High temperature electronic excitation and ionization rates in gases
NASA Technical Reports Server (NTRS)
Hansen, Frederick
1991-01-01
The relaxation times for electronic excitation due to electron bombardment of atoms was found to be quite short, so that electron kinetic temperature (T sub e) and the electron excitation temperature (T asterisk) should equilibrate quickly whenever electrons are present. However, once equilibrium has been achieved, further energy to the excited electronic states and to the kinetic energy of free electrons must be fed in by collisions with heavy particles that cause vibrational and electronic state transitions. The rate coefficients for excitation of electronic states produced by heavy particle collision have not been well known. However, a relatively simple semi-classical theory has been developed here which is analytic up to the final integration over a Boltzmann distribution of collision energies; this integral can then be evaluated numerically by quadrature. Once the rate coefficients have been determined, the relaxation of electronic excitation energy can be evaluated and compared with the relaxation rates of vibrational excitation. Then the relative importance of these two factors, electronic excitation and vibrational excitation by heavy particle collision, on the transfer of energy to free electron motion, can be assessed.
Nitric oxide excited under auroral conditions: Excited state densities and band emissions
NASA Astrophysics Data System (ADS)
Cartwright, D. C.; Brunger, M. J.; Campbell, L.; Mojarrabi, B.; Teubner, P. J. O.
2000-09-01
Electron impact excitation of vibrational levels in the ground electronic state and nine excited electronic states in NO has been simulated for an IBC II aurora (i.e., ˜10 kR in 3914 Å radiation) in order to predict NO excited state number densities and band emission intensities. New integral electron impact excitation cross sections for NO were combined with a measured IBC II auroral secondary electron distribution, and the vibrational populations of 10 NO electronic states were determined under conditions of statistical equilibrium. This model predicts an extended vibrational distribution in the NO ground electronic state produced by radiative cascade from the seven higher-lying doublet excited electronic states populated by electron impact. In addition to significant energy storage in vibrational excitation of the ground electronic state, both the a 4Π and L2 Φ excited electronic states are predicted to have relatively high number densities because they are only weakly connected to lower electronic states by radiative decay. Fundamental mode radiative transitions involving the lowest nine excited vibrational levels in the ground electronic state are predicted to produce infrared (IR) radiation from 5.33 to 6.05 μm with greater intensity than any single NO electronic emission band. Fundamental mode radiative transitions within the a 4Π electronic state, in the 10.08-11.37 μm region, are predicted to have IR intensities comparable to individual electronic emission bands in the Heath and ɛ band systems. Results from this model quantitatively predict the vibrational quantum number dependence of the NO IR measurements of Espy et al. [1988].
Ab Initio Study of Electronic Excitation Effects on SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Zhang, Yanwen; Weber, William J.
Interaction of energetic ions or lasers with solids often induces electronic excitations that may modify material properties significantly. In this study, effects of electronic excitations on strontium titanate SrTiO 3 (STO) are investigated based on first-principles calculations. The lattice structure, electronic properties, lattice vibrational frequencies, and dynamical stabilities are studied in detail. The results suggest that electronic excitation induces charge redistribution that is mainly observed in Ti–O bonds. The electronic band gap increases with increasing electronic excitation, as excitation mainly induces depopulation of Ti 3d states. Phonon analysis indicates that there is a large phonon band gap induced by electronicmore » excitation because of the changes in the vibrational properties of Ti and O atoms. In addition, a new peak appears in the phonon density of states with imaginary frequencies, an indication of lattice instability. Further dynamics simulations confirm that STO undergoes transition to an amorphous structure under strong electronic excitations. In conclusion, the optical properties of STO under electronic excitation are consistent with the evolution of atomic and electronic structures, which suggests a possibility to probe the properties of STO in nonequilibrium state using optical measurement.« less
Ab Initio Study of Electronic Excitation Effects on SrTiO 3
Zhao, Shijun; Zhang, Yanwen; Weber, William J.
2017-11-14
Interaction of energetic ions or lasers with solids often induces electronic excitations that may modify material properties significantly. In this study, effects of electronic excitations on strontium titanate SrTiO 3 (STO) are investigated based on first-principles calculations. The lattice structure, electronic properties, lattice vibrational frequencies, and dynamical stabilities are studied in detail. The results suggest that electronic excitation induces charge redistribution that is mainly observed in Ti–O bonds. The electronic band gap increases with increasing electronic excitation, as excitation mainly induces depopulation of Ti 3d states. Phonon analysis indicates that there is a large phonon band gap induced by electronicmore » excitation because of the changes in the vibrational properties of Ti and O atoms. In addition, a new peak appears in the phonon density of states with imaginary frequencies, an indication of lattice instability. Further dynamics simulations confirm that STO undergoes transition to an amorphous structure under strong electronic excitations. In conclusion, the optical properties of STO under electronic excitation are consistent with the evolution of atomic and electronic structures, which suggests a possibility to probe the properties of STO in nonequilibrium state using optical measurement.« less
Two-dimensional Electronic Double-Quantum Coherence Spectroscopy
Kim, Jeongho; Mukamel, Shaul
2009-01-01
CONSPECTUS The theory of electronic structure of many-electron systems like molecules is extraordinarily complicated. A lot can be learned by considering how electron density is distributed, on average, in the average field of the other electrons in the system. That is, mean field theory. However, to describe quantitatively chemical bonds, reactions, and spectroscopy requires consideration of the way that electrons avoid each other by the way they move; this is called electron correlation (or in physics, the many-body problem for fermions). While great progress has been made in theory, there is a need for incisive experimental tests that can be undertaken for large molecular systems in the condensed phase. Here we report a two-dimensional (2D) optical coherent spectroscopy that correlates the double excited electronic states to constituent single excited states. The technique, termed two-dimensional double-coherence spectroscopy (2D-DQCS), makes use of multiple, time-ordered ultrashort coherent optical pulses to create double- and single-quantum coherences over time intervals between the pulses. The resulting two-dimensional electronic spectrum maps the energy correlation between the first excited state and two-photon allowed double-quantum states. The principle of the experiment is that when the energy of the double-quantum state, viewed in simple models as a double HOMO to LUMO excitation, equals twice that of a single excitation, then no signal is radiated. However, electron-electron interactions—a combination of exchange interactions and electron correlation—in real systems generates a signal that reveals precisely how the energy of the double-quantum resonance differs from twice the single-quantum resonance. The energy shift measured in this experiment reveals how the second excitation is perturbed by both the presence of the first excitation and the way that the other electrons in the system have responded to the presence of that first excitation. We compare a series of organic dye molecules and find that the energy offset for adding a second electronic excitation to the system relative to the first excitation is on the order of tens of milli-electronvolts, and it depends quite sensitively on molecular geometry. These results demonstrate the effectiveness of 2D-DQCS for elucidating quantitative information about electron-electron interactions, many-electron wavefunctions, and electron correlation in electronic excited states and excitons. PMID:19552412
Role of electronic excited N2 in vibrational excitation of the N2 ground state at high latitudes
NASA Astrophysics Data System (ADS)
Campbell, L.; Cartwright, D. C.; Brunger, M. J.; Teubner, P. J. O.
2006-09-01
Vibrationally excited N2 is important in determining the ionospheric electron density and has also been proposed to play a role in the production of NO in disturbed atmospheres. We report here predictions of the absolute vibrational distributions in the ground electronic state of N2 produced by electron impact excitation, at noon and midnight under quiet geomagnetic conditions and disturbed conditions corresponding to the aurora IBCII+ and IBCIII+ at 60°N latitude and 0° longitude, at altitudes between 130 and 350 km. These predictions were obtained from a model which includes thermal excitation and direct electron impact excitation of the vibrational levels of the N2 ground state and its excited electronic states; radiative cascade from all excited electronic states to all vibrational levels of the ground electronic state; quenching by O, O2, and N2; molecular and ambipolar diffusion; and the dominant chemical reactions. Results from this study show that for both aurora and daytime electron environments: (1) cascade from the higher electronic states of N2 determines the population of the higher vibrational levels in the N2 ground state and (2) the effective ground state vibrational temperature for levels greater than 4 in N2 is predicted to be in the range 4000-13000 K for altitudes greater than 200 km. Correspondingly, the associated enhancement factor for the O+ reaction with vibrationally excited N2 to produce NO+ is predicted to increase with increasing altitude (up to a maximum at a height which increases with auroral strength) for both aurora and daytime environments and to increase with increasing auroral strength. The contribution of the cascade from the excited electronic states was evaluated and found to be relatively minor compared to the direct excitation process.
The low-lying electronic excitations in long polyenes: A PPP-MRD-CI study
NASA Astrophysics Data System (ADS)
Tavan, Paul; Schulten, Klaus
1986-12-01
A correct description of the electronic excitations in polyenes demands that electron correlation is accounted for correctly. Very large expansions are necessary including many-electron configurations with at least one, two, three, and four electrons promoted from the Hartree-Fock ground state. The enormous size of such expansions had prohibited accurate computations of the spectra for polyenes with more than ten π electrons. We present a multireference double excitation configuration interaction method (MRD-CI) which allows such computations for polyenes with up to 16 π electrons. We employ a Pariser-Parr-Pople (PPP) model Hamiltonian. For short polyenes with up to ten π electrons our calculations reproduce the excitation energies resulting from full-CI calculations. We extend our calculations to study the low-lying electronic excitations of the longer polyenes, in particular, the gap between the first optically forbidden and the first optically allowed excited singlet state. The size of this gap is shown to depend strongly on the degree of bond alternation and on the dielectric shielding of the Coulomb repulsion between the π electrons.
Race, C P; Mason, D R; Sutton, A P
2009-03-18
Using time-dependent tight-binding simulations of radiation damage cascades in a model metal we directly investigate the nature of the excitations of a system of quantum mechanical electrons in response to the motion of a set of classical ions. We furthermore investigate the effect of these excitations on the attractive electronic forces between the ions. We find that the electronic excitations are well described by a Fermi-Dirac distribution at some elevated temperature, even in the absence of the direct electron-electron interactions that would be required in order to thermalize a non-equilibrium distribution. We explain this result in terms of the spectrum of characteristic frequencies of the ionic motion. Decomposing the electronic force into four well-defined components within the basis of instantaneous electronic eigenstates, we find that the effect of accumulated excitations in weakening the interionic bonds is mostly (95%) accounted for by a thermal model for the electronic excitations. This result justifies the use of the simplifying assumption of a thermalized electron system in simulations of radiation damage with an electronic temperature dependence and in the development of temperature-dependent classical potentials.
NASA Astrophysics Data System (ADS)
Kolokolov, N. B.; Blagoev, A. B.
1993-03-01
Studies of reactions involving excited atoms, which result in the release of electrons with energies exceeding the mean plasma electron energy, are reviewed. Particular attention is devoted to plasma electron spectroscopy (PES) which combines the advantages of studies of elementary plasma processes with those of traditional electron spectroscopy. Data obtained by investigating the following reactions are reported: chemoionization with the participation of two excited inert-gas atoms, Penning ionization of atoms and molecules by metastable helium atoms, and electron quenching of excited inert-gas atoms and mercury atoms. The effect of processes in which fast electrons are emitted on plasma properties is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akatsuka, Hiroshi
2009-04-15
Population densities of excited states of argon atoms are theoretically examined for ionizing argon plasma in a state of nonequilibrium under atmospheric pressure from the viewpoint of elementary processes with collisional radiative model. The dependence of excited state populations on the electron and gas temperatures is discussed. Two electron density regimes are found, which are distinguished by the population and depopulation mechanisms for the excited states in problem. When the electron impact excitation frequency for the population or depopulation is lower than the atomic impact one, the electron density of the plasma is considered as low to estimate the populationmore » and depopulation processes. Some remarkable characteristics of population and depopulation mechanisms are found for the low electron density atmospheric plasma, where thermal relaxation by atomic collisions becomes the predominant process within the group of close-energy states in the ionizing plasma of atmospheric pressure, and the excitation temperature is almost the same as the gas temperature. In addition to the collisional relaxation by argon atoms, electron impact excitation from the ground state is also an essential population mechanism. The ratios of population density of the levels pairs, between which exists a large energy gap, include information on the electron collisional kinetics. For high electron density, the effect of atomic collisional relaxation becomes weak. For this case, the excitation mechanism is explained as electron impact ladderlike excitation similar to low-pressure ionizing plasma, since the electron collision becomes the dominant process for the population and depopulation kinetics.« less
A distorted-wave methodology for electron-ion impact excitation - Calculation for two-electron ions
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.
1977-01-01
A distorted-wave program is being developed for calculating the excitation of few-electron ions by electron impact. It uses the exchange approximation to represent the exact initial-state wavefunction in the T-matrix expression for the excitation amplitude. The program has been implemented for excitation of the 2/1,3/(S,P) states of two-electron ions. Some of the astrophysical applications of these cross sections as well as the motivation and requirements of the calculational methodology are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hübner, Olaf; Hornung, Julius; Himmel, Hans-Jörg, E-mail: hans-jorg.himmel@aci.uni-heidelberg.de
2015-07-14
The electronic ground and excited states of the vanadium monoxide (VO) molecule were studied in detail. Electronic absorption spectra for the molecule isolated in Ne matrices complement the previous gas-phase spectra. A thorough quantum chemical (multi-reference configuration interaction) study essentially confirms the assignment and characterization of the electronic excitations observed for VO in the gas-phase and in Ne matrices and allows the clarification of open issues. It provides a complete overview over the electronically excited states up to about 3 eV of this archetypical compound.
Energy-filtered cold electron transport at room temperature.
Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin
2014-09-10
Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature.
Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.
Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R
2013-09-05
Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.
2016-06-03
Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6390--16-9681 Calculation of Vibrational and Electronic Excited-State Absorption Spectra...NUMBER OF PAGES 17. LIMITATION OF ABSTRACT Calculation of Vibrational and Electronic Excited-State Absorption Spectra of Arsenic-Water Complexes Using...Unclassified Unlimited Unclassified Unlimited 59 Samuel G. Lambrakos (202) 767-2601 Calculations are presented of vibrational and electronic excited-state
Metastable Oxygen Production by Electron-Impact of Oxygen
NASA Astrophysics Data System (ADS)
Hein, Jeffrey; Johnson, Paul; Kanik, Isik; Malone, Charles
2014-05-01
Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of atomic O and molecular O2 play a significant role in the dynamics of oxygen-containing atmospheres (Earth, Europa, Io). Emissions from metastable O (1S --> 1D) produce the well-recognized green light from terrestrial aurora. Electron-impact excitation to 1S and 1D are sensitive channels for determining energy partitioning and dynamics from space weather. Electron-impact excitation cross sections determined through fundamental experimental studies are necessary for modeling of natural phenomena and observation data. The detection of metastable states in laboratory experiments requires a novel approach, since typical detection techniques (e.g., fluorescence by radiative de-excitation) cannot be performed due to the long-lived nature of the excited species. In this work, metastable O is produced through electron impact, and is incident on a cryogenically cooled rare gas matrix. The excimer production and subsequent rapid radiative de-excitation provides measurable signal that is directly related to the originating electron-impact excitation process.
Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots
Harutyunyan, Hayk; Martinson, Alex B. F.; Rosenmann, Daniel; ...
2015-08-03
The interaction of light and matter in metallic nanosystems is mediated by the collective oscillation of surface electrons, called plasmons. After excitation, plasmons are absorbed by the metal electrons through inter- and intraband transitions, creating a highly non-thermal distribution of electrons. The electron population then decays through electron-electron interactions, creating a hot electron distribution within a few hundred femtoseconds, followed by a further relaxation via electron-phonon scattering on the timescale of a few pico-seconds. In the spectral domain, hot plasmonic electrons induce changes to the plasmonic resonance of the nanostructure by modifying the dielectric constant of the metal. Here, wemore » report on the observation of anomalously strong changes to the ultrafast temporal and spectral responses of these excited hot plasmonic electrons in hybrid metal/oxide nanostructures as a result of varying the geometry and composition of the nanostructure and the excitation wavelength. In particular, we show a large ultrafast, pulsewidth-limited contribution to the excited electron decay signal in hybrid nanostructures containing hot spots. The intensity of this contribution correlates with the efficiency of the generation of highly excited surface electrons. Using theoretical models, we attribute this effect to the generation of hot plasmonic electrons from hot spots. Finally, we then develop general principles to enhance the generation of energetic electrons through specifically designed plasmonic nanostructures that could be used in applications where hot electron generation is beneficial, such as in solar photocatalysis, photodetectors and nonlinear devices.« less
Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots.
Harutyunyan, Hayk; Martinson, Alex B F; Rosenmann, Daniel; Khorashad, Larousse Khosravi; Besteiro, Lucas V; Govorov, Alexander O; Wiederrecht, Gary P
2015-09-01
The interaction of light and matter in metallic nanosystems is mediated by the collective oscillation of surface electrons, called plasmons. After excitation, plasmons are absorbed by the metal electrons through inter- and intraband transitions, creating a highly non-thermal distribution of electrons. The electron population then decays through electron-electron interactions, creating a hot electron distribution within a few hundred femtoseconds, followed by a further relaxation via electron-phonon scattering on the timescale of a few picoseconds. In the spectral domain, hot plasmonic electrons induce changes to the plasmonic resonance of the nanostructure by modifying the dielectric constant of the metal. Here, we report on the observation of anomalously strong changes to the ultrafast temporal and spectral responses of these excited hot plasmonic electrons in hybrid metal/oxide nanostructures as a result of varying the geometry and composition of the nanostructure and the excitation wavelength. In particular, we show a large ultrafast, pulsewidth-limited contribution to the excited electron decay signal in hybrid nanostructures containing hot spots. The intensity of this contribution correlates with the efficiency of the generation of highly excited surface electrons. Using theoretical models, we attribute this effect to the generation of hot plasmonic electrons from hot spots. We then develop general principles to enhance the generation of energetic electrons through specifically designed plasmonic nanostructures that could be used in applications where hot electron generation is beneficial, such as in solar photocatalysis, photodetectors and nonlinear devices.
Theoretical studies of electronically excited states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besley, Nicholas A.
2014-10-06
Time-dependent density functional theory is the most widely used quantum chemical method for studying molecules in electronically excited states. However, excited states can also be computed within Kohn-Sham density functional theory by exploiting methods that converge the self-consistent field equations to give excited state solutions. The usefulness of single reference self-consistent field based approaches for studying excited states is demonstrated by considering the calculation of several types of spectroscopy including the infrared spectroscopy of molecules in an electronically excited state, the rovibrational spectrum of the NO-Ar complex, core electron binding energies and the emission spectroscopy of BODIPY in water.
Multicomponent Time-Dependent Density Functional Theory: Proton and Electron Excitation Energies.
Yang, Yang; Culpitt, Tanner; Hammes-Schiffer, Sharon
2018-04-05
The quantum mechanical treatment of both electrons and protons in the calculation of excited state properties is critical for describing nonadiabatic processes such as photoinduced proton-coupled electron transfer. Multicomponent density functional theory enables the consistent quantum mechanical treatment of more than one type of particle and has been implemented previously for studying ground state molecular properties within the nuclear-electronic orbital (NEO) framework, where all electrons and specified protons are treated quantum mechanically. To enable the study of excited state molecular properties, herein the linear response multicomponent time-dependent density functional theory (TDDFT) is derived and implemented within the NEO framework. Initial applications to FHF - and HCN illustrate that NEO-TDDFT provides accurate proton and electron excitation energies within a single calculation. As its computational cost is similar to that of conventional electronic TDDFT, the NEO-TDDFT approach is promising for diverse applications, particularly nonadiabatic proton transfer reactions, which may exhibit mixed electron-proton vibronic excitations.
Relaxation times measurement in single and multiply excited xenon clusters
NASA Astrophysics Data System (ADS)
Serdobintsev, P. Yu.; Melnikov, A. S.; Pastor, A. A.; Timofeev, N. A.; Khodorkovskiy, M. A.
2018-05-01
Direct measurement of the rates of nonradiative relaxation processes in electronically excited xenon clusters was carried out. The clusters were created in a pulsed supersonic beam and two-photon excited by femtosecond laser pulses with a wavelength of 263 nm. The measurements were performed using the pump-probe method and electron spectroscopy. It is shown that relaxation of light clusters XeN (N < 15) predominantly occurs by desorption of excited xenon atoms with a characteristic time constant of 3 ps. Heavier electronically excited clusters (N > 10) vibrationally relax to the lowest electronically excited state at a rate of about 0.075 eV/ps. Multiply excited clusters are deactivated via energy exchange between excited centers with the ionization of one of them. The production of electrons in this process occurs with a delay of ˜4 ps from the pump pulse, and the process is completed in 10 ps.
Electron Excitation of High Dipole Moment Molecules
NASA Astrophysics Data System (ADS)
Goldsmith, Paul; Kauffmann, Jens
2018-01-01
Emission from high-dipole moment molecules such as HCN allows determination of the density in molecular clouds, and is often considered to trace the “dense” gas available for star formation. We assess the importance of electron excitation in various environments. The ratio of the rate coefficients for electrons and H2 molecules, ~10^5 for HCN, yields the requirements for electron excitation to be of practical importance if n(H2) < 10^{5.5} /cm3 and X(e-) > 10^{-5}, where the numerical factors reflect critical values n_c(H2) and X^*(e-). This indicates that in regions where a large fraction of carbon is ionized, X(e-) will be large enough to make electron excitation significant. The situation is in general similar for other “high density tracers”, including HCO+, CN, and CS. But there are significant differences in the critical electron fractional abundance, X^*(e-), defined by the value required for equal effect from collisions with H2 and e-. Electron excitation is, for example, unimportant for CO and C+. Electron excitation may be responsible for the surprisingly large spatial extent of the emission from dense gas tracers in some molecular clouds (Pety et al. 2017, Kauffmann, Goldsmith et al. 2017, A&A, submitted). The enhanced estimates for HCN abundances and HCN/CO and HCN/HCO+ ratios observed in the nuclear regions of luminous galaxies may be in part a result of electron excitation of high dipole moment tracers. The importance of electron excitation will depend on detailed models of the chemistry, which may well be non-steady state and non--static.
Energy-filtered cold electron transport at room temperature
Bhadrachalam, Pradeep; Subramanian, Ramkumar; Ray, Vishva; Ma, Liang-Chieh; Wang, Weichao; Kim, Jiyoung; Cho, Kyeongjae; Koh, Seong Jin
2014-01-01
Fermi-Dirac electron thermal excitation is an intrinsic phenomenon that limits functionality of various electron systems. Efforts to manipulate electron thermal excitation have been successful when the entire system is cooled to cryogenic temperatures, typically <1 K. Here we show that electron thermal excitation can be effectively suppressed at room temperature, and energy-suppressed electrons, whose energy distribution corresponds to an effective electron temperature of ~45 K, can be transported throughout device components without external cooling. This is accomplished using a discrete level of a quantum well, which filters out thermally excited electrons and permits only energy-suppressed electrons to participate in electron transport. The quantum well (~2 nm of Cr2O3) is formed between source (Cr) and tunnelling barrier (SiO2) in a double-barrier-tunnelling-junction structure having a quantum dot as the central island. Cold electron transport is detected from extremely narrow differential conductance peaks in electron tunnelling through CdSe quantum dots, with full widths at half maximum of only ~15 mV at room temperature. PMID:25204839
Targeting excited states in all-trans polyenes with electron-pair states.
Boguslawski, Katharina
2016-12-21
Wavefunctions restricted to electron pair states are promising models for strongly correlated systems. Specifically, the pair Coupled Cluster Doubles (pCCD) ansatz allows us to accurately describe bond dissociation processes and heavy-element containing compounds with multiple quasi-degenerate single-particle states. Here, we extend the pCCD method to model excited states using the equation of motion (EOM) formalism. As the cluster operator of pCCD is restricted to electron-pair excitations, EOM-pCCD allows us to target excited electron-pair states only. To model singly excited states within EOM-pCCD, we modify the configuration interaction ansatz of EOM-pCCD to contain also single excitations. Our proposed model represents a simple and cost-effective alternative to conventional EOM-CC methods to study singly excited electronic states. The performance of the excited state models is assessed against the lowest-lying excited states of the uranyl cation and the two lowest-lying excited states of all-trans polyenes. Our numerical results suggest that EOM-pCCD including single excitations is a good starting point to target singly excited states.
The separation of vibrational coherence from ground- and excited-electronic states in P3HT film
NASA Astrophysics Data System (ADS)
Song, Yin; Hellmann, Christoph; Stingelin, Natalie; Scholes, Gregory D.
2015-06-01
Concurrence of the vibrational coherence and ultrafast electron transfer has been observed in polymer/fullerene blends. However, it is difficult to experimentally investigate the role that the excited-state vibrational coherence plays during the electron transfer process since vibrational coherence from the ground- and excited-electronic states is usually temporally and spectrally overlapped. Here, we performed 2-dimensional electronic spectroscopy (2D ES) measurements on poly(3-hexylthiophene) (P3HT) films. By Fourier transforming the whole 2D ES datasets ( S ( λ 1 , T ˜ 2 , λ 3 ) ) along the population time ( T ˜ 2 ) axis, we develop and propose a protocol capable of separating vibrational coherence from the ground- and excited-electronic states in 3D rephasing and nonrephasing beating maps ( S ( λ 1 , ν ˜ 2 , λ 3 ) ). We found that the vibrational coherence from pure excited electronic states appears at positive frequency ( + ν ˜ 2 ) in the rephasing beating map and at negative frequency ( - ν ˜ 2 ) in the nonrephasing beating map. Furthermore, we also found that vibrational coherence from excited electronic state had a long dephasing time of 244 fs. The long-lived excited-state vibrational coherence indicates that coherence may be involved in the electron transfer process. Our findings not only shed light on the mechanism of ultrafast electron transfer in organic photovoltaics but also are beneficial for the study of the coherence effect on photoexcited dynamics in other systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.
2015-09-28
Two dimensional electronic spectroscopy has proven to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derivemore » response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Nicholas H. C.; Dong, Hui; Oliver, Thomas A. A.
2015-09-28
Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derivemore » response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.« less
Lewis, Nicholas H C; Dong, Hui; Oliver, Thomas A A; Fleming, Graham R
2015-09-28
Two dimensional electronic spectroscopy has proved to be a valuable experimental technique to reveal electronic excitation dynamics in photosynthetic pigment-protein complexes, nanoscale semiconductors, organic photovoltaic materials, and many other types of systems. It does not, however, provide direct information concerning the spatial structure and dynamics of excitons. 2D infrared spectroscopy has become a widely used tool for studying structural dynamics but is incapable of directly providing information concerning electronic excited states. 2D electronic-vibrational (2DEV) spectroscopy provides a link between these domains, directly connecting the electronic excitation with the vibrational structure of the system under study. In this work, we derive response functions for the 2DEV spectrum of a molecular dimer and propose a method by which 2DEV spectra could be used to directly measure the electronic site populations as a function of time following the initial electronic excitation. We present results from the response function simulations which show that our proposed approach is substantially valid. This method provides, to our knowledge, the first direct experimental method for measuring the electronic excited state dynamics in the spatial domain, on the molecular scale.
NASA Astrophysics Data System (ADS)
Du, L. C.; Xi, W. D.; Zhang, J. B.; Matsuzaki, H.; Furube, A.
2018-06-01
Photoinduced electron transfer from gold nanoparticles (NPs) to semiconductor under plasmon excitation is an important phenomenon in photocatalysis and solar cell applications. Femtosecond plasmon-induced electron transfer from gold NPs to the conduction band of different semiconductor like TiO2, SnO2, and ZnO was monitored at 3440 nm upon optical excitation of the surface plasmon band of gold NPs. It was found that electron injection was completed within 240 fs and the electron injection yield reached 10-30% under 570 nm excitation. It means TiO2 is not the only proper semiconductor as electron acceptors in such gold/semiconductor nanoparticle systems.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
NASA Astrophysics Data System (ADS)
Gao, Deheng; Mou, Yingping; Feng, Shiping
2018-02-01
The recent discovery of a direct link between the sharp peak in the electron quasiparticle scattering rate of cuprate superconductors and the well-known peak-dip-hump structure in the electron quasiparticle excitation spectrum is calling for an explanation. Within the framework of the kinetic-energy-driven superconducting mechanism, the complicated line-shape in the electron quasiparticle excitation spectrum of cuprate superconductors is investigated. It is shown that the interaction between electrons by the exchange of spin excitations generates a notable peak structure in the electron quasiparticle scattering rate around the antinodal and nodal regions. However, this peak structure disappears at the hot spots, which leads to that the striking peak-dip-hump structure is developed around the antinodal and nodal regions, and vanishes at the hot spots. The theory also confirms that the sharp peak observed in the electron quasiparticle scattering rate is directly responsible for the remarkable peak-dip-hump structure in the electron quasiparticle excitation spectrum of cuprate superconductors.
Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor.
Horke, Daniel A; Li, Quansong; Blancafort, Lluís; Verlet, Jan R R
2013-08-01
Quinones feature prominently as electron acceptors in nature. Their electron-transfer reactions are often highly exergonic, for which Marcus theory predicts reduced electron-transfer rates because of a free-energy barrier that occurs in the inverted region. However, the electron-transfer kinetics that involve quinones can appear barrierless. Here, we consider the intrinsic properties of the para-benzoquinone radical anion, which serves as the prototypical electron-transfer reaction product involving a quinone-based acceptor. Using time-resolved photoelectron spectroscopy and ab initio calculations, we show that excitation at 400 and 480 nm yields excited states that are unbound with respect to electron loss. These excited states are shown to decay on a sub-40 fs timescale through a series of conical intersections with lower-lying excited states, ultimately to form the ground anionic state and avoid autodetachment. From an isolated electron-acceptor perspective, this ultrafast stabilization mechanism accounts for the ability of para-benzoquinone to capture and retain electrons.
Ground and excited states of CaSH through electron propagator calculations
NASA Astrophysics Data System (ADS)
Ortiz, J. V.
1990-05-01
Electron propagator calculations of electron affinities of CaSH + produce ground and excited state energies at the optimized, C s minimum of the neutral ground state and at a C ∞v geometry. Feynman-Dyson amplitudes (FDAs) describe the distribution of the least bound electron in various states. The neutral ground state differs from the cation by the occupation of a one-electron state dominated by Ca s functions. Described by FDAs with Ca-S π pseudosymmetry, corresponding excited states have unpaired electrons in orbitals displaying interference between Ca p and d functions. Above these lies a σ pseudosymmetry FDA with principal contributions from Ca d functions. Two FDAs with σ pseudosymmetry follow. Higher excited states exhibit considerable delocalization onto S.
The vibrational excitation of hot molecules by low energy electron impact
NASA Astrophysics Data System (ADS)
Kato, H.; Ohkawa, M.; Hoshino, M.; Campbell, L.; Brunger, M. J.; Tanaka, H.
2010-01-01
We report vibrational excitation functions and angular distributions for electron scattering from the ground vibrational quantum (000), the bending vibrational quantum (010) and the unresolved first bending overtone (020) and symmetric stretch (100) modes of the ground-electronic state in hot (750 K) carbon dioxide (CO2) molecules. The excitation function measurements were carried out at incident electron energies in the range of 1-9 eV, and at the electron scattering angles of 30°, 60°, 90° and 120°.
Excitation of lowest electronic states of the uracil molecule by slow electrons
NASA Astrophysics Data System (ADS)
Chernyshova, I. V.; Kontros, J. E.; Markush, P. P.; Shpenik, O. B.
2012-07-01
The excitation of lowest electronic states of the uracil molecule in the gas phase has been studied by electron energy loss spectroscopy. Along with excitation of lowest singlet states, excitation of two lowest triplet states at 3.75 and 4.76 eV (±0.05 eV) and vibrational excitation of the molecule in two resonant ranges (1-2 and 3-4 eV) have been observed for the first time. The peak of the excitation band related to the lowest singlet state (5.50 eV) is found to be blueshifted by 0.4 eV in comparison with the optical absorption spectroscopy data. The threshold excitation spectra have been measured for the first time, with detection of electrons inelastically scattered by an angle of 180°. These spectra exhibit clear separation of the 5.50-eV-wide band into two bands, which are due to the excitation of the triplet 13 A″ and singlet 11 A' states.
Metastable Oxygen Production by Electron-Impact of Oxygen
NASA Astrophysics Data System (ADS)
Hein, J. D.; Malone, C. P.; Kanik, I.; Johnson, P. V.
2013-12-01
Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of atomic O and molecular O2 play a significant role in the dynamics of oxygen-containing atmospheres (Earth, Europa, Io). Emissions from metastable O (1S → 1D) produce the well-recognized green light from terrestrial aurora. Electron-impact excitation to 1S and 1D are sensitive channels for determining energy partitioning and dynamics from space weather. Electron-impact excitation cross sections determined through fundamental experimental studies are necessary for modeling of natural phenomena and observation data. The detection of metastable states in laboratory experiments requires a novel approach, since typical detection techniques (e.g., fluorescence by radiative de-excitation) cannot be performed due to the long-lived nature of the excited species. In this work, metastable O is incident on a cryogenically cooled rare gas matrix, where excimer production and subsequent rapid radiative de-excitation provides measurable signal that is directly related to the originating electron-impact excitation process.
Wave excitations of drifting two-dimensional electron gas under strong inelastic scattering
NASA Astrophysics Data System (ADS)
Korotyeyev, V. V.; Kochelap, V. A.; Varani, L.
2012-10-01
We have analyzed low-temperature behavior of two-dimensional electron gas in polar heterostructures subjected to a high electric field. When the optical phonon emission is the fastest relaxation process, we have found existence of collective wave-like excitations of the electrons. These wave-like excitations are periodic in time oscillations of the electrons in both real and momentum spaces. The excitation spectra are of multi-branch character with considerable spatial dispersion. There are one acoustic-type and a number of optical-type branches of the spectra. Their small damping is caused by quasi-elastic scattering of the electrons and formation of relevant space charge. Also there exist waves with zero frequency and finite spatial periods—the standing waves. The found excitations of the electron gas can be interpreted as synchronous in time and real space manifestation of well-known optical-phonon-transient-time-resonance. Estimates of parameters of the excitations for two polar heterostructures, GaN/AlGaN and ZnO/MgZnO, have shown that excitation frequencies are in THz-frequency range, while standing wave periods are in sub-micrometer region.
NASA Astrophysics Data System (ADS)
Joo, Taiha; Albrecht, A. C.
1993-06-01
Time-resolved degenerate four-wave mixing (TRDFWM) for an electronically resonant system in a phase-matching configuration that measures population decay is reported. Because the spectral width of input light exceeds the vibrational Bohr frequency of a strong Raman active mode, the vibrational coherence produces strong oscillations in the TRDFWM signal together with the usual population decay from the excited electronic state. The data are analyzed in terms of a four-level system: ground and excited electronic states each split by a vibrational quantum of a Raman active mode. Absolute frequencies and their dephasing times of the vibrational modes at ≈590 cm -1 are obtained for the excited as well as the ground electronic state. The vibrational dephasing rate in the excited electronic state is about an order of magnitude faster than that in the ground state, the origin of which is speculated upon.
Two-photon or higher-order absorbing optical materials and methods of use
NASA Technical Reports Server (NTRS)
Perry, Joseph (Inventor); Marder, Seth (Inventor)
2001-01-01
Compositions capable of simultaneous two-photon absorption and higher order absorptivities are disclosed. Many of these compositions are compounds satisfying the formulae D-.PI.-D, A-.PI.-A, D-A-D and A-D-A, wherein D is an electron donor group, A is an electron acceptor group and .PI. comprises a bridge of .pi.-conjugated bonds connecting the electron donor groups and electron acceptor groups. In A-D-A and D-A-D compounds, the .pi. bridge is substituted with electron donor groups and electron acceptor groups, respectively. Also disclosed are methods that generate an electronically excited state of a compound, including those satisfying one of these formulae. The electronically excited state is achieved in a method that includes irradiating the compound with light. Then, the compound is converted to a multi-photon electronically excited state upon simultaneous absorption of at least two photons of light. The sum of the energies of all of the absorbed photons is greater than or equal to the transition energy from a ground state of the compound to the multi-photon excited state. The energy of each absorbed photon is less than the transition energy between the ground state and the lowest single-photon excited state of the compound is less than the transition energy between the multi-photon excited state and the ground state.
Paul, Mishu; Balanarayan, P
2018-06-05
Plasmonic modes in single-molecule systems have been previously identified by scaling two-electron interactions in calculating excitation energies. Analysis of transition dipole moments for states of polyacenes based on configuration interaction is another method for characterising molecular plasmons. The principal features in the electronic absorption spectra of polyacenes are a low-intensity, lower-in-energy peak and a high-intensity, higher-in-energy peak. From calculations using time-dependent density functional theory with the B3LYP/cc-pVTZ basis set, both these peaks are found to result from the same set of electronic transitions, that is, HOMO-n to LUMO and HOMO to LUMO+n, where n varies as the number of fused rings increases. In this work, the excited states of polyacenes, naphthalene through pentacene, are analysed using electron densities and molecular electrostatic potential (MESP) topography. Compared to other excited states the bright and dark plasmonic states involve the least electron rearrangement. Quantitatively, the MESP topography indicates that the variance in MESP values and the displacement in MESP minima positions, calculated with respect to the ground state, are lowest for plasmonic states. The excited-state electronic density profiles and electrostatic potential topographies suggest the least electron rearrangement for the plasmonic states. Conversely, high electron rearrangement characterises a single-particle excitation. The molecular plasmon can be called an excited state most similar to the ground state in terms of one-electron properties. This is found to be true for silver (Ag 6 ) and sodium (Na 8 ) linear chains as well. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Campbell, L.; Green, M. A.; Brunger, M. J.; Teubner, P. J.; Cartwright, D. C.
2000-02-01
The development and initial results of a method for the determination of differential cross sections for electron scattering by molecular oxygen are described. The method has been incorporated into an existing package of computer programs which, given spectroscopic factors, dissociation energies and an energy-loss spectrum for electron-impact excitation, determine the differential cross sections for each electronic state relative to that of the elastic peak. Enhancements of the original code were made to deal with particular aspects of electron scattering from O2, such as the overlap of vibrational levels of the ground state with transitions to excited states, and transitions to levels close to and above the dissocation energy in the Herzberg and Schumann-Runge continua. The utility of the code is specifically demonstrated for the ``6-eV states'' of O2, where we report absolute differential cross sections for their excitation by 15-eV electrons. In addition an integral cross section, derived from the differential cross section measurements, is also reported for this excitation process and compared against available theoretical results. The present differential and integral cross sections for excitation of the ``6-eV states'' of O2 are the first to be reported in the literature for electron-impact energies below 20 eV.
Production of vibrationally excited N 2 by electron impact
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Cartwright, D. C.; Teubner, P. J. O.
2004-08-01
Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N 2 in this is particularly significant. We report here the results from a new calculation of electron energy transfer rates ( Q) for vibrational excitation of N 2, as a function of the electron temperature Te. The present study was motivated by the development of a new cross-section compilation for vibrational excitation processes in N 2 which supercedes those used in the earlier calculations of the electron energy transfer rates. We show that the energy dependence and magnitude of these cross sections, particularly in the region of the well-known 2Π g resonance in N 2, significantly affect the calculated values of Q. A detailed comparison between the current and previous calculated electron energy transfer rates is made and coefficients are provided so that these rates for transitions from level 0 to levels 1-10 can be calculated for electron temperatures less than 6000 K.
