Sample records for electronic time delay

  1. General relation between the group delay and dwell time in multicomponent electron systems

    NASA Astrophysics Data System (ADS)

    Zhai, Feng; Lu, Junqiang

    2016-10-01

    For multicomponent electron scattering states, we derive a general relation between the Wigner group delay and the Bohmian dwell time. It is found that the definition of group delay should account for the phase of the spinor wave functions of propagating modes. The difference between the group delay and dwell time comes from both the interference delay and the decaying modes. For barrier tunneling of helical electrons on a surface of topological insulators, our calculations including the trigonal-warping term show that the decaying modes can contribute greatly to the group delay. The derived relation between the group delay and the dwell time is helpful to unify the two definitions of tunneling time in a quite general situation.

  2. Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang

    2014-07-07

    We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height ormore » incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.« less

  3. Compensating Unknown Time-Varying Delay in Opto-Electronic Platform Tracking Servo System.

    PubMed

    Xie, Ruihong; Zhang, Tao; Li, Jiaquan; Dai, Ming

    2017-05-09

    This paper investigates the problem of compensating miss-distance delay in opto-electronic platform tracking servo system. According to the characteristic of LOS (light-of-sight) motion, we setup the Markovian process model and compensate this unknown time-varying delay by feed-forward forecasting controller based on robust H∞ control. Finally, simulation based on double closed-loop PI (Proportion Integration) control system indicates that the proposed method is effective for compensating unknown time-varying delay. Tracking experiments on the opto-electronic platform indicate that RMS (root-mean-square) error is 1.253 mrad when tracking 10° 0.2 Hz signal.

  4. Investigation of the delay time distribution of high power microwave surface flashover

    NASA Astrophysics Data System (ADS)

    Foster, J.; Krompholz, H.; Neuber, A.

    2011-01-01

    Characterizing and modeling the statistics associated with the initiation of gas breakdown has proven to be difficult due to a variety of rather unexplored phenomena involved. Experimental conditions for high power microwave window breakdown for pressures on the order of 100 to several 100 torr are complex: there are little to no naturally occurring free electrons in the breakdown region. The initial electron generation rate, from an external source, for example, is time dependent and so is the charge carrier amplification in the increasing radio frequency (RF) field amplitude with a rise time of 50 ns, which can be on the same order as the breakdown delay time. The probability of reaching a critical electron density within a given time period is composed of the statistical waiting time for the appearance of initiating electrons in the high-field region and the build-up of an avalanche with an inherent statistical distribution of the electron number. High power microwave breakdown and its delay time is of critical importance, since it limits the transmission through necessary windows, especially for high power, high altitude, low pressure applications. The delay time distribution of pulsed high power microwave surface flashover has been examined for nitrogen and argon as test gases for pressures ranging from 60 to 400 torr, with and without external UV illumination. A model has been developed for predicting the discharge delay time for these conditions. The results provide indications that field induced electron generation, other than standard field emission, plays a dominant role, which might be valid for other gas discharge types as well.

  5. Device For Trapping Laser Pulses In An Optical Delay Line

    DOEpatents

    Yu, David U. L.; Bullock, Donald L.

    1997-12-23

    A device for maintaining a high-energy laser pulse within a recirculating optical delay line for a period time to optimize the interaction of the pulse with an electron beam pulse train comprising closely spaced electron micropulses. The delay line allows a single optical pulse to interact with many of the electron micropulses in a single electron beam macropulse in sequence and for the introduction of additional optical pulses to interact with the micropulses of additional electron beam macropulses. The device comprises a polarization-sensitive beam splitter for admitting an optical pulse to and ejecting it from the delay line according to its polarization state, a Pockels cell to control the polarization of the pulse within the delay line for the purpose of maintaining it within the delay line or ejecting it from the delay line, a pair of focusing mirrors positioned so that a collimated incoming optical pulse is focused by one of them to a focal point where the pulse interacts with the electron beam and then afterwards the pulse is recollimated by the second focusing mirror, and a timing device which synchronizes the introduction of the laser pulse into the optical delay line with the arrival of the electron macropulse at the delay line to ensure the interaction of the laser pulse with a prescribed number of electron micropulses in sequence. In a first embodiment of the invention, the principal optical elements are mounted with their axes collinear. In a second embodiment, all principal optical elements are mounted in the configuration of a ring.

  6. Attosecond delay in the molecular photoionization of asymmetric molecules.

    PubMed

    Chacón, Alexis; Ruiz, Camilo

    2018-02-19

    We report theoretical calculations of the delay in photoemission from CO with particular emphasis on the role of the ultrafast electronic bound dynamics. We study the delays in photoionization in the HOMO and HOMO-1 orbitals of the CO molecule by looking into the stereo Wigner time delay technique. That compares the delay in photoemission from electrons emitted to the left and right to extract structural and dynamical information of the ionization process. For this we apply two techniques: The attosecond streak camera and the time of flight technique. Although they should provide the same results we have found large discrepancies of up to 36 in the case of HOMO, while for the HOMO-1 we obtain the same results with the two techniques. We have found that the large time delays observed in the HOMO orbital with the streaking technique are a consequence of the resonant transition triggered by the streaking field. This resonant transition produces a bound electron wavepacket that modifies the measurements of delay in photoionization. As a result of this observation, our technique allows us to reconstruct the bound wavepacket dynamics induced by the streaking field. By measuring the expected value of the electron momentum along the polarization direction after the streaking field has finished, we can recover the relative phase between the complex amplitudes of the HOMO and LUMO orbitals. These theoretical calculations pave the way for the measurement of ultrafast bound-bound electron transitionsand its crucial role for the delay in photoemission observation.

  7. Time-Resolved IR-Absorption Spectroscopy of Hot-Electron Dynamics in Satellite and Upper Conduction Bands in GaP

    NASA Technical Reports Server (NTRS)

    Cavicchia, M. A.; Alfano, R. R.

    1995-01-01

    The relaxation dynamics of hot electrons in the X6 and X7 satellite and upper conduction bands in GaP was directly measured by femtosecond UV-pump-IR-probe absorption spectroscopy. From a fit to the induced IR-absorption spectra the dominant scattering mechanism giving rise to the absorption at early delay times was determined to be intervalley scattering of electrons out of the X7 upper conduction-band valley. For long delay times the dominant scattering mechanism is electron-hole scattering. Electron transport dynamics of the upper conduction band of GaP has been time resolved.

  8. Electron acceleration and kinetic energy tailoring via ultrafast terahertz fields.

    PubMed

    Greig, S R; Elezzabi, A Y

    2014-11-17

    We propose a mechanism for tuning the kinetic energy of surface plasmon generated electron pulses through control of the time delay between a pair of externally applied terahertz pulses. Varying the time delay results in translation, compression, and broadening of the kinetic energy spectrum of the generated electron pulse. We also observe that the electrons' kinetic energy dependence on the carrier envelope phase of the surface plasmon is preserved under the influence of a terahertz electric field.

  9. Longitudinal dynamics of twin electron bunches in the Linac Coherent Light Source

    DOE PAGES

    Zhang, Zhen; Ding, Yuantao; Marinelli, Agostino; ...

    2015-03-02

    The recent development of two-color x-ray free-electron lasers, as well as the successful demonstration of high-gradient witness bunch acceleration in a plasma, have generated strong interest in electron bunch trains, where two or more electron bunches are generated, accelerated and compressed in the same accelerating bucket. In this paper we give a detailed analysis of a twin-bunch technique in a high-energy linac. This method allows the generation of two electron bunches with high peak current and independent control of time delay and energy separation. We find that the wakefields in the accelerator structures play an important role in the twin-bunchmore » compression, and through analysis show that they can be used to extend the available time delay range. As a result, based on the theoretical model and simulations we propose several methods to achieve larger time delay.« less

  10. Temporal variations of electron density and temperature in Kr/Ne/H2 photoionized plasma induced by nanosecond pulses from extreme ultraviolet source

    NASA Astrophysics Data System (ADS)

    Saber, I.; Bartnik, A.; Wachulak, P.; Skrzeczanowski, W.; Jarocki, R.; Fiedorowicz, H.

    2017-06-01

    Spectral investigations of low-temperature photoionized plasmas created in a Kr/Ne/H2 gas mixture were performed. The low-temperature plasmas were generated by gas mixture irradiation using extreme ultraviolet pulses from a laser-plasma source. Emission spectra in the ultraviolet/visible range from the photoionized plasmas contained lines that mainly corresponded to neutral atoms and singly charged ions. Temporal variations in the plasma electron temperature and electron density were studied using different characteristic emission lines at various delay times. Results, based on Kr II lines, showed that the electron temperature decreased from 1.7 to 0.9 eV. The electron densities were estimated using different spectral lines at each delay time. In general, except for the Hβ line, in which the electron density decreased from 3.78 × 1016 cm-3 at 200 ns to 5.77 × 1015 cm-3 at 2000 ns, most of the electron density values measured from the different lines were of the order of 1015 cm-3 and decreased slightly while maintaining the same order when the delay time increased. The time dependences of the measured and simulated intensities of a spectral line of interest were also investigated. The validity of the partial or full local thermodynamic equilibrium (LTE) conditions in plasma was explained based on time-resolved electron density measurements. The partial LTE condition was satisfied for delay times in the 200 ns to 1500 ns range. The results are summarized, and the dominant basic atomic processes in the gas mixture photoionized plasma are discussed.

  11. Timely response to secure messages from primary care patients.

    PubMed

    Rohrer, James E; North, Frederick; Angstman, Kurt B; Oberhelman, Sara S; Meunier, Matthew R

    2013-01-01

    To assess delays in response to patient secure e-mail messages in primary care. Secure electronic messages are initiated by primary care patients. Timely response is necessary for patient safety and quality. A database of secure messages. A random sample of 353 secure electronic messages initiated by primary care patients treated in 4 clinics. Message not opened after 12 hours or messages not responded to after 36 hours. A total of 8.5% of electronic messages were not opened within 12 hours, and 17.6% did not receive a response in 36 hours. Clinic location, being a clinic employee, and patient sex were not related to delays. Patients older than 50 years were more likely to receive a delayed response (25.7% delayed, P = .013). The risk of both kinds of delays was higher on weekends (P < .001 for both). The e-mail message system resulted in high rates of delayed response. Delays were concentrated on weekends (Friday-Sunday). Reducing delayed responses may require automatic rerouting of messages to message centers staffed 24-7 or other mechanisms to manage this after-hours work flow.

  12. Solar corona electron density distribution

    NASA Astrophysics Data System (ADS)

    Esposito, P. B.; Edenhofer, P.; Lueneburg, E.

    1980-07-01

    The paper discusses the three and one-half months of single-frequency time delay data which were acquired from the Helios 2 spacecraft around the time of its solar occultation. The excess time delay due to integrated effect of free electrons along the signal's ray path could be separated and modeled following the determination of the spacecraft trajectory. An average solar corona and equatorial electron density profile during solar minimum were deduced from the time delay measurements acquired within 5-60 solar radii of the sun. As a point of reference at 10 solar radii from the sun, an average electron density was 4500 el/cu cm. However, an asymmetry was found in the electron density as the ray path moved from the west to east solar limb. This may be related to the fact that during entry into occultation the heliographic latitude of the ray path was about 6 deg, while during exit it was 7 deg. The Helios density model is compared with similar models deduced from different experimental techniques.

  13. Reconstructions of parameters of radiophysical chaotic generator with delayed feedback from short time series

    NASA Astrophysics Data System (ADS)

    Ishbulatov, Yu. M.; Karavaev, A. S.; Kiselev, A. R.; Semyachkina-Glushkovskaya, O. V.; Postnov, D. E.; Bezruchko, B. P.

    2018-04-01

    A method for the reconstruction of time-delayed feedback system is investigated, which is based on the detection of synchronous response of a slave time-delay system with respect to the driving from the master system under study. The structure of the driven system is similar to the structure of the studied time-delay system, but the feedback circuit is broken in the driven system. The method efficiency is tested using short and noisy data gained from an electronic chaotic oscillator with time-delayed feedback.

  14. Attosecond Electron Correlation Dynamics in Double Ionization of Benzene Probed with Two-Electron Angular Streaking

    NASA Astrophysics Data System (ADS)

    Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Liao, Qing; Adhikari, Pradip; Basnayake, Gihan; Schlegel, H. Bernhard; Li, Wen

    2017-09-01

    With a novel three-dimensional electron-electron coincidence imaging technique and two-electron angular streaking method, we show that the emission time delay between two electrons can be measured from tens of attoseconds to more than 1 fs. Surprisingly, in benzene, the double ionization rate decays as the time delay between the first and second electron emission increases during the first 500 as. This is further supported by the decay of the Coulomb repulsion in the direction perpendicular to the laser polarization. This result reveals that laser-induced electron correlation plays a major role in strong field double ionization of benzene driven by a nearly circularly polarized field.

  15. Delay time and Hartman effect in strain engineered graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xi, E-mail: xchen@shu.edu.cn; Deng, Zhi-Yong; Ban, Yue, E-mail: yban@shu.edu.cn

    2014-05-07

    Tunneling times, including group delay and dwell time, are studied for massless Dirac electrons transmitting through a one-dimensional barrier in strain-engineered graphene. The Hartman effect, the independence of group delay on barrier length, is induced by the strain effect, and associated with the transmission gap and the evanescent mode. The influence of barrier height/length and strain modulus/direction on the group delay is also discussed, which provides the flexibility to control the group delay with applications in graphene-based devices. The relationship between group delay and dwell time is finally derived to clarify the nature of the Hartman effect.

  16. Flexible pulse delay control up to picosecond for high-intensity twin electron bunches

    DOE PAGES

    Zhang, Zhen; Ding, Yuantao; Emma, Paul; ...

    2015-09-10

    Two closely spaced electron bunches have attracted strong interest due to their applications in two color X-ray free-electron lasers as well as witness bunch acceleration in plasmas and dielectric structures. In this paper, we propose a new scheme of delay system to vary the time delay up to several picoseconds while not affecting the bunch compression. Numerical simulations based on the Linac Coherent Light Source are performed to demonstrate the feasibility of this method.

  17. Reconstruction of ensembles of coupled time-delay systems from time series.

    PubMed

    Sysoev, I V; Prokhorov, M D; Ponomarenko, V I; Bezruchko, B P

    2014-06-01

    We propose a method to recover from time series the parameters of coupled time-delay systems and the architecture of couplings between them. The method is based on a reconstruction of model delay-differential equations and estimation of statistical significance of couplings. It can be applied to networks composed of nonidentical nodes with an arbitrary number of unidirectional and bidirectional couplings. We test our method on chaotic and periodic time series produced by model equations of ensembles of diffusively coupled time-delay systems in the presence of noise, and apply it to experimental time series obtained from electronic oscillators with delayed feedback coupled by resistors.

  18. Attosecond relative delay among xenon 5p, 5s, and 4d photoionization

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Madjet, Mohamed; Chakraborty, Himadri

    2017-04-01

    Attosecond Wigner-Smith (WS) time delays of the photoemissions of Xe valence 5p, 5s, and core 4d electrons are investigated in details using the time-dependent local density approximation (TDLDA). Electron correlations determine the energy-dependent structures in ionization phases of the dipole channels and in the resulting WS delays at various shape resonances, induced by the collective motion of 4d electrons, and at various Cooper minima. We find that our calculation closely agrees with the streaking measurement for the delay of 4d relative to 5s, and predicts accelerated emission of 5p with respect to 4d as was experimentally observed at similar photon energies for Xe atoms adsorbed on the tungsten surface. This work was supported by the U.S. National Science Foundation.

  19. Time delay in atomic photoionization with circularly polarized light

    NASA Astrophysics Data System (ADS)

    Ivanov, I. A.; Kheifets, A. S.

    2013-03-01

    We study time delay in atomic photoionization by circularly polarized light. By considering the Li atom in an excited 2p state, we demonstrate a strong time-delay asymmetry between the photoemission of the target electrons that are co- and counter-rotating with the electromagnetic field in the polarization plane. In addition, we observe the time-delay sensitivity to the polar angle of the photoelectron emission in the polarization plane. This modulation depends on the shape and duration of the electromagnetic pulse.

  20. Selectivity of Electronic Coherence and Attosecond Ionization Delays in Strong-Field Double Ionization

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yuki; Reduzzi, Maurizio; Chang, Kristina F.; Timmers, Henry; Neumark, Daniel M.; Leone, Stephen R.

    2018-06-01

    Experiments are presented on real-time probing of coherent electron dynamics in xenon initiated by strong-field double ionization. Attosecond transient absorption measurements allow for characterization of electronic coherences as well as relative ionization timings in multiple electronic states of Xe+ and Xe2 + . A high degree of coherence g =0.4 is observed between P3 2 0-P3 0 0 of Xe2 + , whereas for other possible pairs of states the coherences are below the detection limits of the experiments. A comparison of the experimental results with numerical simulations based on an uncorrelated electron-emission model shows that the coherences produced by strong-field double ionization are more selective than predicted. Surprisingly short ionization time delays, 0.85 fs, 0.64 fs, and 0.75 fs relative to Xe+ formation, are also measured for the P2 3 , P0 3 , and P1 3 states of Xe2 + , respectively. Both the unpredicted selectivity in the formation of coherence and the subfemtosecond time delays of specific states provide new insight into correlated electron dynamics in strong-field double ionization.

  1. Tunable delay time and Hartman effect in graphene magnetic barriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ban, Yue; Wang, Lin-Jun; Chen, Xi, E-mail: xchen@shu.edu.cn

    2015-04-28

    Tunable group delay and Hartman effect have been investigated for massless Dirac electrons in graphene magnetic barriers. In the presence of magnetic field, dwell time is found to be equal to net group delay plus the group delay contributing from the lateral shifts. The group delay times are discussed in both cases of normal and oblique incidence, to clarify the nature of Hartman effect. In addition, the group delay in transmission can be modulated from subluminality to superluminality by adjusting the magnetic field, which may also lead to potential applications in graphene-based microelectronics.

  2. Hard X-ray time profiles and acceleration processes in large solar flares

    NASA Technical Reports Server (NTRS)

    Bai, T.; Ramaty, R.

    1979-01-01

    The hard X-ray time profiles of the (1972) August 4 and 7 flares are investigated, taking into account a comparison of the time profiles of different energy channels. It is shown that for these flares the temporal features of the intensity profiles of higher energy channels are delayed with respect to those of channel 1. The delay time gradually increases to approximately 5 sec as the channel number increases from 1 to 5, and it jumps to approximately 15 sec for channels 6 and 7. A description is presented of a model in which the delay and other characteristics of the observed time profiles in channels 1-5 are self-consistently explained by the increase of the electron energy loss time with electron energy.

  3. Effect of nuclear motion on molecular high order harmonic pump probe spectroscopy.

    PubMed

    Bredtmann, Timm; Chelkowski, Szczepan; Bandrauk, André D

    2012-11-26

    We study pump-probe schemes for the real time observation of electronic motion on attosecond time scale in the molecular ion H(2)(+) and its heavier isotope T(2)(+) while these molecules dissociate on femtosecond time scale by solving numerically the non-Born-Oppenheimer time-dependent Schrödinger equation. The UV pump laser pulse prepares a coherent superposition of the three lowest lying quantum states and the time-delayed mid-infrared, intense few-femtosecond probe pulse subsequently generates molecular high-order harmonics (MHOHG) from this coherent electron-nuclear wavepacket (CENWP). Varying the pump-probe time delay by a few hundreds of attoseconds, the MHOHG signal intensity is shown to vary by orders of magnitude. Due to nuclear movement, the coherence of these two upper states and the ground state is lost after a few femtoseconds and the MHOHG intensity variations as function of pump-probe delay time are shown to be equal to the period of electron oscillation in the coherent superposition of the two upper dissociative quantum states. Although this electron oscillation period and hence the periodicity of the harmonic spectra are quite constant over a wide range of internuclear distances, a strong signature of nuclear motion is seen in the actual shapes and ways in which these spectra change as a function of pump-probe delay time, which is illustrated by comparison of the MHOHG spectra generated by the two isotopes H(2)(+) and T(2)(+). Two different regimes corresponding roughly to internuclear distances R < 4a(0) and R > 4a(0) are identified: For R < 4a(0), the intensity of a whole range of frequencies in the plateau region is decreased by orders of magnitude when the delay time is changed by a few hundred attoseconds whereas in the cutoff region the peaks in the MHOHG spectra are red-shifted with increasing pump-probe time delay. For R > 4a(0), on the other hand, the peaks both in the cutoff and plateau region are red-shifted with increasing delay times with only slight variations in the peak intensities. A time-frequency analysis shows that in the case of a two-cycle probe pulse the sole contribution of one long and associated short trajectory correlates with the attenuation of a whole range of frequencies in the plateau region for R < 4a(0) whereas the observed red shift for R > 4a(0), even in the plateau region, correlates with a single electron return within one-half laser cycle.

  4. Exploring coherent electron excitation and migration dynamics by electron diffraction with ultrashort X-ray pulses.

    PubMed

    Yuan, Kai-Jun; Bandrauk, André D

    2017-10-04

    Exploring ultrafast charge migration is of great importance in biological and chemical reactions. We present a scheme to monitor attosecond charge migration in molecules by electron diffraction with spatial and temporal resolutions from ab initio numerical simulations. An ultraviolet pulse creates a coherent superposition of electronic states, after which a time-delayed attosecond X-ray pulse is used to ionize the molecule. It is found that diffraction patterns in the X-ray photoelectron spectra show an asymmetric structure, which is dependent on the time delay between the pump-probe pulses, encoding the information of molecular orbital symmetry and chemical bonding. We describe these phenomena by developing an electronic time-dependent ultrafast molecular photoionization model of a coherent superposition state. The periodical distortion of electron diffraction patterns illustrates the evolution of the electronic coherence, providing a tool for attosecond imaging of ultrafast molecular reaction processes.

  5. Two mirror X-ray pulse split and delay instrument for femtosecond time resolved investigations at the LCLS free electron laser facility

    DOE PAGES

    Berrah, Nora; Fang, Li; Murphy, Brendan F.; ...

    2016-05-20

    We built a two-mirror based X-ray split and delay (XRSD) device for soft X-rays at the Linac Coherent Light Source free electron laser facility. The instrument is based on an edge-polished mirror design covering an energy range of 250 eV-1800 eV and producing a delay between the two split pulses variable up to 400 femtoseconds with a sub-100 attosecond resolution. We present experimental and simulation results regarding molecular dissociation dynamics in CH3I and CO probed by the XRSD device. In conclusion, we observed ion kinetic energy and branching ratio dependence on the delay times which were reliably produced by themore » XRSD instrument.« less

  6. Photoemission and photoionization time delays and rates

    PubMed Central

    Gallmann, L.; Jordan, I.; Wörner, H. J.; Castiglioni, L.; Hengsberger, M.; Osterwalder, J.; Arrell, C. A.; Chergui, M.; Liberatore, E.; Rothlisberger, U.; Keller, U.

    2017-01-01

    Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid–vacuum interface. PMID:29308414

  7. Dispersion-free continuum two-dimensional electronic spectrometer

    PubMed Central

    Zheng, Haibin; Caram, Justin R.; Dahlberg, Peter D.; Rolczynski, Brian S.; Viswanathan, Subha; Dolzhnikov, Dmitriy S.; Khadivi, Amir; Talapin, Dmitri V.; Engel, Gregory S.

    2015-01-01

    Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an ~180 nm window of the available bandwidth at ~10 fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a. PMID:24663470

  8. Control of electron excitation and localization in the dissociation of H2(+) and its isotopes using two sequential ultrashort laser pulses.

    PubMed

    He, Feng; Ruiz, Camilo; Becker, Andreas

    2007-08-24

    We study the control of dissociation of the hydrogen molecular ion and its isotopes exposed to two ultrashort laser pulses by solving the time-dependent Schrödinger equation. While the first ultraviolet pulse is used to excite the electron wave packet on the dissociative 2psigma{u} state, a second time-delayed near-infrared pulse steers the electron between the nuclei. Our results show that by adjusting the time delay between the pulses and the carrier-envelope phase of the near-infrared pulse, a high degree of control over the electron localization on one of the dissociating nuclei can be achieved (in about 85% of all fragmentation events). The results demonstrate that current (sub-)femtosecond technology can provide a control over both electron excitation and localization in the fragmentation of molecules.

  9. Operating Room Delays: Meaningful Use in Electronic Health Record.

    PubMed

    Van Winkle, Rachelle A; Champagne, Mary T; Gilman-Mays, Meri; Aucoin, Julia

    2016-06-01

    Perioperative areas are the most costly to operate and account for more than 40% of expenses. The high costs prompted one organization to analyze surgical delays through a retrospective review of their new electronic health record. Electronic health records have made it easier to access and aggregate clinical data; 2123 operating room cases were analyzed. Implementing a new electronic health record system is complex; inaccurate data and poor implementation can introduce new problems. Validating the electronic health record development processes determines the ease of use and the user interface, specifically related to user compliance with the intent of the electronic health record development. The revalidation process after implementation determines if the intent of the design was fulfilled and data can be meaningfully used. In this organization, the data fields completed through automation provided quantifiable, meaningful data. However, data fields completed by staff that required subjective decision making resulted in incomplete data nearly 24% of the time. The ease of use was further complicated by 490 permutations (combinations of delay types and reasons) that were built into the electronic health record. Operating room delay themes emerged notwithstanding the significant complexity of the electronic health record build; however, improved accuracy could improve meaningful data collection and a more accurate root cause analysis of operating room delays. Accurate and meaningful use of data affords a more reliable approach in quality, safety, and cost-effective initiatives.

  10. Relativistic features and time delay of laser-induced tunnel ionization

    NASA Astrophysics Data System (ADS)

    Yakaboylu, Enderalp; Klaiber, Michael; Bauke, Heiko; Hatsagortsyan, Karen Z.; Keitel, Christoph H.

    2013-12-01

    The electron dynamics in the classically forbidden region during relativistic tunnel ionization is investigated. The classical forbidden region in the relativistic regime is identified by defining a gauge-invariant total-energy operator. Introducing position-dependent energy levels inside the tunneling barrier, we demonstrate that the relativistic tunnel ionization can be well described by a one-dimensional intuitive picture. This picture predicts that, in contrast to the well-known nonrelativistic regime, the ionized electron wave packet arises with a momentum shift along the laser's propagation direction. This is compatible with results from a strong-field approximation calculation where the binding potential is assumed to be zero ranged. Further, the tunneling time delay, stemming from Wigner's definition, is investigated for model configurations of tunneling and compared with results obtained from the exact propagator. By adapting Wigner's time delay definition to the ionization process, the tunneling time is investigated in the deep-tunneling and in the near-threshold-tunneling regimes. It is shown that while in the deep-tunneling regime signatures of the tunneling time delay are not measurable at remote distance, they are detectable, however, in the latter regime.

  11. Delayed electron emission in strong-field driven tunnelling from a metallic nanotip in the multi-electron regime

    PubMed Central

    Yanagisawa, Hirofumi; Schnepp, Sascha; Hafner, Christian; Hengsberger, Matthias; Kim, Dong Eon; Kling, Matthias F.; Landsman, Alexandra; Gallmann, Lukas; Osterwalder, Jürg

    2016-01-01

    Illuminating a nano-sized metallic tip with ultrashort laser pulses leads to the emission of electrons due to multiphoton excitations. As optical fields become stronger, tunnelling emission directly from the Fermi level becomes prevalent. This can generate coherent electron waves in vacuum leading to a variety of attosecond phenomena. Working at high emission currents where multi-electron effects are significant, we were able to characterize the transition from one regime to the other. Specifically, we found that the onset of laser-driven tunnelling emission is heralded by the appearance of a peculiar delayed emission channel. In this channel, the electrons emitted via laser-driven tunnelling emission are driven back into the metal, and some of the electrons reappear in the vacuum with some delay time after undergoing inelastic scattering and cascading processes inside the metal. Our understanding of these processes gives insights on attosecond tunnelling emission from solids and should prove useful in designing new types of pulsed electron sources. PMID:27786287

  12. Diurnal evolution of the F region electron density local time gradient at low and middle latitudes resolved by the Swarm constellation

    NASA Astrophysics Data System (ADS)

    Xiong, Chao; Zhou, Yun-Liang; Lühr, Hermann; Ma, Shu-Ying

    2016-09-01

    In this study we have provided new insights into the local time gradient of F region electron density (ΔNe) derived from the lower pair of Swarm satellites flying side by side. Our result shows that the electron density (Ne) increase starts just at sunrise, around 06:00 LT, simultaneously at low and middle latitudes due to the increased photoionization. At equatorial latitudes the increase in electron density gets even steeper after 07:00 LT, and the steepest increase of electron density (about 3 · 1010 m-3 within 6 min) occurs around 09:00 LT. We suggest that the upward vertical plasma drift in connection with the buildup of the equatorial fountain effect plays a major role. We also found that the local time variations of the equatorial ionization anomaly (EIA) crest electron density during daytime are similar to the respective evolutions at the equator, but about 1-2 h delayed. We relate this delay to the response time between the equatorial electric field and the buildup of the plasma fountain. At equinox months a fast decrease of the F region electron density is seen at the EIA trough region during the prereversal enhancement, while an increase is found meanwhile at crest regions. Afterward, a fast decrease of the EIA crest electron density occurs between 19:00 and 23:00 LT, with seasonal dependence. The local time gradient between Swarm A and C shows also prominent longitudinal wave-4 pattern around August months, and the phase of DE3 in ΔNe is found to be delayed by 6 h compared to that in Ne.

  13. Observation of the avalanche of runaway electrons in air in a strong electric field.

    PubMed

    Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A

    2012-08-24

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  14. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  15. Effect of time delay on flying qualities: An update

    NASA Technical Reports Server (NTRS)

    Smith, R. E.; Sarrafian, S. K.

    1986-01-01

    Flying qualities problems of modern, full-authority electronic flight control systems are most often related to the introduction of additional time delay in aircraft response to a pilot input. These delays can have a significant effect on the flying qualities of the aircraft. Time delay effects are reexamined in light of recent flight test experience with aircraft incorporating new technology. Data from the X-29A forward-swept-wing demonstrator, a related preliminary in-flight experiment, and other flight observations are presented. These data suggest that the present MIL-F-8785C allowable-control system time delay specifications are inadequate or, at least, incomplete. Allowable time delay appears to be a function of the shape of the aircraft response following the initial delay. The cockpit feel system is discussed as a dynamic element in the flight control system. Data presented indicate that the time delay associated with a significant low-frequency feel system does not result in the predicted degradation in aircraft flying qualities. The impact of the feel system is discussed from two viewpoints: as a filter in the control system which can alter the initial response shape and, therefore, the allowable time delay, and as a unique dynamic element whose delay contribution can potentially be discounted by special pilot loop closures.

  16. Energy dependence of SEP electron and proton onset times

    NASA Astrophysics Data System (ADS)

    Xie, H.; Mäkelä, P.; Gopalswamy, N.; St. Cyr, O. C.

    2016-07-01

    We study the large solar energetic particle (SEP) events that were detected by GOES in the >10 MeV energy channel during December 2006 to March 2014. We derive and compare solar particle release (SPR) times for the 0.25-10.4 MeV electrons and 10-100 MeV protons for the 28 SEP events. In the study, the electron SPR times are derived with the time-shifting analysis (TSA) and the proton SPR times are derived using both the TSA and the velocity dispersion analysis (VDA). Electron anisotropies are computed to evaluate the amount of scattering for the events under study. Our main results include (1) near-relativistic electrons and high-energy protons are released at the same time within 8 min for most (16 of 23) SEP events. (2)There exists a good correlation between electron and proton acceleration, peak intensity, and intensity time profiles. (3) The TSA SPR times for 90.5 MeV and 57.4 MeV protons have maximum errors of 6 min and 10 min compared to the proton VDA release times, respectively, while the maximum error for 15.4 MeV protons can reach to 32 min. (4) For 7 low-intensity events of the 23, large delays occurred for 6.5 MeV electrons and 90.5 MeV protons relative to 0.5 MeV electrons. Whether these delays are due to times needed for the evolving shock to be strengthened or due to particle transport effects remains unsolved.

  17. Carrier Dynamics and Application of the Phase Coherent Photorefractive Effect in ZnSe Quantum Wells

    NASA Astrophysics Data System (ADS)

    Dongol, Amit

    The intensity dependent diffraction efficiency of a phase coherent photorefractive (PCP) ZnSe quantum well (QW) is investigated at 80 K in a two-beam four-wave mixing (FWM) configuration using 100 fs laser pulses with a repetition rate of 80 MHz. The observed diffraction efficiencies of the first and second-order diffracted beam are on the order of 10-3 and 10-5, respectively, revealing nearly no intensity dependence. The first-order diffraction is caused by the PCP effect where the probe-pulse is diffracted due to a long-living incoherent electron density grating in the QW. The second-order diffraction is created by a combination of diffraction processes. For negative probe-pulse delay, the exciton polarization is diffracted at the electron grating twice by a cascade effect. For positive delay, the diffracted signal is modified by the destructive interference with a chi(5) generated signal due to a dynamical screening effect. Model calculations of the signal traces based on the optical Bloch equations considering inhomogeneous broadening of exciton energies are in good agreement with the experimental data. To study the carrier dynamics responsible for the occurrence of the PCP effect, threebeam FWM experiments are carried out. The non-collinear wave-vectors k1 , k2 and k3 at central wavelength of 441 nm (~2.81 eV) were resonantly tuned to the heavy-hole exciton transition energy at 20 K. In the FWM experiment the time coincident strong pump pulses k1 and k2 create both an exciton density grating in the QW and an electron-hole pair grating in the GaAs while the delayed weak pulse k3 simultaneously probes the exciton lifetime as well as the electron grating capture time. The model calculations are in good agreement with the experimental results also providing information about the transfer delay of electrons arriving from the substrate to the QW. For negative probe-pulse delay we still observe a diffracted signal due to the long living electron density grating in the QW. The electron grating build-up and decay times are also studied with the modified three-beam FWM set-up. Using an optical shutter for pump pulses k1and k2, the dynamics of the electron grating formation and its decay is continuously probed by a delayed pulse k3. The obtained build-up and decay times are found to depend nearly linearly on the intensity of incident pulses k1 and k2 being on the order of several microseconds at low pump intensities. The PCP effect in ZnSe QW possesses a time-gating capability which can be used for real-time holographic imaging. In this work we demonstrate contrast enhanced real time holographic imaging (CEHI) of floating glass beads and of living unicellular animals (Paramecium and Euglena cells) in aqueous solution. We also demonstrate CEHI of a ~100 im thick wire concealed behind a layer of chicken skin. The results demonstrate the potential of PCP QWs for real-time and depth-resolved imaging of moving micrometer sized biological objects in transparent media or of obscured objects in turbid media.

  18. A Route to Chaos after Bifurcation in a Two-section Semiconductor Laser Using Opto-electronic Delayed Feedback at Each In-current

    NASA Astrophysics Data System (ADS)

    Yan, Sen-lin

    2014-12-01

    We study dynamics in an opto-electronic delayed feedback two-section semiconductor laser. We predict theoretically that the system can result in bistability and bifurcation. We analyze numerically the route to chaos from stability to bifurcation by varying the delayed time, feedback strength and two in-currents. The system displays the four distinct types or modes of stable, periodic pulsed or self-pulsing, undamped oscillating or beating, and chaos. The frequency and intensity varying with the delayed time in the self-pulsation regions are discussed detailedly to find that the pulsing frequency is reduced with the long delayed time while the pulsing intensity is added. And the chaotic pulsing frequency is increased with the large in-current Ja. The laser relaxation oscillation frequency is decreased with the large in-current Jb. One in-current characterize dynamics in the laser to conduce to stable, periodic pulsed, beating and chaotic states by altering its values. The other in-current characterize dynamics in the chaotic laser to be controlled to a stable state after a road to quasi-period by adding the values.

  19. Influence of excited state spatial distributions on plasma diagnostics: Atmospheric pressure laser-induced He-H2 plasma

    NASA Astrophysics Data System (ADS)

    Monfared, Shabnam K.; Hüwel, Lutz

    2012-10-01

    Atmospheric pressure plasmas in helium-hydrogen mixtures with H2 molar concentrations ranging from 0.13% to 19.7% were investigated at times from 1 to 25 μs after formation by a Q-switched Nd:YAG laser. Spatially integrated electron density values are obtained using time resolved optical emission spectroscopic techniques. Depending on mixture concentration and delay time, electron densities vary from almost 1017 cm-3 to about 1014 cm-3. Helium based results agree reasonably well with each other, as do values extracted from the Hα and Hβ emission lines. However, in particular for delays up to about 7 μs and in mixtures with less than 1% hydrogen, large discrepancies are observed between results obtained from the two species. Differences decrease with increasing hydrogen partial pressure and/or increasing delay time. In mixtures with molecular hydrogen fraction of 7% or more, all methods yield electron densities that are in good agreement. These findings seemingly contradict the well-established idea that addition of small amounts of hydrogen for diagnostic purposes does not perturb the plasma. Using Abel inversion analysis of the experimental data and a semi-empirical numerical model, we demonstrate that the major part of the detected discrepancies can be traced to differences in the spatial distributions of excited helium and hydrogen neutrals. The model yields spatially resolved emission intensities and electron density profiles that are in qualitative agreement with experiment. For the test case of a 1% H2 mixture at 5 μs delay, our model suggests that high electron temperatures cause an elevated degree of ionization and thus a reduction of excited hydrogen concentration relative to that of helium near the plasma center. As a result, spatially integrated analysis of hydrogen emission lines leads to oversampling of the plasma perimeter and thus to lower electron density values compared to those obtained from helium lines.

  20. Ionospheric corrections to precise time transfer using GPS

    NASA Technical Reports Server (NTRS)

    Snow, Robert W.; Osborne, Allen W., III; Klobuchar, John A.; Doherty, Patricia H.

    1994-01-01

    The free electrons in the earth's ionosphere can retard the time of reception of GPS signals received at a ground station, compared to their time in free space, by many tens of nanoseconds, thus limiting the accuracy of time transfer by GPS. The amount of the ionospheric time delay is proportional to the total number of electrons encountered by the wave on its path from each GPS satellite to a receiver. This integrated number of electrons is called Total Electron Content, or TEC. Dual frequency GPS receivers designed by Allen Osborne Associates, Inc. (AOA) directly measure both the ionospheric differential group delay and the differential carrier phase advance for the two GPS frequencies and derive from this the TEC between the receiver and each GPS satellite in track. The group delay information is mainly used to provide an absolute calibration to the relative differential carrier phase, which is an extremely precise measure of relative TEC. The AOA Mini-Rogue ICS-4Z and the AOA TurboRogue ICS-4000Z receivers normally operate using the GPS P code, when available, and switch to cross-correlation signal processing when the GPS satellites are in the Anti-Spoofing (A-S) mode and the P code is encrypted. An AOA ICS-Z receiver has been operated continuously for over a year at Hanscom AFB, MA to determine the statistics of the variability of the TEC parameter using signals from up to four different directions simultaneously. The 4-channel ICS-4Z and the 8-channel ICS-4000Z, have proven capabilities to make precise, well calibrated, measurements of the ionosphere in several directions simultaneously. In addition to providing ionospheric corrections for precise time transfer via satellite, this dual frequency design allows full code and automatic codeless operation of both the differential group delay and differential carrier phase for numerous ionospheric experiments being conducted. Statistical results of the data collected from the ICS-4Z during the initial year of ionospheric time delay in the northeastern U.S., and initial results with the ICS-4000Z, will be presented.

  1. Two Effects of Electrical Fields on Chloroplasts 1

    PubMed Central

    Arnold, William A.; Azzi, Jim R.

    1977-01-01

    An electrical field across a suspension of Chenopodium chloroplasts stimulates the emission of delayed light during the time the field is on. This stimulation can be used to calculate the distance over which the electron moves in the untrapping process that gives the delayed light. An electrical field applied at the time of illumination gives a polarization to the suspension of chloroplasts that lasts for some seconds. This polarization is a new way to study delayed light and fluorescence from chloroplasts. Images PMID:16660112

  2. Synchronization of Heterogeneous Oscillators by Noninvasive Time-Delayed Cross Coupling.

    PubMed

    Jüngling, Thomas; Fischer, Ingo; Schöll, Eckehard; Just, Wolfram

    2015-11-06

    We demonstrate that nonidentical systems, in particular, nonlinear oscillators with different time scales, can be synchronized if a mutual coupling via time-delayed control signals is implemented. Each oscillator settles on an unstable state, say a fixed point or an unstable periodic orbit, with a coupling force which vanishes in the long time limit. We present the underlying theoretical considerations and numerical simulations, and, moreover, demonstrate the concept experimentally in nonlinear electronic oscillators.

  3. Spin-dependent delay time and Hartman effect in asymmetrical graphene barrier under strain

    NASA Astrophysics Data System (ADS)

    Sattari, Farhad; Mirershadi, Soghra

    2018-01-01

    We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin-orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.

  4. Time delay occultation data of the Helios spacecraft for probing the electron density distribution in the solar corona

    NASA Technical Reports Server (NTRS)

    Edenhofer, P.; Lueneburg, E.; Esposito, P. B.; Martin, W. L.; Zygielbaum, A. I.; Hansen, R. T.; Hansen, S. F.

    1978-01-01

    S-band time delay measurements were collected from the spacecraft Helios A and B during three solar occultations in 1975/76 within heliocentric distances of about 3 and 215 earth radius in terms of range, Doppler frequency shift, and electron content. Characteristic features of measurement and data processing are described. Typical data sets are discussed to probe the electron density distribution near the sun (west and east limb as well) including the outer and extended corona. Steady-state and dynamical aspects of the solar corona are presented and compared with earth-bound-K-coronagraph measurements. Using a weighted least squares estimation, parameters of an average coronal electron density profile are derived in a preliminary analysis to yield electron densities at r = 3, 65, 215 earth radius. Transient phenomena are discussed and a velocity of propagation v is nearly equal to 900 km/s is determined for plasma ejecta from a solar flare observed during an extraordinary set of Helios B electron content measurements.

  5. Method and apparatus for calibrating the ionosphere and application to surveillance of geophysical events

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F. (Inventor)

    1984-01-01

    The columnar electron content of the ionosphere between a spacecraft and a receiver is measured in realtime by cross correlating two coherently modulated signals transmitted at different frequencies (L1,L2) from the spacecraft to the receiver using a cross correlator. The time difference of arrival of the modulated signals is proportional to electron content of the ionosphere. A variable delay is adjusted relative to a fixed delay in the respective channels (L1,L2) to produce a maximum at the cross correlator output. The difference in delay required to produce this maximum is a measure of the columnar electron content of the ionosphere. A plurality of monitoring stations and spacecraft (Global Positioning System satellites) are employed to locate any terrestrial event that produces an ionospheric disturbance.

  6. Method and apparatus for detecting timing errors in a system oscillator

    DOEpatents

    Gliebe, Ronald J.; Kramer, William R.

    1993-01-01

    A method of detecting timing errors in a system oscillator for an electronic device, such as a power supply, includes the step of comparing a system oscillator signal with a delayed generated signal and generating a signal representative of the timing error when the system oscillator signal is not identical to the delayed signal. An LED indicates to an operator that a timing error has occurred. A hardware circuit implements the above-identified method.

  7. A micromachined silicon parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT)

    NASA Astrophysics Data System (ADS)

    Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun

    2015-03-01

    To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.

  8. 48 CFR 15.208 - Submission, modification, revision, and withdrawal of proposals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... solicitation. Offerors may use any transmission method authorized by the solicitation (i.e., regular mail, electronic commerce, or facsimile). If no time is specified in the solicitation, the time for receipt is 4:30... not unduly delay the acquisition; and— (i) If it was transmitted through an electronic commerce method...

  9. Mechanism of Runaway Electron Generation at Gas Pressures from a Few Atmospheres to Several Tens of Atmospheres

    NASA Astrophysics Data System (ADS)

    Zubarev, N. M.; Ivanov, S. N.

    2018-04-01

    The mechanism of runaway electron generation at gas pressures from a few atmospheres to several tens of atmospheres is proposed. According to this mechanism, the electrons pass into the runaway mode in the enhanced field zone that arises between a cathode micropoint—a source of field-emission electrons—and the region of the positive ion space charge accumulated near the cathode in the tails of the developing electron avalanches. As a result, volume gas ionization by runaway electrons begins with a time delay required for the formation of the enhanced field zone. This process determines the delay time of breakdown. The influence of the gas pressure on the formation dynamics of the space charge region is analyzed. At gas pressures of a few atmospheres, the space charge arises due to the avalanche multiplication of the very first field-emission electron, whereas at pressures of several tens of atmospheres, the space charge forms as a result of superposition of many electron avalanches with a relatively small number of charge carriers in each.

  10. Combined action of corrugation and Weibel instabilities from electron-beam interaction with laser-irradiated plasma

    NASA Astrophysics Data System (ADS)

    Bai, Yafeng; Tian, Ye; Zhang, Zhijun; Cao, Lihua; Liu, Jiansheng

    2018-03-01

    The combined action of corrugation and Weibel instabilities was experimentally observed in the interaction between energetic electrons and a laser-irradiated insulated target. The energetic electron beam, driven by an ultrashort laser pulse, splits into filaments with a diameter of ˜10 μm while traversing an insulated target, owing to the corrugation instability. The filaments continued to split into thinner filaments owing to the Weibel instability if a preplasma was induced by a heating beam on the rear side of the target. When the time delay between the heating beam and electron beam was larger than 1 ps, a merging of the current filaments was observed. The characteristic filamentary structures disappeared when the time delay between the two beams was larger than 3 ps. A simplified model was developed to analyze this process; the obtained results were in good agreement with the experiment. Two-dimensional particle-in-cell simulations supported our analysis and reproduced the filamentation of the electron beam inside the plasma.

  11. Experimental relevance of global properties of time-delayed feedback control.

    PubMed

    von Loewenich, Clemens; Benner, Hartmut; Just, Wolfram

    2004-10-22

    We show by means of theoretical considerations and electronic circuit experiments that time-delayed feedback control suffers from severe global constraints if transitions at the control boundaries are discontinuous. Subcritical behavior gives rise to small basins of attraction and thus limits the control performance. The reported properties are, on the one hand, universal since the mechanism is based on general arguments borrowed from bifurcation theory and, on the other hand, directly visible in experimental time series.

  12. Using time-delayed mutual information to discover and interpret temporal correlation structure in complex populations

    NASA Astrophysics Data System (ADS)

    Albers, D. J.; Hripcsak, George

    2012-03-01

    This paper addresses how to calculate and interpret the time-delayed mutual information (TDMI) for a complex, diversely and sparsely measured, possibly non-stationary population of time-series of unknown composition and origin. The primary vehicle used for this analysis is a comparison between the time-delayed mutual information averaged over the population and the time-delayed mutual information of an aggregated population (here, aggregation implies the population is conjoined before any statistical estimates are implemented). Through the use of information theoretic tools, a sequence of practically implementable calculations are detailed that allow for the average and aggregate time-delayed mutual information to be interpreted. Moreover, these calculations can also be used to understand the degree of homo or heterogeneity present in the population. To demonstrate that the proposed methods can be used in nearly any situation, the methods are applied and demonstrated on the time series of glucose measurements from two different subpopulations of individuals from the Columbia University Medical Center electronic health record repository, revealing a picture of the composition of the population as well as physiological features.

  13. Delayed photo-emission model for beam optics codes

    DOE PAGES

    Jensen, Kevin L.; Petillo, John J.; Panagos, Dimitrios N.; ...

    2016-11-22

    Future advanced light sources and x-ray Free Electron Lasers require fast response from the photocathode to enable short electron pulse durations as well as pulse shaping, and so the ability to model delays in emission is needed for beam optics codes. The development of a time-dependent emission model accounting for delayed photoemission due to transport and scattering is given, and its inclusion in the Particle-in-Cell code MICHELLE results in changes to the pulse shape that are described. Furthermore, the model is applied to pulse elongation of a bunch traversing an rf injector, and to the smoothing of laser jitter onmore » a short pulse.« less

  14. Extreme-ultraviolet-initiated high-order harmonic generation in Ar+

    NASA Astrophysics Data System (ADS)

    Clarke, D. D. A.; van der Hart, H. W.; Brown, A. C.

    2018-02-01

    We employ the R matrix with time dependence method to investigate extreme-ultraviolet-initiated high-order harmonic generation (XIHHG) in Ar+. Using a combination of extreme-ultraviolet (XUV, 92 nm, 3 ×1012W cm-2 ) and time-delayed, infrared (IR, 800 nm, 3 ×1014W cm-2 ) laser pulses, we demonstrate that control over both the mechanism and timing of ionization can afford significant enhancements in the yield of plateau and subthreshold harmonics alike. The presence of the XUV pulse is also shown to alter the relative contribution of different electron emission pathways. Manifestation of the Ar+ electronic structure is found in the appearance of a pronounced Cooper minimum. Interferences among the outer-valence 3 p and inner-valence 3 s electrons are found to incur only a minor suppression of the harmonic intensities, at least for the present combination of XUV and IR laser light. Additionally, the dependence of the XIHHG efficiency on time delay is discussed and rationalized with the aid of classical trajectory simulations.

  15. Two-color pump-probe laser spectroscopy instrument with picosecond time-resolved electronic delay and extended scan range

    NASA Astrophysics Data System (ADS)

    Yu, Anchi; Ye, Xiong; Ionascu, Dan; Cao, Wenxiang; Champion, Paul M.

    2005-11-01

    An electronically delayed two-color pump-probe instrument was developed using two synchronized laser systems. The instrument has picosecond time resolution and can perform scans over hundreds of nanoseconds without the beam divergence and walk-off effects that occur using standard spatial delay systems. A unique picosecond Ti :sapphire regenerative amplifier was also constructed without the need for pulse stretching and compressing optics. The picosecond regenerative amplifier has a broad wavelength tuning range, which suggests that it will make a significant contribution to two-color pump-probe experiments. To test this instrument we studied the rotational correlation relaxation of myoglobin (τr=8.2±0.5ns) in water as well as the geminate rebinding kinetics of oxygen to myoglobin (kg1=1.7×1011s-1, kg2=3.4×107s-1). The results are consistent with, and improve upon, previous studies.

  16. Effects of electron relaxation on multiple harmonic generation from metal surfaces with femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Karatzas, N. E.; Georges, A. T.

    2006-11-01

    Calculations are presented for the first four (odd and even) harmonics of an 800 nm laser from a gold surface, with pulse widths ranging from 100 down to 14 fs. For peak laser intensities above 1 GW/cm 2 the harmonics are enhanced because of a partial depletion of the initial electron states. At 10 11 W/cm 2 of peak laser intensity the calculated conversion efficiency for 2nd-harmonic generation is 3 × 10 -9, while for the 5th-harmonic it is 10 -10. The generated harmonic pulses are broadened and delayed relative to the laser pulse because of the finite relaxation times of the excited electronic states. The finite electron relaxation times cause also the broadening of the autocorrelations of the laser pulses obtained from surface harmonic generation by two time-delayed identical pulses. Comparison with recent experimental results shows that the response time of an autocorrelator using nonlinear optical processes in a gold surface is shorter than the electron relaxation times. This seems to indicate that for laser pulses shorter than ˜30 fs, the fast nonresonant channel for multiphoton excitation via continuum-continuum transitions in metals becomes important as the resonant channel becomes slow (relative to the laser pulse) and less efficient.

  17. Time-dependent local density approximation study of iodine photoionization delay

    NASA Astrophysics Data System (ADS)

    Magrakvelidze, Maia; Chakraborty, Himadri

    2017-04-01

    We investigate dipole quantum phases and Wigner-Smith (WS) time delays in the photoionization of iodine using Kohn-Sham time-dependent local density approximation (TDLDA) with the Leeuwen and Baerends exchange-correlation functional. Study of the effects of electron correlations on the absolute as well as relative delays in emissions from both valence 5p and 5s, and core 4d, 4p and 4s levels has been carried out. Particular emphasis is paid to unravel the role of correlations to induce structures in the delay as a function of energy at resonances and Cooper minima. The results should encourage attosecond measurements of iodine photoemission and probe the WS-temporal landscape of an open-shell atomic system. This work was supported by the U.S. National Science Foundation.

  18. Charge dynamics in aluminum oxide thin film studied by ultrafast scanning electron microscopy.

    PubMed

    Zani, Maurizio; Sala, Vittorio; Irde, Gabriele; Pietralunga, Silvia Maria; Manzoni, Cristian; Cerullo, Giulio; Lanzani, Guglielmo; Tagliaferri, Alberto

    2018-04-01

    The excitation dynamics of defects in insulators plays a central role in a variety of fields from Electronics and Photonics to Quantum computing. We report here a time-resolved measurement of electron dynamics in 100 nm film of aluminum oxide on silicon by Ultrafast Scanning Electron Microscopy (USEM). In our pump-probe setup, an UV femtosecond laser excitation pulse and a delayed picosecond electron probe pulse are spatially overlapped on the sample, triggering Secondary Electrons (SE) emission to the detector. The zero of the pump-probe delay and the time resolution were determined by measuring the dynamics of laser-induced SE contrast on silicon. We observed fast dynamics with components ranging from tens of picoseconds to few nanoseconds, that fits within the timescales typical of the UV color center evolution. The surface sensitivity of SE detection gives to the USEM the potential of applying pump-probe investigations to charge dynamics at surfaces and interfaces of current nano-devices. The present work demonstrates this approach on large gap insulator surfaces. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Molecular alignment effect on the photoassociation process via a pump-dump scheme.

    PubMed

    Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin

    2015-09-07

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X(1)Σ(+)) is associated into the molecule in the bound states of the excited state (A(1)Σ(+)) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.

  20. Molecular alignment effect on the photoassociation process via a pump-dump scheme

    NASA Astrophysics Data System (ADS)

    Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin

    2015-09-01

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X1Σ+) is associated into the molecule in the bound states of the excited state (A1Σ+) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j> on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.

  1. Attosecond control of dissociative ionization of O{sub 2} molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siu, W.; Kelkensberg, F.; Gademann, G.

    We demonstrate that dissociative ionization of O{sub 2} can be controlled by the relative delay between an attosecond pulse train (APT) and a copropagating infrared (IR) field. Our experiments reveal a dependence of both the branching ratios between a range of electronic states and the fragment angular distributions on the extreme ultraviolet (XUV) to IR time delay. The observations go beyond adiabatic propagation of dissociative wave packets on IR-induced quasistatic potential energy curves and are understood in terms of an IR-induced coupling between electronic states in the molecular ion.

  2. How to induce multiple delays in coupled chaotic oscillators?

    NASA Astrophysics Data System (ADS)

    Bhowmick, Sourav K.; Ghosh, Dibakar; Roy, Prodyot K.; Kurths, Jürgen; Dana, Syamal K.

    2013-12-01

    Lag synchronization is a basic phenomenon in mismatched coupled systems, delay coupled systems, and time-delayed systems. It is characterized by a lag configuration that identifies a unique time shift between all pairs of similar state variables of the coupled systems. In this report, an attempt is made how to induce multiple lag configurations in coupled systems when different pairs of state variables attain different time shift. A design of coupling is presented to realize this multiple lag synchronization. Numerical illustration is given using examples of the Rössler system and the slow-fast Hindmarsh-Rose neuron model. The multiple lag scenario is physically realized in an electronic circuit of two Sprott systems.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivera-Durón, R. R., E-mail: roberto.rivera@ipicyt.edu.mx; Campos-Cantón, E., E-mail: eric.campos@ipicyt.edu.mx; Campos-Cantón, I.

    We present the design of an autonomous time-delay Boolean network realized with readily available electronic components. Through simulations and experiments that account for the detailed nonlinear response of each circuit element, we demonstrate that a network with five Boolean nodes displays complex behavior. Furthermore, we show that the dynamics of two identical networks display near-instantaneous synchronization to a periodic state when forced by a common periodic Boolean signal. A theoretical analysis of the network reveals the conditions under which complex behavior is expected in an individual network and the occurrence of synchronization in the forced networks. This research will enablemore » future experiments on autonomous time-delay networks using readily available electronic components with dynamics on a slow enough time-scale so that inexpensive data collection systems can faithfully record the dynamics.« less

  4. Investigating tunneling process of atom exposed in circularly polarized strong-laser field

    NASA Astrophysics Data System (ADS)

    Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing

    2017-03-01

    We propose a method for studying the tunneling process by analyzing the instantaneous ionization rate of a circularly polarized laser. A numerical calculation shows that, for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obvious time delay phase shift of more than 190 attoseconds is observed. Further study shows that the atom has a longer tunneling time in the ionization under a shorter wavelength laser pulse. In our method, a Wigner rotation technique is employed to numerically solve the time-dependent Schrödinger equation of a single-active electron in a three-dimensional spherical coordinate system.

  5. Delayed Triplet-State Formation through Hybrid Charge Transfer Exciton at Copper Phthalocyanine/GaAs Heterojunction.

    PubMed

    Lim, Heeseon; Kwon, Hyuksang; Kim, Sang Kyu; Kim, Jeong Won

    2017-10-05

    Light absorption in organic molecules on an inorganic substrate and subsequent electron transfer to the substrate create so-called hybrid charge transfer exciton (HCTE). The relaxation process of the HCTE states largely determines charge separation efficiency or optoelectronic device performance. Here, the study on energy and time-dispersive behavior of photoelectrons at the hybrid interface of copper phthalocyanine (CuPc)/p-GaAs(001) upon light excitation of GaAs reveals a clear pathway for HCTE relaxation and delayed triplet-state formation. According to the ground-state energy level alignment at the interface, CuPc/p-GaAs(001) shows initially fast hole injection from GaAs to CuPc. Thus, the electrons in GaAs and holes in CuPc form an unusual HCTE state manifold. Subsequent electron transfer from GaAs to CuPc generates the formation of the triplet state in CuPc with a few picoseconds delay. Such two-step charge transfer causes delayed triplet-state formation without singlet excitation and subsequent intersystem crossing within the CuPc molecules.

  6. TIME-INTERVAL MEASURING DEVICE

    DOEpatents

    Gross, J.E.

    1958-04-15

    An electronic device for measuring the time interval between two control pulses is presented. The device incorporates part of a previous approach for time measurement, in that pulses from a constant-frequency oscillator are counted during the interval between the control pulses. To reduce the possible error in counting caused by the operation of the counter gating circuit at various points in the pulse cycle, the described device provides means for successively delaying the pulses for a fraction of the pulse period so that a final delay of one period is obtained and means for counting the pulses before and after each stage of delay during the time interval whereby a plurality of totals is obtained which may be averaged and multplied by the pulse period to obtain an accurate time- Interval measurement.

  7. Long-lived efficient delayed fluorescence organic light-emitting diodes using n-type hosts.

    PubMed

    Cui, Lin-Song; Ruan, Shi-Bin; Bencheikh, Fatima; Nagata, Ryo; Zhang, Lei; Inada, Ko; Nakanotani, Hajime; Liao, Liang-Sheng; Adachi, Chihaya

    2017-12-21

    Organic light-emitting diodes have become a mainstream display technology because of their desirable features. Third-generation electroluminescent devices that emit light through a mechanism called thermally activated delayed fluorescence are currently garnering much attention. However, unsatisfactory device stability is still an unresolved issue in this field. Here we demonstrate that electron-transporting n-type hosts, which typically include an acceptor moiety in their chemical structure, have the intrinsic ability to balance the charge fluxes and broaden the recombination zone in delayed fluorescence organic electroluminescent devices, while at the same time preventing the formation of high-energy excitons. The n-type hosts lengthen the lifetimes of green and blue delayed fluorescence devices by > 30 and 1000 times, respectively. Our results indicate that n-type hosts are suitable to realize stable delayed fluorescence organic electroluminescent devices.

  8. Micromachined silicon acoustic delay line with improved structural stability and acoustic directivity for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun

    2017-03-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  9. An Initial Investigation of Ionospheric Gradients for Detection of Ionospheric Disturbances over Turkey

    NASA Astrophysics Data System (ADS)

    Koroglu, Meltem; Arikan, Feza; Koroglu, Ozan

    2015-04-01

    Ionosphere is an ionized layer of earth's atmosphere which affect the propagation of radio signals due to highly varying electron density structure. Total Electron Content (TEC) and Slant Total Electron Content (STEC) are convenient measures of total electron density along a ray path. STEC model is given by the line integral of the electron density between the receiver and GPS satellite. TEC and STEC can be estimated by observing the difference between the two GPS signal time delays that have different frequencies L1 (1575 MHz) and L2 (1227 MHz). During extreme ionospheric storms ionospheric gradients becomes larger than those of quiet days since time delays of the radio signals becomes anomalous. Ionosphere gradients can be modeled as a linear semi-infinite wave front with constant propagation speed. One way of computing the ionospheric gradients is to compare the STEC values estimated between two neighbouring GPS stations. In this so-called station-pair method, ionospheric gradients are defined by dividing the difference of the time delays of two receivers, that see the same satellite at the same time period. In this study, ionospheric gradients over Turkey are computed using the Turkish National Permanent GPS Network (TNPGN-Active) between May 2009 and September 2012. The GPS receivers are paired in east-west and north-south directions with distances less than 150 km. GPS-STEC for each station are calculated using IONOLAB-TEC and IONOLAB-BIAS softwares (www.ionolab.org). Ionospheric delays are calculated for each paired station for both L1 and L2 frequencies and for each satellite in view with 30 s time resolution. During the investigation period, different types of geomagnetic storms, Travelling Ionospheric Disturbances (TID), Sudden Ionospheric Disturbances (SID) and various earthquakes with magnitudes between 3 to 7.4 have occured. Significant variations in the structure of station-pair gradients have been observed depending on location of station-pairs, the path of the satellites, strength of the geomagnetic storms and type, depth and magnitude of the earthquakes. For a typical geomagnetic storm the gradients can get as high as 30 mm/km. For the earthquakes, both the magnitude and the structure of the ionospheric delay gradients exhibit strong variability. This study forms a basis for a comprehensive understanding of ionospheric variability for midlatitude GBAS and SBAS systems. This study is supported by a joint grant of TUBITAK 112E568 and RFBR 13-02-91370-CT_a.

  10. Electron transfer statistics and thermal fluctuations in molecular junctions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goswami, Himangshu Prabal; Harbola, Upendra

    2015-02-28

    We derive analytical expressions for probability distribution function (PDF) for electron transport in a simple model of quantum junction in presence of thermal fluctuations. Our approach is based on the large deviation theory combined with the generating function method. For large number of electrons transferred, the PDF is found to decay exponentially in the tails with different rates due to applied bias. This asymmetry in the PDF is related to the fluctuation theorem. Statistics of fluctuations are analyzed in terms of the Fano factor. Thermal fluctuations play a quantitative role in determining the statistics of electron transfer; they tend tomore » suppress the average current while enhancing the fluctuations in particle transfer. This gives rise to both bunching and antibunching phenomena as determined by the Fano factor. The thermal fluctuations and shot noise compete with each other and determine the net (effective) statistics of particle transfer. Exact analytical expression is obtained for delay time distribution. The optimal values of the delay time between successive electron transfers can be lowered below the corresponding shot noise values by tuning the thermal effects.« less

  11. Network complexity and synchronous behavior--an experimental approach.

    PubMed

    Neefs, P J; Steur, E; Nijmeijer, H

    2010-06-01

    We discuss synchronization in networks of Hindmarsh-Rose neurons that are interconnected via gap junctions, also known as electrical synapses. We present theoretical results for interactions without time-delay. These results are supported by experiments with a setup consisting of sixteen electronic equivalents of the Hindmarsh-Rose neuron. We show experimental results of networks where time-delay on the interaction is taken into account. We discuss in particular the influence of the network topology on the synchronization.

  12. Global properties in an experimental realization of time-delayed feedback control with an unstable control loop.

    PubMed

    Höhne, Klaus; Shirahama, Hiroyuki; Choe, Chol-Ung; Benner, Hartmut; Pyragas, Kestutis; Just, Wolfram

    2007-05-25

    We demonstrate by electronic circuit experiments the feasibility of an unstable control loop to stabilize torsion-free orbits by time-delayed feedback control. Corresponding analytical normal form calculations and numerical simulations reveal a severe dependence of the basin of attraction on the particular coupling scheme of the control force. Such theoretical predictions are confirmed by the experiments and emphasize the importance of the coupling scheme for the global control performance.

  13. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  14. Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares

    NASA Astrophysics Data System (ADS)

    Basak, Tamal; Chakrabarti, Sandip Kumar

    Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (DeltaA) and amplitude time delay (Deltat) (vis- ´a-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22(°) 27'N, 87(°) 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient (alpha_{eff}) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Deltat). For the C-class flares we find that there is a direct correspondence between Deltat of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Deltat for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux phi_{max} independent of these time slots, the goodness of fit, as measured by reduced-chi(2) , actually worsens as the day progresses. The variation of the Z dependence of reduced-chi(2) seems to follow the variation of standard deviation of Z along the T_x-R_x propagation path. In other words, for the flares having almost constant Z over the path a tighter anti-correlation between Deltat and phi_{max} was observed.

  15. Effective recombination coefficient and solar zenith angle effects on low-latitude D-region ionosphere evaluated from VLF signal amplitude and its time delay during X-ray solar flares

    NASA Astrophysics Data System (ADS)

    Basak, Tamal; Chakrabarti, Sandip K.

    2013-12-01

    Excess solar X-ray radiation during solar flares causes an enhancement of ionization in the ionospheric D-region and hence affects sub-ionospherically propagating VLF signal amplitude and phase. VLF signal amplitude perturbation (Δ A) and amplitude time delay (Δ t) (vis-á-vis corresponding X-ray light curve as measured by GOES-15) of NWC/19.8 kHz signal have been computed for solar flares which is detected by us during Jan-Sep 2011. The signal is recorded by SoftPAL facility of IERC/ICSP, Sitapur (22∘ 27'N, 87∘ 45'E), West Bengal, India. In first part of the work, using the well known LWPC technique, we simulated the flare induced excess lower ionospheric electron density by amplitude perturbation method. Unperturbed D-region electron density is also obtained from simulation and compared with IRI-model results. Using these simulation results and time delay as key parameters, we calculate the effective electron recombination coefficient ( α eff ) at solar flare peak region. Our results match with the same obtained by other established models. In the second part, we dealt with the solar zenith angle effect on D-region during flares. We relate this VLF data with the solar X-ray data. We find that the peak of the VLF amplitude occurs later than the time of the X-ray peak for each flare. We investigate this so-called time delay (Δ t). For the C-class flares we find that there is a direct correspondence between Δ t of a solar flare and the average solar zenith angle Z over the signal propagation path at flare occurrence time. Now for deeper analysis, we compute the Δ t for different local diurnal time slots DT. We find that while the time delay is anti-correlated with the flare peak energy flux ϕ max independent of these time slots, the goodness of fit, as measured by reduced- χ 2, actually worsens as the day progresses. The variation of the Z dependence of reduced- χ 2 seems to follow the variation of standard deviation of Z along the T x - R x propagation path. In other words, for the flares having almost constant Z over the path a tighter anti-correlation between Δ t and ϕ max was observed.

