G.; Christian, J.D.; Petti, D.A.
1999-04-01
A system has been developed for the production of {sup 99m}Tc based on distributed electron accelerators and thermal separation. The radioactive decay parent of {sup 99m}Tc, {sup 99}Mo, is produced from {sup 100}Mo by a photoneutron reaction. Two alternative thermal separation processes have been developed to extract {sup 99m}Tc. Experiments have been performed to verify the technical feasibility of the production and assess the efficiency of the extraction processes. A system based on this technology enables the economical supply of {sup 99m}Tc for a large nuclear pharmacy. Twenty such production centers distributed near major metropolitan areas could produce the entiremore » US supply of {sup 99m}Tc at a cost less than the current subsidized price.« less