An Avalanche Diode Electron Detector for Observing NEET
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kishimoto, Shunji
2004-05-12
Nuclear excitation by electron transition (NEET) occurs in atomic inner-shell ionization if the nuclear excitation and the electron transition have nearly the same energy and a common multipolarity. We successfully observed the NEET on 197Au and on 193Ir using a silicon avalanche diode electron detector. The detector was used to find internal conversion electrons emitted from excited nuclei in time spectroscopy with a time gate method. Some nuclear resonant levels, including 8.410 keV on 169Tm and 80.577 keV on 166Er, were also observed with the detector.
Ultrafast imprinting of topologically protected magnetic textures via pulsed electrons
Schaffer, A. F.; Durr, H. A.; Berakdar, J.
2017-07-17
Short electron pulses are demonstrated to trigger and control magnetic excitations, even at low electron current densities. We show that the tangential magnetic field surrounding a picosecond electron pulse can imprint topologically protected magnetic textures such as skyrmions in a sample with a residual Dzyaloshinskii-Moriya spin-orbital coupling. Characteristics of the created excitations such as the topological charge can be steered via the duration and the strength of the electron pulses. Here, the study points to a possible way for a spatiotemporally controlled generation of skyrmionic excitations.
Xiao, H. Y.; Weber, W. J.; Zhang, Y.; Zu, X. T.; Li, S.
2015-01-01
The response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations. PMID:25660219
Xiao, H Y; Weber, W J; Zhang, Y; Zu, X T; Li, S
2015-02-09
The response of titanate pyrochlores (A2Ti2O7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization in titanate pyrochlores under laser, electron and ion irradiations.
Rettig, L.; Cortés, R.; Chu, J. -H.; ...
2016-01-25
Non-equilibrium conditions may lead to novel properties of materials with broken symmetry ground states not accessible in equilibrium as vividly demonstrated by non-linearly driven mid-infrared active phonon excitation. Potential energy surfaces of electronically excited states also allow to direct nuclear motion, but relaxation of the excess energy typically excites fluctuations leading to a reduced or even vanishing order parameter as characterized by an electronic energy gap. Here, using femtosecond time-and angle-resolved photoemission spectroscopy, we demonstrate a tendency towards transient stabilization of a charge density wave after near-infrared excitation, counteracting the suppression of order in the non-equilibrium state. Analysis of themore » dynamic electronic structure reveals a remaining energy gap in a highly excited transient state. In conclusion, our observation can be explained by a competition between fluctuations in the electronically excited state, which tend to reduce order, and transiently enhanced Fermi surface nesting stabilizing the order.« less
Electron scattering by molecules. II - Experimental methods and data
NASA Technical Reports Server (NTRS)
Trajmar, S.; Chutjian, A.; Register, D. F.
1983-01-01
Experimental techniques for measuring electron-molecule collision cross sections are briefly summarized. A survey of the available experimental cross section data is presented. The emphasis here is on elastic scattering, rotational, vibrational and electronic excitations, total electron scattering, and momentum transfer in the few eV to few hundred eV impact energy range. Reference is made to works concerned with high energy electron scattering, innershell and multi-electron excitations, conicidence methods and electron scattering in laser fields.
Resonant recombination and autoionization in electron-ion collisions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, A.
1990-06-01
The occurence of resonances in elastic and inelastic electron-ion collisions is discussed. Resonant processes involve excitation of the ion with simultaneous capture of the initially free electron. The decay mechanism subsequent to the formation of the intermediate multiply excited state determines whether a resonance is found in recombination, excitation, elastic scattering, in single or even in multiple ionization. This review concentrates on resonances in the ionization channel. Correlated two-electron transitions are considered.
Synthesis of metal silicide at metal/silicon oxide interface by electronic excitation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.-G., E-mail: jglee36@kims.re.kr; Nagase, T.; Yasuda, H.
The synthesis of metal silicide at the metal/silicon oxide interface by electronic excitation was investigated using transmission electron microscopy. A platinum silicide, α-Pt{sub 2}Si, was successfully formed at the platinum/silicon oxide interface under 25–200 keV electron irradiation. This is of interest since any platinum silicide was not formed at the platinum/silicon oxide interface by simple thermal annealing under no-electron-irradiation conditions. From the electron energy dependence of the cross section for the initiation of the silicide formation, it is clarified that the silicide formation under electron irradiation was not due to a knock-on atom-displacement process, but a process induced by electronic excitation.more » It is suggested that a mechanism related to the Knotek and Feibelman mechanism may play an important role in silicide formation within the solid. Similar silicide formation was also observed at the palladium/silicon oxide and nickel/silicon oxide interfaces, indicating a wide generality of the silicide formation by electronic excitation.« less
Electron-impact vibrational excitation of the hydroxyl radical in the nighttime upper atmosphere
NASA Astrophysics Data System (ADS)
Campbell, Laurence; Brunger, Michael J.
2018-02-01
Chemical processes produce vibrationally excited hydroxyl (OH) in a layer centred at an altitude of about 87 km in the Earth's atmosphere. Observations of this layer are used to deduce temperatures in the mesosphere and to observe the passage of atmospheric gravity waves. Due to the low densities and energies at night of electrons at the relevant altitude, it is not expected that electron-impact excitation of OH would be significant. However, there are unexplained characteristics of OH densities and radiative emissions that might be explained by electron impact. These are measurements of higher than expected densities of OH above 90 km and of emissions at higher energies that cannot be explained by the chemical production processes. This study simulates the role of electron impact in these processes, using theoretical cross sections for electron-impact excitation of OH. The simulations show that electron impact, even in a substantial aurora, cannot fully explain these phenomena. However, in the process of this investigation, apparent inconsistencies in the theoretical cross sections and reaction rates were found, indicating that measurements of electron-impact excitation of OH are needed to resolve these problems and scale the theoretical predictions to allow more accurate simulations.
Orientation-dependent imaging of electronically excited quantum dots
NASA Astrophysics Data System (ADS)
Nguyen, Duc; Goings, Joshua J.; Nguyen, Huy A.; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin
2018-02-01
We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x0, y0) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x0, y0) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density |φi) (x0,y0)|
Orientation-dependent imaging of electronically excited quantum dots.
Nguyen, Duc; Goings, Joshua J; Nguyen, Huy A; Lyding, Joseph; Li, Xiaosong; Gruebele, Martin
2018-02-14
We previously demonstrated that we can image electronic excitations of quantum dots by single-molecule absorption scanning tunneling microscopy (SMA-STM). With this technique, a modulated laser beam periodically saturates an electronic transition of a single nanoparticle, and the resulting tunneling current modulation ΔI(x 0 , y 0 ) maps out the SMA-STM image. In this paper, we first derive the basic theory to calculate ΔI(x 0 , y 0 ) in the one-electron approximation. For near-resonant tunneling through an empty orbital "i" of the nanostructure, the SMA-STM signal is approximately proportional to the electron density φ i x 0 ,y 0 2 of the excited orbital in the tunneling region. Thus, the SMA-STM signal is approximated by an orbital density map (ODM) of the resonantly excited orbital at energy E i . The situation is more complex for correlated electron motion, but either way a slice through the excited electronic state structure in the tunneling region is imaged. We then show experimentally that we can nudge quantum dots on the surface and roll them, thus imaging excited state electronic structure of a single quantum dot at different orientations. We use density functional theory to model ODMs at various orientations, for qualitative comparison with the SMA-STM experiment. The model demonstrates that our experimentally observed signal monitors excited states, localized by defects near the surface of an individual quantum dot. The sub-nanometer super-resolution imaging technique demonstrated here could become useful for mapping out the three-dimensional structure of excited states localized by defects within nanomaterials.
Convoy electron emission from resonant coherently excited 390 MeV/u hydrogen-like Ar ions
NASA Astrophysics Data System (ADS)
Azuma, T.; Takabayashi, Y.; Ito, T.; Komaki, K.; Yamazaki, Y.; Takada, E.; Murakami, T.
2003-12-01
Energetic ions traveling through a single crystal are excited by an oscillating crystal field produced by a periodic arrangement of the atomic strings/planes, which is called Resonant Coherent Excitation (RCE). We have observed enhancement of convoy electron yields associated with RCE of 1s electron to the n=2 excited states of 390 MeV/u hydrogen-like Ar 17+ ions passing through a Si crystal in the (2 2¯ 0) planar channeling condition. Lost electrons from projectile ions due to ionization contribute to convoy electrons emitted in the forward direction with the same velocity as the projectile ions. With combination of a magnet and a thick Si solid-state detector, we measured the energy spectra of convoy electrons of about 200 keV emitted at 0°. The convoy electron yield as a function of the transition energy, i.e. the resonance profile, has a similar structure to the resonance profile observed through the ionized fraction of the emerging ions. It is explained by the fact that both enhancements are due to increase in the fraction of the excited states from which electrons are more easily ionized by target electron impact in the crystal than from the ground state.
UV resonance Raman finds peptide bond-Arg side chain electronic interactions.
Sharma, Bhavya; Asher, Sanford A
2011-05-12
We measured the UV resonance Raman excitation profiles and Raman depolarization ratios of the arginine (Arg) vibrations of the amino acid monomer as well as Arg in the 21-residue predominantly alanine peptide AAAAA(AAARA)(3)A (AP) between 194 and 218 nm. Excitation within the π → π* peptide bond electronic transitions result in UVRR spectra dominated by amide peptide bond vibrations. The Raman cross sections and excitation profiles indicate that the Arg side chain electronic transitions mix with the AP peptide bond electronic transitions. The Arg Raman bands in AP exhibit Raman excitation profiles similar to those of the amide bands in AP which are conformation specific. These Arg excitation profiles distinctly differ from the Arg monomer. The Raman depolarization ratios of Arg in monomeric solution are quite simple with ρ = 0.33 indicating enhancement by a single electronic transition. In contrast, we see very complex depolarization ratios of Arg in AP that indicate that the Arg residues are resonance enhanced by multiple electronic transitions.
Real-time ab initio simulations of excited-state dynamics in nanostructures
NASA Astrophysics Data System (ADS)
Tomanek, David
2007-03-01
Combining time-dependent ab initio density functional calculations for electrons with molecular dynamics simulations for ions, we investigate the effect of excited-state dynamics in nanostructures. In carbon nanotubes, we find electronic excitations to last for a large fraction of a picosecond. The de-excitation process is dominated by coupling to other electronic degrees of freedom during the first few hundred femtoseconds. Later, the de-excitation process becomes dominated by coupling to ionic motion. The onset point and damping rate in that regime change with initial ion velocities, a manifestation of temperature dependent electron-phonon coupling. Considering the fact that the force field in the electronically excited state differs significantly from the ground state, as reflected in the Franck-Condon effect, atomic bonds can easily be broken or restored during the relatively long lifetime of electronic excitations. This effect can be utilized in a ``photo-surgery" of nanotubes, causing structural self-healing at vacancy sites or selective de-oxidation processes induced by photo-absorption. Also, electronic excitations are a key ingredient for the understanding of sputtering processes in nanostructures, induced by energetic collisions with ions. Yoshiyuki Miyamoto, Angel Rubio, and David Tomanek, Phys. Rev. Lett. 97, 126104 (2006). Yoshiyuki Miyamoto, Savas Berber, Mina Yoon, Angel Rubio, and David Tomanek, Chem. Phys. Lett. 392, 209 (2004). Yoshiyuki Miyamoto, Noboru Jinbo, Hisashi Nakamura, Angel Rubio, and David Tomanek, Phys. Rev. B 70, 233408 (2004). Yoshiyuki Miyamoto, Arkady Krasheninnikov, and David Tomanek (in preparation).
NASA Astrophysics Data System (ADS)
Brunger, M. J.; Campbell, L.; Cartwright, D. C.; Middleton, A. G.; Mojarrabi, B.; Teubner, P. J. O.
2000-02-01
Integral cross sections (ICSs) for the excitation of 18 excited electronic states, and four composite excited electronic states, in nitric oxide (NO) have been determined for incident electron energies of 15, 20, 30, 40 and 50 eV. These ICSs were derived by extrapolating the respective measured differential cross sections (M J Brunger et al 2000 J. Phys. B: At. Mol. Opt. Phys. 33 783) to 0° and 180° and by performing the appropriate integration. Comparison of the present ICSs with the results of those determined in earlier optical emission measurements, and from theoretical calculations is made. At each incident energy considered, the current ICSs are also summed along with the corresponding elastic and rovibrational excitation ICSs from B Mojarrabi et al (1995 J. Phys. B: At. Mol. Opt. Phys. 28 487) and the ionization cross sections from Rapp and Englander-Golden (1965 J. Chem. Phys. 43 1464), to derive an estimate of the grand total cross sections (GTSs) for e- + NO scattering. The GTSs derived in this manner are compared with the results from independent linear transmission experiments and are found to be entirely consistent with them. The present excited electronic state ICS, and those for elastic and rovibrational excitation from Mojarrabi et al , appear to represent the first set of self-consistent cross sections for electron impact scattering from NO.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Haiyan Y.; Weber, William J.; Zhang, Yanwen
2015-02-09
In this study, the response of titanate pyrochlores (A 2Ti 2O 7, A = Y, Gd and Sm) to electronic excitation is investigated utilizing an ab initio molecular dynamics method. All the titanate pyrochlores are found to undergo a crystalline-to-amorphous structural transition under a low concentration of electronic excitations. The transition temperature at which structural amorphization starts to occur depends on the concentration of electronic excitations. During the structural transition, O 2-like molecules are formed, and this anion disorder further drives cation disorder that leads to an amorphous state. This study provides new insights into the mechanisms of amorphization inmore » titanate pyrochlores under laser, electron and ion irradiations.« less
NASA Astrophysics Data System (ADS)
Corzo, H. H.; Velasco, A. M.; Lavín, C.; Ortiz, J. V.
2018-02-01
Vertical excitation energies belonging to several Rydberg series of MgH have been inferred from 3+ electron-propagator calculations of the electron affinities of MgH+ and are in close agreement with experiment. Many electronically excited states with n > 3 are reported for the first time and new insight is given on the assignment of several Rydberg series. Valence and Rydberg excited states of MgH are distinguished respectively by high and low pole strengths corresponding to Dyson orbitals of electron attachment to the cation. By applying the Molecular Quantum Defect Orbital method, oscillator strengths for electronic transitions involving Rydberg states also have been determined.
NASA Astrophysics Data System (ADS)
Jones, D. B.; Campbell, L.; Bottema, M. J.; Teubner, P. J. O.; Cartwright, D. C.; Newell, W. R.; Brunger, M. J.
2006-01-01
Electron impact excitation of vibrational levels in the ground electronic state and seven excited electronic states in O 2 have been simulated for an International Brightness Coefficient-Category 2+ (IBC II+) night-time aurora, in order to predict O 2 excited state number densities and volume emission rates (VERs). These number densities and VERs are determined as a function of altitude (in the range 80-350 km) in the present study. Recent electron impact excitation cross-sections for O 2 were combined with appropriate altitude dependent IBC II+ auroral secondary electron distributions and the vibrational populations of the eight O 2 electronic states were determined under conditions of statistical equilibrium. Pre-dissociation, atmospheric chemistry involving atomic and molecular oxygen, radiative decay and quenching of excited states were included in this study. This model predicts relatively high number densities for the X3Σg-(v'⩽4),a1Δandb1Σg+ metastable electronic states and could represent a significant source of stored energy in O 2* for subsequent thermospheric chemical reactions. Particular attention is directed towards the emission intensities of the infrared (IR) atmospheric (1.27 μm), Atmospheric (0.76 μm) and the atomic oxygen 1S→ 1D transition (5577 Å) lines and the role of electron-driven processes in their origin. Aircraft, rocket and satellite observations have shown both the IR atmospheric and Atmospheric lines are dramatically enhanced under auroral conditions and, where possible, we compare our results to these measurements. Our calculated 5577 Å intensity is found to be in good agreement with values independently measured for a medium strength IBC II+ aurora.
EXCITATION OF LEVELS IN Li$sup 7$ BY INELASTIC ELECTRON SCATTERING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernheim, M; Bishop, G R
1963-07-15
Cross sections for the excitation of some levels in Li/sup 7/ up to 8- Mev excitation energy were measured by the iiielastic scattering of electrons for a variety of incident electron energies and scatiering angles. The cross section calculated in first Dorn approximation is expected to be valid for this nucleus. The calculated angular distribution is given for different spin and parity and for different levels of excitation. (R.E.U.)
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-23
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation.
Zhang, Yaxin; Zhou, Yucong; Gang, Yin; Jiang, Guili; Yang, Ziqiang
2017-01-01
Coherent terahertz radiation from multiple electron beams excitation within a plasmonic crystal-like structure (a three-dimensional holes array) which is composed of multiple stacked layers with 3 × 3 subwavelength holes array has been proposed in this paper. It has been found that in the structure the electromagnetic fields in each hole can be coupled with one another to construct a composite mode with strong field intensity. Therefore, the multiple electron beams injection can excite and efficiently interact with such mode. Meanwhile, the coupling among the electron beams is taken place during the interaction so that a very strong coherent terahertz radiation with high electron conversion efficiency can be generated. Furthermore, due to the coupling, the starting current density of this mechanism is much lower than that of traditional electron beam-driven terahertz sources. This multi-beam radiation system may provide a favorable way to combine photonics structure with electronics excitation to generate middle, high power terahertz radiation. PMID:28112234
NASA Astrophysics Data System (ADS)
Syvokon, V. E.; Sharapova, I. V.
2018-05-01
The spectrum of coupled electron-ripplon oscillations in a Wigner crystal on the surface of superfluid helium at various temperatures and excitation voltages, leading to spectrum distortion, was studied experimentally. It was shown that at all temperatures, increasing excitation voltage leads to the appearance of non-axisymmetric vibrational modes, which indicates distortions of the crystal lattice. The possibility of excitation of the non-axisymmetric modes in a cell was demonstrated by modeling electronic crystal oscillations using the molecular dynamics method. At several fixed frequencies, the amplitudes of the response of the electronic crystal to external excitation were measured as a function of the magnitude of excitation voltage, and jumps were detected at certain critical voltages. Using the Lindemann criterion, a correlation was found between the critical stress and stability limit of the crystal lattice. It was concluded that when the critical voltage is reached, dynamic melting of the electronic crystal occurs.
Electron impact excitation of coronene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M.A.; Ratliff, J.M.; Trajmar, S.
1990-12-15
A preliminary study of the electron-impact excitation of thermally evaporated coronene at 550{degree} C was carried out using electron-energy-loss spectroscopy. Measurements of the energy-loss spectra of coronene at high (100 eV) and low (5--20 eV) impact energies are presented. One of the high-energy spectra was converted to an apparent generalized oscillator strength spectrum and compared to the photoabsorption spectrum of coronene. Observations concerning vibrational excitation of coronene by electron impact are also presented and discussed.
NASA Technical Reports Server (NTRS)
Erdman, P. W.; Zipf, E. C.
1986-01-01
Metastable N(+)(5S) ions were produced in the laboratory by dissociative excitation of N2 with energetic electrons. The resulting radiative decay of the N(+)(5S) state was observed with sufficient resolution to completely resolve the doublet from the nearby N2 molecular radiation. The excitation function was measured from threshold to 500 eV. The cross section peaks at a high electron energy and also exhibits a high threshold energy both of which are typical of dissociative excitation-ionization processes. This finding complicates the explanation of electron impact on N2 as the mechanism for the source of the 2145 A 'auroral mystery feature' by further increasing the required peak cross section. It is suggested that the apparent N(+)(5S) quenching in auroras may be an artifact due to the softening of the electron energy spectrum in the auroral E region.
Dissociative Excitation of Thymine by Electron Impact
NASA Astrophysics Data System (ADS)
McConkey, William; Tiessen, Collin; Hein, Jeffrey; Trocchi, Joshuah; Kedzierski, Wladek
2014-05-01
A crossed electron-gas beam system coupled to a VUV spectrometer has been used to investigate the dissociation of thymine (C5H6N2O2) into excited atomic fragments in the electron-impact energy range from threshold to 375 eV. A special stainless steel oven is used to vaporize the thymine and form it into a beam where it is intersected by a magnetically collimated electron beam, typical current 50 μA. The main features in the spectrum are the H Lyman series lines. The probability of extracting excited C or N atoms from the ring is shown to be very small. In addition to spectral data, excitation probability curves as a function of electron energy will be presented for the main emission features. Possible dissociation channels and excitation mechanisms in the parent molecule will be discussed. The authors thank NSERC (Canada) for financial support.
Complete solution of electronic excitation and ionization in electron-hydrogen molecule scattering
Zammit, Mark C.; Savage, Jeremy S.; Fursa, Dmitry V.; ...
2016-06-08
The convergent close-coupling method has been used to solve the electron-hydrogen molecule scattering problem in the fixed-nuclei approximation. Excellent agreement with experiment is found for the grand total, elastic, electronic-excitation, and total ionization cross sections from the very low to the very high energies. This shows that for the electronic degrees of freedom the method provides a complete treatment of electron scattering on molecules as it does for atoms.
Flavin Charge Transfer Transitions Assist DNA Photolyase Electron Transfer
NASA Astrophysics Data System (ADS)
Skourtis, Spiros S.; Prytkova, Tatiana; Beratan, David N.
2007-12-01
This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH--containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by transferring an electron to the lesion from FADH-, upon photo-excitation of FADH- with 350-450 nm light. We compute the lowest singlet excited states of FADH- in DNA photolyase using INDO/S configuration interaction, time-dependent density-functional, and time-dependent Hartree-Fock methods. The calculations identify the lowest singlet excited state of FADH- that is populated after photo-excitation and that acts as the electron donor. For this donor state we compute conformationally-averaged tunneling matrix elements to empty electron-acceptor states of a thymine dimer bound to photolyase. The conformational averaging involves different FADH--thymine dimer confromations obtained from molecular dynamics simulations of the solvated protein with a thymine dimer docked in its active site. The tunneling matrix element computations use INDO/S-level Green's function, energy splitting, and Generalized Mulliken-Hush methods. These calculations indicate that photo-excitation of FADH- causes a π→π* charge-transfer transition that shifts electron density to the side of the flavin isoalloxazine ring that is adjacent to the docked thymine dimer. This shift in electron density enhances the FADH--to-dimer electronic coupling, thus inducing rapid electron transfer.
Nitrogen airglow sources - Comparison of Triton, Titan, and earth
NASA Technical Reports Server (NTRS)
Strobel, Darrell F.; Meier, R. R.; Summers, Michael E.; Strickland, Douglas J.
1991-01-01
The individual contributions of direct solar excitation, photoelectron excitation, and magnetospheric electron excitation of Triton and Titan airglow observed by the Voyager Ultraviolet Spectrometer (UVS) are quantified. The principal spectral features of Triton's airglow are shown to be consistent with precipitation of magnetospheric electrons with power dissipation about 500 million W. Solar excitation rates of the dominant N2 and N(+) emission features are factors of 2-7 weaker than magnetospheric electron excitation. On Titan, the calculated disk center and bright limb N(+) 1085 A intensities due to solar excitation agree with observed values, while the 970 A feature is mostly N21 c5 band emission. The calculated LBH intensity by photoelectrons suggests that magnetospheric electrons play a minor role in Titan's UV airglow. On earth, solar/photoelectron excitation explains the observed N(+) 1085 A and LBH intensites and accounts for only 40 percent of the N(+) 916 A intensity.
Wang, Cong; Jiang, Lan; Wang, Feng; Li, Xin; Yuan, Yanping; Xiao, Hai; Tsai, Hai-Lung; Lu, Yongfeng
2012-07-11
A real-time and real-space time-dependent density functional is applied to simulate the nonlinear electron-photon interactions during shaped femtosecond laser pulse train ablation of diamond. Effects of the key pulse train parameters such as the pulse separation, spatial/temporal pulse energy distribution and pulse number per train on the electron excitation and energy absorption are discussed. The calculations show that photon-electron interactions and transient localized electron dynamics can be controlled including photon absorption, electron excitation, electron density, and free electron distribution by the ultrafast laser pulse train.
Electron impact excitation of higher energy states of molecular oxygen in the atmosphere of Europa
NASA Astrophysics Data System (ADS)
Campbell, L.; Tanaka, H.; Kato, H.; Jayaraman, S.; Brunger, M. J.
2012-01-01
Recent measurements of integral cross sections for electron impact excitation of the Schumann-Runge continuum, longest band and second band of molecular oxygen are applied to calculations of emissions from the atmosphere of Europa. Molecules excited to these bands predissociate, producing O(1D) (excited oxygen) atoms which subsequently decay to produce 630.0-nm radiation. Radiation of this wavelength is also produced by direct excitation of O atoms and by the recombination of O _2^+ + 2 with electrons, but these two processes also produce O(1S) atoms which then emit at 557.7 nm. It is shown by modeling that the ratio of 630.0-nm to 557.7-nm is sensitive to the relative importance of the three processes, suggesting that the ratio would be a useful remote sensing probe in the atmosphere of Europa. In particular, the excitation of the Schumann-Runge continuum, longest band and second band is produced by magnetospheric electrons while the recombination is produced by secondary electrons produced in the atmosphere. This difference raises the possibility of determination of the secondary electron spectrum by measurement of light emissions.
NASA Technical Reports Server (NTRS)
Giassi, D.; Cao, S.; Stocker, D. P.; Takahashi, F.; Bennett, B. A. V.; Smooke, M. D.; Long, M. B.
2015-01-01
With the conclusion of the SLICE campaign aboard the ISS in 2012, a large amount of data was made available for the analysis of the effect of microgravity on laminar coflow diffusion flames. Previous work focused on the study of sooty flames in microgravity as well as the ability of numerical models to predict its formation in a simplified buoyancy-free environment. The current work shifts the investigation to soot-free flames, putting an emphasis on the chemiluminescence emission from electronically excited CH (CH*). This radical species is of significant interest in combustion studies: it has been shown that the electronically excited CH spatial distribution is indicative of the flame front position and, given the relatively simple diagnostic involved with its measurement, several works have been done trying to understand the ability of electronically excited CH chemiluminescence to predict the total and local flame heat release rate. In this work, a subset of the SLICE nitrogen-diluted methane flames has been considered, and the effect of fuel and coflow velocity on electronically excited CH concentration is discussed and compared with both normal gravity results and numerical simulations. Experimentally, the spectral characterization of the DSLR color camera used to acquire the flame images allowed the signal collected by the blue channel to be considered representative of the electronically excited CH emission centered around 431 nm. Due to the axisymmetric flame structure, an Abel deconvolution of the line-of-sight chemiluminescence was used to obtain the radial intensity profile and, thanks to an absolute light intensity calibration, a quantification of the electronically excited CH concentration was possible. Results show that, in microgravity, the maximum flame electronically excited CH concentration increases with the coflow velocity, but it is weakly dependent on the fuel velocity; normal gravity flames, if not lifted, tend to follow the same trend, albeit with different peak concentrations. Comparisons with numerical simulations display reasonably good agreement between measured and computed flame lengths and radii, and it is shown that the integrated electronically excited CH emission scales proportionally to the computed total heat release rate; the two-dimensional electronically excited CH spatial distribution, however, does not appear to be a good marker for the local heat release rate.
Chantler, C T; Bourke, J D
2015-11-18
We present new constraints for the transportation behaviour of low-momentum electronic excitations in condensed matter systems, and demonstrate that these have both a fundamental physical interpretation and a significant impact on the description of low-energy inelastic electron scattering. The dispersion behaviour and characteristic lifetime properties of plasmon and single-electron excitations are investigated using popular classical, semi-classical and quantum dielectric models. We find that, irrespective of constrained agreement to the well known high-momentum and high-energy Bethe ridge limit, standard descriptions of low-momentum electron excitations are inconsistent and unphysical. These observations have direct impact on calculations of transport properties such as inelastic mean free paths, stopping powers and escape depths of charged particles in condensed matter systems.
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Kustova, E. V.
2017-02-01
The influence of electronic excitation on transport processes in non-equilibrium high-temperature ionized mixture flows is studied. Two five-component mixtures, N 2 / N2 + / N / N + / e - and O 2 / O2 + / O / O + / e - , are considered taking into account the electronic degrees of freedom for atomic species as well as the rotational-vibrational-electronic degrees of freedom for molecular species, both neutral and ionized. Using the modified Chapman-Enskog method, the transport coefficients (thermal conductivity, shear viscosity and bulk viscosity, diffusion and thermal diffusion) are calculated in the temperature range 500-50 000 K. Thermal conductivity and bulk viscosity coefficients are strongly affected by electronic states, especially for neutral atomic species. Shear viscosity, diffusion, and thermal diffusion coefficients are not sensible to electronic excitation if the size of excited states is assumed to be constant. The limits of applicability for the Stokes relation are discussed; at high temperatures, this relation is violated not only for molecular species but also for electronically excited atomic gases. Two test cases of strongly non-equilibrium flows behind plane shock waves corresponding to the spacecraft re-entry (Hermes and Fire II) are simulated numerically. Fluid-dynamic variables and heat fluxes are evaluated in gases with electronic excitation. In inviscid flows without chemical-radiative coupling, the flow-field is weakly affected by electronic states; however, in viscous flows, their influence can be more important, in particular, on the convective heat flux. The contribution of different dissipative processes to the heat transfer is evaluated as well as the effect of reaction rate coefficients. The competition of diffusion and heat conduction processes reduces the overall effect of electronic excitation on the convective heating, especially for the Fire II test case. It is shown that reliable models of chemical reaction rates are of great importance for accurate predictions of the fluid dynamic variables and heat fluxes.
Bayne, Michael G; Scher, Jeremy A; Ellis, Benjamin H; Chakraborty, Arindam
2018-05-21
Electron-hole or quasiparticle representation plays a central role in describing electronic excitations in many-electron systems. For charge-neutral excitation, the electron-hole interaction kernel is the quantity of interest for calculating important excitation properties such as optical gap, optical spectra, electron-hole recombination and electron-hole binding energies. The electron-hole interaction kernel can be formally derived from the density-density correlation function using both Green's function and TDDFT formalism. The accurate determination of the electron-hole interaction kernel remains a significant challenge for precise calculations of optical properties in the GW+BSE formalism. From the TDDFT perspective, the electron-hole interaction kernel has been viewed as a path to systematic development of frequency-dependent exchange-correlation functionals. Traditional approaches, such as MBPT formalism, use unoccupied states (which are defined with respect to Fermi vacuum) to construct the electron-hole interaction kernel. However, the inclusion of unoccupied states has long been recognized as the leading computational bottleneck that limits the application of this approach for larger finite systems. In this work, an alternative derivation that avoids using unoccupied states to construct the electron-hole interaction kernel is presented. The central idea of this approach is to use explicitly correlated geminal functions for treating electron-electron correlation for both ground and excited state wave functions. Using this ansatz, it is derived using both diagrammatic and algebraic techniques that the electron-hole interaction kernel can be expressed only in terms of linked closed-loop diagrams. It is proved that the cancellation of unlinked diagrams is a consequence of linked-cluster theorem in real-space representation. The electron-hole interaction kernel derived in this work was used to calculate excitation energies in many-electron systems and results were found to be in good agreement with the EOM-CCSD and GW+BSE methods. The numerical results highlight the effectiveness of the developed method for overcoming the computational barrier of accurately determining the electron-hole interaction kernel to applications of large finite systems such as quantum dots and nanorods.
Relaxation pathways of photoexcited iodide-methanol clusters: a computational investigation.
Mak, Chun C; Peslherbe, Gilles H
2014-06-26
Upon photoexcitation of iodide-methanol clusters, I(-)(CH3OH)n, to a charge-transfer-to-solvent (CTTS) excited state, extensive relaxation was found to occur, accompanied by a convoluted modulation of the stability of the excited electron, which ultimately decreases substantially. In order to develop a molecular-level understanding of the relaxation processes of CTTS excited I(-)(CH3OH)n, high-level quantum chemical calculations are first used to investigate the ground, excited, and ionized states of I(-)(CH3OH)n (n = 2). Because of the relatively small size of I(-)(CH3OH)2, it was possible to characterize the contributions of solvent-solvent interactions to the stability of the CTTS excited cluster relative to dissociation into methanol, iodine, and a free electron, which exhibits a substantial dependence on the cluster geometric configuration. Ab initio molecular dynamics simulations of CTTS excited I(-)(CH3OH)3 are then performed to shed some light onto the nature of the relaxation pathways involved in the modulation of the stability of the excited electron in larger clusters. Simulation results suggest that separation of I and (CH3OH)3(-) accompanied by solvent reorganization in the latter can initially stabilize the excited electron, while gradual cluster fragmentation to I, (CH3OH)2(-), and CH3OH ultimately destabilizes it. This work shows, for the first time, that the inability of small CTTS excited I(-)(CH3OH)n to retain a solvated electron may be attributed to the limited hydrogen-bonding capacity of CH3OH, which increases the propensity for fragmentation to smaller clusters with lower excess-electron binding energies, and highlights the critical role of intricate molecular interactions in the electron solvation process.
NASA Astrophysics Data System (ADS)
Kato, H.; Kawahara, H.; Hoshino, M.; Tanaka, H.; Campbell, L.; Brunger, M. J.
2008-11-01
We report inelastic and superelastic excitation function measurements for electron scattering from the ground vibrational quantum (0 0 0), the bending vibrational quantum (0 1 0) and the unresolved first bending overtone (0 2 0) and symmetric stretch (1 0 0) modes of the ground-electronic state in hot (700 K) carbon dioxide ( CO) molecules. The incident electron energy range of these measurements was 1-9 eV, with the relevant excitation functions being measured at the respective electron scattering angles of 30°, 60°, 90° and 120°. Where possible comparison is made to the often quite limited earlier data, with satisfactory agreement typically being found to within the cited experimental errors.
Means and method for calibrating a photon detector utilizing electron-photon coincidence
NASA Technical Reports Server (NTRS)
Srivastava, S. K. (Inventor)
1984-01-01
An arrangement for calibrating a photon detector particularly applicable for the ultraviolet and vacuum ultraviolet regions is based on electron photon coincidence utilizing crossed electron beam atom beam collisions. Atoms are excited by electrons which lose a known amount of energy and scatter with a known remaining energy, while the excited atoms emit photons of known radiation. Electrons of the known remaining energy are separated from other electrons and are counted. Photons emitted in a direction related to the particular direction of scattered electrons are detected to serve as a standard. Each of the electrons is used to initiate the measurements of a time interval which terminates with the arrival of a photon exciting the photon detector. Only the number of time intervals related to the coincidence correlation and of electrons scattered in the particular direction with the known remaining energy and photons of a particular radiation level emitted due to the collisions of such scattered electrons are counted. The detector calibration is related to the number of counted electrons and photons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laporta, V.; Celiberto, R.; Tennyson, J.
Rate coefficients for dissociative electron attachment and electron-impact dissociation processes, involving vibrationally excited molecular oxygen, are presented. Analytical fits of the calculated numerical data, useful in the applications, are also provided.
NASA Astrophysics Data System (ADS)
Puech, V.
Experimental results on a Ar-H laser pumped by an electron gun are presented, along with a kinetic model of the evolution of states in Ar lasers with additives. Data from trials with the Ar-H laser are provided to confirm model predictions of the electron energy transfer. The electron densities and temperatures evolving on a nanosecond scale in the laser are quantified. A solution is found for the Boltzmann equation for the collisional processes characterizing the electron distribution of interactions between the pumping electrons and the various excited molecular states. The electron distribution function is assumed to be Maxwellian, and the distribution is shown to converge within a few picoseconds when the excitation is above the ionization energy.
Harvesting multiple electron-hole pairs generated through plasmonic excitation of Au nanoparticles.
Kim, Youngsoo; Smith, Jeremy G; Jain, Prashant K
2018-05-07
Multi-electron redox reactions, although central to artificial photosynthesis, are kinetically sluggish. Amidst the search for synthetic catalysts for such processes, plasmonic nanoparticles have been found to catalyse multi-electron reduction of CO 2 under visible light. This example motivates the need for a general, insight-driven framework for plasmonic catalysis of such multi-electron chemistry. Here, we elucidate the principles underlying the extraction of multiple redox equivalents from a plasmonic photocatalyst. We measure the kinetics of electron harvesting from a gold nanoparticle photocatalyst as a function of photon flux. Our measurements, supported by theoretical modelling, reveal a regime where two-electron transfer from the excited gold nanoparticle becomes prevalent. Multiple electron harvesting becomes possible under continuous-wave, visible-light excitation of moderate intensity due to strong interband transitions in gold and electron-hole separation accomplished using a hole scavenger. These insights will help expand the utility of plasmonic photocatalysis beyond CO 2 reduction to other challenging multi-electron, multi-proton transformations such as N 2 fixation.
Real-time electron dynamics for massively parallel excited-state simulations
NASA Astrophysics Data System (ADS)
Andrade, Xavier
The simulation of the real-time dynamics of electrons, based on time dependent density functional theory (TDDFT), is a powerful approach to study electronic excited states in molecular and crystalline systems. What makes the method attractive is its flexibility to simulate different kinds of phenomena beyond the linear-response regime, including strongly-perturbed electronic systems and non-adiabatic electron-ion dynamics. Electron-dynamics simulations are also attractive from a computational point of view. They can run efficiently on massively parallel architectures due to the low communication requirements. Our implementations of electron dynamics, based on the codes Octopus (real-space) and Qball (plane-waves), allow us to simulate systems composed of thousands of atoms and to obtain good parallel scaling up to 1.6 million processor cores. Due to the versatility of real-time electron dynamics and its parallel performance, we expect it to become the method of choice to apply the capabilities of exascale supercomputers for the simulation of electronic excited states.
Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy
Caram, Justin R.; Zheng, Haibin; Dahlberg, Peter D.; Rolczynski, Brian S.; Griffin, Graham B.; Dolzhnikov, Dmitriy S.; Talapin, Dmitri V.; Engel, Gregory S.
2014-01-01
Development of optoelectronic technologies based on quantum dots depends on measuring, optimizing, and ultimately predicting charge carrier dynamics in the nanocrystal. In such systems, size inhomogeneity and the photoexcited population distribution among various excitonic states have distinct effects on electron and hole relaxation, which are difficult to distinguish spectroscopically. Two-dimensional electronic spectroscopy can help to untangle these effects by resolving excitation energy and subsequent nonlinear response in a single experiment. Using a filament-generated continuum as a pump and probe source, we collect two-dimensional spectra with sufficient spectral bandwidth to follow dynamics upon excitation of the lowest three optical transitions in a polydisperse ensemble of colloidal CdSe quantum dots. We first compare to prior transient absorption studies to confirm excitation-state-dependent dynamics such as increased surface-trapping upon excitation of hot electrons. Second, we demonstrate fast band-edge electron-hole pair solvation by ligand and phonon modes, as the ensemble relaxes to the photoluminescent state on a sub-picosecond time-scale. Third, we find that static disorder due to size polydispersity dominates the nonlinear response upon excitation into the hot electron manifold; this broadening mechanism stands in contrast to that of the band-edge exciton. Finally, we demonstrate excitation-energy dependent hot-carrier relaxation rates, and we describe how two-dimensional electronic spectroscopy can complement other transient nonlinear techniques. PMID:24588185
Photoelectron imaging of doped helium nanodroplets
NASA Astrophysics Data System (ADS)
Neumark, Daniel
2008-03-01
Photoelectron images of helium nanodroplets doped with Kr and Ne atoms are reported. The images and resulting photoelectron spectra were obtained using tunable synchrotron radiation to ionize the droplets. Droplets were excited at 21.6 eV, corresponding to a strong droplet electronic excitation. The rare gas dopant is then ionized via a Penning excitation transfer process. The electron kinetic energy distributions reflect complex ionization and electron escape dynamics.