  16. A framework to preserve the privacy of electronic health data streams.

    PubMed

    Kim, Soohyung; Sung, Min Kyoung; Chung, Yon Dohn

    2014-08-01

    The anonymization of health data streams is important to protect these data against potential privacy breaches. A large number of research studies aiming at offering privacy in the context of data streams has been recently conducted. However, the techniques that have been proposed in these studies generate a significant delay during the anonymization process, since they concentrate on applying existing privacy models (e.g., k-anonymity and l-diversity) to batches of data extracted from data streams in a period of time. In this paper, we present delay-free anonymization, a framework for preserving the privacy of electronic health data streams. Unlike existing works, our method does not generate an accumulation delay, since input streams are anonymized immediately with counterfeit values. We further devise late validation for increasing the data utility of the anonymization results and managing the counterfeit values. Through experiments, we show the efficiency and effectiveness of the proposed method for the real-time release of data streams. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Energetic Particle Propagation in the Inner Heliosphere as Deduced from Low Frequency (less than 100 kHz) Observations of Type III Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cane, H. V.; Erickson, W. C.

    2003-01-01

    Solar energetic particle (SEP) events are well-associated with solar flares. It is observed that the delay between the time of the flare and the first-arriving particles at a spacecraft increases with increasing difference between the flare longitude and the footpoint of the field line on which the spacecraft is located. This difference we call the "connection angle" and can be as large as approximately 120 deg. Recently it has been found that all SEP events are preceded by type III radio bursts. These bursts are plasma emission caused by the propagation of 2-50 keV flare electrons through the solar corona and into the solar wind. The drift of these type III radio bursts to lower and lower frequencies enables the propagation of the flare electrons to be traced from the Sun to about 1 AU. We have made an extensive analysis of the type III bursts associated with greater than 20 MeV proton events and find that, in most cases, the radio emission extends to the local plasma frequency when the energetic particles arrive within a few hours of the flare. We conclude that this emission at the lowest possible frequency is generated close to the spacecraft. We then use the time from when the burst started at the Sun to when it reached the local plasma frequency to infer the time it took the radio producing electrons to travel to the spacecraft. We find that these delay times are organized by the connection angle and correlate with the proton delay times. We also find that the differences between the radio delays at Wind and Ulysses are matched by differences in the relative arrival times of the energetic particles at the two spacecraft. The consistent timing between the relative arrival times of energetic electrons and protons and the start of the lowest frequency radio emissions suggests that the first arriving particles of both species are accelerated as part of the flare process and that they propagate to the spacecraft along trajectories similar to those of the lower energy flare electrons. To be detected by observers at locations distant from the nominal field lines originating in the flaring regions the particles must undergo lateral transport. The continuity of the radio bursts suggests that the cross-field transport may occur in the interplanetary medium.

  18. Proceedings, 1972 Carahan Conference on Electronic Prosthetics.

    ERIC Educational Resources Information Center

    Jackson, John S., Ed.; DeVore, R. William, Ed.

    Presented are 28 papers given at a 1972 conference on electronic prosthetics for the handicapped. Among the papers are the following titles: "Therapy for Cerebral Palsy Employing Artifician Sense Organs for Alternatives to Proprioceptive Feedback"; "Excessive Neuromuscular Time Delay as a Possible Cause of Poor Hand-Eye Coordination and…

  19. Arbitrary digital pulse sequence generator with delay-loop timing

    NASA Astrophysics Data System (ADS)

    Hošák, Radim; Ježek, Miroslav

    2018-04-01

    We propose an idea of an electronic multi-channel arbitrary digital sequence generator with temporal granularity equal to two clock cycles. We implement the generator with 32 channels using a low-cost ARM microcontroller and demonstrate its capability to produce temporal delays ranging from tens of nanoseconds to hundreds of seconds, with 24 ns timing granularity and linear scaling of delay with respect to the number of delay loop iterations. The generator is optionally synchronized with an external clock source to provide 100 ps jitter and overall sequence repeatability within the whole temporal range. The generator is fully programmable and able to produce digital sequences of high complexity. The concept of the generator can be implemented using different microcontrollers and applied for controlling of various optical, atomic, and nuclear physics measurement setups.

  20. Bidirectional automatic release of reserve for low voltage network made with low capacity PLCs

    NASA Astrophysics Data System (ADS)

    Popa, I.; Popa, G. N.; Diniş, C. M.; Deaconu, S. I.

    2018-01-01

    The article presents the design of a bidirectional automatic release of reserve made on two types low capacity programmable logic controllers: PS-3 from Klöckner-Moeller and Zelio from Schneider. It analyses the electronic timing circuits that can be used for making the bidirectional automatic release of reserve: time-on delay circuit and time-off delay circuit (two types). In the paper are present the sequences code for timing performed on the PS-3 PLC, the logical functions for the bidirectional automatic release of reserve, the classical control electrical diagram (with contacts, relays, and time relays), the electronic control diagram (with logical gates and timing circuits), the code (in IL language) made for the PS-3 PLC, and the code (in FBD language) made for Zelio PLC. A comparative analysis will be carried out on the use of the two types of PLC and will be present the advantages of using PLCs.

  1. Note: electronic circuit for two-way time transfer via a single coaxial cable with picosecond accuracy and precision.

    PubMed

    Prochazka, Ivan; Kodet, Jan; Panek, Petr

    2012-11-01

    We have designed, constructed, and tested the overall performance of the electronic circuit for the two-way time transfer between two timing devices over modest distances with sub-picosecond precision and a systematic error of a few picoseconds. The concept of the electronic circuit enables to carry out time tagging of pulses of interest in parallel to the comparison of the time scales of these timing devices. The key timing parameters of the circuit are: temperature change of the delay is below 100 fs/K, timing stability time deviation better than 8 fs for averaging time from minutes to hours, sub-picosecond time transfer precision, and a few picoseconds time transfer accuracy.

  2. Experimental Control of a Fast Chaotic Time-Delay Opto-Electronic Device

    DTIC Science & Technology

    2003-01-01

    chaotic sources such as the erbium-doped Þber laser. The basic idea is to use the message as a driving signal for the chaotic system. The message...47 x 3.10 Block diagram of feedback loop. Light from the interferometer is con- verted into an electrical signal by the photodiode (PD). All...a time delay of τD. Finally, the electrical signal is converted back into light by the laser diode (LD). . . . . . . . . . . . . . . . . 48 3.11 Setup

  3. Electron trapping in evolving coronal structures during a large gradual hard X-ray/radio burst

    NASA Technical Reports Server (NTRS)

    Bruggmann, G.; Vilmer, N.; Klein, K.-L.; Kane, S. R.

    1994-01-01

    Gradual hard X-ray/radio bursts are characterized by their long duration, smooth time profile, time delays between peaks at different hard X-ray energies and microwaves, and radiation from extended sources in the low and middle corona. Their characteristic properties have been ascribed to the dynamic evolution of the accelerated electrons in coronal magnetic traps or to the separate acceleration of high-energy electrons in a 'second step' process. The information available so far was drawn from quality considerations of time profiles or even only from the common occurrence of emissions in different spectral ranges. This paper presents model computations of the temporal evolution of hard X-ray and microwave spectra, together with a qualitative discussion of radio lightcurves over a wide spectral range, and metric imaging observations. The basis hypothesis investigated is that the peculiar 'gradual' features can be related to the dynamical evolution of electrons injected over an extended time interval in a coronal trap, with electrons up to relativistic energies being injected simultaneously. The analyzed event (26 April. 1981) is particularly challenging to this hypothesis because of the long time delays between peaks at different X-ray energies and microwave frequencies. The observations are shown to be consistent with the hypothesis, provided that the electrons lose their energy by Coulomb collisions and possibly betatron deceleration. The access of the electrons to different coronal structures varies in the course of the event. The evolution and likely destabilization of part of the coronal plasma-magnetic field configuration is of crucial influence in determining the access to these structures and possibly the dynamical evolution of the trapped electrons through betatron deceleration in the late phase of the event.

  4. Amplitude death and synchronized states in nonlinear time-delay systems coupled through mean-field diffusion

    NASA Astrophysics Data System (ADS)

    Banerjee, Tanmoy; Biswas, Debabrata

    2013-12-01

    We explore and experimentally demonstrate the phenomena of amplitude death (AD) and the corresponding transitions through synchronized states that lead to AD in coupled intrinsic time-delayed hyperchaotic oscillators interacting through mean-field diffusion. We identify a novel synchronization transition scenario leading to AD, namely transitions among AD, generalized anticipatory synchronization (GAS), complete synchronization (CS), and generalized lag synchronization (GLS). This transition is mediated by variation of the difference of intrinsic time-delays associated with the individual systems and has no analogue in non-delayed systems or coupled oscillators with coupling time-delay. We further show that, for equal intrinsic time-delays, increasing coupling strength results in a transition from the unsynchronized state to AD state via in-phase (complete) synchronized states. Using Krasovskii-Lyapunov theory, we derive the stability conditions that predict the parametric region of occurrence of GAS, GLS, and CS; also, using a linear stability analysis, we derive the condition of occurrence of AD. We use the error function of proper synchronization manifold and a modified form of the similarity function to provide the quantitative support to GLS and GAS. We demonstrate all the scenarios in an electronic circuit experiment; the experimental time-series, phase-plane plots, and generalized autocorrelation function computed from the experimental time series data are used to confirm the occurrence of all the phenomena in the coupled oscillators.

  5. Assessment of Systematic Measurement Errors for Acoustic Travel-Time Tomography of the Atmosphere

    DTIC Science & Technology

    2013-01-01

    measurements include assess- ment of the time delays in electronic circuits and mechanical hardware (e.g., drivers and microphones) of a tomography array ...hardware and electronic circuits of the tomography array and errors in synchronization of the transmitted and recorded signals. For example, if...coordinates can be as large as 30 cm. These errors are equivalent to the systematic errors in the travel times of 0.9 ms. Third, loudspeakers which are used

  6. Molecular alignment effect on the photoassociation process via a pump-dump scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Bin-Bin; Han, Yong-Chang, E-mail: ychan@dlut.edu.cn; Cong, Shu-Lin

    The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na{sub 2}) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X{sup 1}Σ{sup +}) is associated into the molecule in the bound states of the excited state (A{sup 1}Σ{sup +}) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found thatmore » the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.« less

  7. Micromachined silicon acoustic delay line with 3D-printed micro linkers and tapered input for improved structural stability and acoustic directivity

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Kumar, A.; Xu, S.; Zou, J.

    2016-10-01

    Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.

  8. Novel Electron-Phonon Relaxation Pathway in Graphite Revealed by Time-Resolved Raman Scattering and Angle-Resolved Photoemission Spectroscopy.

    PubMed

    Yang, Jhih-An; Parham, Stephen; Dessau, Daniel; Reznik, Dmitry

    2017-01-19

    Time dynamics of photoexcited electron-hole pairs is important for a number of technologies, in particular solar cells. We combined ultrafast pump-probe Raman scattering and photoemission to directly follow electron-hole excitations as well as the G-phonon in graphite after an excitation by an intense laser pulse. This phonon is known to couple relatively strongly to electrons. Cross-correlating effective electronic and phonon temperatures places new constraints on model-based fits. The accepted two-temperature model predicts that G-phonon population should start to increase as soon as excited electron-hole pairs are created and that the rate of increase should not depend strongly on the pump fluence. Instead we found that the increase of the G-phonon population occurs with a delay of ~65 fs. This time-delay is also evidenced by the absence of the so-called self-pumping for G phonons. It decreases with increased pump fluence. We show that these observations imply a new relaxation pathway: Instead of hot carriers transferring energy to G-phonons directly, the energy is first transferred to optical phonons near the zone boundary K-points, which then decay into G-phonons via phonon-phonon scattering. Our work demonstrates that phonon-phonon interactions must be included in any calculations of hot carrier relaxation in optical absorbers even when only short timescales are considered.

  9. Lag and anticipating synchronization without time-delay coupling.

    PubMed

    Corron, Ned J; Blakely, Jonathan N; Pethel, Shawn D

    2005-06-01

    We describe a new method for achieving approximate lag and anticipating synchronization in unidirectionally coupled chaotic oscillators. The method uses a specific parameter mismatch between the drive and response that is a first-order approximation to true time-delay coupling. As a result, an adjustable lag or anticipation effect can be achieved without the need for a variable delay line, making the method simpler and more economical to implement in many physical systems. We present a stability analysis, demonstrate the method numerically, and report experimental observation of the effect in radio-frequency electronic oscillators. In the circuit experiments, both lag and anticipation are controlled by tuning a single capacitor in the response oscillator.

  10. Excimer laser produced plasmas in copper wire targets and water droplets

    NASA Technical Reports Server (NTRS)

    Song, Kyo-Dong; Alexander, D. R.

    1994-01-01

    Elastically scattered incident radiation (ESIR) from a copper wire target illuminated by a KrF laser pulse at lambda = 248 nm shows a dinstinct two-peak structure which is dependent on the incident energy. The time required to reach the critical electron density (n(sub c) approximately = 1.8 x 10(exp 22) electrons/cu cm) is estimated at 11 ns based on experimental results. Detailed ESIR characteristics for water have been reported previously by the authors. Initiation of the broadband emission for copper plasma begins at 6.5 +/- 1.45 ns after the arrival of the laser pulse. However, the broadband emission occurs at 11 +/- 0.36 ns for water. For a diatomic substance such as water, the electron energy rapidly dissipates due to dissociation of water molecules, which is absent in a monatomic species such as copper. When the energy falls below the excitation energy of the lowest electron state for water, it becomes a subexcitation electron. Lifetimes of the subexcited electrons to the vibrational states are estimated to be of the order of 10(exp -9) s. In addition, the ionization potential of copper (440-530 nm) is approximately 6 eV, which is about two times smaller than the 13 eV ionization potential reported for water. The higher ionization potential contributes to the longer observed delay time for plasma formation in water. After initiation, a longer time is required for copper plasma to reach its peak value. This time delay in reaching the maximum intensity is attributed to the energy loss during the interband transition in copper.

  11. Delayed rearterialization unlikely leads to nonanastomotic stricture but causes temporary injury on bile duct after liver transplantation.

    PubMed

    Liu, Yang; Wang, Jiazhong; Yang, Peng; Lu, Hongwei; Lu, Le; Wang, Jinlong; Li, Hua; Duan, Yanxia; Wang, Jun; Li, Yiming

    2015-03-01

    Nonanastomotic strictures (NAS) are common biliary complications after liver transplantation (LT). Delayed rearterialization induces biliary injury in several hours. However, whether this injury can be prolonged remains unknown. The correlation of this injury with NAS occurrence remains obscure. Different delayed rearterialization times were compared using a porcine LT model. Morphological and functional changes in bile canaliculus were evaluated by transmission electron microscopy and real-time PCR. Immunohistochemistry and TUNEL were performed to validate intrahepatic bile duct injury. Three months after LT was performed, biliary duct stricture was determined by cholangiography; the tissue of common bile duct was detected by real-time PCR. Bile canaliculi were impaired in early postoperative stage and then exacerbated as delayed rearterialization time was prolonged. Nevertheless, damaged bile canaliculi could fully recover in subsequent months. TNF-α and TGF-β expressions and apoptosis cell ratio increased in the intrahepatic bile duct only during early postoperative period in a time-dependent manner. No abnormality was observed by cholangiography and common bile duct examination after 3 months. Delayed rearterialization caused temporary injury to bile canaliculi and intrahepatic bile duct in a time-dependent manner. Injury could be fully treated in succeeding months. Solo delayed rearterialization cannot induce NAS after LT. © 2014 The Authors. Transplant International published by John Wiley & Sons Ltd on behalf of Steunstichting ESOT.

  12. The recommendation of line-balancing improvement on MCM product line 1 using genetics algorithm and moodie young at XYZ Company, Co.

    NASA Astrophysics Data System (ADS)

    Sriwana, I. K.; Marie, I. A.; Mangala, D.

    2017-12-01

    Kencana Gemilang, Co. is one electronics industry engaging in the manufacture sector. This company manufactures and assembles household electronic products, such as rice cooker, fan, iron, blender, etc. The company deals with an issue of underachievement of an established production target on MCM products line 1. This study aimed to calculate line efficiencies, delay times, and initial line smoothness indexes. The research was carried out by means of depicting a precedence diagram and gathering time data of each work element followed by examination and calculation of standard time as well as line balancing using methods of Moodie Young and Generics Algorithm. Based on results of calculation, better line balancing than the existing initial conditions, i.e. improvement in the line efficiency by 18.39%, deterioration in balanced delay by 28.39%, and deterioration of a smoothness index by 23.85% was obtained.

  13. Study of electron mobility in small molecular SAlq by transient electroluminescence method

    NASA Astrophysics Data System (ADS)

    Kumar, Pankaj; Jain, S. C.; Kumar, Vikram; Chand, Suresh; Kamalasanan, M. N.; Tandon, R. P.

    2007-12-01

    The study of electron mobility of bis(2-methyl 8-hydroxyquinoline) (triphenyl siloxy) aluminium (SAlq) by transient electroluminescence (EL) is presented. An EL device is fabricated in bilayer, ITO/N,N'-diphenyl-N, N'-bis(3-methylphenyl)-(1,1'-biphenyl)-4,4'-diamine (TPD)/SAlq/LiF/Al configuration. The temporal evaluation of the EL with respect to the step voltage pulse is characterized by a delay time followed by a fast initial rise, which is followed by a slower rise. The delay time between the applied electrical pulse and the onset of EL is correlated with the carrier mobility (electron in our case). Transient EL studies for SAlq have been carried out at different temperatures and different applied electric fields. The electron mobility in SAlq is found to be field and temperature dependent and calculated to be 6.9 × 10-7 cm2 V-1 s-1 at 2.5 × 106 V cm-1 and 308 K. The EL decays immediately as the voltage is turned off and does not depend on the amplitude of the applied voltage pulse or dc offset.

  14. Electronic prescribing increases uptake of clinical pharmacologists' recommendations in the hospital setting

    PubMed Central

    Taegtmeyer, Anne B; Curkovic, Ivanka; Rufibach, Kaspar; Corti, Natascia; Battegay, Edouard; Kullak-Ublick, Gerd A

    2011-01-01

    AIMS To determine whether electronic prescribing facilitates the uptake of clinical pharmacologists' recommendations for improving drug safety in medical inpatients. METHODS Electronic case records and prescription charts (either electronic or paper) of 502 patients hospitalized on medical wards in a large Swiss teaching hospital between January 2009 and January 2010 were studied by four junior and four senior clinical pharmacologists. Drug-related problems were identified and interventions proposed. The implementation and time delays of these proposed interventions were compared between the patients for whom paper drug charts were used and the patients for whom electronic drug charts were used. RESULTS One hundred and fifty-eight drug-related problems in 109 hospital admissions were identified and 145 recommendations were made, of which 51% were implemented. Admissions with an electronic prescription chart (n = 90) were found to have 2.74 times higher odds for implementation of the change than those with a paper prescription chart (n = 53) (95% confidence interval 1.2, 6.3, P = 0.018, adjusted for any dependency introduced by patient, ward or clinical team; follow-up for two cases missing). The time delay between recommendations being made and their implementation (if any) was minimal (median 1 day) and did not differ between the two groups. CONCLUSIONS Electronic prescribing in this hospital setting was associated with increased implementation of clinical pharmacologists' recommendations for improving drug safety when compared with handwritten prescribing on paper. PMID:21627677

  15. Catalyst–substrate interaction and growth delay in vapor–liquid–solid nanowire growth

    NASA Astrophysics Data System (ADS)

    Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš

    2018-05-01

    Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.

  16. Catalyst-substrate interaction and growth delay in vapor-liquid-solid nanowire growth.

    PubMed

    Kolíbal, Miroslav; Pejchal, Tomáš; Musálek, Tomáš; Šikola, Tomáš

    2018-05-18

    Understanding of the initial stage of nanowire growth on a bulk substrate is crucial for the rational design of nanowire building blocks in future electronic and optoelectronic devices. Here, we provide in situ scanning electron microscopy and Auger microscopy analysis of the initial stage of Au-catalyzed Ge nanowire growth on different substrates. Real-time microscopy imaging and elementally resolved spectroscopy clearly show that the catalyst dissolves the underlying substrate if held above a certain temperature. If the substrate dissolution is blocked (or in the case of heteroepitaxy) the catalyst needs to be filled with nanowire material from the external supply, which significantly increases the initial growth delay. The experiments presented here reveal the important role of the substrate in metal-catalyzed nanowire growth and pave the way for different growth delay mitigation strategies.

  17. Do nuclei move on an attosecond timescale in strong-field photodissociation?

    NASA Astrophysics Data System (ADS)

    Esry, B. D.

    2017-04-01

    Without the ready availability of single attosecond pulses with sufficient energy to perform pump-probe experiments, the push to measure electronic dynamics on its natural timescale of attoseconds has enlisted less direct measurements. Photoionization ``time delays'', in particular, have been measured and calculated to be on the attosecond timescale and thus have attracted considerable attention. The ultimate goal of such attosecond-scale measurements is the molecular movie - i.e., making movies of the electronic motion during chemical reactions. It has been universally assumed, however, that any measured attosecond timescales in observables relate exclusively to electronic dynamics, even during a reaction which necessarily includes nuclear motion. I will explore some of the limits of this assumption and highlight a few specific cases where it fails, emphasizing in the process that phases should be favored over ``time delays''. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.

  18. Birth of a resonant attosecond wavepacket

    NASA Astrophysics Data System (ADS)

    Argenti, L.; Gruson, V.; Barreau, L.; Jimenez-Galan, A.; Risoud, F.; Caillat, J.; Maquet, A.; Carre, B.; Lepetit, F.; Hergott, J.-F.; Ruchon, T.; Taieb, R.; Martin, F.; Salieres, P.

    2016-05-01

    Both amplitude and phase are needed to characterize the dynamics of a wavepacket. However, such characterization is difficult when both attosecond and femtosecond timescales are involved, as it is the case for broadband photoionization to a continuum encompassing autoionizing states. Here we demonstrate that Rainbow RABBIT, a new attosecond interferometry, allows the measurement of amplitude and phase of a photoelectron wavepacket created through a Fano resonance with unprecedented precision. In the experiment, a tunable attosecond pulse train is combined with the fundamental laser pulse to induce two-photon transitions in helium via an intermediate autoionizing state. From the energy and time-delay resolved signal, we fully reconstruct the resonant electron wavepacket as it builds up in the continuum. Measurements accurately match the predictions of a new time-resolved multi-photon resonant model, known to reproduce ab initio calculations. This agreement confirms the potential of Rainbow RABBIT to investigate photoemission delays in ultrafast processes governed by electron correlation, as well as to control structured electron wavepackets. now at Univ. Central Florida, Orlando, FL (USA).

  19. Theoretical and experimental aspects of chaos control by time-delayed feedback.

    PubMed

    Just, Wolfram; Benner, Hartmut; Reibold, Ekkehard

    2003-03-01

    We review recent developments for the control of chaos by time-delayed feedback methods. While such methods are easily applied even in quite complex experimental context the theoretical analysis yields infinite-dimensional differential-difference systems which are hard to tackle. The essential ideas for a general theoretical approach are sketched and the results are compared to electronic circuits and to high power ferromagnetic resonance experiments. Our results show that the control performance can be understood on the basis of experimentally accessible quantities without resort to any model for the internal dynamics.

  20. Measurement of collective dynamical mass of Dirac fermions in graphene.

    PubMed

    Yoon, Hosang; Forsythe, Carlos; Wang, Lei; Tombros, Nikolaos; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Kim, Philip; Ham, Donhee

    2014-08-01

    Individual electrons in graphene behave as massless quasiparticles. Unexpectedly, it is inferred from plasmonic investigations that electrons in graphene must exhibit a non-zero mass when collectively excited. The inertial acceleration of the electron collective mass is essential to explain the behaviour of plasmons in this material, and may be directly measured by accelerating it with a time-varying voltage and quantifying the phase delay of the resulting current. This voltage-current phase relation would manifest as a kinetic inductance, representing the reluctance of the collective mass to accelerate. However, at optical (infrared) frequencies, phase measurements of current are generally difficult, and, at microwave frequencies, the inertial phase delay has been buried under electron scattering. Therefore, to date, the collective mass in graphene has defied unequivocal measurement. Here, we directly and precisely measure the kinetic inductance, and therefore the collective mass, by combining device engineering that reduces electron scattering and sensitive microwave phase measurements. Specifically, the encapsulation of graphene between hexagonal boron nitride layers, one-dimensional edge contacts and a proximate top gate configured as microwave ground together enable the inertial phase delay to be resolved from the electron scattering. Beside its fundamental importance, the kinetic inductance is found to be orders of magnitude larger than the magnetic inductance, which may be utilized to miniaturize radiofrequency integrated circuits. Moreover, its bias dependency heralds a solid-state voltage-controlled inductor to complement the prevalent voltage-controlled capacitor.

  1. Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts

    NASA Astrophysics Data System (ADS)

    Lin, Charles C. H.; Chen, Chia-Hung; Matsumura, Mitsuru; Lin, Jia-Ting; Kakinami, Yoshihiro

    2017-08-01

    Observations and theoretical modeling of the ionospheric disturbance waves generated by rocket launches are investigated. During the rocket passage, time rate change of total electron content (rTEC) enhancement with the V-shape shock wave signature is commonly observed, followed by acoustic wave disturbances and region of negative rTEC centered along the trajectory. Ten to fifteen min after the rocket passage, delayed disturbance waves appeared and propagated along direction normal to the V-shape wavefronts. These observation features appeared most prominently in the 2016 North Korea rocket launch showing a very distinct V-shape rTEC enhancement over enormous areas along the southeast flight trajectory despite that it was also appeared in the 2009 North Korea rocket launch with the eastward flight trajectory. Numerical simulations using the physical-based nonlinear and nonhydrostatic coupled model of neutral atmosphere and ionosphere reproduce promised results in qualitative agreement with the characteristics of ionospheric disturbance waves observed in the 2009 event by considering the released energy of the rocket exhaust as the disturbance source. Simulations reproduce the shock wave signature of electron density enhancement, acoustic wave disturbances, the electron density depletion due to the rocket-induced pressure bulge, and the delayed disturbance waves. The pressure bulge results in outward neutral wind flows carrying neutrals and plasma away from it and leading to electron density depletions. Simulations further show, for the first time, that the delayed disturbance waves are produced by the surface reflection of the earlier arrival acoustic wave disturbances.

  2. A high resolution on-chip delay sensor with low supply-voltage sensitivity for high-performance electronic systems.

    PubMed

    Sheng, Duo; Lai, Hsiu-Fan; Chan, Sheng-Min; Hong, Min-Rong

    2015-02-13

    An all-digital on-chip delay sensor (OCDS) circuit with high delay-measurement resolution and low supply-voltage sensitivity for efficient detection and diagnosis in high-performance electronic system applications is presented. Based on the proposed delay measurement scheme, the quantization resolution of the proposed OCDS can be reduced to several picoseconds. Additionally, the proposed cascade-stage delay measurement circuit can enhance immunity to supply-voltage variations of the delay measurement resolution without extra self-biasing or calibration circuits. Simulation results show that the delay measurement resolution can be improved to 1.2 ps; the average delay resolution variation is 0.55% with supply-voltage variations of ±10%. Moreover, the proposed delay sensor can be implemented in an all-digital manner, making it very suitable for high-performance electronic system applications as well as system-level integration.

  3. Diffraction and microscopy with attosecond electron pulse trains

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Baum, Peter

    2018-03-01

    Attosecond spectroscopy1-7 can resolve electronic processes directly in time, but a movie-like space-time recording is impeded by the too long wavelength ( 100 times larger than atomic distances) or the source-sample entanglement in re-collision techniques8-11. Here we advance attosecond metrology to picometre wavelength and sub-atomic resolution by using free-space electrons instead of higher-harmonic photons1-7 or re-colliding wavepackets8-11. A beam of 70-keV electrons at 4.5-pm de Broglie wavelength is modulated by the electric field of laser cycles into a sequence of electron pulses with sub-optical-cycle duration. Time-resolved diffraction from crystalline silicon reveals a < 10-as delay of Bragg emission and demonstrates the possibility of analytic attosecond-ångström diffraction. Real-space electron microscopy visualizes with sub-light-cycle resolution how an optical wave propagates in space and time. This unification of attosecond science with electron microscopy and diffraction enables space-time imaging of light-driven processes in the entire range of sample morphologies that electron microscopy can access.

  4. Charge Transfer Dynamics at Dye-Sensitized ZnO and TiO2 Interfaces Studied by Ultrafast XUV Photoelectron Spectroscopy

    PubMed Central

    Borgwardt, Mario; Wilke, Martin; Kampen, Thorsten; Mähl, Sven; Xiao, Manda; Spiccia, Leone; Lange, Kathrin M.; Kiyan, Igor Yu.; Aziz, Emad F.

    2016-01-01

    Interfacial charge transfer from photoexcited ruthenium-based N3 dye molecules into ZnO thin films received controversial interpretations. To identify the physical origin for the delayed electron transfer in ZnO compared to TiO2, we probe directly the electronic structure at both dye-semiconductor interfaces by applying ultrafast XUV photoemission spectroscopy. In the range of pump-probe time delays between 0.5 to 1.0 ps, the transient signal of the intermediate states was compared, revealing a distinct difference in their electron binding energies of 0.4 eV. This finding strongly indicates the nature of the charge injection at the ZnO interface associated with the formation of an interfacial electron-cation complex. It further highlights that the energetic alignment between the dye donor and semiconductor acceptor states appears to be of minor importance for the injection kinetics and that the injection efficiency is dominated by the electronic coupling. PMID:27073060

  5. Time delays in the nonthermal radiation of solar flares according to observations of the CORONAS-F satellite

    NASA Astrophysics Data System (ADS)

    Tsap, Yu. T.; Stepanov, A. V.; Kashapova, L. K.; Myagkova, I. N.; Bogomolov, A. V.; Kopylova, Yu. G.; Goldvarg, T. B.

    2016-07-01

    In 2001-2003, the X-ray and microwave observations of ten solar flares of M- and X-classes were carried out by the CORONAS-F orbital station, the RSTN Sun service, and Nobeyama radio polarimeters. Based on these observations, a correlation analysis of time profiles of nonthermal radiation was performed. On average, hard X-ray radiation outstrips the microwave radiation in 9 events, i.e., time delays are positive. The appearance of negative delays is associated with effective scattering of accelerated electrons in pitch angles, where the length of the free path of a particle is less than the half-length of a flare loop. The additional indications are obtained in favor of the need to account for the effect of magnetic mirrors on the dynamics of energetic particles in the coronal arches.

  6. Summary of the effects of engine throttle response on airplane formation-flying qualities

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin R.

    1992-01-01

    A flight evaluation as conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented.

  7. Real-Time Precise Point Positioning (RTPPP) with raw observations and its application in real-time regional ionospheric VTEC modeling

    NASA Astrophysics Data System (ADS)

    Liu, Teng; Zhang, Baocheng; Yuan, Yunbin; Li, Min

    2018-01-01

    Precise Point Positioning (PPP) is an absolute positioning technology mainly used in post data processing. With the continuously increasing demand for real-time high-precision applications in positioning, timing, retrieval of atmospheric parameters, etc., Real-Time PPP (RTPPP) and its applications have drawn more and more research attention in recent years. This study focuses on the models, algorithms and ionospheric applications of RTPPP on the basis of raw observations, in which high-precision slant ionospheric delays are estimated among others in real time. For this purpose, a robust processing strategy for multi-station RTPPP with raw observations has been proposed and realized, in which real-time data streams and State-Space-Representative (SSR) satellite orbit and clock corrections are used. With the RTPPP-derived slant ionospheric delays from a regional network, a real-time regional ionospheric Vertical Total Electron Content (VTEC) modeling method is proposed based on Adjusted Spherical Harmonic Functions and a Moving-Window Filter. SSR satellite orbit and clock corrections from different IGS analysis centers are evaluated. Ten globally distributed real-time stations are used to evaluate the positioning performances of the proposed RTPPP algorithms in both static and kinematic modes. RMS values of positioning errors in static/kinematic mode are 5.2/15.5, 4.7/17.4 and 12.8/46.6 mm, for north, east and up components, respectively. Real-time slant ionospheric delays from RTPPP are compared with those from the traditional Carrier-to-Code Leveling (CCL) method, in terms of function model, formal precision and between-receiver differences of short baseline. Results show that slant ionospheric delays from RTPPP are more precise and have a much better convergence performance than those from the CCL method in real-time processing. 30 real-time stations from the Asia-Pacific Reference Frame network are used to model the ionospheric VTECs over Australia in real time, with slant ionospheric delays from both RTPPP and CCL methods for comparison. RMS of the VTEC differences between RTPPP/CCL method and CODE final products is 0.91/1.09 TECU, and RMS of the VTEC differences between RTPPP and CCL methods is 0.67 TECU. Slant Total Electron Contents retrieved from different VTEC models are also validated with epoch-differenced Geometry-Free combinations of dual-frequency phase observations, and mean RMS values are 2.14, 2.33 and 2.07 TECU for RTPPP method, CCL method and CODE final products, respectively. This shows the superiority of RTPPP-derived slant ionospheric delays in real-time ionospheric VTEC modeling.

  8. Experimental verification of arm-locking for LISA using electronic phase delay [rapid communication

    NASA Astrophysics Data System (ADS)

    Thorpe, J. I.; Mueller, G.

    2005-07-01

    We present results of an electronic model of arm-locking, a proposed technique for reducing the laser phase noise in the laser interferometer space antenna (LISA). The model is based on a delay of 500 ms, achieved using the electronic phase delay (EPD) method. The observed behavior is consistent with predictions.

  9. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis

    2014-09-15

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ∼0.1 mm spatial resolution and ∼150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution ofmore » (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ∼9 ns at a pass energy of 50 eV and ∼1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the angular spread with the retarding ratio can be well approximated by applying Liouville's theorem of constant emittance to the electron trajectories inside the lens system. The performance of the setup is demonstrated by characterizing the laser fluence-dependent transient surface photovoltage response of a laser-excited Si(100) sample.« less

  10. Delayed Shutters For Dual-Beam Molecular Epitaxy

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.; Liu, John L.; Hancock, Bruce

    1989-01-01

    System of shutters for dual-molecular-beam epitaxy apparatus delays start of one beam with respect to another. Used in pulsed-beam equipment for deposition of low-dislocation layers of InAs on GaAs substrates, system delays application of arsenic beam with respect to indium beam to assure proper stoichiometric proportions on newly forming InAs surface. Reflectance high-energy electron diffraction (RHEED) instrument used to monitor condition of evolving surface of deposit. RHEED signal used to time pulsing of molecular beams in way that minimizes density of defects and holds lattice constant of InAs to that of GaAs substrate.

  11. MMAPDNG: A new, fast code backed by a memory-mapped database for simulating delayed γ-ray emission with MCNPX package

    NASA Astrophysics Data System (ADS)

    Lou, Tak Pui; Ludewigt, Bernhard

    2015-09-01

    The simulation of the emission of beta-delayed gamma rays following nuclear fission and the calculation of time-dependent energy spectra is a computational challenge. The widely used radiation transport code MCNPX includes a delayed gamma-ray routine that is inefficient and not suitable for simulating complex problems. This paper describes the code "MMAPDNG" (Memory-Mapped Delayed Neutron and Gamma), an optimized delayed gamma module written in C, discusses usage and merits of the code, and presents results. The approach is based on storing required Fission Product Yield (FPY) data, decay data, and delayed particle data in a memory-mapped file. When compared to the original delayed gamma-ray code in MCNPX, memory utilization is reduced by two orders of magnitude and the ray sampling is sped up by three orders of magnitude. Other delayed particles such as neutrons and electrons can be implemented in future versions of MMAPDNG code using its existing framework.

  12. Irregularities and Forecast Studies of Equatorial Spread

    DTIC Science & Technology

    2016-07-13

    less certain and requires investigation. It should be possible to observe the Faraday rotation of the signals received at Jicamarca. This is another...indication of the line-integrated electron number 9 DISTRIBUTION A: Distribution approved for public release. density. Like the phase delay, the Faraday ...angle is a modulo-two-pi quantity that is best used to constrain the time evolution of the ionosphere. Both the Faraday angle and the phase delay are

  13. ELECTRONIC PHASE CONTROL CIRCUIT

    DOEpatents

    Salisbury, J.D.; Klein, W.W.; Hansen, C.F.

    1959-04-21

    An electronic circuit is described for controlling the phase of radio frequency energy applied to a multicavity linear accelerator. In one application of the circuit two cavities are excited from a single radio frequency source, with one cavity directly coupled to the source and the other cavity coupled through a delay line of special construction. A phase detector provides a bipolar d-c output signal proportional to the difference in phase between the voltage in the two cavities. This d-c signal controls a bias supply which provides a d-c output for varying the capacitnce of voltage sensitive capacitors in the delay line. The over-all operation of the circuit is completely electronic, overcoming the time response limitations of the electromechanical control systems, and the relative phase relationship of the radio frequency voltages in the two caviiies is continuously controlled to effect particle acceleration.

  14. Proton acceleration by a pair of successive ultraintense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Ferri, J.; Senje, L.; Dalui, M.; Svensson, K.; Aurand, B.; Hansson, M.; Persson, A.; Lundh, O.; Wahlström, C.-G.; Gremillet, L.; Siminos, E.; DuBois, T. C.; Yi, L.; Martins, J. L.; Fülöp, T.

    2018-04-01

    We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at a relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. When the full-energy laser pulse is temporally split into two identical half-energy pulses, and using target thicknesses of 3 and 6 μm, we observe experimentally that the second half-pulse boosts the maximum energy and charge of the proton beam produced by the first half-pulse for time delays below ˜0.6-1 ps. Using two-dimensional particle-in-cell simulations, we examine the variation of the proton energy spectra with respect to the time-delay between the two pulses. We demonstrate that the expansion of the target front surface caused by the first pulse significantly enhances the hot-electron generation by the second pulse arriving after a few hundreds of fs time delay. This enhancement, however, does not suffice to further accelerate the fastest protons driven by the first pulse once three-dimensional quenching effects have set in. This implies a limit to the maximum time delay that leads to proton energy enhancement, which we theoretically determine.

  15. Signal enhancement of neutral He emission lines by fast electron bombardment of laser-induced He plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suyanto, Hery; Pardede, Marincan; Hedwig, Rinda

    2016-08-15

    A time-resolved spectroscopic study is performed on the enhancement signals of He gas plasma emission using nanosecond (ns) and picosecond (ps) lasers in an orthogonal configuration. The ns laser is used for the He gas plasma generation and the ps laser is employed for the ejection of fast electrons from a metal target, which serves to excite subsequently the He atoms in the plasma. The study is focused on the most dominant He I 587.6 nm and He I 667.8 nm emission lines suggested to be responsible for the He-assisted excitation (HAE) mechanism. The time-dependent intensity enhancements induced by themore » fast electrons generated with a series of delayed ps laser ablations are deduced from the intensity time profiles of both He emission lines. The results clearly lead to the conclusion that the metastable excited triplet He atoms are actually the species overwhelmingly produced during the recombination process in the ns laser-induced He gas plasma. These metastable He atoms are believed to serve as the major energy source for the delayed excitation of analyte atoms in ns laser-induced breakdown spectroscopy (LIBS) using He ambient gas.« less

  16. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    NASA Astrophysics Data System (ADS)

    Kobayashi, T.; Ida, K.; Itoh, K.; Yoshinuma, M.; Moon, C.; Inagaki, S.; Yamada, I.; Funaba, H.; Yasuhara, R.; Tsuchiya, H.; Ohdachi, S.; Yoshimura, Y.; Igami, H.; Shimozuma, T.; Kubo, S.; Tsujimura, T. I.

    2016-04-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  17. Impulsive effects of phase-locked pulse pairs on nuclear motion in the electronic ground state

    NASA Astrophysics Data System (ADS)

    Cina, J. A.; Smith, T. J.

    1993-06-01

    The nonlinear effects of ultrashort phase-locked electronically resonant pulse pairs on the ground state nuclear motion are investigated theoretically. The pulse-pair propagator, momentum impulse, and displacement are determined in the weak field limit for pulse pairs separated by a time delay short on a nuclear time scale. Possible application to large amplitude vibrational excitation of the 104 cm-1 mode of α-perylene is considered and comparisons are made to other Raman excitation methods.

  18. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, T., E-mail: kobayashi.tatsuya@LHD.nifs.ac.jp; Yoshinuma, M.; Ohdachi, S.

    2016-04-15

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  19. Reconstruction of high temporal resolution Thomson scattering data during a modulated electron cyclotron resonance heating using conditional averaging.

    PubMed

    Kobayashi, T; Ida, K; Itoh, K; Yoshinuma, M; Moon, C; Inagaki, S; Yamada, I; Funaba, H; Yasuhara, R; Tsuchiya, H; Ohdachi, S; Yoshimura, Y; Igami, H; Shimozuma, T; Kubo, S; Tsujimura, T I

    2016-04-01

    This paper provides a software application of the sampling scope concept for fusion research. The time evolution of Thomson scattering data is reconstructed with a high temporal resolution during a modulated electron cyclotron resonance heating (MECH) phase. The amplitude profile and the delay time profile of the heat pulse propagation are obtained from the reconstructed signal for discharges having on-axis and off-axis MECH depositions. The results are found to be consistent with the MECH deposition.

  20. Microwave and hard X-ray emissions during the impulsive phase of solar flares: Nonthermal electron spectrum and time delay

    NASA Technical Reports Server (NTRS)

    Gu, Ye-Ming; Li, Chung-Sheng

    1986-01-01

    On the basis of the summing-up and analysis of the observations and theories about the impulsive microwave and hard X-ray bursts, the correlations between these two kinds of emissions were investigated. It is shown that it is only possible to explain the optically-thin microwave spectrum and its relations with the hard X-ray spectrum by means of the nonthermal source model. A simple nonthermal trap model in the mildly-relativistic case can consistently explain the main characteristics of the spectrum and the relative time delays.

  1. Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback.

    PubMed

    Illing, Lucas; Gauthier, Daniel J

    2006-09-01

    We report an experimental study of ultra-high-frequency chaotic dynamics generated in a delay-dynamical electronic device. It consists of a transistor-based nonlinearity, commercially-available amplifiers, and a transmission-line for feedback. The feedback is band-limited, allowing tuning of the characteristic time-scales of both the periodic and high-dimensional chaotic oscillations that can be generated with the device. As an example, periodic oscillations ranging from 48 to 913 MHz are demonstrated. We develop a model and use it to compare the experimentally observed Hopf bifurcation of the steady-state to existing theory [Illing and Gauthier, Physica D 210, 180 (2005)]. We find good quantitative agreement of the predicted and the measured bifurcation threshold, bifurcation type and oscillation frequency. Numerical integration of the model yields quasiperiodic and high dimensional chaotic solutions (Lyapunov dimension approximately 13), which match qualitatively the observed device dynamics.

  2. Delayed School Start Times and Adolescent Sleep: A Systematic Review of the Experimental Evidence

    PubMed Central

    Minges, Karl E.; Redeker, Nancy S.

    2016-01-01

    Summary Many schools have instituted later morning start times to improve sleep, academic, and other outcomes in response to the mismatch between youth circadian rhythms and early morning start times. However, there has been no systematic synthesis of the evidence on the effects of this practice. To examine the impact of delayed school start time on students’ sleep, health, and academic outcomes, electronic databases were systematically searched and data were extracted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Six studies satisfied selection criteria and used pre-post, no control (n=3), randomized controlled trial (n=2), and quasi-experimental (n=1) designs. School start times were delayed 25 to 60 minutes, and correspondingly, total sleep time increased from 25 to 77 minutes per weeknight. Some studies revealed reduced daytime sleepiness, depression, caffeine use, tardiness to class, and trouble staying awake. Overall, the evidence supports recent non-experimental study findings and calls for policy that advocates for delayed school start time to improve sleep. This presents a potential long-term solution to chronic sleep restriction during adolescence. However, there is a need for rigorous randomized study designs and reporting of consistent outcomes, including objective sleep measures and consistent measures of health and academic performance. PMID:26545246

  3. Window for Optimal Frequency Operation and Reliability of 3DEG and 2DEG Channels for Oxide Microwave MESFETs and HFETs

    DTIC Science & Technology

    2016-04-01

    noise, and energy relaxation for doped zinc-oxide and structured ZnO transistor materials with a 2-D electron gas (2DEG) channel subjected to a strong...function on the time delay. Closed symbols represent the Monte Carlo data with hot-phonon effect at different electron gas density: 1•1017 cm-3...Monte Carlo simulation is performed for electron gas density of 1•1018 cm-3. Figure 18. Monte Carlo simulation of density-dependent hot-electron energy

  4. Measurement of the response time of the delay window for the neutron converter of the SPIRAL2 project

    NASA Astrophysics Data System (ADS)

    Acosta, G.; Andre, T.; Bermudez, J.; Blinov, M. F.; Jamet, C.; Logatchev, P. V.; Semenov, Y. I.; Starostenko, A. A.; Tecchio, L. B.; Tsyganov, A. S.; Udup, E.; Vasquez, J.

    2014-09-01

    Research and development of a safety system for the SPIRAL2 facility has been conceived to protect the UCx target from a possible interaction with the 200 kW deuteron beam. The system called "delay window" (DW) is designed as an integral part of the neutron converter module and is located in between the neutron converter and the fission target. The device has been designed as a barrier, located directly behind the neutron converter on the axis of the deuteron beam, with the purpose of "delaying" the eventual interaction of the deuteron beam with the UCx target in case of a failure of the neutron converter. The "delay" must be long enough to allow the interlock to react and safely stop the beam operation, before the beam will reach the UCx target. The working concept of the DW is based on the principle of the electrical fuse. Electrically insulated wires placed on the surface of a Tantalum disk assure a so called "free contact", normally closed to an electronic circuit located on the HV platform, far from the radioactive environment. The melting temperature of the wires is much less than Tantalum. Once the beam is impinging on the disk, one or more wires are melted and the "free contact" is open. A solid state relay is changing its state and a signal is sent to the interlock device. A prototype of the DW has been constructed and tested with an electron beam of power density equivalent to the SPIRAL2 beam. The measured "delay" is 682.5 ms (σ=116 ms), that is rather long in comparison to the intrinsic delays introduced by the detectors itself (2 ms) and by the associated electronic devices (120 ns). The experimental results confirm that, in the case of a failure of the neutron converter, the DW as conceived is enable to withstand the beam power for a period of time sufficiently long to safely shut down the SPIRAL2 accelerator.

  5. Development of a Low-cost, FPGA-based, Delay Line Particle Detector for Satellite and Sounding Rocket Applications

    NASA Astrophysics Data System (ADS)

    Harrington, M.; Kujawski, J. T.; Adrian, M. L.; Weatherwax, A. T.

    2013-12-01

    Electrons are, by definition, a fundamental, chemical and electromagnetic constituent of any plasma. This is especially true within the partially ionized plasmas of Earth's ionosphere where electrons are a critical component of a vast array of plasma processes. Siena College is working on a novel method of processing information from electron spectrometer anodes using delay line techniques and inexpensive COTS electronics to track the movement of high-energy particles. Electron spectrometers use a variety of techniques to determine where an amplified electron cloud falls onto a collecting surface. One traditional method divides the collecting surface into sectors and uses a single detector for each sector. However, as the angular and spatial resolution increases, so does the number of detectors, increasing power consumption, cost, size, and weight of the system. An alternative approach is to connect each sector with a delay line built within the PCB material which is shielded from cross talk by a flooded ground plane. Only one pair of detectors (e.g., one at each end of the chain) are needed with the delay line technique which is different from traditional delay line detectors which use either Application Specific Integrated Circuits (ASICs) or very fast clocks. In this paper, we report on the implementation and testing of a delay line detector using a low-cost Xilinx FPGA and a thirty-two sector delay system. This Delay Line Detector has potential satellite and rocket flight applications due to its low cost, small size and power efficiency

  6. Self-organized synchronization of digital phase-locked loops with delayed coupling in theory and experiment

    PubMed Central

    Wetzel, Lucas; Jörg, David J.; Pollakis, Alexandros; Rave, Wolfgang; Fettweis, Gerhard; Jülicher, Frank

    2017-01-01

    Self-organized synchronization occurs in a variety of natural and technical systems but has so far only attracted limited attention as an engineering principle. In distributed electronic systems, such as antenna arrays and multi-core processors, a common time reference is key to coordinate signal transmission and processing. Here we show how the self-organized synchronization of mutually coupled digital phase-locked loops (DPLLs) can provide robust clocking in large-scale systems. We develop a nonlinear phase description of individual and coupled DPLLs that takes into account filter impulse responses and delayed signal transmission. Our phase model permits analytical expressions for the collective frequencies of synchronized states, the analysis of stability properties and the time scale of synchronization. In particular, we find that signal filtering introduces stability transitions that are not found in systems without filtering. To test our theoretical predictions, we designed and carried out experiments using networks of off-the-shelf DPLL integrated circuitry. We show that the phase model can quantitatively predict the existence, frequency, and stability of synchronized states. Our results demonstrate that mutually delay-coupled DPLLs can provide robust and self-organized synchronous clocking in electronic systems. PMID:28207779

  7. Advanced X-ray Imaging Crystal Spectrometer for Magnetic Fusion Tokamak Devices

    NASA Astrophysics Data System (ADS)

    Lee, S. G.; Bak, J. G.; Bog, M. G.; Nam, U. W.; Moon, M. K.; Cheon, J. K.

    2008-03-01

    An advanced X-ray imaging crystal spectrometer is currently under development using a segmented position sensitive detector and time-to-digital converter (TDC) based delay-line readout electronics for burning plasma diagnostics. The proposed advanced XICS utilizes an eight-segmented position sensitive multi-wire proportional counter and supporting electronics to increase the spectrometer performance includes the photon count-rate capability and spatial resolution.

  8. Improving perioperative performance: the use of operations management and the electronic health record.

    PubMed

    Foglia, Robert P; Alder, Adam C; Ruiz, Gardito

    2013-01-01

    Perioperative services require the orchestration of multiple staff, space and equipment. Our aim was to identify whether the implementation of operations management and an electronic health record (EHR) improved perioperative performance. We compared 2006, pre operations management and EHR implementation, to 2010, post implementation. Operations management consisted of: communication to staff of perioperative vision and metrics, obtaining credible data and analysis, and the implementation of performance improvement processes. The EHR allows: identification of delays and the accountable service or person, collection and collation of data for analysis in multiple venues, including operational, financial, and quality. Metrics assessed included: operative cases, first case on time starts; reason for delay, and operating revenue. In 2006, 19,148 operations were performed (13,545 in the Main Operating Room (OR) area, and 5603, at satellite locations); first case on time starts were 12%; reasons for first case delay were not identifiable; and operating revenue was $115.8M overall, with $78.1M in the Main OR area. In 2010, cases increased to 25,856 (+35%); Main OR area increased to 13,986 (+3%); first case on time starts improved to 46%; operations outside the Main OR area increased to 11,870 (112%); case delays were ascribed to nurses 7%, anesthesiologists 22%, surgeons 33%, and other (patient, hospital) 38%. Five surgeons (7%) accounted for 29% of surgical delays and 4 anesthesiologists (8%) for 45% of anesthesiology delays; operating revenue increased to $177.3M (+53%) overall, and in the Main OR area rose to $101.5M (+30%). The use of operations management and EHR resulted in improved processes, credible data, promptly sharing the metrics, and pinpointing individual provider performance. Implementation of these strategies allowed us to shift cases between facilities, reallocate OR blocks, increase first case on time starts four fold and operative cases by 35%, and these changes were associated with a 53% increase in operating revenue. The fact that revenue increase was greater than case volume (53% vs. 35%) speaks for improved performance. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. The continuing problem of missed test results in an integrated health system with an advanced electronic medical record.

    PubMed

    Wahls, Terry; Haugen, Thomas; Cram, Peter

    2007-08-01

    Missed results can cause needless treatment delays. However, there is little data about the magnitude of this problem and the systems that clinics use to manage test results. Surveys about potential problems related to test results management were developed and administered to clinical staff in a regional Veterans Administration (VA) health care network. The provider survey, conducted four times between May 2005 and October 2006, sampling VA staff physicians, physician assistants, nurse practitioners, and internal medicine trainees, asked questions about the frequency of missed results and diagnosis or treatment delays seen in the antecedent two weeks in their clinics, or if a trainee, the antecedent month. Clinical staff survey response rate was 39% (143 of 370), with 40% using standard operating procedures to manage test results. Forty-four percent routinely reported all results to patients. The provider survey response rate was 50% (441 of 884) overall, with responses often (37% overall; range 29% to 46%) indicating they had seen patients with diagnosis or treatment delays attributed to a missed result; 15% reported two or more such encounters. Even in an integrated health system with an advanced electronic medical record, missed test results and associated diagnosis or treatment delays are common. Additional study and measures of missed results and associated treatment delays are needed.

  10. Experimental Evidence for Quantum Tunneling Time.

    PubMed

    Camus, Nicolas; Yakaboylu, Enderalp; Fechner, Lutz; Klaiber, Michael; Laux, Martin; Mi, Yonghao; Hatsagortsyan, Karen Z; Pfeifer, Thomas; Keitel, Christoph H; Moshammer, Robert

    2017-07-14

    The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

  11. Experimental Evidence for Quantum Tunneling Time

    NASA Astrophysics Data System (ADS)

    Camus, Nicolas; Yakaboylu, Enderalp; Fechner, Lutz; Klaiber, Michael; Laux, Martin; Mi, Yonghao; Hatsagortsyan, Karen Z.; Pfeifer, Thomas; Keitel, Christoph H.; Moshammer, Robert

    2017-07-01

    The first hundred attoseconds of the electron dynamics during strong field tunneling ionization are investigated. We quantify theoretically how the electron's classical trajectories in the continuum emerge from the tunneling process and test the results with those achieved in parallel from attoclock measurements. An especially high sensitivity on the tunneling barrier is accomplished here by comparing the momentum distributions of two atomic species of slightly deviating atomic potentials (argon and krypton) being ionized under absolutely identical conditions with near-infrared laser pulses (1300 nm). The agreement between experiment and theory provides clear evidence for a nonzero tunneling time delay and a nonvanishing longitudinal momentum of the electron at the "tunnel exit."

  12. Influence of the electrode gap separation on the pseudospark-sourced electron beam generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, J., E-mail: junping.zhao@qq.com; State Key Laboratory of Electrical Insulation and Power Equipment, West Xianning Road, Xi'an 710049; Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland

    Pseudospark-sourced electron beam is a self-focused intense electron beam which can propagate without any external focusing magnetic field. This electron beam can drive a beam-wave interaction directly or after being post-accelerated. It is especially suitable for terahertz radiation generation due to the ability of a pseudospark discharge to produce small size in the micron range and very high current density and bright electron beams. In this paper, a single-gap pseudospark discharge chamber has been built and tested with several electrode gap separations to explore the dependence of the pseudospark-sourced electron beam current on the discharge voltage and the electrode gapmore » separation. Experimental results show that the beam pulses have similar pulse width and delay time from the distinct drop of the applied voltage for smaller electrode gap separations but longer delay time for the largest gap separation used in the experiment. It has been found that the electron beam only starts to occur when the charging voltage is above a certain value, which is defined as the starting voltage of the electron beam. The starting voltage is different for different electrode gap separations and decreases with increasing electrode gap separation in our pseudospark discharge configuration. The electron beam current increases with the increasing discharge voltage following two tendencies. Under the same discharge voltage, the configuration with the larger electrode gap separation will generate higher electron beam current. When the discharge voltage is higher than 10 kV, the beam current generated at the electrode gap separation of 17.0 mm, is much higher than that generated at smaller gap separations. The ionization of the neutral gas in the main gap is inferred to contribute more to the current increase with increasing electrode gap separation.« less

  13. Modeling emission lag after photoexcitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Kevin L.; Petillo, John J.; Ovtchinnikov, Serguei

    A theoretical model of delayed emission following photoexcitation from metals and semiconductors is given. Its numerical implementation is designed for beam optics codes used to model photocathodes in rf photoinjectors. The model extends the Moments approach for predicting photocurrent and mean transverse energy as moments of an emitted electron distribution by incorporating time of flight and scattering events that result in emission delay on a sub-picosecond level. The model accounts for a dynamic surface extraction field and changes in the energy distribution and time of emission as a consequence of the laser penetration depth and multiple scattering events during transport.more » Usage in the Particle-in-Cell code MICHELLE to predict the bunch shape and duration with or without laser jitter is given. The consequences of delayed emission effects for ultra-short pulses are discussed.« less

  14. Modeling emission lag after photoexcitation

    DOE PAGES

    Jensen, Kevin L.; Petillo, John J.; Ovtchinnikov, Serguei; ...

    2017-10-28

    A theoretical model of delayed emission following photoexcitation from metals and semiconductors is given. Its numerical implementation is designed for beam optics codes used to model photocathodes in rf photoinjectors. The model extends the Moments approach for predicting photocurrent and mean transverse energy as moments of an emitted electron distribution by incorporating time of flight and scattering events that result in emission delay on a sub-picosecond level. The model accounts for a dynamic surface extraction field and changes in the energy distribution and time of emission as a consequence of the laser penetration depth and multiple scattering events during transport.more » Usage in the Particle-in-Cell code MICHELLE to predict the bunch shape and duration with or without laser jitter is given. The consequences of delayed emission effects for ultra-short pulses are discussed.« less

  15. Time-dependent wave front propagation simulation of a hard x-ray split-and-delay unit: Towards a measurement of the temporal coherence properties of x-ray free electron lasers

    DOE PAGES

    Roling, S.; Zacharias, H.; Samoylova, L.; ...

    2014-11-18

    For the European x-ray free electron laser (XFEL) a split-and-delay unit based on geometrical wavefront beam splitting and multilayer mirrors is built which covers the range of photon energies from 5 keV up to 20 keV. Maximum delays between Δτ = ±2.5 ps at hν=20 keV and up to Δτ = ±23 ps at hν = 5 keV will be possible. Time-dependent wave-optics simulations have been performed by means of Synchrotron Radiation Workshop software for XFEL pulses at hν = 5 keV. The XFEL radiation was simulated using results of time-dependent simulations applying the self-amplified spontaneous emission code FAST. Mainmore » features of the optical layout, including diffraction on the beam splitter edge and optics imperfections measured with a nanometer optic component measuring machine slope measuring profiler, were taken into account. The impact of these effects on the characterization of the temporal properties of XFEL pulses is analyzed. An approach based on fast Fourier transformation allows for the evaluation of the temporal coherence despite large wavefront distortions caused by the optics imperfections. In this manner, the fringes resulting from time-dependent two-beam interference can be filtered and evaluated yielding a coherence time of τ c = 0.187 fs (HWHM) for real, nonperfect mirrors, while for ideal mirrors a coherence time of τ c = 0.191 fs (HWHM) is expected.« less

  16. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources

    DOE PAGES

    Roseker, W.; Hruszkewycz, S. O.; Lehmkuhler, F.; ...

    2018-04-27

    One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane. We show how reliable speckle contrast values can be extracted even from verymore » low intensity free electron laser (FEL) speckle patterns by applying maximum likelihood fitting, thus demonstrating the potential of a split-and-delay approach for dynamics measurements at FEL sources. This will enable the characterization of equilibrium and, importantly also reversible non-equilibrium processes in atomically disordered materials.« less

  17. Towards ultrafast dynamics with split-pulse X-ray photon correlation spectroscopy at free electron laser sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roseker, W.; Hruszkewycz, S. O.; Lehmkuhler, F.

    One of the important challenges in condensed matter science is to understand ultrafast, atomic-scale fluctuations that dictate dynamic processes in equilibrium and non-equilibrium materials. Here, we report an important step towards reaching that goal by using a state-of-the-art perfect crystal based split-and-delay system, capable of splitting individual X-ray pulses and introducing femtosecond to nanosecond time delays. We show the results of an ultrafast hard X-ray photon correlation spectroscopy experiment at LCLS where split X-ray pulses were used to measure the dynamics of gold nanoparticles suspended in hexane. We show how reliable speckle contrast values can be extracted even from verymore » low intensity free electron laser (FEL) speckle patterns by applying maximum likelihood fitting, thus demonstrating the potential of a split-and-delay approach for dynamics measurements at FEL sources. This will enable the characterization of equilibrium and, importantly also reversible non-equilibrium processes in atomically disordered materials.« less

  18. Ramsey method for Auger-electron interference induced by an attosecond twin pulse

    NASA Astrophysics Data System (ADS)

    Buth, Christian; Schafer, Kenneth J.

    2015-02-01

    We examine the archetype of an interference experiment for Auger electrons: two electron wave packets are launched by inner-shell ionizing a krypton atom using two attosecond light pulses with a variable time delay. This setting is an attosecond realization of the Ramsey method of separated oscillatory fields. Interference of the two ejected Auger-electron wave packets is predicted, indicating that the coherence between the two pulses is passed to the Auger electrons. For the detection of the interference pattern an accurate coincidence measurement of photo- and Auger electrons is necessary. The method allows one to control inner-shell electron dynamics on an attosecond timescale and represents a sensitive indicator for decoherence.

  19. A novel technique for real-time estimation of edge pedestal density gradients via reflectometer time delay data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, L., E-mail: zeng@fusion.gat.com; Doyle, E. J.; Rhodes, T. L.

    2016-11-15

    A new model-based technique for fast estimation of the pedestal electron density gradient has been developed. The technique uses ordinary mode polarization profile reflectometer time delay data and does not require direct profile inversion. Because of its simple data processing, the technique can be readily implemented via a Field-Programmable Gate Array, so as to provide a real-time density gradient estimate, suitable for use in plasma control systems such as envisioned for ITER, and possibly for DIII-D and Experimental Advanced Superconducting Tokamak. The method is based on a simple edge plasma model with a linear pedestal density gradient and low scrape-off-layermore » density. By measuring reflectometer time delays for three adjacent frequencies, the pedestal density gradient can be estimated analytically via the new approach. Using existing DIII-D profile reflectometer data, the estimated density gradients obtained from the new technique are found to be in good agreement with the actual density gradients for a number of dynamic DIII-D plasma conditions.« less

  20. Characterization and Application of Isolated Attosecond Pulses

    NASA Astrophysics Data System (ADS)

    Wei, Hui

    Isolated attosecond pulse (IAP) is a tool of probing electronic dynamics occurring in atoms, molecules, clusters and solids, since the time scale of electronic motion is on the order of attoseconds. The generation, characterization and applications of IAPs has become one of the fast frontiers of laser experiments. This dissertation focuses on several aspects of attosecond physics. First, we study the driving wavelength scaling of the yield of high-order harmonic generation (HHG) by applying the quantum orbit theory. The unfavorable scaling law especially for the short quantum orbit is of great importance to attoseond pulse generation toward hundreds of eVs or keV photon energy region by mid-infrared (mid-IR) lasers. Second, we investigate the accuracy of the current frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG-CRAB) and phase retrieval by omega oscillation filtering (PROOF) methods for IAP characterization by simulating the experimental data by theoretical calculation. This calibration is critical but has not been carefully carried out before. We also present an improved method, namely the swPROOF which is more universal and robust than the original PROOF method. Third, we investigate the controversial topic of photoionization time delay. We find the limitation of the FROG-CRAB method which has been used to extract the photoionization time delay between the 2s and 2p channels in neon. The time delay retrieval is sensitive to the attochirp of the XUV pulse, which may lead to discrepancies between experiment and theory. A new fitting method is proposed in order to overcome the limitations of FROG-CRAB. Finally, IAPs are used to probe the dynamic of electron correlation in helium atom by means of attosecond transient absorption spectroscopy. The agreement between the measurement and our analytical model verifies the observation of time-dependent build up of the 2s2p Fano resonance.

  1. Time resolved optical diagnostics of ZnO plasma plumes in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Shyam L.; Singh, Ravi Pratap; Thareja, Raj K.

    2013-10-15

    We report dynamical evolution of laser ablated ZnO plasma plumes using interferometry and shadowgraphy; 2-D fast imaging and optical emission spectroscopy in air ambient at atmospheric pressure. Recorded interferograms using Nomarski interferometer and shadowgram images at various time delays show the presence of electrons and neutrals in the ablated plumes. The inference drawn from sign change of fringe shifts is consistent with two dimensional images of the plume and optical emission spectra at varying time delays with respect to ablating pulse. Zinc oxide plasma plumes are created by focusing 1.06 μm radiation on to ZnO target in air and 532more » nm is used as probe beam.« less

  2. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  3. Ionospheric Slant Total Electron Content Analysis Using Global Positioning System Based Estimation

    NASA Technical Reports Server (NTRS)

    Komjathy, Attila (Inventor); Mannucci, Anthony J. (Inventor); Sparks, Lawrence C. (Inventor)

    2017-01-01

    A method, system, apparatus, and computer program product provide the ability to analyze ionospheric slant total electron content (TEC) using global navigation satellite systems (GNSS)-based estimation. Slant TEC is estimated for a given set of raypath geometries by fitting historical GNSS data to a specified delay model. The accuracy of the specified delay model is estimated by computing delay estimate residuals and plotting a behavior of the delay estimate residuals. An ionospheric threat model is computed based on the specified delay model. Ionospheric grid delays (IGDs) and grid ionospheric vertical errors (GIVEs) are computed based on the ionospheric threat model.