NASA Technical Reports Server (NTRS)
Gardner, L. D.; Kohl, J. L.
2006-01-01
The analysis of absolute spectral line intensities and intensity ratios with spectroscopic diagnostic techniques provides empirical determinations of chemical abundances, electron densities and temperatures in astrophysical objects. Since spectral line intensities and their ratios are controlled by the excitation rate coefficients for the electron temperature of the observed astrophysical structure, it is imperative that one have accurate values for the relevant rate coefficients. Here at the Harvard-Smithsonian Center for Astrophysics, we have been carrying out measurements of electron impact excitation (EIE) for more than 25 years.
Core excitation effects on oscillator strengths for transitions in four electron atomic systems
NASA Astrophysics Data System (ADS)
Chang, T. N.; Luo, Yuxiang
2007-06-01
By including explicitly the electronic configurations with two and three simultaneously excited electronic orbital, we have extended the BSCI (B-spline based configuration interaction) method [1] to estimate directly the effect of inner shell core excitation to oscillator strengths for transitions in four-electron atomic systems. We will present explicitly the change in oscillator strengths due to core excitations, especially for transitions involving doubly excited states and those with very small oscillator strengths. The length and velocity results are typically in agreement better than 1% or less. [1] Tu-nan Chang, in Many-body Theory of Atomic Structure and Photoionization, edited by T. N. Chang (World Scientific, Singapore, 1993), p. 213-47; and T. N. Chang and T. K. Fang, Elsevier Radiation Physics and Chemistry 70, 173-190 (2004).
Ruberti, M; Yun, R; Gokhberg, K; Kopelke, S; Cederbaum, L S; Tarantelli, F; Averbukh, V
2014-05-14
Here, we extend the L2 ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in the ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N2, and H2O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruberti, M.; Yun, R.; Averbukh, V.
2014-05-14
Here, we extend the L{sup 2} ab initio method for molecular photoionization cross-sections introduced in Gokhberg et al. [J. Chem. Phys. 130, 064104 (2009)] and benchmarked in Ruberti et al. [J. Chem. Phys. 139, 144107 (2013)] to the calculation of total photoionization cross-sections of molecules in electronically excited states. The method is based on the ab initio description of molecular electronic states within the many-electron Green's function approach, known as algebraic diagrammatic construction (ADC), and on the application of Stieltjes-Chebyshev moment theory to Lanczos pseudospectra of the ADC electronic Hamiltonian. The intermediate state representation of the dipole operator in themore » ADC basis is used to compute the transition moments between the excited states of the molecule. We compare the results obtained using different levels of the many-body theory, i.e., ADC(1), ADC(2), and ADC(2)x for the first two excited states of CO, N{sub 2}, and H{sub 2}O both at the ground state and the excited state equilibrium or saddle point geometries. We find that the single excitation ADC(1) method is not adequate even at the qualitative level and that the inclusion of double electronic excitations for description of excited state photoionization is essential. Moreover, we show that the use of the extended ADC(2)x method leads to a substantial systematic difference from the strictly second-order ADC(2). Our calculations demonstrate that a theoretical modelling of photoionization of excited states requires an intrinsically double excitation theory with respect to the ground state and cannot be achieved by the standard single excitation methods with the ground state as a reference.« less
Nuclear excitation by electronic transition of 235U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chodash, P. A.; Norman, E. B.; Burke, J. T.
Here, nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that can occur in isotopes containing a low-lying nuclear excited state. Over the past 40 yr, several experiments have attempted to measure NEET of 235U and those experiments have yielded conflicting results.
Nuclear excitation by electronic transition of 235U
Chodash, P. A.; Norman, E. B.; Burke, J. T.; ...
2016-03-11
Here, nuclear excitation by electronic transition (NEET) is a rare nuclear excitation that can occur in isotopes containing a low-lying nuclear excited state. Over the past 40 yr, several experiments have attempted to measure NEET of 235U and those experiments have yielded conflicting results.
Electronic excitation of H{sub 2} by electron impact using soft norm-conserving pseudopotentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natalense, A.P.; Sartori, C.S.; Ferreira, L.G.
1996-12-01
We calculate electronic excitation cross sections for the {ital b}{sup 3}{Sigma}{sup +}{sub {ital u}} {ital a}{sup 3}{Sigma}{sup +}{sub {ital g}} {ital c}{sup 3}{Pi}{sub {ital u}}, and {ital d}{sup 3}{Pi}{sub {ital u}} states of H{sub 2} by electron impact. Our results were obtained with the Schwinger multichannel method with pseudopotentials and real potentials at the two-channel level of approximation. Pseudo-H atoms are used to generate H{sub 2} molecules with almost the same low-energy spectrum as the real molecules. We show that the dynamics of the electronic excitation process of the pseudomolecules by electron impact is very similar to the real case.more » Our results support the idea that pseudopotentials can be used to obtain reliable molecular electronic excitation cross sections by low-energy electron impact, confirming the expectations of previous studies with CH{sub 2}O [Bettega {ital et} {ital al}., Phys. Rev. A {bold 25}, 1111 (1993)] and HBr [Rescigno, J. Chem. Phys. {bold 104}, 125 (1996)]. {copyright} {ital 1996 The American Physical Society.}« less
Flatz, K; Grobosch, M; Knupfer, M
2007-06-07
The authors have studied the electronic structure of potassium doped copper-phthalocyanine using electron energy-loss spectroscopy. The evolution of the loss function indicates the formation of distinct KxCuPc phases. Taking into account the C1s and K2p core level excitations and recent results by Giovanelli et al. [J. Chem. Phys. 126, 044709 (2007)], they conclude that these are K2CuPc and K4CuPc. They discuss the changes in the electronic excitations upon doping on the basis of the molecular electronic levels and the presence of electronic correlations.
Structure of spin excitations in heavily electron-doped Li 0.8Fe 0.2ODFeSe superconductors
Pan, Bingying; Shen, Yao; Hu, Die; ...
2017-07-25
Heavily electron-doped iron-selenide high-transition-temperature (high-T c) superconductors, which have no hole Fermi pockets, but have a notably high T c, have challenged the prevailing s± pairing scenario originally proposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in heavily electron-doped iron-selenide remains unclear. Here, we used neutron scattering to study the spin excitations of the heavily electron-doped iron-selenide material Li 0.8Fe 0.2ODFeSe (T c = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding (π, π) at ~21 meV. As the energy increased, the spin excitations assumed a diamond shape,more » and they dispersed outward until the energy reached ~60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near (π, π) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high T c in these materials.« less
Thickness-dependent electron–lattice equilibration in laser-excited thin bismuth films
Sokolowski-Tinten, K.; Li, R. K.; Reid, A. H.; ...
2015-11-19
Electron–phonon coupling processes determine electronic transport properties of materials and are responsible for the transfer of electronic excess energy to the lattice. With decreasing device dimensions an understanding of these processes in nanoscale materials is becoming increasingly important. We use time-resolved electron diffraction to directly study energy relaxation in thin bismuth films after optical excitation. Precise measurements of the transient Debye–Waller-effect for various film thicknesses and over an extended range of excitation fluences allow to separate different contributions to the incoherent lattice response. While phonon softening in the electronically excited state is responsible for an immediate increase of the r.m.s.more » atomic displacement within a few hundred fs, 'ordinary' electron–phonon coupling leads to subsequent heating of the material on a few ps time-scale. Moreover, the data reveal distinct changes in the energy transfer dynamics which becomes faster for stronger excitation and smaller film thickness, respectively. The latter effect is attributed to a cross-interfacial coupling of excited electrons to phonons in the substrate.« less
Electron scattering measurements from molecules of technological relevance
NASA Astrophysics Data System (ADS)
Jones, Darryl
2014-10-01
Biomass represents a significant opportunity to provide renewable and sustainable biofuels. Non-thermal atmospheric pressure plasmas provide an opportunity to efficiently breakdown the naturally-resilient biomass into its useful subunits. Free electrons produced in the plasma may assist in this process by inducing fragmentation though dissociative excitation, ionization or attachment processes. To assist in understanding and refining this process, we have performed electron energy loss experiments from phenol (C6H5OH), a key structural building block of biomass. This enables a quantitative assessment of the excited electronic states of phenol. Differential cross sections for the electron-driven excitation of phenol have also been obtained for incident electron energies in the 20--250 eV range and over 3--90° scattering angles. DBJ acknowledges financial support provided by an Australian Research Council DECRA.
Electronic excitation of ground state atoms by collision with heavy gas particles
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1993-01-01
Most of the important chemical reactions which occur in the very high temperature air produced around space vehicles as they enter the atmosphere were investigated both experimentally and theoretically, to some extent at least. One remaining reaction about which little is known, and which could be quite important at the extremely high temperatures that will be produced by the class of space vehicles now contemplated - such as the AOTV - is the excitation of bound electron states due to collisions between heavy gas particles. Rates of electronic excitation due to free electron collisions are known to be very rapid, but because these collisions quickly equilibrate the free and bound electron energy, the approach to full equilibrium with the heavy particle kinetic energy will depend primarily on the much slower process of bound electron excitation in heavy particle collisions and the subsequent rapid transfer to free electron energy. This may be the dominant mechanism leading to full equilibrium in the gas once the dissociation process has depleted the molecular states so the transfer between molecular vibrational energy and free electron energy is no longer available as a channel for equilibration of free electron and heavy particle kinetic energies. Two mechanisms seem probable in electronic excitation by heavy particle impact. One of these is the collision excitation and deexcitation of higher electronic states which are Rydberg like. A report, entitled 'Semi-Classical Theory of Electronic Excitation Rates', was submitted previously. This presented analytic expressions for the transition probabilities, assuming that the interaction potential is an exponential repulsion with a perturbation ripple due to the dipole-induced dipole effect in the case of neutral-neutral collisions, and to the ion-dipole interaction in the case of ion-neutral collisions. However the above may be, there is little doubt that excitation of ground state species by collision occurs at the point where the initial and final potentials cross, or at least come very close. Therefore, this mechanism would be applicable to the case where a gas is initially at very low temperature suddenly subjected to high energy heavy particle bombardment. This situation would model the measurement of excitation cross section by molecular beam techniques, for example. The purpose is to report values of cross sections and rate coefficients for collision excitation of ground state atoms estimated with the Landau-Zener transition theory and to compare results with measurement of excitation cross sections for a beam of Hydrogen atoms impacting Argon atom targets. Some very dubious approximations are used, and the comparison with measurement is found less than ideal, but results are at least consistent within order of magnitude. The same model is then applied to the case of N-N atom collisions, even though the approximations then become even more doubtful. Still the rate coefficients obtained are at least plausible in both magnitude and functional form, and as far as I am aware these are the only estimates available for such rate coefficients.
N2 states population and airglow in Titan's atmosphere
NASA Astrophysics Data System (ADS)
Lavvas, P.; Campbell, L.; Yelle, R. V.; Galand, M.; Brunger, M. J.
2013-09-01
Molecular nitrogen in Titan's atmosphere is excited to different vibrational and electronic states by direct photon absorption and electron impact. Here we present detailed calculations for the vibrational population of different electronic states and the emission rates from the de-excitation of these states.
Li, Weiwei; Lu, Yalin; He, Zhigang; Jia, Qika; Wang, Lin
2016-06-01
We propose to generate high-power terahertz (THz) radiation from a cylindrical dielectric loaded waveguide (DLW) excited by a direct-current electron beam with the harmonics generation method. The DLW supports a discrete set of modes that can be excited by an electron beam passing through the structure. The interaction of these modes with the co-propagating electron beam results in micro-bunching and the coherent enhancement of the wakefield radiation, which is dominated by the fundamental mode. By properly choosing the parameters of DLW and beam energy, the high order modes can be the harmonics of the fundamental one; thus, high frequency radiation corresponding to the high order modes will benefit from the dominating bunching process at the fundamental eigenfrequency and can also be coherently excited. With the proposed method, high power THz radiation can be obtained with an easily achievable electron beam and a large DLW structure.
Electron Attachment to Radicals and Highly-Excited States in Laser-Irradiated CCl_2F_2*
NASA Astrophysics Data System (ADS)
Pinnaduwage, Lal; Datskos, Panos
1997-10-01
We have measured electron attachment rate constants for two species produced via ArF-excimer- laser irradiated CF_2Cl_2, i.e., the CF_2Cl radical and the highly-excited electronically-excited states of CF_2Cl_2. These measurements show that while electron attachment to the fragment radical has a rate constants about an order of magnitude higher compared to the ground states of CF_2Cl_2, electron attachment to the highly- excited states have many orders of magnitude larger rate constants. To our knowledge, only one other electron attachment measurement has been conducted on molecular fragments up to now. Implications of these measurements for plasma processing discharges will be discussed. Research supported by the National Science Foundation under contract No. ECS-9626217 with the University of Tennessee, Knoxville. The Oak Ridge National Laboratory is managed by Lockheed Martin Energy Research Corp. for the U. S. DOE under contract No. DE-AC05- 96OR22464.
Carbon nanorings with inserted acenes: Breaking symmetry in excited state dynamics
Franklin-Mergarejo, R.; Alvarez, D. Ondarse; Tretiak, S.; ...
2016-08-10
Conjugated cycloparaphenylene rings have unique electronic properties being the smallest segments of carbon nanotubes. Their conjugated backbones support delocalized electronic excitations, which dynamics is strongly influenced by cyclic geometry. Here we present a comparative theoretical study of the electronic and vibrational energy relaxation and redistribution in photoexcited cycloparaphenylene carbon nanorings with inserted naphthalene, anthracene, and tetracene units using non-adiabatic excited-state molecular dynamics simulations. Calculated excited state structures reflect modifications of optical selection rules and appearance of low-energy electronic states localized on the acenes due to gradual departure from a perfect circular symmetry. After photoexcitation, an ultrafast electronic energy relaxation tomore » the lowest excited state is observed on the time scale of hundreds of femtoseconds in all molecules studied. Concomitantly, the efficiency of the exciton trapping in the acene raises when moving from naphthalene to anthracene and to tetracene, being negligible in naphthalene, and ~60% and 70% in anthracene and tetracene within the first 500 fs after photoexcitation. Observed photoinduced dynamics is further analyzed in details using induced molecular distortions, delocatization properties of participating electronic states and non-adiabatic coupling strengths. Lastly, our results provide a number of insights into design of cyclic molecular systems for electronic and light-harvesting applications.« less
The excited spin-triplet state of a charged exciton in quantum dots.
Molas, M R; Nicolet, A A L; Piętka, B; Babiński, A; Potemski, M
2016-09-14
We report on spectroscopic studies of resonances related to ladder of states of a charged exciton in single GaAlAs/AlAs quantum dot structures. Polarization-resolved photoluminescence, photoluminescence excitation and photon-correlation measurements were performed at low (T = 4.2 K) temperature also in magnetic field applied in Faraday configuration. The investigated resonances are assigned to three different configurations of a positively charged exciton. Together with a singlet ground state and a conventional triplet state (involving an electron from the ground state electronic s-shell), an excited triplet state, which involved an electron from the excited electronic p-shell was identified in single dots. The appearance of an emission line related to the latter complex is due to a partially suppressed electron relaxation in the investigated dots. An analysis of this emission line allows us to scrupulously determine properties of the excited triplet state and compare them with those of the conventional triplet state. Both triplets exhibit similar patterns of anisotropic fine structure and Zeeman splitting, however their amplitudes significantly differ for those two states. Presented results emphasize the role of the symmetry of the electronic state on the properties of the triplet states of two holes + electron excitonic complex.
Measurement of inelastic cross sections for low-energy electron scattering from DNA bases.
Michaud, Marc; Bazin, Marc; Sanche, Léon
2012-01-01
To determine experimentally the absolute cross sections (CS) to deposit various amount of energies into DNA bases by low-energy electron (LEE) impact. Electron energy loss (EEL) spectra of DNA bases were recorded for different LEE impact energies on the molecules deposited at very low coverage on an inert argon (Ar) substrate. Following their normalisation to the effective incident electron current and molecular surface number density, the EEL spectra were then fitted with multiple Gaussian functions in order to delimit the various excitation energy regions. The CS to excite a molecule into its various excitation modes were finally obtained from computing the area under the corresponding Gaussians. The EEL spectra and absolute CS for the electronic excitations of pyrimidine and the DNA bases thymine, adenine, and cytosine by electron impacts below 18 eV were reported for the molecules deposited at about monolayer coverage on a solid Ar substrate. The CS for electronic excitations of DNA bases by LEE impact were found to lie within the 10(216) to 10(218) cm(2) range. The large value of the total ionisation CS indicated that ionisation of DNA bases by LEE is an important dissipative process via which ionising radiation degrades and is absorbed in DNA.
Measurement of inelastic cross sections for low-energy electron scattering from DNA bases
Michaud, Marc; Bazin, Marc.; Sanche, Léon
2013-01-01
Purpose Determine experimentally the absolute cross sections (CS) to deposit various amount of energies into DNA bases by low-energy electron (LEE) impact. Materials and methods Electron energy loss (EEL) spectra of DNA bases are recorded for different LEE impact energies on the molecules deposited at very low coverage on an inert argon (Ar) substrate. Following their normalisation to the effective incident electron current and molecular surface number density, the EEL spectra are then fitted with multiple Gaussian functions in order to delimit the various excitation energy regions. The CS to excite a molecule into its various excitation modes are finally obtained from computing the area under the corresponding Gaussians. Results The EEL spectra and absolute CS for the electronic excitations of pyrimidine and the DNA bases thymine, adenine, and cytosine by electron impacts below 18 eV are reported for the molecules deposited at about monolayer coverage on a solid Ar substrate. Conclusions The CS for electronic excitations of DNA bases by LEE impact are found to lie within the 10−16 – 10−18 cm2 range. The large value of the total ionisation CS indicates that ionisation of DNA bases by LEE is an important dissipative process via which ionising radiation degrades and is absorbed in DNA. PMID:21615242
NASA Astrophysics Data System (ADS)
Chen, Zhan-Bin
2018-04-01
Calculations of the electron-impact excitation (EIE) of singly charged Ca+ and Ba+ ions and subsequent de-excitation process are performed using a fully relativistic distorted wave (RDW) method. To resolve the discrepancy between previous theory and experiment, careful consideration is given to the generation of the target state wave-functions through the systematic inclusion of electron correlations. It is found that the electron correlation effects play a significant role on the cross section, while the effects on the linear polarization of the emitted radiation are relatively small. Good agreement between our result and experiment is obtained.
Excitation of Ion Acoustic Waves in Plasmas with Electron Emission from Walls
NASA Astrophysics Data System (ADS)
Khrabrov, A. V.; Wang, H.; Kaganovich, I. D.; Raitses, Y.; Sydorenko, D.
2015-11-01
Various plasma propulsion devices exhibit strong electron emission from the walls either as a result of secondary processes or due to thermionic emission. To understand details of electron kinetics in plasmas with strong emission, we have performed kinetic simulations of such plasmas using EDIPIC code. We show that excitation of ion acoustic waves is ubiquitous phenomena in many different plasma configurations with strong electron emission from walls. Ion acoustic waves were observed to be generated near sheath if the secondary electron emission from the walls is strong. Ion acoustic waves were also observed to be generated in the plasma bulk due to presence of an intense electron beam propagating from the cathode. This intense electron beam can excite strong plasma waves, which in turn drive the ion acoustic waves. Research supported by the U.S. Air Force Office of Scientific Research.
Wang, Jia-Nan; Jin, Jun-Ling; Geng, Yun; Sun, Shi-Ling; Xu, Hong-Liang; Lu, Ying-Hua; Su, Zhong-Min
2013-03-15
Recently, the extreme learning machine neural network (ELMNN) as a valid computing method has been proposed to predict the nonlinear optical property successfully (Wang et al., J. Comput. Chem. 2012, 33, 231). In this work, first, we follow this line of work to predict the electronic excitation energies using the ELMNN method. Significantly, the root mean square deviation of the predicted electronic excitation energies of 90 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) derivatives between the predicted and experimental values has been reduced to 0.13 eV. Second, four groups of molecule descriptors are considered when building the computing models. The results show that the quantum chemical descriptions have the closest intrinsic relation with the electronic excitation energy values. Finally, a user-friendly web server (EEEBPre: Prediction of electronic excitation energies for BODIPY dyes), which is freely accessible to public at the web site: http://202.198.129.218, has been built for prediction. This web server can return the predicted electronic excitation energy values of BODIPY dyes that are high consistent with the experimental values. We hope that this web server would be helpful to theoretical and experimental chemists in related research. Copyright © 2012 Wiley Periodicals, Inc.
Hot-electron-mediated surface chemistry: toward electronic control of catalytic activity.
Park, Jeong Young; Kim, Sun Mi; Lee, Hyosun; Nedrygailov, Ievgen I
2015-08-18
Energy dissipation at surfaces and interfaces is mediated by excitation of elementary processes, including phonons and electronic excitation, once external energy is deposited to the surface during exothermic chemical processes. Nonadiabatic electronic excitation in exothermic catalytic reactions results in the flow of energetic electrons with an energy of 1-3 eV when chemical energy is converted to electron flow on a short (femtosecond) time scale before atomic vibration adiabatically dissipates the energy (in picoseconds). These energetic electrons that are not in thermal equilibrium with the metal atoms are called "hot electrons". The detection of hot electron flow under atomic or molecular processes and understanding its role in chemical reactions have been major topics in surface chemistry. Recent studies have demonstrated electronic excitation produced during atomic or molecular processes on surfaces, and the influence of hot electrons on atomic and molecular processes. We outline research efforts aimed at identification of the intrinsic relation between the flow of hot electrons and catalytic reactions. We show various strategies for detection and use of hot electrons generated by the energy dissipation processes in surface chemical reactions and photon absorption. A Schottky barrier localized at the metal-oxide interface of either catalytic nanodiodes or hybrid nanocatalysts allows hot electrons to irreversibly transport through the interface. We show that the chemicurrent, composed of hot electrons excited by the surface reaction of CO oxidation or hydrogen oxidation, correlates well with the turnover rate measured separately by gas chromatography. Furthermore, we show that hot electron flows generated on a gold thin film by photon absorption (or internal photoemission) can be amplified by localized surface plasmon resonance. The influence of hot charge carriers on the chemistry at the metal-oxide interface are discussed for the cases of Au, Ag, and Pt nanoparticles on oxide supports and Pt-CdSe-Pt nanodumbbells. We show that the accumulation or depletion of hot electrons on metal nanoparticles, in turn, can also influence catalytic reactions. Mechanisms suggested for hot-electron-induced chemical reactions on a photoexcited plasmonic metal are discussed. We propose that the manipulation of the flow of hot electrons by changing the electrical characteristics of metal-oxide and metal-semiconductor interfaces can give rise to the intriguing capability of tuning the catalytic activity of hybrid nanocatalysts.
State-selective optimization of local excited electronic states in extended systems
NASA Astrophysics Data System (ADS)
Kovyrshin, Arseny; Neugebauer, Johannes
2010-11-01
Standard implementations of time-dependent density-functional theory (TDDFT) for the calculation of excitation energies give access to a number of the lowest-lying electronic excitations of a molecule under study. For extended systems, this can become cumbersome if a particular excited state is sought-after because many electronic transitions may be present. This often means that even for systems of moderate size, a multitude of excited states needs to be calculated to cover a certain energy range. Here, we present an algorithm for the selective determination of predefined excited electronic states in an extended system. A guess transition density in terms of orbital transitions has to be provided for the excitation that shall be optimized. The approach employs root-homing techniques together with iterative subspace diagonalization methods to optimize the electronic transition. We illustrate the advantages of this method for solvated molecules, core-excitations of metal complexes, and adsorbates at cluster surfaces. In particular, we study the local π →π∗ excitation of a pyridine molecule adsorbed at a silver cluster. It is shown that the method works very efficiently even for high-lying excited states. We demonstrate that the assumption of a single, well-defined local excitation is, in general, not justified for extended systems, which can lead to root-switching during optimization. In those cases, the method can give important information about the spectral distribution of the orbital transition employed as a guess.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagase, Takeshi, E-mail: t-nagase@uhvem.osaka-u.ac.jp; Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1, Yamada-Oka, Suita, Osaka 565-0871; Yamashita, Ryo
2016-04-28
Irradiation-induced crystallization of an amorphous phase was stimulated at a Pd-Si amorphous/silicon oxide (a(Pd-Si)/SiO{sub x}) interface at 298 K by electron irradiation at acceleration voltages ranging between 25 kV and 200 kV. Under irradiation, a Pd-Si amorphous phase was initially formed at the crystalline face-centered cubic palladium/silicon oxide (Pd/SiO{sub x}) interface, followed by the formation of a Pd{sub 2}Si intermetallic compound through irradiation-induced crystallization. The irradiation-induced crystallization can be considered to be stimulated not by defect introduction through the electron knock-on effects and electron-beam heating, but by the electronic excitation mechanism. The observed irradiation-induced structural change at the a(Pd-Si)/SiO{sub x} and Pd/SiO{sub x}more » interfaces indicates multiple structural modifications at the metal/silicon oxide interfaces through electronic excitation induced by the electron-beam processes.« less
Topological Excitations of One-Dimensional Correlated Electron Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salkola, M.I.; Schrieffer, J.R.; Salkola, M.I.
1999-02-01
Elementary, low-energy excitations are examined by bosonization in one-dimensional systems with quasi-long-range order. A new, independently measurable attribute is introduced to describe such excitations. It is defined as a number w which determines how many times the phase of the order parameter winds as an excitation is transposed from far left to far right. The winding number is zero for electrons and holes with conventional quantum numbers, but it acquires a nontrivial value w=1 for neutral spin- (1) /(2) excitations and for spinless excitations with a unit electron charge. It may even be irrational, if the charge is irrational. Thus,more » these excitations are topological. {copyright} {ital 1999} {ital The American Physical Society }« less
NASA Technical Reports Server (NTRS)
Chutjian, A.; Trajmar, S.; Cartwright, D. C.
1977-01-01
Analysis of electron energy-loss data at incident electron energies of 40 and 60 eV has led to the determination of normalized absolute differential cross sections for electron-impact excitation of five optically-allowed singlet states, two known triplet states, and two unknown triplet-like states of N2, lying in the energy-loss range 12.5-14.2 eV. The range of scattering angles was 5 to 138 deg. The optically allowed transitions and the known triplet excitations are identified. Cross sections for excitation to two unidentified triplet-like states at 13.155 and 13.395 eV were also obtained. The relationship of the generalized oscillator strength for the dipole-allowed states obtained from the described data to known optical oscillator strengths is discussed.
Transport coefficients in nonequilibrium gas-mixture flows with electronic excitation.
Kustova, E V; Puzyreva, L A
2009-10-01
In the present paper, a one-temperature model of transport properties in chemically nonequilibrium neutral gas-mixture flows with electronic excitation is developed. The closed set of governing equations for the macroscopic parameters taking into account electronic degrees of freedom of both molecules and atoms is derived using the generalized Chapman-Enskog method. The transport algorithms for the calculation of the thermal-conductivity, diffusion, and viscosity coefficients are proposed. The developed theoretical model is applied for the calculation of the transport coefficients in the electronically excited N/N(2) mixture. The specific heats and transport coefficients are calculated in the temperature range 50-50,000 K. Two sets of data for the collision integrals are applied for the calculations. An important contribution of the excited electronic states to the heat transfer is shown. The Prandtl number of atomic species is found to be substantially nonconstant.
Plasma waves in the magnetic hole
NASA Technical Reports Server (NTRS)
Lin, Naiguo; Kellogg, P. J.; MacDowall, R.; Balogh, A.; Forsyth, R. J.; Phillips, J. L.; Pick, M.
1995-01-01
Magnetic holes in the solar wind, which are characterized by isolated local depressions in the magnetic field magnitude, have been observed previously. The Unified Radio and Plasma Wave (URAP) instrument of Ulysses has found that within such magnetic structures, electrostatic waves at kHz frequency and ultralow frequency electromagnetic waves are often excited and seen as short duration wave bursts. Most of these bursts occur near the ambient electron plasma frequency, which suggests that the waves are Langmuir waves. Such waves are usually excited by electron streams. Some evidence of the streaming of energetic electrons required for exciting Langmuir waves has been observed. These electrons may have originated at sources near the Sun, which would imply that the magnetic structures containing the waves would exist as long channels formed by field and plasma conditions near the Sun. On the other hand, the electrons could be suprathermal 'tails' from wave collapse processes occurring near the spacecraft. In either case, the Langmuir waves excited in the magnetic holes provide a measurement of the plasma density inside the holes. Low frequency electromagnetic waves, having frequencies of a fraction of the local electron cyclotron frequency, sometimes accompany the Langmuir waves observed in magnetic holes. Waves excited in this frequency range are very likely to be whistler-mode waves. They may have been excited by an electron temperature anisotropy which has been observed in the vicinity of the magnetic holes or generated through the decay of Langmuir waves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rury, Aaron S., E-mail: arury@usc.edu; Sorenson, Shayne; Dawlaty, Jahan M.
2016-03-14
Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone,more » we find sub-cm{sup −1} oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.« less
NASA Astrophysics Data System (ADS)
Rury, Aaron S.; Sorenson, Shayne; Dawlaty, Jahan M.
2016-03-01
Organic materials that produce coherent lattice phonon excitations in response to external stimuli may provide next generation solutions in a wide range of applications. However, for these materials to lead to functional devices in technology, a full understanding of the possible driving forces of coherent lattice phonon generation must be attained. To facilitate the achievement of this goal, we have undertaken an optical spectroscopic study of an organic charge-transfer material formed from the ubiquitous reduction-oxidation pair hydroquinone and p-benzoquinone. Upon pumping this material, known as quinhydrone, on its intermolecular charge transfer resonance as well as an intramolecular resonance of p-benzoquinone, we find sub-cm-1 oscillations whose dispersion with probe energy resembles that of a coherent acoustic phonon that we argue is coherently excited following changes in the electron density of quinhydrone. Using the dynamical information from these ultrafast pump-probe measurements, we find that the fastest process we can resolve does not change whether we pump quinhydrone at either energy. Electron-phonon coupling from both ultrafast coherent vibrational and steady-state resonance Raman spectroscopies allows us to determine that intramolecular electronic excitation of p-benzoquinone also drives the electron transfer process in quinhydrone. These results demonstrate the wide range of electronic excitations of the parent of molecules found in many functional organic materials that can drive coherent lattice phonon excitations useful for applications in electronics, photonics, and information technology.
NASA Technical Reports Server (NTRS)
Mumma, M. J.; Borst, W. L.; Zipf, E. C.
1972-01-01
Vacuum ultraviolet multiplets of C I, C II, and O I were produced by electron impact of CO2. Absolute emission cross sections for these multiplets were measured from threshold to 350 eV. The electrostatically focussed electron gun used in this series of experiments is described in detail. The atomic multiplets which were produced by dissociative excitation of CO2 and the cross sections at 100 eV are given. The dependence of the excitation functions on electron energy shows that these multiplets are produced by electric-dipole-allowed transitions in CO2.
Electron impact excitation of SO2 - Differential, integral, and momentum transfer cross sections
NASA Technical Reports Server (NTRS)
Vuskovic, L.; Trajmar, S.
1982-01-01
Electron impact excitation of the electronic states of SO2 was investigated. Differential, integral, and inelastic momentum transfer cross sections were obtained by normalizing the relative measurements to the elastic cross sections. The cross sections are given for seven spectral ranges of the energy-loss spectra extending from the lowest electronic state to near the first ionization limit. Most of the regions represent the overlap of several electronic transitions. No measurements for these cross sections have been reported previously.
NASA Astrophysics Data System (ADS)
Krawczyk, S.; Nawrocka, A.; Zdyb, A.
2018-06-01
The electronic structure of excited photosensitizer adsorbed at the surface of a solid is the key factor in the electron transfer processes that underlie the efficiency of dye-sensitized solar cells and photocatalysts. In this work, Stark effect (electroabsorption) spectroscopy has been used to measure the polarizability and dipole moment changes in electronic transitions of pyrene-1-carboxylic (PCA), -acetic (PAA) and -butyric (PBA) acids in ethanol, both free and adsorbed on colloidal TiO2, in glassy ethanol at low temperature. The lack of appreciable increase of dipole moment in the excited state of free and adsorbed PAA and PBA points that two or more single bonds completely prevent the expansion of π-electrons from the aromatic ring towards the carboxylic group, thus excluding the possibility of direct electron injection into TiO2. In free PCA, the pyrene's forbidden S0 → S1 transition has increased intensity, exhibits a long progression in 1400 cm-1 Ag mode and is associated with |Δμ| of 2 D. Adsorption of PCA on TiO2 causes a broadening and red shift of the S0 → S1 absorption band and an increase in dipole moment change on electronic excitation to |Δμ| = 6.5 D. This value increased further to about 15 D when the content of acetic acid in the colloid was changed from 0.2% to 2%, and this effect is ascribed to the surface electric field. The large increase of |Δμ| points that the electric field effect can not only change the energetics of electron transfer from the excited sensitizer into the solid, but can also shift the molecular electronic density, thus directly influencing the electronic coupling factor relevant for electron transfer at the molecule-solid interface.
NASA Astrophysics Data System (ADS)
Bartlett, Philip L.; Stelbovics, Andris T.
2010-02-01
The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.
Phase-dependent above-barrier ionization of excited-state electrons.
Yang, Weifeng; Song, Xiaohong; Chen, Zhangjin
2012-05-21
The carrier-envelope phase (CEP)-dependent above-barrier ionization (ABI) has been investigated in order to probe the bound-state electron dynamics. It is found that when the system is initially prepared in the excited state, the ionization yield asymmetry between left and right sides can occur both in low-energy and high-energy parts of the photoelectron spectra. Moreover, in electron momentum map, a new interference effect along the direction perpendicular to the laser polarization is found. We show that this interference is related to the competition among different excited states. The interference effect is dependent on CEPs of few-cycle probe pulses, which can be used to trace the superposition information and control the electron wave packet of low excited states.
"Delta Plots"--A New Way to Visualize Electronic Excitation.
ERIC Educational Resources Information Center
Morrison, Harry; And Others
1985-01-01
Presents procedures for obtaining and examples of delta plots (a way of illustrating electron density changes associated with electronic excitation). These plots are pedagogically useful for visualizing simple and complex transitions and provide a way of "seeing" the origin of highest occupied molecular orbital (HOMO)-dictated carbonyl…
Isotope separation by photoselective dissociative electron capture
Stevens, C.G.
1978-08-29
Disclosed is a method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, [sup 235]UF[sub 6] is separated from a UF[sub 6] mixture by selective excitation followed by dissociative electron capture into [sup 235]UF[sub 5]- and F. 2 figs.
Isotope separation by photoselective dissociative electron capture
Stevens, Charles G. [Pleasanton, CA
1978-08-29
A method of separating isotopes based on photoselective electron capture dissociation of molecules having an electron capture cross section dependence on the vibrational state of the molecule. A molecular isotope source material is irradiated to selectively excite those molecules containing a desired isotope to a predetermined vibrational state having associated therewith an electron capture energy region substantially non-overlapping with the electron capture energy ranges associated with the lowest vibration states of the molecules. The isotope source is also subjected to electrons having an energy corresponding to the non-overlapping electron capture region whereby the selectively excited molecules preferentially capture electrons and dissociate into negative ions and neutrals. The desired isotope may be in the negative ion product or in the neutral product depending upon the mechanism of dissociation of the particular isotope source used. The dissociation product enriched in the desired isotope is then separated from the reaction system by conventional means. Specifically, .sup.235 UF.sub.6 is separated from a UF.sub.6 mixture by selective excitation followed by dissociative electron capture into .sup.235 UF.sub.5 - and F.
NASA Astrophysics Data System (ADS)
Xu, Long-Kun; Bi, Ting-Jun; Ming, Mei-Jun; Wang, Jing-Bo; Li, Xiang-Yuan
2017-07-01
Based on the previous work on nonequilibrium solvation model by the authors, Intermolecular charge-transfer electronic excitation of tetracyanoethylene (TCE)/tetramethylethylene (TME) π -stacked complex in dichloromethane (DCM) has been investigated. For weak interaction correction, dispersion corrected functional DFT-D3 is adopted for geometry optimization. In order to identify the excitation metric, dipole moment components of each Cartesian direction, atomic charge, charge separation and Δr index are analyzed for TCE/TME complex. Calculation shows that the calculated excitation energy is dependent on the functional choice, when conjuncted with suitable time-dependent density functional, the modified nonequilibrium expression gives satisfied results for intermolecular charge-transfer electronic excitation.
Challenges in Optical Emission Spectroscopy
NASA Astrophysics Data System (ADS)
Siepa, Sarah; Berger, Birk; Schulze, Julian; Schuengel, Edmund; von Keudell, Achim
2016-09-01
Collisional-radiative models (CRMs) are widely used to investigate plasma properties such as electron density, electron temperature and the form of the electron energy distribution function. In this work an extensive CRM for argon is presented, which models 30 excited states and various kinds of processes including electron impact excitation/de-excitation, radiation and radiation trapping. The CRM is evaluated in several test cases, i.e. inductively and capacitively coupled plasmas at various pressures, powers/voltages and gas admixtures. Deviations are found between modelled and measured spectra. The escape factor as a means of describing radiation trapping is discussed as well as the cross section data for electron impact processes. This work was supported by the Ruhr University Research School PLUS, funded by Germany's Excellence Initiative [DFG GSC 98/3].
NASA Astrophysics Data System (ADS)
Parvaneh, Hamed
This research project is aimed to study the application of ion-induced Auger electron spectroscopy (IAES) in combination with the characteristics of focused ion beam (FIB) microscopy for performing chemical spectroscopy and further evaluate its potential for 3-dimensional chemical tomography applications. The mechanism for generation of Auger electrons by bombarding ions is very different from its electron induced counterpart. In the conventional electron-induced Auger electron spectroscopy (EAES), an electron beam with energy typically in the range 1-10kV is used to excite inner-shell (core) electrons of the solid. An electron from a higher electron energy state then de-excites to fill the hole and the extra energy is then transferred to either another electron, i.e. the Auger electron, or generation of an X-ray (photon). In both cases the emitting particles have charac-teristic energies and could be used to identify the excited target atoms. In IAES, however, large excitation cross sections can occur by promotion of in-ner shell electrons through crossing of molecular orbitals. Originally such phenomenological excitation processes were first proposed [3] for bi-particle gas phase collision systems to explain the generation of inner shell vacancies in violent collisions. In addition to excitation of incident or target atoms, due to a much heavier mass of ions compared to electrons, there would also be a substantial momentum transfer from the incident to the target atoms. This may cause the excited target atom to recoil from the lattice site or alternatively sputter off the surface with the possibility of de-excitation while the atom is either in motion in the matrix or traveling in vacuum. As a result, one could expect differences between the spectra induced by incident electrons and ions and interpretation of the IAE spectra requires separate consideration of both excitation and decay processes. In the first stage of the project, a state-of-the-art mass-filtered FIB (MS-FIB) from Orsay Physics has been integrated with a VersaProbe 5000 XPS instrument from ULVAC-PHI. The integration process involved overcoming major mechanical and electrical obstacles and numerous problem-solving situations. The major reason for choosing the VersaProbe was to utilize its analytical concentric hemispherical analyzer (CHA) to measure the kinetic energy of the Auger electrons induced by the ions generated from a gold-silicon liquid alloy source. Subsequently the acquisition and detection parameters of both MS-FIB and the electron energy analyzer were successfully optimized and IAES of selected elements in third-row of the periodic table, namely Mg, Al, Si, and the ones in the fourth-row, namely Ti, V, Cr, Mn, Fe, Co, Ni and Cu acquired using Si++ and Au+ incident ions. As a result of energetic collisions between the incident and target atoms, in addition to plasmon excitations, Auger electrons from both colliding particles were generated and detected. Different components of the electron energy spectra acquired were carefully analyzed and the origin of different features observed identified. Then the relative efficiencies of Auger electron generation by ion impact from the above mentioned targets, acquired under the same conditions, were compared with each other and the origin of the differences in line shape were explained. The elements on the third row of periodic table in particular show narrow peaks emanat-ed mainly from the decay of excited atoms. For heavier elements, however, the increase of fluorescence yield by increasing atomic number and smaller lifetime for the inner shell vacancies result in reduction of atomic contribution to the spectrum. The absolute yield of Auger electrons were also evaluated using an indirect method using the ion-induced electron emission yield and, in particular, estimation for Al and Cr, where the values of ion-induced electron emission were available in the literature, was provided. The resolution of the technique both spatially (x-y) and in depth (z) were also evaluated. For spatial resolution mainly the Monte Carlo simulations were utilized to estimate the area from which the excited target atoms with inner shell vacancies originate. Attention was paid to the relationship between the Auger electron infor-mation depth and the depth-dependency of various energy-loss mechanisms for the incoming ions. In particular, an area from which target atoms with energies higher than a threshold energy sputter off the surface, was concluded to be an estimate for lateral spatial resolution. Finally the effects of hardware parameters, in particular the solid angle of the detector and the transmission of the electron energy analyzer, on the collected signal were characterized and used to put together an estimate for the edge length of an information cube representing the minimum amount of material that has to be removed before a meaningful signal can be collected.
NASA Astrophysics Data System (ADS)
Sharma, Lalita; Sahoo, Bijaya Kumar; Malkar, Pooja; Srivastava, Rajesh
2018-01-01
A relativistic coupled-cluster theory is implemented to study electron impact excitations of atomic species. As a test case, the electron impact excitations of the 3 s 2 S 1/2-3 p 2 P 1/2;3/2 resonance transitions are investigated in the singly charged magnesium (Mg+) ion using this theory. Accuracies of wave functions of Mg+ are justified by evaluating its attachment energies of the relevant states and compared with the experimental values. The continuum wave function of the projectile electron are obtained by solving Dirac equations assuming distortion potential as static potential of the ground state of Mg+. Comparison of the calculated electron impact excitation differential and total cross-sections with the available measurements are found to be in very good agreements at various incident electron energies. Further, calculations are carried out in the plasma environment in the Debye-Hückel model framework, which could be useful in the astrophysics. Influence of plasma strength on the cross-sections as well as linear polarization of the photon emission in the 3 p 2 P 3/2-3 s 2 S 1/2 transition is investigated for different incident electron energies.
NASA Astrophysics Data System (ADS)
Fang, Ranran; Wei, Hua; Li, Zhihua; Zhang, Duanming
2012-01-01
The electron temperature dependences of the electron-phonon coupling factor and electron heat capacity based on the electron density of states are investigated for precious metal Au under femtosecond laser irradiation. The thermal excitation of d band electrons is found to result in large deviations from the commonly used approximations of linear temperature dependence of the electron heat capacity, and the constant electron-phonon coupling factor. Results of the simulations performed with the two-temperature model demonstrate that the electron-phonon relaxation time becomes short for high fluence laser for Au. The satisfactory agreement between our numerical results and experimental data of threshold fluence indicates that the electron temperature dependence of the thermophysical parameters accounting for the thermal excitation of d band electrons should not be neglected under the condition that electron temperature is higher than 10 4 K.
Studying electron-PAG interactions using electron-induced fluorescence
NASA Astrophysics Data System (ADS)
Narasimhan, Amrit; Grzeskowiak, Steven; Ostrander, Jonathan; Schad, Jonathon; Rebeyev, Eliran; Neisser, Mark; Ocola, Leonidas E.; Denbeaux, Gregory; Brainard, Robert L.
2016-03-01
In extreme ultraviolet (EUV) lithography, 92 eV photons are used to expose photoresists. Typical EUV resists are organic-based and chemically amplified using photoacid generators (PAGs). Upon exposure, PAGs produce acids which catalyze reactions that result in changes in solubility. In EUV lithography, photo- and secondary electrons (energies of 10- 80 eV) play a large role in PAG acid-production. Several mechanisms for electron-PAG interactions (e.g. electron trapping, and hole-initiated chemistry) have been proposed. The aim of this study is to explore another mechanism - internal excitation - in which a bound PAG electron can be excited by receiving energy from another energetic electron, causing a reaction that produces acid. This paper explores the mechanism of internal excitation through the analogous process of electron-induced fluorescence, in which an electron loses energy by transferring that energy to a molecule and that molecule emits a photon rather than decomposing. We will show and quantify electron-induced fluorescence of several fluorophores in polymer films to mimic resist materials, and use this information to refine our proposed mechanism. Relationships between the molecular structure of fluorophores and fluorescent quantum yield may aid in the development of novel PAGs for EUV lithography.
Mechanism of resonant electron emission from the deprotonated GFP chromophore and its biomimetics.
Bochenkova, Anastasia V; Mooney, Ciarán R S; Parkes, Michael A; Woodhouse, Joanne L; Zhang, Lijuan; Lewin, Ross; Ward, John M; Hailes, Helen C; Andersen, Lars H; Fielding, Helen H
2017-04-01
The Green Fluorescent Protein (GFP), which is widely used in bioimaging, is known to undergo light-induced redox transformations. Electron transfer is thought to occur resonantly through excited states of its chromophore; however, a detailed understanding of the electron gateway states of the chromophore is still missing. Here, we use photoelectron spectroscopy and high-level quantum chemistry calculations to show that following UV excitation, the ultrafast electron dynamics in the chromophore anion proceeds via an excited shape resonance strongly coupled to the open continuum. The impact of this state is found across the entire 355-315 nm excitation range, from above the first bound-bound transition to below the opening of higher-lying continua. By disentangling the electron dynamics in the photodetachment channels, we provide an important reference for the adiabatic position of the electron gateway state, which is located at 348 nm, and discover the source of the curiously large widths of the photoelectron spectra that have been reported in the literature. By introducing chemical modifications to the GFP chromophore, we show that the detachment threshold and the position of the gateway state, and hence the underlying excited-state dynamics, can be changed systematically. This enables a fine tuning of the intrinsic electron emission properties of the GFP chromophore and has significant implications for its function, suggesting that the biomimetic GFP chromophores are more stable to photooxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilke, Josefin; Wilke, Martin; Schmitt, Michael, E-mail: mschmitt@uni-duesseldorf.de
2016-01-28
The dipole moments of the ground and lowest electronically excited singlet state of 5-methoxyindole have been determined by means of optical Stark spectroscopy in a molecular beam. The resulting spectra arise from a superposition of different field configurations, one with the static electric field almost parallel to the polarization of the exciting laser radiation, the other nearly perpendicular. Each field configuration leads to different intensities in the rovibronic spectrum. With an automated evolutionary algorithm approach, the spectra can be fit and the ratio of both field configurations can be determined. A simultaneous fit of two spectra with both field configurationsmore » improved the precision of the dipole moment determination by a factor of two. We find a reduction of the absolute dipole moment from 1.59(3) D to 1.14(6) D upon electronic excitation to the lowest electronically excited singlet state. At the same time, the dipole moment orientation rotates by 54{sup ∘} showing the importance of the determination of the dipole moment components. The dipole moment in the electronic ground state can approximately be obtained from a vector addition of the indole and the methoxy group dipole moments. However, in the electronically excited state, vector addition completely fails to describe the observed dipole moment. Several reasons for this behavior are discussed.« less
Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C
2003-03-07
Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions.
NASA Astrophysics Data System (ADS)
Meyenburg, I.; Hofeditz, N.; Ruess, R.; Rudolph, M.; Schlettwein, D.; Heimbrodt, W.
2018-05-01
We studied the electron transfer at the interface of organic-inorganic hybrids consisting of indoline derivatives (D149 and D131) on ZnO substrates using a new optical method. We revealed the electron transfer times from the excited dye, e.g. the excitons formed in the dye aggregates to the ZnO substrate by analyzing the photoluminescence transients of the excitons after femtosecond excitation and applying kinetic model calculations. We reveal the changes of the electron transfer times by applying electrical bias. Pushing the Fermi energy of the ZnO substrate towards the excited dye level the transfer time gets longer and eventually the electron transfer is suppressed. The level alignment between the excited dye state and the ZnO Fermi-level is estimated. The excited state of D131 is about 100 meV higher than the respective state of D149 compared to the ZnO conduction band. This leads to shorter electron transfer times and eventually to higher quantum efficiencies of the solar cells.
Relativistic atomic structure calculations and electron impact excitations of Fe23+
NASA Astrophysics Data System (ADS)
El-Maaref, A. A.
2016-02-01
Relativistic calculations using the multiconfiguration Dirac-Fock method for energy levels, oscillator strengths, and electronic dipole transition probabilities of Li-like iron (Fe23+) are presented. A configuration state list with the quantum numbers nl, where n = 2 - 7 and l = s , p , d , f , g , h , i has been considered. Excitations up to three electrons and correlation contributions from higher orbitals up to 7 l have been included. Contributions from core levels have been taken into account, EOL (extended optimal level) type calculations have been applied, and doubly excited levels are considered. The calculations have been executed by using the fully relativistic atomic structure package GRASP2K. The present calculations have been compared with the available experimental and theoretical sources, the comparisons show a good agreement between the present results of energy levels and oscillator strengths with the literature. In the second part of the present study, the atomic data (energy levels, and radiative parameters) have been used to calculate the excitation and deexcitation rates of allowed transitions by electron impact, as well as the population densities of some excited levels at different electron temperatures.
Couch, David E.; Kapteyn, Henry C.; Murnane, Margaret M.; ...
2017-03-17
Here, understanding the ultrafast dynamics of highly-excited electronic states of small molecules is critical for a better understanding of atmospheric and astrophysical processes, as well as for designing coherent control strategies for manipulating chemical dynamics. In highly excited states, nonadiabatic coupling, electron-electron interactions, and the high density of states govern dynamics. However, these states are computationally and experimentally challenging to access. Fortunately, new sources of ultrafast vacuum ultraviolet pulses, in combination with electron-ion coincidence spectroscopies, provide new tools to unravel the complex electronic landscape. Here we report time-resolved photoelectron-photoion coincidence experiments using 8 eV pump photons to study the highlymore » excited states of acetone. We uncover for the first time direct evidence that the resulting excited state consists of a mixture of both n y → 3p and π → π* character, which decays with a time constant of 330 fs. In the future, this approach can inform models of VUV photochemistry and aid in designing coherent control strategies for manipulating chemical reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Couch, David E.; Kapteyn, Henry C.; Murnane, Margaret M.
Here, understanding the ultrafast dynamics of highly-excited electronic states of small molecules is critical for a better understanding of atmospheric and astrophysical processes, as well as for designing coherent control strategies for manipulating chemical dynamics. In highly excited states, nonadiabatic coupling, electron-electron interactions, and the high density of states govern dynamics. However, these states are computationally and experimentally challenging to access. Fortunately, new sources of ultrafast vacuum ultraviolet pulses, in combination with electron-ion coincidence spectroscopies, provide new tools to unravel the complex electronic landscape. Here we report time-resolved photoelectron-photoion coincidence experiments using 8 eV pump photons to study the highlymore » excited states of acetone. We uncover for the first time direct evidence that the resulting excited state consists of a mixture of both n y → 3p and π → π* character, which decays with a time constant of 330 fs. In the future, this approach can inform models of VUV photochemistry and aid in designing coherent control strategies for manipulating chemical reactions.« less
Positron-electron decay of 28Si at an excitation energy of 50 MeV
NASA Astrophysics Data System (ADS)
Buda, A.; Bacelar, J. C.; Balanda, A.; van der Ploeg, H.; Sujkowski, Z.; van der Woude, A.
1993-03-01
The electron-position pair decay of 28Si at 50 MeV excitation produced by the isospin T=0 (α + 24Mg) and the mixed isospin T=0,1 (3He + 25Mg) reactions has been studied using a special designed Positron-Electron pair spectrometer PEPSI.
Manifestation of intra-atomic 5d6s-4f exchange coupling in photoexcited gadolinium
NASA Astrophysics Data System (ADS)
Zhang, G. P.; Jenkins, T.; Bennett, M.; Bai, Y. H.
2017-12-01
Intra-atomic exchange couplings (IECs) between 5d6s and 4f electrons are ubiquitous in rare-earth metals and play a critical role in spin dynamics. However, detecting them in real time domain has been difficult. Here we show the direct evidence of IEC between 5d6s and 4f electrons in gadolinium. Upon femtosecond laser excitation, 5d6s electrons are directly excited; their majority bands shift toward the Fermi level while their minority bands do the opposite. For the first time, our first-principles minority shift now agrees with the experiment quantitatively. Excited 5d6s electrons lower the exchange potential barrier for 4f electrons, so the 4f states are also shifted in energy, a prediction that can be tested experimentally. Although a significant number of 5d6s electrons, some several eV below the Fermi level, are excited out of the Fermi sea, there is no change in the 4f states, a clear manifestation of intra-atomic exchange coupling.
Electron-lattice coupling after high-energy deposition in aluminum
NASA Astrophysics Data System (ADS)
Gorbunov, S. A.; Medvedev, N. A.; Terekhin, P. N.; Volkov, A. E.
2015-07-01
This paper presents an analysis of the parameters of highly-excited electron subsystem of aluminum, appearing e.g. after swift heavy ion impact or laser pulse irradiation. For elevated electron temperatures, the electron heat capacity and the screening parameter are evaluated. The electron-phonon approximation of electron-lattice coupling is compared with its precise formulation based on the dynamic structure factor (DSF) formalism. The DSF formalism takes into account collective response of a lattice to excitation including all possible limit cases of this response. In particular, it automatically provides realization of electron-phonon coupling as the low-temperature limit, while switching to the plasma-limit for high electron temperatures. Aluminum is chosen as a good model system for illustration of the presented methodology.
Electron energy-loss spectra in molecular fluorine
NASA Technical Reports Server (NTRS)
Nishimura, H.; Cartwright, D. C.; Trajmar, S.
1979-01-01
Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.
Resolving Nonadiabatic Dynamics of Hydrated Electrons Using Ultrafast Photoemission Anisotropy.
Karashima, Shutaro; Yamamoto, Yo-Ichi; Suzuki, Toshinori
2016-04-01
We have studied ultrafast nonadiabatic dynamics of excess electrons trapped in the band gap of liquid water using time- and angle-resolved photoemission spectroscopy. Anisotropic photoemission from the first excited state was discovered, which enabled unambiguous identification of nonadiabatic transition to the ground state in 60 fs in H_{2}O and 100 fs in D_{2}O. The photoelectron kinetic energy distribution exhibited a rapid spectral shift in ca. 20 fs, which is ascribed to the librational response of a hydration shell to electronic excitation. Photoemission anisotropy indicates that the electron orbital in the excited state is depolarized in less than 40 fs.
Electron impact excitation of tin
NASA Astrophysics Data System (ADS)
Sharma, Lalita; Bharti, Swati; Srivastava, Rajesh
2017-05-01
We study the electron impact excitation of the fine-structure levels of the ground state configuration 5p2 to the excited states of the configuration 5p6s in tin atom. These calculations have been carried out in the jj coupling scheme using the relativistic distorted-wave method. Results for differential cross section are reported at incident electron energies 20, 50, 80 and 100 eV while integrated cross sections are presented in the incident electron energy range of 5 to 100 eV. Contribution to the Topical Issue: "Low-Energy Interactions related to Atmospheric and Extreme Conditions", edited by S. Ptasinska, M. Smialek-Telega, A. Milosavljevic and B. Sivaraman.
NASA Technical Reports Server (NTRS)
Dum, C. T.
1990-01-01
The generation of waves with frequencies downshifted from the plasma frequency, as observed in the electron foreshock, is analyzed by particle simulation. Wave excitation differs fundamentally from the familiar excitation of the plasma eigenmodes by a gentle bump-on-tail electron distribution. Beam modes are destabilized by resonant interaction with bulk electrons, provided the beam velocity spread is very small. These modes are stabilized, starting with the higher frequencies, as the beam is broadened and slowed down by the interaction with the wave spectrum. Initially a very cold beam is also capable of exciting frequencies considerably above the plasma frequency, but such oscillations are quickly stabilized. Low-frequency modes persist for a long time, until the bump in the electron distribution is completely 'ironed' out. This diffusion process also is quite different from the familiar case of well-separated beam and bulk electrons. A quantitative analysis of these processes is carried out.
Fleig, Timo; Knecht, Stefan; Hättig, Christof
2007-06-28
We study the ground-state structures and singlet- and triplet-excited states of the nucleic acid bases by applying the coupled cluster model CC2 in combination with a resolution-of-the-identity approximation for electron interaction integrals. Both basis set effects and the influence of dynamic electron correlation on the molecular structures are elucidated; the latter by comparing CC2 with Hartree-Fock and Møller-Plesset perturbation theory to second order. Furthermore, we investigate basis set and electron correlation effects on the vertical excitation energies and compare our highest-level results with experiment and other theoretical approaches. It is shown that small basis sets are insufficient for obtaining accurate results for excited states of these molecules and that the CC2 approach to dynamic electron correlation is a reliable and efficient tool for electronic structure calculations on medium-sized molecules.
NASA Astrophysics Data System (ADS)
Green, M. A.; Maddern, T.; Brunger, M. J.; Campbell, L.; Cartwright, D. C.; Newell, W. R.; Teubner, P. J. O.
2002-09-01
We report differential cross sections (DCSs) for electron impact excitation of the sum (c1Σ u- + A'3 Δ u + A3 Σ u+) of the three states that constitute the Herzberg pseudocontinuum in O2. These DCSs were measured at seven incident electron energies in the range 9-20 eV and over the scattered electron angular range 10-90°. We note that this represents a far more detailed study than has hitherto previously been reported. In their review on electron-diatomic molecule scattering systems, Brunger and Buckman (Brunger M J and Buckman S J 2002 Phys. Rep. 357 215) clearly identified gaps in our knowledge for electron impact excitation of the Herzberg electronic states. The present study rectifies this situation and, additionally, seeks to stimulate theoreticians to extend their existing integral cross section calculations, for the c1 Σ u-, A'3 Δ u and A3 Σ u+ states, to the DCS-level.
NASA Astrophysics Data System (ADS)
Jones, D. B.; Cartwright, D. C.; Campbell, L.; Teubner, P. J. O.; Brunger, M. J.; Bottema, M. J.
2004-09-01
We report on the extension of our Statistical Equlibrium Code (SEC) to determine the electronic-vibrational behaviour of O2 in the thermosphere, under night-time auroral conditions. This work was necessitated by the inadequacies in previous studies where the electron-impact cross section data bases employed have been superceeded, and/or direct excitation of states via electron impact has been neglected. Here we use the latest electron-impact cross section data bases to present the first electron-impact excitation rates for the 8 lowest lying electronic states of O_2. We then use these rates in conjunction with the most accurately available Franck-Condon factors, transition probabilities and quenching rates to determine the excited state populations. Note that predissociation, which is important for O_2, is also included in our model. We present radiative rates for various transitions and compare these results with those from other models and experimental rocket measurements.
Understanding the Role of Electron-driven Processes in Atmospheric Behaviour
NASA Astrophysics Data System (ADS)
Brunger, M. J.; Campbell, L.; Jones, D. B.; Cartwright, D. C.
2004-12-01
Electron-impact excitation plays a major role in emission from aurora and a less significant but nonetheless crucial role in the dayglow and nightglow. For some molecules, such as N2, O2 and NO, electron-impact excitation can be followed by radiative cascade through many different sets of energy levels, producing emission with a large number of lines. We review the application of our statistical equilibrium program to predict this rich spectrum of radiation, and we compare results we have obtained against available independent measurements. In addition, we also review the calculation of energy transfer rates from electrons to N2, O2 and NO in the thermosphere. Energy transfer from electrons to neutral gases and ions is one of the dominant electron cooling processes in the ionosphere, and the role of vibrationally excited N2 and O2 in this is particularly significant. The importance of the energy dependence and magnitude of the electron-impact vibrational cross sections in the calculation of these rates is assessed.
Non-equilibrium calculations of atmospheric processes initiated by electron impact.
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2007-05-01
Electron impact in the atmosphere produces ionisation, dissociation, electronic excitation and vibrational excitation of atoms and molecules. The products can then take part in chemical reactions, recombination with electrons, or radiative or collisional deactivation. While most such processes are fast, some longer--lived species do not reach equilibrium. The electron source (photoelectrons or auroral electrons) also varies over time and longer-lived species can move substantially in altitude by molecular, ambipolar or eddy diffusion. Hence non-equilibrium calculations are required in some circumstances. Such time-step calculations need to have sufficiently short steps so that the fastest processes are still calculated correctly, but this can lead to computation times that are too large. Hence techniques to allow for longer time steps by incorporating equilibrium calculations are described. Examples are given for results of atmospheric non-equilibrium calculations, including the populations of the vibrational levels of ground state N2, the electron density and its dependence on vibrationally excited N2, predictions of nitric oxide density, and detailed processes during short duration auroral events.
Electron Dynamics in Nanostructures in Strong Laser Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kling, Matthias
2014-09-11
The goal of our research was to gain deeper insight into the collective electron dynamics in nanosystems in strong, ultrashort laser fields. The laser field strengths will be strong enough to extract and accelerate electrons from the nanoparticles and to transiently modify the materials electronic properties. We aimed to observe, with sub-cycle resolution reaching the attosecond time domain, how collective electronic excitations in nanoparticles are formed, how the strong field influences the optical and electrical properties of the nanomaterial, and how the excitations in the presence of strong fields decay.
NASA Astrophysics Data System (ADS)
Delor, Milan; Archer, Stuart A.; Keane, Theo; Meijer, Anthony J. H. M.; Sazanovich, Igor V.; Greetham, Gregory M.; Towrie, Michael; Weinstein, Julia A.
2017-11-01
Ultrafast electron transfer in condensed-phase molecular systems is often strongly coupled to intramolecular vibrations that can promote, suppress and direct electronic processes. Recent experiments exploring this phenomenon proved that light-induced electron transfer can be strongly modulated by vibrational excitation, suggesting a new avenue for active control over molecular function. Here, we achieve the first example of such explicit vibrational control through judicious design of a Pt(II)-acetylide charge-transfer donor-bridge-acceptor-bridge-donor 'fork' system: asymmetric 13C isotopic labelling of one of the two -C≡C- bridges makes the two parallel and otherwise identical donor→acceptor electron-transfer pathways structurally distinct, enabling independent vibrational perturbation of either. Applying an ultrafast UVpump(excitation)-IRpump(perturbation)-IRprobe(monitoring) pulse sequence, we show that the pathway that is vibrationally perturbed during UV-induced electron transfer is dramatically slowed down compared to its unperturbed counterpart. One can thus choose the dominant electron transfer pathway. The findings deliver a new opportunity for precise perturbative control of electronic energy propagation in molecular devices.
NASA Technical Reports Server (NTRS)
Green, T. J.
1973-01-01
Computer programs were used to calculate the total electron excitation cross-section for atoms and the partial ionization cross-section. The approximations to the scattering amplitude used are as follows: (1) Born, Bethe, and Modified Bethe for non-exchange excitation; (2) Ochkur for exchange excitation; and (3) Coulomb-Born of non-exchange ionization. The amplitudes are related to the differential cross-sections which are integrated to give the total excitation (or partial ionization) cross-section for the collision. The atomic wave functions used are Hartree-Fock-Slater functions for bound states and the coulomb wave function for the continuum. The programs are presented and the results are examined.
NASA Astrophysics Data System (ADS)
Aggarwal, K. M.; Kingston, A. E.; McDowell, M. R. C.
1984-03-01
The available experimental and theoretical electron impact excitation cross section data for the transitions from the 1s2 1S ground state to the 1s2s 1,3S and 1s2p 1,3P0 excited states of helium are assessed. Based on this assessed data, excitation rate coefficients are calculated over a wide electron temperature range below 3.0×106K. A comparison with other published results suggests that the rates used should be lower by a factor of 2 or more.
Electron-impact excitation of diatomic hydride cations II: OH+ and SH+
NASA Astrophysics Data System (ADS)
Hamilton, James R.; Faure, Alexandre; Tennyson, Jonathan
2018-05-01
R-matrix calculations combined with the adiabatic-nuclei-rotation and Coulomb-Born approximations are used to compute electron-impact rotational rate coefficients for two open-shell diatomic cations of astrophysical interest: the hydoxyl and sulphanyl ions, OH+ and SH+. Hyperfine resolved rate coefficients are deduced using the infinite-order-sudden approximation. The propensity rule ΔF = Δj = ΔN = ±1 is observed, as is expected for cations with a large dipole moment. A model for OH+ excitation in the Orion Bar photon-dominated region is presented which nicely reproduces Herschel observations for an electron fraction xe = 10-4 and an OH+ column density of 3 × 1013 cm-2. Electron-impact electronic excitation cross-sections and rate coefficients for the ions are also presented.
Ionization of NO at high temperature
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick
1991-01-01
Space vehicles flying through the atmosphere at high speed are known to excite a complex set of chemical reactions in the atmospheric gases, ranging from simple vibrational excitation to dissociation, atom exchange, electronic excitation, ionization, and charge exchange. Simple arguments are developed for the temperature dependence of the reactions leading to ionization of NO, including the effect of vibrational electronic thermal nonequilibrium. NO ionization is the most important source of electrons at intermediate temperatures and at higher temperatures provides the trigger electrons that ionize atoms. Based on these arguments, recommendations are made for formulae which fit observed experimental results, and which include a dependence on both a heavy particle temperature and different vibration electron temperatures. In addition, these expressions will presumably provide the most reliable extrapolation of experimental results to much higher temperatures.
Coulomb scattering rates of excited states in monolayer electron-doped germanene
NASA Astrophysics Data System (ADS)
Shih, Po-Hsin; Chiu, Chih-Wei; Wu, Jhao-Ying; Do, Thi-Nga; Lin, Ming-Fa
2018-05-01
Excited conduction electrons, conduction holes, and valence holes in monolayer electron-doped germanene exhibit unusual Coulomb decay rates. The deexcitation processes are studied using the screened exchange energy. They might utilize the intraband single-particle excitations (SPEs), the interband SPEs, and the plasmon modes, depending on the quasiparticle states and the Fermi energies. The low-lying valence holes can decay through the undamped acoustic plasmon, so that they present very fast Coulomb deexcitations, nonmonotonous energy dependence, and anisotropic behavior. However, the low-energy conduction electrons and holes are similar to those in a two-dimensional electron gas. The higher-energy conduction states and the deeper-energy valence ones behave similarly in the available deexcitation channels and have a similar dependence of decay rate on the wave vector k .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dohyung Lee.
This dissertation addresses the problem of dynamic electron-electron interactions in fast ion-atom collisions using projectile Auger electron spectroscopy. The study was carried out by measuring high-resolution projectile KKL Auger electron spectra as a function of projectile energy for the various collision systems of 0.25-2 MeV/u O{sup q+} and F{sup q+} incident on H{sub 2} and He targets. The electrons were detected in the beam direction, where the kinematic broadening is minimized. A zero-degree tandem electron spectrometer system, was developed and showed the versatility of zero-degree measurements of collisionally-produced atomic states. The zero-degree binary encounter electrons (BEe), quasifree target electrons ionizedmore » by the projectiles in head-on collisions, were observed as a strong background in the KLL Auger electron spectrum. They were studied by treating the target ionization as 180{degree} Rutherford elastic scattering in the projectile frame, and resulted in a validity test of the impulse approximation (IA) and a way to determine the spectrometer efficiency. An anomalous q-dependence, in which the zero-degree BEe yields increase with decreasing projectile charge state (q), was observed. State-resolved KLL Auger cross sections were determined by using the BEe normalization and thus the cross section of the electron-electron interactions such as resonant transfer-excitation (RTE), electron-electron excitation (eeE), and electron-electron ionization (eeI) were determined. Projectile 2l capture with 1s {yields} 2p excitation by the captured target electron was observed as an RTE process with Li-like and He-like projectiles and the measured RTEA (RTE followed by Auger decay) cross sections showed good agreement with an RTE-IA treatment and RTE alignment theory.« less
Stopping power beyond the adiabatic approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caro, M.; Correa, A. A.; Artacho, E.
2017-06-01
Energetic ions traveling in solids deposit energy in a variety of ways, being nuclear and electronic stopping the two avenues in which dissipation is usually treated. This separation between electrons and ions relies on the adiabatic approximation in which ions interact via forces derived from the instantaneous electronic ground state. In a more detailed view, in which non-adiabatic effects are explicitly considered, electronic excitations alter the atomic bonding, which translates into changes in the interatomic forces. In this work, we use time dependent density functional theory and forces derived from the equations of Ehrenfest dynamics that depend instantaneously on themore » time-dependent electronic density. With them we analyze how the inter-ionic forces are affected by electronic excitations in a model of a Ni projectile interacting with a Ni target, a metallic system with strong electronic stopping and shallow core level states. We find that the electronic excitations induce substantial modifications to the inter-ionic forces, which translate into nuclear stopping power well above the adiabatic prediction. Particularly, we observe that most of the alteration of the adiabatic potential in early times comes from the ionization of the core levels of the target ions, not readily screened by the valence electrons.« less
Oelze, Tim; Schütte, Bernd; Müller, Maria; Müller, Jan P.; Wieland, Marek; Frühling, Ulrike; Drescher, Markus; Al-Shemmary, Alaa; Golz, Torsten; Stojanovic, Nikola; Krikunova, Maria
2017-01-01
Irradiation of nanoscale clusters and large molecules with intense laser pulses transforms them into highly-excited non- equilibrium states. The dynamics of intense laser-cluster interaction is encoded in electron kinetic energy spectra, which contain signatures of direct photoelectron emission as well as emission of thermalized nanoplasma electrons. In this work we report on a so far not observed spectrally narrow bound state signature in the electron kinetic energy spectra from mixed Xe core - Ar shell clusters ionized by intense extreme-ultraviolet (XUV) pulses from a free-electron-laser. This signature is attributed to the correlated electronic decay (CED) process, in which an excited atom relaxes and the excess energy is used to ionize the same or another excited atom or a nanoplasma electron. By applying the terahertz field streaking principle we demonstrate that CED-electrons are emitted at least a few picoseconds after the ionizing XUV pulse has ended. Following the recent finding of CED in clusters ionized by intense near-infrared laser pulses, our observation of CED in the XUV range suggests that this process is of general relevance for the relaxation dynamics in laser produced nanoplasmas. PMID:28098175
Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.
Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young
2016-06-29
Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.
Excited state X-ray absorption spectroscopy: Probing both electronic and structural dynamics
NASA Astrophysics Data System (ADS)
Neville, Simon P.; Averbukh, Vitali; Ruberti, Marco; Yun, Renjie; Patchkovskii, Serguei; Chergui, Majed; Stolow, Albert; Schuurman, Michael S.
2016-10-01
We investigate the sensitivity of X-ray absorption spectra, simulated using a general method, to properties of molecular excited states. Recently, Averbukh and co-workers [M. Ruberti et al., J. Chem. Phys. 140, 184107 (2014)] introduced an efficient and accurate L 2 method for the calculation of excited state valence photoionization cross-sections based on the application of Stieltjes imaging to the Lanczos pseudo-spectrum of the algebraic diagrammatic construction (ADC) representation of the electronic Hamiltonian. In this paper, we report an extension of this method to the calculation of excited state core photoionization cross-sections. We demonstrate that, at the ADC(2)x level of theory, ground state X-ray absorption spectra may be accurately reproduced, validating the method. Significantly, the calculated X-ray absorption spectra of the excited states are found to be sensitive to both geometric distortions (structural dynamics) and the electronic character (electronic dynamics) of the initial state, suggesting that core excitation spectroscopies will be useful probes of excited state non-adiabatic dynamics. We anticipate that the method presented here can be combined with ab initio molecular dynamics calculations to simulate the time-resolved X-ray spectroscopy of excited state molecular wavepacket dynamics.
Kinetics of highly vibrationally excited O2(X) molecules in inductively-coupled oxygen plasmas
NASA Astrophysics Data System (ADS)
Annušová, Adriana; Marinov, Daniil; Booth, Jean-Paul; Sirse, Nishant; Lino da Silva, Mário; Lopez, Bruno; Guerra, Vasco
2018-04-01
The high degree of vibrational excitation of O2 ground state molecules recently observed in inductively coupled plasma discharges is investigated experimentally in more detail and interpreted using a detailed self-consistent 0D global kinetic model for oxygen plasmas. Additional experimental results are presented and used to validate the model. The vibrational kinetics considers vibrational levels up to v = 41 and accounts for electron impact excitation and de-excitation (e-V), vibration-to-translation relaxation (V-T) in collisions with O2 molecules and O atoms, vibration-to-vibration energy exchanges (V-V), excitation of electronically excited states, dissociative electron attachment, and electron impact dissociation. Measurements were performed at pressures of 10–80 mTorr (1.33 and 10.67 Pa) and radio frequency (13.56 MHz) powers up to 500 W. The simulation results are compared with the absolute densities in each O2 vibrational level obtained by high sensitivity absorption spectroscopy measurements of the Schumann–Runge bands for O2(X, v = 4–18), O(3 P) atom density measurements by two-photon absorption laser induced fluorescence (TALIF) calibrated against Xe, and laser photodetachment measurements of the O‑ negative ions. The highly excited O2(X, v) distribution exhibits a shape similar to a Treanor-Gordiets distribution, but its origin lies in electron impact e-V collisions and not in V-V up-pumping, in contrast to what happens in all other molecular gases known to date. The relaxation of vibrational quanta is mainly due to V-T energy-transfer collisions with O atoms and to electron impact dissociation of vibrationally excited molecules, e+O2(X, v)→O(3P)+O(3P).
Electron impact excitation of carbon monoxide in comet Hale-Bopp
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2009-02-01
The fourth positive emissions of carbon monoxide in the coma of comet Hale-Bopp have been assumed to be due mainly to fluorescence induced by sunlight. Based on this assumption they were used to deduce the abundance of carbon monoxide in the comet, giving a value higher than in other comets. Emissions produced by electron impact excitation of CO were not considered. Recent measurements and theoretical calculations of integral cross sections for electron impact excitation of CO allow the contribution of electron impact to be calculated, giving about 40% of the total. This implies that the abundance of CO in the outer coma of comet Hale-Bopp was only 60% of that previously deduced. However, as the high proportion of CO in comet Hale-Bopp was also seen in some other measurements, alternative explanations are considered. The method of calculation is tested by successfully predicting the O I emission at 1356 Å, supporting the belief that this line is due to electron impact excitation.
Electron impact contribution to infrared NO emissions in auroral conditions
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2007-11-01
Infrared emissions from nitric oxide, other than nightglow, are observed in aurora, principally due to a chemiluminescent reaction between excited nitrogen atoms and oxygen molecules that produces vibrationally excited NO. The rates for this chemiluminescent reaction have recently been revised. Based on new measurements of electron impact vibrational excitation of NO, it has been suggested that electron impact may also be significant in producing auroral NO emissions. We show results of a detailed calculation which predicts the infrared spectrum observed in rocket measurements, using the revised chemiluminescent rates and including electron impact excitation. For emissions from the second vibrational level and above, the shape of the spectrum can be reproduced within the statistical errors of the analysis of the measurements, although there is an unexplained discrepancy in the absolute value of the emissions. The inclusion of electron impact improves the agreement of the shape of the predicted spectrum with the measurements by accounting for part of the previously unexplained peak in emissions from the first vibrational level.
Cross Sections for Electron Impact Excitation of Astrophysically Abundant Atoms and Ions
NASA Technical Reports Server (NTRS)
Tayal, S. S.
2006-01-01
Electron collisional excitation rates and transition probabilities are important for computing electron temperatures and densities, ionization equilibria, and for deriving elemental abundances from emission lines formed in the collisional and photoionized astrophysical plasmas. Accurate representation of target wave functions that properly account for the important correlation and relaxation effects and inclusion of coupling effects including coupling to the continuum are essential components of a reliable collision calculation. Non-orthogonal orbitals technique in multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities. The effect of coupling to the continuum spectrum is included through the use of pseudostates which are chosen to account for most of the dipole polarizabilities of target states. The B-spline basis is used in the R-matrix approach to calculate electron excitation collision strengths and rates. Results for oscillator strengths and electron excitation collision strengths for transitions in N I, O I, O II, O IV, S X and Fe XIV have been produced
Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; Xiao, Kai; Ma, Ying-Zhong
2017-07-20
A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. Here, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3 NH 3 PbI 3-x Cl x ) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. These results show that PL probes effectively the species near or at the film surface.
Mode-selective vibrational modulation of charge transport in organic electronic devices
NASA Astrophysics Data System (ADS)
Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Brédas, Jean-Luc; Cahen, David
2015-08-01
The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500-1,700 cm-1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron-phonon coupling and charge dynamics in (bio)molecular materials.
Electronic Excitation in Molecular Collisions: Structural, Dynamic and Kinetic Considerations.
1981-08-01
electronically excited species are examined. The problem is studied both in general terms (i.e., the development of the required theoretical framework ) and in application to specific systems. (Author)
Electronic Excitation in Molecular Collisions: Structural, Dynamic and Kinetic Considerations.
1980-09-01
electronically excited species are examined. The problem is studied both in general terms (i.e., the development of the required theoretical framework ) and in application to specific systems. (Author)
Electronic Excitation in Molecular Collisions: Structural, Dynamic and Kinetic Considerations.