  4. JPL/USC GAIM: Validating COSMIC and Ground-Based GPS Assimilation Results to Estimate Ionospheric Electron Densities

    NASA Astrophysics Data System (ADS)

    Komjathy, A.; Wilson, B.; Akopian, V.; Pi, X.; Mannucci, A.; Wang, C.

    2008-12-01

    We seem to be in the midst of a revolution in ionospheric remote sensing driven by the abundance of ground and space-based GPS receivers, new UV remote sensing satellites, and the advent of data assimilation techniques for space weather. In particular, the COSMIC 6-satellite constellation was launched in April 2006. COSMIC now provides unprecedented global coverage of GPS occultations measurements, each of which yields electron density information with unprecedented ~1 km vertical resolution. Calibrated measurements of ionospheric delay (total electron content or TEC) suitable for input into assimilation models is currently made available in near real-time (NRT) from the COSMIC with a latency of 30 to 120 minutes. The University of Southern California (USC) and the Jet Propulsion Laboratory (JPL) have jointly developed a real-time Global Assimilative Ionospheric Model (GAIM) to monitor space weather, study storm effects, and provide ionospheric calibration for DoD customers and NASA flight projects. JPL/USC GAIM is a physics- based 3D data assimilation model that uses both 4DVAR and Kalman filter techniques to solve for the ion and electron density state and key drivers such as equatorial electrodynamics, neutral winds, and production terms. Daily (delayed) GAIM runs can accept as input ground GPS TEC data from 1200+ sites, occultation links from CHAMP, SAC-C, and the COSMIC constellation, UV limb and nadir scans from the TIMED and DMSP satellites, and in situ data from a variety of satellites (DMSP and C/NOFS). Real-Time GAIM (RTGAIM) ingests multiple data sources in real time, updates the 3D electron density grid every 5 minutes, and solves for improved drivers every 1-2 hours. Since our forward physics model and the adjoint model were expressly designed for data assimilation and computational efficiency, all of this can be accomplished on a single dual- processor Unix workstation. Customers are currently evaluating the accuracy of JPL/USC GAIM 'nowcasts' for ray tracing applications and trans-ionospheric path delay calibration. In the presentation, we will discuss the expected impact of NRT COSMIC occultation and NRT ground-based measurements and present validation results for ingest of COSMIC data into GAIM using measurements from World Days. We will quality check our COSMIC-derived products by comparing Abel profiles and JPL- processed results. Furthermore, we will validate GAIM assimilation results using Incoherent Scatter Radar measurements from Arecibo, Jicamarca and Millstone Hill datasets. We will conclude by characterizing the improved electron density states using dual-frequency altimeter-derived Jason vertical TEC measurements.

  5. High-speed MCP anodes for high time resolution low-energy charged particle spectrometers

    NASA Astrophysics Data System (ADS)

    Saito, Yoshifumi; Yokota, Shoichiro; Asamura, Kazushi; Krieger, Amanda

    2017-02-01

    The time resolution of low-energy charged particle measurements is becoming higher and higher. In order to realize high time resolution measurements, a 1-D circular delay line anode has been developed as a high-speed microchannel plate (MCP) anode. The maximum count rate of the 1-D circular delay line anode is around 1 × 107/s/360°, which is much higher than the widely used resistive anode, whose maximum count rate is around 1 × 106/s/360°. In order to achieve much higher speeds, an MCP anode with application-specific integrated circuit (ASIC) has been developed. We have decided to adopt an anode configuration in which a discrete anode is formed on a ceramic substrate, and a bare ASIC chip is installed on the back of the ceramic. It has been found that the anode can detect at a high count rate of 2 × 108/s/360°. Developments in both delay line and discrete anodes, as well as readout electronics, will be reviewed.

  6. Megahertz-resolution programmable microwave shaper.

    PubMed

    Li, Jilong; Dai, Yitang; Yin, Feifei; Li, Wei; Li, Ming; Chen, Hongwei; Xu, Kun

    2018-04-15

    A novel microwave shaper is proposed and demonstrated, of which the microwave spectral transfer function could be fully programmable with high resolution. We achieve this by bandwidth-compressed mapping a programmable optical wave-shaper, which has a lower frequency resolution of tens of gigahertz, to a microwave one with resolution of tens of megahertz. This is based on a novel technology of "bandwidth scaling," which employs bandwidth-stretched electronic-to-optical conversion and bandwidth-compressed optical-to-electronic conversion. We demonstrate the high resolution and full reconfigurability experimentally. Furthermore, we show the group delay variation could be greatly enlarged after mapping; this is then verified by the experiment with an enlargement of 194 times. The resolution improvement and group delay magnification significantly distinguish our proposal from previous optics-to-microwave spectrum mapping.

  7. The impact of postoperative expansion initiation timing on breast expander capsular characteristics: a prospective combined clinical and scanning electron microscopy study.

    PubMed

    Paek, Laurence S; Giot, Jean-Philippe; Tétreault-Paquin, Jean-Olivier; St-Jacques, Samuel; Nelea, Monica; Danino, M Alain

    2015-04-01

    In the first stage of expander-to-implant breast reconstruction, postoperative expansion is classically initiated at 10 to 14 days (conventional approach). The authors hypothesized that it may be beneficial to wait 6 weeks postoperatively before initiating serial expansion (delayed approach). Clinical and ultrastructural periprosthetic capsule analysis is first required before determining whether a delayed approach ultimately improves capsular tissue adherence and expansion process predictability. Patients undergoing two-stage implant-based breast reconstruction were enrolled prospectively in this study. During expander-to-implant exchange, the clinical presence of "Velcro" effect, biofilm, and double capsule was noted. Periprosthetic capsule samples were also sent for scanning electron microscopic observation of three parameters: surface relief, cellularity, and biofilm. Samples were divided into four groups for data analysis (group 1, conventional/Biocell; group 2, delayed/Biocell; group 3, conventional/Siltex; and group 4, delayed/Siltex). Fifty-six breast reconstructions were included. Each group comprised between 13 and 15 breasts. In group 1, no cases exhibited the Velcro effect and there was a 53.8 percent incidence of both biofilm and double capsule. In group 2, all cases demonstrated the Velcro effect and there were no incidences of biofilm or double capsule. Group 3 and group 4 cases did not exhibit a Velcro effect or double-capsule formation; however, biofilm was present in up to 20.0 percent. All group 2 samples revealed more pronounced three-dimensional relief on scanning electron microscopy. Variations in expansion protocols can lead to observable modifications in periprosthetic capsular architecture. There may be real benefits to delaying expander inflation until 6 weeks postoperatively with Biocell expanders.

  8. Theoretical analysis of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator

    NASA Astrophysics Data System (ADS)

    Shin, Y. M.; Ryskin, N. M.; Won, J. H.; Han, S. T.; Park, G. S.

    2006-03-01

    The basic theory of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator consisting of two two-cavity klystron amplifiers reversely coupled through input/output slots is theoretically investigated. Application of Kirchhoff's laws to the coupled equivalent RLC circuit model of the device provides four nonlinear coupled equations, which are the first-order time-delayed differential equations. Analytical solutions obtained through linearization of the equations provide oscillation frequencies and thresholds of four fundamental eigenstates, symmetric/antisymmetric 0/π modes. Time-dependent output signals are numerically analyzed with variation of the beam current, and a self-modulation mechanism and transition to chaos scenario are examined. The oscillator shows a much stronger multistability compared to a delayed feedback klystron oscillator owing to the competitions among more diverse eigenmodes. A fully developed chaos region also appears at a relatively lower beam current, ˜3.5Ist, compared to typical vacuum tube oscillators (10-100Ist), where Ist is a start-oscillation current.

  9. Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet

    NASA Astrophysics Data System (ADS)

    Zhou, Qiujiao; Qi, Bing; Huang, Jianjun; Pan, Lizhu; Liu, Ying

    2016-04-01

    The properties of a helium atmospheric-pressure plasma jet (APPJ) are diagnosed with a dual assisted grounded electrode dielectric barrier discharge device. In the glow discharge, we captured the current waveforms at the positions of the three grounded rings. From the current waveforms, the time delay between the adjacent positions of the rings is employed to calculate the plasma bullet velocity of the helium APPJ. Moreover, the electron density is deduced from a model combining with the time delay and current intensity, which is about 1011 cm-3. In addition, The ion-neutral particles collision frequency in the radial direction is calculated from the current phase difference between two rings, which is on the order of 107 Hz. The results are helpful for understanding the basic properties of APPJs. supported by National Natural Science Foundation of China (No. 11105093), the Technological Project of Shenzhen, China (No. JC201005280485A), and the Planned S&T Program of Shenzhen, China (No. JC201105170703A)

  10. Ultrafast laser processing of copper: A comparative study of experimental and simulated transient optical properties

    NASA Astrophysics Data System (ADS)

    Winter, Jan; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2017-09-01

    In this paper, we present ultrafast measurements of the complex refractive index for copper up to a time delay of 20 ps with an accuracy <1% at laser fluences in the vicinity of the ablation threshold. The measured refractive index n and extinction coefficient k are supported by a simulation including the two-temperature model with an accurate description of thermal and optical properties and a thermomechanical model. Comparison of the measured time resolved optical properties with results of the simulation reveals underlying physical mechanisms in three distinct time delay regimes. It is found that in the early stage (-5 ps to 0 ps) the thermally excited d-band electrons make a major contribution to the laser pulse absorption and create a steep increase in transient optical properties n and k. In the second time regime (0-10 ps) the material expansion influences the plasma frequency, which is also reflected in the transient extinction coefficient. In contrast, the refractive index n follows the total collision frequency. Additionally, the electron-ion thermalization time can be attributed to a minimum of the extinction coefficient at ∼10 ps. In the third time regime (10-20 ps) the transient extinction coefficient k indicates the surface cooling-down process.

  11. Interaction of emitted sonar pulses and simulated echoes in a false killer whale: an evoked-potential study.

    PubMed

    Supin, Alexander Ya; Nachtigall, Paul E; Breese, Marlee

    2011-09-01

    Auditory evoked potentials (AEP) were recorded during echolocation in a false killer whale Pseudorca crassidens. An electronically synthesized and played-back (simulated) echo was triggered by an emitted biosonar pulse, and its intensity was proportional to that of the emitted click. The delay and transfer factor of the echo relative to the emitted click was controlled by the operator. The echo delay varied from 2 to 16 ms (by two-fold steps), and the transfer factor varied within ranges from -45 to -30 dB at the 2-ms delay to -60 to -45 dB at the 16-ms delay. Echo-related AEPs featured amplitude dependence both on echo delay at a constant transfer factor (the longer the delay, the higher amplitude) and on echo transfer factor at a constant delay (the higher transfer factor, the higher amplitude). Conjunctional variation of the echo transfer factor and delay kept the AEP amplitude constant when the delay to transfer factor trade was from -7.1 to -8.4 dB per delay doubling. The results confirm the hypothesis that partial forward masking of the echoes by the preceding emitted sonar pulses serves as a time-varying automatic gain control in the auditory system of echolocating odontocetes. © 2011 Acoustical Society of America

  12. Nuclear structure of 231Ac

    NASA Astrophysics Data System (ADS)

    Boutami, R.; Borge, M. J. G.; Mach, H.; Kurcewicz, W.; Fraile, L. M.; Gulda, K.; Aas, A. J.; García-Raffi, L. M.; Løvhøiden, G.; Martínez, T.; Rubio, B.; Taín, J. L.; Tengblad, O.

    2008-10-01

    The low-energy structure of 231Ac has been investigated by means of γ ray spectroscopy following the β decay of 231Ra. Multipolarities of 28 transitions have been established by measuring conversion electrons with a MINI-ORANGE electron spectrometer. The decay scheme of 231Ra → 231Ac has been constructed for the first time. The Advanced Time Delayed βγγ(t) method has been used to measure the half-lives of five levels. The moderately fast B(E1) transition rates derived suggest that the octupole effects, albeit weak, are still present in this exotic nucleus.

  13. Non-equilibrium kinetics of plasma-assisted combustion: the role of electronically excited atoms and molecules

    NASA Astrophysics Data System (ADS)

    Popov, Nikolay

    2016-09-01

    A review of experimental and theoretical investigations of the effect of electronically excited atoms and molecules on the induction delay time and on the shift of the ignition temperature threshold of combustible mixtures is presented. At relatively low initial gas temperature, the effect of excited O(1D) atoms on the oxidation and reforming of combustible mixtures is quite significant due to the high rates of reactions of O(1D) atoms with hydrogen and hydrocarbon molecules. The singlet oxygen molecules, O2(a1Δg) , participate both in chain initiation and chain branching reactions, but the effect of O2(a1Δg) in the ignition processes is generally less important compared to the oxygen atoms. To reduce the ignition delay time and decrease the temperature threshold of fuel-air mixtures, the use of gas discharges with relatively high E/N values is recommended. In this case the reactions of electronically excited N2(A3Σu+ , B3πg , C3πu , a'1Σu-) molecules, and atomic particles in ground and electronically excited states are extremely important. The energy stored in electronic excitation of atoms and molecules is spent on the additional dissociation of oxygen and fuel molecules, on the fast gas heating, and finally to the triggering of chain branching reactions. This work was partially supported by AOARD AFOSR, FA2386-13-1-4064 grant and Linked International Laboratory LIA KaPPA (France-Russia).

  14. Time-shifted synchronization of chaotic oscillator chains without explicit coupling delays.

    PubMed

    Blakely, Jonathan N; Stahl, Mark T; Corron, Ned J

    2009-12-01

    We examine chains of unidirectionally coupled oscillators in which time-shifted synchronization occurs without explicit delays in the coupling. In numerical simulations and in an experimental system of electronic oscillators, we examine the time shift and the degree of distortion (primarily in the form of attenuation) of the waveforms of the oscillators located far from the drive oscillator. Surprisingly, under weak coupling we observe minimal attenuation in spite of a significant total time shift. In contrast, at higher coupling strengths the observed attenuation increases dramatically and approaches the value predicted by an analytically derived estimate. In this regime, we verify directly that generalized synchronization is maintained over the entire chain length despite severe attenuation. These results suggest that weak coupling generally may produce higher quality synchronization in systems for which truly identical synchronization is not possible.

  15. Additive-free size-controlled synthesis of gold square nanoplates using photochemical reaction in dynamic phase-separating media.

    PubMed

    Kajimoto, Shinji; Shirasawa, Daisuke; Horimoto, Noriko Nishizawa; Fukumura, Hiroshi

    2013-05-14

    Ultrafast phase separation of water and 2-butoxyethanol mixture was induced by nanosecond IR laser pulse irradiation. After a certain delay time, a UV laser pulse was introduced to induce photoreduction of aurate ions, which led to the formation of gold nanoparticles in dynamic phase-separating media. The structure and size of the nanoparticles varied depending on the delay time between the IR and UV pulses. For a delay time of 5 and 6 μs, gold square plates having edge lengths of 150 and 100 nm were selectively obtained, respectively. With a delay time of 3 μs, on the other hand, the size of the square plates varied widely from 100 nm to a few micrometers. The size of the gold square plates was also varied by varying the total irradiation time of the IR and UV pulses. The size distribution of the square plates obtained under different conditions suggests that the growth process of the square plates was affected by the size of the nanophases during phase separation. Electron diffraction patterns of the synthesized square plates showed that the square plates were highly crystalline with a Au(100) surface. These results showed that the nanophases formed during laser-induced phase separation can provide detergent-free reaction fields for size-controlled nanomaterial synthesis.

  16. Assimilative model for ionospheric dynamics employing delay, Doppler, and direction of arrival measurements from multiple HF channels

    NASA Astrophysics Data System (ADS)

    Fridman, Sergey V.; Nickisch, L. J.; Hausman, Mark; Zunich, George

    2016-03-01

    We describe the development of new HF data assimilation capabilities for our ionospheric inversion algorithm called GPSII (GPS Ionospheric Inversion). Previously existing capabilities of this algorithm included assimilation of GPS total electron content data as well as assimilation of backscatter ionograms. In the present effort we concentrated on developing assimilation tools for data related to HF propagation channels. Measurements of propagation delay, angle of arrival, and the ionosphere-induced Doppler from any number of known propagation links can now be utilized by GPSII. The resulting ionospheric model is consistent with all assimilated measurements. This means that ray tracing simulations of the assimilated propagation links are guaranteed to be in agreement with measured data within the errors of measurement. The key theoretical element for assimilating HF data is the raypath response operator (RPRO) which describes response of raypath parameters to infinitesimal variations of electron density in the ionosphere. We construct the RPRO out of the fundamental solution of linearized ray tracing equations for a dynamic magnetoactive plasma. We demonstrate performance and internal consistency of the algorithm using propagation delay data from multiple oblique ionograms (courtesy of Defence Science and Technology Organisation, Australia) as well as with time series of near-vertical incidence sky wave data (courtesy of the Intelligence Advanced Research Projects Activity HFGeo Program Government team). In all cases GPSII produces electron density distributions which are smooth in space and in time. We simulate the assimilated propagation links by performing ray tracing through GPSII-produced ionosphere and observe that simulated data are indeed in agreement with assimilated measurements.

  17. Evaluation of a hybrid paper-electronic medication management system at a residential aged care facility.

    PubMed

    Elliott, Rohan A; Lee, Cik Yin; Hussainy, Safeera Y

    2016-06-01

    Objectives The aims of the study were to investigate discrepancies between general practitioners' paper medication orders and pharmacy-prepared electronic medication administration charts, back-up paper charts and dose-administration aids, as well as delays between prescribing, charting and administration, at a 90-bed residential aged care facility that used a hybrid paper-electronic medication management system. Methods A cross-sectional audit of medication orders, medication charts and dose-administration aids was performed to identify discrepancies. In addition, a retrospective audit was performed of delays between prescribing and availability of an updated electronic medication administration chart. Medication administration records were reviewed retrospectively to determine whether discrepancies and delays led to medication administration errors. Results Medication records for 88 residents (mean age 86 years) were audited. Residents were prescribed a median of eight regular medicines (interquartile range 5-12). One hundred and twenty-five discrepancies were identified. Forty-seven discrepancies, affecting 21 (24%) residents, led to a medication administration error. The most common discrepancies were medicine omission (44.0%) and extra medicine (19.2%). Delays from when medicines were prescribed to when they appeared on the electronic medication administration chart ranged from 18min to 98h. On nine occasions (for 10% of residents) the delay contributed to missed doses, usually antibiotics. Conclusion Medication discrepancies and delays were common. Improved systems for managing medication orders and charts are needed. What is known about the topic? Hybrid paper-electronic medication management systems, in which prescribers' orders are transcribed into an electronic system by pharmacy technicians and pharmacists to create medication administration charts, are increasingly replacing paper-based medication management systems in Australian residential aged care facilities. The accuracy and safety of these systems has not been studied. What does this paper add? The present study identified discrepancies between general practitioners' orders and pharmacy-prepared electronic medication administration charts, back-up paper medication charts and dose-administration aids, as well as delays between ordering, charting and administering medicines. Discrepancies and delays sometimes led to medication administration errors. What are the implications for practitioners? Facilities that use hybrid systems need to implement robust systems for communicating medication changes to their pharmacy and reconciling prescribers' orders against pharmacy-generated medication charts and dose-administration aids. Fully integrated, paperless medication management systems, in which prescribers' electronic medication orders directly populate an electronic medication administration chart and are automatically communicated to the facility's pharmacy, could improve patient safety.

  18. Advanced Photon Counting Imaging Detectors with 100ps Timing for Astronomical and Space Sensing Applications

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; Vallerga, J.; Welsh, B.; Rabin, M.; Bloch, J.

    In recent years EAG has implemented a variety of high-resolution, large format, photon-counting MCP detectors in space instrumentation for satellite FUSE, GALEX, IMAGE, SOHO, HST-COS, rocket, and shuttle payloads. Our scheme of choice has been delay line readouts encoding photon event position centroids, by determination of the difference in arrival time of the event charge at the two ends of a distributed resistive-capacitive (RC) delay line. Our most commonly used delay line configuration is the cross delay line (XDL). In its simplest form the delay-line encoding electronics consists of a fast amplifier for each end of the delay line, followed by time-to-digital converters (TDC's). We have achieved resolutions of < 25 μm in tests over 65 mm x 65 mm (3k x3k resolution elements) with excellent linearity. Using high speed TDC's, we have been able to encode event positions for random photon rates of ~1 MHz, while time tagging events using the MCP output signal to better than 100 ps. The unique ability to record photon X,Y,T high fidelity information has advantages over "frame driven" recording devices for some important applications. For example we have built open face and sealed tube cross delay line detectors used for biological fluorescence lifetime imaging, observation of flare stars, orbital satellites and space debris with the GALEX satellite, and time resolved imaging of the Crab Pulsar with a telescope as small as 1m. Although microchannel plate delay line detectors meet many of the imaging and timing demands of various applications, they have limitations. The relatively high gain (107) reduces lifetime and local counting rate, and the fixed delay (10's of ns) makes multiple simultaneous event recording problematic. To overcome these limitations we have begun development of cross strip readout anodes for microchannel plate detectors. The cross strip (XS) anode is a coarse (~0.5 mm) multi-layer metal and ceramic pattern of crossed fingers on an alumina substrate. The charge cloud is matched to the anode period so that it is collected on several neighboring fingers to ensure an accurate event charge centroid can be determined. Each finger of the anode is connected to a low noise charge sensitive amplifier and followed by subsequent A/D conversion of individual strip charge values and a hardware centroid determination of better than 1/100 of a strip are possible. Recently we have commissioned a full 32 x 32 mm XS open face laboratory detector and demonstrated excellent resolution (<6 μm FWHM, ~5k x 5k resolution) using low MCP gain (<5 x 105) thus increasing the MCP local counting rate capacity and overall lifetime of the detector system. In collaboration with Los Alamos National Laboratory, NASA and NSF we are developing high rate (>107 Hz) XS encoding electronics that will encode temporally simultaneous events (non spatially overlapping). Sealed tube XS detectors with GaAs and other photocathodes are also under development to increase detection efficiency and extend the sensitivity range. This type of sensor could be a significant enabling technology for several important applications, including airborne and space situational awareness, high-speed adaptive optics (by increasing the SNR and speed in the control loop), astronomy of transient and time-variable sources, optical metrology, and secure quantum communication (as a receiver of cryptographic keys for three-dimensional imaging), single-molecule fluorescence lifetime microscopy (simultaneously tracking and measuring ~1000 molecules), optical/NIR LIDAR, hybrid mass spectrometry and optical night-time/reconnaissance (LANL-ASPIRE).

  19. Optical delay encoding for fast timing and detector signal multiplexing in PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grant, Alexander M.; Levin, Craig S., E-mail: cslevin@stanford.edu; Molecular Imaging Program at Stanford

    2015-08-15

    Purpose: The large number of detector channels in modern positron emission tomography (PET) scanners poses a challenge in terms of readout electronics complexity. Multiplexing schemes are typically implemented to reduce the number of physical readout channels, but often result in performance degradation. Novel methods of multiplexing in PET must be developed to avoid this data degradation. The preservation of fast timing information is especially important for time-of-flight PET. Methods: A new multiplexing scheme based on encoding detector interaction events with a series of extremely fast overlapping optical pulses with precise delays is demonstrated in this work. Encoding events in thismore » way potentially allows many detector channels to be simultaneously encoded onto a single optical fiber that is then read out by a single digitizer. A two channel silicon photomultiplier-based prototype utilizing this optical delay encoding technique along with dual threshold time-over-threshold is demonstrated. Results: The optical encoding and multiplexing prototype achieves a coincidence time resolution of 160 ps full width at half maximum (FWHM) and an energy resolution of 13.1% FWHM at 511 keV with 3 × 3 × 5 mm{sup 3} LYSO crystals. All interaction information for both detectors, including timing, energy, and channel identification, is encoded onto a single optical fiber with little degradation. Conclusions: Optical delay encoding and multiplexing technology could lead to time-of-flight PET scanners with fewer readout channels and simplified data acquisition systems.« less

  20. Field Impact Evaluation Report on the Electronic Tabular Display Subsystem (ETABS). The Electronic Tabular Display Subsystem Field Impact Evaluation Team.

    DTIC Science & Technology

    1979-10-01

    modification. Phase VII of this prgram , Preliminary Radar Associate/Nonradar Control Training and Assistant Controller Duties, is currently programmed for...software diagnostics. Advantage. The additional staffing would handle the increased workload in an efficient manner and prevent a deterioration of morale...alternative 2 can be employed if any delays or problems prevent the timely installation of the additional storage element. SELECTOR CHANNEL. The selector

  1. Remote control of the dissociative ionization of H2 based on electron-H2 + entanglement

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; He, Feng

    2018-04-01

    The single ionization of H2 in strong laser fields creates the correlated electron-H2 + pair. Based on such a correlation, we conceive a strategy to control the energy spectra of the freed electron or dissociative fragments by simulating the time-dependent Schrödinger equation. Two attosecond pulses in a train produce the replica of electron-H2 + pairs, which are to be steered by a time-delayed phase-stabilized (mid)infrared laser pulse. By controlling the behavior of the freed electron, the dissociation of H2 + can be controlled even though there is no direct laser-H2 + coupling. On the other hand, the photoelectron energy spectra can be manipulated via laser-H2 + coupling. This study demonstrates the entanglement of molecular quantum wave packets, and affords a route to remotely control molecular dissociative ionization.

  2. Double-shot MeV electron diffraction and microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musumeci, P.; Cesar, D.; Maxson, J.

    Here in this paper, we study by numerical simulations a time-resolved MeV electron scattering mode where two consecutive electron pulses are used to capture the evolution of a material sample on 10 ps time scales. The two electron pulses are generated by illuminating a photocathode in a radiofrequency photogun by two short laser pulses with adjustable delay. A streak camera/deflecting cavity is used after the sample to project the two electron bunches on two well separated regions of the detector screen. By using sufficiently short pulses, the 2D spatial information from each snapshot can be preserved. This “double-shot” technique enablesmore » the efficient capture of irreversible dynamics in both diffraction and imaging modes. Finally, in this work, we demonstrate both modes in start-to-end simulations of the UCLA Pegasus MeV microscope column.« less

  3. Double-shot MeV electron diffraction and microscopy

    DOE PAGES

    Musumeci, P.; Cesar, D.; Maxson, J.

    2017-05-19

    Here in this paper, we study by numerical simulations a time-resolved MeV electron scattering mode where two consecutive electron pulses are used to capture the evolution of a material sample on 10 ps time scales. The two electron pulses are generated by illuminating a photocathode in a radiofrequency photogun by two short laser pulses with adjustable delay. A streak camera/deflecting cavity is used after the sample to project the two electron bunches on two well separated regions of the detector screen. By using sufficiently short pulses, the 2D spatial information from each snapshot can be preserved. This “double-shot” technique enablesmore » the efficient capture of irreversible dynamics in both diffraction and imaging modes. Finally, in this work, we demonstrate both modes in start-to-end simulations of the UCLA Pegasus MeV microscope column.« less

  4. Energy-dependent angular shifts in the photoelectron momentum distribution for atoms in elliptically polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Xie, Hui; Li, Min; Luo, Siqiang; Li, Yang; Zhou, Yueming; Cao, Wei; Lu, Peixiang

    2017-12-01

    We measure the photoelectron momentum distributions from atoms ionized by strong elliptically polarized laser fields at the wavelengths of 400 and 800 nm, respectively. The momentum distributions show distinct angular shifts, which sensitively depend on the electron energy. We find that the deflection angle with respect to the major axis of the laser ellipse decreases with the increase of the electron energy for large ellipticities. This energy-dependent angular shift is well reproduced by both numerical solutions of the time-dependent Schrödinger equation and the classical-trajectory Monte Carlo model. We show that the ionization time delays among the electrons with different energies are responsible for the energy-dependent angular shifts. On the other hand, for small ellipticities, we find the deflection angle increases with increasing the electron energy, which might be caused by electron rescattering in the elliptically polarized fields.

  5. Relaxation times measurement in single and multiply excited xenon clusters

    NASA Astrophysics Data System (ADS)

    Serdobintsev, P. Yu.; Melnikov, A. S.; Pastor, A. A.; Timofeev, N. A.; Khodorkovskiy, M. A.

    2018-05-01

    Direct measurement of the rates of nonradiative relaxation processes in electronically excited xenon clusters was carried out. The clusters were created in a pulsed supersonic beam and two-photon excited by femtosecond laser pulses with a wavelength of 263 nm. The measurements were performed using the pump-probe method and electron spectroscopy. It is shown that relaxation of light clusters XeN (N < 15) predominantly occurs by desorption of excited xenon atoms with a characteristic time constant of 3 ps. Heavier electronically excited clusters (N > 10) vibrationally relax to the lowest electronically excited state at a rate of about 0.075 eV/ps. Multiply excited clusters are deactivated via energy exchange between excited centers with the ionization of one of them. The production of electrons in this process occurs with a delay of ˜4 ps from the pump pulse, and the process is completed in 10 ps.

  6. A novel method for electronic measurement and recording of surgical drain output.

    PubMed

    van Duren, Bernard Hendrik; van Boxel, Gijsbert Isaac

    2017-04-01

    Surgical drains are used to collect and measure fluids (e.g. serous fluid, lymph, blood, etc.). The volume of fluid in the container is measured using graded markings on the container and then recorded manually on a "drain chart" allowing for manual rate calculations. This method is dependant on regularly checking the volume of the drain and recording the value accurately; unfortunately, this is often not feasible due to staffing levels and time constraints. This results in inaccurate "drain charts" making clinical decisions based on these figures unreliable. Often the lack of confidence in these measurements leads to delayed drain removal with consequent increased infection risks and potential delayed discharge. Accurate digital measurement of drain content would have a significant impact on clinical care. This paper describes a digital technology to measure volume, making use of a positive terminal at the lowest point of the vessel and negative (sensor) terminals placed at accurate intervals along an axis of the vessel. A proof-of-concept prototype was developed using commercially available electronic components to test the feasibility of a technology for electronic measurement and recording of surgical drain content. In a simulated environment, the proposed technology was shown to be effective and accurate. The proposed electronic drain has a number of advantages over currently used devices in saving time and easing pressure on nursing staff, reduce disturbance of patients, and allows for preset alarms.

  7. Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove.

    PubMed

    Kafka, K R P; Austin, D R; Li, H; Yi, A Y; Cheng, J; Chowdhury, E A

    2015-07-27

    Time-resolved diffraction microscopy technique has been used to observe the formation of laser-induced periodic surface structures (LIPSS) from the interaction of a single femtosecond laser pulse (pump) with a nano-scale groove mechanically formed on a single-crystal Cu substrate. The interaction dynamics (0-1200 ps) was captured by diffracting a time-delayed, frequency-doubled pulse (probe) from nascent LIPSS formation induced by the pump with an infinity-conjugate microscopy setup. The LIPSS ripples are observed to form asynchronously, with the first one forming after 50 ps and others forming sequentially outward from the groove edge at larger time delays. A 1-D analytical model of electron heating including both the laser pulse and surface plasmon polariton excitation at the groove edge predicts ripple period, melt spot diameter, and qualitatively explains the asynchronous time-evolution of LIPSS formation.

  8. Mitochondrial respiratory complex I probed by delayed luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Baran, Irina; Ionescu, Diana; Privitera, Simona; Scordino, Agata; Mocanu, Maria Magdalena; Musumeci, Francesco; Grasso, Rosaria; Gulino, Marisa; Iftime, Adrian; Tofolean, Ioana Teodora; Garaiman, Alexandru; Goicea, Alexandru; Irimia, Ruxandra; Dimancea, Alexandru; Ganea, Constanta

    2013-12-01

    The role of mitochondrial complex I in ultraweak photon-induced delayed photon emission [delayed luminescence (DL)] of human leukemia Jurkat T cells was probed by using complex I targeting agents like rotenone, menadione, and quercetin. Rotenone, a complex I-specific inhibitor, dose-dependently increased the mitochondrial level of reduced nicotinamide adenine dinucleotide (NADH), decreased clonogenic survival, and induced apoptosis. A strong correlation was found between the mitochondrial levels of NADH and oxidized flavin mononucleotide (FMNox) in rotenone-, menadione- and quercetin-treated cells. Rotenone enhanced DL dose-dependently, whereas quercetin and menadione inhibited DL as well as NADH or FMNox. Collectively, the data suggest that DL of Jurkat cells originates mainly from mitochondrial complex I, which functions predominantly as a dimer and less frequently as a tetramer. In individual monomers, both pairs of pyridine nucleotide (NADH/reduced nicotinamide adenine dinucleotide phosphate) sites and flavin (FMN-a/FMN-b) sites appear to bind cooperatively their specific ligands. Enhancement of delayed red-light emission by rotenone suggests that the mean time for one-electron reduction of ubiquinone or FMN-a by the terminal Fe/S center (N2) is 20 or 284 μs, respectively. All these findings suggest that DL spectroscopy could be used as a reliable, sensitive, and robust technique to probe electron flow within complex I in situ.

  9. Relativistic Electrons Observed at UARS and the Interpretation of their Storm-Associated Intensity Variations

    NASA Technical Reports Server (NTRS)

    Pesnell, W. D.; Goldberg, R. A.; Chenette, D. L.; Gaines, E. E.

    1999-01-01

    The High Energy Particle Spectrometer (HEPS) instrument on the Upper Atmosphere Research Satellite (UARS) provides a database of electron intensities well resolved in energy and pitch-angle. Because of its 57 deg. orbital inclination, UARS encounters with magnetic shells L greater than 2 occur quite far off-equator (B/B (sub 0) greater than 9), corresponding to equatorial pitch angle alpha (sub 0) greater than 20 deg. Data acquired by HEPS (October 1991 through September 1994) span the declining phase of Solar Cycle 22. To reveal the storm-associated time dependence of relativistic electron intensities over the wide range of energies (50 keV to 5 MeV) covered by HEPS, we divide the daily average of the measured spectrum at a given L value (bin width = 0.25) by the corresponding 500-day average and plot the results with a color scale that spans only 2.5 decades. The data show that our off-equatorial electron intensities typically increase with time after the end of recovery phase (not during main phase or recovery phase) of each geomagnetic storm. The delay in off-equatorial energetic electron response and the subsequent lifetime of the corresponding electron flux enhancement seem to increase with particle energy above 300 keV. The trend below 300 keV seems to be opposite, such that the delay varies inversely with electron energy. Our working hypothesis for interpretation is that stormtime radial transport tends to increase the phase-space densities of trapped relativistic electrons but typically leads to a flux increases at specified energies only as the current (as indicated by Dst) decays. Flux enhancements in early recovery phase are greatest for equatorially mirroring electrons, and to pitch-angle anisotropies are initially large. Subsequent pitch-angle diffusion broadens the flux enhancement to particles that mirror off equator, thus gradually increasing low-altitude electron intensities (as detected by HEPS/UARS) on time scales equal to about 20% of corresponding lifetimes against diffusion into the loss cone. Alternative interpretations will also be examined.

  10. Probing electron delays in above-threshold ionization

    DOE PAGES

    Zipp, Lucas J.; Natan, Adi; Bucksbaum, Philip H.

    2014-11-21

    Recent experiments have revealed attosecond delays in the emission of electrons from atoms ionized by extreme UV light, offering a glimpse into the ultrafast nature of light-induced electron dynamics. In this work, we extend these measurements to the strong-field above-threshold ionization (ATI) regime, by measuring delays in the photoemission of electrons from argon in the presence of an intense laser field. We probe the ATI process with a weak coherent reference, at half the laser frequency. The interfering ionization signal reveals the relative spectral phase of adjacent ATI channels, with an equivalent resolution of a few attoseconds. These relative delaysmore » depend on the strong field, and approach zero at higher intensity. Our phase measurements of ATI electrons show how strong fields alter ionization dynamics in atoms.« less

  11. Modeling, Simulation, and Analysis of a Decoy State Enabled Quantum Key Distribution System

    DTIC Science & Technology

    2015-03-26

    through the fiber , we assume Alice and Bob have correct basis alignment and timing control for reference frame correction and precise photon detection...optical components ( laser , polarization modulator, electronic variable optical attenuator, fixed optical attenuator, fiber channel, beamsplitter...generated by the laser in the CPG propagate through multiple optical components, each with a unique propagation delay before reaching the OPM. Timing

  12. Simulating pump-probe photoelectron and absorption spectroscopy on the attosecond timescale with time-dependent density functional theory.

    PubMed

    De Giovannini, Umberto; Brunetto, Gustavo; Castro, Alberto; Walkenhorst, Jessica; Rubio, Angel

    2013-05-10

    Molecular absorption and photoelectron spectra can be efficiently predicted with real-time time-dependent density functional theory. We show herein how these techniques can be easily extended to study time-resolved pump-probe experiments, in which a system response (absorption or electron emission) to a probe pulse is measured in an excited state. This simulation tool helps with the interpretation of fast-evolving attosecond time-resolved spectroscopic experiments, in which electronic motion must be followed at its natural timescale. We show how the extra degrees of freedom (pump-pulse duration, intensity, frequency, and time delay), which are absent in a conventional steady-state experiment, provide additional information about electronic structure and dynamics that improve characterization of a system. As an extension of this approach, time-dependent 2D spectroscopy can also be simulated, in principle, for large-scale structures and extended systems. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Photoionization in the time and frequency domain

    NASA Astrophysics Data System (ADS)

    Isinger, M.; Squibb, R. J.; Busto, D.; Zhong, S.; Harth, A.; Kroon, D.; Nandi, S.; Arnold, C. L.; Miranda, M.; Dahlström, J. M.; Lindroth, E.; Feifel, R.; Gisselbrecht, M.; L'Huillier, A.

    2017-11-01

    Ultrafast processes in matter, such as the electron emission after light absorption, can now be studied using ultrashort light pulses of attosecond duration (10-18 seconds) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40-electron volt energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.

  14. Reprint of : Hanbury-Brown Twiss noise correlation with time controlled quasi-particles in ballistic quantum conductors

    NASA Astrophysics Data System (ADS)

    Glattli, D. C.; Roulleau, P.

    2016-08-01

    We study the Hanbury Brown and Twiss correlation of electronic quasi-particles injected in a quantum conductor using current noise correlations and we experimentally address the effect of finite temperature. By controlling the relative time of injection of two streams of electrons it is possible to probe the fermionic antibunching, performing the electron analog of the optical Hong Ou Mandel (HOM) experiment. The electrons are injected using voltage pulses with either sine-wave or Lorentzian shape. In the latter case, we propose a set of orthogonal wavefunctions, describing periodic trains of multiply charged electron pulses, which give a simple interpretation to the HOM shot noise. The effect of temperature is then discussed and experimentally investigated. We observe a perfect electron anti-bunching for a large range of temperature, showing that, as recently predicted, thermal mixing of the states does not affect anti-bunching properties, a feature qualitatively different from dephasing. For single charge Lorentzian pulses, we provide experimental evidence of the prediction that the HOM shot noise variation versus the emission time delay is remarkably independent of the temperature.

  15. Attosecond time-energy structure of X-ray free-electron laser pulses

    NASA Astrophysics Data System (ADS)

    Hartmann, N.; Hartmann, G.; Heider, R.; Wagner, M. S.; Ilchen, M.; Buck, J.; Lindahl, A. O.; Benko, C.; Grünert, J.; Krzywinski, J.; Liu, J.; Lutman, A. A.; Marinelli, A.; Maxwell, T.; Miahnahri, A. A.; Moeller, S. P.; Planas, M.; Robinson, J.; Kazansky, A. K.; Kabachnik, N. M.; Viefhaus, J.; Feurer, T.; Kienberger, R.; Coffee, R. N.; Helml, W.

    2018-04-01

    The time-energy information of ultrashort X-ray free-electron laser pulses generated by the Linac Coherent Light Source is measured with attosecond resolution via angular streaking of neon 1s photoelectrons. The X-ray pulses promote electrons from the neon core level into an ionization continuum, where they are dressed with the electric field of a circularly polarized infrared laser. This induces characteristic modulations of the resulting photoelectron energy and angular distribution. From these modulations we recover the single-shot attosecond intensity structure and chirp of arbitrary X-ray pulses based on self-amplified spontaneous emission, which have eluded direct measurement so far. We characterize individual attosecond pulses, including their instantaneous frequency, and identify double pulses with well-defined delays and spectral properties, thus paving the way for X-ray pump/X-ray probe attosecond free-electron laser science.

  16. Quiet-time electron increases, a measure of conditions in the outer solar system

    NASA Technical Reports Server (NTRS)

    Fisk, L. A.; Vanhollebeke, M.

    1972-01-01

    One possible explanation for quiet-time electron increases, increases in the intensity of 3-12 MeV interplanetary electrons that have been reported by McDonald, Cline and Simnett, is discussed. It is argued that the electrons in quiet-time increases are galactic in origin, but that the observed increases are not the result of any variation in the modulation of these particles in the inner solar system. It is suggested instead that quiet-time increases may occur when more electrons than normal penetrate a modulating region that lies far beyond the orbit of earth. The number of electrons penetrating this region may increase when field lines that have experienced an unusually large random walk in the photosphere are carried by the solar wind out to the region. As evidence for this increased random walk, it is shown that five solar rotations before most of the quiet-time increases there is an extended period when the amplitude of the diurnal anisotropy, as is measured by the Deep River neutron monitor, is relatively low. Five rotations delay time implies that the proposed modulating region lies at approximately 30 AU from the Sun, assuming that the average solar wind speed is constant over this distance at approximately 400 km/sec.

  17. Tunable Optical True-Time Delay Devices Would Exploit EIT

    NASA Technical Reports Server (NTRS)

    Kulikov, Igor; DiDomenico, Leo; Lee, Hwang

    2004-01-01

    Tunable optical true-time delay devices that would exploit electromagnetically induced transparency (EIT) have been proposed. Relative to prior true-time delay devices (for example, devices based on ferroelectric and ferromagnetic materials) and electronically controlled phase shifters, the proposed devices would offer much greater bandwidths. In a typical envisioned application, an optical pulse would be modulated with an ultra-wideband radio-frequency (RF) signal that would convey the information that one seeks to communicate, and it would be required to couple differently delayed replicas of the RF signal to the radiating elements of a phased-array antenna. One or more of the proposed devices would be used to impose the delays and/or generate the delayed replicas of the RF-modulated optical pulse. The beam radiated or received by the antenna would be steered by use of a microprocessor-based control system that would adjust operational parameters of the devices to tune the delays to the required values. EIT is a nonlinear quantum optical interference effect that enables the propagation of light through an initially opaque medium. A suitable medium must have, among other properties, three quantum states (see Figure 1): an excited state (state 3), an upper ground state (state 2), and a lower ground state (state 1). These three states must form a closed system that exhibits no decays to other states in the presence of either or both of two laser beams: (1) a probe beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 1; and (2) a coupling beam having the wavelength corresponding to the photon energy equal to the energy difference between states 3 and 2. The probe beam is the one that is pulsed and modulated with an RF signal.

  18. Hardware Verification of Laser Noise Cancellation and Gravitational Wave Extraction using Time-Delay Interferometry

    NASA Astrophysics Data System (ADS)

    Mitryk, Shawn; Mueller, Guido

    The Laser Interferometer Space Antenna (LISA) is a space-based modified Michelson interfer-ometer designed to measure gravitational radiation in the frequency range from 30 uHz to 1 Hz. The interferometer measurement system (IMS) utilizes one-way laser phase measurements to cancel the laser phase noise, reconstruct the proof-mass motion, and extract the gravitational wave (GW) induced laser phase modulations in post-processing using a technique called time-delay interferometry (TDI). Unfortunately, there exist few hard-ware verification experiments of the IMS. The University of Florida LISA Interferometry Simulator (UFLIS) is designed to perform hardware-in-the-loop simulations of the LISA interferometry system, modeling the characteris-tics of the LISA mission as accurately as possible. This depends, first, on replicating the laser pre-stabilization by locking the laser phase to an ultra-stable Zerodur cavity length reference using the PDH locking method. Phase measurements of LISA-like photodetector beat-notes are taken using the UF-phasemeter (PM) which can measure the laser BN frequency to within an accuracy of 0.22 uHz. The inter-space craft (SC) laser links including the time-delay due to the 5 Gm light travel time along the LISA arms, the laser Doppler shifts due to differential SC motion, and the GW induced laser phase modulations are simulated electronically using the electronic phase delay (EPD) unit. The EPD unit replicates the laser field propagation between SC by measuring a photodetector beat-note frequency with the UF-phasemeter and storing the information in memory. After the requested delay time, the frequency information is added to a Doppler offset and a GW-like frequency modulation. The signal is then regenerated with the inter-SC laser phase affects applied. Utilizing these components, I will present the first complete TDI simulations performed using the UFLIS. The LISA model is presented along-side the simulation, comparing the generation and measurement of LISA-like signals. Phasemeter measurements are used in post-processing and combined in the linear combinations defined by TDI, thus, canceling the laser phase and phase-lock loop noise to extract the applied GW modulation buried under the noise. Nine order of magnitude common mode laser noise cancellation is achieved at a frequency of 1 mHz and the GW signal is clearly visible after the laser and PLL noise cancellation.

  19. Delays before Diagnosis and Initiation of Treatment in Patients Presenting to Mental Health Services with Bipolar Disorder.

    PubMed

    Patel, Rashmi; Shetty, Hitesh; Jackson, Richard; Broadbent, Matthew; Stewart, Robert; Boydell, Jane; McGuire, Philip; Taylor, Matthew

    2015-01-01

    Bipolar disorder is a significant cause of morbidity and mortality. Although existing treatments are effective, there is often a substantial delay before diagnosis and treatment initiation. We sought to investigate factors associated with the delay before diagnosis of bipolar disorder and the onset of treatment in secondary mental healthcare. Retrospective cohort study using anonymised electronic mental health record data from the South London and Maudsley NHS Foundation Trust (SLaM) Biomedical Research Centre (BRC) Case Register on 1364 adults diagnosed with bipolar disorder between 2007 and 2012. The following predictor variables were analysed in a multivariable Cox regression analysis: age, gender, ethnicity, compulsory admission to hospital under the UK Mental Health Act, marital status and other diagnoses prior to bipolar disorder. The outcomes were time to recorded diagnosis from first presentation to specialist mental health services (the diagnostic delay), and time to the start of appropriate therapy (treatment delay). The median diagnostic delay was 62 days (interquartile range: 17-243) and median treatment delay was 31 days (4-122). Compulsory hospital admission was associated with a significant reduction in both diagnostic delay (hazard ratio 2.58, 95% CI 2.18-3.06) and treatment delay (4.40, 3.63-5.62). Prior diagnoses of other psychiatric disorders were associated with increased diagnostic delay, particularly alcohol (0.48, 0.33-0.41) and substance misuse disorders (0.44, 0.31-0.61). Prior diagnosis of schizophrenia and psychotic depression were associated with reduced treatment delay. Some individuals experience a significant delay in diagnosis and treatment of bipolar disorder after initiation of specialist mental healthcare, particularly those who have prior diagnoses of alcohol and substance misuse disorders. These findings highlight a need for further study on strategies to better identify underlying symptoms and offer appropriate treatment sooner in order to facilitate improved clinical outcomes, such as developing specialist early intervention services to identify and treat people with bipolar disorder.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukharamova, Nastasia; Lazarev, Sergey; Meijer, Janne -Mieke

    We present results of the studies of dynamics in colloidal crystals performed by pump-probe experiments using an X-ray free-electron laser (XFEL). Colloidal crystals were pumped with an infrared laser at a wavelength of 800 nm with varying power and probed by XFEL pulses at an energy of 8 keV with a time delay up to 1000 ps. The positions of the Bragg peaks, and their radial and azimuthal widths were analyzed as a function of the time delay. The spectral analysis of the data did not reveal significant enhancement of frequencies expected in this experiment. As a result, this allowedmore » us to conclude that the amplitude of vibrational modes excited in colloidal crystals was less than the systematic error caused by the noise level.« less

  1. Performance of a hard X-ray split-and-delay optical system with a wavefront division

    DOE PAGES

    Hirano, Takashi; Osaka, Taito; Morioka, Yuki; ...

    2018-01-01

    The performance of a hard X-ray split-and-delay optical (SDO) system with a wavefront division scheme was investigated at the hard X-ray free-electron laser facility SACLA. For the wavefront division, beam splitters made of edge-polished perfect Si(220) crystals were employed. We characterized the beam properties of the SDO system, and investigated its capabilities for beam manipulation and diagnostics. First, it was confirmed that shot-to-shot non-invasive diagnostics of pulse energies for both branches in the SDO system was feasible. Second, nearly ideal and identical focal profiles for both branches were obtained with a spot size of ~1.5 µm in full width atmore » half-maximum. Third, a spatial overlap of the two focused beams with a sub-µm accuracy was achieved by fine tuning of the SDO system. Finally, a reliable tunability of the delay time between two pulses was confirmed. The time interval was measured with an X-ray streak camera by changing the path length of the variable-delay branch. As a result, errors from the fitted line were evaluated to be as small as ±0.4 ps over a time range of 60 ps.« less

  2. Performance of a hard X-ray split-and-delay optical system with a wavefront division

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirano, Takashi; Osaka, Taito; Morioka, Yuki

    The performance of a hard X-ray split-and-delay optical (SDO) system with a wavefront division scheme was investigated at the hard X-ray free-electron laser facility SACLA. For the wavefront division, beam splitters made of edge-polished perfect Si(220) crystals were employed. We characterized the beam properties of the SDO system, and investigated its capabilities for beam manipulation and diagnostics. First, it was confirmed that shot-to-shot non-invasive diagnostics of pulse energies for both branches in the SDO system was feasible. Second, nearly ideal and identical focal profiles for both branches were obtained with a spot size of ~1.5 µm in full width atmore » half-maximum. Third, a spatial overlap of the two focused beams with a sub-µm accuracy was achieved by fine tuning of the SDO system. Finally, a reliable tunability of the delay time between two pulses was confirmed. The time interval was measured with an X-ray streak camera by changing the path length of the variable-delay branch. As a result, errors from the fitted line were evaluated to be as small as ±0.4 ps over a time range of 60 ps.« less

  3. RF beam transmission of x-band PAA system utilizing large-area, polymer-based true-time-delay module developed using imprinting and inkjet printing

    NASA Astrophysics Data System (ADS)

    Pan, Zeyu; Subbaraman, Harish; Zhang, Cheng; Li, Qiaochu; Xu, Xiaochuan; Chen, Xiangning; Zhang, Xingyu; Zou, Yi; Panday, Ashwin; Guo, L. Jay; Chen, Ray T.

    2016-02-01

    Phased-array antenna (PAA) technology plays a significant role in modern day radar and communication networks. Truetime- delay (TTD) enabled beam steering networks provide several advantages over their electronic counterparts, including squint-free beam steering, low RF loss, immunity to electromagnetic interference (EMI), and large bandwidth control of PAAs. Chip-scale and integrated TTD modules promise a miniaturized, light-weight system; however, the modules are still rigid and they require complex packaging solutions. Moreover, the total achievable time delay is still restricted by the wafer size. In this work, we propose a light-weight and large-area, true-time-delay beamforming network that can be fabricated on light-weight and flexible/rigid surfaces utilizing low-cost "printing" techniques. In order to prove the feasibility of the approach, a 2-bit thermo-optic polymer TTD network is developed using a combination of imprinting and ink-jet printing. RF beam steering of a 1×4 X-band PAA up to 60° is demonstrated. The development of such active components on large area, light-weight, and low-cost substrates promises significant improvement in size, weight, and power (SWaP) requirements over the state-of-the-art.

  4. Application of Signal Analysis to the Climate

    PubMed Central

    2014-01-01

    The primary ingredient of the Anthropogenic Global Warming hypothesis, namely, the assumption that additional atmospheric carbon dioxide substantially raises the global temperature, is studied. This is done by looking at the data of temperature and CO2, both in the time domain and in the phase domain of periodic data. Bicentenary measurements are analyzed and a relaxation model is introduced in the form of an electronic equivalent circuit. The effects of this relaxation manifest themselves in delays in the time domain and correlated phase shifts in the phase domain. For extremely long relaxation time constants, the delay is maximally one-quarter period, which for the yearly-periodic signal means 3 months. This is not in line with the analyzed data, the latter showing delays of 9 (−3) months. These results indicate a reverse function of cause and effect, with temperature being the cause for atmospheric CO2 changes, rather than their effect. These two hypotheses are discussed on basis of literature, where it was also reported that CO2 variations are lagging behind temperature variations. PMID:27350978

  5. Summary of the effects of engine throttle response on airplane formation-flying qualities

    NASA Technical Reports Server (NTRS)

    Walsh, Kevin R.

    1993-01-01

    A flight evaluation was conducted to determine the effect of engine throttle response characteristics on precision formation-flying qualities. A variable electronic throttle control system was developed and flight-tested on a TF-104G airplane with a J79-11B engine at the NASA Dryden Flight Research Facility. This airplane was chosen because of its known, very favorable thrust response characteristics. Ten research flights were flown to evaluate the effects of throttle gain, time delay, and fuel control rate limiting on engine handling qualities during a demanding precision wing formation task. Handling quality effects of lag filters and lead compensation time delays were also evaluated. The Cooper and Harper Pilot Rating Scale was used to assign levels of handling quality. Data from pilot ratings and comments indicate that throttle control system time delays and rate limits cause significant degradations in handling qualities. Threshold values for satisfactory (level 1) and adequate (level 2) handling qualities of these key variables are presented. These results may provide engine manufacturers with guidelines to assure satisfactory handling qualities in future engine designs.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, W., E-mail: wei.lu@xfel.eu; European X-Ray Free-Electron Laser Facility, 22607 Hamburg; Noll, T.

    A hard X-ray Split and Delay Line (SDL) under development for the Materials Imaging and Dynamics (MID) station at the European X-Ray Free-Electron Laser (XFEL.EU) is presented. This device will provide pairs of X-ray pulses with a variable time delay ranging from −10 ps to 800 ps in a photon energy range from 5 to 10 keV. Throughput simulations in the SASE case indicate a total transmission of 1.1% or 3.5% depending on the operation mode. In the self-seeded case of XFEL.EU operation simulations indicate that the transmission can be improved to more than 11%.

  7. UCTM2: An updated User friendly Configurable Trigger, scaler and delay Module for nuclear and particle physics

    NASA Astrophysics Data System (ADS)

    Bourrion, O.; Boyer, B.; Derome, L.; Pignol, G.

    2016-06-01

    We developed a highly integrated and versatile electronic module to equip small nuclear physics experiments and lab teaching classes: the User friendly Configurable Trigger, scaler and delay Module for nuclear and particle physics (UCTM). It is configurable through a Graphical User Interface (GUI) and provides a large number of possible trigger conditions without any Hardware Description Language (HDL) required knowledge. This new version significantly enhances the previous capabilities by providing two additional features: signal digitization and time measurements. The design, performances and a typical application are presented.

  8. Effect of an ultrafast laser induced plasma on a relativistic electron beam to determine temporal overlap in pump-probe experiments.

    PubMed

    Scoby, Cheyne M; Li, R K; Musumeci, P

    2013-04-01

    In this paper we report on a simple and robust method to measure the absolute temporal overlap of the laser and the electron beam at the sample based on the effect of a laser induced plasma on the electron beam transverse distribution, successfully extending a similar method from keV to MeV electron beams. By pumping a standard copper TEM grid to form the plasma, we gain timing information independent of the sample under study. In experiments discussed here the optical delay to achieve temporal overlap between the pump electron beam and probe laser can be determined with ~1 ps precision. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Steering continuum electron dynamics by low-energy attosecond streaking

    NASA Astrophysics Data System (ADS)

    Geng, Ji-Wei; Xiong, Wei-Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You

    2016-08-01

    A semiclassical model is developed to understand the electronic dynamics in the low-energy attosecond streaking. Under a relatively strong infrared (IR) pulse, the low-energy part of photoelectrons initialized by a single attosecond pulse (SAP) can either rescatter with the ionic core and induce interferences structures in the momentum spectra of the ionized electrons or be recaptured into the Rydberg states. The Coulomb potential plays essential roles in both the electron rescattering and recapturing processes. We find that by changing the time delay between the SAP and the IR pulse, the photoelectrons yield or the population of the Rydberg states can be effectively controlled. The present study demonstrates a fascinating way to steer the electron motion in the continuum.

  10. Timeliness of notification systems for infectious diseases: A systematic literature review.

    PubMed

    Swaan, Corien; van den Broek, Anouk; Kretzschmar, Mirjam; Richardus, Jan Hendrik

    2018-01-01

    Timely notification of infectious diseases is crucial for prompt response by public health services. Adequate notification systems facilitate timely notification. A systematic literature review was performed to assess outcomes of studies on notification timeliness and to determine which aspects of notification systems are associated with timely notification. Articles reviewing timeliness of notifications published between 2000 and 2017 were searched in Pubmed and Scopus. Using a standardized notification chain, timeliness of reporting system for each article was defined as either sufficient (≥ 80% notifications in time), partly sufficient (≥ 50-80%), or insufficient (< 50%) according to the article's predefined timeframe, a standardized timeframe for all articles, and a disease specific timeframe. Electronic notification systems were compared with conventional methods (postal mail, fax, telephone, email) and mobile phone reporting. 48 articles were identified. In almost one third of the studies with a predefined timeframe (39), timeliness of notification systems was either sufficient or insufficient (11/39, 28% and 12/39, 31% resp.). Applying the standardized timeframe (45 studies) revealed similar outcomes (13/45, 29%, sufficient notification timeframe, vs 15/45, 33%, insufficient). The disease specific timeframe was not met by any study. Systems involving reporting by laboratories most often complied sufficiently with predefined or standardized timeframes. Outcomes were not related to electronic, conventional notification systems or mobile phone reporting. Electronic systems were faster in comparative studies (10/13); this hardly resulted in sufficient timeliness, neither according to predefined nor to standardized timeframes. A minority of notification systems meets either predefined, standardized or disease specific timeframes. Systems including laboratory reporting are associated with timely notification. Electronic systems reduce reporting delay, but implementation needs considerable effort to comply with notification timeframes. During outbreak threats, patient, doctors and laboratory testing delays need to be reduced to achieve timely detection and notification. Public health authorities should incorporate procedures for this in their preparedness plans.

  11. Oxygen evolution from single- and multiple-turnover light pulses: temporal kinetics of electron transport through PSII in sunflower leaves.

    PubMed

    Oja, Vello; Eichelmann, Hillar; Laisk, Agu

    2011-12-01

    Oxygen evolution per single-turnover flash (STF) or multiple-turnover pulse (MTP) was measured with a zirconium O(2) analyzer from sunflower leaves at 22 °C. STF were generated by Xe arc lamp, MTP by red LED light of up to 18000 μmol quanta m(-2) s(-1). Ambient O(2) concentration was 10-30 ppm, STF and MTP were superimposed on far-red background light in order to oxidize plastoquinone (PQ) and randomize S-states. Electron (e(-)) flow was calculated as 4 times O(2) evolution. Q (A) → Q (B) electron transport was investigated firing double STF with a delay of 0 to 2 ms between the two. Total O(2) evolution per two flashes equaled to that from a single flash when the delay was zero and doubled when the delay exceeded 2 ms. This trend was fitted with two exponentials with time constants of 0.25 and 0.95 ms, equal amplitudes. Illumination with MTP of increasing length resulted in increasing O(2) evolution per pulse, which was differentiated with an aim to find the time course of O(2) evolution with sub-millisecond resolution. At the highest pulse intensity of 2.9 photons ms(-1) per PSII, 3 e(-) initially accumulated inside PSII and the catalytic rate of PQ reduction was determined from the throughput rate of the fourth and fifth e(-). A light response curve for the reduction of completely oxidized PQ was a rectangular hyperbola with the initial slope of 1.2 PSII quanta per e(-) and V (m) of 0.6 e(-) ms(-1) per PSII. When PQ was gradually reduced during longer MTP, V (m) decreased proportionally with the fraction of oxidized PQ. It is suggested that the linear kinetics with respect to PQ are apparent, caused by strong product inhibition due to about equal binding constants of PQ and PQH(2) to the Q (B) site. The strong product inhibition is an appropriate mechanism for down-regulation of PSII electron transport in accordance with rate of PQH(2) oxidation by cytochrome b(6)f. © Springer Science+Business Media B.V. 2011

  12. Optical emission spectroscopy of magnetically confined laser induced vanadium pentoxide (V2O5) plasma

    NASA Astrophysics Data System (ADS)

    Amin, Saba; Bashir, Shazia; Anjum, Safia; Akram, Mahreen; Hayat, Asma; Waheed, Sadia; Iftikhar, Hina; Dawood, Assadullah; Mahmood, Khaliq

    2017-08-01

    Optical emission spectra of a laser induced plasma of vanadium pentoxide (V2O5) using a Nd:YAG laser (1064 nm, 10 ns) in the presence and absence of the magnetic field of 0.45 T have been investigated. The effect of the magnetic field (B) on the V2O5 plasma at various laser irradiances ranging from 0.64 GW cm-2 to 2.56 GW cm-2 is investigated while keeping the pressure of environmental gases of Ar and Ne constant at 100 Torr. The magnetic field effect on plasma parameters of V2O5 is also explored at different delay times ranging from 0 μs to 10 μs for both environmental gases of Ar and Ne at the laser irradiance of 1.28 GW cm-2. It is revealed that both the emission intensity and electron temperature of the vanadium pentoxide plasma initially increase with increasing irradiance due to the enhanced energy deposition and mass ablation rate. After achieving a certain maximum, both exhibit a decreasing trend or saturation which is attributable to the plasma shielding effect. However, the electron density shows a decreasing trend with increasing laser irradiance. This trend remains the same for both cases, i.e., in the presence and in the absence of magnetic field and for both background gases of Ar and Ne. However, it is revealed that both the electron temperature and electron density of the V2O5 plasma are significantly enhanced in the presence of the magnetic field for both environments at all laser irradiances and delay times, and more pronounced effects are observed at higher irradiances. The enhancement in plasma parameters is attributed to the confinement as well as Joule heating effects caused by magnetic field employment. The confinement of the plasma is also confirmed by the analytically calculated value of magnetic pressure β, which is smaller than plasma pressure at all irradiances and delay times, and therefore confirms the validity of magnetic confinement of the V2O5 plasma.

  13. Theoretical analysis of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Y.M.; Ryskin, N.M.; Won, J.H.

    The basic theory of cross-talking signals between counter-streaming electron beams in a vacuum tube oscillator consisting of two two-cavity klystron amplifiers reversely coupled through input/output slots is theoretically investigated. Application of Kirchhoff's laws to the coupled equivalent RLC circuit model of the device provides four nonlinear coupled equations, which are the first-order time-delayed differential equations. Analytical solutions obtained through linearization of the equations provide oscillation frequencies and thresholds of four fundamental eigenstates, symmetric/antisymmetric 0/{pi} modes. Time-dependent output signals are numerically analyzed with variation of the beam current, and a self-modulation mechanism and transition to chaos scenario are examined. The oscillatormore » shows a much stronger multistability compared to a delayed feedback klystron oscillator owing to the competitions among more diverse eigenmodes. A fully developed chaos region also appears at a relatively lower beam current, {approx}3.5I{sub st}, compared to typical vacuum tube oscillators (10-100I{sub st}), where I{sub st} is a start-oscillation current.« less

  14. Attosecond XUV absorption spectroscopy of doubly excited states in helium atoms dressed by a time-delayed femtosecond infrared laser

    NASA Astrophysics Data System (ADS)

    Yang, Z. Q.; Ye, D. F.; Ding, Thomas; Pfeifer, Thomas; Fu, L. B.

    2015-01-01

    In the present paper, we investigate the time-resolved transient absorption spectroscopy of doubly excited states of helium atoms by solving the time-dependent two-electron Schrödinger equation numerically based on a one-dimensional model. The helium atoms are subjected to an extreme ultraviolet (XUV) attosecond pulse and a time-delayed infrared (IR) few-cycle laser pulse. A superposition of doubly excited states populated by the XUV pulse is identified, which interferes with the direct ionization pathway leading to Fano resonance profiles in the photoabsorption spectrum. In the presence of an IR laser, however, the Fano line profiles are strongly modified: A shifting, splitting, and broadening of the original absorption lines is observed when the XUV attosecond pulse and infrared few-cycle laser pulse overlap in time, which is in good agreement with recent experimental results. At certain time delays, we observe symmetric Lorentz, inverted Fano profiles, and even negative absorption cross sections indicating that the XUV light can be amplified during the interaction with atoms. We further prove that the above pictures are general for different doubly excited states by suitably varying the frequency of the IR field to coherently couple the corresponding states.

  15. Mechanism of vacuum breakdown in radio-frequency accelerating structures

    NASA Astrophysics Data System (ADS)

    Barengolts, S. A.; Mesyats, V. G.; Oreshkin, V. I.; Oreshkin, E. V.; Khishchenko, K. V.; Uimanov, I. V.; Tsventoukh, M. M.

    2018-06-01

    It has been investigated whether explosive electron emission may be the initiating mechanism of vacuum breakdown in the accelerating structures of TeV linear electron-positron colliders (Compact Linear Collider). The physical processes involved in a dc vacuum breakdown have been considered, and the relationship between the voltage applied to the diode and the time delay to breakdown has been found. Based on the results obtained, the development of a vacuum breakdown in an rf electric field has been analyzed and the main parameters responsible for the initiation of explosive electron emission have been estimated. The formation of craters on the cathode surface during explosive electron emission has been numerically simulated, and the simulation results are discussed.

  16. Dielectric surface discharges: Effects of combined low-energy and high-energy incident electrons

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.; Hirt, W.

    1981-01-01

    Dielectric surface discharges affected by the addition of high energy electrons at 5 pA/sq cm to a primary 20 keV, 10 nA/sq cm electron beam with the high energy broad spectrum particles coming from the beta decay of Strontium 90 are studied. Kapton exhibits significantly increased discharge strength, increased waiting time between discharges, and a decreased number of discharges per specimen before discharge cessation. Mylar exhibits similar but less pronounced effects, while Teflon is relatively unaffected. With Kapton and Mylar, the high energy electrons act in some way to delay the instant of discharge ignition so that more charge can be accumulated and hence released during discharge.