1979-09-01
electronically excited species are examined. The problem is studied both in general terms (i.e., the development of the required theoretical framework ) and in application to specific systems. (Author)
Electronic Excitation in Molecular Collisions: Structural, Dynamic and Kinetic Considerations.
electronically excited specied are examined. The problem is studied both in general terms (i.e., the development of the required theoretical framework ) and in application to specific systems. (Author)
Excitation and fluorescence spectra of pyrene cooled in a syupersonic jet
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borisevich, N.A.; Vodovatov, L.B.; D`yachenko, G.G.
1995-02-01
The excitation and fluorescence spectra of pyrene molecules cooled in a jet are obtained upon excitation into the S{sub 1}, S{sub 2}, S{sub 3}, and S{sub 4} electronic states. Based on the K. Ohno MO/8 model, a new method for calculating frequencies of the in-plane vibrations in the excited electronic states of polycyclic aromatic hydrocarbons is developed. The method is used for a comparitive analysis of the excitation and fluorescence spectra and assignment of the spectral lines. Good agreement between calculations and experimental data are found. The fluorescence spectrum recorded upon excitation into the high-lying electronic states shows a newmore » long-wavelength band that is probably related to pyrene dimers formed in a jet. 12 refs., 4 figs., 2 tabs.« less
Comparison of exciplex generation under optical and X-ray excitation
NASA Astrophysics Data System (ADS)
Kipriyanov, A. A.; Melnikov, A. R.; Stass, D. V.; Doktorov, A. B.
2017-09-01
Exciplex generation under optical and X-ray excitation in identical conditions is experimentally compared using a specially chosen model donor-acceptor system, anthracene (electron acceptor) and N,N-dimethylaniline (electron donor) in non-polar solution, and the results are analyzed and interpreted based on analytically calculated luminescence quantum yields. Calculations are performed on the basis of kinetic equations for multistage schemes of bulk exciplex production reaction under optical excitation and combination of bulk and geminate reactions of radical ion pairs under X-ray excitation. These results explain the earlier experimentally found difference in the ratio of the quantum yields of exciplexes and excited electron acceptors (exciplex generation efficiency) and the corresponding change in the exciplex generation efficiency under X-irradiation as compared to the reaction under optical excitation.
Comparison of exciplex generation under optical and X-ray excitation.
Kipriyanov, A A; Melnikov, A R; Stass, D V; Doktorov, A B
2017-09-07
Exciplex generation under optical and X-ray excitation in identical conditions is experimentally compared using a specially chosen model donor-acceptor system, anthracene (electron acceptor) and N,N-dimethylaniline (electron donor) in non-polar solution, and the results are analyzed and interpreted based on analytically calculated luminescence quantum yields. Calculations are performed on the basis of kinetic equations for multistage schemes of bulk exciplex production reaction under optical excitation and combination of bulk and geminate reactions of radical ion pairs under X-ray excitation. These results explain the earlier experimentally found difference in the ratio of the quantum yields of exciplexes and excited electron acceptors (exciplex generation efficiency) and the corresponding change in the exciplex generation efficiency under X-irradiation as compared to the reaction under optical excitation.
Dissociative Excitation of Acetylene Induced by Electron Impact: Excitation-emission Cross-sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Országh, Juraj; Danko, Marián; Čechvala, Peter
The optical emission spectrum of acetylene excited by monoenergetic electrons was studied in the range of 190–660 nm. The dissociative excitation and dissociative ionization associated with excitation of the ions initiated by electron impact were dominant processes contributing to the spectrum. The spectrum was dominated by the atomic lines (hydrogen Balmer series, carbon) and molecular bands (CH(A–X), CH(B–X), CH{sup +}(B–A), and C{sub 2}). Besides the discrete transitions, we have detected the continuum emission radiation of ethynyl radical C{sub 2}H(A–X). For most important lines and bands of the spectrum we have measured absolute excitation-emission cross sections and determined the energy thresholdsmore » of the particular dissociative channels.« less
The Spectroscopy and Photophysics of Aniline, 2-AMINOPYRIDINE, and 3-AMINOPYRIDINE
NASA Astrophysics Data System (ADS)
Kim, Byungjoo
1995-01-01
Two-photon ionization photoelectron spectroscopic techniques have been employed in concert with a picosecond laser system and molecular beam machine to study the vibrational structure of molecular ions and the intramolecular dynamics of optically prepared intermediate states. From photoelectron spectra of 2-aminopyridine via various S_1 vibronic resonances, the frequencies of several vibrations in the ionic state are assigned. The ionization potential of the molecule is found to be 8.099 +/- 0.003 eV. Using two-color ionization techniques, the electronic overlap effects in the photoionization of excited molecules have been studied, on the example of 2-aminopyridine, 3-aminopyridine, and aniline. The molecules are excited to their S_1 states, and ionized by a 200 nm laser pulse within 50 ps. The spectra of the aminopyridines show a striking absence of transitions to excited electronic states of the ions, indicating small electronic overlap factors in the ionization transitions and very little configuration interaction in the S _1 states. The spectra of aniline show the vibrationally resolved first excited electronic state band of the ion, which is very weak compared to the ground electronic state band, indicating a small amount of orbital mixing in the S_1 state. The vibrational peaks in the band were assigned by comparison of the spectra via two different vibronic resonances. The observations demonstrate that electronic overlap effects play a very general role in the ionization of polyatomic molecules in electronically excited states, and that orbital mixing patterns of the excited electronic states may become observable by projecting molecular electronic wavefunctions onto the ion states. In the time-delayed experiments for these molecules, all spectra reveal only one product of the nonradiative relaxation process. Careful considerations of electronic and vibrational overlap propensity rules for the ionization step lead to the conclusion that the dominant nonradiative decay mechanism in these molecules is the intersystem crossing to excited vibrational states of the T_1 state. This technique has been applied to study the predissociation process of CS_2 in the S_3 vibronic levels near 200 nm. The spectra show extensive vibrational structure, with unusual activity in the antisymmetric vibrations, indicating the possibility of level mixing in the intermediate state by the IVR couplings.
Andersson, Mikael; Linke, Myriam; Chambron, Jean-Claude; Davidsson, Jan; Heitz, Valérie; Hammarström, Leif; Sauvage, Jean-Pierre
2002-04-24
A series of [2]-rotaxanes has been synthesized in which two Zn(II)-porphyrins (ZnP) electron donors were attached as stoppers on the rod. A macrocycle attached to a Au(III)-porphyrin (AuP+) acceptor was threaded on the rod. By selective excitation of either porphyrin, we could induce an electron transfer from the ZnP to the AuP+ unit that generated the same ZnP*+-AuP* charge-transfer state irrespective of which porphyrin was excited. Although the reactants were linked only by mechanical or coordination bonds, electron-transfer rate constants up to 1.2x10(10) x s(-1) were obtained over a 15-17 A edge-to-edge distance between the porphyrins. The resulting charge-transfer state had a relatively long lifetime of 10-40 ns and was formed in high yield (>80%) in most cases. By a simple variation of the link between the reactants, viz. a coordination of the phenanthroline units on the rotaxane rod and ring by either Ag+ or Cu+, we could enhance the electron-transfer rate from the ZnP to the excited 3AuP+. We interpret our data in terms of an enhanced superexchange mechanism with Ag+ and a change to a stepwise hopping mechanism with Cu+, involving the oxidized Cu(phen)22+ unit as a real intermediate. When the ZnP unit was excited instead, electron transfer from the excited 1ZnP to AuP+ was not affected, or even slowed, by Ag+ or Cu+. We discuss this asymmetry in terms of the different orbitals involved in mediating the reaction in an electron- and a hole-transfer mechanism. Our results show the possibility to tune the rates of electron transfer between noncovalently linked reactants by a convenient modification of the link. The different effect of Ag+ and Cu+ on the rate with ZnP and AuP+ excitation shows an additional possibility to control the electron-transfer reactions by selective excitation. We also found that coordination of the Cu+ introduced an energy-transfer reaction from 1ZnP to Cu(phen)2+ (k = 5.1x10(9) x s(-1)) that proceeded in competition with electron transfer to AuP+ and was followed by a quantitative energy transfer to give the 3ZnP state (k = 1.5x10(9) x s(-1)).
Zhang, Wenkai; Kjaer, Kasper S.; Alonso-Mori, Roberto; ...
2016-08-25
Developing light-harvesting and photocatalytic molecules made with iron could provide a cost effective, scalable, and environmentally benign path for solar energy conversion. To date these developments have been limited by the sub-picosecond metal-to-ligand charge transfer (MLCT) electronic excited state lifetime of iron based complexes due to spin crossover – the extremely fast intersystem crossing and internal conversion to high spin metal-centered excited states. We revitalize a 30 year old synthetic strategy for extending the MLCT excited state lifetimes of iron complexes by making mixed ligand iron complexes with four cyanide (CN –) ligands and one 2,2'-bipyridine (bpy) ligand. This enablesmore » MLCT excited state and metal-centered excited state energies to be manipulated with partial independence and provides a path to suppressing spin crossover. We have combined X-ray Free-Electron Laser (XFEL) Kβ hard X-ray fluorescence spectroscopy with femtosecond time-resolved UV-visible absorption spectroscopy to characterize the electronic excited state dynamics initiated by MLCT excitation of [Fe(CN) 4(bpy)] 2–. The two experimental techniques are highly complementary; the time-resolved UV-visible measurement probes allowed electronic transitions between valence states making it sensitive to ligand-centered electronic states such as MLCT states, whereas the Kβ fluorescence spectroscopy provides a sensitive measure of changes in the Fe spin state characteristic of metal-centered excited states. Here, we conclude that the MLCT excited state of [Fe(CN) 4(bpy)] 2– decays with roughly a 20 ps lifetime without undergoing spin crossover, exceeding the MLCT excited state lifetime of [Fe(2,2'-bipyridine) 3] 2+ by more than two orders of magnitude.« less
NASA Astrophysics Data System (ADS)
Barati, Fatemeh; Grossnickle, Max; Su, Shanshan; Lake, Roger; Aji, Vivek; Gabor, Nathaniel
Two-dimensional heterostructures composed of atomically thin transition metal dichalcogenides provide the opportunity to design novel devices for the study of electron-hole pair multiplication. We report on highly efficient multiplication of interlayer electron-hole pairs at the interface of a tungsten diselenide / molybdenum diselenide heterostructure. Electronic transport measurements of the interlayer current-voltage characteristics indicate that layer-indirect electron-hole pairs are generated by hot electron impact excitation. Our findings, which demonstrate an efficient energy relaxation pathway that competes with electron thermalization losses, make 2D semiconductor heterostructures viable for a new class of hot-carrier energy harvesting devices that exploit layer-indirect electron-hole excitations. SHINES, an Energy Frontier Research Center funded by the U.S. Department of Energy, Air Force Office of Scientific Research.
Interacting Electrons and Holes in Quasi-2D Quantum Dots in Strong Magnetic Fields
NASA Astrophysics Data System (ADS)
Hawrylak, P.; Sheng, W.; Cheng, S.-J.
2004-09-01
Theory of optical properties of interacting electrons and holes in quasi-2D quantum dots in strong magnetic fields is discussed. In two dimensions and the lowest Landau level, hidden symmetries control the interaction of the interacting system with light. By confining electrons and holes into quantum dots hidden symmetries can be removed and the excitation spectrum of electrons and excitons can be observed. We discuss a theory electronic and of excitonic quantum Hall droplets at a filling factorν=2. For an excitonic quantum Hall droplet the characteristic emission spectra are predicted to be related to the total spin of electron and hole configurations. For the electronic droplet the excitation spectrum of the droplet can be mapped out by measuring the emission for increasing number of electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerberich, Heather Kay
The author presents a search for excited or exotic electrons decaying to an electron and a photon with high transverse momentum. An oppositely charged electron is produced in association with the excited electron, yielding a final state dielectron + photon signature. The discovery of excited electrons would be a first indication of lepton compositeness. They use ~ 202 pb -1 of data collected in pmore » $$\\bar{p}$$ collisions at √s = 1.96 TeV with the Collider Detector at Fermilab during March 2001 through September 2003. The data are consistent with standard model expectations. Upper limits are set on the experimental cross-section σ($$\\bar{p}$$p → ee* → eeγ) at the 95% confidence level in a contact-interaction model and a gauge-mediated interaction model. Limits are also presented as exclusion regions in the parameter space of the excited electron mass (M e*) and the compositeness energy scale (Λ). In the contact-interaction model, for which there are no previously published limits, they find M e* < 906 GeV is excluded for M e* = Λ. In the gauge-mediated model, the exclusion region in the M e* versus the phenomenological coupling f/Λ parameter space is extended to M{sub e*} < 430 GeV for f/Λ ~ 10 -2 GeV -1. In comparison, other experiments have excluded M e* < 280 GeV for f/Λ ~ 10 -2 GeV -1.« less
Vibrational excitation in O2and Cl2inductively-coupled plasmas and DC discharges
NASA Astrophysics Data System (ADS)
Booth, Jean-Paul; Marinov, Daniil; Foucher, Mickael; Annusova, Adriana; Guerra, Vasco
2016-09-01
Low-energy electrons can interact with molecules via resonances to cause vibrational excitation with large cross-sections. Such processes can absorb significant energy from the plasma electrons, affecting the electron energy distribution and potentially (via vibration-translation (VT) energy transfer) causing substantial gas heating. The presence of vibrationally excited molecules may significant increase the rates of collisional processes, including electron dissociative attachment and electron impact dissociation into neutral atoms. However, the cross-sections of these processes are often poorly known since they are extremely difficult to measure directly, and reliable theoretical calculations are only now appearing for simple diatomic molecules. We have measured the vibrational distributions in discharges in pure O2 and pure Cl2, using high-sensitivity ultra-broadband ultraviolet absorption spectroscopy. In O2 plasmas significant vibrational excitation is observed, up to v'' =18, with a tail temperature of around 8000K. In Cl2 excitation is only observed up to v'' =3, and the distribution appears to be in local equilibrium with the gas translational temperature (up to 1500K). We are developing a detailed self-consistent 0D global model of these systems including vibrational excitation. Work performed in the LABEX Plas@par project, with financial state aid (ANR-11-IDEX-0004-02 and ANR-13-BS09-0019).
Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Westlake, Brittany C.; Brennaman, Kyle M.; Concepcion, Javier J.
2011-05-24
The simultaneous, concerted transfer of electrons and protons—electron-proton transfer (EPT)—is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectralmore » measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H⁺ is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck–Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated ⁺H–B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.« less
Concerted electron-proton transfer in the optical excitation of hydrogen-bonded dyes.
Westlake, Brittany C; Brennaman, M Kyle; Concepcion, Javier J; Paul, Jared J; Bettis, Stephanie E; Hampton, Shaun D; Miller, Stephen A; Lebedeva, Natalia V; Forbes, Malcolm D E; Moran, Andrew M; Meyer, Thomas J; Papanikolas, John M
2011-05-24
The simultaneous, concerted transfer of electrons and protons--electron-proton transfer (EPT)--is an important mechanism utilized in chemistry and biology to avoid high energy intermediates. There are many examples of thermally activated EPT in ground-state reactions and in excited states following photoexcitation and thermal relaxation. Here we report application of ultrafast excitation with absorption and Raman monitoring to detect a photochemically driven EPT process (photo-EPT). In this process, both electrons and protons are transferred during the absorption of a photon. Photo-EPT is induced by intramolecular charge-transfer (ICT) excitation of hydrogen-bonded-base adducts with either a coumarin dye or 4-nitro-4'-biphenylphenol. Femtosecond transient absorption spectral measurements following ICT excitation reveal the appearance of two spectroscopically distinct states having different dynamical signatures. One of these states corresponds to a conventional ICT excited state in which the transferring H(+) is initially associated with the proton donor. Proton transfer to the base (B) then occurs on the picosecond time scale. The other state is an ICT-EPT photoproduct. Upon excitation it forms initially in the nuclear configuration of the ground state by application of the Franck-Condon principle. However, due to the change in electronic configuration induced by the transition, excitation is accompanied by proton transfer with the protonated base formed with a highly elongated (+)H ─ B bond. Coherent Raman spectroscopy confirms the presence of a vibrational mode corresponding to the protonated base in the optically prepared state.
NASA Astrophysics Data System (ADS)
Sharma, S.; Sirse, N.; Turner, M. M.; Ellingboe, A. R.
2018-06-01
One-dimensional particle-in-cell simulation is used to simulate the capacitively coupled argon plasma for a range of excitation frequency from 13.56 MHz to 100 MHz. The argon chemistry set can, selectively, include two metastable levels enabling multi-step ionization and metastable pooling. The results show that the plasma density decreases when metastable atoms are included with higher discrepancy at a higher excitation frequency. The contribution of multistep ionization to the overall density increases with the excitation frequency. The electron temperature increases with the inclusion of metastable atoms and decreases with the excitation frequency. At a lower excitation frequency, the density of Ar** (3p5 4p, 13.1 eV) is higher than that of Ar* (3p5 4s, 11.6 eV), whereas at higher excitation frequencies, the Ar* (3p5 4s, 11.6 eV) is the dominant metastable atom. The metastable and electron temperature profile evolve from a parabolic profile at a lower excitation frequency to a saddle type profile at a higher excitation frequency. With metastable, the electron energy distribution function (EEDF) changes its shape from Druyvesteyn type, at a low excitation frequency, to bi-Maxwellian, at a high frequency plasma excitation; however, a three-temperature EEDF is observed without metastable atoms.
Photoemission of Energetic Hot Electrons Produced via Up-Conversion in Doped Quantum Dots.
Dong, Yitong; Parobek, David; Rossi, Daniel; Son, Dong Hee
2016-11-09
The benefits of the hot electrons from semiconductor nanostructures in photocatalysis or photovoltaics result from their higher energy compared to that of the band-edge electrons facilitating the electron-transfer process. The production of high-energy hot electrons usually requires short-wavelength UV or intense multiphoton visible excitation. Here, we show that highly energetic hot electrons capable of above-threshold ionization are produced via exciton-to-hot-carrier up-conversion in Mn-doped quantum dots under weak band gap excitation (∼10 W/cm 2 ) achievable with the concentrated solar radiation. The energy of hot electrons is as high as ∼0.4 eV above the vacuum level, much greater than those observed in other semiconductor or plasmonic metal nanostructures, which are capable of performing energetically and kinetically more-challenging electron transfer. Furthermore, the prospect of generating solvated electron is unique for the energetic hot electrons from up-conversion, which can open a new door for long-range electron transfer beyond short-range interfacial electron transfer.
NASA Astrophysics Data System (ADS)
Kadhane, Umesh; Holm, Anne I. S.; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted
2008-02-01
Circular dichroism (CD) experiments on DNA single strands (dAn) at the ASTRID synchrotron radiation facility reveal that eight adenine (A) bases electronically couple upon 190nm excitation. After n=8 , the CD signal increases linearly with n with a slope equal to the sum of the coupling terms. Nearest neighbor interactions account for only 24% of the CD signal whereas electronic communication is limited to nearest neighbors for two other exciton bands observed at 218 and 251nm (i.e., dimer excited states). Electronic coupling between bases in DNA is important for nonradiative deexcitation of electronically excited states since the hazardous energy is spread over a larger spatial region.
Effect of Fermi surface nesting on resonant spin excitations in Ba{<_1-x}K{<_x}Fe{<_2}As{<_2}.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellan, J.-P.; Rosenkranz, S.; Goremychkin, E.A.
2011-01-01
We report inelastic neutron scattering measurements of the resonant spin excitations in Ba{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} over a broad range of electron band filling. The fall in the superconducting transition temperature with hole doping coincides with the magnetic excitations splitting into two incommensurate peaks because of the growing mismatch in the hole and electron Fermi surface volumes, as confirmed by a tight-binding model with s{sub {+-}}-symmetry pairing. The reduction in Fermi surface nesting is accompanied by a collapse of the resonance binding energy and its spectral weight, caused by the weakening of electron-electron correlations.
Statistics of excitations in the electron glass model
NASA Astrophysics Data System (ADS)
Palassini, Matteo
2011-03-01
We study the statistics of elementary excitations in the classical electron glass model of localized electrons interacting via the unscreened Coulomb interaction in the presence of disorder. We reconsider the long-standing puzzle of the exponential suppression of the single-particle density of states near the Fermi level, by measuring accurately the density of states of charged and electron-hole pair excitations via finite temperature Monte Carlo simulation and zero-temperature relaxation. We also investigate the statistics of large charge rearrangements after a perturbation of the system, which may shed some light on the slow relaxation and glassy phenomena recently observed in a variety of Anderson insulators. In collaboration with Martin Goethe.
Dissociative excitation of the manganese atom quartet levels by collisions e-MnBr2
NASA Astrophysics Data System (ADS)
Smirnov, Yu M.
2017-04-01
Dissociative excitation of quartet levels of the manganese atom was studied in collisions of electrons with manganese dibromide molecules. Eighty-two cross-sections for transitions originating at odd levels and eleven cross-sections for transitions originating at even levels have been measured at an incident electron energy of 100 eV. An optical excitation function has been recorded in the electron energy range of 0-100 eV for transitions originating from 3d 64p z 4 F° levels. For the majority of transitions, a comparison of the resulting cross-section values to cross-sections produced by direct excitation is provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavanagh, Molly C.; Young, Ryan M.; Schwartz, Benjamin J.
2008-10-07
Although electron transfer reactions are among the most fundamental in chemistry, it is still not clear how to isolate the roles of the solute and solvent in moving charge between reactants in solution. In this paper, we address this question by comparing the ultrafast charge-transfer-to-solvent (CTTS) dynamics of potasside (K{sup -}) in diethyl ether (DEE) to those of sodide (Na{sup -}) in both DEE and tetrahydrofuran (THF). We find that for sodide in both DEE and THF, CTTS excitation leads to delayed ejection of a solvated electron that appears with its equilibrium absorption spectrum. This indicates that the ejected electronsmore » are localized in pre-existing solvent traps, suggesting that the structure of liquid DEE is characterized by cavities that are favorably polarized to localize an excess electron, as has been previously shown is the case for liquid THF. We also find that the geminate recombination dynamics following CTTS excitation of sodide in THF and DEE are similar, suggesting that the nature of the CTTS excited states and their coupling to the electronic states supported by the naturally occurring solvent cavities are similar in the two solvents. In contrast, the geminate recombination dynamics of potasside and sodide in DEE are different, with red-edge excitation of the K{sup -} CTTS band producing a greater number of long-lived electrons than is seen following the corresponding red-edge excitation of the Na{sup -} CTTS band. This indicates that the CTTS excited states of K{sup -} are better able to couple to the electronic states supported by the naturally occurring solvent cavities, allowing us to compare the energetic positions of the potasside and sodide ground and CTTS excited states on a common absolute scale. Finally, we also observe a strong transient absorption following the CTTS excitation of potasside in DEE that correlates well with the 766 nm position of the gas-phase potassium D-line. The data indicate that CTTS excitation of alkali metal anions essentially instantaneously produces a gas-phase-like neutral alkali metal atom, which then spontaneously undergoes partial ejection of the remaining valence electron to form a neutral alkali metal cation:solvated electron tight-contact pair.« less
Isomer depletion as experimental evidence of nuclear excitation by electron capture
NASA Astrophysics Data System (ADS)
Chiara, C. J.; Carroll, J. J.; Carpenter, M. P.; Greene, J. P.; Hartley, D. J.; Janssens, R. V. F.; Lane, G. J.; Marsh, J. C.; Matters, D. A.; Polasik, M.; Rzadkiewicz, J.; Seweryniak, D.; Zhu, S.; Bottoni, S.; Hayes, A. B.; Karamian, S. A.
2018-02-01
The atomic nucleus and its electrons are often thought of as independent systems that are held together in the atom by their mutual attraction. Their interaction, however, leads to other important effects, such as providing an additional decay mode for excited nuclear states, whereby the nucleus releases energy by ejecting an atomic electron instead of by emitting a γ-ray. This ‘internal conversion’ has been known for about a hundred years and can be used to study nuclei and their interaction with their electrons. In the inverse process—nuclear excitation by electron capture (NEEC)—a free electron is captured into an atomic vacancy and can excite the nucleus to a higher-energy state, provided that the kinetic energy of the free electron plus the magnitude of its binding energy once captured matches the nuclear energy difference between the two states. NEEC was predicted in 1976 and has not hitherto been observed. Here we report evidence of NEEC in molybdenum-93 and determine the probability and cross-section for the process in a beam-based experimental scenario. Our results provide a standard for the assessment of theoretical models relevant to NEEC, which predict cross-sections that span many orders of magnitude. The greatest practical effect of the NEEC process may be on the survival of nuclei in stellar environments, in which it could excite isomers (that is, long-lived nuclear states) to shorter-lived states. Such excitations may reduce the abundance of the isotope after its production. This is an example of ‘isomer depletion’, which has been investigated previously through other reactions, but is used here to obtain evidence for NEEC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hammond, P.; Khakoo, M.A.; McConkey, J.W.
1987-12-01
Measurements are presented representing a complete set of electron-photon polarization correlation parameters for the excitation of n /sup 1/P states of He at an incident energy of 80 eV and an electron scattering angle of 20/sup 0/. The data support the predictions of a recent theoretical paper that these parameters should exhibit little variation with n. However, disagreement in absolute values between experiment and theory indicates the need for additional theoretical input into the problem.
NASA Astrophysics Data System (ADS)
Brunger, M. J.; Thorn, P. A.; Campbell, L.; Kato, H.; Kawahara, H.; Hoshino, M.; Tanaka, H.; Kim, Y.-K.
2008-05-01
We consider the efficacy of the BEf-scaling approach, in calculating reliable integral cross sections for electron impact excitation of dipole-allowed electronic states in molecules. We will demonstrate, using specific examples in H2, CO and H2O, that this relatively simple procedure can generate quite accurate integral cross sections which compare well with available experimental data. Finally, we will briefly consider the ramifications of this to atmospheric and other types of modelling studies.
NASA Astrophysics Data System (ADS)
Greetham, Gregory M.; Ellis, Andrew M.
2000-11-01
New electronic transitions of the CaNC and SrNC free radicals have been identified in the near ultraviolet. For CaNC one new system, labeled the D˜-X˜ transition, was observed in the 31 500-33 400 cm-1 region. Two new transitions were found for SrNC, the D˜-X˜ and Ẽ-X˜ systems spanning 29 100-31 000 and 32 750-34 000 cm-1, respectively. Jet-cooled laser excitation spectra yield complex vibrational structure, much of which is attributed to excitation of the bending vibration. This has been used to infer that the molecule adopts a nonlinear equilibrium geometry in the upper electronic state in all three band systems, in contrast to the linear ground electronic state. This structural change is accounted for by the increased diffuseness of the unpaired electron in the excited states, which favors deviation from linearity. All three new excited states are assigned 2A' symmetry and correlate with 2Σ+ states in the linear molecule limit. Tentative estimates for the barriers to linearity in the D˜ 2A' states of CaNC and SrNC have been determined as ˜700 and ˜1050 cm-1, respectively.
Photoionization of furan from the ground and excited electronic states.
Ponzi, Aurora; Sapunar, Marin; Angeli, Celestino; Cimiraglia, Renzo; Došlić, Nađa; Decleva, Piero
2016-02-28
Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.
Electron-impact excitation of gas-phase uracil
NASA Astrophysics Data System (ADS)
Chernyshova, I. V.; Kontros, J. E.; Markush, P. P.; Borovik, A. A.; Shpenik, O. B.
2012-11-01
The low lying excited states of uracil have been studied using electron energy-loss spectroscopy. In addition to the dipole allowed transitions to the singlet states, the two lowest triplet states are also observed. In the uracil molecule, the singlet electronic states have been found, being blue-shifted by about 0.5 eV as compared to the UV-absorption results.
Nonequilibrium excitations and transport of Dirac electrons in electric-field-driven graphene
NASA Astrophysics Data System (ADS)
Li, Jiajun; Han, Jong E.
2018-05-01
We investigate nonequilibrium excitations and charge transport in charge-neutral graphene driven with dc electric field by using the nonequilibrium Green's-function technique. Due to the vanishing Fermi surface, electrons are subject to nontrivial nonequilibrium excitations such as highly anisotropic momentum distribution of electron-hole pairs, an analog of the Schwinger effect. We show that the electron-hole excitations, initiated by the Landau-Zener tunneling with a superlinear I V relation I ∝E3 /2 , reaches a steady state dominated by the dissipation due to optical phonons, resulting in a marginally sublinear I V with I ∝E , in agreement with recent experiments. The linear I V starts to show the sign of current saturation as the graphene is doped away from the Dirac point, and recovers the semiclassical relation for the saturated velocity. We give a detailed discussion on the nonequilibrium charge creation and the relation between the electron-phonon scattering rate and the electric field in the steady-state limit. We explain how the apparent Ohmic I V is recovered near the Dirac point. We propose a mechanism where the peculiar nonequilibrium electron-hole creation can be utilized in a infrared device.
Biophoton research in blood reveals its holistic properties.
Voeikov, V L; Asfaramov, R; Bouravleva, E V; Novikov, C N; Vilenskaya, N D
2003-05-01
Monitoring of spontaneous and luminophore amplified photon emission (PE) from non-diluted human blood under resting conditions and artificially induced immune reaction revealed that blood is a continuous source of biophotons indicating that it persists in electronically excited state. This state is pumped through generation of electron excitation produced in reactive oxygen species (ROS) reactions. Excited state of blood and of neutrophil suspensions (primary sources of ROS in blood) is an oscillatory one suggesting of interaction between individual sources of electron excitation. Excited state of blood is extremely sensitive to the tiniest fluctuations of external photonic fields but resistant to temperature variations as reflected in hysteresis of PE in response to temperature variations. These data suggest that blood is a highly cooperative non-equilibrium and non-linear system, whose components unceasingly interact in time and space. At least in part this property is provided by the ability of blood to store energy of electron excitation that is produced in course of its own normal metabolism. From a practical point of view analysis of these qualities of blood may be a basement of new approach to diagnostic procedures.
NASA Astrophysics Data System (ADS)
Kokkin, Damian L.; Zhang, Ruohan; Steimle, Timothy; Pearlman, Bradley W.; Wyse, Ian A.; Varberg, Thomas D.
2015-06-01
The gold sulfur bond is becoming ever more important to a vast range of scientific endeavors. We have recorded the electronic spectrum of gas-phase AuS, at vibrational resolution, over the 440-740 nm wavelength range. By application of a synergy of production techniques, hot hollow-cathode sputtering source and cold laser ablation molecular beam source, excitation from both spin components of the inverted ^2Π ground state is possible. Excitation into four different excited electronic states involving approximately 100 red-degraded bands has been observed. The four excited states have been characterized as a^4σ1/2, A^2σ^+1/2, B^2σ^-1/2 and C^2Δ_i. The observed red-degraded vibronic bands where then globally analyzed to determine an accurate set of term energies and vibrational constants for the excited and ground electronic states. The electronic configurations from which these states arise will be discussed.
Kirschner, Matthew S; Hannah, Daniel C; Diroll, Benjamin T; Zhang, Xiaoyi; Wagner, Michael J; Hayes, Dugan; Chang, Angela Y; Rowland, Clare E; Lethiec, Clotilde M; Schatz, George C; Chen, Lin X; Schaller, Richard D
2017-09-13
Ultrafast optical pump, X-ray diffraction probe experiments were performed on CdSe nanocrystal (NC) colloidal dispersions as functions of particle size, polytype, and pump fluence. Bragg peak shifts related to heating and peak amplitude reduction associated with lattice disordering are observed. For smaller NCs, melting initiates upon absorption of as few as ∼15 electron-hole pair excitations per NC on average (0.89 excitations/nm 3 for a 1.5 nm radius) with roughly the same excitation density inducing melting for all examined NCs. Diffraction intensity recovery kinetics, attributable to recrystallization, occur over hundreds of picoseconds with slower recoveries for larger particles. Zincblende and wurtzite NCs revert to initial structures following intense photoexcitation suggesting melting occurs primarily at the surface, as supported by simulations. Electronic structure calculations relate significant band gap narrowing with decreased crystallinity. These findings reflect the need to consider the physical stability of nanomaterials and related electronic impacts in high intensity excitation applications such as lasing and solid-state lighting.
Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory.
Gao, Li; Pal, Partha Pratim; Seideman, Tamar; Guisinger, Nathan P; Guest, Jeffrey R
2016-02-04
Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionization induced by inelastic tunneling electrons. The observed current independence of the desorption yield suggests that the vibrational excitation is a single-electron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (∼2 eV), as would be expected from the identified desorption mechanism.
Carbon Nanotubes as an Ultrafast Emitter with a Narrow Energy Spread at Optical Frequency.
Li, Chi; Zhou, Xu; Zhai, Feng; Li, Zhenjun; Yao, Fengrui; Qiao, Ruixi; Chen, Ke; Cole, Matthew Thomas; Yu, Dapeng; Sun, Zhipei; Liu, Kaihui; Dai, Qing
2017-08-01
Ultrafast electron pulses, combined with laser-pump and electron-probe technologies, allow ultrafast dynamics to be characterized in materials. However, the pursuit of simultaneous ultimate spatial and temporal resolution of microscopy and spectroscopy is largely subdued by the low monochromaticity of the electron pulses and their poor phase synchronization to the optical excitation pulses. Field-driven photoemission from metal tips provides high light-phase synchronization, but suffers large electron energy spreads (3-100 eV) as driven by a long wavelength laser (>800 nm). Here, ultrafast electron emission from carbon nanotubes (≈1 nm radius) excited by a 410 nm femtosecond laser is realized in the field-driven regime. In addition, the emitted electrons have great monochromaticity with energy spread as low as 0.25 eV. This great performance benefits from the extraordinarily high field enhancement and great stability of carbon nanotubes, superior to metal tips. The new nanotube-based ultrafast electron source opens exciting prospects for extending current characterization to sub-femtosecond temporal resolution as well as sub-nanometer spatial resolution. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; do N. Varella, M. T.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Limão-Vieira, P.; Brunger, M. J.
2016-03-01
We report results from a joint experimental and theoretical investigation into electron scattering from the important industrial species furfural (C5H4O2). Specifically, differential cross sections (DCSs) have been measured and calculated for the electron-impact excitation of the electronic states of C5H4O2. The measurements were carried out at energies in the range 20-40 eV, and for scattered-electron angles between 10° and 90°. The energy resolution of those experiments was typically ˜80 meV. Corresponding Schwinger multichannel method with pseudo-potential calculations, for energies between 6-50 eV and with and without Born-closure, were also performed for a sub-set of the excited electronic-states that were accessed in the measurements. Those calculations were undertaken at the static exchange plus polarisation-level using a minimum orbital basis for single configuration interaction (MOB-SCI) approach. Agreement between the measured and calculated DCSs was qualitatively quite good, although to obtain quantitative accord, the theory would need to incorporate even more channels into the MOB-SCI. The role of multichannel coupling on the computed electronic-state DCSs is also explored in some detail.
Zheng, Lianjun; Polizzi, Nicholas F; Dave, Adarsh R; Migliore, Agostino; Beratan, David N
2016-03-24
The effectiveness of solar energy capture and conversion materials derives from their ability to absorb light and to transform the excitation energy into energy stored in free carriers or chemical bonds. The Thomas-Reiche-Kuhn (TRK) sum rule mandates that the integrated (electronic) oscillator strength of an absorber equals the total number of electrons in the structure. Typical molecular chromophores place only about 1% of their oscillator strength in the UV-vis window, so individual chromophores operate at about 1% of their theoretical limit. We explore the distribution of oscillator strength as a function of excitation energy to understand this circumstance. To this aim, we use familiar independent-electron model Hamiltonians as well as first-principles electronic structure methods. While model Hamiltonians capture the qualitative electronic spectra associated with π electron chromophores, these Hamiltonians mistakenly focus the oscillator strength in the fewest low-energy transitions. Advanced electronic structure methods, in contrast, spread the oscillator strength over a very wide excitation energy range, including transitions to Rydberg and continuum states, consistent with experiment. Our analysis rationalizes the low oscillator strength in the UV-vis spectral region in molecules, a step toward the goal of oscillator strength manipulation and focusing.
State-specific transport properties of electronically excited Ar and C
NASA Astrophysics Data System (ADS)
Istomin, V. A.; Kustova, E. V.
2018-05-01
In the present study, a theoretical model of state-resolved transport properties in electronically excited atomic species developed earlier is applied to argon and carbon atomic species. It is shown that for Ar and C, similarly to the case of atomic nitrogen and oxygen, the Slater-like models can be applied to calculate diameters of electronically excited atoms. Using the Slater-like model it is shown that for half-filled N (2 px1py1pz1) and full-filled Ar (3 px2py2pz2) electronic shells the growth of atomic radius goes slowly compared to C (2 px1py1) and O (2 px2py1pz1). The effect of collision diameters on the transport properties of Ar and C is evaluated. The influence of accounted number of electronic levels on the transport coefficients is examined for the case of Boltzmann distributions over electronic energy levels. It is emphasized that in the temperature range 1000-14000 K, for Boltzmann-like distributions over electronic states the number of accounted electronic levels do not influence the transport coefficients. Contrary to this, for higher temperatures T > 14000 K this effect becomes of importance, especially for argon.
Electronic excitations in finite and infinite polyenes
NASA Astrophysics Data System (ADS)
Tavan, Paul; Schulten, Klaus
1987-09-01
We study electronic excitations in long polyenes, i.e., in one-dimensional strongly correlated electron systems which are neither infinite nor small. The excitations are described within Hubbard and Pariser-Parr-Pople (PPP) models by means of a multiple-reference double-excitation expansion [P. Tavan and K. Schulten, J. Chem. Phys. 85, 6602 (1986)]. We find that quantized ``transition'' momenta can be assigned to electronic excitations in finite chains. These momenta link excitation energies of finite chains to dispersion relations of infinite chains, i.e., they bridge the gap between finite and infinite systems. A key result is the following: Excitation energies E in polyenes with N carbon atoms are described very accurately by the formula Eβ=ΔEβ0+αβk(N)q, q=1,2,..., where β denotes the excitation class, ΔEβ0 the energy gap in the infinite system [αβk(N)>0], and k(N) the elementary transition momentum. The parameters ΔEβ0 and αβ are determined for covalent and ionic excitations in alternating and nonalternating polyenes. The covalent excitations are combinations of triplet excitations T, i.e., T, TT, TTT, . . . . The lowest singlet excitations in the infinite polyene, e.g., in polyacetylene or polydiacetylene, are TT states. Available evidence proves that these states can dissociate into separate triplets. The bond structure of TT states is that of a neutral soliton-antisoliton pair. The level density of TT states in long polyenes is high enough to allow dissociation into separate solitons.
Electron impact vibrational excitation of carbon monoxide in the upper atmospheres of Mars and Venus
NASA Astrophysics Data System (ADS)
Campbell, L.; Allan, M.; Brunger, M. J.
2011-09-01
Infrared emission from CO in the upper atmospheres of Mars, Venus and several other planets is a subject of current theoretical and experimental interest. Electron impact excitation makes a contribution that has not been included in previous studies. Given this, and recent new measurements of absolute cross sections for low-energy electron impact excitation of the vibrational levels of the ground state of CO, results from calculations are presented showing the contribution of electron impact relative to emissions by other mechanisms. It is demonstrated that emissions due to the impact of thermal, photo- and auroral electrons are generally small compared to sunlight-driven (fluorescence and photolysis) emissions, but with some exceptions. It is also shown that thermal-electron emissions may dominate over other processes at nighttime at Mars and that auroral emissions certainly do so. While measurements and other calculations do not appear to be available for Venus, the volume emission rates presented should be valuable in planning such measurements.
Hochlaf, Majdi; Pan, Yi; Lau, Kai-Chung; Majdi, Youssef; Poisson, Lionel; Garcia, Gustavo A; Nahon, Laurent; Al Mogren, Muneerah Mogren; Schwell, Martin
2015-02-19
For fully understanding the light-molecule interaction dynamics at short time scales, recent theoretical and experimental studies proved the importance of accurate characterizations not only of the ground (D0) but also of the electronic excited states (e.g., D1) of molecules. While ground state investigations are currently straightforward, those of electronic excited states are not. Here, we characterized the à electronic state of ionic thymine (T(+)) DNA base using explicitly correlated coupled cluster ab initio methods and state-of-the-art synchrotron-based electron/ion coincidence techniques. The experimental spectrum is composed of rich and long vibrational progressions corresponding to the population of the low frequency modes of T(+)(Ã). This work challenges previous numerous works carried out on DNA bases using common synchrotron and VUV-based photoelectron spectroscopies. We provide hence a powerful theoretical and experimental framework to study the electronic structure of ionized DNA bases that could be generalized to other medium-sized biologically relevant systems.
Electronic properties of solids excited with intermediate laser power densities
NASA Astrophysics Data System (ADS)
Sirotti, Fausto; Tempo Beamline Team
Intermediate laser power density up to about 100 GW/cm2 is below the surface damage threshold is currently used to induce modification in the physical properties on short time scales. The absorption of a short laser pulse induces non-equilibrium electronic distributions followed by lattice-mediated equilibrium taking place only in the picosecond range. The role of the hot electrons is particularly important in several domains as for example fast magnetization and demagnetization processes, laser induced phase transitions, charge density waves. Angular resolved photoelectron spectroscopy measuring directly energy and momentum of electrons is the most adapted tool to study the electronic excitations at short time scales during and after fast laser excitations. The main technical problem is the space charge created by the pumping laser pulse. I will present angular resolved multiphoton photoemission results obtained with 800 nm laser pulses showing how space charge electrons emitted during fast demagnetization processes can be measured. Unable enter Affiliation: CNRS-SOLEIL Synchrotron L'Orme des Merisiers , Saint Aubin 91192 Gif sur Yvette France.
Plemmons, Dayne A; Flannigan, David J
2016-05-26
In femtosecond ultrafast electron microscopy (UEM) experiments, the initial excitation period is composed of spatiotemporal overlap of the temporally commensurate pump photon pulse and probe photoelectron packet. Generation of evanescent near-fields at the nanostructure specimens produces a dispersion relation that enables coupling of the photons (ℏω = 2.4 eV, for example) and freely propagating electrons (200 keV, for example) in the near-field. Typically, this manifests as discrete peaks occurring at integer multiples (n) of the photon energy in the low-loss/gain region of electron-energy spectra (i.e., at 200 keV ± nℏω eV). Here, we examine the UEM imaging resolution implications of the strong inelastic near-field interactions between the photons employed in optical excitation and the probe photoelectrons. We find that the additional photoinduced energy dispersion occurring when swift electrons pass through intense evanescent near-fields results in a discrete chromatic aberration that limits the spatial resolving power to several angstroms during the excitation period.
Schwartz, J.; Aloni, S.; Ogletree, D. F.; ...
2012-04-20
Exposure to beams of low-energy electrons (2-30 keV) in a scanning electron microscope locally induces formation of NV-centers without thermal annealing in diamonds that have been implanted with nitrogen ions. In this study, we find that non-thermal, electron-beam-induced NV-formation is about four times less efficient than thermal annealing. But NV-center formation in a consecutive thermal annealing step (800°C) following exposure to low-energy electrons increases by a factor of up to 1.8 compared to thermal annealing alone. Finally, these observations point to reconstruction of nitrogen-vacancy complexes induced by electronic excitations from low-energy electrons as an NV-center formation mechanism and identify localmore » electronic excitations as a means for spatially controlled room-temperature NV-center formation.« less
NASA Astrophysics Data System (ADS)
Petrov, Yu. V.; Anikeva, A. E.; Vyvenko, O. F.
2018-06-01
Secondary electron emission from thin silicon nitride films of different thicknesses on silicon excited by helium ions with energies from 15 to 35 keV was investigated in the helium ion microscope. Secondary electron yield measured with Everhart-Thornley detector decreased with the irradiation time because of the charging of insulating films tending to zero or reaching a non-zero value for relatively thick or thin films, respectively. The finiteness of secondary electron yield value, which was found to be proportional to electronic energy losses of the helium ion in silicon substrate, can be explained by the electron emission excited from the substrate by the helium ions. The method of measurement of secondary electron energy distribution from insulators was suggested, and secondary electron energy distribution from silicon nitride was obtained.
Electron-impact excitation of the low-lying electronic states of HCN
NASA Technical Reports Server (NTRS)
Chutjian, A.; Tanaka, H.; Srivastava, S. K.; Wicke, B. G.
1977-01-01
The first study of the low-energy electron-impact excitation of low-lying electronic transitions in the HCN molecule is reported. Measurements were made at incident electron energies of 11.6 and 21.6 eV in the energy-loss range of 3-10 eV, and at scattering angles of 20-130 deg. Inelastic scattering spectra were placed on the absolute cross-section scale by determining first the ratio of inelastic-to-elastic scattering cross sections, and then separately measuring the absolute elastic scattering cross section. Several new electronic transitions are observed which are intrinsically overlapped in the molecule itself. Assignments of these electronic transitions are suggested. These assignments are based on present spectroscopic and cross-sections measurements, high-energy electron scattering spectra, optical absorption spectra, and ab initio molecular orbital calculations.
An incompressible state of a photo-excited electron gas
Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis
2015-01-01
Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282
NASA Astrophysics Data System (ADS)
Gamal, Yosr E. E.-D.; Abdellatif, Galila
2017-08-01
A study is performed to investigate the dependency of threshold intensity on gas pressure observed in the measurements of the breakdown of molecular oxygen that carried out by Phuoc (2000) [1]. In this experiment, the breakdown was induced by 532 nm laser radiation of pulse width 5.5 ns and spot size of 8.5 μm, in oxygen over a wide pressure range (190-3000 Torr). The analysis aimed to explore the electron kinetic reliance on gas pressure for the separate contribution of each of the gain and loss processes encountered in this study. The investigation is based on an electron cascade model applied previously in Gamal and Omar (2001) [2] and Gaabour et al. (2013) [3]. This model solves numerically a differential equation designates the time evolution of the electron energy distribution, and a set of rate equations that describe the change of excited states population. The numerical examination of the electron energy distribution function and its parameters revealed that photo-ionization of the excited molecules plays a significant role in enhancing the electron density growth rate over the whole tested gas pressure range. This process is off set by diffusion of electrons out of the focal volume in the low-pressure regime. At atmospheric pressure electron, collisional processes dominate and act mainly to populate the excited states. Hence photo-ionization becomes efficient and compete with the encountered loss processes (electron diffusion, vibrational excitation of the ground state molecules as well as two body attachments). At high pressures ( 3000 Torr) three body attachments are found to be the primary cause of losses which deplete the electron density and hence results in the slow decrease of the threshold intensity.
Excitation of phonons in medium-energy electron diffraction
NASA Astrophysics Data System (ADS)
Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.
1996-03-01
The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.
NASA Astrophysics Data System (ADS)
Du, Zhidong; Chen, Chen; Pan, Liang
2017-04-01
Maskless lithography using parallel electron beamlets is a promising solution for next generation scalable maskless nanolithography. Researchers have focused on this goal but have been unable to find a robust technology to generate and control high-quality electron beamlets with satisfactory brightness and uniformity. In this work, we will aim to address this challenge by developing a revolutionary surface-plasmon-enhanced-photoemission (SPEP) technology to generate massively-parallel electron beamlets for maskless nanolithography. The new technology is built upon our recent breakthroughs in plasmonic lenses, which will be used to excite and focus surface plasmons to generate massively-parallel electron beamlets through photoemission. Specifically, the proposed SPEP device consists of an array of plasmonic lens and electrostatic micro-lens pairs, each pair independently producing an electron beamlet. During lithography, a spatial optical modulator will dynamically project light onto individual plasmonic lenses to control the switching and brightness of electron beamlets. The photons incident onto each plasmonic lens are concentrated into a diffraction-unlimited spot as localized surface plasmons to excite the local electrons to near their vacuum levels. Meanwhile, the electrostatic micro-lens extracts the excited electrons to form a focused beamlet, which can be rastered across a wafer to perform lithography. Studies showed that surface plasmons can enhance the photoemission by orders of magnitudes. This SPEP technology can scale up the maskless lithography process to write at wafers per hour. In this talk, we will report the mechanism of the strong electron-photon couplings and the locally enhanced photoexcitation, design of a SPEP device, overview of our proof-of-concept study, and demonstrated parallel lithography of 20-50 nm features.
Kapetanakis, Myron; Zhou, Wu; Oxley, Mark P.; ...
2015-09-25
Photon-based spectroscopies have played a central role in exploring the electronic properties of crystalline solids and thin films. They are a powerful tool for probing the electronic properties of nanostructures, but they are limited by lack of spatial resolution. On the other hand, electron-based spectroscopies, e.g., electron energy loss spectroscopy (EELS), are now capable of subangstrom spatial resolution. Core-loss EELS, a spatially resolved analog of x-ray absorption, has been used extensively in the study of inhomogeneous complex systems. In this paper, we demonstrate that low-loss EELS in an aberration-corrected scanning transmission electron microscope, which probes low-energy excitations, combined with amore » theoretical framework for simulating and analyzing the spectra, is a powerful tool to probe low-energy electron excitations with atomic-scale resolution. The theoretical component of the method combines density functional theory–based calculations of the excitations with dynamical scattering theory for the electron beam. We apply the method to monolayer graphene in order to demonstrate that atomic-scale contrast is inherent in low-loss EELS even in a perfectly periodic structure. The method is a complement to optical spectroscopy as it probes transitions entailing momentum transfer. The theoretical analysis identifies the spatial and orbital origins of excitations, holding the promise of ultimately becoming a powerful probe of the structure and electronic properties of individual point and extended defects in both crystals and inhomogeneous complex nanostructures. The method can be extended to probe magnetic and vibrational properties with atomic resolution.« less
Rizzo, Antonio; Vahtras, Olav
2011-06-28
A computational approach to the calculation of excited state electronic circular dichroism (ESECD) spectra of chiral molecules is discussed. Frequency dependent quadratic response theory is employed to compute the rotatory strength for transitions between excited electronic states, by employing both a magnetic gauge dependent and a (velocity-based) magnetic gauge independent approach. Application is made to the lowest excited states of two prototypical chiral molecules, propylene oxide, also known as 1,2-epoxypropane or methyl oxirane, and R-(+)-1,1'-bi(2-naphthol), or BINOL. The dependence of the rotatory strength for transitions between the lowest three excited states of methyl oxirane upon the quality and extension of the basis set is analyzed, by employing a hierarchy of correlation consistent basis sets. Once established that basis sets of at least triple zeta quality, and at least doubly augmented, are sufficient to ensure sufficiently converged results, at least at the Hartree-Fock self-consistent field (HF-SCF) level, the rotatory strengths for all transitions between the lowest excited electronic states of methyl oxirane are computed and analyzed, employing HF-SCF, and density functional theory (DFT) electronic structure models. For DFT, both the popular B3LYP and its recently highly successful CAM-B3LYP extension are exploited. The strong dependence of the spectra upon electron correlation is highlighted. A HF-SCF and DFT study is carried out also for BINOL, a system where excited states show the typical pairing structure arising from the interaction of the two monomeric moieties, and whose conformational changes following photoexcitation were studied recently with via time-resolved CD.
NASA Astrophysics Data System (ADS)
Schütt, Michael; Orth, Peter P.; Levchenko, Alex; Fernandes, Rafael M.
2018-01-01
Ultrafast perturbations offer a unique tool to manipulate correlated systems due to their ability to promote transient behaviors with no equilibrium counterpart. A widely employed strategy is the excitation of coherent optical phonons, as they can cause significant changes in the electronic structure and interactions on short time scales. One of the issues, however, is the inevitable heating that accompanies these resonant excitations. Here, we explore a promising alternative route: the nonequilibrium excitation of acoustic phonons, which, due to their low excitation energies, generally lead to less heating. We demonstrate that driving acoustic phonons leads to the remarkable phenomenon of a momentum-dependent effective temperature, by which electronic states at different regions of the Fermi surface are subject to distinct local temperatures. Such an anisotropic effective electronic temperature can have a profound effect on the delicate balance between competing ordered states in unconventional superconductors, opening a so far unexplored avenue to control correlated phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Ryoichi, E-mail: fukuda@ims.ac.jp; Ehara, Masahiro; Elements Strategy Initiative for Catalysts and Batteries
2015-12-31
The effects from solvent environment are specific to the electronic states; therefore, a computational scheme for solvent effects consistent with the electronic states is necessary to discuss electronic excitation of molecules in solution. The PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (configuration interaction) methods are developed for such purposes. The PCM SAC-CI adopts the state-specific (SS) solvation scheme where solvent effects are self-consistently considered for every ground and excited states. For efficient computations of many excited states, we develop a perturbative approximation for the PCM SAC-CI method, which is called corrected linear response (cLR) scheme. Our test calculationsmore » show that the cLR PCM SAC-CI is a very good approximation of the SS PCM SAC-CI method for polar and nonpolar solvents.« less
Furukawa, Taichi; Kanamori, Satoshi; Fukuta, Masahiro; Nawa, Yasunori; Kominami, Hiroko; Nakanishi, Yoichiro; Sugita, Atsushi; Inami, Wataru; Kawata, Yoshimasa
2015-07-13
We fabricated a bright and thin Zn₂SiO₄ luminescent film to serve as a nanometric light source for high-spatial-resolution optical microscopy based on electron beam excitation. The Zn₂SiO₄ luminescent thin film was fabricated by annealing a ZnO film on a Si₃N₄ substrate at 1000 °C in N₂. The annealed film emitted bright cathodoluminescence compared with the as-deposited film. The film is promising for nano-imaging with electron beam excitation-assisted optical microscopy. We evaluated the spatial resolution of a microscope developed using this Zn₂SiO₄ luminescent thin film. This is the first report of the investigation and application of ZnO/Si₃N₄ annealed at a high temperature (1000 °C). The fabricated Zn₂SiO₄ film is expected to enable high-frame-rate dynamic observation with ultra-high resolution using our electron beam excitation-assisted optical microscopy.
NASA Astrophysics Data System (ADS)
Gu, Zhi-Gang; Heinke, Lars; Wöll, Christof; Neumann, Tobias; Wenzel, Wolfgang; Li, Qiang; Fink, Karin; Gordan, Ovidiu D.; Zahn, Dietrich R. T.
2015-11-01
The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast to common belief, even in the case of this fairly "simple" MOF, the excitation spectra cannot be explained by a superposition of "intra-unit" excitations within the individual building blocks. Instead, "inter-unit" excitations also have to be considered.
Lee, Mi Kyung; Coker, David F
2016-08-18
An accurate approach for computing intermolecular and intrachromophore contributions to spectral densities to describe the electronic-nuclear interactions relevant for modeling excitation energy transfer processes in light harvesting systems is presented. The approach is based on molecular dynamics (MD) calculations of classical correlation functions of long-range contributions to excitation energy fluctuations and a separate harmonic analysis and single-point gradient quantum calculations for electron-intrachromophore vibrational couplings. A simple model is also presented that enables detailed analysis of the shortcomings of standard MD-based excitation energy fluctuation correlation function approaches. The method introduced here avoids these problems, and its reliability is demonstrated in accurate predictions for bacteriochlorophyll molecules in the Fenna-Matthews-Olson pigment-protein complex, where excellent agreement with experimental spectral densities is found. This efficient approach can provide instantaneous spectral densities for treating the influence of fluctuations in environmental dissipation on fast electronic relaxation.
Dynamic generation of spin-wave currents in hybrid structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyapilin, I. I.; Okorokov, M. S., E-mail: Okorokovmike@gmail.com
2016-11-15
Spin transport through the interface in a semiconductor/ferromagnetic insulator hybrid structure is studied by the nonequilibrium statistical operator method under conditions of the spin Seebeck effect. The effective parameter approach in which each examined subsystem (conduction electrons, magnons, phonons) is characterized by its specific effective temperature is considered. The effect of the resonant (electric dipole) excitation of the spin electronic subsystem of conduction electrons on spin-wave current excitation in a ferromagnetic insulator is considered. The macroscopic equations describing the spin-wave current caused by both resonant excitation of the spin system of conduction electrons and the presence of a nonuniform temperaturemore » field in the ferromagnetic insulator are derived taking into account both the resonance-diffusion propagation of magnons and their relaxation processes. It is shown that spin-wave current excitation is also of resonant nature under the given conditions.« less
Electron doping evolution of the magnetic excitations in NaFe 1-xCo xAs
Carr, Scott V.; Zhang, Chenglin; Song, Yu; ...
2016-06-13
We use time-of-flight (TOF) inelastic neutron scattering (INS) spectroscopy to investigate the doping dependence of magnetic excitations across the phase diagram of NaFe 1-xCo xAs with x = 0, 0.0175, 0.0215, 0.05, and 0.11. The effect of electron-doping by partially substituting Fe by Co is to form resonances that couple with superconductivity, broaden and suppress low energy (E 80 meV) spin excitations compared with spin waves in undoped NaFeAs. However, high energy (E > 80 meV) spin excitations are weakly Co-doping dependent. Integration of the local spin dynamic susceptibility "(!) of NaFe 1-xCo xAs reveals a total fluctuating moment ofmore » 3.6 μ2 B/Fe and a small but systematic reduction with electron doping. The presence of a large spin gap in the Cooverdoped nonsuperconducting NaFe0.89Co0.11As suggests that Fermi surface nesting is responsible for low-energy spin excitations. These results parallel Ni-doping evolution of spin excitations in BaFe 2-xNi xAs 2, confirming the notion that low-energy spin excitations coupling with itinerant electrons are important for superconductivity, while weakly doping dependent high-energy spin excitations result from localized moments.« less
Analysis of parasitic oscillations in 42 GHz gyrotron beam tunnel
NASA Astrophysics Data System (ADS)
Kumar, N.; Singh, U.; Singh, T. P.; Sinha, A. K.
2011-02-01
Parasitic oscillation excitation analysis has been carried out for the 42 GHz gyrotron beam tunnel. This article presents a systematic approach for the analysis of parasitic oscillation excitation. The electron trajectory code EGUN has been used for the estimation of the electron beam parameters in the beam tunnel. The electromagnetic simulation code CST-MS has been used for the eigenmode and Q value analysis. The analysis of the parasitic oscillations has been performed for the symmetric TE modes and the first three cavity side copper rings. Four different approaches- the Q value study, the mode maxima-electron beam radius mismatching, the electron cyclotron frequency-mode excitation frequency mismatching and the backward wave interaction analysis- have been used for the parasitic oscillation analysis.
Enantioselective photochemistry via Lewis acid catalyzed triplet energy transfer
Blum, Travis R.; Miller, Zachary D.; Bates, Desiree M.; Guzei, Ilia A.; Yoon, Tehshik P.
2017-01-01
Relatively few catalytic systems are able to control the stereochemistry of electronically excited organic intermediates. Here we report the discovery that a chiral Lewis acid complex can catalyze triplet energy transfer from an electronically excited photosensitizer. This strategy is applied to asymmetric [2+2] photocycloadditions of 2′-hydroxychalcones using tris(bipyridyl) ruthenium(II) as a sensitizer. A variety of electrochemical, computational, and spectroscopic data rule out substrate activation via photoinduced electron transfer and instead support a mechanism in which Lewis acid coordination dramatically lowers the triplet energy of the chalcone substrate. We expect that this approach will enable chemists to more broadly apply their detailed understanding of chiral Lewis acid catalysis to stereocontrol in reactions of electronically excited states. PMID:27980203
Excitation of vibrational quanta in furfural by intermediate-energy electrons
NASA Astrophysics Data System (ADS)
Jones, D. B.; Neves, R. F. C.; Lopes, M. C. A.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; García, G.; Blanco, F.; Brunger, M. J.
2015-12-01
We report cross sections for electron-impact excitation of vibrational quanta in furfural, at intermediate incident electron energies (20, 30, and 40 eV). The present differential cross sections are measured over the scattered electron angular range 10°-90°, with corresponding integral cross sections subsequently being determined. Furfural is a viable plant-derived alternative to petrochemicals, being produced via low-temperature plasma treatment of biomass. Current yields, however, need to be significantly improved, possibly through modelling, with the present cross sections being an important component of such simulations. To the best of our knowledge, there are no other cross sections for vibrational excitation of furfural available in the literature, so the present data are valuable for this important molecule.
Role of Excited Nitrogen In The Ionosphere
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Cartwright, D. C.; Bolorizadeh, M. A.
2006-12-01
Sunlight photoionises atoms and molecules in the Earth's upper atmosphere, producing ions and photoelectrons. The photoelectrons then produce further ionisation by electron impact. These processes produce the ionosphere, which contains various positive ions, such as NO+, N+, and O+, and an equal density of free electrons. O+(4S) ions are long-lived and so the electron density is determined mainly by the density of O+(4S). This density is dependent on ambipolar diffusion and on loss processes, which are principally reactions with O2 and N2. The reaction with N2 is known to be strongly dependent on the vibrational state of N2 but the rate constants are not well determined for the ionosphere. Vibrational excitation of N2 is produced by direct excitation by thermal electrons and photoelectrons and by cascade from the excited states of N2 that are produced by photoelectron impact. It can also be produced by a chemical reaction and by vibrational-translational transitions. The vibrational excitation is lost by deexcitation by electron impact, by step-wise quenching in collisions with O atoms, and in the reaction with O+(4S). The distribution of vibrational levels is rearranged by vibrational-vibrational transitions, and by molecular diffusion vertically in the atmosphere. A computational model that includes these processes and predicts the electron density as a function of height in the ionosphere is described. This model is a combination of a "statistical equilibrium" calculation, which is used to predict the populations of the excited states of N2, and a time-step calculation of the atmospheric reactions and processes. The latter includes a calculation of photoionisation down through the atmosphere as a function of time of day and solar activity, and calculations at 0.1 s intervals of the changing densities of positive ions, electrons and N2 in the different vibrational levels. The validity of the model is tested by comparison of the predicted electron densities with the International Reference Ionosphere (IRI) of electron density measurements. The contribution of various input parameters can be investigated by their effect on the accuracy of the calculated electron densities. Here the effects of two different sets of rate constants for the reaction of vibrationally excited N2 with O+(4S) are investigated. For reference, predictions using the different sets are compared with laboratory measurements. Then the effect of using the different sets in the computational model of the ionosphere is investigated. It is shown that one set gives predictions of electron densities that are in reasonable agreement with the IRI, while the other set does not. Both sets result in underestimation of the electron density at the height of the peak electron density in the atmosphere, suggesting that either the amount of vibrational excitation or the rate constants may be overestimated. Our comparison is made for two cases with different conditions, to give an indication of the limitations of the atmospheric modeling and also insight into ways in which the sets of rate constants may be deficient.
Theoretical Studies of Chemical Reactions following Electronic Excitation
NASA Technical Reports Server (NTRS)
Chaban, Galina M.
2003-01-01
The use of multi-configurational wave functions is demonstrated for several processes: tautomerization reactions in the ground and excited states of the DNA base adenine, dissociation of glycine molecule after electronic excitation, and decomposition/deformation of novel rare gas molecules HRgF. These processes involve bond brealung/formation and require multi-configurational approaches that include dynamic correlation.
NASA Technical Reports Server (NTRS)
Lee, Timothy J.; Langhoff, Stephen R. (Technical Monitor)
1997-01-01
Recent work on the development of single-reference perturbation theories for the study of excited electronic states will be discussed. The utility of these methods will be demonstrated by comparison to linear-response coupled-cluster excitation energies. Results for some halogen molecules of interest in stratospheric chemistry will be presented.
NASA Astrophysics Data System (ADS)
Miller, Amy E. S.; Feigerle, C. S.; Lineberger, W. C.
1986-04-01
The laser photoelectron spectra of MnH-2, FeH-2, CoH-2, and NiH-2 and the analogous deuterides are reported. Lack of vibrational structure in the spectra suggests that all of the dihydrides and their negative ions have linear geometries, and that the transitions observed in the spectra are due to the loss of nonbonding d electrons. The electron affinities for the metal dihydrides are determined to be 0.444±0.016 eV for MnH2, 1.049±0.014 eV for FeH2, 1.450±0.014 eV for CoH2, and 1.934±0.008 eV for NiH2. Electronic excitation energies are provided for excited states of FeH2, CoH2, and NiH2. Electron affinities and electronic excitation energies for the dideuterides are also reported. A limit on the electron affinity of CrH2 of ≥2.5 eV is determined. The electron affinities of the dihydrides directly correlate with the electron affinities of the high-spin states of the monohydrides, and with the electron affinities of the metal atoms. These results are in agreement with a qualitative model developed for bonding in the monohydrides.
Sokolowski-Tinten, K; Shen, X; Zheng, Q; Chase, T; Coffee, R; Jerman, M; Li, R K; Ligges, M; Makasyuk, I; Mo, M; Reid, A H; Rethfeld, B; Vecchione, T; Weathersby, S P; Dürr, H A; Wang, X J
2017-09-01
We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubell, M.S.
1980-06-01
Motivated by the need for measurements of metastable depopulation mechanisms of Ar and Kr in the KrF rare-gas monohalide excimer laser, an ultra-high vacuum triple crossed-beams apparatus has been designed, fabricated, and assembled for the purpose of studying electron scattering from excited states of Ar and Kr atoms. A beam of metastable rare gas atoms, produced by near-resonant charge transfer of rare gas ions with alkali neutral atoms, is crossed by an electron beam and a far-red laser beam along mutually orthogonal axes. A hemispherical electron monochromator-spectrometer pair is used to measure the cross section for electron scattering from themore » 2p/sub 9/ excited state of the rare gas atom. Testing of parts of the assembled apparatus has been completed.« less
The effect of electron collisions on rotational excitation of cometary water
NASA Technical Reports Server (NTRS)
Xie, Xingfa; Mumma, Michael J.
1991-01-01
The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in Comet Halley. The e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus, in the case of the O sub 00 yields 1 sub 11 transition. The estimates are based on theoretical and experimental studies of e-H2O collisions, on ion and electron parameters acquired in-situ by instruments on the Giotto and Vega spacecraft, and on results obtained from models of the cometary ionosphere. The contribution of electron collisions may explain the need for large water-water cross-sections in models which neglect the effect of electrons. The importance of electron collisions is enhanced for populations of water molecules in regions where their rotational lines are optically thick.
Sokolowski-Tinten, K.; Shen, X.; Zheng, Q.; Chase, T.; Coffee, R.; Jerman, M.; Li, R. K.; Ligges, M.; Makasyuk, I.; Mo, M.; Reid, A. H.; Rethfeld, B.; Vecchione, T.; Weathersby, S. P.; Dürr, H. A.; Wang, X. J.
2017-01-01
We apply time-resolved MeV electron diffraction to study the electron-lattice energy relaxation in thin film Au-insulator heterostructures. Through precise measurements of the transient Debye-Waller-factor, the mean-square atomic displacement is directly determined, which allows to quantitatively follow the temporal evolution of the lattice temperature after short pulse laser excitation. Data obtained over an extended range of laser fluences reveal an increased relaxation rate when the film thickness is reduced or the Au-film is capped with an additional insulator top-layer. This behavior is attributed to a cross-interfacial coupling of excited electrons in the Au film to phonons in the adjacent insulator layer(s). Analysis of the data using the two-temperature-model taking explicitly into account the additional energy loss at the interface(s) allows to deduce the relative strength of the two relaxation channels. PMID:28795080
Self-amplified photo-induced gap quenching in a correlated electron material
Mathias, S.; Eich, S.; Urbancic, J.; Michael, S.; Carr, A. V.; Emmerich, S.; Stange, A.; Popmintchev, T.; Rohwer, T.; Wiesenmayer, M.; Ruffing, A.; Jakobs, S.; Hellmann, S.; Matyba, P.; Chen, C.; Kipp, L.; Bauer, M.; Kapteyn, H. C.; Schneider, H. C.; Rossnagel, K.; Murnane, M. M.; Aeschlimann, M.
2016-01-01
Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation. PMID:27698341
Coulomb-repulsion-assisted double ionization from doubly excited states of argon
NASA Astrophysics Data System (ADS)
Liao, Qing; Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Adhikari, Pradip; Li, Wen
2017-08-01
We report a combined experimental and theoretical study to elucidate nonsequential double-ionization dynamics of argon atoms at laser intensities near and below the recollision-induced ionization threshold. Three-dimensional momentum measurements of two electrons arising from strong-field nonsequential double ionization are achieved with a custom-built electron-electron-ion coincidence apparatus, showing laser intensity-dependent Coulomb repulsion effect between the two outgoing electrons. Furthermore, a previously predicted feature of double ionization from doubly excited states is confirmed in the distributions of sum of two-electron momenta. A classical ensemble simulation suggests that Coulomb-repulsion-assisted double ionization from doubly excited states is at play at low laser intensity. This mechanism can explain the dependence of Coulomb repulsion effect on the laser intensity, as well as the transition from side-by-side to back-to-back dominant emission along the laser polarization direction.
Study on the parameters of the scanning system for the 300 keV electron accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leo, K. W.; Chulan, R. M., E-mail: leo@nm.gov.my; Hashim, S. A.
2016-01-22
This paper describes the method to identify the magnetic coil parameters of the scanning system. This locally designed low energy electron accelerator with the present energy of 140 keV will be upgraded to 300 keV. In this accelerator, scanning system is required to deflect the energetic electron beam across a titanium foil in vertical and horizontal direction. The excitation current of the magnetic coil is determined by the energy of the electron beam. Therefore, the magnetic coil parameters must be identified to ensure the matching of the beam energy and excitation coil current. As the result, the essential parameters ofmore » the effective lengths for X-axis and Y-axis have been found as 0.1198 m and 0.1134 m and the required excitation coil currents which is dependenton the electron beam energies have be identified.« less
He, Feng; Ruiz, Camilo; Becker, Andreas
2007-08-24
We study the control of dissociation of the hydrogen molecular ion and its isotopes exposed to two ultrashort laser pulses by solving the time-dependent Schrödinger equation. While the first ultraviolet pulse is used to excite the electron wave packet on the dissociative 2psigma{u} state, a second time-delayed near-infrared pulse steers the electron between the nuclei. Our results show that by adjusting the time delay between the pulses and the carrier-envelope phase of the near-infrared pulse, a high degree of control over the electron localization on one of the dissociating nuclei can be achieved (in about 85% of all fragmentation events). The results demonstrate that current (sub-)femtosecond technology can provide a control over both electron excitation and localization in the fragmentation of molecules.
Electron-impact excitation of diatomic hydride cations - I. HeH+, CH+, ArH+
NASA Astrophysics Data System (ADS)
Hamilton, James R.; Faure, Alexandre; Tennyson, Jonathan
2016-01-01
R-matrix calculations combined with the adiabatic nuclei approximation are used to compute electron-impact rotational excitation rates for three closed-shell diatomic cations, HeH+, CH+, ArH+. Comparisons with previous studies show that an improved treatment of threshold effects leads to significant changes in the low temperature rates; furthermore the new calculations suggest that excitation of CH+ is dominated by ΔJ = 1 transitions as is expected for cations with a large dipole moment. A model for ArH+ excitation in the Crab nebula is presented which gives results consistent with the observations for electron densities in the range 2-3 × 103 cm-3.
Electron impact excitation of argon in the extreme vacuum ultraviolet
NASA Technical Reports Server (NTRS)
Mentall, J. E.; Morgan, H. D.
1976-01-01
Polarization-free excitation cross sections in the extreme vacuum ultraviolet have been measured for electron impact on Ar. Observed spectral features were those lines of Ar I and Ar II which lie between 700 and 1100 A. Excitation functions were measured for the Ar I resonance line at 1048 A and the Ar II resonance line at 920 A. Peak cross sections for these two lines were found to be (39.4 plus or minus 7.9) x 10 to the -18th and (6.9 plus or minus 1.4) x 10 to the -18th, respectively. At low energies, excitation of the Ar II resonance line is dominated by an electron exchange transition.
NASA Technical Reports Server (NTRS)
Morgan, H. D.; Mentall, J. E.
1974-01-01
Absolute excitation functions for excited fragments resulting from electron bombardment of H2O, NH3, and CH4 by low-energy electrons (0 to 300 eV) have been measured in the vacuum ultraviolet (1100 to 1950 A). The predominant emission for each molecule was the H Lyman-alpha line, while the O I, N I, C I, and C II emissions were at least an order of magnitude weaker. Absolute cross sections at 100 eV are given along with the appearance potential of the various processes and the possible dissociative-excitation channels through which such processes proceed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarana, Michal; JILA, University of Colorado and NIST, Boulder, Colorado 80309-0440; Houfek, Karel
We present a study of dissociative electron attachment and vibrational excitation processes in electron collisions with the CF{sub 3}Cl molecule. The calculations are based on the two-dimensional nuclear dynamics including the C-Cl symmetric stretch coordinate and the CF{sub 3} symmetric deformation (umbrella) coordinate. The complex potential energy surfaces are calculated using the ab initio R-matrix method. The results for dissociative attachment and vibrational excitation of the umbrella mode agree quite well with experiment whereas the cross section for excitation of the C-Cl symmetric stretch vibrations is about a factor-of-three too low in comparison with experimental data.
Injection locking of an electronic maser in the hard excitation mode
NASA Astrophysics Data System (ADS)
Yakunina, K. A.; Kuznetsov, A. P.; Ryskin, N. M.
2015-11-01
The phenomenon of hard excitation is natural for many electronic oscillators. In particular, in a gyrotron, a maximal efficiency is often attained in the hard excitation regime. In this paper, we study the injection-locking phenomena using two models of an electronic maser in the hard excitation mode. First, bifurcation analysis is performed for the quasilinear model described by ordinary differential equations for the slow amplitude and phase. Two main scenarios of transition to the injection-locked mode are described, which are generalizations of the well-known phase-locking and suppression mechanisms. The results obtained for the quasilinear model are confirmed by numerical simulations of a gyrotron with fixed Gaussian structure of the RF field.
Structures and Binding Energies of the Naphthalene Dimer in Its Ground and Excited States.
Dubinets, N O; Safonov, A A; Bagaturyants, A A
2016-05-05
Possible structures of the naphthalene dimer corresponding to local energy minima in the ground and excited (excimer) electronic states are comprehensively investigated using DFT-D and TDDFT-D methods with a special accent on the excimer structures. The corresponding binding and electronic transition energies are calculated, and the nature of the electronic states in different structures is analyzed. Several parallel (stacked) and T-shaped structures were found in both the ground and excited (excimer) states in a rather narrow energy range. The T-shaped structure with the lowest energy in the excited state exhibits a marked charge transfer from the upright molecule to the base one.
Excitation of atomic nitrogen by electron impact
NASA Technical Reports Server (NTRS)
Stone, E. J.; Zipf, E. C.
1972-01-01
Absolute cross sections were measured for the excitation of the N I(1134, 1164, 1168, 1200, 1243, and 1743 A) multiplets by electron impact on atomic nitrogen. The presence of vibrationally excited molecular nitrogen in the discharged gas was confirmed, and its effect on the measurements is discussed. The ratio of the oscillator strengths of the 1200 and 1134 A resonance transitions is presented, as well as the branching ratio for the N I(1311/1164 A) multiplets. Striking differences in the distribution of intensity between the spectra of atomic nitrogen and molecular nitrogen excited by energetic electrons suggest an optical method for measuring the density of atomic nitrogen in the upper atmosphere.
Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; ...
2017-07-04
A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. In this paper, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH 3NH 3PbI 3–xCl x) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmissionmore » microscopies. Comprehensive image analysis revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. Finally, these results show that PL probes effectively the species near or at the film surface.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giri, Ashutosh; Hopkins, Patrick E., E-mail: phopkins@virginia.edu
2015-12-07
Several dynamic thermal and nonthermal scattering processes affect ultrafast heat transfer in metals after short-pulsed laser heating. Even with decades of measurements of electron-phonon relaxation, the role of thermal vs. nonthermal electron and phonon scattering on overall electron energy transfer to the phonons remains unclear. In this work, we derive an analytical expression for the electron-phonon coupling factor in a metal that includes contributions from equilibrium and nonequilibrium distributions of electrons. While the contribution from the nonthermal electrons to electron-phonon coupling is non-negligible, the increase in the electron relaxation rates with increasing laser fluence measured by thermoreflectance techniques cannot bemore » accounted for by only considering electron-phonon relaxations. We conclude that electron-electron scattering along with electron-phonon scattering have to be considered simultaneously to correctly predict the transient nature of electron relaxation during and after short-pulsed heating of metals at elevated electron temperatures. Furthermore, for high electron temperature perturbations achieved at high absorbed laser fluences, we show good agreement between our model, which accounts for d-band excitations, and previous experimental data. Our model can be extended to other free electron metals with the knowledge of the density of states of electrons in the metals and considering electronic excitations from non-Fermi surface states.« less
Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin
2013-11-01
Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening. Copyright © 2013 Elsevier B.V. All rights reserved.
Bosonic excitations and electron pairing in an electron-doped cuprate superconductor
NASA Astrophysics Data System (ADS)
Wang, M. C.; Yu, H. S.; Xiong, J.; Yang, Y.-F.; Luo, S. N.; Jin, K.; Qi, J.
2018-04-01
By applying ultrafast optical spectroscopy to electron-doped La1.9Ce0.1CuO4 ±δ , we discern a bosonic mode of electronic origin and provide the evolution of its coupling with the charge carriers as a function of temperature. Our results show that it has the strongest coupling strength near Tc and can fully account for the superconducting pairing. This mode can be associated with the two-dimensional antiferromagnetic spin correlations emerging below a critical temperature T† larger than Tc. Our work may help to establish a quantitative relation between bosonic excitations and superconducting pairing in electron-doped cuprates.
Watching Electrons at Conical Intersections and Funnels
NASA Astrophysics Data System (ADS)
Jonas, David M.; Smith, Eric R.; Peters, William K.; Kitney, Katherine A.
2009-06-01
The electronic motion at conical intersections and funnels is probed after polarized excitation of aligned electronic wavepackets. The pulses have bandwidth sufficient to observe vibrations mainly through their effect on the electrons. Vibrational symmetry can be identified by the polarization anisotropy of vibrational quantum beats. The polarized transients show signatures of electronic wavepacket motion (due to the energy gaps) and of electron transfer between orbitals (due to the couplings) driven by the conical intersection. For a conical intersection in a four-fold symmetric symmetry silicon naphthalocyanine molecule, electronic motions on a 100 fs timescale are driven by couplings of 1 meV. In the lower symmetry free-base naphthalocyanine, the conical intersection may be missed or missing (conical funnel), and the motions are nearly as rapid, but electronic equilibration is incomplete for red-edge excitation. These experiments probe non-adiabatic electronic dynamics with near-zero nuclear momentum - the electronic motions are determined by the principal slopes of the conical intersection and the width of the vibrational wavepacket.