  17. Prototyping Instruments for Chemical Laboratory Using Inexpensive Electronic Modules.

    PubMed

    Urban, Pawel L

    2018-05-15

    Open-source electronics and programming can augment chemical and biomedical research. Currently, chemists can choose from a broad range of low-cost universal electronic modules (microcontroller boards and single-board computers) and use them to assemble working prototypes of scientific tools to address specific experimental problems and to support daily research work. The learning time can be as short as a few hours, and the required budget is often as low as 50 USD. Prototyping instruments using low-cost electronic modules gives chemists enormous flexibility to design and construct customized instrumentation, which can reduce the delays caused by limited access to high-end commercial platforms. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Hydrogen and Ethene Plasma Assisted Ignition by NS discharge at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey

    2015-09-01

    The kinetics of ignition in lean H2:O2:Ar and C2H4:O2:Ar mixtures has been studied experimentally and numerically after a high-voltage nanosecond discharge. The ignition delay time behind a reflected shock wave was measured with and without the discharge. It was shown that the initiation of the discharge with a specific deposited energy of 10 - 30 mJ/cm3 leads to an order of magnitude decrease in the ignition delay time. Discharge processes and following chain chemical reactions with energy release were simulated. The generation of atoms, radicals and excited and charged particles was numerically simulated using the measured time - resolved discharge current and electric field in the discharge phase. The calculated densities of the active particles were used as input data to simulate plasma-assisted ignition. Good agreement was obtained between the calculated ignition delay times and the experimental data. It follows from the analysis of the calculated results that the main mechanism of the effect of gas discharge on the ignition of hydrocarbons is the electron impact dissociation of O2 molecules in the discharge phase. Detailed kinetic mechanism for plasma assisted ignition of hydrogen and ethene is elaborated and verified.

  19. Ultrafast isomerization initiated by X-ray core ionization

    NASA Astrophysics Data System (ADS)

    Liekhus-Schmaltz, Chelsea E.; Tenney, Ian; Osipov, Timur; Sanchez-Gonzalez, Alvaro; Berrah, Nora; Boll, Rebecca; Bomme, Cedric; Bostedt, Christoph; Bozek, John D.; Carron, Sebastian; Coffee, Ryan; Devin, Julien; Erk, Benjamin; Ferguson, Ken R.; Field, Robert W.; Foucar, Lutz; Frasinski, Leszek J.; Glownia, James M.; Gühr, Markus; Kamalov, Andrei; Krzywinski, Jacek; Li, Heng; Marangos, Jonathan P.; Martinez, Todd J.; McFarland, Brian K.; Miyabe, Shungo; Murphy, Brendan; Natan, Adi; Rolles, Daniel; Rudenko, Artem; Siano, Marco; Simpson, Emma R.; Spector, Limor; Swiggers, Michele; Walke, Daniel; Wang, Song; Weber, Thorsten; Bucksbaum, Philip H.; Petrovic, Vladimir S.

    2015-09-01

    Rapid proton migration is a key process in hydrocarbon photochemistry. Charge migration and subsequent proton motion can mitigate radiation damage when heavier atoms absorb X-rays. If rapid enough, this can improve the fidelity of diffract-before-destroy measurements of biomolecular structure at X-ray-free electron lasers. Here we study X-ray-initiated isomerization of acetylene, a model for proton dynamics in hydrocarbons. Our time-resolved measurements capture the transient motion of protons following X-ray ionization of carbon K-shell electrons. We Coulomb-explode the molecule with a second precisely delayed X-ray pulse and then record all the fragment momenta. These snapshots at different delays are combined into a `molecular movie' of the evolving molecule, which shows substantial proton redistribution within the first 12 fs. We conclude that significant proton motion occurs on a timescale comparable to the Auger relaxation that refills the K-shell vacancy.

  20. An institutional study of time delays for symptomatic carotid endarterectomy.

    PubMed

    Charbonneau, Philippe; Bonaventure, Paule Lessard; Drudi, Laura M; Beaudoin, Nathalie; Blair, Jean-François; Elkouri, Stéphane

    2016-12-01

    The aim of this study was to assess time delays between first cerebrovascular symptoms and carotid endarterectomy (CEA) at a single center and to systematically evaluate causes of these delays. Consecutive adult patients who underwent CEAs between January 2010 and September 2011 at a single university-affiliated center (Centre Hospitalier de l'Université Montréal-Hôtel-Dieu Hospital, Montreal) were identified from a clinical database and operative records. Covariates of interest were extracted from electronic medical records. Timing and nature of the first cerebrovascular symptoms were also documented. The first medical contact and pathway of referral were also assessed. When possible, the ABCD 2 score (age, blood pressure, clinical features, duration of symptoms, and diabetes) was calculated to calculate further risk of stroke. The nonparametric Wilcoxon test was used to assess differences in time intervals between two variables. The Kruskal-Wallis test was used to assess differences in time intervals in comparing more than two variables. A multivariate linear regression analysis was performed using covariates that were determined to be statistically significant in our sensitivity analyses. The cohort consisted of 111 patients with documented symptomatic carotid stenosis undergoing surgical intervention. Thirty-nine percent of all patients were operated on within 2 weeks from the first cerebrovascular symptoms. The median time between the occurrence of the first neurologic symptom and the CEA procedure was 25 (interquartile range [IQR], 11-85) days. The patient-dependent delay, defined as the median delay between the first neurologic symptom and the first medical contact, was 1 (IQR, 0-14) day. The medical-dependent delay was defined as the time interval between the first medical contact and CEA. This included the delay between the first medical contact and the request for surgery consultation (median, 3 [IQR, 1-10] days). The multivariate regression model demonstrated that the emergency physician as referral source (P = .0002) was statistically significant for reducing CEA delay. Patients who were investigated as an outpatient (P = .02), first medical contact with a general practitioner (P = .0002), and hospital center I as referral center (P = .045) were also found to be statistically significant to extend CEA delay when the model was adjusted over all covariates. In this center, there was no correlation between ABCD 2 risk score and waiting time for surgery. The majority of our cohort falls short of the recommended 2-week interval to perform CEA. Factors contributing to reduced CEA delay were presentation to an emergency department, in-patient investigations, and a stroke center where a vascular surgeon is available. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  1. Two-color vibrational, femtosecond, fully resonant electronically enhanced CARS (FREE-CARS) of gas-phase nitric oxide.

    PubMed

    Stauffer, Hans U; Roy, Sukesh; Schmidt, Jacob B; Wrzesinski, Paul J; Gord, James R

    2016-09-28

    A resonantly enhanced, two-color, femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) approach is demonstrated and used to explore the nature of the frequency- and time-dependent signals produced by gas-phase nitric oxide (NO). Through careful selection of the input pulse wavelengths, this fully resonant electronically enhanced CARS (FREE-CARS) scheme allows rovibronic-state-resolved observation of time-dependent rovibrational wavepackets propagating on the vibrationally excited ground-state potential energy surface of this diatomic species. Despite the use of broadband, ultrafast time-resolved input pulses, high spectral resolution of gas-phase rovibronic transitions is observed in the FREE-CARS signal, dictated by the electronic dephasing timescales of these states. Analysis and computational simulation of the time-dependent spectra observed as a function of pump-Stokes and Stokes-probe delays provide insight into the rotationally resolved wavepacket motion observed on the excited-state and vibrationally excited ground-state potential energy surfaces of NO, respectively.

  2. Bias-induced modulation of ultrafast carrier dynamics in metallic single-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Maekawa, Keisuke; Yanagi, Kazuhiro; Minami, Yasuo; Kitajima, Masahiro; Katayama, Ikufumi; Takeda, Jun

    2018-02-01

    The gate bias dependence of excited-state relaxation dynamics in metallic single-walled carbon nanotubes (MCNTs) was investigated using pump-probe transient absorption spectroscopy coupled with electrochemical doping through an ionic liquid. The transient transmittance decayed exponentially with the pump-probe delay time, whose value could be tuned via the Fermi-level modulation of Dirac electrons under a bias voltage. The obtained relaxation time was the shortest when the Fermi level was at the Dirac point of the MCNTs, and exhibited a U-shaped dependence on the bias voltage. Because optical dipole transitions between the Dirac bands are forbidden in MCNTs, the observed dynamics were attributed to carrier relaxation from the E11 band to the Dirac band. Using a model that considers the suppression of electron-electron scattering (impact ionization) due to Pauli blocking, we could qualitatively explain the obtained bias dependence of the relaxation time.

  3. Under-the-barrier dynamics in laser-induced relativistic tunneling.

    PubMed

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Keitel, Christoph H

    2013-04-12

    The tunneling dynamics in relativistic strong-field ionization is investigated with the aim to develop an intuitive picture for the relativistic tunneling regime. We demonstrate that the tunneling picture applies also in the relativistic regime by introducing position dependent energy levels. The quantum dynamics in the classically forbidden region features two time scales, the typical time that characterizes the probability density's decay of the ionizing electron under the barrier (Keldysh time) and the time interval which the electron spends inside the barrier (Eisenbud-Wigner-Smith tunneling time). In the relativistic regime, an electron momentum shift as well as a spatial shift along the laser propagation direction arise during the under-the-barrier motion which are caused by the laser magnetic field induced Lorentz force. The momentum shift is proportional to the Keldysh time, while the wave-packet's spatial drift is proportional to the Eisenbud-Wigner-Smith time. The signature of the momentum shift is shown to be present in the ionization spectrum at the detector and, therefore, observable experimentally. In contrast, the signature of the Eisenbud-Wigner-Smith time delay disappears at far distances for pure quasistatic tunneling dynamics.

  4. Influence of electron dynamics on the enhancement of double-pulse femtosecond laser-induced breakdown spectroscopy of fused silica

    NASA Astrophysics Data System (ADS)

    Cao, Zhitao; Jiang, Lan; Wang, Sumei; Wang, Mengmeng; Liu, Lei; Yang, Fan; Lu, Yongfeng

    2018-03-01

    Femtosecond laser pulse train induced breakdown of fused silica was studied by investigating its plasma emission and the ablated crater morphology. It was demonstrated that the electron dynamics in the ablated fused silica play a dominant role in the emission intensity of induced plasma and the volume of material removal, corresponding to the evolution of free-electron, self-trapped excitons, and the phase change of the fused silica left over by the first pulse. For a fluence of 11 J/cm2, the maximum plasma intensity of double-pulse irradiation at an interpulse delay of 120 ps was about 35 times stronger than that of a single-pulse, while the ablated crater was reduced by 27% in volume. The ionization of slow plume component generated by the first pulse was found to be the main reason for the extremely high intensity enhancement for an interpulse delay of over 10 ps. The results serve as a route to simultaneously increase the spatial resolution and plasma intensity in laser-induced breakdown spectroscopy of dielectrics.

  5. Watching electrons tunnel

    NASA Astrophysics Data System (ADS)

    Moser, Simon

    2008-03-01

    To get insight to time resolved inner atomic or molecular processes, laser pulses of few femtoseconds or even attoseconds are needed. These short light pulse techniques ask for broad frequency spectra, control of dispersion and control of phase. Hence, linear optics fails and nonlinear optics in high electromagnetic fields is needed to satisfy the amount of control that is needed. One recent application of attosecond laser pulses is time resolved visualization of tunnel ionization in atoms applied to high electromagnetic fields. Here, Ne atom electrons are excited by an extreme ultraviolet attosecond laser pulse. After a while, a few cycles nearly infrared femtosecond laser pulse is applied to the atom causing tunnel ionization. The ion yield distribution can be measured as function of the delay time between excitation and ionization and so deliver insight to the time resolved mechanisms.

  6. Formation of nanograting in fused silica by temporally delayed femtosecond double-pulse irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Haodong; Song, Juan; Li, Qin; Zeng, Xianglong; Dai, Ye

    2018-04-01

    A 1 kHz femtosecond double-pulse sequence irradiation is used to study the temporal evolution of nanograting in fused silica by controlling the delay times and polarization combinations of two independent beams from a Mach–Zehnder interferometer. A lateral laser-scan experiment with speed at 5 µm s‑1 and each pulse energy of 1 µJ is firstly performed with the delay time from sub-picosecond to 10 ps, and then the written nanostructures are systematically studied under a cross-polarized microscope because the intensity of birefringence signal nearly corresponds to optical retardance and development level of the induced nanograting. The trend shows that the induced nanogratings can continue developing with a decrease of delay time in the case of the linear polarization pulse arriving before. In another vertical laser-scan experiment at the same speed and pulse energy, the morphologies of nanogratings embedded in the lines are characterized by scanning electron microscope after mechanical polishing and chemical etching. The self-organized patterns have a commonly spatial period of 200–300 nm and the orientation is always perpendicular to the polarization of the first laser pulse, and the second pulse in each sequence seems to promote the as-formed nanograting developing further even if the polarized direction is different from the previous pulse. These new findings verify again that a localized memory effect can make positive feedback to reinforce the patterned nanostripes. In that process, the impact ionization from the seed electrons left by the first pulse excitation and the photoionization of self-trapped excitons with lower ionization threshold results in an increase of the re-excited carriers during the second pulse irradiation and the subsequent development of the as-formed nanograting. Our result provides further proofs for understanding the physical mechanism of nanograting strongly connection with the interplay on multiple ionization channels.

  7. Diagnostic Delay Is Associated with a Greater Risk of Early Surgery in a French Cohort of Crohn's Disease Patients.

    PubMed

    Nahon, Stéphane; Lahmek, Pierre; Paupard, Thierry; Lesgourgues, Bruno; Chaussade, Stanislas; Peyrin-Biroulet, Laurent; Abitbol, Vered

    2016-11-01

    To investigate whether a diagnostic delay is associated with a poor outcome in Crohn's disease (CD). Medical and socioeconomic characteristics as well as medications and need for surgery of consecutive CD adults patients followed in three referral centers were prospectively recorded using an electronic database (Focus_MICI ® ). A long diagnostic delay was defined by the upper quartile. We compared patients with long diagnostic delay to those with earlier diagnosis regarding the time to: (1) first intestinal surgery, (2) first use of immunosuppressants (IMSs), and (3) first use of anti-tumor necrosis factor (anti-TNF) therapy using the Kaplan-Meier test and the log-rank test. A total of 497 patients with CD (53.6 % women) were analyzed. Median diagnostic delay was 5 months (IQR 25-75 %: 2-13 months). Median follow-up was 9 years (IQR 4-16.2), and 148 (29.8 %) patients had major surgery. There were no significant differences between patients with late and early diagnosis regarding age at diagnosis, disease phenotype, need for IMS therapy, and need for anti-TNF therapy. Time to first major surgery was shorter in patients with late diagnosis (p = 0.05). In this large multicenter prospective cohort of French CD patients, a long diagnostic delay (>13 months) increased the risk of early surgery. No associated factors could be identified in this study.

  8. On the impact of fiber-delay-lines (FDL) in an all-optical network (AON) bottleneck without wavelength conversion

    NASA Astrophysics Data System (ADS)

    Argibay-Losada, Pablo Jesus; Sahin, Gokhan

    2014-08-01

    Random access memories (RAM) are fundamental in conventional electronic switches and routers to manage short-term congestion and to decrease data loss probabilities. Switches in all-optical networks (AONs), however, do not have access to optical RAM, and therefore are prone to much higher loss levels than their electronic counterparts. Fiber-delay-lines (FDLs), able to delay an optical data packet a fixed amount of time, have been proposed in the literature as a means to alleviate those high loss levels. However, they are extremely bulky to manage, so their usage introduces a trade-off between practicality and performance in the design and operation of the AON. In this paper we study the influence that FDLs have in the performance of flows crossing an all-optical switch that acts as their bottleneck. We show how extremely low numbers of FDLs (e.g., 1 or 2) can help in reducing losses by several orders of magnitude in several illustrative scenarios with high aggregation levels. Our results therefore suggest that FDLs can be a practical means of dealing with congestion in AONs in the absence of optical RAM buffers or of suitable data interchange protocols specifically designed for AONs.

  9. Robust Real-Time Wide-Area Differential GPS Navigation

    NASA Technical Reports Server (NTRS)

    Yunck, Thomas P. (Inventor); Bertiger, William I. (Inventor); Lichten, Stephen M. (Inventor); Mannucci, Anthony J. (Inventor); Muellerschoen, Ronald J. (Inventor); Wu, Sien-Chong (Inventor)

    1998-01-01

    The present invention provides a method and a device for providing superior differential GPS positioning data. The system includes a group of GPS receiving ground stations covering a wide area of the Earth's surface. Unlike other differential GPS systems wherein the known position of each ground station is used to geometrically compute an ephemeris for each GPS satellite. the present system utilizes real-time computation of satellite orbits based on GPS data received from fixed ground stations through a Kalman-type filter/smoother whose output adjusts a real-time orbital model. ne orbital model produces and outputs orbital corrections allowing satellite ephemerides to be known with considerable greater accuracy than from die GPS system broadcasts. The modeled orbits are propagated ahead in time and differenced with actual pseudorange data to compute clock offsets at rapid intervals to compensate for SA clock dither. The orbital and dock calculations are based on dual frequency GPS data which allow computation of estimated signal delay at each ionospheric point. These delay data are used in real-time to construct and update an ionospheric shell map of total electron content which is output as part of the orbital correction data. thereby allowing single frequency users to estimate ionospheric delay with an accuracy approaching that of dual frequency users.

  10. Effects of Using an Ipod App to Manage Recreation Tasks

    ERIC Educational Resources Information Center

    Uphold, Nicole M.; Douglas, Karen H.; Loseke, Dannell L.

    2016-01-01

    A withdrawal design study evaluated the effectiveness of using constant time delay to teach six adults with a developmental disability to program and use an iPod touch® as an electronic photographic activity schedule (ePAS). The ePAS, created with the First Then Visual Schedule app, consisted of photographs of different exercises to complete…

  11. Impact of Smart Board Technology: An Investigation of Sight Word Reading and Observational Learning

    ERIC Educational Resources Information Center

    Mechling, Linda C.; Gast, David L.; Krupa, Kristin

    2007-01-01

    The effects of SMART Board technology, an interactive electronic whiteboard, and a 3s constant time delay (CTD) procedure was evaluated for teaching sight word reading to students with moderate intellectual disabilties within a small group arrangment. A multiple probe design across three word sets and replicated with three students was used to…

  12. Wavepacket dynamics of a Rydberg atom monitored by a pair of time-delayed laser pulses

    NASA Astrophysics Data System (ADS)

    Xin, PeiPei; Cheng, Hong; Zhang, ShanShan; Wang, HanMu; Liu, HongPing

    2018-02-01

    We have investigated the Rydberg state population of an argon atom by an intense laser pulse and its wavepacket dynamics monitored by another successive laser pulse in the tunneling regime. A wavepacket comprising a superposition of close high-lying Rydberg states is irradiated by a multicycle laser pulse, where the sub-wave components in the wavepacket have fixed relative phases. A time-delayed second laser pulse is employed to apply on the excited Rydberg atom. If the time is properly chosen, one of the sub-wave components will be guided towards the ionization area while the rest remains intact. By means of this pump-probe technique, we could control and monitor the Rydberg wavepacket dynamics and reveal some interesting phenomenon such as the survival rate of individual Rydberg states related to the classical orbital period of electron.

  13. Imaging the Ultrafast Photoelectron Transfer Process in Alizarin-TiO2.

    PubMed

    Gomez, Tatiana; Hermann, Gunter; Zarate, Ximena; Pérez-Torres, Jhon Fredy; Tremblay, Jean Christophe

    2015-07-30

    In this work, we adopt a quantum mechanical approach based on time-dependent density functional theory (TDDFT) to study the optical and electronic properties of alizarin supported on TiO2 nano-crystallites, as a prototypical dye-sensitized solar cell. To ensure proper alignment of the donor (alizarin) and acceptor (TiO2 nano-crystallite) levels, static optical excitation spectra are simulated using time-dependent density functional theory in response. The ultrafast photoelectron transfer from the dye to the cluster is simulated using an explicitly time-dependent, one-electron TDDFT ansatz. The model considers the δ-pulse excitation of a single active electron localized in the dye to the complete set of energetically accessible, delocalized molecular orbitals of the dye/nano-crystallite complex. A set of quantum mechanical tools derived from the transition electronic flux density is introduced to visualize and analyze the process in real time. The evolution of the created wave packet subject to absorbing boundary conditions at the borders of the cluster reveal that, while the electrons of the aromatic rings of alizarin are heavily involved in an ultrafast charge redistribution between the carbonyl groups of the dye molecule, they do not contribute positively to the electron injection and, overall, they delay the process.

  14. Reduced γ-γ time walk to below 50 ps using the multiplexed-start and multiplexed-stop fast-timing technique with LaBr3(Ce) detectors

    NASA Astrophysics Data System (ADS)

    Régis, J.-M.; Saed-Samii, N.; Rudigier, M.; Ansari, S.; Dannhoff, M.; Esmaylzadeh, A.; Fransen, C.; Gerst, R.-B.; Jolie, J.; Karayonchev, V.; Müller-Gatermann, C.; Stegemann, S.

    2016-07-01

    The electronic γ-γ fast-timing technique using arrays consisting of many LaBr3(Ce) detectors is a powerful method to determine lifetimes of nuclear excited states with a lower limit of about 5 ps. This method requires the determination of the energy-dependent time walk of the zero time which is represented by the centroid of a prompt γ-γ time distribution. The full-energy peak versus full-energy peak prompt response difference which represents the linearly combined mean γ-γ time walk of a fast-timing array consisting of 8 LaBr3(Ce) detectors was measured using a standard 152Eu γ-ray source for the energy region of 40-1408 keV. The data were acquired using a "multiplexed-start and multiplexed-stop" analogue electronics circuitry and analysed by employing the generalized centroid difference method. Concerning the cylindrical 1.5 in.×1.5 in. LaBr3(Ce) crystals which are coupled to the Hamamatsu R9779 photomultiplier tubes, the best fast-timing array time resolution of 202(3) ps is obtained for the two prompt γ lines of 60Co by using the leading-edge timing principle. When using the zero-crossover timing principle the time resolution is degraded by up to 30%, dependent on the energy and the shaping delay time of the constant fraction discriminator model Ortec 935. The smallest γ-γ time walk to below 50 ps is obtained by using a shaping delay time of about 17 ns and an optimum "time-walk adjustment" needed for detector output pulses with amplitudes smaller than 400 mV.

  15. Practical method and device for enhancing pulse contrast ratio for lasers and electron accelerators

    DOEpatents

    Zhang, Shukui; Wilson, Guy

    2014-09-23

    An apparatus and method for enhancing pulse contrast ratios for drive lasers and electron accelerators. The invention comprises a mechanical dual-shutter system wherein the shutters are placed sequentially in series in a laser beam path. Each shutter of the dual shutter system has an individually operated trigger for opening and closing the shutter. As the triggers are operated individually, the delay between opening and closing first shutter and opening and closing the second shutter is variable providing for variable differential time windows and enhancement of pulse contrast ratio.

  16. Multi-objective optimization of MOSFETs channel widths and supply voltage in the proposed dual edge-triggered static D flip-flop with minimum average power and delay by using fuzzy non-dominated sorting genetic algorithm-II.

    PubMed

    Keivanian, Farshid; Mehrshad, Nasser; Bijari, Abolfazl

    2016-01-01

    D Flip-Flop as a digital circuit can be used as a timing element in many sophisticated circuits. Therefore the optimum performance with the lowest power consumption and acceptable delay time will be critical issue in electronics circuits. The newly proposed Dual-Edge Triggered Static D Flip-Flop circuit layout is defined as a multi-objective optimization problem. For this, an optimum fuzzy inference system with fuzzy rules is proposed to enhance the performance and convergence of non-dominated sorting Genetic Algorithm-II by adaptive control of the exploration and exploitation parameters. By using proposed Fuzzy NSGA-II algorithm, the more optimum values for MOSFET channel widths and power supply are discovered in search space than ordinary NSGA types. What is more, the design parameters involving NMOS and PMOS channel widths and power supply voltage and the performance parameters including average power consumption and propagation delay time are linked. To do this, the required mathematical backgrounds are presented in this study. The optimum values for the design parameters of MOSFETs channel widths and power supply are discovered. Based on them the power delay product quantity (PDP) is 6.32 PJ at 125 MHz Clock Frequency, L = 0.18 µm, and T = 27 °C.

  17. Dielectric surface discharges - Effects of combined low-energy and high-energy incident electrons

    NASA Technical Reports Server (NTRS)

    Balmain, K. G.; Hirt, W.

    1983-01-01

    Dielectric surface discharges affected by the addition of high energy electrons at 5 pA/sq cm to a primary 20 keV, 10 nA/sq cm electron beam with the high energy broad spectrum particles coming from the beta decay of Strontium 90 are studied. Kapton exhibits significantly increased discharge strength, increased waiting time between discharges, and a decreased number of discharges per specimen before discharge cessation. Mylar exhibits similar but less pronounced effects, while Teflon is relatively unaffected. With Kapton and Mylar, the high energy electrons act in some way to delay the instant of discharge ignition so that more charge can be accumulated and hence released during discharge. Previously announced in STAR as N82-14222

  18. Wait for It: Post-supernova Winds Driven by Delayed Radioactive Decays

    NASA Astrophysics Data System (ADS)

    Shen, Ken J.; Schwab, Josiah

    2017-01-01

    In most astrophysical situations, the radioactive decay of {}56{Ni} to {}56{Co} occurs via electron capture with a fixed half-life of 6.1 days. However, this decay rate is significantly slowed when the nuclei are fully ionized because K-shell electrons are unavailable for capture. In this paper, we explore the effect of these delayed decays on white dwarfs (WDs) that may survive Type Ia and Type Iax supernovae (SNe Ia and SNe Iax). The energy released by the delayed radioactive decays of {}56{Ni} and {}56{Co} drives a persistent wind from the surviving WD’s surface that contributes to the late-time appearance of these SNe after emission from the bulk of the SN ejecta has faded. We use the stellar evolution code MESA to calculate the hydrodynamic evolution and resulting light curves of these winds. Our post-SN Ia models conflict with late-time observations of SN 2011fe, but uncertainties in our initial conditions prevent us from ruling out the existence of surviving WD donors. Much better agreement with observations is achieved with our models of post-SN Iax bound remnants, providing evidence that these explosions are due to deflagrations in accreting WDs that fail to completely unbind the WDs. Future radiative transfer calculations and wind models utilizing simulations of explosions for more accurate initial conditions will extend our study of radioactively powered winds from post-SN surviving WDs and enable their use as powerful discriminants among the various SN Ia and SN Iax progenitor scenarios.

  19. Workflow and Electronic Health Records in Small Medical Practices

    PubMed Central

    Ramaiah, Mala; Subrahmanian, Eswaran; Sriram, Ram D; Lide, Bettijoyce B

    2012-01-01

    This paper analyzes the workflow and implementation of electronic health record (EHR) systems across different functions in small physician offices. We characterize the differences in the offices based on the levels of computerization in terms of workflow, sources of time delay, and barriers to using EHR systems to support the entire workflow. The study was based on a combination of questionnaires, interviews, in situ observations, and data collection efforts. This study was not intended to be a full-scale time-and-motion study with precise measurements but was intended to provide an overview of the potential sources of delays while performing office tasks. The study follows an interpretive model of case studies rather than a large-sample statistical survey of practices. To identify time-consuming tasks, workflow maps were created based on the aggregated data from the offices. The results from the study show that specialty physicians are more favorable toward adopting EHR systems than primary care physicians are. The barriers to adoption of EHR systems by primary care physicians can be attributed to the complex workflows that exist in primary care physician offices, leading to nonstandardized workflow structures and practices. Also, primary care physicians would benefit more from EHR systems if the systems could interact with external entities. PMID:22737096

  20. Ultrafast momentum imaging of pseudospin-flip excitations in graphene

    NASA Astrophysics Data System (ADS)

    Aeschlimann, S.; Krause, R.; Chávez-Cervantes, M.; Bromberger, H.; Jago, R.; Malić, E.; Al-Temimy, A.; Coletti, C.; Cavalleri, A.; Gierz, I.

    2017-07-01

    The pseudospin of Dirac electrons in graphene manifests itself in a peculiar momentum anisotropy for photoexcited electron-hole pairs. These interband excitations are in fact forbidden along the direction of the light polarization and are maximum perpendicular to it. Here, we use time- and angle-resolved photoemission spectroscopy to investigate the resulting unconventional hot carrier dynamics, sampling carrier distributions as a function of energy, and in-plane momentum. We first show that the rapidly-established quasithermal electron distribution initially exhibits an azimuth-dependent temperature, consistent with relaxation through collinear electron-electron scattering. Azimuthal thermalization is found to occur only at longer time delays, at a rate that depends on the substrate and the static doping level. Further, we observe pronounced differences in the electron and hole dynamics in n -doped samples. By simulating the Coulomb- and phonon-mediated carrier dynamics we are able to disentangle the influence of excitation fluence, screening, and doping, and develop a microscopic picture of the carrier dynamics in photoexcited graphene. Our results clarify new aspects of hot carrier dynamics that are unique to Dirac materials, with relevance for photocontrol experiments and optoelectronic device applications.

  1. Delays before Diagnosis and Initiation of Treatment in Patients Presenting to Mental Health Services with Bipolar Disorder

    PubMed Central

    Patel, Rashmi; Shetty, Hitesh; Jackson, Richard; Broadbent, Matthew; Stewart, Robert; Boydell, Jane; McGuire, Philip; Taylor, Matthew

    2015-01-01

    Background Bipolar disorder is a significant cause of morbidity and mortality. Although existing treatments are effective, there is often a substantial delay before diagnosis and treatment initiation. We sought to investigate factors associated with the delay before diagnosis of bipolar disorder and the onset of treatment in secondary mental healthcare. Method Retrospective cohort study using anonymised electronic mental health record data from the South London and Maudsley NHS Foundation Trust (SLaM) Biomedical Research Centre (BRC) Case Register on 1364 adults diagnosed with bipolar disorder between 2007 and 2012. The following predictor variables were analysed in a multivariable Cox regression analysis: age, gender, ethnicity, compulsory admission to hospital under the UK Mental Health Act, marital status and other diagnoses prior to bipolar disorder. The outcomes were time to recorded diagnosis from first presentation to specialist mental health services (the diagnostic delay), and time to the start of appropriate therapy (treatment delay). Results The median diagnostic delay was 62 days (interquartile range: 17–243) and median treatment delay was 31 days (4–122). Compulsory hospital admission was associated with a significant reduction in both diagnostic delay (hazard ratio 2.58, 95% CI 2.18–3.06) and treatment delay (4.40, 3.63–5.62). Prior diagnoses of other psychiatric disorders were associated with increased diagnostic delay, particularly alcohol (0.48, 0.33–0.41) and substance misuse disorders (0.44, 0.31–0.61). Prior diagnosis of schizophrenia and psychotic depression were associated with reduced treatment delay. Conclusions Some individuals experience a significant delay in diagnosis and treatment of bipolar disorder after initiation of specialist mental healthcare, particularly those who have prior diagnoses of alcohol and substance misuse disorders. These findings highlight a need for further study on strategies to better identify underlying symptoms and offer appropriate treatment sooner in order to facilitate improved clinical outcomes, such as developing specialist early intervention services to identify and treat people with bipolar disorder. PMID:25992560

  2. Impacts of Carrier Transport and Deep Level Defects on Delayed Cathodoluminescence in Droop-Mitigating InGaN/GaN LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhibo; Singh, Akshay; Chesin, Jordan

    Prevalent droop mitigation strategies in InGaN-based LEDs require structural and/or compositional changes in the active region but are accompanied by a detrimental reduction in external quantum efficiency (EQE) due to increased Shockley-Read-Hall recombination. Understanding the optoelectronic impacts of structural modifications in InGaN/GaN quantum wells (QW) remains critical for emerging high-power LEDs. In this work, we use a combination of electron microscopy tools along with standard electrical characterization to investigate a wide range of low-droop InGaN/GaN QW designs. We find that chip-scale EQE is uncorrelated with extended well-width fluctuations observed in scanning transmission electron microscopy. Further, we observe delayed cathodoluminescence (CL)more » response from designs in which calculated band profiles suggest facile carrier escape from individual QWs. Samples with the slowest CL responses also exhibit the lowest EQEs and highest QW defect densities in deep level optical spectroscopy. We propose a model in which the electron beam (i) passivates deep level defect states and (ii) drives charge carrier accumulation and subsequent reduction of the built-in field across the multi-QW active region, resulting in delayed radiative recombination. Finally, we correlate CL rise dynamics with capacitance-voltage measurements and show that certain early-time components of the CL dynamics reflect the open circuit carrier population within one or more QWs.« less

  3. Zero-lag synchronization in coupled time-delayed piecewise linear electronic circuits

    NASA Astrophysics Data System (ADS)

    Suresh, R.; Srinivasan, K.; Senthilkumar, D. V.; Raja Mohamed, I.; Murali, K.; Lakshmanan, M.; Kurths, J.

    2013-07-01

    We investigate and report an experimental confirmation of zero-lag synchronization (ZLS) in a system of three coupled time-delayed piecewise linear electronic circuits via dynamical relaying with different coupling configurations, namely mutual and subsystem coupling configurations. We have observed that when there is a feedback between the central unit (relay unit) and at least one of the outer units, ZLS occurs in the two outer units whereas the central and outer units exhibit inverse phase synchronization (IPS). We find that in the case of mutual coupling configuration ZLS occurs both in periodic and hyperchaotic regimes, while in the subsystem coupling configuration it occurs only in the hyperchaotic regime. Snapshots of the time evolution of outer circuits as observed from the oscilloscope confirm the occurrence of ZLS experimentally. The quality of ZLS is numerically verified by correlation coefficient and similarity function measures. Further, the transition to ZLS is verified from the changes in the largest Lyapunov exponents and the correlation coefficient as a function of the coupling strength. IPS is experimentally confirmed using time series plots and also can be visualized using the concept of localized sets which are also corroborated by numerical simulations. In addition, we have calculated the correlation of probability of recurrence to quantify the phase coherence. We have also analytically derived a sufficient condition for the stability of ZLS using the Krasovskii-Lyapunov theory.

  4. Distance and Cable Length Measurement System

    PubMed Central

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  5. Time-Space Position of Warm Dense Matter in Laser Plasma Interaction Process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2006-09-25

    Laser plasma interaction experiments have been perform performed using an fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. Electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were cautiously compared with relevant 1D numerical simulation. Finally these results provide a first experience of searching for the time-space position of the so-called warm dense plasma in an ultra fast laser target interaction process. These experiments aim to prepare nearmore » solid-density plasmas for Thomson scattering experiments using the short wavelength free-electron laser FLASH, DESY Hamburg.« less

  6. Relativistic Heliospheric Electrons - Source, Energization and Magnetic Topology

    NASA Astrophysics Data System (ADS)

    Roth, Ilan

    2010-05-01

    Relativistic Solar Electrons are observed in conjunction with flares or coronal mass ejections (CMEs), however their origin, energization and the underlying topology seem elusive. The existence of non-thermal electrons in the solar atmosphere and along the heliospheric field lines is deduced through emission of electromagnetic waves and via direct in situ measurements. Magnetic reconnection at the flare sites may result in short term fluxes of energetic electrons, however it cannot explain the long-term relativistic fluxes as observed at 1 AU. In contrast to ions, electrons are not observed with MeV energies at the propagating CME shock. Their spectral shapes and the relative timing with respect to imaging and spectrographic observations may identify potential acceleration topology and processes controlling the formation of the (delayed with respect to a timing of a flare or initiation of CME) relativistic electrons. It is conjectured that the acceleration occurs along the stretched, closed coronal field lines, when an anisotropic seed population of low-energy electrons is injected in conjunction with the high frequency coronal radio bursts behind the large CME, as recorded by radioheliographs. This topology allows sufficient time for incubation of the accelerated electrons while the energization proceeds as a bootstrap process due to resonant interaction with oblique whistler waves, which are excited by the seed electrons. The flare serves mainly as a time reference for the electromagnetic emissions, while the CME subsequently opens an access for the relativistic electrons to the interplanetary medium. Power-laws of the energetic electron distributions are shown to be due to statistical interaction allowing discerning of the processes, which result in the observed non-Gaussian distributions, as well as time scales of their evolution.

  7. Performance evaluation of ionospheric time delay forecasting models using GPS observations at a low-latitude station

    NASA Astrophysics Data System (ADS)

    Sivavaraprasad, G.; Venkata Ratnam, D.

    2017-07-01

    Ionospheric delay is one of the major atmospheric effects on the performance of satellite-based radio navigation systems. It limits the accuracy and availability of Global Positioning System (GPS) measurements, related to critical societal and safety applications. The temporal and spatial gradients of ionospheric total electron content (TEC) are driven by several unknown priori geophysical conditions and solar-terrestrial phenomena. Thereby, the prediction of ionospheric delay is challenging especially over Indian sub-continent. Therefore, an appropriate short/long-term ionospheric delay forecasting model is necessary. Hence, the intent of this paper is to forecast ionospheric delays by considering day to day, monthly and seasonal ionospheric TEC variations. GPS-TEC data (January 2013-December 2013) is extracted from a multi frequency GPS receiver established at K L University, Vaddeswaram, Guntur station (geographic: 16.37°N, 80.37°E; geomagnetic: 7.44°N, 153.75°E), India. An evaluation, in terms of forecasting capabilities, of three ionospheric time delay models - an Auto Regressive Moving Average (ARMA) model, Auto Regressive Integrated Moving Average (ARIMA) model, and a Holt-Winter's model is presented. The performances of these models are evaluated through error measurement analysis during both geomagnetic quiet and disturbed days. It is found that, ARMA model is effectively forecasting the ionospheric delay with an accuracy of 82-94%, which is 10% more superior to ARIMA and Holt-Winter's models. Moreover, the modeled VTEC derived from International Reference Ionosphere, IRI (IRI-2012) model and new global TEC model, Neustrelitz TEC Model (NTCM-GL) have compared with forecasted VTEC values of ARMA, ARIMA and Holt-Winter's models during geomagnetic quiet days. The forecast results are indicating that ARMA model would be useful to set up an early warning system for ionospheric disturbances at low latitude regions.

  8. Attosecond time-resolved streaked photoemission from Mg-covered W(110) surfaces

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Thumm, Uwe

    2015-05-01

    We formulate a quantum-mechanical model for infrared-streaked photoelectron emission by an ultrashort extreme ultraviolet pulse from adsorbate-covered metal surfaces. Applying this numerical model to ultrathin Mg adsorbates on W(110) substrates, we analyze streaked photoelectron spectra and attosecond streaking time delays for photoemission from the Mg/W(110) conduction band and Mg(2p) and W(4f) core levels. Based on this analysis, we propose the use of attosecond streaking spectroscopy on adsorbate-covered surfaces with variable adsorbate thickness as a method for investigating (a) electron transport in condensed-matter systems and (b) metal-adsorbate-interface properties at subatomic length and time scales. Our calculated streaked photoemission spectra and time delays agree with recently obtained experimental data. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Grant No. DE-FG02-86ER13491 and NSF Grant PHY-1068752.

  9. Effects of a Story-Mapping Procedure Using the iPad on the Comprehension of Narrative Texts by Students with Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Browder, Diane M.; Root, Jenny R.; Wood, Leah; Allison, Caryn

    2017-01-01

    This study investigated the effects of a modified system of least prompts and an electronic story-mapping intervention for elementary students with autism spectrum disorder. Participants were first taught to identify story element definitions using constant time delay. Participants then listened to age-appropriate narrative texts with a…

  10. Propagation of Dipolarization Signatures Observed by the Van Allen Probes in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Ohtani, S.; Motoba, T.; Gkioulidou, M.; Takahashi, K.; Kletzing, C.

    2017-12-01

    Dipolarization, the change of the local magnetic field from a stretched to a more dipolar configuration, is one of the most fundamental processes of magnetospheric physics. It is especially critical for the dynamics of the inner magnetosphere. The associated electric field accelerates ions and electrons and transports them closer to Earth. Such injected ions intensify the ring current, and electrons constitute the seed population of the radiation belt. Those ions and electrons may also excite various waves that play important roles in the enhancement and loss of the radiation belt electrons. Despite such critical consequences, the general characteristics of dipolarization in the inner magnetosphere still remain to be understood. The Van Allen Probes mission, which consists of two probes that orbit through the equatorial region of the inner magnetosphere, provides an ideal opportunity to examine dipolarization signatures in the core of the ring current. In the present study we investigate the spatial expansion of the dipolarization region by examining the correlation and time delay of dipolarization signatures observed by the two probes. Whereas in general it requires three-point measurements to deduce the propagation of a signal on a certain plane, we statically examined the observed time delays and found that dipolarization signatures tend to propagate radially inward as well as away from midnight. In this paper we address the propagation of dipolarization signatures quantitatively and compare with the propagation velocities reported previously based on observations made farther away from Earth. We also discuss how often and under what conditions the dipolarization region expands.

  11. US-TEC: A new data assimilation product from the Space Environment Center characterizing the ionospheric total electron content using real-time GPS data

    NASA Astrophysics Data System (ADS)

    Fuller-Rowell, Tim; Araujo-Pradere, Eduardo; Minter, Cliff; Codrescu, Mihail; Spencer, Paul; Robertson, Doug; Jacobson, Abram R.

    2006-12-01

    The potential of data assimilation for operational numerical weather forecasting has been appreciated for many years. For space weather it is a new path that we are just beginning to explore. With the emergence of satellite constellations and the networks of ground-based observations, sufficient data sources are now available to make the application of data assimilation techniques a viable option. The first space weather product at Space Environment Center (SEC) utilizing data assimilation techniques, US-TEC, was launched as a test operational product in November 2004. US-TEC characterizes the ionospheric total electron content (TEC) over the continental United States (CONUS) every 15 min with about a 15-min latency. US-TEC is based on a Kalman filter data assimilation scheme driven by a ground-based network of real-time GPS stations. The product includes a map of the vertical TEC, an estimate of the uncertainty in the map, and the departure of the TEC from a 10-day average at that particular universal time. In addition, data files are provided for vertical TEC and the line-of-sight electron content to all GPS satellites in view over the CONUS at that time. The information can be used to improve single-frequency GPS positioning by providing more accurate corrections for the ionospheric signal delay, or it can be used to initialize rapid integer ambiguity resolution schemes for dual-frequency GPS systems. Validation of US-TEC indicates an accuracy of the line-of-sight electron content of between 2 and 3 TEC units (1 TECU = 1016 el m-2), equivalent to less than 50 cm signal delay at L1 frequencies, which promises value for GPS users. This is the first step along a path that will likely lead to major improvement in space weather forecasting, paralleling the advances achieved in meteorological weather forecasting.

  12. The impact of using electronic patient records on practices of reading and writing.

    PubMed

    Laitinen, Heleena; Kaunonen, Marja; Åstedt-Kurki, Paivi

    2014-12-01

    The aim of this study was to investigate the use of electronic patient records in daily practice. In four wards of a large hospital district in Finland, N = 43 patients' care and activities were observed and analysed in terms of the Grounded Theory method. The findings revealed that using electronic patient records created a particular process of writing and reading. Wireless technology enabled simultaneous patient involvement and point-of-care documentation, additionally supporting real-time reading. Remote and retrospective documentation was distant in terms of both space and time. The remoteness caused double documentation, reduced accuracy and less-efficient use of time. 'Non-reading' practices were witnessed in retrospective reading, causing delays in patient care and increase in workload. Similarly, if documentation was insufficient or non-existent, the consequences were found to be detrimental to the patients. The use of an electronic patient record system has a significant impact on patient care. Therefore, it is crucial to develop wireless technology and interdisciplinary collaboration in order to improve and support high-quality patient care. © The Author(s) 2013.

  13. Probing dynamics in colloidal crystals with pump-probe experiments at LCLS: Methodology and analysis

    DOE PAGES

    Mukharamova, Nastasia; Lazarev, Sergey; Meijer, Janne -Mieke; ...

    2017-05-19

    We present results of the studies of dynamics in colloidal crystals performed by pump-probe experiments using an X-ray free-electron laser (XFEL). Colloidal crystals were pumped with an infrared laser at a wavelength of 800 nm with varying power and probed by XFEL pulses at an energy of 8 keV with a time delay up to 1000 ps. The positions of the Bragg peaks, and their radial and azimuthal widths were analyzed as a function of the time delay. The spectral analysis of the data did not reveal significant enhancement of frequencies expected in this experiment. As a result, this allowedmore » us to conclude that the amplitude of vibrational modes excited in colloidal crystals was less than the systematic error caused by the noise level.« less

  14. Apparatus for simultaneously disreefing a centrally reefed clustered parachute system

    DOEpatents

    Johnson, Donald W.

    1988-01-01

    A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing.

  15. Apparatus for simultaneously disreefing a centrally reefed clustered parachute system

    DOEpatents

    Johnson, D.W.

    1988-06-21

    A single multi-line cutter is connected to each of a cluster of parachutes by a separate short tether line that holds the parachutes, initially reefed by closed loop reefing lines, close to one another. The closed loop reefing lines and tether lines, one from each parachute, are disposed within the cutter to be simultaneously cut by its actuation when a central line attached between the payload and the cutter is stretched upon deployment of the cluster. A pyrotechnic or electronic time delay may be included in the cutter to delay the actual simultaneous cutting of all lines until the clustered parachutes attain a measure of stability prior to being disreefed. A second set of reefing lines and second tether lines may be provided for each parachute, to enable a two-stage, separately timed, step-by-step disreefing. 13 figs.

  16. Energy relaxation of intense laser pulse-produced plasmas

    NASA Astrophysics Data System (ADS)

    Shihab, M.; Abou-Koura, G. H.; El-Siragy, N. M.

    2016-05-01

    We describe a collisional radiative model (CRE) of homogeneously expanded nickel plasmas in vacuum. The CRE model is coupled with two separate electron and ion temperature magneto-hydrodynamic equations. On the output, the model provides the temporal variation of the electron temperature, ion temperature, and average charge state. We demonstrate the effect of three-body recombination ({∝}N_e T^{-9/2}_e) on plasma parameters, as it changes the time dependence of electron temperature from t^{-2} to t^{-1} and exhibits a pronounced effect leading to a freezing feature in the average charge state. In addition, the effect of the three-body recombination on the warm up of ions and delaying the equilibration is addressed.

  17. The Relations Between Sleep, Personality, Behavioral Problems, and School Performance in Adolescents.

    PubMed

    Schmidt, Ralph E; Van der Linden, Martial

    2015-06-01

    According to recent meta-analyses, adolescents across different countries and cultures do not get the recommended amount of sleep. Extracurricular activities, part-time jobs, and use of electronic devices in the evening delay bedtime in adolescents. Early school start times also shorten the time for sleep. Insufficient sleep in adolescents has been associated with weakened emotional-behavioral regulation and poor academic achievement. Multicomponent intervention programs have been developed on the basis of cognitive-behavioral therapy for insomnia to improve sleep in youth. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Low-coherence interferometric tip-clearance probe

    NASA Astrophysics Data System (ADS)

    Kempe, Andreas; Schlamp, Stefan; Rösgen, Thomas; Haffner, Ken

    2003-08-01

    We propose an all-fiber, self-calibrating, economical probe that is capable of near-real-time, single-port, simultaneous blade-to-blade tip-clearance measurements with submillimeter accuracy (typically <100 μm, absolute) in the first stages of a gas turbine. Our probe relies on the interference between backreflected light from the blade tips during the 1-μs blade passage time and a frequency-shifted reference with variable time delay, making use of a low-coherence light source. A single optical fiber of arbitrary length connects the self-contained optics and electronics to the turbine.

  19. JPL/USC GAIM: Using COSMIC Occultations in a Real-Time Global Ionospheric Data Assimilation Model

    NASA Astrophysics Data System (ADS)

    Mandrake, L.; Komjathy, A.; Wilson, B. D.; Pi, X.; Hajj, G.; Iijima, B.; Wang, C.

    2006-12-01

    We are in the midst of a revolution in ionospheric remote sensing driven by the illuminating powers of ground and space-based GPS receivers, new UV remote sensing satellites, and the advent of data assimilation techniques for space weather. In particular, the COSMIC 6-satellite constellation launched in April 2006. COSMIC will provide unprecedented global coverage of GPS occultations (~5000 per day), each of which yields electron density information with unprecedented ~1 km vertical resolution. Calibrated measurements of ionospheric delay (total electron content or TEC) suitable for input into assimilation models will be available in near real-time (NRT) from the COSMIC project with a latency of 30 to 120 minutes. Similarly, NRT TEC data are available from two worldwide NRT networks of ground GPS receivers (~75 5-minute sites and ~125 more hourly sites, operated by JPL and others). The combined NRT ground and space-based GPS datasets provide a new opportunity to more accurately specify the 3-dimensional ionospheric density with a time lag of only 15 to 120 minutes. With the addition of the vertically-resolved NRT occultation data, the retrieved profile shapes will model the hour-to-hour ionospheric "weather" much more accurately. The University of Southern California (USC) and the Jet Propulsion Laboratory (JPL) have jointly developed a real-time Global Assimilative Ionospheric Model (GAIM) to monitor space weather, study storm effects, and provide ionospheric calibration for DoD customers and NASA flight projects. JPL/USC GAIM is a physics- based 3D data assimilation model that uses both 4DVAR and Kalman filter techniques to solve for the ion & electron density state and key drivers such as equatorial electrodynamics, neutral winds, and production terms. Daily (delayed) GAIM runs can accept as input ground GPS TEC data from 1000+ sites, occultation links from CHAMP, SAC-C, and the COSMIC constellation, UV limb and nadir scans from the TIMED and DMSP satellites, and in situ data from a variety of satellites (DMSP and C/NOFS). RTGAIM ingests multiple data sources in real time, updates the 3D electron density grid every 5 minutes, and solves for improved drivers every 1-2 hours. Since our forward physics model and the adjoint model were expressly designed for data assimilation and computational efficiency, all of this can be accomplished on a single dual-processor Unix workstation. Customers are currently evaluating the accuracy of JPL/USC GAIM "nowcasts" for ray tracing applications and trans-ionospheric path delay calibration. In the talk, we will discuss the expected impact of COSMIC occultation data; show first results for ingest of COSMIC data using the GAIM Kalman filter; present validation of the GAIM electron density grid by comparisons to Abel profiles and independent datasets; describe recent improvements to the JPL/USC GAIM model; and describe our plans for NRT ingest of COSMIC data into RTGAIM.

  20. Dynamics of Re(2,2'-bipyridine)(CO)3Cl MLCT formation and decay after picosecond pulsed X-ray excitation and femtosecond UV excitation.

    PubMed

    Zhao, Liyan; Odaka, Hideho; Ono, Hiroshi; Kajimoto, Shinji; Hatanaka, Koji; Hobley, Jonathan; Fukumura, Hiroshi

    2005-01-01

    The dynamics of Re(2,2'-bipyridine)(CO)3Cl MLCT state formation and decay were determined after femtosecond UV laser excitation and picosecond pulsed X-ray excitation, in an N,N-dimethylformamide (DMF) solution as well as in its solid form. At room temperature, after UV excitation, this MLCT excited state emits both in DMF solution and in the solid form. Transient absorption spectra were measured in solution at various delay times following excitation by a 160 fs, 390 nm laser pulse. There was a prompt absorption increase at around 460 nm occurring within the pump probe convolution (<1 ps), which was assigned to the formation of the 3MLCT state. This transient absorbance was constant over 100 ps. In contrast to the solution state, in the solid state, the emission maximum slightly red-shifts with increasing time after laser excitation. In both solid and solution the emission rises within the system response time. The solid sample exhibited a 1.4 ns emission decay that was not observed for the solution sample. The emission rise from a solid sample after 20 ps pulsed X-ray excitation was significantly slower than the system's time resolution. It is proposed that kinetically energetic electrons are ejected following X-ray induced ionisation, creating ionised tracks in which energetic cations and electrons take time to recombine yielding delayed 3MLCT states that emit.

  1. Developing a point-of-care electronic medical record system for TB/HIV co-infected patients: experiences from Lighthouse Trust, Lilongwe, Malawi.

    PubMed

    Tweya, Hannock; Feldacker, Caryl; Gadabu, Oliver Jintha; Ng'ambi, Wingston; Mumba, Soyapi L; Phiri, Dave; Kamvazina, Luke; Mwakilama, Shawo; Kanyerere, Henry; Keiser, Olivia; Mwafilaso, Johnbosco; Kamba, Chancy; Egger, Matthias; Jahn, Andreas; Simwaka, Bertha; Phiri, Sam

    2016-03-05

    Implementation of user-friendly, real-time, electronic medical records for patient management may lead to improved adherence to clinical guidelines and improved quality of patient care. We detail the systematic, iterative process that implementation partners, Lighthouse clinic and Baobab Health Trust, employed to develop and implement a point-of-care electronic medical records system in an integrated, public clinic in Malawi that serves HIV-infected and tuberculosis (TB) patients. Baobab Health Trust, the system developers, conducted a series of technical and clinical meetings with Lighthouse and Ministry of Health to determine specifications. Multiple pre-testing sessions assessed patient flow, question clarity, information sequencing, and verified compliance to national guidelines. Final components of the TB/HIV electronic medical records system include: patient demographics; anthropometric measurements; laboratory samples and results; HIV testing; WHO clinical staging; TB diagnosis; family planning; clinical review; and drug dispensing. Our experience suggests that an electronic medical records system can improve patient management, enhance integration of TB/HIV services, and improve provider decision-making. However, despite sufficient funding and motivation, several challenges delayed system launch including: expansion of system components to include of HIV testing and counseling services; changes in the national antiretroviral treatment guidelines that required system revision; and low confidence to use the system among new healthcare workers. To ensure a more robust and agile system that met all stakeholder and user needs, our electronic medical records launch was delayed more than a year. Open communication with stakeholders, careful consideration of ongoing provider input, and a well-functioning, backup, paper-based TB registry helped ensure successful implementation and sustainability of the system. Additional, on-site, technical support provided reassurance and swift problem-solving during the extended launch period. Even when system users are closely involved in the design and development of an electronic medical record system, it is critical to allow sufficient time for software development, solicitation of detailed feedback from both users and stakeholders, and iterative system revisions to successfully transition from paper to point-of-care electronic medical records. For those in low-resource settings, electronic medical records for integrated care is a possible and positive innovation.

  2. Real-time estimation of ionospheric delay using GPS measurements

    NASA Astrophysics Data System (ADS)

    Lin, Lao-Sheng

    1997-12-01

    When radio waves such as the GPS signals propagate through the ionosphere, they experience an extra time delay. The ionospheric delay can be eliminated (to the first order) through a linear combination of L1 and L2 observations from dual-frequency GPS receivers. Taking advantage of this dispersive principle, one or more dual- frequency GPS receivers can be used to determine a model of the ionospheric delay across a region of interest and, if implemented in real-time, can support single-frequency GPS positioning and navigation applications. The research objectives of this thesis were: (1) to develop algorithms to obtain accurate absolute Total Electron Content (TEC) estimates from dual-frequency GPS observables, and (2) to develop an algorithm to improve the accuracy of real-time ionosphere modelling. In order to fulfil these objectives, four algorithms have been proposed in this thesis. A 'multi-day multipath template technique' is proposed to mitigate the pseudo-range multipath effects at static GPS reference stations. This technique is based on the assumption that the multipath disturbance at a static station will be constant if the physical environment remains unchanged from day to day. The multipath template, either single-day or multi-day, can be generated from the previous days' GPS data. A 'real-time failure detection and repair algorithm' is proposed to detect and repair the GPS carrier phase 'failures', such as the occurrence of cycle slips. The proposed algorithm uses two procedures: (1) application of a statistical test on the state difference estimated from robust and conventional Kalman filters in order to detect and identify the carrier phase failure, and (2) application of a Kalman filter algorithm to repair the 'identified carrier phase failure'. A 'L1/L2 differential delay estimation algorithm' is proposed to estimate GPS satellite transmitter and receiver L1/L2 differential delays. This algorithm, based on the single-site modelling technique, is able to estimate the sum of the satellite and receiver L1/L2 differential delay for each tracked GPS satellite. A 'UNSW grid-based algorithm' is proposed to improve the accuracy of real-time ionosphere modelling. The proposed algorithm is similar to the conventional grid-based algorithm. However, two modifications were made to the algorithm: (1) an 'exponential function' is adopted as the weighting function, and (2) the 'grid-based ionosphere model' estimated from the previous day is used to predict the ionospheric delay ratios between the grid point and reference points. (Abstract shortened by UMI.)

  3. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators.

    PubMed

    Senthilkumar, D V; Suresh, K; Chandrasekar, V K; Zou, Wei; Dana, Syamal K; Kathamuthu, Thamilmaran; Kurths, Jürgen

    2016-04-01

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of the stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.

  4. Experimental demonstration of revival of oscillations from death in coupled nonlinear oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senthilkumar, D. V., E-mail: skumarusnld@gmail.com; Centre for Nonlinear Science and Engineering, School of Electrical and Electronics Engineering, SASTRA University, Thanjavur 613 401; Suresh, K.

    We experimentally demonstrate that a processing delay, a finite response time, in the coupling can revoke the stability of the stable steady states, thereby facilitating the revival of oscillations in the same parameter space where the coupled oscillators suffered the quenching of oscillation. This phenomenon of reviving of oscillations is demonstrated using two different prototype electronic circuits. Further, the analytical critical curves corroborate that the spread of the parameter space with stable steady state is diminished continuously by increasing the processing delay. Finally, the death state is completely wiped off above a threshold value by switching the stability of themore » stable steady state to retrieve sustained oscillations in the same parameter space. The underlying dynamical mechanism responsible for the decrease in the spread of the stable steady states and the eventual reviving of oscillation as a function of the processing delay is explained using analytical results.« less

  5. Delayed feedback control in quantum transport.

    PubMed

    Emary, Clive

    2013-09-28

    Feedback control in quantum transport has been predicted to give rise to several interesting effects, among them quantum state stabilization and the realization of a mesoscopic Maxwell's daemon. These results were derived under the assumption that control operations on the system are affected instantaneously after the measurement of electronic jumps through it. In this contribution, I describe how to include a delay between detection and control operation in the master equation theory of feedback-controlled quantum transport. I investigate the consequences of delay for the state stabilization and Maxwell's daemon schemes. Furthermore, I describe how delay can be used as a tool to probe coherent oscillations of electrons within a transport system and how this formalism can be used to model finite detector bandwidth.

  6. Thermally activated delayed fluorescence of a Zr-based metal–organic framework

    DOE PAGES

    Mieno, H.; Kabe, R.; Allendorf, M. D.; ...

    2017-12-22

    Here, the first metal–organic framework exhibiting thermally activated delayed fluorescence (TADF) was developed. The zirconium-based framework (UiO-68-dpa) uses a newly designed linker composed of a terphenyl backbone, an electron-accepting carboxyl group, and an electron-donating diphenylamine and exhibits green TADF emission with a photoluminescence quantum yield of 30% and high thermal stability.

  7. Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents

    NASA Astrophysics Data System (ADS)

    Zirak, P.; Penzkofer, A.; Mathes, T.; Hegemann, P.

    2009-03-01

    Roseoflavin (8-dimethylamino-8-demethyl- D-riboflavin) and riboflavin in aqueous and organic solvents are studied by optical absorption spectroscopy, fluorescence spectroscopy, and fluorescence decay kinetics. Solvent polarity dependent absorption shifts are observed. The fluorescence quantum yields are solvent dependent. For roseoflavin the fluorescence decay shows a bi-exponential dependence (ps to sub-ps time constant, and 100 ps to a few ns time constant). The roseoflavin photo-dynamics is explained in terms of fast intra-molecular charge transfer (diabatic electron transfer) from the dimethylamino electron donor group to the pteridin carbonyl electron acceptor followed by intra-molecular charge recombination. The fast fluorescence component is due to direct locally-excited-state emission, and the slow fluorescence component is due to delayed locally-excited-state emission and charge transfer state emission. The fluorescence decay of riboflavin is mono-exponential. The S 1-state potential energy surface is determined by vibronic relaxation and solvation dynamics due to excited-state dipole moment changes (adiabatic optical electron transfer).

  8. Materials Properties and Solvated Electron Dynamics of Isolated Nanoparticles and Nanodroplets Probed with Ultrafast Extreme Ultraviolet Beams.

    PubMed

    Ellis, Jennifer L; Hickstein, Daniel D; Xiong, Wei; Dollar, Franklin; Palm, Brett B; Keister, K Ellen; Dorney, Kevin M; Ding, Chengyuan; Fan, Tingting; Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana; Jimenez, Jose L; Kapteyn, Henry C; Murnane, Margaret M

    2016-02-18

    We present ultrafast photoemission measurements of isolated nanoparticles in vacuum using extreme ultraviolet (EUV) light produced through high harmonic generation. Surface-selective static EUV photoemission measurements were performed on nanoparticles with a wide array of compositions, ranging from ionic crystals to nanodroplets of organic material. We find that the total photoelectron yield varies greatly with nanoparticle composition and provides insight into material properties such as the electron mean free path and effective mass. Additionally, we conduct time-resolved photoelectron yield measurements of isolated oleylamine nanodroplets, observing that EUV photons can create solvated electrons in liquid nanodroplets. Using photoemission from a time-delayed 790 nm pulse, we observe that a solvated electron is produced in an excited state and subsequently relaxes to its ground state with a lifetime of 151 ± 31 fs. This work demonstrates that femotosecond EUV photoemission is a versatile surface-sensitive probe of the properties and ultrafast dynamics of isolated nanoparticles.

  9. Light-Based Triggering and Reconstruction of Michel Electrons in LArIAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foreman, W.

    2016-01-19

    The LArIAT Experiment aims to calibrate the liquid argon time projection chamber (LArTPC) using a beam of charged particles at the Fermilab Test Beam Facility. It is equipped with a novel scintillation light readout system using PMTs and custom SiPM preamplifier boards to detect light from reflector foils coated with wavelength-shifting TPB. A trigger on delayed secondary flashes of light captures events containing stopping cosmic muons together with the Michel electrons coming from their subsequent decay. This dedicated Michel trigger supplies an abundant sample of low-energy electrons throughout the detector's active volume, providing opportunities to study the combined calorimetric capabilitiesmore » of the light system and the TPC. Preliminary results using scintillation light to study properties of the Michel electron sample are presented.« less

  10. Electronic media use and sleep in school-aged children and adolescents: A review.

    PubMed

    Cain, Neralie; Gradisar, Michael

    2010-09-01

    Electronic media have often been considered to have a negative impact on the sleep of children and adolescents, but there are no comprehensive reviews of research in this area. The present study identified 36 papers that have investigated the relationship between sleep and electronic media in school-aged children and adolescents, including television viewing, use of computers, electronic gaming, and/or the internet, mobile telephones, and music. Many variables have been investigated across these studies, although delayed bedtime and shorter total sleep time have been found to be most consistently related to media use. A model of the mechanisms by which media use may affect sleep is presented and discussed as a vehicle for future research. Copyright 2010 Elsevier B.V. All rights reserved.

  11. The ionospheric eclipse factor method (IEFM) and its application to determining the ionospheric delay for GPS

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Tscherning, C. C.; Knudsen, P.; Xu, G.; Ou, J.

    2008-01-01

    A new method for modeling the ionospheric delay using global positioning system (GPS) data is proposed, called the ionospheric eclipse factor method (IEFM). It is based on establishing a concept referred to as the ionospheric eclipse factor (IEF) λ of the ionospheric pierce point (IPP) and the IEF’s influence factor (IFF) bar{λ}. The IEF can be used to make a relatively precise distinction between ionospheric daytime and nighttime, whereas the IFF is advantageous for describing the IEF’s variations with day, month, season and year, associated with seasonal variations of total electron content (TEC) of the ionosphere. By combining λ and bar{λ} with the local time t of IPP, the IEFM has the ability to precisely distinguish between ionospheric daytime and nighttime, as well as efficiently combine them during different seasons or months over a year at the IPP. The IEFM-based ionospheric delay estimates are validated by combining an absolute positioning mode with several ionospheric delay correction models or algorithms, using GPS data at an international Global Navigation Satellite System (GNSS) service (IGS) station (WTZR). Our results indicate that the IEFM may further improve ionospheric delay modeling using GPS data.

  12. Imaging electronic motions by ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Shao, Hua-Chieh; Starace, Anthony F.

    2017-08-01

    Recently ultrafast electron diffraction and microscopy have reached unprecedented temporal resolution, and transient structures with atomic precision have been observed in various reactions. It is anticipated that these extraordinary advances will soon allow direct observation of electronic motions during chemical reactions. We therefore performed a series of theoretical investigations and simulations to investigate the imaging of electronic motions in atoms and molecules by ultrafast electron diffraction. Three prototypical electronic motions were considered for hydrogen atoms. For the case of a breathing mode, the electron density expands and contracts periodically, and we show that the time-resolved scattering intensities reflect such changes of the charge radius. For the case of a wiggling mode, the electron oscillates from one side of the nucleus to the other, and we show that the diffraction images exhibit asymmetric angular distributions. The last case is a hybrid mode that involves both breathing and wiggling motions. Owing to the demonstrated ability of ultrafast electrons to image these motions, we have proposed to image a coherent population transfer in lithium atoms using currently available femtosecond electron pulses. A frequency-swept laser pulse adiabatically drives the valence electron of a lithium atom from the 2s to 2p orbitals, and a time-delayed electron pulse maps such motion. Our simulations show that the diffraction images reflect this motion both in the scattering intensities and the angular distributions.

  13. Formation of 1.4 MeV runaway electron flows in air using a solid-state generator with 10 MV/ns voltage rise rate

    NASA Astrophysics Data System (ADS)

    Mesyats, G. A.; Pedos, M. S.; Rukin, S. N.; Rostov, V. V.; Romanchenko, I. V.; Sadykova, A. G.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2018-04-01

    Fulfillment of the condition that the voltage rise time across an air gap is comparable with the time of electron acceleration from a cathode to an anode allows a flow of runaway electrons (REs) to be formed with relativistic energies approaching that determined by the amplitude of the voltage pulse. In the experiment described here, an RE energy of 1.4 MeV was observed by applying a negative travelling voltage pulse of 860-kV with a maximum rise rate of 10 MV/ns and a rise time of 100-ps. The voltage pulse amplitude was doubled at the cathode of the 2-cm-long air gap due to the delay of conventional pulsed breakdown. The above-mentioned record-breaking voltage pulse of ˜120 ps duration with a peak power of 15 GW was produced by an all-solid-state pulsed power source utilising pulse compression/sharpening in a multistage gyromagnetic nonlinear transmission line.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chesnokov, E. N., E-mail: chesnok@kinetics.nsc.ru; Novosibirsk State University, Novosibirsk 630090; Kubarev, V. V.