NASA Astrophysics Data System (ADS)
Zho, Chen-Chen; Farr, Erik P.; Glover, William J.; Schwartz, Benjamin J.
2017-08-01
We use one-electron non-adiabatic mixed quantum/classical simulations to explore the temperature dependence of both the ground-state structure and the excited-state relaxation dynamics of the hydrated electron. We compare the results for both the traditional cavity picture and a more recent non-cavity model of the hydrated electron and make definite predictions for distinguishing between the different possible structural models in future experiments. We find that the traditional cavity model shows no temperature-dependent change in structure at constant density, leading to a predicted resonance Raman spectrum that is essentially temperature-independent. In contrast, the non-cavity model predicts a blue-shift in the hydrated electron's resonance Raman O-H stretch with increasing temperature. The lack of a temperature-dependent ground-state structural change of the cavity model also leads to a prediction of little change with temperature of both the excited-state lifetime and hot ground-state cooling time of the hydrated electron following photoexcitation. This is in sharp contrast to the predictions of the non-cavity model, where both the excited-state lifetime and hot ground-state cooling time are expected to decrease significantly with increasing temperature. These simulation-based predictions should be directly testable by the results of future time-resolved photoelectron spectroscopy experiments. Finally, the temperature-dependent differences in predicted excited-state lifetime and hot ground-state cooling time of the two models also lead to different predicted pump-probe transient absorption spectroscopy of the hydrated electron as a function of temperature. We perform such experiments and describe them in Paper II [E. P. Farr et al., J. Chem. Phys. 147, 074504 (2017)], and find changes in the excited-state lifetime and hot ground-state cooling time with temperature that match well with the predictions of the non-cavity model. In particular, the experiments reveal stimulated emission from the excited state with an amplitude and lifetime that decreases with increasing temperature, a result in contrast to the lack of stimulated emission predicted by the cavity model but in good agreement with the non-cavity model. Overall, until ab initio calculations describing the non-adiabatic excited-state dynamics of an excess electron with hundreds of water molecules at a variety of temperatures become computationally feasible, the simulations presented here provide a definitive route for connecting the predictions of cavity and non-cavity models of the hydrated electron with future experiments.
NASA Technical Reports Server (NTRS)
Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
At high altitudes and velocities equal to or greater than the geosynchronous return velocity (10 kilometers per second), the shock layer of a hypersonic flight will be in thermochemical nonequilibrium and partially ionized. The amount of ionization is determined by the velocity. For a trans atmospheric flight of 10 kilometers per second and at an altitude of 80 kilometers, a maximum of 1% ionization is expected. At a velocity of 12 - 17 kilometer per second, such as a Mars return mission, up to 30% of the atoms and molecules in the flow field will be ionized. Under those circumstances, electrons play an important role in determining the internal states of atoms and molecules in the flow field and hence the amount of radiative heat load and the distance it takes for the flow field to re-establish equilibrium. Electron collisions provide an effective means of transferring energy even when the electron number density is as low as 1%. Because the mass of an electron is 12,760 times smaller than the reduced mass of N2, its average speed, and hence its average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron-molecule collisions is equal to or larger than that of molecule-molecule collisions, an important consideration in the low density part of the atmosphere. Three electron-molecule collision processes relevant to hypersonic flows will be considered: (1) vibrational excitation/de-excitation of a diatomic molecule by electron impact, (2) electronic excitation/de-excitation, and (3) dissociative recombination in electron-diatomic ion collisions. A review of available data, both theory and experiment, will be given. Particular attention will be paid to tailoring the molecular physics to the condition of hypersonic flows. For example, the high rotational temperatures in a hypersonic flow field means that most experimental data carried out under room temperatures are not applicable. Also, the average electron temperature is expected to be between 10,000 and 20,000 K. Thus only data for low energy electrons are relevant to the model.
NASA Astrophysics Data System (ADS)
Ranković, Miloš Lj.; Giuliani, Alexandre; Milosavljević, Aleksandar R.
2016-02-01
We have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS2) and allows performing action spectroscopy. Electron impact MS2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1 s excitation. Both MS2 and single ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.
NASA Astrophysics Data System (ADS)
Morozov, A.; Krücken, R.; Ulrich, A.; Wieser, J.
2006-11-01
Side-view intensity profiles of fluorescent light were measured for neon and nitrogen excited with 12keV electron beams at gas pressures from 250to1400hPa. The intensity profiles were compared with theoretical profiles calculated using the CASINO program which performs Monte Carlo simulations of electron scattering. It was assumed that the spatial distribution of fluorescent intensity is directly proportional to the spatial distribution of energy loss by primary electrons. The comparison shows good correlation of experimental data and the results of numeric simulations.
NASA Astrophysics Data System (ADS)
Kudryashov, Sergey I.
2004-09-01
Analysis of processes affecting transient optical absorption and photogeneration of electron-hole plasma in silicon pumped by an intense NIR or visible femtosecond laser pulse has been performed taking into account the most important electron-photon, electron-electron and electron-phonon interactions and, as a result, two main regimes of such laser-matter interaction have been revealed. The first regime is concerned with indirect interband optical absorption in Si, enhanced by a coherent shrinkage of its smallest indirect bandgap due to dynamic Franz-Keldysh effect (DFKE). The second regime takes place due to the critical renormalization of the Si direct bandgap along Λ-axis of its first Brillouin zone because of DFKE and the deformation potential electron-phonon interaction and occurs as intense direct single-photon excitation of electrons into one of the quadruplet of equivalent Λ-valleys in the lowest conduction band, which is split down due to the electron-phonon interaction.
Search for excited fermions with the H1 detector
NASA Astrophysics Data System (ADS)
Adloff, C.; Aid, S.; Anderson, M.; Andreev, V.; Andrieu, B.; Arndt, C.; Babaev, A.; Bähr, J.; Bán, J.; Ban, Y.; Baranov, P.; Barrelet, E.; Barschke, R.; Bartel, W.; Barth, M.; Bassler, U.; Beck, M.; Beck, H. P.; Behrend, H.-J.; Belousov, A.; Berger, Ch.; Bernardi, G.; Bertrand-Coremans, G.; Besançon, M.; Beyer, R.; Biddulph, P.; Bispham, P.; Bizot, J. C.; Blobel, V.; Borras, K.; Botterweck, F.; Boudry, V.; Braemer, A.; Braunschweig, W.; Brisson, V.; Brückner, W.; Bruel, P.; Bruncko, D.; Brune, C.; Buchholz, R.; Büngener, L.; Bürger, J.; Büsser, F. W.; Buniatian, A.; Burke, S.; Burton, M. J.; Calvet, D.; Campbell, A. J.; Carli, T.; Charlet, M.; Clarke, D.; Clegg, A. B.; Clerbaux, B.; Cocks, S.; Contreras, J. G.; Cormack, C.; Coughlan, J. A.; Courau, A.; Cousinou, M.-C.; Cozzika, G.; Criegee, L.; Cussans, D. G.; Cvach, J.; Dagoret, S.; Dainton, J. B.; Dau, W. D.; Daum, K.; David, M.; Davis, C. L.; Delcourt, B.; De Roeck, A.; De Wolf, E. A.; Dirkmann, M.; Dixon, P.; Di Nezza, P.; Dlugosz, W.; Dollfus, C.; Donovan, K. T.; Dowell, J. D.; Dreis, H. B.; Droutskoi, A.; Dünger, O.; Duhm, H.; Ebert, J.; Ebert, T. R.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Elsen, E.; Erdmann, M.; Erdmann, W.; Fahr, A. B.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrarotto, F.; Flamm, K.; Fleischer, M.; Flieser, M.; Flügge, G.; Fomenko, A.; Formánek, J.; Foster, J. M.; Franke, G.; Fretwurst, E.; Gabathuler, E.; Gabathuler, K.; Gaede, F.; Garvey, J.; Gayler, J.; Gebauer, M.; Genzel, H.; Gerhards, R.; Glazov, A.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goldner, D.; Golec-Biernat, K.; Gonzalez-Pineiro, B.; Gorelov, I.; Grab, C.; Grässler, H.; Greenshaw, T.; Griffiths, R. K.; Grindhammer, G.; Gruber, A.; Gruber, C.; Hadig, T.; Haidt, D.; Hajduk, L.; Haller, T.; Hampel, M.; Haynes, W. J.; Heinemann, B.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herynek, I.; Hess, M. F.; Hewitt, K.; Hildesheim, W.; Hiller, K. H.; Hilton, C. D.; Hladký, J.; Höppner, M.; Hoffmann, D.; Holtom, T.; Horisberger, R.; Hudgson, V. L.; Hütte, M.; Ibbotson, M.; Itterbeck, H.; Jacholkowska, A.; Jacobsson, C.; Jaffre, M.; Janoth, J.; Jansen, D. M.; Jansen, T.; Jönsson, L.; Johnson, D. P.; Jung, H.; Kalmus, P. I. P.; Kander, M.; Kant, D.; Kaschowitz, R.; Kathage, U.; Katzy, J.; Kaufmann, H. H.; Kaufmann, O.; Kausch, M.; Kazarian, S.; Kenyon, I. R.; Kermiche, S.; Keuker, C.; Kiesling, C.; Klein, M.; Kleinwort, C.; Knies, G.; Köhler, T.; Köhne, J. H.; Kolanoski, H.; Kolya, S. D.; Korbel, V.; Kostka, P.; Kotelnikov, S. K.; Krämerkämper, T.; Krasny, M. W.; Krehbiel, H.; Krücker, D.; Küster, H.; Kuhlen, M.; Kurča, T.; Kurzhöfer, J.; Lacour, D.; Laforge, B.; Landon, M. P. J.; Lange, W.; Langenegger, U.; Lebedev, A.; Lehner, F.; Levonian, S.; Lindström, G.; Lindstroem, M.; Linsel, F.; Lipinski, J.; List, B.; Lobo, G.; Loch, P.; Lomas, J. W.; Lopez, G. C.; Lubimov, V.; Lüke, D.; Lytkin, L.; Magnussen, N.; Malinovski, E.; Maraček, R.; Marage, P.; Marks, J.; Marshall, R.; Martens, J.; Martin, G.; Martin, R.; Martyn, H.-U.; Martyniak, J.; Mavroidis, T.; Maxfield, S. J.; McMahon, S. J.; Mehta, A.; Meier, K.; Metlica, F.; Meyer, A.; Meyer, A.; Meyer, H.; Meyer, J.; Meyer, P.-O.; Migliori, A.; Mikocki, S.; Milstead, D.; Moeck, J.; Moreau, F.; Morris, J. V.; Mroczko, E.; Müller, D.; Müller, G.; Müller, K.; Murín, P.; Nagovizin, V.; Nahnhauer, R.; Naroska, B.; Naumann, Th.; Négri, I.; Newman, P. R.; Newton, D.; Nguyen, H. K.; Nicholls, T. C.; Niebergall, F.; Niebuhr, C.; Niedzballa, Ch.; Niggli, H.; Nowak, G.; Noyes, G. W.; Nunnemann, T.; Nyberg-Werther, M.; Oakden, M.; Oberlack, H.; Olsson, J. E.; Ozerov, D.; Palmen, P.; Panaro, E.; Panitch, A.; Pascaud, C.; Patel, G. D.; Pawletta, H.; Peppel, E.; Perez, E.; Phillips, J. P.; Pieuchot, A.; Pitzl, D.; Pope, G.; Povh, B.; Prell, S.; Rabbertz, K.; Rädel, G.; Reimer, P.; Reinshagen, S.; Rick, H.; Riepenhausen, F.; Riess, S.; Rizvi, E.; Robmann, P.; Roloff, H. E.; Roosen, R.; Rosenbauer, K.; Rostovtsev, A.; Rouse, F.; Royon, C.; Rüter, K.; Rusakov, S.; Rybicki, K.; Sankey, D. P. C.; Schacht, P.; Schiek, S.; Schleif, S.; Schleper, P.; von Schlippe, W.; Schmidt, D.; Schmidt, G.; Schoeffel, L.; Schöning, A.; Schröder, V.; Schuhmann, E.; Schwab, B.; Sefkow, F.; Sell, R.; Semenov, A.; Shekelyan, V.; Sheviakov, I.; Shtarkov, L. N.; Siegmon, G.; Siewert, U.; Sirois, Y.; Skillicorn, I. O.; Smirnov, P.; Solochenko, V.; Soloviev, Y.; Specka, A.; Spiekermann, J.; Spielman, S.; Spitzer, H.; Squinabol, F.; Steffen, P.; Steinberg, R.; Steiner, H.; Steinhart, J.; Stella, B.; Stellberger, A.; Stier, J.; Stiewe, J.; Stößlein, U.; Stolze, K.; Straumann, U.; Struczinski, W.; Sutton, J. P.; Tapprogge, S.; Taševský, M.; Tchernyshov, V.; Tchetchelnitski, S.; Theissen, J.; Thiebaux, C.; Thompson, G.; Tobien, N.; Todenhagen, R.; Truöl, P.; Tsipolitis, G.; Turnau, J.; Tutas, J.; Tzamariudaki, E.; Uelkes, P.; Usik, A.; Valkár, S.; Valkárová, A.; Vallée, C.; Vandenplas, D.; Van Esch, P.; Van Mechelen, P.; Vazdik, Y.; Verrecchia, P.; Villet, G.; Wacker, K.; Wagener, A.; Wagener, M.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Wegner, A.; Wengler, T.; Werner, M.; West, L. R.; Wilksen, T.; Willard, S.; Winde, M.; Winter, G.-G.; Wittek, C.; Wobisch, M.; Wünsch, E.; Žáček, J.; Zarbock, D.; Zhang, Z.; Zhokin, A.; Zini, P.; Zomer, F.; Zsembery, J.; Zuber, K.; zurNedden, M.; H1 Collaboration
1997-02-01
We present a search for excited electrons, neutrinos and quarks using the H1 detector at the ep collider HERA, based on data taken in 1994 with an integrated luminosity of 2.75 pb -1. Radiative decays of excited quarks and neutrinos have been investigated as well as decays of excited electrons into all possible electroweak gauge bosons. No evidence for new particle production is found and exclusion limits are derived.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vriens, L.; Smeets, A.H.M.
1980-09-01
For electron-induced ionization, excitation, and de-excitation, mainly from excited atomic states, a detailed analysis is presented of the dependence of the cross sections and rate coefficients on electron energy and temperature, and on atomic parameters. A wide energy range is covered, including sudden as well as adiabatic collisions. By combining the available experimental and theoretical information, a set of simple analytical formulas is constructed for the cross sections and rate coefficients of the processes mentioned, for the total depopulation, and for three-body recombination. The formulas account for large deviations from classical and semiclassical scaling, as found for excitation. They agreemore » with experimental data and with the theories in their respective ranges of validity, but have a wider range of validity than the separate theories. The simple analytical form further facilitates the application in plasma modeling.« less
A search for chemical laser action in low pressure metal vapor flames. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Zwillenberg, M. L.
1975-01-01
Optical emissions were studied from low pressure (approximately 1 torr) dilute diffusion flames of Ca and Mg vapor with O2, N2O and mixtures of CCl4 and O2. The Ca flames with O2 and N2O revealed high vibrational excitation of the product CaO molecule (up to v=30). The flames with CCl4 revealed extreme nonequilibrium metal atom electronic excitation, up to the metal atom ionization limit (6.1 eV for Ca, 7.6 eV for Mg). The metal atom excited electronic state populations did not follow a Boltzmann distribution, but the excitation rates ('pumping rate') were found to obey an Arrhenius-type expression, with the electronic excitation energy playing the role of activation energy and a temperature of about 5000 K for triplet excited states and 2500 K for singlets (vs. approximately 500 K translational temperature).
NASA Technical Reports Server (NTRS)
Salter, Latasha M.; Chaban, Galina M.; Kwak, Dochan (Technical Monitor)
2002-01-01
Geometrical structures and energetic properties for different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest singlet excited state potential energy surfaces are studied. Four tautomeric forms are considered, and their energetic order is found to be different on the ground and the excited state potential energy surfaces. Minimum energy reaction paths are obtained for hydrogen atom transfer (tautomerization) reactions in the ground and the lowest excited electronic states. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic states, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. This tautomerization process should become possible in the presence of water or other polar solvent molecules and should play an important role in the photochemistry of adenine.
Pernal, Katarzyna
2012-05-14
Time-dependent density functional theory (TD-DFT) in the adiabatic formulation exhibits known failures when applied to predicting excitation energies. One of them is the lack of the doubly excited configurations. On the other hand, the time-dependent theory based on a one-electron reduced density matrix functional (time-dependent density matrix functional theory, TD-DMFT) has proven accurate in determining single and double excitations of H(2) molecule if the exact functional is employed in the adiabatic approximation. We propose a new approach for computing excited state energies that relies on functionals of electron density and one-electron reduced density matrix, where the latter is applied in the long-range region of electron-electron interactions. A similar approach has been recently successfully employed in predicting ground state potential energy curves of diatomic molecules even in the dissociation limit, where static correlation effects are dominating. In the paper, a time-dependent functional theory based on the range-separation of electronic interaction operator is rigorously formulated. To turn the approach into a practical scheme the adiabatic approximation is proposed for the short- and long-range components of the coupling matrix present in the linear response equations. In the end, the problem of finding excitation energies is turned into an eigenproblem for a symmetric matrix. Assignment of obtained excitations is discussed and it is shown how to identify double excitations from the analysis of approximate transition density matrix elements. The proposed method used with the short-range local density approximation (srLDA) and the long-range Buijse-Baerends density matrix functional (lrBB) is applied to H(2) molecule (at equilibrium geometry and in the dissociation limit) and to Be atom. The method accounts for double excitations in the investigated systems but, unfortunately, the accuracy of some of them is poor. The quality of the other excitations is in general much better than that offered by TD-DFT-LDA or TD-DMFT-BB approximations if the range-separation parameter is properly chosen. The latter remains an open problem.
Electron-impact coherence parameters for 41 P 1 excitation of zinc
NASA Astrophysics Data System (ADS)
Piwiński, Mariusz; Kłosowski, Łukasz; Chwirot, Stanisław; Fursa, Dmitry V.; Bray, Igor; Das, Tapasi; Srivastava, Rajesh
2018-04-01
We present electron-impact coherence parameters (EICP) for electron-impact excitation of 41 P 1 state of zinc atoms for collision energies 40 eV and 60 eV. The experimental results are presented together with convergent close-coupling and relativistic distorted-wave approximation theoretical predictions. The results are compared and discussed with EICP data for collision energies 80 eV and 100 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Istomin, V. A.; Kustova, E. V.; Mekhonoshina, M. A.
2014-12-09
In the present work we evaluate the accuracy of the Eucken formula and Stokes’ viscosity relation in high temperature non-equilibrium air species with electronic excitation. The thermal conductivity coefficient calculated using the exact kinetic theory methods is compared with that obtained applying approximate formulas in the temperature range 200–20000 K. A modification of the Eucken formula providing a good agreement with exact calculations is proposed. It is shown that the Stokes viscosity relation is not valid in electronically excited monoatomic gases at temperatures higher than 2000 K.
Li, Zhi; Yue, Song; Chen, Jianjun; Gong, Qihuang
2010-06-21
Ultrahigh spatiotemporal resolved pump-probe signal near a gold nano-slit is detected by femtosecond-SNOM. By employing two-color pump-probe configuration and probing at the interband transition wavelength of the gold, signal contributed by surface plasmon polariton is avoided and spatiotemporal evolvement of excited electrons is successfully observed. From the contrast decaying of the periodical distribution of the pump-probe signal, ultrafast diffusion of excited electrons with a time scale of a few hundred femtoseconds is clearly identified. For comparison, such phenomenon cannot be observed by the one-color pump-probe configuration.
Fragmentation mechanism of UV-excited peptides in the gas phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabuga, Aleksandra V., E-mail: aleksandra.zabuga@epfl.ch; Kamrath, Michael Z.; Boyarkin, Oleg V.
We present evidence that following near-UV excitation, protonated tyrosine- or phenylalanine–containing peptides undergo intersystem crossing to produce a triplet species. This pathway competes with direct dissociation from the excited electronic state and with dissociation from the electronic ground state subsequent to internal conversion. We employ UV-IR double-resonance photofragment spectroscopy to record conformer-specific vibrational spectra of cold peptides pre-excited to their S{sub 1} electronic state. The absorption of tunable IR light by these electronically excited peptides leads to a drastic increase in fragmentation, selectively enhancing the loss of neutral phenylalanine or tyrosine side-chain, which are not the lowest dissociation channels inmore » the ground electronic state. The recorded IR spectra evolve upon increasing the time delay between the UV and IR pulses, reflecting the dynamics of the intersystem crossing on a timescale of ∼80 ns and <10 ns for phenylalanine- and tyrosine-containing peptides, respectively. Once in the triplet state, phenylalanine-containing peptides may live for more than 100 ms, unless they absorb IR photons and undergo dissociation by the loss of an aromatic side-chain. We discuss the mechanism of this fragmentation channel and its possible implications for photofragment spectroscopy and peptide photostability.« less
Chemical modulation of electronic structure at the excited state
NASA Astrophysics Data System (ADS)
Li, F.; Song, C.; Gu, Y. D.; Saleem, M. S.; Pan, F.
2017-12-01
Spin-polarized electronic structures are the cornerstone of spintronics, and have thus attracted a significant amount of interest; in particular, researchers are looking into how to modulate the electronic structure to enable multifunctional spintronics applications, especially in half-metallic systems. However, the control of the spin polarization has only been predicted in limited two-dimensional systems with spin-polarized Dirac structures and is difficult to achieve experimentally. Here, we report the modulation of the electronic structure in the light-induced excited state in a typical half-metal, L a1 /2S r1 /2Mn O3 -δ . According to the spin-transport measurements, there appears a light-induced increase in magnetoresistance due to the enhanced spin scattering, which is closely associated with the excited spin polarization. Strikingly, the light-induced variation can be enhanced via alcohol processing and reduced by oxygen annealing. X-ray photoelectron spectroscopy measurements show that in the chemical process, a redox reaction occurs with a change in the valence of Mn. Furthermore, first-principles calculations reveal that the change in the valence of Mn alters the electronic structure and consequently modulates the spin polarization in the excited state. Our findings thus report a chemically tunable electronic structure, demonstrating interesting physics and the potential for multifunctional applications and ultrafast spintronics.
Watching the electronic motions driven by a conical intersection
NASA Astrophysics Data System (ADS)
Jonas, David
2007-03-01
In chemistry, the fastest electronic rearrangements proceed through ``conical intersections'' between electronic potential energy surfaces. With sufficiently short pulses, the electronic motion can be isolated by polarized excitation of aligned electronic wavepackets at a conical intersection. Polarized femtosecond probing reveals signatures of electronic wavepacket motion (due to the energy gaps) and of electron transfer between orbitals (due to the couplings) driven by the conical intersection. After exciting a D4h symmetry silicon naphthalocyanine molecule onto a Jahn-Teller conical intersection in the first excited state, electronic motions cause a ˜100 fs drop in the pump-probe polarization anisotropy. The polarized vibrational modulations of the signal can be used to deduce the symmetry and stabilization energies for each vibration. The initial decay of the polarization anisotropy can be quantitatively predicted from these vibrational parameters. Both coupling and energy gap variations are important on the ˜100 fs timescale. A 1 meV stabilization drives electrons from orbital to orbital in 100 fs, and the theory indicates that a chemically reactive conical intersection with 1000x greater stabilization energy could cause electronic equilibration within 2 fs. We have recently carried out experiments on a nominally D2h symmetry free-base naphthalocyanine for which the splitting between x and y polarized transitions is not resolved in the linear spectrum. For this molecule, the anisotropy also decays on a similar timescale and exhibits damped modulations whose origin (vibrational or electronic) has not yet been determined. The role of the central protons and nominal D2h symmetry in the electronic dynamics will be discussed.
Probing collective oscillation of d-orbital electrons at the nanoscale
NASA Astrophysics Data System (ADS)
Dhall, Rohan; Vigil-Fowler, Derek; Houston Dycus, J.; Kirste, Ronny; Mita, Seiji; Sitar, Zlatko; Collazo, Ramon; LeBeau, James M.
2018-02-01
Here, we demonstrate that high energy electrons can be used to explore the collective oscillation of s, p, and d orbital electrons at the nanometer length scale. Using epitaxial AlGaN/AlN quantum wells as a test system, we observe the emergence of additional features in the loss spectrum with the increasing Ga content. A comparison of the observed spectra with ab-initio theory reveals that the origin of these spectral features lies in excitations of 3d-electrons contributed by Ga. We find that these modes differ in energy from the valence electron plasmons in Al1-xGaxN due to the different polarizabilities of the d electrons. Finally, we study the dependence of observed spectral features on the Ga content, lending insights into the origin of these spectral features, and their coupling with electron-hole excitations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sato, Shunsuke A.; Taniguchi, Yasutaka; Department of Medical and General Sciences, Nihon Institute of Medical Science, 1276 Shimogawara, Moroyama-Machi, Iruma-Gun, Saitama 350-0435
2015-12-14
We develop methods to calculate electron dynamics in crystalline solids in real-time time-dependent density functional theory employing exchange-correlation potentials which reproduce band gap energies of dielectrics; a meta-generalized gradient approximation was proposed by Tran and Blaha [Phys. Rev. Lett. 102, 226401 (2009)] (TBm-BJ) and a hybrid functional was proposed by Heyd, Scuseria, and Ernzerhof [J. Chem. Phys. 118, 8207 (2003)] (HSE). In time evolution calculations employing the TB-mBJ potential, we have found it necessary to adopt the predictor-corrector step for a stable time evolution. We have developed a method to evaluate electronic excitation energy without referring to the energy functionalmore » which is unknown for the TB-mBJ potential. For the HSE functional, we have developed a method for the operation of the Fock-like term in Fourier space to facilitate efficient use of massive parallel computers equipped with graphic processing units. We compare electronic excitations in silicon and germanium induced by femtosecond laser pulses using the TB-mBJ, HSE, and a simple local density approximation (LDA). At low laser intensities, electronic excitations are found to be sensitive to the band gap energy: they are close to each other using TB-mBJ and HSE and are much smaller in LDA. At high laser intensities close to the damage threshold, electronic excitation energies do not differ much among the three cases.« less
Effects of model approximations for electron, hole, and photon transport in swift heavy ion tracks
NASA Astrophysics Data System (ADS)
Rymzhanov, R. A.; Medvedev, N. A.; Volkov, A. E.
2016-12-01
The event-by-event Monte Carlo code, TREKIS, was recently developed to describe excitation of the electron subsystems of solids in the nanometric vicinity of a trajectory of a nonrelativistic swift heavy ion (SHI) decelerated in the electronic stopping regime. The complex dielectric function (CDF) formalism was applied in the used cross sections to account for collective response of a matter to excitation. Using this model we investigate effects of the basic assumptions on the modeled kinetics of the electronic subsystem which ultimately determine parameters of an excited material in an SHI track. In particular, (a) effects of different momentum dependencies of the CDF on scattering of projectiles on the electron subsystem are investigated. The 'effective one-band' approximation for target electrons produces good coincidence of the calculated electron mean free paths with those obtained in experiments in metals. (b) Effects of collective response of a lattice appeared to dominate in randomization of electron motion. We study how sensitive these effects are to the target temperature. We also compare results of applications of different model forms of (quasi-) elastic cross sections in simulations of the ion track kinetics, e.g. those calculated taking into account optical phonons in the CDF form vs. Mott's atomic cross sections. (c) It is demonstrated that the kinetics of valence holes significantly affects redistribution of the excess electronic energy in the vicinity of an SHI trajectory as well as its conversion into lattice excitation in dielectrics and semiconductors. (d) It is also shown that induced transport of photons originated from radiative decay of core holes brings the excess energy faster and farther away from the track core, however, the amount of this energy is relatively small.
Electron-phonon relaxation and excited electron distribution in gallium nitride
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukov, V. P.; Donostia International Physics Center; Tyuterev, V. G., E-mail: valtyut00@mail.ru
2016-08-28
We develop a theory of energy relaxation in semiconductors and insulators highly excited by the long-acting external irradiation. We derive the equation for the non-equilibrium distribution function of excited electrons. The solution for this function breaks up into the sum of two contributions. The low-energy contribution is concentrated in a narrow range near the bottom of the conduction band. It has the typical form of a Fermi distribution with an effective temperature and chemical potential. The effective temperature and chemical potential in this low-energy term are determined by the intensity of carriers' generation, the speed of electron-phonon relaxation, rates ofmore » inter-band recombination, and electron capture on the defects. In addition, there is a substantial high-energy correction. This high-energy “tail” largely covers the conduction band. The shape of the high-energy “tail” strongly depends on the rate of electron-phonon relaxation but does not depend on the rates of recombination and trapping. We apply the theory to the calculation of a non-equilibrium distribution of electrons in an irradiated GaN. Probabilities of optical excitations from the valence to conduction band and electron-phonon coupling probabilities in GaN were calculated by the density functional perturbation theory. Our calculation of both parts of distribution function in gallium nitride shows that when the speed of the electron-phonon scattering is comparable with the rate of recombination and trapping then the contribution of the non-Fermi “tail” is comparable with that of the low-energy Fermi-like component. So the high-energy contribution can essentially affect the charge transport in the irradiated and highly doped semiconductors.« less
NASA Astrophysics Data System (ADS)
Wang, Hongyue; Lhuillier, Emmanuel; Yu, Qian; Mottaghizadeh, Alireza; Ulysse, Christian; Zimmers, Alexandre; Dubertret, Benoit; Aubin, Herve
2015-03-01
We present a tunnel spectroscopy study of the electronic spectrum of single PbS Quantum Dots (QDs) trapped between nanometer-spaced electrodes, measured at low temperature T=5 K. The carrier filling of the QD can be controlled either by the drain voltage in the shell filling regime or by a gate voltage. In the empty QD, the tunnel spectrum presents the expected signature of the 8x degenerated excited levels. In the drain controlled shell filling regime, the levels degeneracies are lifted by the global electrostatic Coulomb energy of the QD; in the gate controlled shell filling regime, the levels degeneracies are lifted by the intra-Coulomb interactions. In the charged quantum dot, electron-phonons interactions lead to the apparition of Franck-Condon side bands on the single excited levels and possibly Franck Condon blockade at low energy. The sharpening of excited levels at higher gate voltage suggests that the magnitude of electron-phonon interactions is decreased upon increasing the electron filling in the quantum dot. This work was supported by the French ANR Grants 10-BLAN-0409-01, 09-BLAN-0388-01, by the Region Ile-de-France in the framework of DIM Nano-K and by China Scholarship Council.
NASA Astrophysics Data System (ADS)
Hirota, Eizi
2018-01-01
The unpaired electron orbital of NO3 is of a2‧ symmetry in the ground electronic state, and thus its motion about the symmetry axis of the molecule is free rotation. When a degenerate vibration is excited, however, the free azimuthal rotation of the unpaired electron is perturbed much by nuclear motions of the degenerate mode, as evidenced by high-resolution spectroscopic studies. Thus the ν4 fundamental state, for example, bears some characters of the B ˜ excited electronic state through the Herzberg-Teller (H-T) interaction, and Neumark et al. explained anomalous ν4 progression in the photoelectron spectra of the NO3- anion by the H-T mechanism. However, the interaction parameter Neumark required was too large to reproduce the ν4 molecular parameters in the ground electronic state precisely determined by high-resolution IR spectroscopy. This discrepancy was resolved by the fact that the upper ν4 overtone/combination states of Neumark's photoelectron transitions were primarily of vibrational in nature. The present study thus showed that NO3 bears both vibrational and H-T induced electronic characters in excited states of degenerate modes in the ground electronic state.
Electron dynamics and prompt ablation of aluminum surface excited by intense femtosecond laser pulse
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Seleznev, L. V.; Sinitsyn, D. V.
2014-12-01
Thin aluminum film homogeneously heated by intense IR femtosecond laser pulses exhibits on the excitation timescale consequent fluence-dependent rise and drop of the IR-pump self-reflectivity, followed by its final saturation at higher fluences F > 0.3 J/cm2. This prompt optical dynamics correlates with the initial monotonic increase in the accompanying laser-induced electron emission, which is succeeded by its non-linear (three-photon) increase for F > 0.3 J/cm2. The underlying electronic dynamics is related to the initial saturation of IR resonant interband transitions in this material, followed by its strong instantaneous electronic heating via intraband transitions during the pump pulse resulting in thermionic emission. Above the threshold fluence of 0.3 J/cm2, the surface electronic heating is balanced during the pump pulse by simultaneous cooling via intense plasma removal (prompt ablation). The relationship between the deposited volume energy density in the film and its prompt electronic temperature derived from the self-reflection measurements using a Drude model, demonstrates a kind of electron "liquid-vapor" phase transition, driven by strong cubic optical non-linearity of the photo-excited aluminum.
Electron beams in research and technology
NASA Astrophysics Data System (ADS)
Mehnert, R.
1995-11-01
Fast electrons lose their energy by inelastic collisions with electrons of target molecules forming secondary electrons and excited molecules. Coulomb interaction of secondary electrons with valence electrons of neighboring molecules leads to the formation of radical cations, thermalized electrons, excited molecular states and radicals. The primary reactive species initiate chemical reactions in the materials irradiated. Polymer modifications using accelerated electrons such as cross-linking of cable insulation, tubes, pipes and moldings, vulcanization of elastomers, grafting of polymer surfaces, processing of foamed plastics and heat shrinkable materials have gained wide industrial acceptance. A steadily growing electron beam technology is curing of paints, lacquers, printing inks and functional coatings. Electron beam processing offers high productivity, the possibility to treat the materials at normal temperature and pressure, excellent process control and clean production conditions. On an industrial scale the most important application of fast electrons is curing of 100% reactive monomer/prepolymer systems. Mainly acrylates and epoxides are used to formulate functional coatings on substrates such as paper, foil, wood, fibre board and high pressure laminates. A survey is given about the reaction mechanism of curing, the characterization of cured coatings, and of some industrial application.
Screening of exciplex formation by distant electron transfer.
Fedorenko, S G; Khokhlova, S S; Burshtein, A I
2012-01-12
The excitation quenching by reversible exciplex formation, combined with irreversible but distant electron transfer, is considered by means of the integral encounter theory (IET). Assuming that the quenchers are in great excess, the set of IET equations for the excitations, free ions, and exciplexes is derived. Solving these equations gives the Laplace images of all these populations, and these are used to specify the quantum yields of the corresponding reaction products. It appears that diffusion facilitates the exciplex production and the electron transfer. On the other hand the stronger the electron transfer is, the weaker is the exciplex production. At slow diffusion the distant quenching of excitations by ionization prevents their reaching the contact where they can turn into exciplexes. This is a screening effect that is most pronounced when the ionization rate is large.
Theoretical and material studies of thin-film electroluminescent devices
NASA Technical Reports Server (NTRS)
Summers, C. J.
1989-01-01
Thin-film electroluminescent (TFEL) devices are studied for a possible means of achieving a high resolution, light weight, compact video display panel for computer terminals or television screens. The performance of TFEL devices depends upon the probability of an electron impact exciting a luminescent center which in turn depends upon the density of centers present in the semiconductor layer, the possibility of an electron achieving the impact excitation threshold energy, and the collision cross section itself. Efficiency of such a device is presently very poor. It can best be improved by increasing the number of hot electrons capable of impact exciting a center. Hot electron distributions and a method for increasing the efficiency and brightness of TFEL devices (with the additional advantage of low voltage direct current operation) are investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, K.S.; Freilich, S.C.; Schaeffer, C.G.
Studies were initiated utilizing picosecond (ps) absorption spectroscopy, to directly monitor the dynamics of electron transfer from 1,4-diazabicyclo(2.2.2)octane (Dabco) to the excited states of benzophenone and fluorenone. These two systems were chosen because of their contrasting photochemistry. The quantum yield for photoreduction of benzophenone in polar solvents is generally greater than 0.1, while that of fluorenone is zero. In polar solvents, the proposed mechanism dictates that an electron is transferred to the excited singlet state fluorenone, which then back-transfers the electron, regenerating ground-state fluorenone and amine. Photolysis of benzophenone in the presence of an amine transfers an electron to anmore » excited triplet state, forming an ion pair that is stable relative to diffusional separation. The results of this study verify this proposal.« less
Unified description of H-atom-induced chemicurrents and inelastic scattering.
Kandratsenka, Alexander; Jiang, Hongyan; Dorenkamp, Yvonne; Janke, Svenja M; Kammler, Marvin; Wodtke, Alec M; Bünermann, Oliver
2018-01-23
The Born-Oppenheimer approximation (BOA) provides the foundation for virtually all computational studies of chemical binding and reactivity, and it is the justification for the widely used "balls and springs" picture of molecules. The BOA assumes that nuclei effectively stand still on the timescale of electronic motion, due to their large masses relative to electrons. This implies electrons never change their energy quantum state. When molecules react, atoms must move, meaning that electrons may become excited in violation of the BOA. Such electronic excitation is clearly seen for: ( i ) Schottky diodes where H adsorption at Ag surfaces produces electrical "chemicurrent;" ( ii ) Au-based metal-insulator-metal (MIM) devices, where chemicurrents arise from H-H surface recombination; and ( iii ) Inelastic energy transfer, where H collisions with Au surfaces show H-atom translation excites the metal's electrons. As part of this work, we report isotopically selective hydrogen/deuterium (H/D) translational inelasticity measurements in collisions with Ag and Au. Together, these experiments provide an opportunity to test new theories that simultaneously describe both nuclear and electronic motion, a standing challenge to the field. Here, we show results of a recently developed first-principles theory that quantitatively explains both inelastic scattering experiments that probe nuclear motion and chemicurrent experiments that probe electronic excitation. The theory explains the magnitude of chemicurrents on Ag Schottky diodes and resolves an apparent paradox--chemicurrents exhibit a much larger isotope effect than does H/D inelastic scattering. It also explains why, unlike Ag-based Schottky diodes, Au-based MIM devices are insensitive to H adsorption.