    Using the pulses of terahertz free electron laser and ultra-fast Schottky diode detectors, we observed the coherent transients within a free induction decay of gaseous nitrogen dioxide NO{sub 2}. The laser excited different sub-bands of rotation spectra of NO{sub 2} containing about 50–70 lines. The free induction signal continued more than 30 ns and consisted of many echo-like bursts duration about 0.2 ns. Unlike the similar effect observed previously for linear and symmetric top molecules, the sequence of echo bursts is not periodic. The values for delay of individual echo are stable, and the set of these delays can be considered asmore » a “molecular fingerprint” in the time domain.« less

  15. A gated LaBr3(Ce) detector for border protection applications

    NASA Astrophysics Data System (ADS)

    Etile, A.; Denis-Petit, D.; Gaudefroy, L.; Meot, V.; Roig, O.

    2018-01-01

    We report on the dedicated implementation of the blocking technique for a LaBr3(Ce) detector as well as associated electronics and data acquisition system for border protection applications. The detector is meant to perform delayed γ-ray spectroscopy of fission fragments produced via photofission induced by a high intensity pulsed photon beam. The gating technique avoids saturation of the detection chain during irradiation. The resulting setup allows us to successfully perform delayed γ-ray spectroscopy starting only 30 ns after the gating operation. The measured energy resolution ranges from 5% to 6.5% at 662 keV depending on the γ-ray detection time after the gating operation.

  16. Large electronic third-order optical nonlinearities of cyanine dyes measured by resonant femtosecond degenerate four-wave mixing

    NASA Astrophysics Data System (ADS)

    Kasatani, Kazuo

    2003-01-01

    Third-order optical nonlinearities of several cyanine dyes were measured under resonant conditions by the femtosecond degenerate four-wave mixing (DFWM) technique. Temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least two components, the coherent instantaneous nonlinear response and the delayed response with a decay time constant of several hundred picoseconds. The latter can be attributed to molecular rotational relaxation of these dyes. The values of electronic component of the optical nonlinear susceptibility, χ e xxxx (3), for these dyes were ≈2×10 -12 esu at the very low concentration of 1×10 -5 mol dm -3. The electronic component of molecular hyperpolarizability, γe, was calculated to be ≈1×10 -28 esu for each dye.

  17. Widely tunable two-colour seeded free-electron laser source for resonant-pump resonant-probe magnetic scattering

    PubMed Central

    Ferrari, Eugenio; Spezzani, Carlo; Fortuna, Franck; Delaunay, Renaud; Vidal, Franck; Nikolov, Ivaylo; Cinquegrana, Paolo; Diviacco, Bruno; Gauthier, David; Penco, Giuseppe; Ribič, Primož Rebernik; Roussel, Eleonore; Trovò, Marco; Moussy, Jean-Baptiste; Pincelli, Tommaso; Lounis, Lounès; Manfredda, Michele; Pedersoli, Emanuele; Capotondi, Flavio; Svetina, Cristian; Mahne, Nicola; Zangrando, Marco; Raimondi, Lorenzo; Demidovich, Alexander; Giannessi, Luca; De Ninno, Giovanni; Danailov, Miltcho Boyanov; Allaria, Enrico; Sacchi, Maurizio

    2016-01-01

    The advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump–probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch. The tunability range of this new two-colour source meets the requirements of double-resonant FEL pump/FEL probe time-resolved studies. We demonstrate its performance in a proof-of-principle magnetic scattering experiment in Fe–Ni compounds, by tuning the FEL wavelengths to the Fe and Ni 3p resonances. PMID:26757813

  18. Depression and anxiety diagnoses are not associated with delayed resolution of abnormal mammograms and pap tests among vulnerable women.

    PubMed

    Kronman, Andrea C; Freund, Karen M; Heeren, Tim; Beaver, Kristine A; Flynn, Mary; Battaglia, Tracy A

    2012-04-01

    Delays in care after abnormal cancer screening contribute to disparities in cancer outcomes. Women with psychiatric disorders are less likely to receive cancer screening and may also have delays in diagnostic resolution after an abnormal screening test. To determine if depression and anxiety are associated with delays in resolution after abnormal mammograms and Pap tests in a vulnerable population of urban women. We conducted retrospective chart reviews of electronic medical records to identify women who had a diagnosis of depression or anxiety in the year prior to the abnormal mammogram or Pap test. We used time-to-event analysis to analyze the outcome of time to resolution after abnormal cancer screening, and Cox proportional hazards regression modeling to control for confounding. Women receiving care in six Boston-area community health centers 2004-2005: 523 with abnormal mammograms, 474 with abnormal Pap tests. Of the women with abnormal mammogram and pap tests, 19% and 16%, respectively, had co-morbid depression. There was no difference in time to diagnostic resolution between depressed and not-depressed women for those with abnormal mammograms (aHR = 0.9, 95 CI 0.7,1.1) or Pap tests (aHR = 0.9, 95 CI 0.7,1.3). An active diagnosis of depression and/or anxiety in the year prior to an abnormal mammogram or Pap test was not associated with a prolonged time to diagnostic resolution. Our findings imply that documented mood disorders do not identify an additional barrier to resolution after abnormal cancer screening in a vulnerable population of women.

  19. Ultrafast dynamics of photoactive yellow protein via the photoexcitation and emission processes.

    PubMed

    Nakamura, Ryosuke; Hamada, Norio; Ichida, Hideki; Tokunaga, Fumio; Kanematsu, Yasuo

    2007-01-01

    Pump-dump fluorescence spectroscopy was performed for photoactive yellow protein (PYP) at room temperature. The effect of the dump pulse on the population of the potential energy surface of the electronic excited state was examined as depletion in the stationary fluorescence intensity. The dynamic behavior of the population in the electronic excited state was successfully probed in the various combinations of the pump-dump delay, the dump-pulse wavelength, the dump-pulse energy and the observation wavelength. The experimental results were compared with the results obtained by the femtosecond time-resolved fluorescence spectroscopy.

  20. Coherent control of the formation of cold heteronuclear molecules by photoassociation

    NASA Astrophysics Data System (ADS)

    de Lima, Emanuel F.

    2017-01-01

    We consider the formation of cold diatomic molecules in the electronic ground state by photoassociation of atoms of dissimilar species. A combination of two transition pathways from the free colliding pair of atoms to a bound vibrational level of the electronic molecular ground state is envisioned. The first pathway consists of a pump-dump scheme with two time-delayed laser pulses in the near-infrared frequency domain. The pump pulse drives the transition to a bound vibrational level of an excited electronic state, while the dump pulse transfers the population to a bound vibrational level of the electronic ground state. The second pathway takes advantage of the existing permanent dipole moment and employs a single pulse in the far-infrared domain to drive the transition from the unbound atoms directly to a bound vibrational level in the electronic ground state. We show that this scheme offers the possibility to coherently control the photoassociation yield by manipulating the relative phase and timing of the pulses. The photoassociation mechanism is illustrated for the formation of cold LiCs molecules.

  1. Exploration of momentum evolution and three-dimensional localization in recombined electron wave packets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeibel, J. G.; Jones, R. R.

    2003-08-01

    Picosecond ''half-cycle'' pulses (HCPs) have been used to produce electronic wave packets by recombining photoelectrons with their parent ions. The time-dependent momentum distributions of the bound wave packets are probed using a second HCP and the impulsive momentum retrieval (IMR) method. For a given delay between the initial photoionization event and the HCP recombination, classical trajectory simulations predict pronounced periodic wave packet motion for a restricted range of recombining HCP amplitudes. This motion is characterized by the repeated formation and collapse of a highly localized spike in the three-dimensional electron probability density at a large distance from the nucleus. Ourmore » experiments confirm that oscillatory wave packet motion occurs only for certain recombination ''kick'' strengths. Moreover, the measured time-dependent momentum distributions are consistent with the predicted formation of a highly localized electron packet. We demonstrate a variation of the IMR in which amplitude modulation of the HCP probe field is employed to suppress noise and allow for a more direct recovery of electron momentum from experimental ionization data.« less

  2. Short- and long-term clinical outcomes of use of beta-interferon or glatiramer acetate for people with clinically isolated syndrome: a systematic review of randomised controlled trials and network meta-analysis.

    PubMed

    Armoiry, X; Kan, A; Melendez-Torres, G J; Court, R; Sutcliffe, P; Auguste, P; Madan, J; Counsell, C; Clarke, A

    2018-05-01

    Beta-interferon (IFN-β) and glatiramer acetate (GA) have been evaluated in people with clinically isolated syndrome (CIS) with the aim to delay a second clinical attack and a diagnosis of clinically definite multiple sclerosis (CDMS). We systematically reviewed trials evaluating the short- and long-term clinical effectiveness of these drugs in CIS. We searched multiple electronic databases. We selected randomised controlled studies (RCTs) conducted in CIS patients and where the interventions were IFN-β and GA. Main outcomes were time to CDMS, and discontinuation due to adverse events (AE). We compared interventions using random-effect network meta-analyses (NMA). We also reported outcomes from long-term open-label extension (OLE) studies. We identified five primary studies. Four had open-label extensions following double-blind periods comparing outcomes between early vs delayed DMT. Short-term clinical results (double-blind period) showed that all drugs delayed CDMS compared to placebo. Indirect comparisons did not suggest superiority of any one active drug over another. We could not undertake a NMA for discontinuation due to AE. Long-term clinical results (OLE studies) showed that the risk of developing CDMS was consistently reduced across studies after early DMT treatment compared to delayed DMT (HR = 0.64, 95% CI 0.55, 0.74). No data supported the benefit of DMTs in reducing the time to, and magnitude of, disability progression. Meta-analyses confirmed that IFN-β and GA delay time to CDMS compared to placebo. In the absence of evidence that early DMTs can reduce disability progression, future research is needed to better identify patients most likely to benefit from long-term DMTs.

  3. Splashing transients of 2D plasmons launched by swift electrons

    PubMed Central

    Lin, Xiao; Kaminer, Ido; Shi, Xihang; Gao, Fei; Yang, Zhaoju; Gao, Zhen; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng; Zhang, Baile

    2017-01-01

    Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation, analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated. PMID:28138546

  4. Spectral Evolution of Intensive Microwave Bursts at Centimeter-Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Melnikov, V. F.; Magun, A.

    The dynamics of the frequency spectrum of intensive broad band microwave bursts with one spectral maximum and simple time profiles are investigated. The aim of the study is to correlate the temporal evolution of the microwave burst spectrum above and below the spectral peak frequency f_p, as well as to compare these features with theoretical expectations. The analysis was carried out by using the data from the patrol instruments of IAP, Bern University and NIRFI, Nizhnii Novgorod (10 fixed frequencies in the range 1-50 GHz). It has been found for the majority of these bursts that: a) during the rise phase of the burst flux there is an anticorrelation of the absolute values of the spectral indices above and below peak frequency whereas a good correlation during the decay phase was found; b) time delays between flux profiles at neighbouring frequencies change sign under the transition from low to high frequencies. As a rule the lower frequency emission is delayed at frequencies below f_p whereas at high frequencies (f>f_p) the higher frequency emission is delayed (see also Melnikov and Magun, 1998). Qualitatively these results fit well the calculated spectral evolution of the gyrosynchrotron if one takes into account the flattening of the electron energy spectrum in a flare loop (Melnikov and Magun, 1996) due to Coulomb collisions (Vilmer et al., 1982), and uses values for the background plasma density derived from hard X-ray data (Aschwanden et al., 1997). For some of the bursts, however, quantitative discrepancies with the predictions of the homogeneous model have been found. For these bursts the absolute value of the spectral index at low frequencies is remarkably smaller, and the time delay remarkably higher than expected. We have investigated several possibilities to obtain an agremeent between theory and observations. Special attention is paid to model calculations taking into account the dynamics of energetic electrons in flare loops with an inhomogeneous magnetic field and plasma density. In this context the capabilities of the models for the diagnostics of the physical conditions in flare loops using observations with high spatial

  5. Optimal nonlinear information processing capacity in delay-based reservoir computers

    NASA Astrophysics Data System (ADS)

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  6. Optimal nonlinear information processing capacity in delay-based reservoir computers.

    PubMed

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-09-11

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature.

  7. Optimal nonlinear information processing capacity in delay-based reservoir computers

    PubMed Central

    Grigoryeva, Lyudmila; Henriques, Julie; Larger, Laurent; Ortega, Juan-Pablo

    2015-01-01

    Reservoir computing is a recently introduced brain-inspired machine learning paradigm capable of excellent performances in the processing of empirical data. We focus in a particular kind of time-delay based reservoir computers that have been physically implemented using optical and electronic systems and have shown unprecedented data processing rates. Reservoir computing is well-known for the ease of the associated training scheme but also for the problematic sensitivity of its performance to architecture parameters. This article addresses the reservoir design problem, which remains the biggest challenge in the applicability of this information processing scheme. More specifically, we use the information available regarding the optimal reservoir working regimes to construct a functional link between the reservoir parameters and its performance. This function is used to explore various properties of the device and to choose the optimal reservoir architecture, thus replacing the tedious and time consuming parameter scannings used so far in the literature. PMID:26358528

  8. Direct comparison of Viking 2.3-GHz signal phase fluctuation and columnar electron density between 2 and 160 solar radii

    NASA Technical Reports Server (NTRS)

    Berman, A. L.; Wackley, J. A.; Hietzke, W. H.

    1982-01-01

    The relationship between solar wind induced signal phase fluctuation and solar wind columnar electron density has been the subject of intensive analysis during the last two decades. In this article, a sizeable volume of 2.3-GHz signal phase fluctuation and columnar electron density measurements separately and concurrently inferred from Viking spacecraft signals are compared as a function of solar geometry. These data demonstrate that signal phase fluctuation and columnar electron density are proportional over a very wide span of solar elongation angle. A radially dependent electron density model which provides a good fit to the columnar electron density measurements and, when appropriately scaled, to the signal phase fluctuation measurements, is given. This model is also in good agreement with K-coronameter observations at 2 solar radii (2r0), with pulsar time delay measurements at 10r0, and with spacecraft in situ electron density measurements at 1 AU.

  9. Long-range coupling of electron-hole pairs in spatially separated organic donor-acceptor layers

    PubMed Central

    Nakanotani, Hajime; Furukawa, Taro; Morimoto, Kei; Adachi, Chihaya

    2016-01-01

    Understanding exciton behavior in organic semiconductor molecules is crucial for the development of organic semiconductor-based excitonic devices such as organic light-emitting diodes and organic solar cells, and the tightly bound electron-hole pair forming an exciton is normally assumed to be localized on an organic semiconducting molecule. We report the observation of long-range coupling of electron-hole pairs in spatially separated electron-donating and electron-accepting molecules across a 10-nanometers-thick spacer layer. We found that the exciton energy can be tuned over 100 megaelectron volts and the fraction of delayed fluorescence can be increased by adjusting the spacer-layer thickness. Furthermore, increasing the spacer-layer thickness produced an organic light-emitting diode with an electroluminescence efficiency nearly eight times higher than that of a device without a spacer layer. Our results demonstrate the first example of a long-range coupled charge-transfer state between electron-donating and electron-accepting molecules in a working device. PMID:26933691

  10. [The development and operation of a package inserts service system for electronic medical records].

    PubMed

    Yamada, Hidetoshi; Nishimura, Sachiho; Shimamori, Yoshimitsu; Sato, Seiji; Hayase, Yukitoshi

    2003-03-01

    To promote the appropriate use of pharmaceuticals and to prevent side effects, physicians need package inserts on medicinal drugs as soon as possible. A medicinal drug information service system was established for electronic medical records to speed up and increase the efficiency of package insert communications within a medical institution. Development of this system facilitates access to package inserts by, for example, physicians. The time required to maintain files of package inserts was shortened, and the efficiency of the drug information service increased. As a source of package inserts for this system, package inserts using a standard generalized markup language (SGML) form were used, which are accessible to the public on the homepage of the Organization for Pharmaceutical Safety and Research (OPSR). This study found that a delay occurred in communicating revised package inserts from pharmaceutical companies to the OPSR. Therefore a pharmaceutical department page was set up as part of the homepage of the medical institution for electronic medical records to shorten the delay in the revision of package inserts posted on the medicinal drug information service homepage of the OPSR. The usefulness of this package insert service system for electronic medical records is clear. For more effective use of this system based on the OPSR homepage pharmaceutical companies have been requested to provide quicker updating of package inserts.

  11. A Beat Frequency RF Modulator for Generation of Low Repetition Rate Electron Microbunches for the CEBAF Polarized Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Musson; Reza Kazimi; Benard Poelker

    2007-06-25

    Fiber-based drive lasers now produce all of the spin-polarized electron beams at CEBAF/Jefferson Lab. The flexibility of these drive lasers, combined with the existing three-beam CEBAF photoinjector Chopper, provides a means to implement a beat frequency technique to produce long time intervals between individual electron microbunches (tens of nanoseconds) by merely varying the nominal 499 MHz drive laser frequency by < 20%. This submission describes the RF Laser modulator that uses a divider and heterodyne scheme to maintain coherence with the accelerator Master Oscillator (MO), while providing delay resolution in increments of 2ns. Some possible uses for such a beammore » are discussed as well as intended future development.« less

  12. Patient and provider perspectives on the design and implementation of an electronic consultation system for kidney care delivery in Canada: a focus group study.

    PubMed

    Bello, Aminu K; Molzahn, Anita E; Girard, Louis P; Osman, Mohamed A; Okpechi, Ikechi G; Glassford, Jodi; Thompson, Stephanie; Keely, Erin; Liddy, Clare; Manns, Braden; Jinda, Kailash; Klarenbach, Scott; Hemmelgarn, Brenda; Tonelli, Marcello

    2017-03-02

    We assessed stakeholder perceptions on the use of an electronic consultation system (e-Consult) to improve the delivery of kidney care in Alberta. We aim to identify acceptability, barriers and facilitators to the use of an e-Consult system for ambulatory kidney care delivery. This was a qualitative focus group study using a thematic analysis design. Eight focus groups were held in four locations in the province of Alberta, Canada. In total, there were 72 participants in two broad stakeholder categories: patients (including patients' relatives) and providers (including primary care physicians, nephrologists, other care providers and policymakers). The e-Consult system was generally acceptable across all stakeholder groups. The key barriers identified were length of time required for referring physicians to complete the e-Consult due to lack of integration with current electronic medical records, and concerns that increased numbers of requests might overwhelm nephrologists and lead to a delayed response or an unsustainable system. The key facilitators identified were potential improvement of care coordination, dissemination of best practice through an educational platform, comprehensive data to make decisions without the need for face-to-face consultation, timely feedback to primary care providers, timeliness/reduced delays for patients' rapid triage and identification of cases needing urgent care and improved access to information to facilitate decision-making in patient care. Stakeholder perceptions regarding the e-Consult system were favourable, and the key barriers and facilitators identified will be considered in design and implementation of an acceptable and sustainable electronic consultation system for kidney care delivery. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  13. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels.

    PubMed

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-06-03

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α'-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α'-martensite increases the hydrogen-induced cracking susceptibility.

  14. Hydrogen-Induced Delayed Cracking in TRIP-Aided Lean-Alloyed Ferritic-Austenitic Stainless Steels

    PubMed Central

    Papula, Suvi; Sarikka, Teemu; Anttila, Severi; Talonen, Juho; Virkkunen, Iikka; Hänninen, Hannu

    2017-01-01

    Susceptibility of three lean-alloyed ferritic-austenitic stainless steels to hydrogen-induced delayed cracking was examined, concentrating on internal hydrogen contained in the materials after production operations. The aim was to study the role of strain-induced austenite to martensite transformation in the delayed cracking susceptibility. According to the conducted deep drawing tests and constant load tensile testing, the studied materials seem not to be particularly susceptible to delayed cracking. Delayed cracks were only occasionally initiated in two of the materials at high local stress levels. However, if a delayed crack initiated in a highly stressed location, strain-induced martensite transformation decreased the crack arrest tendency of the austenite phase in a duplex microstructure. According to electron microscopy examination and electron backscattering diffraction analysis, the fracture mode was predominantly cleavage, and cracks propagated along the body-centered cubic (BCC) phases ferrite and α’-martensite. The BCC crystal structure enables fast diffusion of hydrogen to the crack tip area. No delayed cracking was observed in the stainless steel that had high austenite stability. Thus, it can be concluded that the presence of α’-martensite increases the hydrogen-induced cracking susceptibility. PMID:28772975

  15. Semi-Automatic Electronic Stent Register: a novel approach to preventing ureteric stents lost to follow up.

    PubMed

    Macneil, James W H; Michail, Peter; Patel, Manish I; Ashbourne, Julie; Bariol, Simon V; Ende, David A; Hossack, Tania A; Lau, Howard; Wang, Audrey C; Brooks, Andrew J

    2017-10-01

    Ureteric stents are indispensable tools in modern urology; however, the risk of them not being followed-up once inserted poses medical and medico-legal risks. Stent registers are a common solution to mitigate this risk; however, manual registers are logistically challenging, especially for busy units. Western Sydney Local Health District developed a novel Semi-Automatic Electronic Stent Register (SAESR) utilizing billing information to track stent insertions. To determine the utility of this system, an audit was conducted comparing the 6 months before the introduction of the register to the first 6 months of the register. In the first 6 months of the register, 457 stents were inserted. At the time of writing, two of these are severely delayed for removal, representing a rate of 0.4%. In the 6 months immediately preceding the introduction of the register, 497 stents were inserted, and six were either missed completely or severely delayed in their removal, representing a rate of 1.2%. A non-inferiority analysis found this to be no worse than the results achieved before the introduction of the register. The SAESR allowed us to improve upon our better than expected rate of stents lost to follow up or severely delayed. We demonstrated non-inferiority in the rate of lost or severely delayed stents, and a number of other advantages including savings in personnel costs. The semi-automatic register represents an effective way of reducing the risk associated with a common urological procedure. We believe that this methodology could be implemented elsewhere. © 2017 Royal Australasian College of Surgeons.

  16. Generation of subterawatt-attosecond pulses in a soft x-ray free-electron laser

    DOE PAGES

    Huang, Senlin; Ding, Yuantao; Huang, Zhirong; ...

    2016-08-15

    Here, we propose a novel scheme to generate attosecond soft x rays in a self-seeded free-electron laser (FEL) suitable for enabling attosecond spectroscopic investigations. A time-energy chirped electron bunch with additional sinusoidal energy modulation is adopted to produce a short seed pulse through a self-seeding monochromator. This short seed pulse, together with high electron current spikes and a cascaded delay setup, enables a high-efficiency FEL with a fresh bunch scheme. Simulations show that using the Linac Coherent Light Source (LCLS) parameters, soft x-ray pulses with a FWHM of 260 attoseconds and a peak power of 0.5 TW can be obtained.more » This scheme also has the feature of providing a stable central wavelength determined by the self-seeding monochromator.« less

  17. Effect of Nb on Delayed Fracture Resistance of Ultra-High Strength Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Song, Rongjie; Fonstein, Nina; Pottore, Narayan; Jun, Hyun Jo; Bhattacharya, Debanshu; Jansto, Steve

    Ultra-high strength steels are materials of considerable interest for automotive and structural applications and are increasingly being used in those areas. Higher strength, however, makes steels more prone to hydrogen embrittlement (HE). The effects of Nb and other alloying elements on the hydrogen-induced delayed fracture resistance of cold rolled martensitic steels with ultra-high strength 2000 MPa were studied using an acid immersion test, thermal desorption analysis (TDA) and measuring of permeation. The microstructure was characterized by high resolution field emission Scanning Electron Microscopy (SEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). It was shown that the combined addition of Nb significantly improved the delayed fracture resistance of investigated steel. The addition of Nb to alloyed martensitic steels resulted in very apparent grain refinement of the prior austenite grain size. The Nb microalloyed steel contained a lower diffusible hydrogen content during thermal desorption analysis as compared to the base steel and had a higher trapped hydrogen amount after charging. The reason that Nb improved the delayed fracture resistance of steels can be attributed mostly to both hydrogen trapping and grain refinement.

  18. Local Stability of AIDS Epidemic Model Through Treatment and Vertical Transmission with Time Delay

    NASA Astrophysics Data System (ADS)

    Novi W, Cascarilla; Lestari, Dwi

    2016-02-01

    This study aims to explain stability of the spread of AIDS through treatment and vertical transmission model. Human with HIV need a time to positively suffer AIDS. The existence of a time, human with HIV until positively suffer AIDS can be delayed for a time so that the model acquired is the model with time delay. The model form is a nonlinear differential equation with time delay, SIPTA (susceptible-infected-pre AIDS-treatment-AIDS). Based on SIPTA model analysis results the disease free equilibrium point and the endemic equilibrium point. The disease free equilibrium point with and without time delay are local asymptotically stable if the basic reproduction number is less than one. The endemic equilibrium point will be local asymptotically stable if the time delay is less than the critical value of delay, unstable if the time delay is more than the critical value of delay, and bifurcation occurs if the time delay is equal to the critical value of delay.

  19. The effects of the framing of time on delay discounting.

    PubMed

    DeHart, William Brady; Odum, Amy L

    2015-01-01

    We examined the effects of the framing of time on delay discounting. Delay discounting is the process by which delayed outcomes are devalued as a function of time. Time in a titrating delay discounting task is often framed in calendar units (e.g., as 1 week, 1 month, etc.). When time is framed as a specific date, delayed outcomes are discounted less compared to the calendar format. Other forms of framing time; however, have not been explored. All participants completed a titrating calendar unit delay-discounting task for money. Participants were also assigned to one of two delay discounting tasks: time as dates (e.g., June 1st, 2015) or time in units of days (e.g., 5000 days), using the same delay distribution as the calendar delay-discounting task. Time framed as dates resulted in less discounting compared to the calendar method, whereas time framed as days resulted in greater discounting compared to the calendar method. The hyperboloid model fit best compared to the hyperbola and exponential models. How time is framed may alter how participants attend to the delays as well as how the delayed outcome is valued. Altering how time is framed may serve to improve adherence to goals with delayed outcomes. © Society for the Experimental Analysis of Behavior.

  20. SU-F-T-554: Dark Current Effect On CyberKnife Beam Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Chang, A

    Purpose: All RF linear accelerators produce dark current to varying degrees when an accelerating voltage and RF input is applied in the absence of electron gun injection. This study is to evaluate how dark current from the linear accelerator of CyberKnife affect the dose in the reference dosimetry. Methods: The G4 CyberKnife system with 6MV photon beam was used in this study. Using the ion chamber and the diode detector, the dose was measured in water with varying time delay between acquiring charges and staring beam-on after applying high-voltage into the linear accelerator. The dose was measured after the timemore » delay with over the range of 0 to 120 seconds in the accelerating high-voltage mode without beam-on, applying 0, 10, 50, 100, and 200 MUs. For the measurements, the collimator of 60 mm was used and the detectors were placed at the depths of 10 cm with the source-to-surface distance of 80 cm. Results: The dark current was constant over time regardless of MU. The dose due to the dark current increased over time linearly with the R-squared value of 0.9983 up to 4.4 cGy for the time 120 seconds. In the dose rate setting of 720 MU/min, the relative dose when applying the accelerating voltage without beam-on was increased over time up to 0.6% but it was less than the leakage radiation resulted from the accelerated head. As the reference dosimetry condition, when 100 MU was delivered after 10 seconds time delay, the relative dose increased by 0.7% but 6.7% for the low MU (10 MU). Conclusion: In the dosimetry using CyberKnife system, the constant dark current affected to the dose. Although the time delay in the accelerating high-voltage mode without beam-on is within 10 seconds, the dose less than 100 cGy can be overestimated more than 1%.« less

  1. Ultrafast dynamics of vibrational symmetry breaking in a charge-ordered nickelate

    PubMed Central

    Coslovich, Giacomo; Kemper, Alexander F.; Behl, Sascha; Huber, Bernhard; Bechtel, Hans A.; Sasagawa, Takao; Martin, Michael C.; Lanzara, Alessandra; Kaindl, Robert A.

    2017-01-01

    The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-terahertz response of the model stripe compound La1.75Sr0.25NiO4, yielding novel insight into its electronic and structural dynamics following an ultrafast optical quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen—as witnessed by time-delayed suppression of zone-folded Ni–O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. The hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry-breaking dynamics in solids. PMID:29202025

  2. Ultrafast dynamics of vibrational symmetry breaking in a charge-ordered nickelate

    DOE PAGES

    Coslovich, Giacomo; Kemper, Alexander F.; Behl, Sascha; ...

    2017-11-24

    The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-terahertz response of the model stripe compound La 1.75Sr 0.25NiO 4, yielding novel insight into its electronic and structural dynamics following an ultrafast opticalmore » quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen—as witnessed by time-delayed suppression of zone-folded Ni–O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. As a result, the hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry-breaking dynamics in solids.« less

  3. Ultrafast dynamics of vibrational symmetry breaking in a charge-ordered nickelate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coslovich, Giacomo; Kemper, Alexander F.; Behl, Sascha

    The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-terahertz response of the model stripe compound La 1.75Sr 0.25NiO 4, yielding novel insight into its electronic and structural dynamics following an ultrafast opticalmore » quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen—as witnessed by time-delayed suppression of zone-folded Ni–O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. As a result, the hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry-breaking dynamics in solids.« less

  4. Information processing using a single dynamical node as complex system

    PubMed Central

    Appeltant, L.; Soriano, M.C.; Van der Sande, G.; Danckaert, J.; Massar, S.; Dambre, J.; Schrauwen, B.; Mirasso, C.R.; Fischer, I.

    2011-01-01

    Novel methods for information processing are highly desired in our information-driven society. Inspired by the brain's ability to process information, the recently introduced paradigm known as 'reservoir computing' shows that complex networks can efficiently perform computation. Here we introduce a novel architecture that reduces the usually required large number of elements to a single nonlinear node with delayed feedback. Through an electronic implementation, we experimentally and numerically demonstrate excellent performance in a speech recognition benchmark. Complementary numerical studies also show excellent performance for a time series prediction benchmark. These results prove that delay-dynamical systems, even in their simplest manifestation, can perform efficient information processing. This finding paves the way to feasible and resource-efficient technological implementations of reservoir computing. PMID:21915110

  5. Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: an ab initio study of time-resolved photoelectron spectra.

    PubMed

    do N Varella, Márcio T; Arasaki, Yasuki; Ushiyama, Hiroshi; Takatsuka, Kazuo; Wang, Kwanghsi; McKoy, Vincent

    2007-02-07

    The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.

  6. A general method for baseline-removal in ultrafast electron powder diffraction data using the dual-tree complex wavelet transform.

    PubMed

    René de Cotret, Laurent P; Siwick, Bradley J

    2017-07-01

    The general problem of background subtraction in ultrafast electron powder diffraction (UEPD) is presented with a focus on the diffraction patterns obtained from materials of moderately complex structure which contain many overlapping peaks and effectively no scattering vector regions that can be considered exclusively background. We compare the performance of background subtraction algorithms based on discrete and dual-tree complex (DTCWT) wavelet transforms when applied to simulated UEPD data on the M1-R phase transition in VO 2 with a time-varying background. We find that the DTCWT approach is capable of extracting intensities that are accurate to better than 2% across the whole range of scattering vector simulated, effectively independent of delay time. A Python package is available.

  7. Assessing Visual Delays using Pupil Oscillations

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    2012-01-01

    Stark (1962) demonstrated vigorous pupil oscillations by illuminating the retina with a beam of light focussed to a small spot near the edge of the pupil. Small constrictions of the pupil then are sufficient to completely block the beam, amplifying the normal relationship between pupil area and retinal illuminance. In addition to this simple and elegant method, Stark also investigated more complex feedback systems using an electronic "clamping box" which provided arbitrary gain and phase delay between a measurement of pupil area and an electronically controlled light source. We have replicated Stark's results using a video-based pupillometer to control the luminance of a display monitor. Pupil oscillations were induced by imposing a linear relationship between pupil area and display luminance, with a variable delay. Slopes of the period-vs-delay function for 3 subjects are close to the predicted value of 2 (1.96-2.39), and the implied delays range from 254 to 376 508 to 652 milliseconds. Our setup allows us to extend Stark's work by investigating a broader class of stimuli.

  8. Global Ionospheric Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Mannucci, A. T.; Lindqwister, U. J.; Pi, X. Q.

    1996-01-01

    Based on the delays of these (Global Positioning System-GPS)signals, we have generated high resolution global ionospheric TEC (Total Electronic Changes) maps at 15-minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that the ionopshere during this time storm has increased significantly (the percentage change relative to quiet times is greater than 150 percent) ...These preliminary results (those mentioned above plus other in the paper)indicate that the differential maping method, which is based on GPS network measurements appears to be a useful tool for studying the global pattern and evolution process of the entire ionospheric perturbation.

  9. Missed Opportunities in Neonatal Deaths in Rwanda: Applying the Three Delays Model in a Cross-Sectional Analysis of Neonatal Death.

    PubMed

    Wilmot, Efua; Yotebieng, Marcel; Norris, Alison; Ngabo, Fidele

    2017-05-01

    Objective Administered in a timely manner, current evidence-based interventions could reduce neonatal deaths from infections, intrapartum injuries and complications due to prematurity. The three delays model (delay in seeking care, in arriving at a health facility, and in receiving adequate care), which has been applied to understanding maternal deaths, may be useful for understanding neonatal deaths. We assess the main causes of neonatal deaths in Rwanda and their associated delays. Methods Using a cross-sectional study design, we evaluated data from 2012 from 40 facilities in which babies were delivered. Audit committees in each facility reviewed each neonatal death in the facility and reported finding to the Ministry of Health using structured questionnaires. Information from questionnaires were centralized in an electronic database. At the end of 2012, records from 40 health facilities across Rwanda's five provinces (mainly district hospitals) were available in the database and were used for this analysis. Results Of the 1324 neonates, the major causes of death were: asphyxia and its complications (36.7%), lower respiratory tract infections (LRTI) (22.5%), and prematurity (22.4%). At least one delay was experienced by nearly three-quarters of neonates: Maternal Delay in Seeking Care 22.1%, Maternal Delay in Arrival to Care 11.2%, Maternal Delay in Adequate Care 14.2%, Neonatal Delay in Seeking Care 8.1%, Neonatal Delay in Arrival to Care 9.3%, and Neonatal Delay in Adequate Care 29.1%. Neonates with each of the main causes of death had statistically significantly increased odds of experiencing Maternal Delay in Seeking Care. Asphyxia deaths had increased odds of experiencing all three Maternal Delays. LRTI deaths had increased odds of all three Neonatal Delays. Conclusion Delays for women in seeking obstetrical care is a critical factor associated with the main causes of neonatal death in Rwanda. Improving obstetrical care quality could reduce neonatal deaths due to asphyxia. Likewise, reducing all three delays could reduce neonatal deaths due to LRTI.

  10. APPLICATIONS OF LASERS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Determination of reflection coefficients of mirrors using a mode-locked laser and a dissector

    NASA Astrophysics Data System (ADS)

    Apolonskiĭ, A. A.; Vinokurov, Nikolai A.; Zinin, É. I.; Ishchenko, P. I.; Kuklin, A. E.; Popik, V. M.; Sokolov, A. S.; Shchebetov, S. D.

    1992-09-01

    A method is described for determining the reflection coefficients of high-density mirrors, based on the use of a mode-locked laser and a sensitive detector with a fast time resolution. The laser light is transmitted through an optical resonator formed by the investigated mirrors. The measured delay in the decay of a light pulse gives the damping time of the optical resonator. This is related to its Q factor determined by the reflection coefficients of its mirrors.

  11. Dynamics of scroll waves with time-delay propagation in excitable media

    NASA Astrophysics Data System (ADS)

    Chen, Jiang-Xing; Xiao, Jie; Qiao, Li-Yan; Xu, Jiang-Rong

    2018-06-01

    Information transmission delay can be widely observed in various systems. Here, we study the dynamics of scroll waves with time-delay propagation among slices in excitable media. Weak time delay induces scroll waves to meander. Through increasing the time delay, we find a series of dynamical transitions. Firstly, the straight filament of a scroll wave becomes twisted. Then, the scroll wave breaks and forms interesting patterns. With long time delay, loosed scroll waves are maintained while their period are greatly decreased. Also, cylinder waves appears. The influences of diffusively coupling strength on the time-delay-induced scroll waves are studied. It is found that the critical time delay characterizing those transitions decreases as the coupling strength is increased. A phase diagram in the diffusive coupling-time delay plane is presented.

  12. Versatile Molecular Functionalization for Inhibiting Concentration Quenching of Thermally Activated Delayed Fluorescence.

    PubMed

    Lee, Jiyoung; Aizawa, Naoya; Numata, Masaki; Adachi, Chihaya; Yasuda, Takuma

    2017-01-01

    Concentration quenching of thermally activated delayed fluorescence is found to be dominated by electron-exchange interactions, as described by the Dexter energy-transfer model. Owing to the short-range nature of the electron-exchange interactions, even a small modulation in the molecular geometric structure drastically affects the concentration-quenching, leading to enhanced solid-state photoluminescence and electroluminescence quantum efficiencies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Space-Time Characterization of Laser Plasma Interactions in the Warm Dense Matter Regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, L F; Uschmann, I; Forster, E

    2008-04-30

    Laser plasma interaction experiments have been performed using a fs Titanium Sapphire laser. Plasmas have been generated from planar PMMA targets using single laser pulses with 3.3 mJ pulse energy, 50 fs pulse duration at 800 nm wavelength. The electron density distributions of the plasmas in different delay times have been characterized by means of Nomarski Interferometry. Experimental data were compared with hydrodynamic simulation. First results to characterize the plasma density and temperature as a function of space and time are obtained. This work aims to generate plasmas in the warm dense matter (WDM) regime at near solid-density in anmore » ultra-fast laser target interaction process. Plasmas under these conditions can serve as targets to develop x-ray Thomson scattering as a plasma diagnostic tool, e.g., using the VUV free-electron laser (FLASH) at DESY Hamburg.« less

  14. 49 CFR 236.563 - Delay time.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time. ...

  15. 49 CFR 236.563 - Delay time.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Delay time. 236.563 Section 236.563 Transportation... Cab Signal Systems Rules and Instructions; Locomotives § 236.563 Delay time. Delay time of automatic... requirements of § 236.24 shall take into consideration the delay time. ...

  16. High-temperature superconductivity for avionic electronic warfare and radar systems

    NASA Astrophysics Data System (ADS)

    Ryan, Paul A.

    1994-01-01

    The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS.

  17. Ultra Low Energy Binary Decision Diagram Circuits Using Few Electron Transistors

    NASA Astrophysics Data System (ADS)

    Saripalli, Vinay; Narayanan, Vijay; Datta, Suman

    Novel medical applications involving embedded sensors, require ultra low energy dissipation with low-to-moderate performance (10kHz-100MHz) driving the conventional MOSFETs into sub-threshold operation regime. In this paper, we present an alternate ultra-low power computing architecture using Binary Decision Diagram based logic circuits implemented using Single Electron Transistors (SETs) operating in the Coulomb blockade regime with very low supply voltages. We evaluate the energy - performance tradeoff metrics of such BDD circuits using time domain Monte Carlo simulations and compare them with the energy-optimized CMOS logic circuits. Simulation results show that the proposed approach achieves better energy-delay characteristics than CMOS realizations.

  18. Functional Inactivation of Putative Photosynthetic Electron Acceptor Ferredoxin C2 (FdC2) Induces Delayed Heading Date and Decreased Photosynthetic Rate in Rice

    PubMed Central

    Ruan, Banpu; Kang, Shujing; He, Lei; Zhang, Sen; Dong, Guojun; Hu, Jiang; Zeng, Dali; Zhang, Guangheng; Gao, Zhenyu; Ren, Deyong; Hu, Xingming; Chen, Guang; Guo, Longbiao; Qian, Qian; Zhu, Li

    2015-01-01

    Ferredoxin (Fd) protein as unique electron acceptor, involved in a variety of fundamental metabolic and signaling processes, which is indispensable for plant growth. The molecular mechanisms of Fd such as regulation of electron partitioning, impact of photosynthetic rate and involvement in the carbon fixing remain elusive in rice. Here we reported a heading date delay and yellowish leaf 1 (hdy1) mutant derived from Japonica rice cultivar “Nipponbare” subjected to EMS treatment. In the paddy field, the hdy1 mutant appeared at a significantly late heading date and had yellow-green leaves during the whole growth stage. Further investigation indicated that the abnormal phenotype of hdy1 was connected with depressed pigment content and photosynthetic rate. Genetic analysis results showed that the hdy1 mutant phenotype was caused by a single recessive nuclear gene mutation. Map-based cloning revealed that OsHDY1 is located on chromosome 3 and encodes an ortholog of the AtFdC2 gene. Complementation and overexpression, transgenic plants exhibited the mutant phenotype including head date, leaf color and the transcription levels of the FdC2 were completely rescued by transformation with OsHDY1. Real-time PCR revealed that the expression product of OsHDY1 was detected in almost all of the organs except root, whereas highest expression levels were observed in seeding new leaves. The lower expression levels of HDY1 and content of iron were detected in hdy1 than WT’s. The FdC2::GFP was detected in the chloroplasts of rice. Real-time PCR results showed that the expression of many photosynthetic electron transfer related genes in hdy1 were higher than WT. Our results suggest that OsFdC2 plays an important role in photosynthetic rate and development of heading date by regulating electron transfer and chlorophyll content in rice. PMID:26598971

  19. Global Characteristics of the Correlation and Time Lag Between Solar and Ionospheric Parameters in the 27-day Period

    NASA Technical Reports Server (NTRS)

    Lee, Choon-Ki; Han, Shin-Chan; Dieter,Bilitza; Ki-Weon,Seo

    2012-01-01

    The 27-day variations of topside ionosphere are investigated using the in-situ electron density measurements from the CHAMP planar Langmuir probe and GRACE K-band ranging system. As the two satellite systems orbit at the altitudes of approx. 370 km and approx. 480 km, respectively, the satellite data sets are greatly valuable for examining the electron density variations in the vicinity of F2-peak. In a 27-day period, the electron density measurements from the satellites are in good agreements with the solar flux, except during the solar minimum period. The time delays are mostly 1-2 day and represent the hemispherical asymmetry. The globally-estimated spatial patterns of the correlation between solar flux and in-situ satellite measurements show poor correlations in the (magnetic) equatorial region, which are not found from the ground measurements of vertically-integrated electron content. We suggest that the most plausible cause for the poor correlation is the vertical movement of ionization due to atmospheric dynamic processes that is not controlled by the solar extreme ultraviolet radiation.

  20. Validation of Ionosonde Electron Density Reconstruction Algorithms with IONOLAB-RAY in Central Europe

    NASA Astrophysics Data System (ADS)

    Gok, Gokhan; Mosna, Zbysek; Arikan, Feza; Arikan, Orhan; Erdem, Esra

    2016-07-01

    Ionospheric observation is essentially accomplished by specialized radar systems called ionosondes. The time delay between the transmitted and received signals versus frequency is measured by the ionosondes and the received signals are processed to generate ionogram plots, which show the time delay or reflection height of signals with respect to transmitted frequency. The critical frequencies of ionospheric layers and virtual heights, that provide useful information about ionospheric structurecan be extracted from ionograms . Ionograms also indicate the amount of variability or disturbances in the ionosphere. With special inversion algorithms and tomographical methods, electron density profiles can also be estimated from the ionograms. Although structural pictures of ionosphere in the vertical direction can be observed from ionosonde measurements, some errors may arise due to inaccuracies that arise from signal propagation, modeling, data processing and tomographic reconstruction algorithms. Recently IONOLAB group (www.ionolab.org) developed a new algorithm for effective and accurate extraction of ionospheric parameters and reconstruction of electron density profile from ionograms. The electron density reconstruction algorithm applies advanced optimization techniques to calculate parameters of any existing analytical function which defines electron density with respect to height using ionogram measurement data. The process of reconstructing electron density with respect to height is known as the ionogram scaling or true height analysis. IONOLAB-RAY algorithm is a tool to investigate the propagation path and parameters of HF wave in the ionosphere. The algorithm models the wave propagation using ray representation under geometrical optics approximation. In the algorithm , the structural ionospheric characteristics arerepresented as realistically as possible including anisotropicity, inhomogenity and time dependence in 3-D voxel structure. The algorithm is also used for various purposes including calculation of actual height and generation of ionograms. In this study, the performance of electron density reconstruction algorithm of IONOLAB group and standard electron density profile algorithms of ionosondes are compared with IONOLAB-RAY wave propagation simulation in near vertical incidence. The electron density reconstruction and parameter extraction algorithms of ionosondes are validated with the IONOLAB-RAY results both for quiet anddisturbed ionospheric states in Central Europe using ionosonde stations such as Pruhonice and Juliusruh . It is observed that IONOLAB ionosonde parameter extraction and electron density reconstruction algorithm performs significantly better compared to standard algorithms especially for disturbed ionospheric conditions. IONOLAB-RAY provides an efficient and reliable tool to investigate and validate ionosonde electron density reconstruction algorithms, especially in determination of reflection height (true height) of signals and critical parameters of ionosphere. This study is supported by TUBITAK 114E541, 115E915 and Joint TUBITAK 114E092 and AS CR 14/001 projects.

  1. Wigner time delay in photodetachment of Tm-and in photoionization of Yb: A comparative study

    NASA Astrophysics Data System (ADS)

    Saha, Soumyajit; Jose, Jobin; Deshmukh, Pranawa; Dolmatov, Valeriy; Kheifets, Anatoli; Manson, Steven

    2017-04-01

    Preliminary studies of Wigner time delay in photodetachment spectra of negative ions have been reported. Photodetachment time delay for some dipole channels of Tm- and of Cl- were calculated using relativistic random phase approximation (RRPA). Comparisons between photodetachment time delay of Cl- and photoionization time delay of Ar were made. We investigate the photodetachment time delay for all three relativistically split nd -> ɛ f channels of Tm- and for nd -> ɛ f channels of Yb (isoelectronic to Tm-) using RRPA. We study the effect of the shape resonance, brought about by the centrifugal barrier potential, on photodetachment time delay. A negative ion is a good laboratory for studying the effects of shape resonances on time delay since the phase is unaffected by the Coulomb component. Wigner time delay in photodetachment of Tm- and in photoionization of Yb: A comparative study.

  2. A Model of Relation between Fluctuation of Double Differential Total Ionospheric Electron Content and Angular Distance of the Two Satellites Observed by Same-beam VLBI

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Qing-hui, Liu

    2018-01-01

    Time delay and phase fluctuation are produced when the signals of a spacecraft are transmitted through the ionosphere of the earth, which give rise to a great influence on the measurement precision of VLBI (Very Long Baseline Interferometry). Using the 1-year same-beam VLBI data of 2 satellites (Rstar and Vstar) in the Japanese lunar exploration project SELENE, we obtained a model of the relation between the fluctuation of double differential total electron content in the ionosphere and the angular distance of the two satellites. For the 6 baselines, the root mean square r of fluctuation (in units of TECU) and the angular distance of the two satellites θ (in units of ∘) has a relation of r = 0.773θ + 0.562, and for the 4 VLBI stations, the relation is r = 0.554θ + 0.399 from the baselines inversion. The results can serve as a reference for the derivation of differential phase delay and for the occultation observation and study of planetary ionospheres.

  3. Design and implementation of the modified signed digit multiplication routine on a ternary optical computer.

    PubMed

    Xu, Qun; Wang, Xianchao; Xu, Chao

    2017-06-01

    Multiplication with traditional electronic computers is faced with a low calculating accuracy and a long computation time delay. To overcome these problems, the modified signed digit (MSD) multiplication routine is established based on the MSD system and the carry-free adder. Also, its parallel algorithm and optimization techniques are studied in detail. With the help of a ternary optical computer's characteristics, the structured data processor is designed especially for the multiplication routine. Several ternary optical operators are constructed to perform M transformations and summations in parallel, which has accelerated the iterative process of multiplication. In particular, the routine allocates data bits of the ternary optical processor based on digits of multiplication input, so the accuracy of the calculation results can always satisfy the users. Finally, the routine is verified by simulation experiments, and the results are in full compliance with the expectations. Compared with an electronic computer, the MSD multiplication routine is not only good at dealing with large-value data and high-precision arithmetic, but also maintains lower power consumption and fewer calculating delays.

  4. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks.

    PubMed

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay p delay , whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  5. Internal combustion engine control for series hybrid electric vehicles by parallel and distributed genetic programming/multiobjective genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gladwin, D.; Stewart, P.; Stewart, J.

    2011-02-01

    This article addresses the problem of maintaining a stable rectified DC output from the three-phase AC generator in a series-hybrid vehicle powertrain. The series-hybrid prime power source generally comprises an internal combustion (IC) engine driving a three-phase permanent magnet generator whose output is rectified to DC. A recent development has been to control the engine/generator combination by an electronically actuated throttle. This system can be represented as a nonlinear system with significant time delay. Previously, voltage control of the generator output has been achieved by model predictive methods such as the Smith Predictor. These methods rely on the incorporation of an accurate system model and time delay into the control algorithm, with a consequent increase in computational complexity in the real-time controller, and as a necessity relies to some extent on the accuracy of the models. Two complementary performance objectives exist for the control system. Firstly, to maintain the IC engine at its optimal operating point, and secondly, to supply a stable DC supply to the traction drive inverters. Achievement of these goals minimises the transient energy storage requirements at the DC link, with a consequent reduction in both weight and cost. These objectives imply constant velocity operation of the IC engine under external load disturbances and changes in both operating conditions and vehicle speed set-points. In order to achieve these objectives, and reduce the complexity of implementation, in this article a controller is designed by the use of Genetic Programming methods in the Simulink modelling environment, with the aim of obtaining a relatively simple controller for the time-delay system which does not rely on the implementation of real time system models or time delay approximations in the controller. A methodology is presented to utilise the miriad of existing control blocks in the Simulink libraries to automatically evolve optimal control structures.

  6. Applying Kalman filtering to investigate tropospheric effects in VLBI

    NASA Astrophysics Data System (ADS)

    Soja, Benedikt; Nilsson, Tobias; Karbon, Maria; Heinkelmann, Robert; Liu, Li; Lu, Cuixian; Andres Mora-Diaz, Julian; Raposo-Pulido, Virginia; Xu, Minghui; Schuh, Harald

    2014-05-01

    Very Long Baseline Interferometry (VLBI) currently provides results, e.g., estimates of the tropospheric delays, with a delay of more than two weeks. In the future, with the coming VLBI2010 Global Observing System (VGOS) and increased usage of electronic data transfer, it is planned that the time between observations and results is decreased. This may, for instance, allow the integration of VLBI-derived tropospheric delays into numerical weather prediction models. Therefore, future VLBI analysis software packages need to be able to process the observational data autonomously in near real-time. For this purpose, we have extended the Vienna VLBI Software (VieVS) by a Kalman filter module. This presentation describes the filter and discusses its application for tropospheric studies. Instead of estimating zenith wet delays as piece-wise linear functions in a least-squares adjustment, the Kalman filter allows for more sophisticated stochastic modeling. We start with a random walk process to model the time-dependent behavior of the zenith wet delays. Other possible approaches include the stochastic model described by turbulence theory, e.g. the model by Treuhaft and Lanyi (1987). Different variance-covariance matrices of the prediction error, depending on the time of the year and the geographic latitude, have been tested. In winter and closer to the poles, lower variances and covariances are appropriate. The horizontal variations in tropospheric delays have been investigated by comparing three different strategies: assumption of a horizontally stratified troposphere, using north and south gradients modeled, e.g., as Gauss-Markov processes, and applying a turbulence model assuming correlations between observations in different azimuths. By conducting Monte-Carlo simulations of current standard VLBI networks and of future VGOS networks, the different tropospheric modeling strategies are investigated. For this purpose, we use the simulator module of VieVS which takes into account the errors due to the atomic clocks at the stations, the troposphere, and white noise processes. The simulated data as well as actual observational data from the two-week CONT11 campaign are analyzed using the Kalman filter, focusing on the tropospheric effects. The results of the different strategies are compared with solutions applying the classical least-squares method. An advantage of the Kalman filter is the possibility of easily integrating additional external information. It is expected that by including tropospheric delays from GNSS, water vapor radiometers, or ray-traced delays from numerical weather prediction models, the accuracy of the VLBI solution could be improved.

  7. Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar

    PubMed Central

    Bates, Mary E.; Simmons, James A.

    2011-01-01

    Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets. PMID:21228198

  8. Perception of echo delay is disrupted by small temporal misalignment of echo harmonics in bat sonar.

    PubMed

    Bates, Mary E; Simmons, James A

    2011-02-01

    Echolocating big brown bats emit ultrasonic frequency-modulated (FM) biosonar sounds containing two prominent downward-sweeping harmonics (FM1 and FM2) and perceive target distance from echo delay. In naturally occurring echoes, FM1 and FM2 are delayed by the same amount. Even though echoes from targets located off-axis or far away are lowpass filtered, which weakens FM2 relative to FM1, their delays remain the same. We show here that misalignment of FM2 with FM1 by only 2.6 μs is sufficient to significantly disrupt acuity, which then persists for larger misalignments up to 300 μs. However, when FM2 is eliminated entirely rather than just misaligned, acuity is effectively restored. For naturally occurring, lowpass-filtered echoes, neuronal responses to weakened FM2 are retarded relative to FM1 because of amplitude-latency trading, which misaligns the harmonics in the bat's internal auditory representations. Electronically delaying FM2 relative to FM1 mimics the retarded neuronal responses for FM2 relative to FM1 caused by amplitude-latency trading. Echoes with either electronically or physiologically misaligned harmonics are not perceived as having a clearly defined delay. This virtual collapse of delay acuity may suppress interference from off-axis or distant clutter through degradation of delay images for clutter in contrast to sharp images for nearer, frontal targets.

  9. Delay-range-dependent chaos synchronization approach under varying time-lags and delayed nonlinear coupling.

    PubMed

    Zaheer, Muhammad Hamad; Rehan, Muhammad; Mustafa, Ghulam; Ashraf, Muhammad

    2014-11-01

    This paper proposes a novel state feedback delay-range-dependent control approach for chaos synchronization in coupled nonlinear time-delay systems. The coupling between two systems is esteemed to be nonlinear subject to time-lags. Time-varying nature of both the intrinsic and the coupling delays is incorporated to broad scope of the present study for a better-quality synchronization controller synthesis. Lyapunov-Krasovskii (LK) functional is employed to derive delay-range-dependent conditions that can be solved by means of the conventional linear matrix inequality (LMI)-tools. The resultant control approach for chaos synchronization of the master-slave time-delay systems considers non-zero lower bound of the intrinsic as well as the coupling time-delays. Further, the delay-dependent synchronization condition has been established as a special case of the proposed LK functional treatment. Furthermore, a delay-range-dependent condition, independent of the delay-rate, has been provided to address the situation when upper bound of the delay-derivative is unknown. A robust state feedback control methodology is formulated for synchronization of the time-delay chaotic networks against the L2 norm bounded perturbations by minimizing the L2 gain from the disturbance to the synchronization error. Numerical simulation results are provided for the time-delay chaotic networks to show effectiveness of the proposed delay-range-dependent chaos synchronization methodologies. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Enrollment into a time sensitive clinical study in the critical care setting: results from computerized septic shock sniffer implementation.

    PubMed

    Herasevich, Vitaly; Pieper, Matthew S; Pulido, Juan; Gajic, Ognjen

    2011-01-01

    Recruitment of patients into time sensitive clinical trials in intensive care units (ICU) poses a significant challenge. Enrollment is limited by delayed recognition and late notification of research personnel. The objective of the present study was to evaluate the effectiveness of the implementation of electronic screening (septic shock sniffer) regarding enrollment into a time sensitive (24 h after onset) clinical study of echocardiography in severe sepsis and septic shock. We developed and tested a near-real time computerized alert system, the septic shock sniffer, based on established severe sepsis/septic shock diagnostic criteria. A sniffer scanned patients' data in the electronic medical records and notified the research coordinator on call through an institutional paging system of potentially eligible patients. The performance of the septic shock sniffer was assessed. The septic shock sniffer performed well with a positive predictive value of 34%. Electronic screening doubled enrollment, with 68 of 4460 ICU admissions enrolled during the 9 months after implementation versus 37 of 4149 ICU admissions before sniffer implementation (p<0.05). Efficiency was limited by study coordinator availability (not available at nights or weekends). Automated electronic medical records screening improves the efficiency of enrollment and should be a routine tool for the recruitment of patients into time sensitive clinical trials in the ICU setting.

  11. Enrollment into a time sensitive clinical study in the critical care setting: results from computerized septic shock sniffer implementation

    PubMed Central

    Pieper, Matthew S; Pulido, Juan; Gajic, Ognjen

    2011-01-01

    Objective Recruitment of patients into time sensitive clinical trials in intensive care units (ICU) poses a significant challenge. Enrollment is limited by delayed recognition and late notification of research personnel. The objective of the present study was to evaluate the effectiveness of the implementation of electronic screening (septic shock sniffer) regarding enrollment into a time sensitive (24 h after onset) clinical study of echocardiography in severe sepsis and septic shock. Design We developed and tested a near-real time computerized alert system, the septic shock sniffer, based on established severe sepsis/septic shock diagnostic criteria. A sniffer scanned patients' data in the electronic medical records and notified the research coordinator on call through an institutional paging system of potentially eligible patients. Measurement The performance of the septic shock sniffer was assessed. Results The septic shock sniffer performed well with a positive predictive value of 34%. Electronic screening doubled enrollment, with 68 of 4460 ICU admissions enrolled during the 9 months after implementation versus 37 of 4149 ICU admissions before sniffer implementation (p<0.05). Efficiency was limited by study coordinator availability (not available at nights or weekends). Conclusions Automated electronic medical records screening improves the efficiency of enrollment and should be a routine tool for the recruitment of patients into time sensitive clinical trials in the ICU setting. PMID:21508415

  12. Downhole delay assembly for blasting with series delay

    DOEpatents

    Ricketts, Thomas E.

    1982-01-01

    A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

  13. Parenting Predictors of Delay Inhibition in Socioeconomically Disadvantaged Preschoolers

    PubMed Central

    Merz, Emily C.; Landry, Susan H.; Zucker, Tricia A.; Barnes, Marcia A.; Assel, Michael; Taylor, Heather B.; Lonigan, Christopher J.; Phillips, Beth M.; Clancy-Menchetti, Jeanine; Eisenberg, Nancy; Spinrad, Tracy L.; Valiente, Carlos; de Villiers, Jill; Consortium, the School Readiness Research

    2016-01-01

    This study examined longitudinal associations between specific parenting factors and delay inhibition in socioeconomically disadvantaged preschoolers. At Time 1, parents and 2- to 4-year-old children (mean age = 3.21 years; N = 247) participated in a videotaped parent-child free play session, and children completed delay inhibition tasks (gift delay-wrap, gift delay-bow, and snack delay tasks). Three months later, at Time 2, children completed the same set of tasks. Parental responsiveness was coded from the parent-child free play sessions, and parental directive language was coded from transcripts of a subset of 127 of these sessions. Structural equation modeling was used, and covariates included age, gender, language skills, parental education, and Time 1 delay inhibition. Results indicated that in separate models, Time 1 parental directive language was significantly negatively associated with Time 2 delay inhibition, and Time 1 parental responsiveness was significantly positively associated with Time 2 delay inhibition. When these parenting factors were entered simultaneously, Time 1 parental directive language significantly predicted Time 2 delay inhibition whereas Time 1 parental responsiveness was no longer significant. Findings suggest that parental language that modulates the amount of autonomy allotted the child may be an important predictor of early delay inhibition skills. PMID:27833461

  14. Mobile technology habits: patterns of association among device usage, intertemporal preference, impulse control, and reward sensitivity.

    PubMed

    Wilmer, Henry H; Chein, Jason M

    2016-10-01

    Mobile electronic devices are playing an increasingly pervasive role in our daily activities. Yet, there has been very little empirical research investigating how mobile technology habits might relate to individual differences in cognition and affect. The research presented in this paper provides evidence that heavier investment in mobile devices is correlated with a relatively weaker tendency to delay gratification (as measured by a delay discounting task) and a greater inclination toward impulsive behavior (i.e., weaker impulse control, assessed behaviorally and through self-report) but is not related to individual differences in sensitivity to reward. Analyses further demonstrated that individual variation in impulse control mediates the relationship between mobile technology usage and delay of gratification. Although based on correlational results, these findings lend some backing to concerns that increased use of portable electronic devices could have negative impacts on impulse control and the ability to appropriately valuate delayed rewards.

  15. A liquid lens switching-based motionless variable fiber-optic delay line

    NASA Astrophysics Data System (ADS)

    Khwaja, Tariq Shamim; Reza, Syed Azer; Sheikh, Mumtaz

    2018-05-01

    We present a Variable Fiber-Optic Delay Line (VFODL) module capable of imparting long variable delays by switching an input optical/RF signal between Single Mode Fiber (SMF) patch cords of different lengths through a pair of Electronically Controlled Tunable Lenses (ECTLs) resulting in a polarization-independent operation. Depending on intended application, the lengths of the SMFs can be chosen accordingly to achieve the desired VFODL operation dynamic range. If so desired, the state of the input signal polarization can be preserved with the use of commercially available polarization-independent ECTLs along with polarization-maintaining SMFs (PM-SMFs), resulting in an output polarization that is identical to the input. An ECTL-based design also improves power consumption and repeatability. The delay switching mechanism is electronically-controlled, involves no bulk moving parts, and can be fully-automated. The VFODL module is compact due to the use of small optical components and SMFs that can be packaged compactly.

  16. Influence analysis of electronically and vibrationally excited particles on the ignition of methane and hydrogen under the conditions of a gas turbine engine

    NASA Astrophysics Data System (ADS)

    Deminskii, M. A.; Konina, K. M.; Potapkin, B. V.

    2018-03-01

    The vibronic and electronic energy relaxation phenomena in the specific conditions of a gas turbine engine were investigated in this paper. The plasma-chemical mechanism has been augmented with the results of recent investigations of the processes that involve electronically and vibrationally excited species. The updated mechanism was employed for the computer simulation of plasma-assisted combustion of hydrogen-air and methane-air mixtures under high pressure and in the range of initial temperatures T  =  500-900 K. The updated mechanism was verified using the experimental data. The influence of electronically excited nitrogen on the ignition delay time was analyzed. The rate coefficient of the vibration-vibration exchange between N2 and HO2 was calculated as well as the rate coefficient of HO2 decomposition.

  17. Circuit for echo and noise suppression of accoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, Douglas S.; Scott, Douglas D.

    1993-01-01

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output.

  18. Distributed Beam Former for Distributed-Aperture Electronically Steered Antennas

    DTIC Science & Technology

    2006-11-01

    of planar or conformal aperture, it will be replaced by a distributed aperture configuration with a base-band digital network that is used to combine...beam forming network that can be designed with pre-set scanning directions. The beam former for this stage can be realized using a printed Butler...matrix (Bona et al, 2002; Neron and Delisle, 2005), a printed Rotman lens (Kilic and Dahlstrom, 2005) or other switched time delay system. The

  19. A space- and time-resolved single photon counting detector for fluorescence microscopy and spectroscopy

    PubMed Central

    Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.

    2017-01-01

    We have recently developed a wide-field photon-counting detector having high-temporal and high-spatial resolutions and capable of high-throughput (the H33D detector). Its design is based on a 25 mm diameter multi-alkali photocathode producing one photo electron per detected photon, which are then multiplied up to 107 times by a 3-microchannel plate stack. The resulting electron cloud is proximity focused on a cross delay line anode, which allows determining the incident photon position with high accuracy. The imaging and fluorescence lifetime measurement performances of the H33D detector installed on a standard epifluorescence microscope will be presented. We compare them to those of standard single-molecule detectors such as single-photon avalanche photodiode (SPAD) or electron-multiplying camera using model samples (fluorescent beads, quantum dots and live cells). Finally, we discuss the design and applications of future generation of H33D detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:29479130

  20. Electronic Combat Hardware-in-the-Loop Testing in an Open Air Environment

    DTIC Science & Technology

    1994-09-01

    APQ- 126 (F-111) Gun Dish Squat Eye ANAWG-9 (F-14) Grill Pan Straight Flush I-Hawk Hawk Screech Sun Visor Head Light Tall King High Fix Team Work High...the required delay to the IF, the SPCs contain a Teledyne Microwave Bulk Acoustic Wave (BAW) delay line as well as a Coherent Variable Delay Unit

  1. Time-delayed feedback control of diffusion in random walkers.

    PubMed

    Ando, Hiroyasu; Takehara, Kohta; Kobayashi, Miki U

    2017-07-01

    Time delay in general leads to instability in some systems, while specific feedback with delay can control fluctuated motion in nonlinear deterministic systems to a stable state. In this paper, we consider a stochastic process, i.e., a random walk, and observe its diffusion phenomenon with time-delayed feedback. As a result, the diffusion coefficient decreases with increasing delay time. We analytically illustrate this suppression of diffusion by using stochastic delay differential equations and justify the feasibility of this suppression by applying time-delayed feedback to a molecular dynamics model.

  2. The influence of micro-vibration on space-borne Fourier transform spectrometers

    NASA Astrophysics Data System (ADS)

    Bai, Shaojun; Hou, Lizhou; Ke, Junyu

    2014-11-01

    The space-borne Fourier Transform Spectrometers (FTS) are widely used for atmospheric studies and planetary explorations. An adapted version of the classical Michelson interferometer have succeeded in several space missions, which utilized a rotating arm carrying a pair of cube corner retro-reflectors to produce a variable optical path difference (OPD), and a metrology laser source to generate the trigger signals. One characteristic of this kind of FTS is that it is highly sensitive to micro-vibration disturbances. However, a variety of mechanical disturbances are present as the satellite is in orbit, such as flying wheels, pointing mechanisms and cryocoolers. Therefore, this paper investigates the influence of micro-vibration on the space-borne FTS. Firstly, the interferogram of metrology laser under harmonic disturbances is analyzed. The results show that the zero crossings of interferogram shift periodically, and it gives rise to ghost lines in the retrieved spectra. The amplitudes of ghost lines increase rapidly with the increasing of micro-vibration levels. As to the system that employs the constant OPD sampling strategy, the effect of zero-crossing shifting is reduced significantly. Nevertheless, the time delays between the reference signal and the main signal acquisition are inevitable because of the electronic circuit. Thus, the effect of time delays on the interferogram and eventually on the spectra is simulated. The analysis suggests that the amplitudes of ghost line in spectra increase with the increasing of time delay intervals.

  3. Vaccination coverage according to doses received and timely administered based on an electronic immunization registry, Araraquara-SP, Brazil, 2012-2014.

    PubMed

    Tauil, Márcia de Cantuária; Sato, Ana Paula Sayuri; Costa, Ângela Aparecida; Inenami, Marta; Ferreira, Vinícius Leati de Rossi; Waldman, Eliseu Alves

    2017-01-01

    to describe vaccine coverage by type of vaccine at 12 and 24 months of age. descriptive cohort study with children born in 2012, living in Araraquara-SP, Brazil, recorded in the Information System on Live Births (Sinasc); a manual linkage of Sinasc data with an electronic immunization registry (EIR) was performed; the assessment was based on vaccination status according to São Paulo State recommendations, and on doses received and timely administered. 2,740 children were registered on Sinasc and 99.6% of them were included into EIR; among the 2,612 (95.3%) children studied, the triple viral vaccine (measles, mumps and rubella) had the lowest coverage at 12 months for received dose (74.8%) and at 24 months for timely vaccination (53.5%) and received doses (88.0%). coverage was higher than 90% for most vaccines; however, delayed vaccination was observed, which indicates the need to intensify actions aimed at timely vaccination.

  4. The Induction of Chaos in Electronic Circuits Final Report-October 1, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.M.Wheat, Jr.

    2003-04-01

    This project, now known by the name ''Chaos in Electronic Circuits,'' was originally tasked as a two-year project to examine various ''fault'' or ''non-normal'' operational states of common electronic circuits with some focus on determining the feasibility of exploiting these states. Efforts over the two-year duration of this project have been dominated by the study of the chaotic behavior of electronic circuits. These efforts have included setting up laboratory space and hardware for conducting laboratory tests and experiments, acquiring and developing computer simulation and analysis capabilities, conducting literature surveys, developing test circuitry and computer models to exercise and test ourmore » capabilities, and experimenting with and studying the use of RF injection as a means of inducing chaotic behavior in electronics. An extensive array of nonlinear time series analysis tools have been developed and integrated into a package named ''After Acquisition'' (AA), including capabilities such as Delayed Coordinate Embedding Mapping (DCEM), Time Resolved (3-D) Fourier Transform, and several other phase space re-creation methods. Many computer models have been developed for Spice and for the ATP (Alternative Transients Program), modeling the several working circuits that have been developed for use in the laboratory. And finally, methods of induction of chaos in electronic circuits have been explored.« less

  5. Improved survival in patients enrolled promptly into remote monitoring following cardiac implantable electronic device implantation.

    PubMed

    Mittal, Suneet; Piccini, Jonathan P; Snell, Jeff; Prillinger, Julie B; Dalal, Nirav; Varma, Niraj

    2016-08-01

    Guidelines advocate remote monitoring (RM) in patients with a cardiac implantable electronic device (CIED). However, it is not known when RM should be initiated. We hypothesized that prompt initiation of RM (within 91 days of implant) is associated with improved survival compared to delayed initiation. This retrospective, national, observational cohort study evaluated patients receiving new implants of market-released St. Jude Medical™ pacemakers (PM), implantable cardioverter defibrillators (ICD), and cardiac resynchronization therapy (CRT) devices. Patients were assigned to one of two groups: an "RM Prompt" group, in which RM was initiated within 91 days of implant; and an "RM Delayed" group, in which RM was initiated >91 days but ≤365 days of implant. The primary endpoint was all-cause mortality. The cohort included 106,027 patients followed for a mean of 2.6 ± 0.9 years. Overall, 47,014 (44 %) patients had a PM, 31,889 (30 %) patients had an ICD, 24,005 (23 %) patients had a CRT-D, and 3119 (3 %) patients had a CRT-P. Remote monitoring was initiated promptly (median 4 weeks [IQR 2, 8 weeks]) in 66,070 (62 %) patients; in the other 39,957 (38 %) patients, RM initiation was delayed (median 24 weeks [IQR 18, 34 weeks]). In comparison to delayed initiation, prompt initiation of RM was associated with a lower mortality rate (4023 vs. 4679 per 100,000 patient-years, p < 0.001) and greater adjusted survival (HR 1.18 [95 % CI 1.13-1.22], p < 0.001). Our data, for the first time, show improved survival in patients enrolled promptly into RM following CIED implantation. This advantage was observed across all CIED device types.

  6. Effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks

    NASA Astrophysics Data System (ADS)

    Sun, Xiaojuan; Perc, Matjaž; Kurths, Jürgen

    2017-05-01

    In this paper, we study effects of partial time delays on phase synchronization in Watts-Strogatz small-world neuronal networks. Our focus is on the impact of two parameters, namely the time delay τ and the probability of partial time delay pdelay, whereby the latter determines the probability with which a connection between two neurons is delayed. Our research reveals that partial time delays significantly affect phase synchronization in this system. In particular, partial time delays can either enhance or decrease phase synchronization and induce synchronization transitions with changes in the mean firing rate of neurons, as well as induce switching between synchronized neurons with period-1 firing to synchronized neurons with period-2 firing. Moreover, in comparison to a neuronal network where all connections are delayed, we show that small partial time delay probabilities have especially different influences on phase synchronization of neuronal networks.

  7. Effect of time delay on surgical performance during telesurgical manipulation.

    PubMed

    Fabrizio, M D; Lee, B R; Chan, D Y; Stoianovici, D; Jarrett, T W; Yang, C; Kavoussi, L R

    2000-03-01

    Telementoring allows a less experienced surgeon to benefit from an expert surgical consultation, reducing cost, travel, and the learning curve associated with new procedures. However, there are several technical limitations that affect practical applications. One potentially serious problem is the time delay that occurs any time data are transferred across long distances. To date, the effect of time delay on surgical performance has not been studied. A two-phase trial was designed to examine the effect of time delay on surgical performance. In the first phase, a series of tasks was performed, and the numbers of robotic movements required for completion was counted. Programmed incremental time delays were made in audiovisual acquisition and robotic controls. The number of errors made while performing each task at various time delay intervals was noted. In the second phase, a remote surgeon in Baltimore performed the tasks 9000 miles away in Singapore. The number of errors made was recorded. As the time delay increased, the number of operator errors increased. The accuracy needed to perform remote robotic procedures was diminished as the time delay increased. A learning curve did exist for each task, but as the time delay interval increased, it took longer to complete the task. Time delay does affect surgical performance. There is an acceptable delay of <700 msec in which surgeons can compensate for this phenomenon. Clinical studies will be needed to evaluate the true impact of time delay.

  8. Finite time synchronization of memristor-based Cohen-Grossberg neural networks with mixed delays.

    PubMed

    Chen, Chuan; Li, Lixiang; Peng, Haipeng; Yang, Yixian

    2017-01-01

    Finite time synchronization, which means synchronization can be achieved in a settling time, is desirable in some practical applications. However, most of the published results on finite time synchronization don't include delays or only include discrete delays. In view of the fact that distributed delays inevitably exist in neural networks, this paper aims to investigate the finite time synchronization of memristor-based Cohen-Grossberg neural networks (MCGNNs) with both discrete delay and distributed delay (mixed delays). By means of a simple feedback controller and novel finite time synchronization analysis methods, several new criteria are derived to ensure the finite time synchronization of MCGNNs with mixed delays. The obtained criteria are very concise and easy to verify. Numerical simulations are presented to demonstrate the effectiveness of our theoretical results.

  9. Probing electronic binding potentials with attosecond photoelectron wavepackets

    NASA Astrophysics Data System (ADS)

    Kiesewetter, D.; Jones, R. R.; Camper, A.; Schoun, S. B.; Agostini, P.; Dimauro, L. F.

    2018-01-01

    The central goal of attosecond science is to visualize, understand and ultimately control electron dynamics in matter over the fastest relevant timescales. To date, numerous schemes have demonstrated exquisite temporal resolution, on the order of ten attoseconds, in measurements of the response of photo-excited electrons to time-delayed probes. However, attributing this response to specific dynamical mechanisms is difficult, requiring guidance from advanced calculations. Here we show that energy transfer between an oscillating field and low-energy attosecond photoelectron wavepackets directly provides coarse-grained information on the effective binding potential from which the electrons are liberated. We employ a dense extreme ultraviolet (XUV) harmonic comb to photoionize He, Ne and Ar atoms and record the electron spectra as a function of the phase of a mid-infrared dressing field. The amplitude and phase of the resulting interference modulations in the electron spectra reveal the average momentum and change in momentum of the electron wavepackets during the first quarter-period of the dressing field after their creation, reflecting the corresponding coarse characteristics of the binding potential.

  10. Attosecond control of orbital parity mix interferences and the relative phase of even and odd harmonics in an attosecond pulse train.

    PubMed

    Laurent, G; Cao, W; Li, H; Wang, Z; Ben-Itzhak, I; Cocke, C L

    2012-08-24

    We experimentally demonstrate that atomic orbital parity mix interferences can be temporally controlled on an attosecond time scale. Electron wave packets are formed by ionizing argon gas with a comb of odd and even high-order harmonics, in the presence of a weak infrared field. Consequently, a mix of energy-degenerate even and odd parity states is fed in the continuum by one- and two-photon transitions. These interfere, leading to an asymmetric electron emission along the polarization vector. The direction of the emission can be controlled by varying the time delay between the comb and infrared field pulses. We show that such asymmetric emission provides information on the relative phase of consecutive odd and even order harmonics in the attosecond pulse train.

  11. Feasibility study on the use of uranium in photoneutron target and BSA optimization for Linac based BNCT

    NASA Astrophysics Data System (ADS)

    Rahmani, Faezeh; Shahriari, Majid; Minoochehr, Abdolhamid; Nedaie, Hasan

    2011-06-01

    A hybrid photoneutron target including natural uranium has been studied for a 20 MeV linear electron accelerator (Linac) based Boron Neutron Capture Therapy (BNCT) facility. In this study the possibility of using uranium to increase the neutron intensity has been investigated by focusing on the time dependence behavior of the build-up and decay of the delayed gamma rays from fission fragments and activation products through photo-fission reactions in the BSA (Beam Shaping Assembly) configuration design. Delayed components of neutrons and photons were calculated. The obtained BSA parameters are in agreement with the IAEA recommendation and compared to the hybrid photoneutron target without U. The epithermal flux in the suggested design is 2.67E9 (n/cm 2s/mA).

  12. High temporal resolution delayed analysis of clinical microdialysate streams† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7an01209h

    PubMed Central

    Gowers, S. A. N.; Hamaoui, K.; Cunnea, P.; Anastasova, S.; Curto, V. F.; Vadgama, P.; Yang, G.-Z.; Papalois, V.; Drakakis, E. M.; Fotopoulou, C.; Weber, S. G.

    2018-01-01

    This paper presents the use of tubing to store clinical microdialysis samples for delayed analysis with high temporal resolution, offering an alternative to traditional discrete offline microdialysis sampling. Samples stored in this way were found to be stable for up to 72 days at –80 °C. Examples of how this methodology can be applied to glucose and lactate measurement in a wide range of in vivo monitoring experiments are presented. This paper presents a general model, which allows for an informed choice of tubing parameters for a given storage time and flow rate avoiding high back pressure, which would otherwise cause the microdialysis probe to leak, while maximising temporal resolution. PMID:29336454

  13. Controller Synthesis for Periodically Forced Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Basso, Michele; Genesio, Roberto; Giovanardi, Lorenzo

    Delayed feedback controllers are an appealing tool for stabilization of periodic orbits in chaotic systems. Despite their conceptual simplicity, specific and reliable design procedures are difficult to obtain, partly also because of their inherent infinite-dimensional structure. This chapter considers the use of finite dimensional linear time invariant controllers for stabilization of periodic solutions in a general class of sinusoidally forced nonlinear systems. For such controllers — which can be interpreted as rational approximations of the delayed ones — we provide a computationally attractive synthesis technique based on Linear Matrix Inequalities (LMIs), by mixing results concerning absolute stability of nonlinear systems and robustness of uncertain linear systems. The resulting controllers prove to be effective for chaos suppression in electronic circuits and systems, as shown by two different application examples.

  14. Time-delayed chameleon: Analysis, synchronization and FPGA implementation

    NASA Astrophysics Data System (ADS)

    Rajagopal, Karthikeyan; Jafari, Sajad; Laarem, Guessas

    2017-12-01

    In this paper we report a time-delayed chameleon-like chaotic system which can belong to different families of chaotic attractors depending on the choices of parameters. Such a characteristic of self-excited and hidden chaotic flows in a simple 3D system with time delay has not been reported earlier. Dynamic analysis of the proposed time-delayed systems are analysed in time-delay space and parameter space. A novel adaptive modified functional projective lag synchronization algorithm is derived for synchronizing identical time-delayed chameleon systems with uncertain parameters. The proposed time-delayed systems and the synchronization algorithm with controllers and parameter estimates are then implemented in FPGA using hardware-software co-simulation and the results are presented.

  15. Ultra-fast movies of thin-film laser ablation

    NASA Astrophysics Data System (ADS)

    Domke, Matthias; Rapp, Stephan; Schmidt, Michael; Huber, Heinz P.

    2012-11-01

    Ultra-short-pulse laser irradiation of thin molybdenum films from the glass substrate side initiates an intact Mo disk lift off free from thermal effects. For the investigation of the underlying physical effects, ultra-fast pump-probe microscopy is used to produce stop-motion movies of the single-pulse ablation process, initiated by a 660-fs laser pulse. The ultra-fast dynamics in the femtosecond and picosecond ranges are captured by stroboscopic illumination of the sample with an optically delayed probe pulse of 510-fs duration. The nanosecond and microsecond delay ranges of the probe pulse are covered by an electronically triggered 600-ps laser. Thus, the setup enables an observation of general laser ablation processes from the femtosecond delay range up to the final state. A comparison of time- and space-resolved observations of film and glass substrate side irradiation of a 470-nm molybdenum layer reveals the driving mechanisms of the Mo disk lift off initiated by glass-side irradiation. Observations suggest that a phase explosion generates a liquid-gas mixture in the molybdenum/glass interface about 10 ps after the impact of the pump laser pulse. Then, a shock wave and gas expansion cause the molybdenum layer to bulge, while the enclosed liquid-gas mixture cools and condenses at delay times in the 100-ps range. The bulging continues for approximately 20 ns, when an intact Mo disk shears and lifts off at a velocity of above 70 m/s. As a result, the remaining hole is free from thermal effects.

  16. Prehospital Delay, Precipitants of Admission, and Length of Stay in Patients With Exacerbation of Heart Failure.

    PubMed

    Wu, Jia-Rong; Lee, Kyoung Suk; Dekker, Rebecca D; Welsh, J Darlene; Song, Eun Kyeung; Abshire, Demetrius A; Lennie, Terry A; Moser, Debra K

    2016-12-01

    Factors that precipitate hospitalization for exacerbation of heart failure provide targets for intervention to prevent hospitalizations. To describe demographic, clinical, behavioral, and psychosocial factors that precipitate admission for exacerbation of heart failure and assess the relationships between precipitating factors and delay before hospitalization, and between delay time and length of hospital stay. All admissions in 12 full months to a tertiary medical center were reviewed if the patient had a discharge code related to heart failure. Data on confirmed admissions for exacerbation of heart failure were included in the study. Electronic and paper medical records were reviewed to identify how long it took patients to seek care after they became aware of signs and symptoms, factors that precipitated exacerbation, and discharge details. Exacerbation of heart failure was confirmed in 482 patients. Dyspnea was the most common symptom (92.5% of patients), and 20.3% of patients waited until they were severely dyspneic before seeking treatment. The most common precipitating factor was poor medication adherence. Delay times from symptom awareness to seeking treatment were shorter in patients who had a recent change in medicine for heart failure, renal failure, or poor medication adherence and longer in patients with depressive symptoms and hypertension. Depressive symptoms, recent change in heart failure medicine, renal failure, poor medication adherence, and hypertension are risk factors for hospitalizations for exacerbation of heart failure. ©2016 American Association of Critical-Care Nurses.

  17. Femtosecond profiling of shaped x-ray pulses

    NASA Astrophysics Data System (ADS)

    Hoffmann, M. C.; Grguraš, I.; Behrens, C.; Bostedt, C.; Bozek, J.; Bromberger, H.; Coffee, R.; Costello, J. T.; DiMauro, L. F.; Ding, Y.; Doumy, G.; Helml, W.; Ilchen, M.; Kienberger, R.; Lee, S.; Maier, A. R.; Mazza, T.; Meyer, M.; Messerschmidt, M.; Schorb, S.; Schweinberger, W.; Zhang, K.; Cavalieri, A. L.

    2018-03-01

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fully suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. This achievement completes an important step toward future x-ray pulse shaping techniques.

  18. Splashing transients of 2D plasmons launched by swift electrons

    DOE PAGES

    Lin, Xiao; Kaminer, Ido; Shi, Xihang; ...

    2017-01-27

    Launching of plasmons by swift electrons has long been used in electron energy–loss spectroscopy (EELS) to investigate the plasmonic properties of ultrathin, or two-dimensional (2D), electron systems. However, the question of how a swift electron generates plasmons in space and time has never been answered. We address this issue by calculating and demonstrating the spatial-temporal dynamics of 2D plasmon generation in graphene. We predict a jet-like rise of excessive charge concentration that delays the generation of 2D plasmons in EELS, exhibiting an analog to the hydrodynamic Rayleigh jet in a splashing phenomenon before the launching of ripples. The photon radiation,more » analogous to the splashing sound, accompanies the plasmon emission and can be understood as being shaken off by the Rayleigh jet–like charge concentration. Considering this newly revealed process, we argue that previous estimates on the yields of graphene plasmons in EELS need to be reevaluated.« less

  19. Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite

    DOE PAGES

    Luo, Liang; Men, Long; Liu, Zhaoyu; ...

    2017-06-01

    How photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Until now, the initial quantum dynamics following photoexcitation remains elusive in the hybrid perovskite system. Furthermore we reveal excitonic Rydberg states with distinct formation pathways by observing the multiple resonant, internal quantum transitions using ultrafast terahertz quasi-particle transport. Nonequilibrium emergent states evolve with a complex co-existence of excitons, carriers and phonons, where a delayed buildup of excitons under on- and off-resonant pumping conditions allows us to distinguish between the loss of electronic coherence and hot statemore » cooling processes. The nearly ~1 ps dephasing time, efficient electron scattering with discrete terahertz phonons and intermediate binding energy of ~13.5 meV in perovskites are distinct from conventional photovoltaic semiconductors. In addition to providing implications for coherent energy conversion, these are potentially relevant to the development of light-harvesting and electron-transport devices.« less

  20. Ultrafast terahertz snapshots of excitonic Rydberg states and electronic coherence in an organometal halide perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Liang; Men, Long; Liu, Zhaoyu

    How photoexcitations evolve into Coulomb-bound electron and hole pairs, called excitons, and unbound charge carriers is a key cross-cutting issue in photovoltaics and optoelectronics. Until now, the initial quantum dynamics following photoexcitation remains elusive in the hybrid perovskite system. Furthermore we reveal excitonic Rydberg states with distinct formation pathways by observing the multiple resonant, internal quantum transitions using ultrafast terahertz quasi-particle transport. Nonequilibrium emergent states evolve with a complex co-existence of excitons, carriers and phonons, where a delayed buildup of excitons under on- and off-resonant pumping conditions allows us to distinguish between the loss of electronic coherence and hot statemore » cooling processes. The nearly ~1 ps dephasing time, efficient electron scattering with discrete terahertz phonons and intermediate binding energy of ~13.5 meV in perovskites are distinct from conventional photovoltaic semiconductors. In addition to providing implications for coherent energy conversion, these are potentially relevant to the development of light-harvesting and electron-transport devices.« less

  1. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux

    NASA Astrophysics Data System (ADS)

    Nogrette, F.; Heurteau, D.; Chang, R.; Bouton, Q.; Westbrook, C. I.; Sellem, R.; Clément, D.

    2015-11-01

    We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 106 s-1 and three-dimensional reconstruction of the coordinates up to 3.2 × 106 particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of the detector to be 140(20) μm at a flux of 3 × 105 particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.

  2. Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma

    NASA Astrophysics Data System (ADS)

    Lan, Hui; Wang, Xinbing; Zuo, Duluo

    2016-09-01

    The spectral emission and plasma parameters of SnO2 plasmas have been investigated. A planar ceramic SnO2 target was irradiated by a CO2 laser with a full width at half maximum of 80 ns. The temporal behavior of the specific emission lines from the SnO2 plasma was characterized. The intensities of Sn I and Sn II lines first increased, and then decreased with the delay time. The results also showed a faster decay of Sn I atoms than that of Sn II ionic species. The temporal evolutions of the SnO2 plasma parameters (electron temperature and density) were deduced. The measured temperature and density of SnO2 plasma are 4.38 eV to 0.5 eV and 11.38×1017 cm-3 to 1.1×1017 cm-3, for delay times between 0.1 μs and 2.2 μs. We also investigated the effect of the laser pulse energy on SnO2 plasma. supported by National Natural Science Foundation of China (No. 11304235) and the Director Fund of WNLO

  3. Global Ionosphere Perturbations Monitored by the Worldwide GPS Network

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Manucci, A. T.; Lindqwister, U. J.; Pi, X.

    1996-01-01

    For the first time, measurements from the Global Positioning System (GPS) worldwide network are employed to study the global ionospheric total electron content(TEC) changes during a magnetic storm (November 26, 1994). These measurements are obtained from more than 60 world-wide GPS stations which continuously receive dual-frequency signals. Based on the delays of the signals, we have generated high resolution global ionospheric maps (GIM) of TEC at 15 minute intervals. Using a differential method comparing storm time maps with quiet time maps, we find that significant TEC increases (the positive effect ) are the major feature in the winter hemisphere during this storm (the maximum percent change relative to quiet times is about 150 percent).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk

    We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reducedmore » lifetime near the coverslip in TIR compared to epifluorescence FLIM.« less

  5. The time delay in strong gravitational lensing with Gauss-Bonnet correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Jingyun; Cheng, Hongbo, E-mail: jingyunman@mail.ecust.edu.cn, E-mail: hbcheng@ecust.edu.cn

    2014-11-01

    The time delay between two relativistic images in the strong gravitational lensing governed by Gauss-Bonnet gravity is studied. We make a complete analytical derivation of the expression of time delay in presence of Gauss-Bonnet coupling. With respect to Schwarzschild, the time delay decreases as a consequence of the shrinking of the photon sphere. As the coupling increases, the second term in the time delay expansion becomes more relevant. Thus time delay in strong limit encodes some new information about geometry in five-dimensional spacetime with Gauss-Bonnet correction.

  6. Fiber-optic delay-line stabilization of heterodyne optical signal generator and method using same

    NASA Technical Reports Server (NTRS)

    Logan, Ronald T. (Inventor)

    1997-01-01

    The present invention is a laser heterodyne frequency generator system with a stabilizer for use in the microwave and millimeter-wave frequency ranges utilizing a photonic mixer as a photonic phase detector in a stable optical fiber delay-line. Phase and frequency fluctuations of the heterodyne laser signal generators are stabilized at microwave and millimeter wave frequencies by a delay line system operating as a frequency discriminator. The present invention is free from amplifier and mixer 1/.function. noise at microwave and millimeter-wave frequencies that typically limit phase noise performance in electronic cavity stabilized electronic oscillators. Thus, 1/.function. noise due to conventional mixers is eliminated and stable optical heterodyne generation of electrical signals is achieved.

  7. Why Are Women Dying When They Reach Hospital on Time? A Systematic Review of the ‘Third Delay’

    PubMed Central

    Knight, Hannah E.; Self, Alice; Kennedy, Stephen H.

    2013-01-01

    Background The ‘three delays model’ attempts to explain delays in women accessing emergency obstetric care as the result of: 1) decision-making, 2) accessing services and 3) receipt of appropriate care once a health facility is reached. The third delay, although under-researched, is likely to be a source of considerable inequity in access to emergency obstetric care in developing countries. The aim of this systematic review was to identify and categorise specific facility-level barriers to the provision of evidence-based maternal health care in developing countries. Methods and Findings Five electronic databases were systematically searched using a 4-way strategy that combined search terms related to: 1) maternal health care; 2) maternity units; 3) barriers, and 4) developing countries. Forty-three original research articles were eligible to be included in the review. Thirty-two barriers to the receipt of timely and appropriate obstetric care at the facility level were identified and categorised into six emerging themes (Drugs and equipment; Policy and guidelines; Human resources; Facility infrastructure; Patient-related and Referral-related). Two investigators independently recorded the frequency with which barriers relating to the third delay were reported in the literature. The most commonly cited barriers were inadequate training/skills mix (86%); drug procurement/logistics problems (65%); staff shortages (60%); lack of equipment (51%) and low staff motivation (44%). Conclusions This review highlights how a focus on patient-side delays in the decision to seek care can conceal the fact that many health facilities in the developing world are still chronically under-resourced and unable to cope effectively with serious obstetric complications. We stress the importance of addressing supply-side barriers alongside demand-side factors if further reductions in maternal mortality are to be achieved. PMID:23704943

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Y.; Wang, W. X.; LeBlanc, B. P.

    In this letter, we report the first observation of the fast response of electron-scale turbulence to auxiliary heating cessation in National Spherical Torus eXperiment [Ono et al., Nucl. Fusion 40, 557 (2000)]. The observation was made in a set of RF-heated L-mode plasmas with toroidal magnetic field of 0.55 T and plasma current of 300 kA. It is observed that electron-scale turbulence spectral power (measured with a high-k collective microwave scattering system) decreases significantly following fast cessation of RF heating that occurs in less than 200 μs. The large drop in the turbulence spectral power has a short time delay of about 1–2 msmore » relative to the RF cessation and happens on a time scale of 0.5–1 ms, much smaller than the energy confinement time of about 10 ms. Power balance analysis shows a factor of about 2 decrease in electron thermal diffusivity after the sudden drop of turbulence spectral power. Measured small changes in equilibrium profiles across the RF cessation are unlikely able to explain this sudden reduction in the measured turbulence and decrease in electron thermal transport, supported by local linear stability analysis and both local and global nonlinear gyrokinetic simulations. The observations imply that nonlocal flux-driven mechanism may be important for the observed turbulence and electron thermal transport.« less

  9. An electronic safety screening process during inpatient computerized physician order entry improves the efficiency of magnetic resonance imaging exams.

    PubMed

    Schneider, Erika; Ruggieri, Paul; Fromwiller, Lauren; Underwood, Reginald; Gurland, Brooke; Yurkschatt, Cynthia; Kubiak, Kevin; Obuchowski, Nancy A

    2013-12-01

    Delays between order and magnetic resonance (MR) exam often result when using the conventional paper-based MR safety screening process. The impact of an electronic MR safety screening process imbedded in a computerized physician order entry (CPOE) system was evaluated. Retrospective chart review of 4 months of inpatient MR exam orders and reports was performed before and after implementation of electronic MR safety documentation. Time from order to MR exam completion, time from MR exam completion to final radiology report, and time from first order to final report were analyzed by exam anatomy. Length of stay (LOS) and date of service within the admission were also analyzed. We evaluated 1947 individual MR orders in 1549 patients under an institutional review board exemption and a waiver of informed consent. Implementation of the electronic safety screening process resulted in a significant decrease of 1.1 hours (95% confidence interval 1.0-1.3 hours) in the mean time between first order to final report and a nonsignificant decrease of 0.8 hour in the median time from first order to exam end. There was a 1-day reduction (P = .697) in the time from admission to the MR exam compared to the paper process. No significant change in LOS was found except in neurological intensive care patients imaged within the first 24 hours of their admission, where a mean 0.9-day decrease was found. Benefits of an electronic process for MR safety screening include enabling inpatients to have decreased time to MR exams, thus enabling earlier diagnosis and treatment and reduced LOS. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  10. Electronic Detection of Delayed Test Result Follow-Up in Patients with Hypothyroidism.

    PubMed

    Meyer, Ashley N D; Murphy, Daniel R; Al-Mutairi, Aymer; Sittig, Dean F; Wei, Li; Russo, Elise; Singh, Hardeep

    2017-07-01

    Delays in following up abnormal test results are a common problem in outpatient settings. Surveillance systems that use trigger tools to identify delayed follow-up can help reduce missed opportunities in care. To develop and test an electronic health record (EHR)-based trigger algorithm to identify instances of delayed follow-up of abnormal thyroid-stimulating hormone (TSH) results in patients being treated for hypothyroidism. We developed an algorithm using structured EHR data to identify patients with hypothyroidism who had delayed follow-up (>60 days) after an abnormal TSH. We then retrospectively applied the algorithm to a large EHR data warehouse within the Department of Veterans Affairs (VA), on patient records from two large VA networks for the period from January 1, 2011, to December 31, 2011. Identified records were reviewed to confirm the presence of delays in follow-up. During the study period, 645,555 patients were seen in the outpatient setting within the two networks. Of 293,554 patients with at least one TSH test result, the trigger identified 1250 patients on treatment for hypothyroidism with elevated TSH. Of these patients, 271 were flagged as potentially having delayed follow-up of their test result. Chart reviews confirmed delays in 163 of the 271 flagged patients (PPV = 60.1%). An automated trigger algorithm applied to records in a large EHR data warehouse identified patients with hypothyroidism with potential delays in thyroid function test results follow-up. Future prospective application of the TSH trigger algorithm can be used by clinical teams as a surveillance and quality improvement technique to monitor and improve follow-up.

  11. Photoinduced Electron Transfer and Hole Migration in Nanosized Helical Aromatic Oligoamide Foldamers.

    PubMed

    Li, Xuesong; Markandeya, Nagula; Jonusauskas, Gediminas; McClenaghan, Nathan D; Maurizot, Victor; Denisov, Sergey A; Huc, Ivan

    2016-10-07

    A series of photoactive triads have been synthesized and investigated in order to elucidate photoinduced electron transfer and hole migration mechanism across nanosized, rigid helical foldamers. The triads are comprised of a central helical oligoamide foldamer bridge with 9, 14, 18, 19, or 34 8-amino-2-quinolinecarboxylic acid repeat units, and of two chromophores, an N-terminal oligo(para-phenylenevinylene) electron donor and a C-terminal perylene bis-imide electron acceptor. Time-resolved fluorescence and transient absorption spectroscopic studies showed that, following photoexcitation of the electron acceptor, fast electron transfer occurs initially from the oligoquinoline bridge to the acceptor chromophore on the picosecond time scale. The oligo(para-phenylenevinylene) electron donor is oxidized after a time delay during which the hole migrates across the foldamer from the acceptor to the donor. The charge separated state that is finally generated was found to be remarkably long-lived (>80 μs). While the initial charge injection rate is largely invariant for all foldamer lengths (ca. 60 ps), the subsequent hole transfer to the donor varies from 1 × 10 9 s -1 for the longest sequence to 17 × 10 9 s -1 for the shortest. In all cases, charge transfer is very fast considering the foldamer length. Detailed analysis of the process in different media and at varying temperatures is consistent with a hopping mechanism of hole transport through the foldamer helix, with individual hops occurring on the subpicosecond time scale (k ET = 2.5 × 10 12 s -1 in CH 2 Cl 2 ). This work demonstrates the possibility of fast long-range hole transfer over 300 Å (through bonds) across a synthetic modular bridge, an achievement that had been previously observed principally with DNA structures.

  12. Circuit for echo and noise suppression of acoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, D.S.; Scott, D.D.

    1993-12-28

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.

  13. Ionospheric TEC Weather Map Over South America

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Wrasse, C. M.; Denardini, C. M.; Pádua, M. B.; de Paula, E. R.; Costa, S. M. A.; Otsuka, Y.; Shiokawa, K.; Monico, J. F. Galera; Ivo, A.; Sant'Anna, N.

    2016-11-01

    Ionospheric weather maps using the total electron content (TEC) monitored by ground-based Global Navigation Satellite Systems (GNSS) receivers over South American continent, TECMAP, have been operationally produced by Instituto Nacional de Pesquisas Espaciais's Space Weather Study and Monitoring Program (Estudo e Monitoramento Brasileiro de Clima Especial) since 2013. In order to cover the whole continent, four GNSS receiver networks, (Rede Brasileiro de Monitoramento Contínuo) RBMC/Brazilian Institute for Geography and Statistics, Low-latitude Ionospheric Sensor Network, International GNSS Service, and Red Argentina de Monitoreo Satelital Continuo, in total 140 sites, have been used. TECMAPs with a time resolution of 10 min are produced in 12 h time delay. Spatial resolution of the map is rather low, varying between 50 and 500 km depending on the density of the observation points. Large day-to-day variabilities of the equatorial ionization anomaly have been observed. Spatial gradient of TEC from the anomaly trough (total electron content unit, 1 TECU = 1016 el m-2 (TECU) <10) to the crest region (TECU > 80) causes a large ionospheric range delay in the GNSS positioning system. Ionospheric plasma bubbles, their seeding and development, could be monitored. This plasma density (spatial and temporal) variability causes not only the GNSS-based positioning error but also radio wave scintillations. Monitoring of these phenomena by TEC mapping becomes an important issue for space weather concern for high-technology positioning system and telecommunication.

  14. An Analysis on the TEC Variability and Ionospheric Scintillation at Los Alamos, New Mexico Derived from FORTE-Received LAPP Signals

    NASA Astrophysics Data System (ADS)

    Huang, Z.; Roussel-Dupre, R.

    2003-12-01

    The total electron content (TEC) of ionosphere and its electron density irregularities (scintillation) have effects of degradation and disruption on radio signals passed between ground stations and orbiting man-made satellites. With the rapid increase in operational reliance on UHF/VHF satellite communication, it is desirable to obtain understandings of ionosphere TEC variability and scintillation characteristics to improve our ability of predicting satellite communication outages. In this work, data collected from FORTE satellite received LAPP (Los Alamos Portable Pulser) signals during 1998-2002 are used to derive TEC and ionospheric scintillation index at Los Alamos, New Mexico. To characterize in-situ TEC variability at Los Alamos, the FORTE-LAPP derived TECs are analyzed against diurnal, seasonal, solar activity, magnetic storm, and stratospheric warming. The results are also compared with the TEC estimates from the Los Alamos ionospheric transfer function (ITF) implemented with the global ionospheric models (IRI, PIM), and GPS -derived TEC maps. The FORTE-LAPP signals are also analyzed against two important measures of the effect of scintillation on broadband signals, the mean time delay and the time delay jitter. The results are used to examine coherence frequency bandwidth and compared with the predictions from a global scintillation model (WBMOD). The FORTE-LAPP analyzed and WBMOD predicted scintillation characteristics are used to investigate temporal and seasonal behavior of scintillation at Los Alamos.

  15. Modeling the global positioning system signal propagation through the ionosphere

    NASA Technical Reports Server (NTRS)

    Bassiri, S.; Hajj, G. A.

    1992-01-01

    Based on realistic modeling of the electron density of the ionosphere and using a dipole moment approximation for the Earth's magnetic field, one is able to estimate the effect of the ionosphere on the Global Positioning System (GPS) signal for a ground user. The lowest order effect, which is on the order of 0.1-100 m of group delay, is subtracted out by forming a linear combination of the dual frequencies of the GPS signal. One is left with second- and third-order effects that are estimated typically to be approximately 0-2 cm and approximately 0-2 mm at zenith, respectively, depending on the geographical location, the time of day, the time of year, the solar cycle, and the relative geometry of the magnetic field and the line of sight. Given the total electron content along a line of sight, the authors derive an approximation to the second-order term which is accurate to approximately 90 percent within the magnetic dipole moment model; this approximation can be used to reduce the second-order term to the millimeter level, thus potentially improving precise positioning in space and on the ground. The induced group delay, or phase advance, due to second- and third-order effects is examined for two ground receivers located at equatorial and mid-latitude regions tracking several GPS satellites.

  16. A HWIL test facility of infrared imaging laser radar using direct signal injection

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Lu, Wei; Wang, Chunhui; Wang, Qi

    2005-01-01

    Laser radar has been widely used these years and the hardware-in-the-loop (HWIL) testing of laser radar become important because of its low cost and high fidelity compare with On-the-Fly testing and whole digital simulation separately. Scene generation and projection two key technologies of hardware-in-the-loop testing of laser radar and is a complicated problem because the 3D images result from time delay. The scene generation process begins with the definition of the target geometry and reflectivity and range. The real-time 3D scene generation computer is a PC based hardware and the 3D target models were modeled using 3dsMAX. The scene generation software was written in C and OpenGL and is executed to extract the Z-buffer from the bit planes to main memory as range image. These pixels contain each target position x, y, z and its respective intensity and range value. Expensive optical injection technologies of scene projection such as LDP array, VCSEL array, DMD and associated scene generation is ongoing. But the optical scene projection is complicated and always unaffordable. In this paper a cheaper test facility was described that uses direct electronic injection to provide rang images for laser radar testing. The electronic delay and pulse shaping circuits inject the scenes directly into the seeker's signal processing unit.

  17. Improved estimation of Mars ionosphere total electron content

    NASA Astrophysics Data System (ADS)

    Cartacci, M.; Sánchez-Cano, B.; Orosei, R.; Noschese, R.; Cicchetti, A.; Witasse, O.; Cantini, F.; Rossi, A. P.

    2018-01-01

    We describe an improved method to estimate the Total Electron Content (TEC) of the Mars ionosphere from the echoes recorded by the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) (Picardi et al., 2005; Orosei et al., 2015) onboard Mars Express in its subsurface sounding mode. In particular, we demonstrate that this method solves the issue of the former algorithm described at (Cartacci et al., 2013), which produced an overestimation of TEC estimates on the day side. The MARSIS signal is affected by a phase distortion introduced by the Mars ionosphere that produces a variation of the signal shape and a delay in its travel time. The new TEC estimation is achieved correlating the parameters obtained through the correction of the aforementioned effects. In detail, the knowledge of the quadratic term of the phase distortion estimated by the Contrast Method (Cartacci et al., 2013), together with the linear term (i.e. the extra time delay), estimated through a radar signal simulator, allows to develop a new algorithm particularly well suited to estimate the TEC for solar zenith angles (SZA) lower than 95° The new algorithm for the dayside has been validated with independent data from MARSIS in its Active Ionospheric Sounding (AIS) operational mode, with comparisons with other previous algorithms based on MARSIS subsurface data, with modeling and with modeling ionospheric distortion TEC reconstruction.

  18. Unrestricted evening use of light-emitting tablet computers delays self-selected bedtime and disrupts circadian timing and alertness.

    PubMed

    Chinoy, Evan D; Duffy, Jeanne F; Czeisler, Charles A

    2018-05-01

    Consumer electronic devices play an important role in modern society. Technological advancements continually improve their utility and portability, making possible the near-constant use of electronic devices during waking hours. For most people, this includes the evening hours close to bedtime. Evening exposure to light-emitting (LE) devices can adversely affect circadian timing, sleep, and alertness, even when participants maintain a fixed 8-hour sleep episode in darkness and the duration of evening LE-device exposure is limited. Here, we tested the effects of evening LE-device use when participants were allowed to self-select their bedtimes, with wake times fixed as on work/school days. Nine healthy adults (3 women, 25.7 ± 3.0 years) participated in a randomized and counterbalanced study comparing five consecutive evenings of unrestricted LE-tablet computer use versus evenings reading from printed materials. On evenings when using LE-tablets, participants' self-selected bedtimes were on average half an hour later (22:03 ± 00:48 vs. 21:32 ± 00:27 h; P = 0.030), and they showed suppressed melatonin levels (54.17 ± 18.00 vs. 9.75 ± 22.75%; P < 0.001), delayed timing of melatonin secretion onset (20:23 ± 01:06 vs. 19:35 ± 00:59 h; P < 0.001), and later sleep onset (22:25 ± 00:54 vs. 21:54 ± 00:25 h; P = 0.041). When using LE-tablets, participants rated themselves as less sleepy in the evenings (P = 0.030) and less alert in the first hour after awakening on the following mornings (P < 0.001). These findings demonstrate that evening use of LE-tablets can induce delays in self-selected bedtimes, suppress melatonin secretion, and impair next-morning alertness, which may impact the health, performance, and safety of users. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. Effects of filtering of harmonics from biosonar echoes on delay acuity by big brown bats (Eptesicus fuscus).

    PubMed

    Bates, Mary E; Simmons, James A

    2010-08-01

    Big brown bats emit FM biosonar sounds containing two principal harmonics (FM1 approximately 55-22 kHz;FM2 approximately 105-45 kHz). To examine the role of harmonics, they were selectively filtered from stimuli in electronic-echo delay discrimination experiments. Positive stimuli were delayed by 3.16 ms (55 cm simulated target range); negative stimuli were by delayed by 3.96 ms (68 cm). This large 800-micros delay difference (nearly 14 cm) was easily discriminated for echoes containing equal-strength FM1 and FM2. Performance gradually decreased as highpass filters removed progressively larger segments from FM1. For echoes with FM2 alone, performance collapsed to chance, but performance remained good for lowpass echoes containing FM1 alone. Attenuation of FM2 by 3 dB relative to FM1 also decreased performance, but shortening electronic delay of the attenuated FM2 by 48 micros counteracted amplitude-latency trading and restored performance. Bats require the auditory representations of FM1 and FM2 to be in temporal register for high delay acuity. Misalignment of neuronal responses degrades acuity, but outright removal of FM2, leaving only FM1, causes little loss of acuity. Functional asymmetry of harmonics reflects lowpass effects from beaming and atmospheric propagation, which leave FM1 intact. It may cooperate with latency shifts to aid in suppression of clutter.

  20. Low temperature transient response and electroluminescence characteristics of OLEDs based on Alq3

    NASA Astrophysics Data System (ADS)

    Yuan, Chao; Guan, Min; Zhang, Yang; Li, Yiyang; Liu, Shuangjie; Zeng, Yiping

    2017-08-01

    In this work, the organic light-emitting diodes (OLEDs) based on Alq3 are fabricated. In order to make clear the transport mechanism of carriers in organic light-emitting devices at low temperature, detailed electroluminescence transient response and the current-voltage-luminescence (I-V-L) characteristics under different temperatures in those OLEDs are investigated. It founds that the acceleration of brightness increases with increasing temperature is maximum when the temperature is 200 K and it is mainly affected by the electron transport layer (Alq3). The MoO3 injection layer and the electroluminescent layer have great influence on the delay time when the temperature is 200 K. Once the temperature is greater than 250 K, the delay time is mainly affected by the MoO3 injection layer. On the contrary, the fall time is mainly affected by the electroluminescent material. The Vf is the average growth rate of fall time when the temperature increases 1 K which represents the accumulation rate of carriers. The difference between Vf caused by the MoO3 injection layer is 0.52 us/K and caused by the electroluminescent material Ir(ppy)3 is 0.73 us/K.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Covington, E; Younge, K; Chen, X

    Purpose: To evaluate the effectiveness of an automated plan check tool to improve first-time plan quality as well as standardize and document performance of physics plan checks. Methods: The Plan Checker Tool (PCT) uses the Eclipse Scripting API to check and compare data from the treatment planning system (TPS) and treatment management system (TMS). PCT was created to improve first-time plan quality, reduce patient delays, increase efficiency of our electronic workflow, and to standardize and partially automate plan checks in the TPS. A framework was developed which can be configured with different reference values and types of checks. One examplemore » is the prescribed dose check where PCT flags the user when the planned dose and the prescribed dose disagree. PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user. A PDF report is created and automatically uploaded into the TMS. Prior to and during PCT development, errors caught during plan checks and also patient delays were tracked in order to prioritize which checks should be automated. The most common and significant errors were determined. Results: Nineteen of 33 checklist items were automated with data extracted with the PCT. These include checks for prescription, reference point and machine scheduling errors which are three of the top six causes of patient delays related to physics and dosimetry. Since the clinical roll-out, no delays have been due to errors that are automatically flagged by the PCT. Development continues to automate the remaining checks. Conclusion: With PCT, 57% of the physics plan checklist has been partially or fully automated. Treatment delays have declined since release of the PCT for clinical use. By tracking delays and errors, we have been able to measure the effectiveness of automating checks and are using this information to prioritize future development. This project was supported in part by P01CA059827.« less

  2. Dopant-induced ignition of helium nanoplasmas—a mechanistic study

    NASA Astrophysics Data System (ADS)

    Heidenreich, Andreas; Schomas, Dominik; Mudrich, Marcel

    2017-12-01

    Helium (He) nanodroplets irradiated by intense near-infrared laser pulses form a nanoplasma by avalanche-like electron impact ionizations (EIIs) even at lower laser intensities where He is not directly field ionized, provided that the droplets contain a few dopant atoms which provide seed electrons for the EII avalanche. In this theoretical paper on calcium and xenon doped He droplets we elucidate the mechanism which induces ionization avalanches, termed ignition. We find that the partial loss of seed electrons from the activated droplets starkly assists ignition, as the Coulomb barrier for ionization of helium is lowered by the electric field of the dopant cations, and this deshielding of the cation charges enhances their electric field. In addition, the dopant ions assist the acceleration of the seed electrons (slingshot effect) by the laser field, supporting EIIs of He and also causing electron loss by catapulting electrons away. The dopants’ ability to lower the Coulomb barriers at He as well as the slingshot effect decrease with the spatial expansion of the dopant, causing a dependence of the dopants’ ignition capability on the dopant mass. Here, we develop criteria (impact count functions) to assess the ignition capability of dopants, based on (i) the spatial overlap of the seed electron cloud with the He atoms and (ii) the overlap of their kinetic energy distribution with the distribution of Coulomb barrier heights at He. The relatively long time delays between the instants of dopant ionization and ignition (incubation times) for calcium doped droplets are determined to a large extent by the time it takes to deshield the dopant ions.

  3. Effect of Time Delay on Recognition Memory for Pictures: The Modulatory Role of Emotion

    PubMed Central

    Wang, Bo

    2014-01-01

    This study investigated the modulatory role of emotion in the effect of time delay on recognition memory for pictures. Participants viewed neutral, positive and negative pictures, and took a recognition memory test 5 minutes, 24 hours, or 1 week after learning. The findings are: 1) For neutral, positive and negative pictures, overall recognition accuracy in the 5-min delay did not significantly differ from that in the 24-h delay. For neutral and positive pictures, overall recognition accuracy in the 1-week delay was lower than in the 24-h delay; for negative pictures, overall recognition in the 24-h and 1-week delay did not significantly differ. Therefore negative emotion modulates the effect of time delay on recognition memory, maintaining retention of overall recognition accuracy only within a certain frame of time. 2) For the three types of pictures, recollection and familiarity in the 5-min delay did not significantly differ from that in the 24-h and the 1-week delay. Thus emotion does not appear to modulate the effect of time delay on recollection and familiarity. However, recollection in the 24-h delay was higher than in the 1-week delay, whereas familiarity in the 24-h delay was lower than in the 1-week delay. PMID:24971457

  4. Delayed avalanche breakdown of high-voltage silicon diodes: Various structures exhibit different picosecond-range switching behavior

    NASA Astrophysics Data System (ADS)

    Brylevskiy, Viktor; Smirnova, Irina; Gutkin, Andrej; Brunkov, Pavel; Rodin, Pavel; Grekhov, Igor

    2017-11-01

    We present a comparative study of silicon high-voltage diodes exhibiting the effect of delayed superfast impact-ionization breakdown. The effect manifests itself in a sustainable picosecond-range transient from the blocking to the conducting state and occurs when a steep voltage ramp is applied to the p+-n-n+ diode in the reverse direction. Nine groups of diodes with graded and abrupt pn-junctions have been specially fabricated for this study by different techniques from different Si substrates. Additionally, in two groups of these structures, the lifetime of nonequilibrium carriers was intentionally reduced by electron irradiation. All diodes have identical geometrical parameters and similar stationary breakdown voltages. Our experimental setup allows measuring both device voltage and current during the kilovolt switching with time resolution better than 50 ps. Although all devices are capable of forming a front with kilovolt amplitude and 100 ps risetime in the in-series load, the structures with graded pn-junctions have anomalously large residual voltage. The Deep Level Transient Spectroscopy study of all diode structures has been performed in order to evaluate the effect of deep centers on device performance. It was found that the presence of deep-level electron traps negatively correlates with parameters of superfast switching, whereas a large concentration of recombination centers created by electron irradiation has virtually no influence on switching characteristics.

  5. The Effect of Spatial Heterogeneities on Nucleation Kinetics in Amorphous Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Shen, Ye

    The mechanical property of the Al based metallic glass could be enhanced significantly by introducing the high number density of Al-fcc nanocrystals (1021 ˜1023 m-3) to the amorphous matrix through annealing treatments, which motivates the study of the nucleation kinetics for the microstructure control. With the presence of a high number density (1025 m-3) of aluminum-like medium range order (MRO), the Al-Y-Fe metallic glass is considered to be spatially heterogeneous. Combining the classical nucleation theory with the structural configuration, a MRO seeded nucleation model has been proposed and yields theoretical steady state nucleation rates consistent with the experimental results. In addition, this model satisfies all the thermodynamic and kinetic constraints to be reasonable. Compared with the Al-Y-Fe system, the primary crystallization onset temperature decreases significantly and the transient delay time (tau) is shorter in the Al-Y-Fe-Pb(In) systems because the insoluble Pb and In nanoparticles in the amorphous matrix served as extrinsic spatial heterogeneity to provide the nucleation sites for Al-fcc precipitation and the high-resolution transmission electron microscopy (HRTEM) images of the Pb-Al interface revealed a good wetting behavior between the Al and Pb nanoparticles. The study of the transient delay time (tau) could provide insight on the transport behavior during the nucleation and a more convenient approach to evaluate the delay time has been developed by measuring the Al-Y-Fe amorphous alloy glass transition temperature (Tg) shift with the increasing annealing time (tannealing) in FlashDSC. The break point in the Tg vs. log(tannealing) plot has been identified to correspond to the delay time by the TEM characterization. FlashDSC tests with different heating rates and different compositions (Al-Y-Fe-Pb and Zn-Mg-Ca-Yb amorphous alloys) further confirmed the break point and delay time relationship. The amorphous matrix composition and the enthalpy analysis indicates that there are different mechanisms leading to the Tg shift before and after the break point. Before the break point, Tg shifts solely due to the increased glass stability through a relaxation process. However, after the break point, Tg shifts to higher temperatures because of both the relaxation and the composition change effects.

  6. Synchronized operation by field programmable gate array based signal controller for the Thomson scattering diagnostic system in KSTAR.

    PubMed

    Lee, W R; Kim, H S; Park, M K; Lee, J H; Kim, K H

    2012-09-01

    The Thomson scattering diagnostic system is successfully installed in the Korea Superconducting Tokamak Advanced Research (KSTAR) facility. We got the electron temperature and electron density data for the first time in 2011, 4th campaign using a field programmable gate array (FPGA) based signal control board. It operates as a signal generator, a detector, a controller, and a time measuring device. This board produces two configurable trigger pulses to operate Nd:YAG laser system and receives a laser beam detection signal from a photodiode detector. It allows a trigger pulse to be delivered to a time delay module to make a scattered signal measurement, measuring an asynchronous time value between the KSTAR timing board and the laser system injection signal. All functions are controlled by the embedded processor running on operating system within a single FPGA. It provides Ethernet communication interface and is configured with standard middleware to integrate with KSTAR. This controller has operated for two experimental campaigns including commissioning and performed the reconfiguration of logic designs to accommodate varying experimental situation without hardware rebuilding.

  7. Angular dependence of EWS time delay for photoionization of @Xe

    NASA Astrophysics Data System (ADS)

    Mandal, Ankur; Deshmukh, Pranawa; Kheifets, Anatoli; Dolmatov, Valeriy; Manson, Steven

    2017-04-01

    Interference between photoionization channels leads to angular dependence in photoionization time delay. Angular dependence is found to be a common effect for two-photon absorption experiments very recently. The effect of confinement on the time delay where each partial wave contributions to the ionization are studied. In this work we report angular dependence and confinement effects on Eisenbud-Wigner-Smith (EWS) time delay in atomic photoionization. Using and we computed the EWS time delay for free and confined Xe atom for photoionization from inner 4d3/2 and 4d5/2 and outer 5p1/2 and 5p3/2 subshells at various angles. The calculated EWS time delay is few tens to few hundreds of attoseconds (10-18 second). The photoionization time delay for @Xe follows that in the free Xe atom on which the confinement oscillations are built. The present work reveals the effect of confinement on the photoionization time delay at different angles between photoelectron ejection and the photon polarization.

  8. Crash testing difference-smoothing algorithm on a large sample of simulated light curves from TDC1

    NASA Astrophysics Data System (ADS)

    Rathna Kumar, S.

    2017-09-01

    In this work, we propose refinements to the difference-smoothing algorithm for the measurement of time delay from the light curves of the images of a gravitationally lensed quasar. The refinements mainly consist of a more pragmatic approach to choose the smoothing time-scale free parameter, generation of more realistic synthetic light curves for the estimation of time delay uncertainty and using a plot of normalized χ2 computed over a wide range of trial time delay values to assess the reliability of a measured time delay and also for identifying instances of catastrophic failure. We rigorously tested the difference-smoothing algorithm on a large sample of more than thousand pairs of simulated light curves having known true time delays between them from the two most difficult 'rungs' - rung3 and rung4 - of the first edition of Strong Lens Time Delay Challenge (TDC1) and found an inherent tendency of the algorithm to measure the magnitude of time delay to be higher than the true value of time delay. However, we find that this systematic bias is eliminated by applying a correction to each measured time delay according to the magnitude and sign of the systematic error inferred by applying the time delay estimator on synthetic light curves simulating the measured time delay. Following these refinements, the TDC performance metrics for the difference-smoothing algorithm are found to be competitive with those of the best performing submissions of TDC1 for both the tested 'rungs'. The MATLAB codes used in this work and the detailed results are made publicly available.

  9. Importance of atomic oxygen in preheating zone in plasma-assisted combustion of a steady-state premixed burner flame

    NASA Astrophysics Data System (ADS)

    Zaima, K.; Akashi, H.; Sasaki, K.

    2015-09-01

    It is widely believed that electron impact processes play essential roles in plasma-assisted combustion. However, the concrete roles of high-energy electrons have not been fully understood yet. In this work, we examined the density of atomic oxygen in a premixed burner flame with the superposition of dielectric barrier discharge (DBD). The density of atomic oxygen in the reaction zone was not affected by the superposition of DBD, indicating that the amount of atomic oxygen produced by combustion reactions was much larger than that produced by electron impact processes. On the other hand, in the preheating zone, we observed high-frequency oscillation of the density of atomic oxygen at the timings of the pulsed current of DBD. The oscillation suggests the rapid consumption of additional atomic oxygen by combustion reactions. A numerical simulation using Chemkin indicates the shortened ignition delay time when adding additional atomic oxygen in the period of low-temperature oxidation. The present results reveals the importance of atomic oxygen, which is produced by the effect of high-energy electrons, in the preheating zone in plasma-assisted combustion of the steady-state premixed burner flame.

  10. Comparison of delay enhancement mechanisms for SBS-based slow light systems.

    PubMed

    Schneider, Thomas; Henker, Ronny; Lauterbach, Kai-Uwe; Junker, Markus

    2007-07-23

    We compare two simple mechanisms for the enhancement of the time delay in slow light systems. Both are based on the superposition of the Brillouin gain with additional loss. As we will show in theory and experiment if two losses are placed at the wings of a SBS gain, contrary to other methods, the loss power increases the time delay. This leads to higher delay times at lower optical powers and to an increase of the zero gain delay of more than 50%. With this method we achieved a time delay of more than 120ns for pulses with a temporal width of 30ns. To the best of our knowledge, this is the highest time delay in just one fiber spool. Beside the enhancement of the time delay the method could have the potential to decrease the pulse distortions for high bit rate signals.

  11. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  12. Piloted simulator study of allowable time delay in pitch flight control system of a transport airplane with negative static stability

    NASA Technical Reports Server (NTRS)

    Grantham, William D.; Smith, Paul M.; Person, Lee H., Jr.; Meyer, Robert T.; Tingas, Stephen A.

    1987-01-01

    A piloted simulation study was conducted to determine the permissible time delay in the flight control system of a 10-percent statically unstable transport airplane during cruise flight conditions. The math model used for the simulation was a derivative Lockheed L-1011 wide-body jet transport. Data were collected and analyzed from a total of 137 cruising flights in both calm- and turbulent-air conditions. Results of this piloted simulation study verify previous findings that show present military specifications for allowable control-system time delay may be too stringent when applied to transport-size airplanes. Also, the degree of handling-qualities degradation due to time delay is shown to be strongly dependent on the source of the time delay in an advanced flight control system. Maximum allowable time delay for each source of time delay in the control system, in addition to a less stringent overall maximum level of time delay, should be considered for large aircraft. Preliminary results also suggest that adverse effects of control-system time delay may be at least partially offset by variations in control gearing. It is recommended that the data base include different airplane baselines, control systems, and piloting tasks with many pilots participating, so that a reasonable set of limits for control-system time delay can be established to replace the military specification limits currently being used.

  13. Lack of utility of a decision support system to mitigate delays in admission from the operating room to the postanesthesia care unit.

    PubMed

    Ehrenfeld, Jesse M; Dexter, Franklin; Rothman, Brian S; Minton, Betty Sue; Johnson, Diane; Sandberg, Warren S; Epstein, Richard H

    2013-12-01

    When the phase I postanesthesia care unit (PACU) is at capacity, completed cases need to be held in the operating room (OR), causing a "PACU delay." Statistical methods based on historical data can optimize PACU staffing to achieve the least possible labor cost at a given service level. A decision support process to alert PACU charge nurses that the PACU is at or near maximum census might be effective in lessening the incidence of delays and reducing over-utilized OR time, but only if alerts are timely (i.e., neither too late nor too early to act upon) and the PACU slot can be cleared quickly. We evaluated the maximum potential benefit of such a system, using assumptions deliberately biased toward showing utility. We extracted 3 years of electronic PACU data from a tertiary care medical center. At this hospital, PACU admissions were limited by neither inadequate PACU staffing nor insufficient PACU beds. We developed a model decision support system that simulated alerts to the PACU charge nurse. PACU census levels were reconstructed from the data at a 1-minute level of resolution and used to evaluate if subsequent delays would have been prevented by such alerts. The model assumed there was always a patient ready for discharge and an available hospital bed. The time from each alert until the maximum census was exceeded ("alert lead time") was determined. Alerts were judged to have utility if the alert lead time fell between various intervals from 15 or 30 minutes to 60, 75, or 90 minutes after triggering. In addition, utility for reducing over-utilized OR time was assessed using the model by determining if 2 patients arrived from 5 to 15 minutes of each other when the PACU census was at 1 patient less than the maximum census. At most, 23% of alerts arrived 30 to 60 minutes prior to the admission that resulted in the PACU exceeding the specified maximum capacity. When the notification window was extended to 15 to 90 minutes, the maximum utility was <50%. At most, 45% of alerts potentially would have resulted in reassigning the last available PACU slot to 1 OR versus another within 15 minutes of the original assignment. Despite multiple biases that favored effectiveness, the maximum potential benefit of a decision support system to mitigate PACU delays on the day on the surgery was below the 70% minimum threshold for utility of automated decision support messages, previously established via meta-analysis. Neither reduction in PACU delays nor reassigning promised PACU slots based on reducing over-utilized OR time were realized sufficiently to warrant further development of the system. Based on these results, the only evidence-based method of reducing PACU delays is to adjust PACU staffing and staff scheduling using computational algorithms to match the historical workload (e.g., as developed in 2001).

  14. Vibrational dynamics of adsorbed molecules under conditions of photodesorption: pump-probe SFG spectra of CO/Pt(111).

    PubMed

    Fournier, Frédéric; Zheng, Wanquan; Carrez, Serge; Dubost, Henri; Bourguignon, Bernard

    2004-09-08

    Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR + visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed. Copyright 2004 American Institute of Physics

  15. Vibrational dynamics of adsorbed molecules under conditions of photodesorption: Pump-probe SFG spectra of CO/Pt(111)

    NASA Astrophysics Data System (ADS)

    Fournier, Frédéric; Zheng, Wanquan; Carrez, Serge; Dubost, Henri; Bourguignon, Bernard

    2004-09-01

    Interaction of CO adsorbed on Pt(111) with electrons and phonons is studied experimentally by means of a pump-probe experiment where CO is probed by IR+visible sum frequency generation under a pump laser intensity that allows photodesorption. Vibrational spectra of CO internal stretch are obtained as a function of pump-probe delay. A two-temperature and anharmonic coupling model is used to extract from the spectra the real time variations of CO peak frequency and dephasing time. The main conclusions are the following: (i) The CO stretch is perturbed by two low-frequency modes, assigned to frustrated rotation and frustrated translation. (ii) The frustrated rotation is directly coupled to electrons photoexcited in Pt(111) by the pump laser. (iii) There is no evidence of Pt-CO stretch excitation in the spectra. The implications for the photodesorption dynamics are discussed.

  16. Electronic Thermometer Readings

    NASA Technical Reports Server (NTRS)

    2001-01-01

    NASA Stennis' adaptive predictive algorithm for electronic thermometers uses sample readings during the initial rise in temperature and applies an algorithm that accurately and rapidly predicts the steady state temperature. The final steady state temperature of an object can be calculated based on the second-order logarithm of the temperature signals acquired by the sensor and predetermined variables from the sensor characteristics. These variables are calculated during tests of the sensor. Once the variables are determined, relatively little data acquisition and data processing time by the algorithm is required to provide a near-accurate approximation of the final temperature. This reduces the delay in the steady state response time of a temperature sensor. This advanced algorithm can be implemented in existing software or hardware with an erasable programmable read-only memory (EPROM). The capability for easy integration eliminates the expense of developing a whole new system that offers the benefits provided by NASA Stennis' technology.

  17. GPS detection of ionospheric perturbations following the January 17, 1994, northridge earthquake

    NASA Technical Reports Server (NTRS)

    Calais, Eric; Minster, J. Bernard

    1995-01-01

    Sources such as atmospheric or buried explosions and shallow earthquakes producing strong vertical ground displacements produce pressure waves that propagate at infrasonic speeds in the atmosphere. At ionospheric altitudes low frequency acoustic waves are coupled to ionispheric gravity waves and induce variations in the ionoispheric electron density. Global Positioning System (GPS) data recorded in Southern California were used to compute ionospheric electron content time series for several days preceding and following the January 17, 1994, M(sub w) = 6.7 Northridge earthquake. An anomalous signal beginning several minutes after the earthquake with time delays that increase with distance from the epicenter was observed. The signal frequency and phase velocity are consistent with results from numerical models of atmospheric-ionospheric acoustic-gravity waves excited by seismic sources as well as previous electromagnetic sounding results. It is believed that these perturbations are caused by the ionospheric response to the strong ground displacement associated with the Northridge earthquake.

  18. Experimental and theoretical investigation of radiation and dynamics properties in laser-produced carbon plasmas

    NASA Astrophysics Data System (ADS)

    Min, Qi; Su, Maogen; Wang, Bo; Cao, Shiquan; Sun, Duixiong; Dong, Chenzhong

    2018-05-01

    The radiation and dynamics properties of laser-produced carbon plasma in vacuum were studied experimentally with aid of a spatio-temporally resolved emission spectroscopy technique. In addition, a radiation hydrodynamics model based on the fluid dynamic equations and the radiative transfer equation was presented, and calculation of the charge states was performed within the time-dependent collisional radiative model. Detailed temporal and spatial evolution behavior about plasma parameters have been analyzed, such as velocity, electron temperature, charge state distribution, energy level population, and various atomic processes. At the same time, the effects of different atomic processes on the charge state distribution were examined. Finally, the validity of assuming a local thermodynamic equilibrium in the carbon plasma expansion was checked, and the results clearly indicate that the assumption was valid only at the initial (<80 ns) stage of plasma expansion. At longer delay times, it was not applicable near the plasma boundary because of a sharp drop of plasma temperature and electron density.

  19. Time-resolved X-ray Absorption Spectroscopy for Electron Transport Study in Warm Dense Gold

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Won; Bae, Leejin; Engelhorn, Kyle; Heimann, Philip; Ping, Yuan; Barbrel, Ben; Fernandez, Amalia; Beckwith, Martha Anne; Cho, Byoung-Ick; GIST Team; IBS Team; LBNL Collaboration; SLAC Collaboration; LLNL Collaboration

    2015-11-01

    The warm dense Matter represents states of which the temperature is comparable to Fermi energy and ions are strongly coupled. One of the experimental techniques to create such state in the laboratory condition is the isochoric heating of thin metal foil with femtosecond laser pulses. This concept largely relies on the ballistic transport of electrons near the Fermi-level, which were mainly studied for the metals in ambient conditions. However, they were barely investigated in warm dense conditions. We present a time-resolved x-ray absorption spectroscopy measured for the Au/Cu dual layered sample. The front Au layer was isochorically heated with a femtosecond laser pulse, and the x-ray absorption changes around L-edge of Cu, which was attached on the backside of Au, was measured with a picosecond resolution. Time delays between the heating of the `front surface' of Au layer and the alternation of x-ray spectrum of Cu attached on the `rear surface' of Au indicate the energetic electron transport mechanism through Au in the warm dense conditions. IBS (IBS-R012-D1) and the NRF (No. 2013R1A1A1007084) of Korea.

  20. Fast wire per wire X-ray data acquisition system for time-resolved small angle scattering experiments

    NASA Astrophysics Data System (ADS)

    Epstein, A.; Briquet-Laugier, F.; Sheldon, S.; Boulin, C.

    2000-04-01

    Most of the X-ray multi-wire gas detectors used at the EMBL Hamburg outstation for time-resolved studies of biological samples are readout, using the delay line method. The main disadvantage of such readout systems is their event rate limitation introduced by the delay line and the required time to digital conversion step. They also lack the possibility to deal with multiple events. To overcome these limitations, a new approach for the complete readout system was introduced. The new linear detection system is based on the wire per wire approach where each individual wire is associated to preamplifier/discriminator/counter electronics channel. High-density, front-end electronics were designed around a fast current sensitive preamplifier. An eight-channel board was designed to include the preamplifiers-discriminators and the differential ECL drivers output stages. The detector front-end consists of 25 boards directly mounted inside the detector assembly. To achieve a time framing resolution as short as 10 /spl mu/s, very fast histogramming is required. The only way to implement this for a high number of channels (200 in our case) is by using a distributed system. The digital part of the system consists of a crate controller, up to 16 acquisition boards (capable of handling fast histogramming for up to 32-channels each) and an optical-link board (based on the Cypress "Hot-Link" chip set). Both the crate controller and the acquisition boards are based on a standard RISC microcontroller (IDT R3081) plug-in board. At present, a dedicated CAMAC module which we developed is used to interface the digital front-end acquisition crate to the host via the optical link.

  1. Development of the new trigger for VANDLE neutron detector

    NASA Astrophysics Data System (ADS)

    Hasse, Adam; Taylor, Steven; Daugherty, Hadyn; Grzywacz, Robert

    2014-09-01

    Beta-delayed neutron emission (βn) is the dominant decay channel for the majority of very neutron-rich nuclei. In order to study these decays a new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed. A critical part of this neutron time of flight detector is a trigger unit. This trigger is sensitive to electron from beta decay down to very low energies, insensitive to gamma rays and have a good timing performance, better than 1 ns. In order to satisfy these condition, we have developed a new system, which utilizes plastic scintillator but uses recently developed light readout technique, based on the so called Silicon Photomultiplier, manufactured by Sensl. New system has been developed and performance tested using digital data acquisition system at the University of Tennessee and will be utilized in future experiments involving VANDLE. Beta-delayed neutron emission (βn) is the dominant decay channel for the majority of very neutron-rich nuclei. In order to study these decays a new detector system called the Versatile Array of Neutron Detectors at Low Energy (VANDLE) was constructed. A critical part of this neutron time of flight detector is a trigger unit. This trigger is sensitive to electron from beta decay down to very low energies, insensitive to gamma rays and have a good timing performance, better than 1 ns. In order to satisfy these condition, we have developed a new system, which utilizes plastic scintillator but uses recently developed light readout technique, based on the so called Silicon Photomultiplier, manufactured by Sensl. New system has been developed and performance tested using digital data acquisition system at the University of Tennessee and will be utilized in future experiments involving VANDLE. Department of Physics and Astronomy, University of Tennessee, Knoxville, USA.

  2. 76 FR 68734 - Taking and Importing Marine Mammals: Taking Marine Mammals Incidental to Navy Training Exercises...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... marine mammal is likely to travel during the time associated with the TDFD's time delay, and that... Navy provided the approximate distance that an animal would typically travel within a given time-delay... Speed and Length of Time-Delay Potential distance Species group Swim speed Time-delay traveled Delphinid...

  3. Blood free Radicals Concentration Determined by Electron Paramagnetic Resonance Spectroscopy and Delayed Cerebral Ischemia Occurrence in Patients with Aneurysmal Subarachnoid Hemorrhage.

    PubMed

    Ewelina, Grzywna; Krzysztof, Stachura; Marek, Moskala; Krzysztof, Kruczala

    2017-12-01

    Pathophysiology of delayed cerebral ischemia and cerebral vasospasm following aneurysmal subarachnoid hemorrhage is still poorly recognized, however free radicals are postulated as one of the crucial players. This study was designed to scrutinize whether the concentration of free radicals in the peripheral venous blood is related to the occurrence of delayed cerebral ischemia associated with cerebral vasospasm. Twenty-four aneurysmal subarachnoid hemorrhage patients and seven patients with unruptured intracranial aneurysm (control group) have been studied. Free radicals in patients' blood have been detected by the electron paramagnetic resonance (CMH.HCl spin probe, 150 K, ELEXSYS E500 spectrometer) on admission and at least 72 h from disease onset. Delayed cerebral ischemia monitoring was performed by daily neurological follow-up and transcranial color coded Doppler. Delayed cerebral ischemia observed in six aneurysmal subarachnoid hemorrhage patients was accompanied by cerebral vasospasm in all six cases. No statistically significant difference in average free radicals concentration between controls and study subgroups was noticed on admission (p = .3; Kruskal-Wallis test). After 72 h free radicals concentration in delayed cerebral ischemia patients (3.19 ± 1.52 mmol/l) differed significantly from the concentration in aneurysmal subarachnoid hemorrhage patients without delayed cerebral ischemia (0.65 ± 0.37 mmol/l) (p = .012; Mann-Whitney test). These findings are consistent with our assumptions and seem to confirm the role of free radicals in delayed cerebral ischemia development. Preliminary results presented above are promising and we need perform further investigation to establish whether blood free radicals concentration may serve as the biomarker of delayed cerebral ischemia associated with cerebral vasospasm.

  4. Resonant third-order optical nonlinearities of thin films containing J-aggregates of a cyanine dye or a squarylium dye

    NASA Astrophysics Data System (ADS)

    Li, Zhongyu; Jin, Zhaohui; Kasatani, Kazuo

    2005-01-01

    The third-order optical nonlinearities and responses of thin films containing the J-aggregates of a cyanine dye or a squarylium dye were measured using the degenerate four-wave mixing (DFWM) technique under resonant conditions. The sol-gel silica coating films containing the J-aggregates of the cyanine dye, NK-3261, are stable at room temperature and durable against laser beam irradiation. The temporal profiles of the DFWM signal were measured with a time resolution of 0.3 ps, and were found to consist of at least three components, i.e., the coherent instantaneous nonlinear response and the two slow responses with delay time constants of ca. 1.0 ps and ca. 5.6 ps. The contribution of the later was small. The electronic component of the effective third-order optical nonlinear susceptibility of the film had value of as high as ca. 3.0 x 10-7 esu. We also studied the neat film of a squarylium dye J-aggregates. The temporal profile of the DFWM signal of the neat film of squarylium dye was also found to consist of at least three components, the coherent instantaneous nonlinear response and the delayed response with decay time constants of ca. 0.6 ps and ca. 6.5 ps. The contribution of the slow tail was also very small. The electronic component of effective third-order optical nonlinear susceptibility of the neat film of squarylium dye had value of as high as ca. 3.6 x 10-8 esu.

  5. Domain of validity of the perturbative approach to femtosecond optical spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelin, Maxim F.; Rao, B. Jayachander; Nest, Mathias

    2013-12-14

    We have performed numerical nonperturbative simulations of transient absorption pump-probe responses for a series of molecular model systems. The resulting signals as a function of the laser field strength and the pump-probe delay time are compared with those obtained in the perturbative response function formalism. The simulations and their theoretical analysis indicate that the perturbative description remains valid up to moderately strong laser pulses, corresponding to a rather substantial depopulation (population) of the initial (final) electronic states.

  6. Generation and propagation of an electromagnetic pulse in the Trigger experiment and its possible role in electron acceleration

    NASA Technical Reports Server (NTRS)

    Kelley, M. C.; Kintner, P. M.; Kudeki, E.; Holmgren, G.; Bostrom, R.; Fahleson, U. V.

    1980-01-01

    Instruments onboard the Trigger payload detected a large-amplitude, low-frequency, electric field pulse which was observed with a time delay consistent only with an electromagnetic wave. A model for this perturbation is constructed, and the associated field-aligned current is calculated as a function of altitude. This experiment may simulate the acceleration mechanism which results in the formation of auroral arcs, and possibly even other events in cosmic plasmas.

  7. Lightning Physics: A Three Year Program

    DTIC Science & Technology

    1983-01-01

    because these aircraft are controlled poeal’ r r o(z’, I- RIC) with low-voltage digital electronics and are in part construct- 4w J(,3 cR "*t • at ed of... millise - limits pretrigger and delayed-trigger mode,. and a variety of sample conds, and hundreds of microseconds, respectively, the time of simple...processes, but we feel it prudent to discontinue use of the Proctor, D. E., A radio study of lightning, Ph.D. thesis , Univ. of designations in order

  8. Probability of Loss of Assured Safety in Systems with Multiple Time-Dependent Failure Modes: Incorporation of Delayed Link Failure in the Presence of Aleatory Uncertainty.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helton, Jon C.; Brooks, Dusty Marie; Sallaberry, Cedric Jean-Marie.

    Probability of loss of assured safety (PLOAS) is modeled for weak link (WL)/strong link (SL) systems in which one or more WLs or SLs could potentially degrade into a precursor condition to link failure that will be followed by an actual failure after some amount of elapsed time. The following topics are considered: (i) Definition of precursor occurrence time cumulative distribution functions (CDFs) for individual WLs and SLs, (ii) Formal representation of PLOAS with constant delay times, (iii) Approximation and illustration of PLOAS with constant delay times, (iv) Formal representation of PLOAS with aleatory uncertainty in delay times, (v) Approximationmore » and illustration of PLOAS with aleatory uncertainty in delay times, (vi) Formal representation of PLOAS with delay times defined by functions of link properties at occurrence times for failure precursors, (vii) Approximation and illustration of PLOAS with delay times defined by functions of link properties at occurrence times for failure precursors, and (viii) Procedures for the verification of PLOAS calculations for the three indicated definitions of delayed link failure.« less

  9. Wait times to rheumatology care for patients with rheumatic diseases: a data linkage study of primary care electronic medical records and administrative data.

    PubMed

    Widdifield, Jessica; Bernatsky, Sasha; Thorne, J Carter; Bombardier, Claire; Jaakkimainen, R Liisa; Wing, Laura; Paterson, J Michael; Ivers, Noah; Butt, Debra; Lyddiatt, Anne; Hofstetter, Catherine; Ahluwalia, Vandana; Tu, Karen

    2016-01-01

    The Wait Time Alliance recently established wait time benchmarks for rheumatology consultations in Canada. Our aim was to quantify wait times to primary and rheumatology care for patients with rheumatic diseases. We identified patients from primary care practices in the Electronic Medical Record Administrative data Linked Database who had referrals to Ontario rheumatologists over the period 2000-2013. To assess the full care pathway, we identified dates of symptom onset, presentation in primary care and referral from electronic medical records. Dates of rheumatologist consultations were obtained by linking with physician service claims. We determined the duration of each phase of the care pathway (symptom onset to primary care encounter, primary care encounter to referral, and referral to rheumatologist consultation) and compared them with established benchmarks. Among 2430 referrals from 168 family physicians, 2015 patients (82.9%) were seen by 146 rheumatologists within 1 year of referral. Of the 2430 referrals, 2417 (99.5%) occurred between 2005 and 2013. The main reasons for referral were osteoarthritis (32.4%) and systemic inflammatory rheumatic diseases (30.6%). Wait times varied by diagnosis and geographic region. Overall, the median wait time from referral to rheumatologist consultation was 74 (interquartile range 27-101) days; it was 66 (interquartile range 18-84) days for systemic inflammatory rheumatic diseases. Wait time benchmarks were not achieved, even for the most urgent types of referral. For systemic inflammatory rheumatic diseases, most of the delays occurred before referral. Rheumatology wait times exceeded established benchmarks. Targeted efforts are needed to promote more timely access to both primary and rheumatology care. Routine linkage of electronic medical records with administrative data may help fill important gaps in knowledge about waits to primary and specialty care.

  10. Time delay can facilitate coherence in self-driven interacting-particle systems

    NASA Astrophysics Data System (ADS)

    Sun, Yongzheng; Lin, Wei; Erban, Radek

    2014-12-01

    Directional switching in a self-propelled particle model with delayed interactions is investigated. It is shown that the average switching time is an increasing function of time delay. The presented results are applied to studying collective animal behavior. It is argued that self-propelled particle models with time delays can explain the state-dependent diffusion coefficient measured in experiments with locust groups. The theory is further generalized to heterogeneous groups where each individual can respond to its environment with a different time delay.

  11. High spatial resolution shortwave infrared imaging technology based on time delay and digital accumulation method

    NASA Astrophysics Data System (ADS)

    Jia, Jianxin; Wang, Yueming; Zhuang, Xiaoqiong; Yao, Yi; Wang, Shengwei; Zhao, Ding; Shu, Rong; Wang, Jianyu

    2017-03-01

    Shortwave infrared (SWIR) imaging technology attracts more and more attention by its fascinating ability of penetrating haze and smoke. For application of spaceborne remote sensing, spatial resolution of SWIR is lower compared with that of visible light (VIS) wavelength. It is difficult to balance between the spatial resolution and signal to noise ratio (SNR). Some conventional methods, such as enlarging aperture of telescope, image motion compensation, and analog time delay and integration (TDI) technology are used to gain SNR. These techniques bring in higher cost of satellite, complexity of system or other negative factors. In this paper, time delay and digital accumulation (TDDA) method is proposed to achieve higher spatial resolution. The method can enhance the SNR and non-uniformity of system theoretically. A prototype of SWIR imager consists of opto-mechanical, 1024 × 128 InGaAs detector, and electronics is designed and integrated to prove TDDA method. Both of measurements and experimental results indicate TDDA method can promote SNR of system approximated of the square root of accumulative stage. The results exhibit that non-uniformity of system is also improved by this approach to some extent. The experiment results are corresponded with the theoretical analysis. Based on the experiments results, it is proved firstly that the goal of 1 m ground sample distance (GSD) in orbit of 500 km is feasible with the TDDA stage of 30 for SWIR waveband (0.9-1.7 μm).

  12. Improving treatment plan evaluation with automation.

    PubMed

    Covington, Elizabeth L; Chen, Xiaoping; Younge, Kelly C; Lee, Choonik; Matuszak, Martha M; Kessler, Marc L; Keranen, Wayne; Acosta, Eduardo; Dougherty, Ashley M; Filpansick, Stephanie E; Moran, Jean M

    2016-11-08

    The goal of this work is to evaluate the effectiveness of Plan-Checker Tool (PCT) which was created to improve first-time plan quality, reduce patient delays, increase the efficiency of our electronic workflow, and standardize and automate the phys-ics plan review in the treatment planning system (TPS). PCT uses an application programming interface to check and compare data from the TPS and treatment management system (TMS). PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user as part of a plan readiness check for treatment. Prior to and during PCT development, errors identified during the physics review and causes of patient treatment start delays were tracked to prioritize which checks should be automated. Nineteen of 33checklist items were automated, with data extracted with PCT. There was a 60% reduction in the number of patient delays in the six months after PCT release. PCT was suc-cessfully implemented for use on all external beam treatment plans in our clinic. While the number of errors found during the physics check did not decrease, automation of checks increased visibility of errors during the physics check, which led to decreased patient delays. The methods used here can be applied to any TMS and TPS that allows queries of the database. © 2016 The Authors.

  13. Delay banking for air traffic management

    NASA Technical Reports Server (NTRS)

    Green, Steven M. (Inventor)

    2007-01-01

    A method and associated system for time delay banking for aircraft arrival time, aircraft departure time and/or en route flight position. The delay credit value for a given flight may decrease with passage of time and may be transferred to or traded with other flights having the same or a different user (airline owner or operator). The delay credit value for a given aircraft flight depends upon an initial delay credit value, which is determined by a central system and depends upon one or more other flight characteristics. Optionally, the delay credit value decreases with passage of time. Optionally, a transaction cost is assessed against a delay credit value that is used on behalf of another flight with the same user or is traded with a different user.

  14. National data showed that delayed sleep in six-year-old children was associated with excessive use of electronic devices at 12 years.

    PubMed

    Kato, Tsuguhiko; Yorifuji, Takashi; Yamakawa, Michiyo; Inoue, Sachiko

    2018-01-31

    Cross-sectional studies have shown associations between adolescent sleep problems and the use of electronic devices, such as mobile phones, but longitudinal studies remain scarce. We explored any association between delayed bedtimes at six years old and the excessive use of electronic devices at 12 years of age. Texting was a prime focus. We analysed 9607 adolescents who owned mobile phones in 2013 using the Japanese Longitudinal Survey of Newborns in the 21st Century, which started in 2001. The outcomes were daily excessive use of a mobile phone, television (TV) and video games. Delayed bedtime at the age of six years was associated with excessive texting at weekends. The adjusted odds ratios and 95% confidence intervals obtained from logistic regression analyses were 1.88 (1.14-3.10) for the 10-11 pm group and 1.98 (1.08-3.63) for the after 11 pm group, compared with the before 9 pm group. Later bedtimes were also associated with increased risks of excessive TV viewing and video game use. Our study indicated that six-year-olds who regularly stayed up late at night used electronic devices more frequently, or for longer, at the age of 12. Parents need to be more aware of links between sleep issues and electronic devices. ©2018 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  15. CAN LARGE TIME DELAYS OBSERVED IN LIGHT CURVES OF CORONAL LOOPS BE EXPLAINED IN IMPULSIVE HEATING?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lionello, Roberto; Linker, Jon A.; Mikić, Zoran

    The light curves of solar coronal loops often peak first in channels associated with higher temperatures and then in those associated with lower temperatures. The delay times between the different narrowband EUV channels have been measured for many individual loops and recently for every pixel of an active region observation. The time delays between channels for an active region exhibit a wide range of values. The maximum time delay in each channel pair can be quite large, i.e., >5000 s. These large time delays make-up 3%–26% (depending on the channel pair) of the pixels where a trustworthy, positive time delaymore » is measured. It has been suggested that these time delays can be explained by simple impulsive heating, i.e., a short burst of energy that heats the plasma to a high temperature, after which the plasma is allowed to cool through radiation and conduction back to its original state. In this paper, we investigate whether the largest observed time delays can be explained by this hypothesis by simulating a series of coronal loops with different heating rates, loop lengths, abundances, and geometries to determine the range of expected time delays between a set of four EUV channels. We find that impulsive heating cannot address the largest time delays observed in two of the channel pairs and that the majority of the large time delays can only be explained by long, expanding loops with photospheric abundances. Additional observations may rule out these simulations as an explanation for the long time delays. We suggest that either the time delays found in this manner may not be representative of real loop evolution, or that the impulsive heating and cooling scenario may be too simple to explain the observations, and other potential heating scenarios must be explored.« less

  16. Cognitive person variables in the delay of gratification of older children at risk.

    PubMed

    Rodriguez, M L; Mischel, W; Shoda, Y

    1989-08-01

    The components of self-regulation were analyzed, extending the self-imposed delay of gratification paradigm to older children with social adjustment problems. Delay behavior was related to a network of conceptually relevant cognitive person variables, consisting of attention deployment strategies during delay, knowledge of delay rules, and intelligence. A positive relationship was demonstrated between concurrent indexes of intelligence, attention deployment, and actual delay time. Moreover, attention deployment, measured as an individual differences variable during the delay process, had a direct, positive effect on delay behavior. Specifically, as the duration of delay and the frustration of the situation increased, children who spent a higher proportion of the time distracting themselves from the tempting elements of the delay situation were able to delay longer. The effect of attention deployment on delay behavior was significant even when age, intelligence, and delay rule knowledge were controlled. Likewise, delay rule knowledge significantly predicted delay time, even when age, attention deployment, and intelligence were controlled.

  17. Single-shot Monitoring of Ultrafast Processes via X-ray Streaking at a Free Electron Laser.

    PubMed

    Buzzi, Michele; Makita, Mikako; Howald, Ludovic; Kleibert, Armin; Vodungbo, Boris; Maldonado, Pablo; Raabe, Jörg; Jaouen, Nicolas; Redlin, Harald; Tiedtke, Kai; Oppeneer, Peter M; David, Christian; Nolting, Frithjof; Lüning, Jan

    2017-08-03

    The advent of x-ray free electron lasers has extended the unique capabilities of resonant x-ray spectroscopy techniques to ultrafast time scales. Here, we report on a novel experimental method that allows retrieving with a single x-ray pulse the time evolution of an ultrafast process, not only at a few discrete time delays, but continuously over an extended time window. We used a single x-ray pulse to resolve the laser-induced ultrafast demagnetisation dynamics in a thin cobalt film over a time window of about 1.6 ps with an excellent signal to noise ratio. From one representative single shot measurement we extract a spin relaxation time of (130 ± 30) fs with an average value, based on 193 single shot events of (113 ± 20) fs. These results are limited by the achieved experimental time resolution of 120 fs, and both values are in excellent agreement with previous results and theoretical modelling. More generally, this new experimental approach to ultrafast x-ray spectroscopy paves the way to the study of non-repetitive processes that cannot be investigated using traditional repetitive pump-probe schemes.

  18. Firing patterns transition and desynchronization induced by time delay in neural networks

    NASA Astrophysics Data System (ADS)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  19. Caught in the Net: Notes from the Electronic Underground.

    ERIC Educational Resources Information Center

    Readings, Bill

    Framed by the rising costs of traditional scholarly publishing and the increasing restrictions on library budgets, the turn to electronic publishing seems to be the way of the future, according to the publisher of an electronic journal, "Surfaces." Costs and delays of production and distribution are massively reduced. The electronic…

  20. Effects of filtering of harmonics from biosonar echoes on delay acuity by big brown bats (Eptesicus fuscus)

    PubMed Central

    Bates, Mary E.; Simmons, James A.

    2010-01-01

    Big brown bats emit FM biosonar sounds containing two principal harmonics (FM1∼55–22 kHz;FM2∼105–45 kHz). To examine the role of harmonics, they were selectively filtered from stimuli in electronic-echo delay discrimination experiments. Positive stimuli were delayed by 3.16 ms (55 cm simulated target range); negative stimuli were by delayed by 3.96 ms (68 cm). This large 800-μs delay difference (nearly 14 cm) was easily discriminated for echoes containing equal-strength FM1 and FM2. Performance gradually decreased as highpass filters removed progressively larger segments from FM1. For echoes with FM2 alone, performance collapsed to chance, but performance remained good for lowpass echoes containing FM1 alone. Attenuation of FM2 by 3 dB relative to FM1 also decreased performance, but shortening electronic delay of the attenuated FM2 by 48 μs counteracted amplitude-latency trading and restored performance. Bats require the auditory representations of FM1 and FM2 to be in temporal register for high delay acuity. Misalignment of neuronal responses degrades acuity, but outright removal of FM2, leaving only FM1, causes little loss of acuity. Functional asymmetry of harmonics reflects lowpass effects from beaming and atmospheric propagation, which leave FM1 intact. It may cooperate with latency shifts to aid in suppression of clutter. PMID:20707464

  1. Delay time in a single barrier for a movable quantum shutter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, Alberto

    2010-05-15

    The transient solution and delay time for a {delta} potential scatterer with a movable quantum shutter is calculated by solving analytically the time-dependent Schroedinger equation. The delay time is analyzed as a function of the distance between the shutter and the potential barrier and also as a function of the distance between the potential barrier and the detector. In both cases, it is found that the delay time exhibits a dynamical behavior and that it tends to a saturation value {Delta}t{sub sat} in the limit of very short distances, which represents the maximum delay produced by the potential barrier nearmore » the interaction region. The phase time {tau}{sub {theta},} on the other hand, is not an appropriate time scale for measuring the time delay near the interaction region, except if the shutter is moved far away from the potential. The role played by the antibound state of the system on the behavior of the delay time is also discussed.« less

  2. LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter.

    PubMed

    Liu, Wanli

    2017-03-08

    The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated.

  3. On Time Delay Margin Estimation for Adaptive Control and Optimal Control Modification

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2011-01-01

    This paper presents methods for estimating time delay margin for adaptive control of input delay systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent an adaptive law by a locally bounded linear approximation within a small time window. The time delay margin of this input delay system represents a local stability measure and is computed analytically by three methods: Pade approximation, Lyapunov-Krasovskii method, and the matrix measure method. These methods are applied to the standard model-reference adaptive control, s-modification adaptive law, and optimal control modification adaptive law. The windowing analysis results in non-unique estimates of the time delay margin since it is dependent on the length of a time window and parameters which vary from one time window to the next. The optimal control modification adaptive law overcomes this limitation in that, as the adaptive gain tends to infinity and if the matched uncertainty is linear, then the closed-loop input delay system tends to a LTI system. A lower bound of the time delay margin of this system can then be estimated uniquely without the need for the windowing analysis. Simulation results demonstrates the feasibility of the bounded linear stability method for time delay margin estimation.

  4. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, S., E-mail: namba@hiroshima-u.ac.jp; Hasegawa, N.; Kishimoto, M.

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IRmore » laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.« less

  5. Leveraging delay discounting for health: Can time delays influence food choice?

    PubMed

    Appelhans, Bradley M; French, Simone A; Olinger, Tamara; Bogucki, Michael; Janssen, Imke; Avery-Mamer, Elizabeth F; Powell, Lisa M

    2018-07-01

    Delay discounting, the tendency to choose smaller immediate rewards over larger delayed rewards, is theorized to promote consumption of immediately rewarding but unhealthy foods at the expense of long-term weight maintenance and nutritional health. An untested implication of delay discounting models of decision-making is that selectively delaying access to less healthy foods may promote selection of healthier (immediately available) alternatives, even if they may be less desirable. The current study tested this hypothesis by measuring healthy versus regular vending machine snack purchasing before and during the implementation of a 25-s time delay on the delivery of regular snacks. Purchasing was also examined under a $0.25 discount on healthy snacks, a $0.25 tax on regular snacks, and the combination of both pricing interventions with the 25-s time delay. Across 32,019 vending sales from three separate vending locations, the 25-s time delay increased healthy snack purchasing from 40.1% to 42.5%, which was comparable to the impact of a $0.25 discount (43.0%). Combining the delay and the discount had a roughly additive effect (46.0%). However, the strongest effects were seen under the $0.25 tax on regular snacks (53.7%) and the combination of the delay and the tax (50.2%). Intervention effects varied substantially between vending locations. Importantly, time delays did not harm overall vending sales or revenue, which is relevant to the real-world feasibility of this intervention. More investigation is needed to better understand how the impact of time delays on food choice varies across populations, evaluate the effects of time delays on beverage vending choices, and extend this approach to food choices in contexts other than vending machines. ClinicalTrials.gov, NCT02359916. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. FLASH X-RAY (FXR) LINEAR INDUCTION ACCELERATOR (LIA) OPTIMIZATION Sensor Delay Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, M M; Houck, T L; Kreitzer, B R

    2006-05-01

    The radiographic goal of the FXR Optimization Project is to generate an x-ray pulse with peak energy of 19 MeV, spot-size of 1.5 mm, a dose of 500 rad, and duration of 60 ns. The electrical objectives are to generate a 3 kA electron-beam and refine our 16 MV accelerator so that the voltage does not vary more than 1%-rms. In a multi-cell linear induction accelerator, like FXR, the timing of the acceleration pulses relative to the beam is critical. The pulses must be timed optimally so that a cell is at full voltage before the beam arrives and doesmore » not drop until the beam passes. In order to stay within the energy-variation budget, the synchronization between the cells and beam arrival must be controlled to a couple of nanoseconds. Therefore, temporal measurements must be accurate to a fraction of a nanosecond. FXR Optimization Project developed a one-giga-sample per second (gs/s) data acquisition system to record beam sensor data. Signal processing algorithms were written to determine cell timing with an uncertainty of a fraction of a nanosecond. However, the uncertainty in the sensor delay was still a few nanoseconds. This error had to be reduced if we are to improve the quality of the electron beam. Two types of sensors are used to align the cell voltage pulse against the beam current. The beam current is measured with resistive-wall sensors. The cell voltages are read with capacitive voltage monitors. Sensor delays can be traced to two mechanisms: (1) the sensors are not co-located at the beam and cell interaction points, and (2) the sensors have different length jumper cables and other components that connect them to the standard-length coaxial cables of the data acquisition system. Using the physical locations and dimensions of the sensor components, and the dielectric constant of the materials, delay times were computed. Relative to the cell voltage, the beam current was theoretically reporting late by 7.7 ns. Two experiments were performed to verify and refine the sensor delay correction. In the first experiment, the beam was allowed to drift through a cell that was not pulsed. The beam induces a potential into the cell that is read by the voltage monitor. Analysis of the data indicated that the beam sensor signal was likely 7.1 ns late. In the second experiment, the beam current is calculated from the injector diode voltage that is the sum of the cell voltages. A 7 ns correction produced a very good match between the signals from the two types of sensors. For simplicity, we selected a correction factor that advanced the current signals by 7 ns. This should reduce the uncertainty in the temporal measurements to less than 1 ns.« less

  7. Laser-Induced Modification Of Energy Bands Of Transparent Solids

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2010-10-01

    Laser-induced variations of electron energy bands of transparent solids significantly affect the initial stages of laser-induced ablation (LIA) influencing rates of ionization and light absorption by conduction-band electrons. We analyze fast variations with characteristic duration in femto-second time domain that include: 1) switching electron functions from bonding to anti-bonding configuration due to laser-induced ionization; 2) laser-driven oscillations of electrons in quasi-momentum space; and 3) direct distortion of the inter-atomic potential by electric field of laser radiation. Among those effects, the latter two have zero delay and reversibly modify band structure taking place from the beginning of laser action. They are of special interest due to their strong influence on the initial stage and threshold of laser ablation. The oscillations modify the electron-energy bands by adding pondermotive potential. The direct action of radiation's electric field leads to high-frequency Franz-Keldysh effect (FKE) spreading the allowed electron states into the forbidden-energy bands. FKE provides decrease of the effective band gap while the electron oscillations lead either to monotonous increase or oscillatory variations of the gap. We analyze the competition between those two opposite trends and their role in initiating LIA.

  8. Describing-function analysis of a ripple regulator with slew-rate limits and time delays

    NASA Technical Reports Server (NTRS)

    Wester, Gene W.

    1990-01-01

    The effects of time delays and slew-rate limits on the steady-state operating points and performance of a free-running ripple regulator are evaluated using describing-function analysis. The describing function of an ideal comparator (no time delays or slew rate limits) has no phase shift and is independent of frequency. It is found that turn-on delay and turn-off delay have different effects on gain and phase and cannot be combined. Comparator hysteresis affects both gain and phase; likewise, time delays generally affect both gain and phase. It is found that the effective time delay around the feedback loop is one half the sum of turn-on and turn-off delays, regardless of whether the delays are caused by storage time or slew rate limits. Expressions are formulated for the switching frequency, switch duty ratio, dc output, and output ripple. For the case of no hysteresis, a simple, graphical solution for the switching frequency is possible, and the resulting switching frequency is independent of first-order variations of input or load.

  9. Negative ion formation in potassium-nitromethane collisions.

    PubMed

    Antunes, R; Almeida, D; Martins, G; Mason, N J; Garcia, G; Maneira, M J P; Nunes, Y; Limão-Vieira, P

    2010-10-21

    Ion-pair formation in gaseous nitromethane (CH(3)NO(2)) induced by electron transfer has been studied by investigating the products of collisions between fast potassium atoms and nitromethane molecules using a crossed molecular-beam technique. The negative ions formed in such collisions were analysed using time-of-flight mass spectroscopy. The six most dominant product anions are NO(2)(-), O(-), CH(3)NO(2)(-), OH(-), CH(2)NO(2)(-) and CNO(-). By using nitromethane-d(3) (CD(3)NO(2)), we found that previous mass 17 amu assignment to O(-) delayed fragment, is in the present experiment may be unambiguously assigned to OH(-). The formation of CH(2)NO(2)(-) may be explained in terms of dissociative electron attachment to highly vibrationally excited molecules.

  10. Market-based control strategy for long-span structures considering the multi-time delay issue

    NASA Astrophysics Data System (ADS)

    Li, Hongnan; Song, Jianzhu; Li, Gang

    2017-01-01

    To solve the different time delays that exist in the control device installed on spatial structures, in this study, discrete analysis using a 2 N precise algorithm was selected to solve the multi-time-delay issue for long-span structures based on the market-based control (MBC) method. The concept of interval mixed energy was introduced from computational structural mechanics and optimal control research areas, and it translates the design of the MBC multi-time-delay controller into a solution for the segment matrix. This approach transforms the serial algorithm in time to parallel computing in space, greatly improving the solving efficiency and numerical stability. The designed controller is able to consider the issue of time delay with a linear controlling force combination and is especially effective for large time-delay conditions. A numerical example of a long-span structure was selected to demonstrate the effectiveness of the presented controller, and the time delay was found to have a significant impact on the results.

  11. Conical-Domain Model for Estimating GPS Ionospheric Delays

    NASA Technical Reports Server (NTRS)

    Sparks, Lawrence; Komjathy, Attila; Mannucci, Anthony

    2009-01-01

    The conical-domain model is a computational model, now undergoing development, for estimating ionospheric delays of Global Positioning System (GPS) signals. Relative to the standard ionospheric delay model described below, the conical-domain model offers improved accuracy. In the absence of selective availability, the ionosphere is the largest source of error for single-frequency users of GPS. Because ionospheric signal delays contribute to errors in GPS position and time measurements, satellite-based augmentation systems (SBASs) have been designed to estimate these delays and broadcast corrections. Several national and international SBASs are currently in various stages of development to enhance the integrity and accuracy of GPS measurements for airline navigation. In the Wide Area Augmentation System (WAAS) of the United States, slant ionospheric delay errors and confidence bounds are derived from estimates of vertical ionospheric delay modeled on a grid at regularly spaced intervals of latitude and longitude. The estimate of vertical delay at each ionospheric grid point (IGP) is calculated from a planar fit of neighboring slant delay measurements, projected to vertical using a standard, thin-shell model of the ionosphere. Interpolation on the WAAS grid enables estimation of the vertical delay at the ionospheric pierce point (IPP) corresponding to any arbitrary measurement of a user. (The IPP of a given user s measurement is the point where the GPS signal ray path intersects a reference ionospheric height.) The product of the interpolated value and the user s thin-shell obliquity factor provides an estimate of the user s ionospheric slant delay. Two types of error that restrict the accuracy of the thin-shell model are absent in the conical domain model: (1) error due to the implicit assumption that the electron density is independent of the azimuthal angle at the IPP and (2) error arising from the slant-to-vertical conversion. At low latitudes or at mid-latitudes under disturbed conditions, the accuracy of SBAS systems based upon the thin-shell model suffers due to the presence of complex ionospheric structure, high delay values, and large electron density gradients. Interpolation on the vertical delay grid serves as an additional source of delay error. The conical-domain model permits direct computation of the user s slant delay estimate without the intervening use of a vertical delay grid. The key is to restrict each fit of GPS measurements to a spatial domain encompassing signals from only one satellite. The conical domain model is so named because each fit involves a group of GPS receivers that all receive signals from the same GPS satellite (see figure); the receiver and satellite positions define a cone, the satellite position being the vertex. A user within a given cone evaluates the delay to the satellite directly, using (1) the IPP coordinates of the line of sight to the satellite and (2) broadcast fit parameters associated with the cone. The conical-domain model partly resembles the thin-shell model in that both models reduce an inherently four-dimensional problem to two dimensions. However, unlike the thin-shell model, the conical domain model does not involve any potentially erroneous simplifying assumptions about the structure of the ionosphere. In the conical domain model, the initially four-dimensional problem becomes truly two-dimensional in the sense that once a satellite location has been specified, any signal path emanating from a satellite can be identified by only two coordinates; for example, the IPP coordinates. As a consequence, a user s slant-delay estimate converges to the correct value in the limit that the receivers converge to the user s location (or, equivalently, in the limit that the measurement IPPs converge to the user s IPP).

  12. Stability of Nonlinear Systems with Unknown Time-varying Feedback Delay

    NASA Astrophysics Data System (ADS)

    Chunodkar, Apurva A.; Akella, Maruthi R.

    2013-12-01

    This paper considers the problem of stabilizing a class of nonlinear systems with unknown bounded delayed feedback wherein the time-varying delay is 1) piecewise constant 2) continuous with a bounded rate. We also consider application of these results to the stabilization of rigid-body attitude dynamics. In the first case, the time-delay in feedback is modeled specifically as a switch among an arbitrarily large set of unknown constant values with a known strict upper bound. The feedback is a linear function of the delayed states. In the case of linear systems with switched delay feedback, a new sufficiency condition for average dwell time result is presented using a complete type Lyapunov-Krasovskii (L-K) functional approach. Further, the corresponding switched system with nonlinear perturbations is proven to be exponentially stable inside a well characterized region of attraction for an appropriately chosen average dwell time. In the second case, the concept of the complete type L-K functional is extended to a class of nonlinear time-delay systems with unknown time-varying time-delay. This extension ensures stability robustness to time-delay in the control design for all values of time-delay less than the known upper bound. Model-transformation is used in order to partition the nonlinear system into a nominal linear part that is exponentially stable with a bounded perturbation. We obtain sufficient conditions which ensure exponential stability inside a region of attraction estimate. A constructive method to evaluate the sufficient conditions is presented together with comparison with the corresponding constant and piecewise constant delay. Numerical simulations are performed to illustrate the theoretical results of this paper.

  13. Effect of metrology time delay on overlay APC

    NASA Astrophysics Data System (ADS)

    Carlson, Alan; DiBiase, Debra

    2002-07-01

    The run-to-run control strategy of lithography APC is primarily composed of a feedback loop as shown in the diagram below. It is known that the insertion of a time delay in a feedback loop can cause degradation in control performance and could even cause a stable system to become unstable, if the time delay becomes sufficiently large. Many proponents of integrated metrology methods have cited the damage caused by metrology time delays as the primary justification for moving from a stand-alone to integrated metrology. While there is little dispute over the qualitative form of this argument, there has been very light published about the quantitative effects under real fab conditions - precisely how much control is lost due to these time delays. Another issue regarding time delays is that the length of these delays is not typically fixed - they vary from lot to lot and in some cases this variance can be large - from one hour on the short side to over 32 hours on the long side. Concern has been expressed that the variability in metrology time delays can cause undesirable dynamics in feedback loops that make it difficult to optimize feedback filters and gains and at worst could drive a system unstable. By using data from numerous fabs, spanning many sizes and styles of operation, we have conducted a quantitative study of the time delay effect on overlay run- to-run control. Our analysis resulted in the following conclusions: (1) There is a significant and material relationship between metrology time delay and overlay control under a variety of real world production conditions. (2) The run-to-run controller can be configured to minimize sensitivity to time delay variations. (3) The value of moving to integrated metrology can be quantified.

  14. Digital time delay

    DOEpatents

    Martin, A.D.

    1986-05-09

    Method and apparatus are provided for generating an output pulse following a trigger pulse at a time delay interval preset with a resolution which is high relative to a low resolution available from supplied clock pulses. A first lumped constant delay provides a first output signal at predetermined interpolation intervals corresponding to the desired high resolution time interval. Latching circuits latch the high resolution data to form a first synchronizing data set. A selected time interval has been preset to internal counters and corrected for circuit propagation delay times having the same order of magnitude as the desired high resolution. Internal system clock pulses count down the counters to generate an internal pulse delayed by an internal which is functionally related to the preset time interval. A second LCD corrects the internal signal with the high resolution time delay. A second internal pulse is then applied to a third LCD to generate a second set of synchronizing data which is complementary with the first set of synchronizing data for presentation to logic circuits. The logic circuits further delay the internal output signal with the internal pulses. The final delayed output signal thereafter enables the output pulse generator to produce the desired output pulse at the preset time delay interval following input of the trigger pulse.

  15. Digitally Enhanced Heterodyne Interferometry

    NASA Technical Reports Server (NTRS)

    Shaddock, Daniel; Ware, Brent; Lay, Oliver; Dubovitsky, Serge

    2010-01-01

    Spurious interference limits the performance of many interferometric measurements. Digitally enhanced interferometry (DEI) improves measurement sensitivity by augmenting conventional heterodyne interferometry with pseudo-random noise (PRN) code phase modulation. DEI effectively changes the measurement problem from one of hardware (optics, electronics), which may deteriorate over time, to one of software (modulation, digital signal processing), which does not. DEI isolates interferometric signals based on their delay. Interferometric signals are effectively time-tagged by phase-modulating the laser source with a PRN code. DEI improves measurement sensitivity by exploiting the autocorrelation properties of the PRN to isolate only the signal of interest and reject spurious interference. The properties of the PRN code determine the degree of isolation.

  16. A statistical dynamics approach to the study of human health data: Resolving population scale diurnal variation in laboratory data

    NASA Astrophysics Data System (ADS)

    Albers, D. J.; Hripcsak, George

    2010-02-01

    Statistical physics and information theory is applied to the clinical chemistry measurements present in a patient database containing 2.5 million patients' data over a 20-year period. Despite the seemingly naive approach of aggregating all patients over all times (with respect to particular clinical chemistry measurements), both a diurnal signal in the decay of the time-delayed mutual information and the presence of two sub-populations with differing health are detected. This provides a proof in principle that the highly fragmented data in electronic health records has potential for being useful in defining disease and human phenotypes.

  17. 76 FR 65133 - Sharing Information Between the Department of Veterans Affairs and the Department of Defense

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... Executive Order 13335 and the Virtual Lifetime Electronic Record initiative, a strategic initiative that... microbiology laboratory tests. To delay the effective date would hamper the electronic exchange of health...

  18. Traversal of electromagnetic pulses through dispersive media with negative refractive index

    NASA Astrophysics Data System (ADS)

    Nanda, L.; Ramakrishna, S. A.

    2017-05-01

    We investigate the traversal of electromagnetic pulses through dispersive media with negative refractive index in such a way that no resonant effects come into play. It has been verified that for evanescent waves, the definitions of the group delay and the reshaping delay times get interchanged in comparison to the propagating waves. We show that for a negative refractive index medium (NRM) with ɛ(ω)=μ(ω), the reshaping delay time identically vanishes for propagating waves. The total delay time in NRM is otherwise contributed by both the group and the reshaping delay times, whereas for the case of broadband pulses in NRM the total delay time is always subluminal.

  19. Femtosecond profiling of shaped x-ray pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, M. C.; Grguras, I.; Behrens, C.

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less

  20. Femtosecond profiling of shaped x-ray pulses

    DOE PAGES

    Hoffmann, M. C.; Grguras, I.; Behrens, C.; ...

    2018-03-26

    Arbitrary manipulation of the temporal and spectral properties of x-ray pulses at free-electron lasers would revolutionize many experimental applications. At the Linac Coherent Light Source at Stanford National Accelerator Laboratory, the momentum phase-space of the free-electron laser driving electron bunch can be tuned to emit a pair of x-ray pulses with independently variable photon energy and femtosecond delay. However, while accelerator parameters can easily be adjusted to tune the electron bunch phase-space, the final impact of these actuators on the x-ray pulse cannot be predicted with sufficient precision. Furthermore, shot-to-shot instabilities that distort the pulse shape unpredictably cannot be fullymore » suppressed. Therefore, the ability to directly characterize the x-rays is essential to ensure precise and consistent control. In this work, we have generated x-ray pulse pairs via electron bunch shaping and characterized them on a single-shot basis with femtosecond resolution through time-resolved photoelectron streaking spectroscopy. Furthermore, this achievement completes an important step toward future x-ray pulse shaping techniques.« less

  1. Simulation analysis of the effect of initial delay on flight delay diffusion

    NASA Astrophysics Data System (ADS)

    Que, Zufu; Yao, Hongguang; Yue, Wei

    2018-01-01

    The initial delay of the flight is an important factor affecting the spread of flight delays, so clarifying their relationship conduces to control flight delays in the aeronautical network. Through establishing a model of the chain aviation network and making simulation analysis of the effects of initial delay on the delay longitudinal diffusion, it’s found that the number of delayed airports in the air network, the total delay time and the average delay time of the delayed airport are generally positively correlated with the initial delay. This indicates that the occurrence of the initial delay should be avoided or reduced as much as possible to improve the punctuality of the flight.

  2. Trams, trains, planes and automobiles: logistics of conducting a statewide audit of medical records.

    PubMed

    Flood, Margaret; Pollock, Wendy; McDonald, Susan; Davey, Mary-Ann

    2016-10-01

    This paper reports on the logistics of conducting a validation study of a routinely collected dataset against medical records at hospitals to inform planning of similar studies. A stratified random sample of 15 hospitals and two homebirth practitioners was included. Site visits were arranged following consent. In addition to the validation of perinatal data, information was collected regarding logistics. Records at 14 metropolitan and rural hospitals up to 500 km from the research centre, and two homebirth practitioners, were audited. Obtaining consent to participate took between 5 days and 10 months. Auditors visited sites on 101 days, auditing 737 medical record pairs at 16 sites. Median audit time per record was 51.3 minutes; electronic records each took 36 minutes longer than paper. Travel time accounted for nearly one-quarter of audit time. Delays obtaining consents, long travel times and electronic records prolonged audit duration and expense. Employment of experts maximised use of available audit time. Conducting a validation study is a time-consuming and expensive exercise; however, confidence in the accuracy of public health data is vital. Validation studies are unquestionably important. Three alternative strategies have been proposed to make future studies viable. © 2016 Public Health Association of Australia.

  3. Virtual Ionosonde Construction by using ITS and IRI-2012 models

    NASA Astrophysics Data System (ADS)

    Kabasakal, Mehmet; Toker, Cenk

    2016-07-01

    Ionosonde is a kind of radar which is used to examine several properties of the ionosphere, including the electron density and drift velocity. Ionosonde is an expensive device and its installation requires special expertise and a proper area clear of sources of radio interference. In order to overcome the difficulties of installing an ionosonde hardware, the target of this study is to construct a virtual ionosonde based on communication channel models where the model parameters are determined by ray tracing obtained by the PHaRLAP software and the International Reference Ionosphere (IRI-2012) model. Although narrowband high frequency (HF) communication models have been widely used to represent the behaviour of the radio channel, they are applicable to a limited set of actual propagation conditions and wideband models are needed to better understand the HF channel. In 1997, the Institute for Telecommunication Science (ITS) developed a wideband HF ionospheric model, the so-called ITS model, however, it has some restrictions in real life applications. The ITS model parameters are grouped into two parts; the deterministic and the stochastic parameters. The deterministic parameters are the delay time (tau _{c}) of each reflection path based on the penetration frequency (f _{p}), the height (h _{0}) of the maximum electron density and the half thickness (sigma) of the reflective layer. The stochastic parameters, delay spread (sigma _{tau}), delay rise time (sigma _{c}), Doppler spread (sigma _{D}), Doppler shift (f _{s}), are to calculate the impulse response of the channel. These parameters are generally difficult to obtain and are based on the measured data which may not be available in all cases. In order to obtain these parameters, we propose to integrate the PHaRLAP ray tracing toolbox and the IRI-2012 model. When Total Electron Content (TEC) estimates obtained from GNSS measurements are input to IRI-2012, the model generates electron density profiles close to the actual profiles, which are used for ray tracing between the user defined geographical coordinates. Then, ITS model parameters are obtained from both ray tracing and also the IRI-2012 model. Finally, an ionosonde signal waveform is transmitted through the channel obtained from the ITS model to generate the ionogram. As an application, oblique sounding between two points is simulated with ITS channel model. M-sequence, Barker sequence and complementary sequences are used as sounding waveforms. The effects of channel on the oblique ionogram and sounding waveform characteristics are also investigated.

  4. Ultrafast non-radiative dynamics of atomically thin MoSe 2

    DOE PAGES

    Lin, Ming -Fu; Kochat, Vidya; Krishnamoorthy, Aravind; ...

    2017-10-17

    Non-radiative energy dissipation in photoexcited materials and resulting atomic dynamics provide a promising pathway to induce structural phase transitions in two-dimensional materials. However, these dynamics have not been explored in detail thus far because of incomplete understanding of interaction between the electronic and atomic degrees of freedom, and a lack of direct experimental methods to quantify real-time atomic motion and lattice temperature. Here, we explore the ultrafast conversion of photoenergy to lattice vibrations in a model bi-layered semiconductor, molybdenum diselenide, MoSe 2. Specifically, we characterize sub-picosecond lattice dynamics initiated by the optical excitation of electronic charge carriers in the highmore » electron-hole plasma density regime. Our results focuses on the first ten picosecond dynamics subsequent to photoexcitation before the onset of heat transfer to the substrate, which occurs on a ~100 picosecond time scale. Photoinduced atomic motion is probed by measuring the time dependent Bragg diffraction of a delayed mega-electronvolt femtosecond electron beam. Transient lattice temperatures are characterized through measurement of Bragg peak intensities and calculation of the Debye-Waller factor (DWF). These measurements show a sub-picosecond decay of Bragg diffraction and a correspondingly rapid rise in lattice temperatures. We estimate a high quantum yield for the conversion of excited charge carrier energy to lattice motion under our experimental conditions, indicative of a strong electron-phonon interaction. First principles nonadiabatic quantum molecular dynamics simulations (NAQMD) on electronically excited MoSe 2 bilayers reproduce the observed picosecond-scale increase in lattice temperature and ultrafast conversion of photoenergy to lattice vibrations. Calculation of excited-state phonon dispersion curves suggests that softened vibrational modes in the excited state are involved in efficient and rapid energy transfer between the electronic system and the lattice.« less

  5. Ultrafast non-radiative dynamics of atomically thin MoSe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Ming -Fu; Kochat, Vidya; Krishnamoorthy, Aravind

    Non-radiative energy dissipation in photoexcited materials and resulting atomic dynamics provide a promising pathway to induce structural phase transitions in two-dimensional materials. However, these dynamics have not been explored in detail thus far because of incomplete understanding of interaction between the electronic and atomic degrees of freedom, and a lack of direct experimental methods to quantify real-time atomic motion and lattice temperature. Here, we explore the ultrafast conversion of photoenergy to lattice vibrations in a model bi-layered semiconductor, molybdenum diselenide, MoSe 2. Specifically, we characterize sub-picosecond lattice dynamics initiated by the optical excitation of electronic charge carriers in the highmore » electron-hole plasma density regime. Our results focuses on the first ten picosecond dynamics subsequent to photoexcitation before the onset of heat transfer to the substrate, which occurs on a ~100 picosecond time scale. Photoinduced atomic motion is probed by measuring the time dependent Bragg diffraction of a delayed mega-electronvolt femtosecond electron beam. Transient lattice temperatures are characterized through measurement of Bragg peak intensities and calculation of the Debye-Waller factor (DWF). These measurements show a sub-picosecond decay of Bragg diffraction and a correspondingly rapid rise in lattice temperatures. We estimate a high quantum yield for the conversion of excited charge carrier energy to lattice motion under our experimental conditions, indicative of a strong electron-phonon interaction. First principles nonadiabatic quantum molecular dynamics simulations (NAQMD) on electronically excited MoSe 2 bilayers reproduce the observed picosecond-scale increase in lattice temperature and ultrafast conversion of photoenergy to lattice vibrations. Calculation of excited-state phonon dispersion curves suggests that softened vibrational modes in the excited state are involved in efficient and rapid energy transfer between the electronic system and the lattice.« less

  6. THz-pump and X-ray-probe sources based on an electron linac

    NASA Astrophysics Data System (ADS)

    Setiniyaz, Sadiq; Park, Seong Hee; Kim, Hyun Woo; Vinokurov, Nikolay A.; Jang, Kyu-Ha; Lee, Kitae; Baek, In Hyung; Jeong, Young Uk

    2017-11-01

    We describe a compact THz-pump and X-ray-probe beamline, based on an electron linac, for ultrafast time-resolved diffraction applications. Two high-energy electron (γ > 50) bunches, 5 ns apart, impinge upon a single-foil or multifoil radiator and generate THz radiation and X-rays simultaneously. The THz pulse from the first bunch is synchronized to the X-ray beam of the second bunch by using an adjustable optical delay of a THz pulse. The peak power of THz radiation from the multifoil radiator is estimated to be 0.14 GW for a 200 pC well-optimized electron bunch. GEANT4 simulations show that a carbon foil with a thickness of 0.5-1.0 mm has the highest yield of 10-20 keV hard X-rays for a 25 MeV beam, which is approximately 103 photons/(keV pC-electrons) within a few degrees of the polar angle. A carbon multifoil radiator with 35 foils (25 μm thick each) can generate close to 103 hard X-rays/(keV pC-electrons) within a 2° acceptance angle. With 200 pC charge and a 100 Hz repetition rate, we can generate 107 X-rays per 1 keV energy bin per second or 105 X-rays per 1 keV energy bin per pulse. The longitudinal time profile of an X-ray pulse ranges from 400 to 600 fs depending on the acceptance angle. The broadening of the time duration of an X-ray pulse is observed owing to its diverging effect. A double-crystal monochromator will be used to select and transport the desired X-rays to the sample. The heating of the radiators by an electron beam is negligible because of the low beam current.

  7. Characterization of a detector chain using a FPGA-based time-to-digital converter to reconstruct the three-dimensional coordinates of single particles at high flux

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogrette, F.; Chang, R.; Bouton, Q.

    We report on the development of a novel FPGA-based time-to-digital converter and its implementation in a detection chain that records the coordinates of single particles along three dimensions. The detector is composed of micro-channel plates mounted on top of a cross delay line and connected to fast electronics. We demonstrate continuous recording of the timing signals from the cross delay line at rates up to 4.1 × 10{sup 6} s{sup −1} and three-dimensional reconstruction of the coordinates up to 3.2 × 10{sup 6} particles per second. From the imaging of a calibrated structure we measure the in-plane resolution of themore » detector to be 140(20) μm at a flux of 3 × 10{sup 5} particles per second. In addition, we analyze a method to estimate the resolution without placing any structure under vacuum, a significant practical improvement. While we use UV photons here, the results of this work apply to the detection of other kinds of particles.« less

  8. Conjugate observation of electron microburst groups by Bremsstrahlung X-ray and riometer techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siren, J.C.; Rosenberg, T.J.; Detrick, D.

    1980-12-01

    The first evidence is reported of simultaneous conjugate electron microburst group precipitation. Groups of bremsstrahlung X ray microbursts (E>25 keV) were observed during a substorm recovery phase by a balloon-borne scintillation counter over Roberval, Quebec, Canada. The microburst groups were accompanied one-to-one by time-delayed and broadened pulses of ionospheric absorption measured by a high sensitivity 30-MHz riometer at Siple Station, Antarctica (Lapprox. =4.1). For the interval of highest correlation, the absolute lag between the two data sets was 4 +- 1 s, to the limit of the relative timing accuracy. Approximately 2 s of the observed lag had been introducesmore » by a low-pass filter in the riometer data acquistion unit. The remainder (2 s) was due to the ionospheric recombination process, which evidently had a response time (tauapprox.5 s) during this event much shorter than that ordinarily associated with the D region of the ionosphere. Model calculations of the ionspheric response to time-varying precipitation, derived from the profile of the measurement X ray flux, provide a consistent picture of simultaneous microburst group precipitation at conjugate points, absolute absorption and the electron spectrum derived from X rays, the degree of variation in absorption and X ray fluxes, and the characteristic ionospheric time constant at the altitude of maximum energy deposition.« less

  9. Process Improvement Initiative for the Perioperative Management of Patients With a Cardiovascular Implantable Electronic Device.

    PubMed

    Ellis, Margaret K Menzel; Treggiari, Miriam M; Robertson, Jamie M; Rozner, Marc A; Graven, Peter F; Aziz, Michael F; Merkel, Matthias J; Kahl, Edward A; Cohen, Norman A; Stecker, Eric C; Schulman, Peter M

    2017-07-01

    Economic, personnel, and procedural challenges often complicate and interfere with efficient and safe perioperative care of patients with cardiovascular implantable electronic devices (CIEDs). In the context of a process improvement initiative, we created and implemented a comprehensive anesthesiologist-run perioperative CIED service to respond to all routine requests for perioperative CIED consultations at a large academic medical center. This study was designed to determine whether this new care model was associated with improved operating room efficiency, reduced institutional cost, and adequate patient safety. We included patients with a CIED and a concurrent cohort of patients with the same eligibility criteria but without a CIED who underwent first-case-of-the-day surgery during the periods between February 1, 2008, and August 17, 2010 (preintervention) and between March 4, 2012, and August 1, 2014 (postintervention). The primary end point was delay in first-case-of-the day start time. We used multiple linear regression to compare delays in start times during the preintervention and postintervention periods and to adjust for potential confounders. A patient safety database was queried for CIED-related complications. Cost analysis was based on labor minutes saved and was calculated using nationally published administrative estimates. A total of 18,148 first-case surgical procedures were performed in 15,100 patients (preintervention period-7293 patients and postintervention period-7807 patients). Of those, 151 (2.1%) patients had a CIED in the preintervention period, and 146 (1.9%) had a CIED in the postintervention period. After adjustment for imbalances in baseline characteristics (age, American Society of Anesthesiologists physical status, and surgical specialty), the difference in mean first-case start delay between the postintervention and preintervention periods in the cohort of patients with a CIED was -16.7 minutes (95% confidence interval [CI], -26.1 to -7.2). The difference in mean delay between the postintervention and preintervention periods in the cohort without a CIED was -4.7 minutes (95% CI, -5.4 to -3.9). There were 3 CIED-related adverse events during the preintervention period and none during the postintervention period. Based on reduction in first-case start delay, the intervention was associated with cost savings (estimated institutional savings $14,102 annually, or $94.06 per CIED patient), with a return on investment ratio of 2.18 over the course of the postintervention period. Based on our experience, specially trained anesthesiologists can provide efficient and safe perioperative care for patients with CIEDs. Other centers may consider implementing a similar strategy as our specialty adopts the perioperative surgical home model.

  10. Application of GPS Measurements for Ionospheric and Tropospheric Modelling

    NASA Astrophysics Data System (ADS)

    Rajendra Prasad, P.; Abdu, M. A.; Furlan, Benedito. M. P.; Koiti Kuga, Hélio

    military navigation. The DOD's primary purposes were to use the system in precision weapon delivery and providing a capability that would help reverse the proliferation of navigation systems in military. Subsequently, it was very quickly realized that civil use and scientific utility would far outstrip military use. A variety of scientific applications are uniquely suited to precise positioning capabilities. The relatively high precision, low cost, mobility and convenience of GPS receivers make positioning attractive. The other applications being precise time measurement, surveying and geodesy purposes apart from orbit and attitude determination along with many user services. The system operates by transmitting radio waves from satellites to receivers on the ground, aircraft, or other satellites. These signals are used to calculate location very accurately. Standard Positioning Services (SPS) which restricts access to Coarse/Access (C/A) code and carrier signals on the L1 frequency only. The accuracy thus provided by SPS fall short of most of the accuracy requirements of users. The upper atmosphere is ionized by the ultra violet radiation from the sun. The significant errors in positioning can result when the signals are refracted and slowed by ionospheric conditions, the parameter of the ionosphere that produces most effects on GPS signals is the total number of electrons in the ionospheric propagation path. This integrated number of electrons, called Total Electron Content (TEC) varies, not only from day to night, time of the year and solar flux cycle, but also with geomagnetic latitude and longitude. Being plasma the ionosphere affects the radio waves propagating through it. Effects of scintillation on GPS satellite navigation systems operating at L1 (1.5754 GHz), L2 (1.2276 GHz) frequencies have not been estimated accurately. It is generally recognized that GPS navigation systems are vulnerable in the polar and especially in the equatorial region during the solar maximum period. In the equatorial region the irregularity structures are highly elongated in the north-south direction and are discrete in the east-west direction with dimensions of several hundred km. With such spatial distribution of irregularities needs to determine how often the GPS receivers fails to provide navigation aid with the available constellation. The effects of scintillation on the performance of GPS navigation systems in the equatorial region can be analyzed through commissioning few ground receivers. Incidentally there are few GPS receivers near these latitudes. Despite the recent advances in the ionosphere and tropospheric delay modeling for geodetic applications of GPS, the models currently used are not very precise. The conventional and operational ionosphere models viz. Klobuchar, Bent, and IRI models have certain limitations in providing very precise accuracies at all latitudes. The troposphere delay modeling also suffers in accuracy. The advances made in both computing power and knowledge of the atmosphere leads to make an effort to upgrade some of these models for improving delay corrections in GPS navigation. The ionospheric group delay corrections for orbit determination can be minimized using duel frequency. However in single frequency measurements the group delay correction is an involved task. In this paper an investigation is carried out to estimate the model coefficients of ionosphere along with precise orbit determination modeling using GPS measurements. The locations of the ground-based receivers near equator are known very exactly. Measurements from these ground stations to a precisely known satellite carrying duel receiver is used for orbit determination. The ionosphere model parameters can be refined corresponding to spatially distributed GPS receivers spread over Brazil. The tropospheric delay effects are not significant for the satellites by choosing appropriate elevation angle. However it needs to be analyzed for user like aircraft for an effective use. In this paper brief description of GPS data utilization, Navigational message, orbit computation and precise orbit determination and Ionosphere and troposphere models are summarized. The methodology towards refining ionosphere model coefficients is presented. Some of the plots and results related to orbit determination are presented. The study demonstrated the feasibility of estimating ionosphere group delay at specific latitudes and could be improved through refining some of the model coefficients using GPS measurements. It is possible to accurately determine the tropospheric delay, which may be used for an aircraft in flight without access to real time meteorological information.

  11. Electronic Printed Ward Round Proformas: Freeing Up Doctors' Time.

    PubMed

    Fernandes, Darren; Eneje, Philip

    2017-01-01

    The role of a junior doctor involves preparing for the morning ward round. At a time when there are gaps on rotas and doctors' time is more stretched, this can be a source of significant delay and thus a loss of working time. We therefore looked at ways in which we could make the ward round a more efficient place by introducing specific electronic, printed ward round proformas. We used the average time taken to write proformas per patient and the average time taken per patient on the ward round. This would then enable us to make fair comparisons with future changes that were made using the plan, do, study, and act principles of quality improvement. Our baseline measurement found that the average time taken to write up the proforma for each patient was 1 minute 9 seconds and that the average time taken per patient on the ward round was 8 minutes 30 seconds. With the changes we made during our 3 PDSA cycles and the implementation of an electronic, printed ward round proforma, we found that we were able to reduce the average time spent per patient on the ward round to 6 minutes 32 seconds, an improvement of 1 min 58 seconds per patient. The project has thus enabled us to reduce the time taken per patient during the ward round. This improved efficiency will enable patients to be identified earlier for discharge. It will also aid in freeing up the time of junior doctors, allowing them to complete discharge letters sooner, order investigations earlier and enable them to complete their allocated tasks within contracted hours.

  12. Estimation of coupling between time-delay systems from time series

    NASA Astrophysics Data System (ADS)

    Prokhorov, M. D.; Ponomarenko, V. I.

    2005-07-01

    We propose a method for estimation of coupling between the systems governed by scalar time-delay differential equations of the Mackey-Glass type from the observed time series data. The method allows one to detect the presence of certain types of linear coupling between two time-delay systems, to define the type, strength, and direction of coupling, and to recover the model equations of coupled time-delay systems from chaotic time series corrupted by noise. We verify our method using both numerical and experimental data.

  13. LiDAR-IMU Time Delay Calibration Based on Iterative Closest Point and Iterated Sigma Point Kalman Filter

    PubMed Central

    Liu, Wanli

    2017-01-01

    The time delay calibration between Light Detection and Ranging (LiDAR) and Inertial Measurement Units (IMUs) is an essential prerequisite for its applications. However, the correspondences between LiDAR and IMU measurements are usually unknown, and thus cannot be computed directly for the time delay calibration. In order to solve the problem of LiDAR-IMU time delay calibration, this paper presents a fusion method based on iterative closest point (ICP) and iterated sigma point Kalman filter (ISPKF), which combines the advantages of ICP and ISPKF. The ICP algorithm can precisely determine the unknown transformation between LiDAR-IMU; and the ISPKF algorithm can optimally estimate the time delay calibration parameters. First of all, the coordinate transformation from the LiDAR frame to the IMU frame is realized. Second, the measurement model and time delay error model of LiDAR and IMU are established. Third, the methodology of the ICP and ISPKF procedure is presented for LiDAR-IMU time delay calibration. Experimental results are presented that validate the proposed method and demonstrate the time delay error can be accurately calibrated. PMID:28282897

  14. [Time perception in depressed and manic patients].

    PubMed

    Zhao, Qi-yuan; Ji, Yi-fu; Wang, Kai; Zhang, Lei; Liu, Ping; Jiang, Yu-bao

    2010-02-02

    To investigate the time perception in affective disorders by using neuropsychological tests and to try to elucidate its neurobiochemical mechanism. Using a time reproduction task, a comparative study was conducted for 28 depressive patients, 22 manic patients, and 26 age and education level matched healthy persons as healthy controls. Both depressive patients and manic patients are abnormal (P < 0.001), depressive patients over-reproduced the time interval than healthy controls (600 ms/delay 1 s: 1.6 +/- 0.6, P < 0.001; 600 ms/delay 5 s: 1.7 +/- 0.6, P < 0.001; 3 s/delay 1 s: 3.9 +/- 0.9, P < 0.001; 3 s/delay 5 s: 3.9 +/- 0.7, P < 0.001; 5 s/delay 1 s: 5.9 +/- 1.3, P < 0.001; 5 s/delay 5 s: 6.1 +/- 1.3, P < 0.001), yet manic patients under-reproduced the time interval (600 ms/delay 1 s: 0.7 +/- 0.2, P < 0.01; 600 ms/delay 5 s: 0.6 +/- 0.3, P < 0.001; 3 s/delay 1 s: 1.7 +/- 0.5, P < 0.001; 3 s/delay 5 s: 1.8 +/- 0.6, P < 0.001; 5 s/delay 1 s: 2.9 +/- 0.7, P < 0.001; 5 s/delay 5 s: 3.0 +/- 0.8, P < 0.001). The results of time reproduction task in patients were not related to age, education, duration of illness, number of admission (P > 0.05), but had some relation to severity of illness.And the results were positively correlated with the score of HAMD in depressive patients (six times: r = 0.44, 0.46, 0.73, 0.61, 0.55, 0.50, P < 0.05), but negatively with the score of BRMS in manic patients (six times: r = -0.57, -0.54, -0.71, -0.69, -0.80, -0.71, P < 0.05). Emotion will affect one's time perception. And the neurotransmitter in brain may participate in the processes of time perception.

  15. Bounded Linear Stability Analysis - A Time Delay Margin Estimation Approach for Adaptive Control

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Ishihara, Abraham K.; Krishnakumar, Kalmanje Srinlvas; Bakhtiari-Nejad, Maryam

    2009-01-01

    This paper presents a method for estimating time delay margin for model-reference adaptive control of systems with almost linear structured uncertainty. The bounded linear stability analysis method seeks to represent the conventional model-reference adaptive law by a locally bounded linear approximation within a small time window using the comparison lemma. The locally bounded linear approximation of the combined adaptive system is cast in a form of an input-time-delay differential equation over a small time window. The time delay margin of this system represents a local stability measure and is computed analytically by a matrix measure method, which provides a simple analytical technique for estimating an upper bound of time delay margin. Based on simulation results for a scalar model-reference adaptive control system, both the bounded linear stability method and the matrix measure method are seen to provide a reasonably accurate and yet not too conservative time delay margin estimation.

  16. Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers.

    PubMed

    Chin, Sanghoon; Thévenaz, Luc; Sancho, Juan; Sales, Salvador; Capmany, José; Berger, Perrine; Bourderionnet, Jérôme; Dolfi, Daniel

    2010-10-11

    We experimentally demonstrate a novel technique to process broadband microwave signals, using all-optically tunable true time delay in optical fibers. The configuration to achieve true time delay basically consists of two main stages: photonic RF phase shifter and slow light, based on stimulated Brillouin scattering in fibers. Dispersion properties of fibers are controlled, separately at optical carrier frequency and in the vicinity of microwave signal bandwidth. This way time delay induced within the signal bandwidth can be manipulated to correctly act as true time delay with a proper phase compensation introduced to the optical carrier. We completely analyzed the generated true time delay as a promising solution to feed phased array antenna for radar systems and to develop dynamically reconfigurable microwave photonic filters.

  17. Observation of Long Ionospheric Recoveries from Lightning-induced Electron Precipitation Events

    NASA Astrophysics Data System (ADS)

    Mohammadpour Salut, M.; Cohen, M.

    2015-12-01

    Lightning strokes induces lower ionospheric nighttime disturbances which can be detected through Very Low Frequency (VLF) remote sensing via at least two means: (1) direct heating and ionization, known as an Early event, and (2) triggered precipitation of energetic electrons from the radiation belts, known as Lightning-induced Electron Precipitation (LEP). For each, the ionospheric recover time is typically a few minutes or less. A small class of Early events have been identified as having unusually long ionospheric recoveries (10s of minutes), with the underlying mechanism still in question. Our study shows for the first time that some LEP events also demonstrate unusually long recovery. The VLF events were detected by visual inspection of the recorded data in both the North-South and East-West magnetic fields. Data from the National Lightning Detection Network (NLDN) are used to determine the location and peak current of the lightning responsible for each lightning-associated VLF perturbation. LEP or Early VLF events are determined by measuring the time delay between the causative lightning discharges and the onset of all lightning-associated perturbations. LEP events typically possess an onset delay greater than ~ 200 msec following the causative lightning discharges, while the onset of Early VLF events is time-aligned (<20 msec) with the lightning return stroke. Nonducted LEP events are distinguished from ducted events based on the location of the causative lightning relative to the precipitation region. From 15 March to 20 April and 15 October to 15 November 2011, a total of 385 LEP events observed at Indiana, Montana, Colorado and Oklahoma VLF sites, on the NAA, NLK and NML transmitter signals. 46 of these events exhibited a long recovery. It has been found that the occurrence rate of ducted long recovery LEP events is higher than nonducted. Of the 46 long recovery LEP events, 33 events were induced by ducted whistlers, and 13 events were associated with nonducted obliquely propagating whistler waves. The occurrence of high peak current lightning strokes is a prerequisite for long recovery LEP events.

  18. Finite-Time Stabilization and Adaptive Control of Memristor-Based Delayed Neural Networks.

    PubMed

    Wang, Leimin; Shen, Yi; Zhang, Guodong

    Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.Finite-time stability problem has been a hot topic in control and system engineering. This paper deals with the finite-time stabilization issue of memristor-based delayed neural networks (MDNNs) via two control approaches. First, in order to realize the stabilization of MDNNs in finite time, a delayed state feedback controller is proposed. Then, a novel adaptive strategy is applied to the delayed controller, and finite-time stabilization of MDNNs can also be achieved by using the adaptive control law. Some easily verified algebraic criteria are derived to ensure the stabilization of MDNNs in finite time, and the estimation of the settling time functional is given. Moreover, several finite-time stability results as our special cases for both memristor-based neural networks (MNNs) without delays and neural networks are given. Finally, three examples are provided for the illustration of the theoretical results.

  19. The effect of visual-motion time delays on pilot performance in a pursuit tracking task

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.; Riley, D. R.

    1976-01-01

    A study has been made to determine the effect of visual-motion time delays on pilot performance of a simulated pursuit tracking task. Three interrelated major effects have been identified: task difficulty, motion cues, and time delays. As task difficulty, as determined by airplane handling qualities or target frequency, increases, the amount of acceptable time delay decreases. However, when relatively complete motion cues are included in the simulation, the pilot can maintain his performance for considerably longer time delays. In addition, the number of degrees of freedom of motion employed is a significant factor.

  20. A study of a steering system algorithm for pleasure boats based on stability analysis of a human-machine system model

    NASA Astrophysics Data System (ADS)

    Ikeda, Fujio; Toyama, Shigehiro; Ishiduki, Souta; Seta, Hiroaki

    2016-09-01

    Maritime accidents of small ships continue to increase in number. One of the major factors is poor manoeuvrability of the Manual Hydraulic Steering Mechanism (MHSM) in common use. The manoeuvrability can be improved by using the Electronic Control Steering Mechanism (ECSM). This paper conducts stability analyses of a pleasure boat controlled by human models in view of path following on a target course, in order to establish design guidelines for the ECSM. First, to analyse the stability region, the research derives the linear approximated model in a planar global coordinate system. Then, several human models are assumed to develop closed-loop human-machine controlled systems. These human models include basic proportional, derivative, integral and time-delay actions. The stability analysis simulations for those human-machine systems are carried out. The results show that the stability region tends to spread as a ship's velocity increases in the case of the basic proportional human model. The derivative action and time-delay action of human models are effective in spreading the stability region in their respective ranges of frontal gazing points.

  1. Advanced Gouy phase high harmonics interferometer

    NASA Astrophysics Data System (ADS)

    Mustary, M. H.; Laban, D. E.; Wood, J. B. O.; Palmer, A. J.; Holdsworth, J.; Litvinyuk, I. V.; Sang, R. T.

    2018-05-01

    We describe an extreme ultraviolet (XUV) interferometric technique that can resolve ∼100 zeptoseconds (10‑21 s) delay between high harmonic emissions from two successive sources separated spatially along the laser propagation in a single Gaussian beam focus. Several improvements on our earlier work have been implemented in the advanced interferometer. In this paper, we report on the design, characterization and optimization of the advanced Gouy phase interferometer. Temporal coherence for both atomic argon and molecular hydrogen gases has been observed for several harmonic orders. It has been shown that phase shift of XUV pulses mainly originates from the emission time delay due to the Gouy phase in the laser focus and the observed interference is independent of the generating medium. This interferometer can be a useful tool for measuring the relative phase shift between any two gas species and for studying ultrafast dynamics of their electronic and nuclear motion.

  2. Burner ignition system

    DOEpatents

    Carignan, Forest J.

    1986-01-21

    An electronic ignition system for a gas burner is battery operated. The battery voltage is applied through a DC-DC chopper to a step-up transformer to charge a capacitor which provides the ignition spark. The step-up transformer has a significant leakage reactance in order to limit current flow from the battery during initial charging of the capacitor. A tank circuit at the input of the transformer returns magnetizing current resulting from the leakage reactance to the primary in succeeding cycles. An SCR in the output circuit is gated through a voltage divider which senses current flow through a flame. Once the flame is sensed, further sparks are precluded. The same flame sensor enables a thermopile driven main valve actuating circuit. A safety valve in series with the main gas valve responds to a control pressure thermostatically applied through a diaphragm. The valve closes after a predetermined delay determined by a time delay orifice if the pilot gas is not ignited.

  3. High-speed all-optical logic inverter based on stimulated Raman scattering in silicon nanocrystal.

    PubMed

    Sen, Mrinal; Das, Mukul K

    2015-11-01

    In this paper, we propose a new device architecture for an all-optical logic inverter (NOT gate), which is cascadable with a similar device. The inverter is based on stimulated Raman scattering in silicon nanocrystal waveguides, which are embedded in a silicon photonic crystal structure. The Raman response function of silicon nanocrystal is evaluated to explore the transfer characteristic of the inverter. A maximum product criterion for the noise margin is taken to analyze the cascadability of the inverter. The time domain response of the inverter, which explores successful inversion operation at 100 Gb/s, is analyzed. Propagation delay of the inverter is on the order of 5 ps, which is less than the delay in most of the electronic logic families as of today. Overall dimension of the device is around 755  μm ×15  μm, which ensures integration compatibility with the matured silicon industry.

  4. Robust stability bounds for multi-delay networked control systems

    NASA Astrophysics Data System (ADS)

    Seitz, Timothy; Yedavalli, Rama K.; Behbahani, Alireza

    2018-04-01

    In this paper, the robust stability of a perturbed linear continuous-time system is examined when controlled using a sampled-data networked control system (NCS) framework. Three new robust stability bounds on the time-invariant perturbations to the original continuous-time plant matrix are presented guaranteeing stability for the corresponding discrete closed-loop augmented delay-free system (ADFS) with multiple time-varying sensor and actuator delays. The bounds are differentiated from previous work by accounting for the sampled-data nature of the NCS and for separate communication delays for each sensor and actuator, not a single delay. Therefore, this paper expands the knowledge base in multiple inputs multiple outputs (MIMO) sampled-data time delay systems. Bounds are presented for unstructured, semi-structured, and structured perturbations.

  5. Discrete-time BAM neural networks with variable delays

    NASA Astrophysics Data System (ADS)

    Liu, Xin-Ge; Tang, Mei-Lan; Martin, Ralph; Liu, Xin-Bi

    2007-07-01

    This Letter deals with the global exponential stability of discrete-time bidirectional associative memory (BAM) neural networks with variable delays. Using a Lyapunov functional, and linear matrix inequality techniques (LMI), we derive a new delay-dependent exponential stability criterion for BAM neural networks with variable delays. As this criterion has no extra constraints on the variable delay functions, it can be applied to quite general BAM neural networks with a broad range of time delay functions. It is also easy to use in practice. An example is provided to illustrate the theoretical development.

  6. Local Bifurcations and Optimal Theory in a Delayed Predator-Prey Model with Threshold Prey Harvesting

    NASA Astrophysics Data System (ADS)

    Tankam, Israel; Tchinda Mouofo, Plaire; Mendy, Abdoulaye; Lam, Mountaga; Tewa, Jean Jules; Bowong, Samuel

    2015-06-01

    We investigate the effects of time delay and piecewise-linear threshold policy harvesting for a delayed predator-prey model. It is the first time that Holling response function of type III and the present threshold policy harvesting are associated with time delay. The trajectories of our delayed system are bounded; the stability of each equilibrium is analyzed with and without delay; there are local bifurcations as saddle-node bifurcation and Hopf bifurcation; optimal harvesting is also investigated. Numerical simulations are provided in order to illustrate each result.

  7. A compact high current pulsed electron gun with subnanosecond electron pulse widths

    NASA Technical Reports Server (NTRS)

    Khakoo, M. A.; Srivastava, S. K.

    1984-01-01

    A magnetically-collimated, double-pulsed electron gun capable of generating electron pulses with a peak instantaneous current of approximately 70 microamps and a temporal width of 0.35 ns (FWHM) has been developed. Calibration is accomplished by measuring the lifetime of the well known 2(1P)-to-1(1S) transition in helium (58.4nm) at a near-threshold electron-impact energy by use of the delayed-coincidence technique.

  8. A Strain-Sonde Technique for the Measurement of Mechanical Time-Delay Fuze Function Times and Performance

    DTIC Science & Technology

    1983-09-01

    AD IV) MEMORANDUM REPORT ARBRL-MR-03309 N(Supersedes IMR No. 760) A STRAIN -SONDE TECHNIQUE FOR THE MEASUREMENT OF MECHANICAL TIME- DELAY FUZE...and BkuWel) S. TYPE OF REPORT & PERIOD COVERED A STRAIN -SONDE TECHNIQUE FOR THE MEASUREMENT OF Final MECHANICAL TIME-DELAY FUZE FUNCTION TIMES AND S...nmber) M577 Mechanical Time-Delay Fuze F"/FM Telemeter Interlock Pin Release Semiconductor Strain Gage Rotor Signal Condition Amplifier Firing Pin In

  9. Robust optimization for nonlinear time-delay dynamical system of dha regulon with cost sensitivity constraint in batch culture

    NASA Astrophysics Data System (ADS)

    Yuan, Jinlong; Zhang, Xu; Liu, Chongyang; Chang, Liang; Xie, Jun; Feng, Enmin; Yin, Hongchao; Xiu, Zhilong

    2016-09-01

    Time-delay dynamical systems, which depend on both the current state of the system and the state at delayed times, have been an active area of research in many real-world applications. In this paper, we consider a nonlinear time-delay dynamical system of dha-regulonwith unknown time-delays in batch culture of glycerol bioconversion to 1,3-propanediol induced by Klebsiella pneumonia. Some important properties and strong positive invariance are discussed. Because of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, a quantitative biological robustness for the concentrations of intracellular substances is defined by penalizing a weighted sum of the expectation and variance of the relative deviation between system outputs before and after the time-delays are perturbed. Our goal is to determine optimal values of the time-delays. To this end, we formulate an optimization problem in which the time delays are decision variables and the cost function is to minimize the biological robustness. This optimization problem is subject to the time-delay system, parameter constraints, continuous state inequality constraints for ensuring that the concentrations of extracellular and intracellular substances lie within specified limits, a quality constraint to reflect operational requirements and a cost sensitivity constraint for ensuring that an acceptable level of the system performance is achieved. It is approximated as a sequence of nonlinear programming sub-problems through the application of constraint transcription and local smoothing approximation techniques. Due to the highly complex nature of this optimization problem, the computational cost is high. Thus, a parallel algorithm is proposed to solve these nonlinear programming sub-problems based on the filled function method. Finally, it is observed that the obtained optimal estimates for the time-delays are highly satisfactory via numerical simulations.

  10. Electron-nuclear coherent spin oscillations probed by spin-dependent recombination

    NASA Astrophysics Data System (ADS)

    Azaizia, S.; Carrère, H.; Sandoval-Santana, J. C.; Ibarra-Sierra, V. G.; Kalevich, V. K.; Ivchenko, E. L.; Bakaleinikov, L. A.; Marie, X.; Amand, T.; Kunold, A.; Balocchi, A.

    2018-04-01

    We demonstrate the triggering and detection of coherent electron-nuclear spin oscillations related to the hyperfine interaction in Ga deep paramagnetic centers in GaAsN by band-to-band photoluminescence without an external magnetic field. In contrast to other point defects such as Cr4 + in SiC, Ce3 + in yttrium aluminum garnet crystals, nitrogen-vacancy centers in diamond, and P atoms in silicon, the bound-electron spin in Ga centers is not directly coupled to the electromagnetic field via the spin-orbit interaction. However, this apparent drawback can be turned into an advantage by exploiting the spin-selective capture of conduction band electrons to the Ga centers. On the basis of a pump-probe photoluminescence experiment we measure directly in the temporal domain the hyperfine constant of an electron coupled to a gallium defect in GaAsN by tracing the dynamical behavior of the conduction electron spin-dependent recombination to the defect site. The hyperfine constants and the relative abundance of the nuclei isotopes involved can be determined without the need of an electron spin resonance technique and in the absence of any magnetic field. Information on the nuclear and electron spin relaxation damping parameters can also be estimated from the oscillation amplitude decay and the long-time-delay behavior.

  11. Acoustic Transducers as Passive Cooperative Targets for Wireless Sensing of the Sub-Surface World: Challenges of Probing with Ground Penetrating RADAR

    PubMed Central

    Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile

    2018-01-01

    Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement. PMID:29337914

  12. Acoustic Transducers as Passive Cooperative Targets for Wireless Sensing of the Sub-Surface World: Challenges of Probing with Ground Penetrating RADAR.

    PubMed

    Friedt, Jean-Michel; Martin, Gilles; Goavec-Mérou, Gwenhael; Rabus, David; Alzuaga, Sébastien; Arapan, Lilia; Sagnard, Marianne; Carry, Émile

    2018-01-16

    Passive wireless transducers are used as sensors, probed by a RADAR system. A simple way to separate the returning signal from the clutter is to delay the response, so that the clutter decays before the echoes are received. This can be achieved by introducing a fixed delay in the sensor design. Acoustic wave transducers are ideally suited as cooperative targets for passive, wireless sensing. The incoming electromagnetic pulse is converted into an acoustic wave, propagated on the sensor substrate surface, and reflected as an electromagnetic echo. According to a known law, the acoustic wave propagation velocity depends on the physical quantity under investigation, which is then measured as an echo delay. Both conversions between electromagnetic and acoustic waves are based on the piezoelectric property of the substrate of which the sensor is made. Investigating underground sensing, we address the problems of using GPR (Ground-Penetrating RADAR) for probing cooperative targets. The GPR is a good candidate for this application because it provides an electromagnetic source and receiver, as well as echo recording tools. Instead of designing dedicated electronics, we choose a commercially available, reliable and rugged instrument. The measurement range depends on parameters like antenna radiation pattern, radio spectrum matching between GPR and the target, antenna-sensor impedance matching and the transfer function of the target. We demonstrate measurements at depths ranging from centimeters to circa 1 m in a sandbox. In our application, clutter rejection requires delays between the emitted pulse and echoes to be longer than in the regular use of the GPR for geophysical measurements. This delay, and the accuracy needed for sensing, challenge the GPR internal time base. In the GPR units we used, the drift turns out to be incompatible with the targeted application. The available documentation of other models and brands suggests that this is a rather general limitation. We solved the problem by replacing the analog ramp generator defining the time base with a fully digital solution, whose time accuracy and stability relies on a quartz oscillator. The resulting stability is acceptable for sub-surface cooperative sensor measurement.

  13. Coherent Response of Two Dimensional Electron Gas probed by Two Dimensional Fourier Transform Spectroscopy

    NASA Astrophysics Data System (ADS)

    Paul, Jagannath

    Advent of ultrashort lasers made it possible to probe various scattering phenomena in materials that occur in a time scale on the order of few femtoseconds to several tens of picoseconds. Nonlinear optical spectroscopy techniques, such as pump-probe, transient four wave mixing (TFWM), etc., are very common to study the carrier dynamics in various material systems. In time domain, the transient FWM uses several ultrashort pulses separated by time delays to obtain the information of dephasing and population relaxation times, which are very important parameters that govern the carrier dynamics of materials. A recently developed multidimensional nonlinear optical spectroscopy is an enhanced version of TFWM which keeps track of two time delays simultaneously and correlate them in the frequency domain with the aid of Fourier transform in a two dimensional map. Using this technique, the nonlinear complex signal field is characterized both in amplitude and phase. Furthermore, this technique allows us to identify the coupling between resonances which are rather difficult to interpret from time domain measurements. This work focuses on the study of the coherent response of a two dimensional electron gas formed in a modulation doped GaAs/AlGaAs quantum well both at zero and at high magnetic fields. In modulation doped quantum wells, the excitons are formed as a result of the inter- actions of the charged holes with the electrons at the Fermi edge in the conduction band, leading to the formation of Mahan excitons, which is also referred to as Fermi edge singularity (FES). Polarization and temperature dependent rephasing 2DFT spectra in combination with TI-FWM measurements, provides insight into the dephasing mechanism of the heavy hole (HH) Mahan exciton. In addition to that strong quantum coherence between the HH and LH Mahan excitons is observed, which is rather surprising at this high doping concentration. The binding energy of Mahan excitons is expected to be greatly reduced and any quantum coherence be destroyed as a result of the screening and electron-electron interactions. Such correlations are revealed by the dominating cross-diagonal peaks in both one-quantum and two-quantum 2DFT spectra. Theoretical simulations based on the optical Bloch Equations (OBE) where many-body effects are included phenomenologically, corroborate the experimental results. Time-dependent density functional theory (TD-DFT) calculations provide insight into the underlying physics and attribute the observed strong quantum coherence to a significantly reduced screening length and collective excitations of the many-electron system. Furthermore, in semiconductors under the application of magnetic field, the energy states in conduction and valence bands become quantized and Landau levels are formed. We observe optical excitation originating from different Landau levels in the absorption spectra in an undoped and a modulation doped quantum wells. 2DFT measurements in magnetic field up to 25 Tesla have been performed and the spectra reveal distinct difference in the line shapes in the two samples. In addition, strong coherent coupling between landau levels is observed in the undoped sample. In order to gain deeper understanding of the observations, the experimental results are further supported with TD-DFT calculation.

  14. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah

    2015-02-03

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  15. Time delay and noise explaining the behaviour of the cell growth in fermentation process

    NASA Astrophysics Data System (ADS)

    Ayuobi, Tawfiqullah; Rosli, Norhayati; Bahar, Arifah; Salleh, Madihah Md

    2015-02-01

    This paper proposes to investigate the interplay between time delay and external noise in explaining the behaviour of the microbial growth in batch fermentation process. Time delay and noise are modelled jointly via stochastic delay differential equations (SDDEs). The typical behaviour of cell concentration in batch fermentation process under this model is investigated. Milstein scheme is applied for solving this model numerically. Simulation results illustrate the effects of time delay and external noise in explaining the lag and stationary phases, respectively for the cell growth of fermentation process.

  16. The Effects of Financial Education on Impulsive Decision Making

    PubMed Central

    DeHart, William B.; Friedel, Jonathan E.; Lown, Jean M.; Odum, Amy L.

    2016-01-01

    Delay discounting, as a behavioral measure of impulsive choice, is strongly related to substance abuse and other risky behaviors. Therefore, effective techniques that alter delay discounting are of great interest. We explored the ability of a semester long financial education course to change delay discounting. Participants were recruited from a financial education course (n = 237) and an abnormal psychology course (n = 80). Both groups completed a delay-discounting task for $100 during the first two weeks (Time 1) of the semester as well as during the last two weeks (Time 2) of the semester. Participants also completed a personality inventory and financial risk tolerance scale both times and a delay-discounting task for $1,000 during Time 2. Delay discounting decreased in the financial education group at the end of the semester whereas there was no change in delay discounting in the abnormal psychology group. Financial education may be an effective method for reducing delay discounting. PMID:27442237

  17. The Effects of Financial Education on Impulsive Decision Making.

    PubMed

    DeHart, William B; Friedel, Jonathan E; Lown, Jean M; Odum, Amy L

    2016-01-01

    Delay discounting, as a behavioral measure of impulsive choice, is strongly related to substance abuse and other risky behaviors. Therefore, effective techniques that alter delay discounting are of great interest. We explored the ability of a semester long financial education course to change delay discounting. Participants were recruited from a financial education course (n = 237) and an abnormal psychology course (n = 80). Both groups completed a delay-discounting task for $100 during the first two weeks (Time 1) of the semester as well as during the last two weeks (Time 2) of the semester. Participants also completed a personality inventory and financial risk tolerance scale both times and a delay-discounting task for $1,000 during Time 2. Delay discounting decreased in the financial education group at the end of the semester whereas there was no change in delay discounting in the abnormal psychology group. Financial education may be an effective method for reducing delay discounting.

  18. Delay-induced stochastic bifurcations in a bistable system under white noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Zhongkui, E-mail: sunzk@nwpu.edu.cn; Fu, Jin; Xu, Wei

    2015-08-15

    In this paper, the effects of noise and time delay on stochastic bifurcations are investigated theoretically and numerically in a time-delayed Duffing-Van der Pol oscillator subjected to white noise. Due to the time delay, the random response is not Markovian. Thereby, approximate methods have been adopted to obtain the Fokker-Planck-Kolmogorov equation and the stationary probability density function for amplitude of the response. Based on the knowledge that stochastic bifurcation is characterized by the qualitative properties of the steady-state probability distribution, it is found that time delay and feedback intensity as well as noise intensity will induce the appearance of stochasticmore » P-bifurcation. Besides, results demonstrated that the effects of the strength of the delayed displacement feedback on stochastic bifurcation are accompanied by the sensitive dependence on time delay. Furthermore, the results from numerical simulations best confirm the effectiveness of the theoretical analyses.« less

  19. Molecular interferometer to decode attosecond electron-nuclear dynamics.

    PubMed

    Palacios, Alicia; González-Castrillo, Alberto; Martín, Fernando

    2014-03-18

    Understanding the coupled electronic and nuclear dynamics in molecules by using pump-probe schemes requires not only the use of short enough laser pulses but also wavelengths and intensities that do not modify the intrinsic behavior of the system. In this respect, extreme UV pulses of few-femtosecond and attosecond durations have been recognized as the ideal tool because their short wavelengths ensure a negligible distortion of the molecular potential. In this work, we propose the use of two twin extreme UV pulses to create a molecular interferometer from direct and sequential two-photon ionization processes that leave the molecule in the same final state. We theoretically demonstrate that such a scheme allows for a complete identification of both electronic and nuclear phases in the wave packet generated by the pump pulse. We also show that although total ionization yields reveal entangled electronic and nuclear dynamics in the bound states, doubly differential yields (differential in both electronic and nuclear energies) exhibit in addition the dynamics of autoionization, i.e., of electron correlation in the ionization continuum. Visualization of such dynamics is possible by varying the time delay between the pump and the probe pulses.

  20. The rates and time-delay distribution of multiply imaged supernovae behind lensing clusters

    NASA Astrophysics Data System (ADS)

    Li, Xue; Hjorth, Jens; Richard, Johan

    2012-11-01

    Time delays of gravitationally lensed sources can be used to constrain the mass model of a deflector and determine cosmological parameters. We here present an analysis of the time-delay distribution of multiply imaged sources behind 17 strong lensing galaxy clusters with well-calibrated mass models. We find that for time delays less than 1000 days, at z = 3.0, their logarithmic probability distribution functions are well represented by P(log Δt) = 5.3 × 10-4Δttilde beta/M2502tilde beta, with tilde beta = 0.77, where M250 is the projected cluster mass inside 250 kpc (in 1014M⊙), and tilde beta is the power-law slope of the distribution. The resultant probability distribution function enables us to estimate the time-delay distribution in a lensing cluster of known mass. For a cluster with M250 = 2 × 1014M⊙, the fraction of time delays less than 1000 days is approximately 3%. Taking Abell 1689 as an example, its dark halo and brightest galaxies, with central velocity dispersions σ>=500kms-1, mainly produce large time delays, while galaxy-scale mass clumps are responsible for generating smaller time delays. We estimate the probability of observing multiple images of a supernova in the known images of Abell 1689. A two-component model of estimating the supernova rate is applied in this work. For a magnitude threshold of mAB = 26.5, the yearly rate of Type Ia (core-collapse) supernovae with time delays less than 1000 days is 0.004±0.002 (0.029±0.001). If the magnitude threshold is lowered to mAB ~ 27.0, the rate of core-collapse supernovae suitable for time delay observation is 0.044±0.015 per year.

  1. Elapsed Time Between the First Symptoms of Breast Cancer and Medical Help-Seeking Behavior and the Affecting Factors.

    PubMed

    Gözüm, Sebahat; Tuzcu, Ayla

    Many studies have determined that the time between women's realization of first symptoms and seeking help from a healthcare professional is more than 1 month. The situation is defined as delay in medical help-seeking behavior (MHSB). The purpose of this study was to determine the time elapsed between the first symptoms of breast cancer and MHSB, as well as the factors contributing to the delay. In this descriptive study, the data were collected from 132 patients who received a diagnosis of breast cancer and are receiving treatment in the Oncology Clinic of Akdeniz University Hospital. The questionnaire used in the study was structured in 3 parts: sociodemographic characteristics, breast cancer history/screening behaviors, and psychological factors affecting MHSB. The elapsed time between patients' first symptoms and MHSB was classified into "normal" when it was less than 1 month, "delay" when it was between 1 and 3 months, "long-term delay" when it was more than 3 months, and "very serious delay" when it was more than 6 months. A total of 59.8% were classified as normal, 16.7% as delayed, 5.3% as a long-term delay, and 18.2% as a very serious delay after first symptoms. The delay in MHSB time was affected 18.55 times by "not caring/minding," 10.73 times by "fear," 7.13 times by "having more important problems," and 4.23 times by "realization of first symptoms" by themselves. Psychological factors were the most important determinants in delay. The MHSB time was less if those first realizing the symptoms were healthcare professionals. Healthcare professionals should direct women to screenings and train them to interpret symptoms correctly.

  2. Effects of computing time delay on real-time control systems

    NASA Technical Reports Server (NTRS)

    Shin, Kang G.; Cui, Xianzhong

    1988-01-01

    The reliability of a real-time digital control system depends not only on the reliability of the hardware and software used, but also on the speed in executing control algorithms. The latter is due to the negative effects of computing time delay on control system performance. For a given sampling interval, the effects of computing time delay are classified into the delay problem and the loss problem. Analysis of these two problems is presented as a means of evaluating real-time control systems. As an example, both the self-tuning predicted (STP) control and Proportional-Integral-Derivative (PID) control are applied to the problem of tracking robot trajectories, and their respective effects of computing time delay on control performance are comparatively evaluated. For this example, the STP (PID) controller is shown to outperform the PID (STP) controller in coping with the delay (loss) problem.

  3. The influences of delay time on the stability of a market model with stochastic volatility

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Cheng; Mei, Dong-Cheng

    2013-02-01

    The effects of the delay time on the stability of a market model are investigated, by using a modified Heston model with a cubic nonlinearity and cross-correlated noise sources. These results indicate that: (i) There is an optimal delay time τo which maximally enhances the stability of the stock price under strong demand elasticity of stock price, and maximally reduces the stability of the stock price under weak demand elasticity of stock price; (ii) The cross correlation coefficient of noises and the delay time play an opposite role on the stability for the case of the delay time <τo and the same role for the case of the delay time >τo. Moreover, the probability density function of the escape time of stock price returns, the probability density function of the returns and the correlation function of the returns are compared with other literatures.

  4. Using reflection time-of-flight mass spectrometer techniques to investigate cluster dynamics and bonding

    NASA Astrophysics Data System (ADS)

    Wei, Shiqing; Castleman, A. W., Jr.

    1994-02-01

    Lase based time-of-flight mass spectrometer systems affixed with reflectrons are valuable tools for investigating cluster dynamics and reactions, spectroscopy and structures. Utilizing the reflectron time-of-flight mass spectrometer techniques, both decay fractions and kinetic energy releases of metastable cluster ions can be measured with high precision. By applying related theoretical models, the desired thermochemical values of metastable species can be deduced, which are otherwise very difficult to obtain. Several examples are discussed with attention focused on ammonia as a test case for hydrogen bond systems, and xenon for weaker van der Waals clusters. A brief overview of applications to investigating solvation effects on reactions and structures, delayed electron transfer and ionization through intracluster Penning ionization is also given.

  5. Time delay and long-range connection induced synchronization transitions in Newman-Watts small-world neuronal networks.

    PubMed

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay τ and long-range connection (LRC) probability P have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability P = 1.0 as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability P is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs.

  6. Time Delay and Long-Range Connection Induced Synchronization Transitions in Newman-Watts Small-World Neuronal Networks

    PubMed Central

    Qian, Yu

    2014-01-01

    The synchronization transitions in Newman-Watts small-world neuronal networks (SWNNs) induced by time delay and long-range connection (LRC) probability have been investigated by synchronization parameter and space-time plots. Four distinct parameter regions, that is, asynchronous region, transition region, synchronous region, and oscillatory region have been discovered at certain LRC probability as time delay is increased. Interestingly, desynchronization is observed in oscillatory region. More importantly, we consider the spatiotemporal patterns obtained in delayed Newman-Watts SWNNs are the competition results between long-range drivings (LRDs) and neighboring interactions. In addition, for moderate time delay, the synchronization of neuronal network can be enhanced remarkably by increasing LRC probability. Furthermore, lag synchronization has been found between weak synchronization and complete synchronization as LRC probability is a little less than 1.0. Finally, the two necessary conditions, moderate time delay and large numbers of LRCs, are exposed explicitly for synchronization in delayed Newman-Watts SWNNs. PMID:24810595

  7. [Analysis of characteristics and influence factors of diagnostic delay of endometriosis].

    PubMed

    Han, X T; Guo, H Y; Kong, D L; Han, J S; Zhang, L F

    2018-02-25

    Objective: To access the influence factors of diagnostic delay of endometriosis. Methods: We designed a questionnaire of diagnostic delay of endometriosis. From February 2014 to February 2016, 400 patients who had dysmenorrhea and diagnosed with endometriosis by surgery in Peking University Third Hospital were surveyed retrospectively. Time and risk factors of diagnostic delay were analyzed. Results: The diagnostic delay of 400 patients was 13.0 years (0.2-43.0 years), 78.5%(314/400) patients thought pain was a normal phenomenon and didn't see the doctor. Patients who suffered dysmenorrhea at menarche experienced longer diagnostic delay than those who had dysmenorrhea after menarche (18.0 vs 4.5 years; Z= 191.800, P< 0.01) . Patients who suffered aggravating dysmenorrhea experienced shorter delay time than those who suffered stable or relieving dysmenorrhea (11.0 vs 12.5 vs 18.0 years; Z= 8.270, P< 0.05) , with the difference statistically significant, single factor analysis shows. Severe dysmenorrhea, deep infiltration endometriosis (DIE) , family history of dysmenorrhea or endometriosis, previous surgical history of endometriosis, high stage, with infertility, adenomyoma or other symptoms, could help to shorten diagnostic delay with no significant difference ( P> 0.05) . By multiple logistic regression analysis, the results shown that whether have dysmenorrhea at menarche and clinical diagnosis time were the independent factors affecting delayed diagnosis ( P< 0.01) . Conclusions: Diagnostic delay of endometriosis is common and the mean delay time is 13.0 years mainly due to the unawareness of dysmenorrhea. Dysmenorrhea at menarche, clinical diagnosis time and dysmenorrhea intensity are the factors affecting time of diagnostic delay.

  8. LMI designmethod for networked-based PID control

    NASA Astrophysics Data System (ADS)

    Souza, Fernando de Oliveira; Mozelli, Leonardo Amaral; de Oliveira, Maurício Carvalho; Palhares, Reinaldo Martinez

    2016-10-01

    In this paper, we propose a methodology for the design of networked PID controllers for second-order delayed processes using linear matrix inequalities. The proposed procedure takes into account time-varying delay on the plant, time-varying delays induced by the network and packed dropouts. The design is carried on entirely using a continuous-time model of the closed-loop system where time-varying delays are used to represent sampling and holding occurring in a discrete-time digital PID controller.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, C. S.; Picón, A.; Bostedt, C.

    The availability at x-ray free electron lasers of generating two intense, femtosecond x-ray pulses with controlled time delay opens the possibility of performing time-resolved experiments for x-ray induced phenomena. We have applied this capability to molecular dynamics. In diatomic molecules composed of low-Z elements, K-shell ionization creates a core-hole state in which the main decay is an Auger process involving two electrons in the valence shell. After Auger decay, the nuclear wavepackets of the transient two-valence-hole states continue evolving on the femtosecond timescale, leading either to separated atomic ions or long-lived quasi-bound states. By using an x-ray pump and anmore » x-ray probe pulse tuned above the K-shell ionization threshold of the nitrogen molecule, we are able to observe ion dissociation in progress by measuring the time-dependent kinetic energy releases of different breakup channels. We simulated the measurements on N2 with a molecular dynamics model that accounts for K-shell ionization, Auger decay, and time evolution of the nuclear wavepackets. In addition to explaining the time-dependent feature in the measured kinetic energy release distributions from the dissociative states, the simulation also reveals the contributions of quasi-bound states.« less

  10. Accurate time delay technology in simulated test for high precision laser range finder

    NASA Astrophysics Data System (ADS)

    Chen, Zhibin; Xiao, Wenjian; Wang, Weiming; Xue, Mingxi

    2015-10-01

    With the continuous development of technology, the ranging accuracy of pulsed laser range finder (LRF) is higher and higher, so the maintenance demand of LRF is also rising. According to the dominant ideology of "time analog spatial distance" in simulated test for pulsed range finder, the key of distance simulation precision lies in the adjustable time delay. By analyzing and comparing the advantages and disadvantages of fiber and circuit delay, a method was proposed to improve the accuracy of the circuit delay without increasing the count frequency of the circuit. A high precision controllable delay circuit was designed by combining the internal delay circuit and external delay circuit which could compensate the delay error in real time. And then the circuit delay accuracy could be increased. The accuracy of the novel circuit delay methods proposed in this paper was actually measured by a high sampling rate oscilloscope actual measurement. The measurement result shows that the accuracy of the distance simulated by the circuit delay is increased from +/- 0.75m up to +/- 0.15m. The accuracy of the simulated distance is greatly improved in simulated test for high precision pulsed range finder.

  11. Kalman filters for fractional discrete-time stochastic systems along with time-delay in the observation signal

    NASA Astrophysics Data System (ADS)

    Torabi, H.; Pariz, N.; Karimpour, A.

    2016-02-01

    This paper investigates fractional Kalman filters when time-delay is entered in the observation signal in the discrete-time stochastic fractional order state-space representation. After investigating the common fractional Kalman filter, we try to derive a fractional Kalman filter for time-delay fractional systems. A detailed derivation is given. Fractional Kalman filters will be used to estimate recursively the states of fractional order state-space systems based on minimizing the cost function when there is a constant time delay (d) in the observation signal. The problem will be solved by converting the filtering problem to a usual d-step prediction problem for delay-free fractional systems.

  12. Time Delay of CGM Sensors

    PubMed Central

    Schmelzeisen-Redeker, Günther; Schoemaker, Michael; Kirchsteiger, Harald; Freckmann, Guido; Heinemann, Lutz; del Re, Luigi

    2015-01-01

    Background: Continuous glucose monitoring (CGM) is a powerful tool to support the optimization of glucose control of patients with diabetes. However, CGM systems measure glucose in interstitial fluid but not in blood. Rapid changes in one compartment are not accompanied by similar changes in the other, but follow with some delay. Such time delays hamper detection of, for example, hypoglycemic events. Our aim is to discuss the causes and extent of time delays and approaches to compensate for these. Methods: CGM data were obtained in a clinical study with 37 patients with a prototype glucose sensor. The study was divided into 5 phases over 2 years. In all, 8 patients participated in 2 phases separated by 8 months. A total number of 108 CGM data sets including raw signals were used for data analysis and were processed by statistical methods to obtain estimates of the time delay. Results: Overall mean (SD) time delay of the raw signals with respect to blood glucose was 9.5 (3.7) min, median was 9 min (interquartile range 4 min). Analysis of time delays observed in the same patients separated by 8 months suggests a patient dependent delay. No significant correlation was observed between delay and anamnestic or anthropometric data. The use of a prediction algorithm reduced the delay by 4 minutes on average. Conclusions: Prediction algorithms should be used to provide real-time CGM readings more consistent with simultaneous measurements by SMBG. Patient specificity may play an important role in improving prediction quality. PMID:26243773

  13. A comparison of control modes for time-delayed remote manipulation

    NASA Technical Reports Server (NTRS)

    Starr, G. P.

    1982-01-01

    Transmission time delay in the communication channel of a manual control system is investigated. A time delay can exist in remote manipulation systems, caused by long communication distances or bandwidth limitations. Ferrell 1 conducted the first research in time-delayed manipulation using a two degree-of-freedom manipulator. His subjects, working at time delays of 1.0, 2.1, and 3.2 s, could accomplish tasks even requiring great accuracy. The subjects spontaneously adopted a pattern of moving cautiously, then waiting to see the results of their actions. In experiments with a six degree-of-freedom master-slave manipulator system and time delays of 1.0 to 6 s, Black 2 saw that subjects tried to use the move-and-wait strategy; but there were often difficulties. The subjects seemed to have a problem in holding the master arm stationary while waiting for feedback. Any undesired drifting of the master arm introduced a discrepancy between the positions of the master and slave. This discrepancy was not perceived because of the time delay. The subject would then begin his next move with an inherent error. The difficulty of effectively using the move-and-wait strategy with a master-slave manipulator suggested that rate control might be a more effective control mode with time delay.

  14. TIMEDELN: A programme for the detection and parametrization of overlapping resonances using the time-delay method

    NASA Astrophysics Data System (ADS)

    Little, Duncan A.; Tennyson, Jonathan; Plummer, Martin; Noble, Clifford J.; Sunderland, Andrew G.

    2017-06-01

    TIMEDELN implements the time-delay method of determining resonance parameters from the characteristic Lorentzian form displayed by the largest eigenvalues of the time-delay matrix. TIMEDELN constructs the time-delay matrix from input K-matrices and analyses its eigenvalues. This new version implements multi-resonance fitting and may be run serially or as a high performance parallel code with three levels of parallelism. TIMEDELN takes K-matrices from a scattering calculation, either read from a file or calculated on a dynamically adjusted grid, and calculates the time-delay matrix. This is then diagonalized, with the largest eigenvalue representing the longest time-delay experienced by the scattering particle. A resonance shows up as a characteristic Lorentzian form in the time-delay: the programme searches the time-delay eigenvalues for maxima and traces resonances when they pass through different eigenvalues, separating overlapping resonances. It also performs the fitting of the calculated data to the Lorentzian form and outputs resonance positions and widths. Any remaining overlapping resonances can be fitted jointly. The branching ratios of decay into the open channels can also be found. The programme may be run serially or in parallel with three levels of parallelism. The parallel code modules are abstracted from the main physics code and can be used independently.

  15. SPECTRE (www.noveltis.fr/spectre): a web Service for Ionospheric Products

    NASA Astrophysics Data System (ADS)

    Jeansou, E.; Crespon, F.; Garcia, R.; Helbert, J.; Moreaux, G.; Lognonne, P.

    2005-12-01

    The dense GPS networks developed for geodesic applications appear to be very efficient ionospheric sensors because of interaction between plasma and electromagnetic waves. Indeed, the dual frequency receivers provide data from which the Slant Total Electron Content (STEC) can be easily extracted to compute Vertical Total Electron Content (VTEC) maps. The SPECTRE project, Service and Products for ionospheric Electron Content and Tropospheric Refractivity over Europe, is currently a pre-operational service providing VTEC maps with high time and space resolution after 3 days time delay (http://www.noveltis.fr/spectre and http://ganymede.ipgp.jussieu.fr/spectre). This project is a part of SWENET, SpaceWeather European Network, initiated by the European Space Agency. The SPECTRE data products are useful for many applications. We will present these applications in term of interest for the scientific community with a special focus on spaceweather and transient ionospheric perturbations related to Earthquakes. Moreover, the pre-operational extensions of SPECTRE to the californian (SCIGN/BARD) and japanese (GEONET) dense GPS networks will be presented. Then the method of 3D tomography of the electron density from GPS data will be presented and its resolution discussed. The expected improvements of the 3D tomographic images by new tomographic reconstruction algorithms and by the advent of the Galileo system will conclude the presentation.

  16. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean elapsed time between the violation of a flight termination rule and the time when the flight safety system is...

  17. 14 CFR 417.221 - Time delay analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.221 Time delay analysis. (a) General. A flight safety analysis must include a time delay analysis that establishes the mean elapsed time between the violation of a flight termination rule and the time when the flight safety system is...

  18. 49 CFR 236.831 - Time, delay.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Time, delay. 236.831 Section 236.831 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Time, delay. As applied to an automatic train stop or train control system, the time which elapses...

  19. Beta decay heat following U-235, U-238 and Pu-239 neutron fission

    NASA Astrophysics Data System (ADS)

    Li, Shengjie

    1997-09-01

    This is an experimental study of beta-particle decay heat from 235U, 239Pu and 238U aggregate fission products over delay times 0.4-40,000 seconds. The experimental results below 2s for 235U and 239Pu, and below 20s for 238U, are the first such results reported. The experiments were conducted at the UMASS Lowell 5.5-MV Van de Graaff accelerator and 1-MW swimming-pool research reactor. Thermalized neutrons from the 7Li(p,n)7Be reaction induced fission in 238U and 239Pu, and fast neutrons produced in the reactor initiated fission in 238U. A helium-jet/tape-transport system rapidly transferred fission fragments from a fission chamber to a low background counting area. Delay times after fission were selected by varying the tape speed or the position of the spray point relative to the beta spectrometer that employed a thin-scintillator-disk gating technique to separate beta-particles from accompanying gamma-rays. Beta and gamma sources were both used in energy calibration. Based on low-energy(<1 MeV) internal-conversion electron studies, a set of trial responses for the spectrometer was established and spanned electron energies 0-10 MeV. Measured beta spectra were unfolded for their energy distributions by the program FERD, and then compared to other measurements and summation calculations based on ENDF/B-VI fission-product data performed on the LANL Cray computer. Measurements of the beta activity as a function of decay time furnished a relative normalization. Results for the beta decay heat are presented and compared with other experimental data and the summation calculations.

  20. Directional gamma detector

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  1. Lesions Responsible for Delayed Oral Transit Time in Post-stroke Dysphagia.

    PubMed

    Moon, Hyun Im; Yoon, Seo Yeon; Yi, Tae Im; Jeong, Yoon Jeong; Cho, Tae Hwan

    2018-06-01

    Some stroke patients show oral phase dysphagia, characterized by a markedly prolonged oral transit time that hinders oral feeding. The aim of this study was to clarify the clinical characteristics and lesions responsible for delayed swallowing. We reviewed 90 patients with stroke. The oral processing time plus the postfaucial aggregation time required to swallow semisolid food was assessed. The patients were divided into two groups according to oral transit time, and we analyzed the differences in characteristics such as demographic factors, lesion factors, and cognitive function. Logistic regression analyses were performed to examine the predictors of delayed oral transit time. Lesion location and volume were measured on brain magnetic resonance images. We generated statistic maps of lesions related to delayed oral phase in swallowing using voxel-based lesion symptom mapping (VLSM). The group of patients who showed delayed oral transit time had significantly low cognitive function. Also, in a regression model, delayed oral phase was predicted with low K-MMSE (Korean version of the Mini Mental Status Exam). Using VLSM, we found the lesion location to be associated with delayed oral phase after adjusting for K-MMSE score. Although these results did not reach statistical significance, they showed the lesion pattern with predominant distribution in the left frontal lobe. Delayed oral phase in post-stroke patients was not negligible clinically. Patients' cognitive impairments affect the oral transit time. When adjusting it, we found a trend that the lesion responsible for delayed oral phase was located in the left frontal lobe, though the association did not reach significance. The delay might be related to praxis function.

  2. The effect of visual-motion time-delays on pilot performance in a simulated pursuit tracking task

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.; Riley, D. R.

    1977-01-01

    An experimental study was made to determine the effect on pilot performance of time delays in the visual and motion feedback loops of a simulated pursuit tracking task. Three major interrelated factors were identified: task difficulty either in the form of airplane handling qualities or target frequency, the amount and type of motion cues, and time delay itself. In general, the greater the task difficulty, the smaller the time delay that could exist without degrading pilot performance. Conversely, the greater the motion fidelity, the greater the time delay that could be tolerated. The effect of motion was, however, pilot dependent.

  3. Optimal estimation of parameters and states in stochastic time-varying systems with time delay

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Butcher, Eric A.

    2013-08-01

    In this study estimation of parameters and states in stochastic linear and nonlinear delay differential systems with time-varying coefficients and constant delay is explored. The approach consists of first employing a continuous time approximation to approximate the stochastic delay differential equation with a set of stochastic ordinary differential equations. Then the problem of parameter estimation in the resulting stochastic differential system is represented as an optimal filtering problem using a state augmentation technique. By adapting the extended Kalman-Bucy filter to the resulting system, the unknown parameters of the time-delayed system are estimated from noise-corrupted, possibly incomplete measurements of the states.

  4. Opto-VLSI-based photonic true-time delay architecture for broadband adaptive nulling in phased array antennas.

    PubMed

    Juswardy, Budi; Xiao, Feng; Alameh, Kamal

    2009-03-16

    This paper proposes a novel Opto-VLSI-based tunable true-time delay generation unit for adaptively steering the nulls of microwave phased array antennas. Arbitrary single or multiple true-time delays can simultaneously be synthesized for each antenna element by slicing an RF-modulated broadband optical source and routing specific sliced wavebands through an Opto-VLSI processor to a high-dispersion fiber. Experimental results are presented, which demonstrate the principle of the true-time delay unit through the generation of 5 arbitrary true-time delays of up to 2.5 ns each. (c) 2009 Optical Society of America

  5. Assessment of Blasting Performance Using Electronic Vis-à-Vis Shock Tube Detonators in Strong Garnet Biotite Sillimanite Gneiss Formations

    NASA Astrophysics Data System (ADS)

    Sharma, Suresh Kumar; Rai, Piyush

    2016-04-01

    This paper presents a comparative investigation of the shock tube and electronic detonating systems practised in bench blasting. The blast trials were conducted on overburden rocks of Garnet Biotite Sillimanite Gneiss formations in one of the largest metalliferous mine of India. The study revealed that the choice of detonating system was crucial in deciding the fragment size and its distribution within the blasted muck-piles. The fragment size and its distribution affected the digging rate of excavators. Also, the shape of the blasted muck-pile was found to be related to the degree of fragmentation. From the present work, it may be inferred that in electronic detonation system, timely release of explosive energy resulted in better overall blasting performance. Hence, the precision in delay time must be considered in designing blast rounds in such overburden rock formations. State-of-art image analysis, GPS based muck-pile profile plotting techniques were rigorously used in the investigation. The study revealed that a mean fragment size (K50) value for shock tube detonated blasts (0.55-0.59 m) was higher than that of electronically detonated blasts (0.43-0.45 m). The digging rate of designated shovels (34 m3) with electronically detonated blasts was consistently more than 5000 t/h, which was almost 13 % higher in comparison to shock tube detonated blasts. Furthermore, favourable muck-pile shapes were witnessed in electronically detonated blasts from the observations made on the dozer performance.

  6. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osaka, Taito; Hirano, Takashi; Morioka, Yuki

    Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD) between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL) pulses by capturingmore » single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. In conclusion, this is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.« less

  7. Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms

    DOE PAGES

    Osaka, Taito; Hirano, Takashi; Morioka, Yuki; ...

    2017-10-13

    Temporal coherence is one of the most fundamental characteristics of light, connecting to spectral information through the Fourier transform relationship between time and frequency. Interferometers with a variable path-length difference (PLD) between the two branches have widely been employed to characterize temporal coherence properties for broad spectral regimes. Hard X-ray interferometers reported previously, however, have strict limitations in their operational photon energies, due to the specific optical layouts utilized to satisfy the stringent requirement for extreme stability of the PLD at sub-ångström scales. The work presented here characterizes the temporal coherence of hard X-ray free-electron laser (XFEL) pulses by capturingmore » single-shot interferograms. Since the stability requirement is drastically relieved with this approach, it was possible to build a versatile hard X-ray interferometer composed of six separate optical elements to cover a wide photon energy range from 6.5 to 11.5 keV while providing a large variable delay time of up to 47 ps at 10 keV. A high visibility of up to 0.55 was observed at a photon energy of 10 keV. The visibility measurement as a function of time delay reveals a mean coherence time of 5.9 ± 0.7 fs, which agrees with that expected from the single-shot spectral information. In conclusion, this is the first result of characterizing the temporal coherence of XFEL pulses in the hard X-ray regime and is an important milestone towards ultra-high energy resolutions at micro-electronvolt levels in time-domain X-ray spectroscopy, which will open up new opportunities for revealing dynamic properties in diverse systems on timescales from femtoseconds to nanoseconds, associated with fluctuations from ångström to nanometre spatial scales.« less

  8. Solar oscillation time delay measurement assisted celestial navigation method

    NASA Astrophysics Data System (ADS)

    Ning, Xiaolin; Gui, Mingzhen; Zhang, Jie; Fang, Jiancheng; Liu, Gang

    2017-05-01

    Solar oscillation, which causes the sunlight intensity and spectrum frequency change, has been studied in great detail, both observationally and theoretically. In this paper, owing to the existence of solar oscillation, the time delay between the sunlight coming from the Sun directly and the sunlight reflected by the other celestial body such as the satellite of planet or asteroid can be obtained with two optical power meters. Because the solar oscillation time delay is determined by the relative positions of the spacecraft, reflective celestial body and the Sun, it can be adopted as the navigation measurement to estimate the spacecraft's position. The navigation accuracy of single solar oscillation time delay navigation system depends on the time delay measurement accuracy, and is influenced by the distance between spacecraft and reflective celestial body. In this paper, we combine it with the star angle measurement and propose a solar oscillation time delay measurement assisted celestial navigation method for deep space exploration. Since the measurement model of time delay is an implicit function, the Implicit Unscented Kalman Filter (IUKF) is applied. Simulations demonstrate the effectiveness and superiority of this method.

  9. System for sensing droplet formation time delay in a flow cytometer

    DOEpatents

    Van den Engh, Ger; Esposito, Richard J.

    1997-01-01

    A droplet flow cytometer system which includes a system to optimize the droplet formation time delay based on conditions actually experienced includes an automatic droplet sampler which rapidly moves a plurality of containers stepwise through the droplet stream while simultaneously adjusting the droplet time delay. Through the system sampling of an actual substance to be processed can be used to minimize the effect of the substances variations or the determination of which time delay is optimal. Analysis such as cell counting and the like may be conducted manually or automatically and input to a time delay adjustment which may then act with analysis equipment to revise the time delay estimate actually applied during processing. The automatic sampler can be controlled through a microprocessor and appropriate programming to bracket an initial droplet formation time delay estimate. When maximization counts through volume, weight, or other types of analysis exists in the containers, the increment may then be reduced for a more accurate ultimate setting. This may be accomplished while actually processing the sample without interruption.

  10. Experimental Evidence for Wigner’s Tunneling Time

    NASA Astrophysics Data System (ADS)

    Camus, N.; Yakaboylu, E.; Fechner, L.; Klaiber, M.; Laux, M.; Mi, Y.; Hatsagortsyan, K. Z.; Pfeifer, T.; Keitel, C. H.; Moshammer, R.

    2018-04-01

    Tunneling of a particle through a barrier is one of the counter-intuitive properties of quantum mechanical motion. Thanks to advances in the generation of strong laser fields, new opportunities to dynamically investigate this process have been developed. In the so-called attoclock measurements the electron’s properties after tunneling are mapped on its emission direction. We investigate the tunneling dynamics and achieve a high sensitivity thanks to two refinements of the attoclock principle. Using near-IR wavelength we place firmly the ionization process in the tunneling regime. Furthermore, we compare the electron momentum distributions of two atomic species of slightly different atomic potentials (argon and krypton) being ionized under absolutely identical conditions. Experimentally, using a reaction microscope, we succeed in measuring the 3D electron momentum distributions for both targets simultaneously. Theoretically, the time resolved description of tunneling in strong-field ionization is studied using the leading quantum-mechanical Wigner treatment. A detailed analysis of the most probable photoelectron emission for Ar and Kr allows testing the theoretical models and a sensitive check of the electron initial conditions at the tunnel exit. The agreement between experiment and theory provides a clear evidence for a non-zero tunneling time delay and a non-vanishing longitudinal momentum at this point.

  11. BRIEF COMMUNICATIONS: Dynamics of lasing of two TEA CO2 lasers coupled by a nonlinear SF6 cell

    NASA Astrophysics Data System (ADS)

    Baranov, V. Yu; Dyad'kin, A. P.; Shpilyun, O. V.

    1991-10-01

    A study was made of the kinetics of stimulated emission from two TEA CO2 lasers in a system with frequency locking by phase conjugation as a result of a four-wave interaction of light [V. Yu. Baranov, A. P. Dyad'kin, V. V. Likhanskiĭ et al., Sov. J. Quantum Electron. 18, 1462 (1988)]. A simple method for ensuring two-pulse lasing with a variable time delay between the pulses in one gas-discharge chamber was proposed.

  12. Causes of delay in door-to-balloon time in south-east Asian patients undergoing primary percutaneous coronary intervention.

    PubMed

    Sim, Wen Jun; Ang, An Shing; Tan, Mae Chyi; Xiang, Wen Wei; Foo, David; Loh, Kwok Kong; Jafary, Fahim Haider; Watson, Timothy James; Ong, Paul Jau Lueng; Ho, Hee Hwa

    2017-01-01

    To evaluate causes and impact of delay in the door-to-balloon (D2B) time for patients undergoing primary percutaneous coronary intervention (PPCI). From January 2009 to December 2012, 1268 patients (86% male, mean age of 58 ± 12 years) presented to our hospital for ST-elevation myocardial infarction (STEMI) and underwent PPCI. They were divided into two groups: Non-delay defined as D2B time ≤ 90 mins and delay group defined as D2B time > 90 mins. Data were collected retrospectively on baseline clinical characteristics, mode of presentation, angiographic findings, therapeutic modality and inhospital outcome. 202 patients had delay in D2B time. There were more female patients in the delay group. They were older and tend to self-present to hospital. They were less likely to be smokers and have a higher prevalence of prior MI. The incidence of posterior MI was higher in the delay group. They also had a higher incidence of triple vessel disease. The 3 most common reasons for D2B delay was delay in the emergency department (39%), atypical clinical presentation (37.6%) and unstable medical condition requiring stabilisation/computed tomographic imaging (26.7%). The inhospital mortality was numerically higher in the delay group (7.4% versus 4.8%, p = 0.12). Delay in D2B occurred in 16% of our patients undergoing PPCI. Several key factors for delay were identified and warrant further intervention.

  13. Improving treatment plan evaluation with automation

    PubMed Central

    Covington, Elizabeth L.; Chen, Xiaoping; Younge, Kelly C.; Lee, Choonik; Matuszak, Martha M.; Kessler, Marc L.; Keranen, Wayne; Acosta, Eduardo; Dougherty, Ashley M.; Filpansick, Stephanie E.

    2016-01-01

    The goal of this work is to evaluate the effectiveness of Plan‐Checker Tool (PCT) which was created to improve first‐time plan quality, reduce patient delays, increase the efficiency of our electronic workflow, and standardize and automate the physics plan review in the treatment planning system (TPS). PCT uses an application programming interface to check and compare data from the TPS and treatment management system (TMS). PCT includes a comprehensive checklist of automated and manual checks that are documented when performed by the user as part of a plan readiness check for treatment. Prior to and during PCT development, errors identified during the physics review and causes of patient treatment start delays were tracked to prioritize which checks should be automated. Nineteen of 33 checklist items were automated, with data extracted with PCT. There was a 60% reduction in the number of patient delays in the six months after PCT release. PCT was successfully implemented for use on all external beam treatment plans in our clinic. While the number of errors found during the physics check did not decrease, automation of checks increased visibility of errors during the physics check, which led to decreased patient delays. The methods used here can be applied to any TMS and TPS that allows queries of the database. PACS number(s): 87.55.‐x, 87.55.N‐, 87.55.Qr, 87.55.tm, 89.20.Bb PMID:27929478

  14. Solar wind electron densities from Viking dual-frequency radio measurements

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Anderson, J. D.

    1981-01-01

    Simultaneous phase coherent, two-frequency measurements of the time delay between the earth station and the Viking spacecraft have been analyzed in terms of the electron density profiles from 4 solar radii to 200 solar radii. The measurements were made during a period of solar activity minimum (1976-1977) and show a strong solar latitude effect. The data were analyzed with both a model independent, direct numerical inversion technique and with model fitting, yielding essentially the same results. It is shown that the solar wind density can be represented by two power laws near the solar equator proportional to r exp -2.7 and r exp -2.04. However, the more rapidly falling term quickly disappears at moderate latitudes (approximately 20 deg) leaving only the inverse-square behavior.

  15. Microjet formation and hard x-ray production from a liquid metal target irradiated by intense femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Lar'kin, A.; Uryupina, D.; Ivanov, K.; Savel'ev, A.; Bonnet, T.; Gobet, F.; Hannachi, F.; Tarisien, M.; Versteegen, M.; Spohr, K.; Breil, J.; Chimier, B.; Dorchies, F.; Fourment, C.; Leguay, P.-M.; Tikhonchuk, V. T.

    2014-09-01

    By using a liquid metal as a target one may significantly enhance the yield of hard x-rays with a sequence of two intense femtosecond laser pulses. The influence of the time delay between the two pulses is studied experimentally and interpreted with numerical simulations. It was suggested that the first arbitrary weak pulse produces microjets from the target surface, while the second intense pulse provides an efficient electron heating and acceleration along the jet surface. These energetic electrons are the source of x-ray emission while striking the target surface. The microjet formation is explained based on the results given by both optical diagnostics and hydrodynamic modeling by a collision of shocks originated from two distinct zones of laser energy deposition.

  16. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions

    PubMed Central

    Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2016-01-01

    Within the framework of ‘Network Physiology’, we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain–heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain–heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems. PMID:27044991

  17. Delay-correlation landscape reveals characteristic time delays of brain rhythms and heart interactions

    NASA Astrophysics Data System (ADS)

    Lin, Aijing; Liu, Kang K. L.; Bartsch, Ronny P.; Ivanov, Plamen Ch.

    2016-05-01

    Within the framework of `Network Physiology', we ask a fundamental question of how modulations in cardiac dynamics emerge from networked brain-heart interactions. We propose a generalized time-delay approach to identify and quantify dynamical interactions between physiologically relevant brain rhythms and the heart rate. We perform empirical analysis of synchronized continuous EEG and ECG recordings from 34 healthy subjects during night-time sleep. For each pair of brain rhythm and heart interaction, we construct a delay-correlation landscape (DCL) that characterizes how individual brain rhythms are coupled to the heart rate, and how modulations in brain and cardiac dynamics are coordinated in time. We uncover characteristic time delays and an ensemble of specific profiles for the probability distribution of time delays that underly brain-heart interactions. These profiles are consistently observed in all subjects, indicating a universal pattern. Tracking the evolution of DCL across different sleep stages, we find that the ensemble of time-delay profiles changes from one physiologic state to another, indicating a strong association with physiologic state and function. The reported observations provide new insights on neurophysiological regulation of cardiac dynamics, with potential for broad clinical applications. The presented approach allows one to simultaneously capture key elements of dynamic interactions, including characteristic time delays and their time evolution, and can be applied to a range of coupled dynamical systems.

  18. Control of amplitude chimeras by time delay in oscillator networks

    NASA Astrophysics Data System (ADS)

    Gjurchinovski, Aleksandar; Schöll, Eckehard; Zakharova, Anna

    2017-04-01

    We investigate the influence of time-delayed coupling in a ring network of nonlocally coupled Stuart-Landau oscillators upon chimera states, i.e., space-time patterns with coexisting partially coherent and partially incoherent domains. We focus on amplitude chimeras, which exhibit incoherent behavior with respect to the amplitude rather than the phase and are transient patterns, and we show that their lifetime can be significantly enhanced by coupling delay. To characterize their transition to phase-lag synchronization (coherent traveling waves) and other coherent structures, we generalize the Kuramoto order parameter. Contrasting the results for instantaneous coupling with those for constant coupling delay, for time-varying delay, and for distributed-delay coupling, we demonstrate that the lifetime of amplitude chimera states and related partially incoherent states can be controlled, i.e., deliberately reduced or increased, depending upon the type of coupling delay.

  19. Time domain passivity controller for 4-channel time-delay bilateral teleoperation.

    PubMed

    Rebelo, Joao; Schiele, Andre

    2015-01-01

    This paper presents an extension of the time-domain passivity control approach to a four-channel bilateral controller under the effects of time delays. Time-domain passivity control has been used successfully to stabilize teleoperation systems with position-force and position-position controllers; however, the performance with such control architectures is sub-optimal both with and without time delays. This work extends the network representation of the time-domain passivity controller to the four-channel architecture, which provides perfect transparency to the user without time delay. The proposed architecture is based on modelling the controllers as dependent voltage sources and using only series passivity controllers. The obtained results are shown on a one degree-of-freedom setup and illustrate the stabilization behaviour of the proposed controller when time delay is present in the communication channel.

  20. Optimization of S/B in the detection of nuclear fission signatures via different accelerator pulsing modes

    NASA Astrophysics Data System (ADS)

    Brown, C.; Gozani, T.; Shaw, T.; Stevenson, J.

    2011-10-01

    In the search for concealed special nuclear materials (SNM) there are a number of fission specific signatures that can be measured. These include prompt and delayed neutron and gamma ray signatures. Here the focus will be on the delayed gamma signature with the assumption that a pulsed electron linac with a constant peak current will be used to generate bremsstrahlung radiation and induce photofission in 235U. In this case, the signal to background ratio (S/B) will depend on the choice of linac frequency, pulse mode, and "active" background due to linac activation products. The linac frequency is simply the rate at which it produces short bursts of radiation, typically 2-4 μs in duration. There are two pulse modes, micro-pulsing, and macro-pulsing. In the micro-pulsing mode, the linac runs continuously at its set frequency and data is collected between bursts. In the macro-pulsing mode, the linac is turned on for a given length of time, on the order of seconds, and then turned off for a period of time typically equal to the length of time it was turned on. Counting takes place during the time the linac is off and stops when the linac is turned on for another cycle. The time dependence of the delayed gamma population can be approximated by the use of 5 time groups with half-lives of 0.29, 1.7, 13, 100, and 940 s, respectively. Each group has its own relative population, which together with its half-life determines what time frame the group contributes most to the measured signal. For example, a group with a short half-life will contribute more signal to a short cycle macro pulsed measurement than it would to a macro pulse measurement with a very long cycle. An analytical expression can be derived that calculates the maximum obtainable signal (delayed gamma photons per fission gamma ray) in either a micro- or macro-pulsed measurement. Using this information along with the observed active background present in a given situation (which can constrain the micro-pulsing parameters), the preferred mode of operation can be chosen to maximize S/B and the detection sensitivity. The principles and experimental application of the optimization process will be shown.

Top