Pandith, Altaf Hussain; Islam, Nasarul
2014-01-01
A comprehensive theoretical study was carried out on a series of aryldimesityl borane (DMB) derivatives using Density Functional theory. Optimized geometries and electronic parameters like electron affinity, reorganization energy, frontiers molecular contours, polarizability and hyperpolarizability have been calculated by employing B3PW91/6-311++G (d, p) level of theory. Our results show that the Hammett function and geometrical parameters correlates well with the reorganization energies and hyperpolarizability for the series of DMB derivatives studied in this work. The orbital energy study reveals that the electron releasing substituents increase the LUMO energies and electron withdrawing substituents decrease the LUMO energies, reflecting the electron transport character of aryldimesityl borane derivatives. From frontier molecular orbitals diagram it is evident that mesityl rings act as the donor, while the phenylene and Boron atom appear as acceptors in these systems. The calculated hyperpolarizability of secondary amine derivative of DMB is 40 times higher than DMB (1). The electronic excitation contributions to the hyperpolarizability studied by using TDDFT calculation shows that hyperpolarizability correlates well with dipole moment in ground and excited state and excitation energy in terms of the two-level model. Thus the results of these calculations can be helpful in designing the DMB derivatives for efficient electron transport and nonlinear optical material by appropriate substitution with electron releasing or withdrawing substituents on phenyl ring of DMB system. PMID:25479382
Excitation of lowest electronic states of thymine by slow electrons
NASA Astrophysics Data System (ADS)
Chernyshova, I. V.; Kontros, E. J.; Markush, P. P.; Shpenik, O. B.
2013-11-01
Excitation of lowest electronic states of the thymine molecules in the gas phase is studied by elec- tron energy loss spectroscopy. In addition to dipole-allowed transitions to singlet states, transitions to the lowest triplet states were observed. The low-energy features of the spectrum at 3.66 and 4.61 eV are identified with the excitation of the first triplet states 13 A' (π → π*) and 13 A″ ( n → π*). The higher-lying features at 4.96, 5.75, 6.17, and 7.35 eV are assigned mainly to the excitation of the π → π* transitions to the singlet states of the molecule. The excitation dynamics of the lowest states is studied. It is found that the first triplet state 13 A'(π → π*) is most efficiently excited at a residual energy close to zero, while the singlet 21 A'(π → π*) state is excited with almost identical efficiency at different residual energies.
NASA Astrophysics Data System (ADS)
Jin, Ye; Yang, Yang; Zhang, Du; Peng, Degao; Yang, Weitao
2017-10-01
The optimized effective potential (OEP) that gives accurate Kohn-Sham (KS) orbitals and orbital energies can be obtained from a given reference electron density. These OEP-KS orbitals and orbital energies are used here for calculating electronic excited states with the particle-particle random phase approximation (pp-RPA). Our calculations allow the examination of pp-RPA excitation energies with the exact KS density functional theory (DFT). Various input densities are investigated. Specifically, the excitation energies using the OEP with the electron densities from the coupled-cluster singles and doubles method display the lowest mean absolute error from the reference data for the low-lying excited states. This study probes into the theoretical limit of the pp-RPA excitation energies with the exact KS-DFT orbitals and orbital energies. We believe that higher-order correlation contributions beyond the pp-RPA bare Coulomb kernel are needed in order to achieve even higher accuracy in excitation energy calculations.
A hybrid model describing ion induced kinetic electron emission
NASA Astrophysics Data System (ADS)
Hanke, S.; Duvenbeck, A.; Heuser, C.; Weidtmann, B.; Wucher, A.
2015-06-01
We present a model to describe the kinetic internal and external electron emission from an ion bombarded metal target. The model is based upon a molecular dynamics treatment of the nuclear degree of freedom, the electronic system is assumed as a quasi-free electron gas characterized by its Fermi energy, electron temperature and a characteristic attenuation length. In a series of previous works we have employed this model, which includes the local kinetic excitation as well as the rapid spread of the generated excitation energy, in order to calculate internal and external electron emission yields within the framework of a Richardson-Dushman-like thermionic emission model. However, this kind of treatment turned out to fail in the realistic prediction of experimentally measured internal electron yields mainly due to the restriction of the treatment of electronic transport to a diffusive manner. Here, we propose a slightly modified approach additionally incorporating the contribution of hot electrons which are generated in the bulk material and undergo ballistic transport towards the emitting interface.
Injection locking of an electronic maser in the hard excitation mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakunina, K. A.; Kuznetsov, A. P.; Ryskin, N. M.
2015-11-15
The phenomenon of hard excitation is natural for many electronic oscillators. In particular, in a gyrotron, a maximal efficiency is often attained in the hard excitation regime. In this paper, we study the injection-locking phenomena using two models of an electronic maser in the hard excitation mode. First, bifurcation analysis is performed for the quasilinear model described by ordinary differential equations for the slow amplitude and phase. Two main scenarios of transition to the injection-locked mode are described, which are generalizations of the well-known phase-locking and suppression mechanisms. The results obtained for the quasilinear model are confirmed by numerical simulationsmore » of a gyrotron with fixed Gaussian structure of the RF field.« less
Calculations of stopping powers of 100 eV-30 keV electrons in 31 elemental solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanuma, S.; Powell, C. J.; Penn, D. R.
We present calculated electron stopping powers (SPs) for 31 elemental solids (Li, Be, glassy C, graphite, diamond, Na, Mg, K, Sc, Ti, V, Fe, Y, Zr, Nb, Mo, Ru, Rh, In, Sn, Cs, Gd, Tb, Dy, Hf, Ta, W, Re, Os, Ir, and Bi). These SPs were determined with an algorithm previously used for the calculation of electron inelastic mean free paths and from energy-loss functions (ELFs) derived from experimental optical data. The SP calculations were made for electron energies between 100 eV and 30 keV and supplement our earlier SP calculations for ten additional solids (Al, Si, Cr, Ni,more » Cu, Ge, Pd, Ag, Pt, and Au). Plots of SP versus atomic number for the group of 41 solids show clear trends. Multiple peaks and shoulders are seen that result from the contributions of valence-electron and various inner-shell excitations. Satisfactory agreement was found between the calculated SPs and values from the relativistic Bethe SP equation with recommended values of the mean excitation energy (MEE) for energies above 10 keV. We determined effective MEEs versus maximum excitation energy from the ELFs for each solid. Plots of effective MEE versus atomic number showed the relative contributions of valence-electron and different core-electron excitations to the MEE. For a maximum excitation energy of 30 keV, our effective MEEs agreed well for Be, graphite, Na, Al, and Si with recommended MEEs; a difference for Li was attributed to sample oxidation in the SP measurements for the recommended MEE. Substantially different effective MEEs were found for the three carbon allotropes (graphite, diamond, and glassy C)« less
Ultrafast non-radiative dynamics of atomically thin MoSe 2
Lin, Ming -Fu; Kochat, Vidya; Krishnamoorthy, Aravind; ...
2017-10-17
Non-radiative energy dissipation in photoexcited materials and resulting atomic dynamics provide a promising pathway to induce structural phase transitions in two-dimensional materials. However, these dynamics have not been explored in detail thus far because of incomplete understanding of interaction between the electronic and atomic degrees of freedom, and a lack of direct experimental methods to quantify real-time atomic motion and lattice temperature. Here, we explore the ultrafast conversion of photoenergy to lattice vibrations in a model bi-layered semiconductor, molybdenum diselenide, MoSe 2. Specifically, we characterize sub-picosecond lattice dynamics initiated by the optical excitation of electronic charge carriers in the highmore » electron-hole plasma density regime. Our results focuses on the first ten picosecond dynamics subsequent to photoexcitation before the onset of heat transfer to the substrate, which occurs on a ~100 picosecond time scale. Photoinduced atomic motion is probed by measuring the time dependent Bragg diffraction of a delayed mega-electronvolt femtosecond electron beam. Transient lattice temperatures are characterized through measurement of Bragg peak intensities and calculation of the Debye-Waller factor (DWF). These measurements show a sub-picosecond decay of Bragg diffraction and a correspondingly rapid rise in lattice temperatures. We estimate a high quantum yield for the conversion of excited charge carrier energy to lattice motion under our experimental conditions, indicative of a strong electron-phonon interaction. First principles nonadiabatic quantum molecular dynamics simulations (NAQMD) on electronically excited MoSe 2 bilayers reproduce the observed picosecond-scale increase in lattice temperature and ultrafast conversion of photoenergy to lattice vibrations. Calculation of excited-state phonon dispersion curves suggests that softened vibrational modes in the excited state are involved in efficient and rapid energy transfer between the electronic system and the lattice.« less
Ultrafast non-radiative dynamics of atomically thin MoSe 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Ming -Fu; Kochat, Vidya; Krishnamoorthy, Aravind
Non-radiative energy dissipation in photoexcited materials and resulting atomic dynamics provide a promising pathway to induce structural phase transitions in two-dimensional materials. However, these dynamics have not been explored in detail thus far because of incomplete understanding of interaction between the electronic and atomic degrees of freedom, and a lack of direct experimental methods to quantify real-time atomic motion and lattice temperature. Here, we explore the ultrafast conversion of photoenergy to lattice vibrations in a model bi-layered semiconductor, molybdenum diselenide, MoSe 2. Specifically, we characterize sub-picosecond lattice dynamics initiated by the optical excitation of electronic charge carriers in the highmore » electron-hole plasma density regime. Our results focuses on the first ten picosecond dynamics subsequent to photoexcitation before the onset of heat transfer to the substrate, which occurs on a ~100 picosecond time scale. Photoinduced atomic motion is probed by measuring the time dependent Bragg diffraction of a delayed mega-electronvolt femtosecond electron beam. Transient lattice temperatures are characterized through measurement of Bragg peak intensities and calculation of the Debye-Waller factor (DWF). These measurements show a sub-picosecond decay of Bragg diffraction and a correspondingly rapid rise in lattice temperatures. We estimate a high quantum yield for the conversion of excited charge carrier energy to lattice motion under our experimental conditions, indicative of a strong electron-phonon interaction. First principles nonadiabatic quantum molecular dynamics simulations (NAQMD) on electronically excited MoSe 2 bilayers reproduce the observed picosecond-scale increase in lattice temperature and ultrafast conversion of photoenergy to lattice vibrations. Calculation of excited-state phonon dispersion curves suggests that softened vibrational modes in the excited state are involved in efficient and rapid energy transfer between the electronic system and the lattice.« less
Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, L.; Pal, Partha P.; Seideman, Tamar
2016-02-04
Electron-stimulated desorption of hydrogen from the graphene/SiC(0001) surface at room temperature was investigated with ultrahigh vacuum scanning tunneling microscopy and ab initio calculations in order to elucidate the desorption mechanisms and pathways. Two different desorption processes were observed. In the high electron energy regime (4-8 eV), the desorption yield is independent of both voltage and current, which is attributed to the direct electronic excitation of the C-H bond. In the low electron energy regime (2-4 eV), however, the desorption yield exhibits a threshold dependence on voltage, which is explained by the vibrational excitation of the C-H bond via transient ionizationmore » induced by inelastic tunneling electrons. The observed current-independence of the desorption yield suggests that the vibrational excitation is a singleelectron process. We also observed that the curvature of graphene dramatically affects hydrogen desorption. Desorption from concave regions was measured to be much more probable than desorption from convex regions in the low electron energy regime (~ 2 eV), as would be expected from the identified desorption mechanism« less
Ultrafast momentum imaging of pseudospin-flip excitations in graphene
NASA Astrophysics Data System (ADS)
Aeschlimann, S.; Krause, R.; Chávez-Cervantes, M.; Bromberger, H.; Jago, R.; Malić, E.; Al-Temimy, A.; Coletti, C.; Cavalleri, A.; Gierz, I.
2017-07-01
The pseudospin of Dirac electrons in graphene manifests itself in a peculiar momentum anisotropy for photoexcited electron-hole pairs. These interband excitations are in fact forbidden along the direction of the light polarization and are maximum perpendicular to it. Here, we use time- and angle-resolved photoemission spectroscopy to investigate the resulting unconventional hot carrier dynamics, sampling carrier distributions as a function of energy, and in-plane momentum. We first show that the rapidly-established quasithermal electron distribution initially exhibits an azimuth-dependent temperature, consistent with relaxation through collinear electron-electron scattering. Azimuthal thermalization is found to occur only at longer time delays, at a rate that depends on the substrate and the static doping level. Further, we observe pronounced differences in the electron and hole dynamics in n -doped samples. By simulating the Coulomb- and phonon-mediated carrier dynamics we are able to disentangle the influence of excitation fluence, screening, and doping, and develop a microscopic picture of the carrier dynamics in photoexcited graphene. Our results clarify new aspects of hot carrier dynamics that are unique to Dirac materials, with relevance for photocontrol experiments and optoelectronic device applications.
Status in calculating electronic excited states in transition metal oxides from first principles.
Bendavid, Leah Isseroff; Carter, Emily Ann
2014-01-01
Characterization of excitations in transition metal oxides is a crucial step in the development of these materials for photonic and optoelectronic applications. However, many transition metal oxides are considered to be strongly correlated materials, and their complex electronic structure is challenging to model with many established quantum mechanical techniques. We review state-of-the-art first-principles methods to calculate charged and neutral excited states in extended materials, and discuss their application to transition metal oxides. We briefly discuss developments in density functional theory (DFT) to calculate fundamental band gaps, and introduce time-dependent DFT, which can model neutral excitations. Charged excitations can be described within the framework of many-body perturbation theory based on Green's functions techniques, which predominantly employs the GW approximation to the self-energy to facilitate a feasible solution to the quasiparticle equations. We review the various implementations of the GW approximation and evaluate each approach in its calculation of fundamental band gaps of many transition metal oxides. We also briefly review the related Bethe-Salpeter equation (BSE), which introduces an electron-hole interaction between GW-derived quasiparticles to describe accurately neutral excitations. Embedded correlated wavefunction theory is another framework used to model localized neutral or charged excitations in extended materials. Here, the electronic structure of a small cluster is modeled within correlated wavefunction theory, while its coupling to its environment is represented by an embedding potential. We review a number of techniques to represent this background potential, including electrostatic representations and electron density-based methods, and evaluate their application to transition metal oxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitterer, Miriam; Stancari, Giulio; Valishev, Alexander
We present the results of numerical simulations and experimental studies about the effects of resonant and random excitations on proton losses, emittances, and beam distributions in the Large Hadron Collider (LHC). In addition to shedding light on complex nonlinear effects, these studies are applied to the design of hollow electron lenses (HEL) for active beam halo control. In the High-Luminosity Large Hadron Collider (HL-LHC), a considerable amount of energy will be stored in the beam tails. To control and clean the beam halo, the installation of two hollow electron lenses, one per beam, is being considered. In standard electron-lens operation,more » a proton bunch sees the same electron current at every revolution. Pulsed electron beam operation (i.e., different currents for different turns) is also considered, because it can widen the range of achievable halo removal rates. For an axially symmetric electron beam, only protons in the halo are excited. If a residual field is present at the location of the beam core, these particles are exposed to time-dependent transverse kicks and to noise. We discuss the numerical simulations and the experiments conducted in 2016 and 2017 at injection energy in the LHC. The excitation patterns were generated by the transverse feedback and damping system, which acted as a flexible source of dipole kicks. Proton beam losses, emittances, and transverse distributions were recorded as a function of excitation patterns and strengths. The resonant excitations induced rich dynamical effects and nontrivial changes of the beam distributions, which, to our knowledge, have not previously been observed and studied in this detail. We conclude with a discussion of the tolerable and achievable residual fields and proposals for further studies.« less
Infrared Auroral Emissions Driven by Resonant Electron Impact Excitation of NO Molecules
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Petrovic, Z. Lj.; Jelisavcic, M.; Panajotovic, R.; Buckman, S. J.
2004-05-01
Although only a minor constituent of the earth's upper atmosphere, nitric oxide (NO) plays a major role in infrared auroral emissions due to radiation from vibrationally excited (NO*) states. The main process leading to the production of these excited molecules was thought to be chemiluminescence, whereby excited nitrogen atoms interact with oxygen molecules to form vibrationally excited nitric oxide (NO*) and atomic oxygen. Here we show evidence that a different production mechanism for NO*, due to low energy electron impact excitation of NO molecules, is responsible for more than 30% of the NO auroral emission near 5 μm.
Ground and excited states of NH4: Electron propagator and quantum defect analysis
NASA Astrophysics Data System (ADS)
Ortiz, J. V.; Martín, I.; Velasco, A. M.; Lavín, C.
2004-05-01
Vertical excitation energies of the Rydberg radical NH4 are inferred from ab initio electron propagator calculations on the electron affinities of NH4+. The adiabatic ionization energy of NH4 is evaluated with coupled-cluster calculations. These predictions provide optimal parameters for the molecular-adapted quantum defect orbital method, which is used to determine Einstein emission coefficients and radiative lifetimes. Comparisons with spectroscopic data and previous calculations are discussed.
NASA Technical Reports Server (NTRS)
Rosen, G.
1973-01-01
A survey is presented of free radicals and electronically excited metastable species as high energy propellants for rocket engines. Nascent or atomic forms of diatomic gases are considered free radicals as well as the highly reactive diatomic triatomic molecules that posess unpaired electrons. Manufacturing and storage problems are described, and a review of current experimental work related to the manufacture of atomic hydrogen propellants is presented.
NASA Astrophysics Data System (ADS)
Shakhatov, V. A.; Lebedev, Yu. A.
2018-01-01
A review is given of experimental and theoretical data on the cross sections for ionization, excitation, and deexcitation of atomic hydrogen. The set of the cross sections required to calculate the electron energy distribution function and find the level-to-level rate coefficients needed to solve balance equations for the densities of neutral and charged particles in hydrogen plasma is determined.
Wave excitation by inhomogeneous suprathermal electron beams
NASA Technical Reports Server (NTRS)
Freund, H. P.; Dillenburg, D.; Wu, C. S.
1982-01-01
Wave excitation by an inhomogeneous suprathermal electron beam in a homogeneous magnetized plasma is studied. Not only is the beam density nonuniform, but the beam electrons possess a sheared bulk velocity. The general dispersion equation encompassing both electrostatic and electromagnetic effects is derived. Particular attention is given to the whistler mode. It is established that the density-gradient and velocity-shear effects are important for waves with frequencies close to the lower-hybrid resonance frequency.
[Subatomic biology: electronic biology, biosemiconductivity].
Ernst, E
1975-01-01
The author gives a critical and hystorical review of the existing in biology theories which on the molecular and electronic levels explain a number of mechanisms of vital phenomena such as excitation, muscle contraction etc. The author discusses in the hystorical aspect the problem of formation of electronic and biological semi-conductivity (as the author names it) called to explain the vital mechanisms. He shows is which way this theory can explain the process of excitation.
The absorption of energetic electrons by molecular hydrogen gas
NASA Technical Reports Server (NTRS)
Cravens, T. E.; Victor, G. A.; Dalgarno, A.
1975-01-01
The processes by which energetic electrons lose energy in a weakly ionized gas of molecular hydrogen are analyzed, and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization, and heating efficiencies are computed for electrons with energies up to 100 eV absorbed in a gas with fractional ionizations up to 0.01, and the mean energy per pair of neutral hydrogen atoms is calculated.
On the role of electron-driven processes in planetary atmospheres and comets
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.
2009-11-01
After the presence of ionized layers in the Earth's atmosphere was inferred, it took 50 years to quantitatively understand them. The electron density could not be accounted for until Sir David Bates first suggested (along with Sir Harrie Massey) that the main electron-loss process was dissociative recombination with molecular ions, and he and colleagues then developed a theory to predict those rates of dissociative recombination. However, electron impact processes, particularly excitation, have been considered insignificant in most situations, in both planetary and cometary atmospheres. Here we describe cases where recent calculations have shown that electron impact excitation of molecules is important, suggesting that, just as in the time of Sir David Bates, electron-driven processes remain fundamental to our quantitative understanding of atmospheric and cometary phenomena.
Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.
2016-02-11
In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rankovic, Milos Lj.; Giuliani, Alexandre; Milosavljevic, Aleksandar R.
In this study, we have performed inner-shell electron impact action spectroscopy of mass and charge selected macromolecular ions. For this purpose, we have coupled a focusing electron gun with a linear quadrupole ion trap mass spectrometer. This experiment represents a proof of principle that an energy-tunable electron beam can be used in combination with radio frequency traps as an activation method in tandem mass spectrometry (MS 2) and allows performing action spectroscopy. Electron impact MS 2 spectra of multiply protonated ubiquitin protein ion have been recorded at incident electron energies around the carbon 1s excitation. Both MS 2 and singlemore » ionization energy dependence spectra are compared with literature data obtained using the soft X-ray activation conditions.« less
Electronic Excitation of Furan by Low Energy Electrons
NASA Astrophysics Data System (ADS)
Hargreaves, Leigh R.; Khakoo, Murtadha A.; Lopes, Maria Cristina A.; da Costa, Romarly; Bettega, Marcio H. F.; Lima, Marco A. P.
2011-10-01
We present absolute differential cross section (DCS) measurements and calculations of electron impact excitation of the lowest lying triplet 3B2 and 3A1 electronic states of furan. The incident electron energy range of the present study was 5-15eV. The experimental data were normalized to the elastic DCS data of. The cross sections were determined by unfolding electron energy loss spectra, using an open source data analysis package and the spectroscopic assignments of. The calculations employ a Multichannel Schwinger method with a 9-state closed coupling CI configuration including polarized pseudo-potentials. The preliminary theoretical results show reasonable agreement with experiment below 10eV, but differ at higher energies. Funded by the US NSF and the Brazilian funding agencies CNPq, CAPES and FAPESP.
NASA Astrophysics Data System (ADS)
Popov, Nikolay
2016-09-01
A review of experimental and theoretical investigations of the effect of electronically excited atoms and molecules on the induction delay time and on the shift of the ignition temperature threshold of combustible mixtures is presented. At relatively low initial gas temperature, the effect of excited O(1D) atoms on the oxidation and reforming of combustible mixtures is quite significant due to the high rates of reactions of O(1D) atoms with hydrogen and hydrocarbon molecules. The singlet oxygen molecules, O2(a1Δg) , participate both in chain initiation and chain branching reactions, but the effect of O2(a1Δg) in the ignition processes is generally less important compared to the oxygen atoms. To reduce the ignition delay time and decrease the temperature threshold of fuel-air mixtures, the use of gas discharges with relatively high E/N values is recommended. In this case the reactions of electronically excited N2(A3Σu+ , B3πg , C3πu , a'1Σu-) molecules, and atomic particles in ground and electronically excited states are extremely important. The energy stored in electronic excitation of atoms and molecules is spent on the additional dissociation of oxygen and fuel molecules, on the fast gas heating, and finally to the triggering of chain branching reactions. This work was partially supported by AOARD AFOSR, FA2386-13-1-4064 grant and Linked International Laboratory LIA KaPPA (France-Russia).
Entanglement entropy of electronic excitations.
Plasser, Felix
2016-05-21
A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.
NASA Astrophysics Data System (ADS)
Poltavtsev, S. V.; Langer, L.; Yugova, I. A.; Salewski, M.; Kapitonov, Y. V.; Yakovlev, D. R.; Karczewski, G.; Wojtowicz, T.; Akimov, I. A.; Bayer, M.
2016-10-01
We use spontaneous (two-pulse) and stimulated (three-pulse) photon echoes for studying the coherent evolution of optically excited ensemble of trions which are localized in semiconductor CdTe/CdMgTe quantum well. Application of transverse magnetic field leads to the Larmor precession of the resident electron spins, which shuffles optically induced polarization between optically accessible and inaccessible states. This results in several spectacular phenomena. First, magnetic field induces oscillations of spontaneous photon echo amplitude. Second, in three-pulse excitation scheme, the photon echo decay is extended by several orders of magnitude. In this study, short-lived optical excitation which is created by the first pulse is coherently transferred into a long-lived electron spin state using the second optical pulse. This coherent spin state of electron ensemble persists much longer than any optical excitation in the system, preserving information on initial optical field, which can be retrieved as a photon echo by means of third optical pulse.
NASA Astrophysics Data System (ADS)
Emmanouilidou, Agapi
2012-06-01
We present a theoretical quasiclassical treatment of the formation, during Coulomb explosion, of highly excited neutral H atoms for strongly-driven hydrogen molecule. This process, where after the laser field is turned off, one electron escapes to the continuum while the other occupies a Rydberg state, was recently reported in an experimental study in Phys. Rev. Lett 102, 113002 (2009). We find that two-electron effects are important in order to correctly account for all pathways leading to highly excited neutral hydrogen formation [1]. We identify two pathways where the electron that escapes to the continuum does so either very quickly or after remaining bound for a few periods of the laser field. These two pathways of highly excited neutral H formation have distinct traces in the probability distribution of the escaping electron momentum components. [4pt] [1] A. Emmanouilidou, C. Lazarou, A. Staudte and U. Eichmann, Phys. Rev. A (Rapid) 85 011402 (2012).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, Zhi-Gang; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002 Fuzhou; Heinke, Lars, E-mail: Lars.Heinke@KIT.edu
The electronic properties of metal-organic frameworks (MOFs) are increasingly attracting the attention due to potential applications in sensor techniques and (micro-) electronic engineering, for instance, as low-k-dielectric in semiconductor technology. Here, the band gap and the band structure of MOFs of type HKUST-1 are studied in detail by means of spectroscopic ellipsometry applied to thin surface-mounted MOF films and by means of quantum chemical calculations. The analysis of the density of states, the band structure, and the excitation spectrum reveal the importance of the empty Cu-3d orbitals for the electronic properties of HKUST-1. This study shows that, in contrast tomore » common belief, even in the case of this fairly “simple” MOF, the excitation spectra cannot be explained by a superposition of “intra-unit” excitations within the individual building blocks. Instead, “inter-unit” excitations also have to be considered.« less
Mode-selective vibrational modulation of charge transport in organic electronic devices
Bakulin, Artem A.; Lovrincic, Robert; Yu, Xi; Selig, Oleg; Bakker, Huib J.; Rezus, Yves L. A.; Nayak, Pabitra K.; Fonari, Alexandr; Coropceanu, Veaceslav; Brédas, Jean-Luc; Cahen, David
2015-01-01
The soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials. PMID:26246039
Tribo-electric charging of dielectric solids of identical composition
NASA Astrophysics Data System (ADS)
Angus, John C.; Greber, Isaac
2018-05-01
Despite its long history and importance in many areas of science and technology, there is no agreement on the mechanisms responsible for tribo-electric charging, including especially the tribo-charging of chemically identical dielectric solids. Modeling of the excitation, diffusional transport, and de-excitation of electrons from hot spots shows that a difference in local surface roughness of otherwise identical solid dielectric objects leads to different transient excited electron concentrations during tribo-processes. The model predicts that excited electron concentrations are lower and concentration gradients higher in solids with rougher rather than smoother surfaces. Consequently, during contact, the flux of charge carriers (electrons or holes) from hot spots will be greater into the rougher solid than into the smoother solid. These predictions are in agreement with current and historical observations of tribo-electric charge transfer between solids of the same composition. This effect can take place in parallel with other processes and may also play a role in the charging of solids of different composition.
NASA Astrophysics Data System (ADS)
Datsyuk, V. V.; Izmailov, I. A.; Naumov, V. V.; Kochelap, V. A.
2016-08-01
In a nonequlibrium plasma of a gas-discharge HgBr lamp, the terminal electronic state of the HgBr(B-X) radiative transition with a peak wavelength of 502 nm remains populated for a relatively long time and is repeatedly excited to the B state in collisions with plasma electrons. This transfer of the HgBr molecules from the ground state X to the excited state B is the main mechanism of formation of the light-emitting molecules especially when the lamp is excited by double current pulses. According to our simulations, due to the electron-induced transitions between HgBr(X) and HgBr(B), the output characteristics of the DBD lamp operating in a double-pulse regime are better than those of the lamp operating in a single-pulse regime. In the considered case, the peak power is calculated to increase by a factor of about 2 and the lamp efficiency increases by about 50%.
Ultrafast equilibration of excited electrons in dynamical simulations.
Lin, Zhibin; Allen, Roland E
2009-12-02
In our density-functional-based simulations of materials responding to femtosecond-scale laser pulses, we have observed a potentially useful phenomenon: the excited electrons automatically equilibrate to a Fermi-Dirac distribution within ∼100 fs, solely because of their coupling to the nuclear motion, even though the resulting electronic temperature is one to two orders of magnitude higher than the kinetic temperature defined by the nuclear motion. Microscopic simulations like these can then provide the separate electronic and kinetic temperatures, chemical potentials, pressures, and nonhydrostatic stresses as input for studies on larger lengths and timescales.
Coherent electron{endash}hole correlations in quantum dots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joensson, L.; Steiner, M.M.; Wilkins, J.W.
1997-03-01
Using numerical time propagation of the electron{endash}hole wave function, we demonstrate how various coherent correlation effects can be observed by laser excitation of a nanoscale semiconductor quantum dot. The lowest-lying states of an electron{endash}hole pair, when appropriately excited by a laser pulse, give rise to charge oscillations that are manifested by beatings in the optical or intraband polarizations. A GaAs 5{times}25{times}25 nm{sup 3} dot in the effective-mass approximation, including the screened Coulomb interaction between the electron and a heavy or light hole, is simulated. {copyright} {ital 1997 American Institute of Physics.}
Liu, Jin; Adamska, Lyudmyla; Doorn, Stephen K.; ...
2015-05-14
Conformational structure and the electronic properties of various electronic excitations in cycloparaphenylenes (CPPs) are calculated using hybrid Density Functional Theory (DFT). The results demonstrate that wavefunctions of singlet and triplet excitons as well as the positive and negative polarons remain fully delocalized in CPPs. In contrast, these excitations in larger CPP molecules become localized on several phenyl rings, which are locally planarized, while the undeformed ground state geometry is preserved on the rest of the hoop. As evidenced by the measurements of bond-length alternation and dihedral angles, localized regions show stronger hybridization between neighboring bonds and thus enhanced electronic communication.more » This effect is even more significant in the smaller hoops, where phenyl rings have strong quinoid character in the ground state. Thus, upon excitation, electron–phonon coupling leads to the self-trapping of the electronic wavefunction and release of energy from fractions of an eV up to two eVs, depending on the type of excitation and the size of the hoop. The impact of such localization on electronic and optical properties of CPPs is systematically investigated and compared with the available experimental measurements.« less
Electronic structures and population dynamics of excited states of xanthione and its derivatives
NASA Astrophysics Data System (ADS)
Fedunov, Roman G.; Rogozina, Marina V.; Khokhlova, Svetlana S.; Ivanov, Anatoly I.; Tikhomirov, Sergei A.; Bondarev, Stanislav L.; Raichenok, Tamara F.; Buganov, Oleg V.; Olkhovik, Vyacheslav K.; Vasilevskii, Dmitrii A.
2017-09-01
A new compound, 1,3-dimethoxy xanthione (DXT), has been synthesized and its absorption (stationary and transient) and luminescence spectra have been measured in n-hexane and compared with xanthione (XT) spectra. The pronounced broadening of xanthione vibronic absorption band related to the electronic transition to the second singlet excited state has been observed. Distinctions between the spectra of xanthione and its methoxy derivatives are discussed. Quantum chemical calculations of these compounds in the ground and excited electronic states have been accomplished to clarify the nature of electronic spectra changes due to modification of xanthione by methoxy groups. Appearance of a new absorption band of DXT caused by symmetry changes has been discussed. Calculations of the second excited state structure of xanthione and its methoxy derivatives confirm noticeable charge transfer (about 0.1 of the charge of an electron) from the methoxy group to thiocarbonyl group. Fitting of the transient spectra of XT and DXT has been fulfilled and the time constants of internal conversion S2 →S1 and intersystem crossing S1 →T1 have been determined. A considerable difference between the time constants of internal conversion S2 →S1 in XT and DXT is uncovered.
NASA Astrophysics Data System (ADS)
Lepage, Martin
1998-12-01
Cette these est presentee a la Faculte de medecine de l'Universite de Sherbrooke en vue de l'obtention du grade de Ph.D. en Radiobiologie. Elle contient des resultats experimentaux enregistres avec un spectrometre d'electrons a haute resolution. Ces resultats portent sur la formation de resonances electroniques en phase condensee et de differents canaux pour leur decroissance. En premier lieu, nous presentons des mesures d'excitations vibrationnelles de l'oxygene dilue en matrice d'argon pour des energies des electrons incidents de 1 a 20 eV. Les resultats suggerent que le temps de vie des resonances de l'oxygene est modifie par la densite d'etats d'electrons dans la bande de conduction de l'argon. Nous presentons aussi des spectres de pertes d'energie d'electrons des molecules de tetrahydrofuranne (THF) et d'acetone. Dans les deux cas, la position en energie des pertes associees aux excitations vibrationnelles est en excellent accord avec les resultats trouves dans la litterature. Les fonctions d'excitation de ces modes revelent la presence de plusieurs nouvelles resonances electroniques. Nous comparons les resonances du THF et celles de la molecule de cyclopentane en phase gazeuse. Nous proposons une origine commune aux resonances ce qui implique qu'elles ne sont pas necessairement attribuees a l'excitation des electrons non-apparies de l'oxygene du THF. Nous proposons une nouvelle methode basee sur la spectroscopie par pertes d'energie des electrons pour detecter la production de fragments neutres qui demeurent a l'interieur d'un film mince condense a basse temperature. Cette methode se base sur la detection des excitations electroniques du produit neutre. Nous presentons des resultats de la production de CO dans un film de methanol. Le taux de production de CO en fonction de l'energie incidente des electrons est calibre en termes d'une section efficace totale de diffusion des electrons. Les resultats indiquent une augmentation lineaire du taux de production de CO en fonction de l'epaisseur du film et de la dose d'electrons incidente sur le film. Ces donnees experimentales cadrent dans un modele simple ou un electron cause la fragmentation de la molecule sans reaction avec les molecules avoisinantes. Le mecanisme propose pour la fragmentation unimoleculaire du methanol est la formation de resonances qui decroissent dans un etat electronique excite. Nous suggerons l'action combinee de la presence d'un trou dans une orbitale de coeur du methanol et de la presence de deux electrons dans la premiere orbitale vide pour expliquer la dehydrogenation complete du methanol pour des energies des electrons entre 8 et 18 eV. Pour des energies plus grandes, la fragmentation par l'intermediaire de l'ionisation de la molecule a deja ete suggeree. La methode de detection des etats electroniques offre une alternative a la detection des excitations vibrationnelles puisque les spectres de pertes d'energie des electrons sont congestionnes dans cette region d'energie pour les molecules polyatomiques.
Probing collective oscillation of d -orbital electrons at the nanoscale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhall, Rohan; Vigil-Fowler, Derek; Houston Dycus, J.
Here, we demonstrate that high energy electrons can be used to explore the collective oscillation of s, p, and d orbital electrons at the nanometer length scale. Using epitaxial AlGaN/AlN quantum wells as a test system, we observe the emergence of additional features in the loss spectrum with the increasing Ga content. A comparison of the observed spectra with ab-initio theory reveals that the origin of these spectral features lies in excitations of 3d-electrons contributed by Ga. We find that these modes differ in energy from the valence electron plasmons in Al1-xGaxN due to the different polarizabilities of the dmore » electrons. Finally, we study the dependence of observed spectral features on the Ga content, lending insights into the origin of these spectral features, and their coupling with electron-hole excitations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Tammie Renee; Fernandez Alberti, Sebastian; Roitberg, Adrian
The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transportmore » and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. Finally, this Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.« less
Laser pulse control of ultrafast heterogeneous electron transfer: a computational study.
Wang, Luxia; May, Volkhard
2004-10-22
Laser pulse control of the photoinduced 90 fs charge injection from perylene into the conduction band of TiO2 is studied theoretically. The approach accounts for the electronic-ground state of the dye, the first excited state, the ionized state formed after charge injection, and the continuum of the electronic states in the conduction band, all defined vs a single reaction coordinate. To address different control tasks optimal control theory is combined with a full quantum dynamical description of the electron-vibrational motion accompanying the charge injection process. First it is proved in which way the charge injection time can be changed by tailored laser pulses. In a second step a pump-dump scheme from the perylene ground state to the first excited electronic state and back to the ground state is discussed. Because of the strong coupling of the excited perylene state to the band continuum of TiO2 this control task is more suited to an experimental test than the direct control of the charge injection.
NASA Astrophysics Data System (ADS)
Akther, P.; Johnstone, W. M.; El-Zein, A. A. A.; Campbell, L.; Teubner, P. J. O.; Brunger, M. J.; Newell, W. R.
2002-11-01
In this letter we report differential superelastic, elastic and inelastic electron scattering measurements from nitrous oxide (N2O) in its (010)* excited vibrational quantum. The incident electron energy was 2.5 eV and the scattered electron angular range was 10°- 40°. Unlike our previous results (1999 J. Phys. B: At. Mol. Opt. Phys. 32 5779) with the isoelectronic molecule carbon dioxide (CO2), where the elastic differential cross sections (DCSs) for scattering from the (010)* mode were 2.3 times larger than those for elastic scattering from the ground (000) state, in N2O the corresponding (010)* elastic cross sections are usually only a fraction of those for the ground state. To the best of our knowledge, the present data are the first DCSs which have been reported in the literature for electron scattering from an excited vibrational level of the N2O molecule.
NASA Astrophysics Data System (ADS)
Jonas, David M.
2018-04-01
Femtosecond two-dimensional (2D) Fourier transform spectroscopy generates and probes several types of coherence that characterize the couplings between vibrational and electronic motions. These couplings have been studied in molecules with Jahn-Teller conical intersections, pseudo-Jahn-Teller funnels, dimers, molecular aggregates, photosynthetic light harvesting complexes, and photosynthetic reaction centers. All have closely related Hamiltonians and at least two types of vibrations, including one that is decoupled from the electronic dynamics and one that is nonadiabatically coupled. Polarized pulse sequences can often be used to distinguish these types of vibrations. Electronic coherences are rapidly obscured by inhomogeneous dephasing. The longest-lived coherences in these systems arise from delocalized vibrations on the ground electronic state that are enhanced by a nonadiabatic Raman excitation process. These characterize the initial excited-state dynamics. 2D oscillation maps are beginning to isolate the medium lifetime vibronic coherences that report on subsequent stages of the excited-state dynamics.
Self-amplified photo-induced gap quenching in a correlated electron material
Mathias, S.; Eich, S.; Urbancic, J.; ...
2016-10-04
Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. Here, we show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically dependsmore » on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe 2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains—on a microscopic level—the extremely fast response of this material to ultrafast optical excitation.« less
Coupling between graphene and intersubband collective excitations in quantum wells
NASA Astrophysics Data System (ADS)
Gonzalez de la Cruz, G.
2017-08-01
Recently, strong light-matter coupling between the electromagnetic modes in plasmonic metasurfaces with quantum-engineering electronic intersubband transitions in quantum wells has been demonstrated experimentally (Benz et al., [14], Lee et al., [15]). These novel materials combining different two-dimensional electronic systems offer new opportunities for tunable optical devices and fundamental studies of collective excitations driven by interlayer Coulomb interactions. In this work, our aim is to study the plasmon spectra of a hybrid structure consisting of conventional two-dimensional electron gas (2DEG) in a semiconductor quantum well and a graphene sheet with an interlayer separation of a. This electronic bilayer structure is immersed in a nonhomgeneous dielectric background of the system. We use a simple model in which the graphene surface plasmons and both; the intrasubband and intersubband collective electron excitations in the quantum well are coupled via screened Coulomb interaction. Here we calculate the dispersion of these relativistic/nonrelativistic new plasmon modes taking into account the thickness of the quantum well providing analytical expressions in the long-wavelength limit.
Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.
Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar
2015-07-28
The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.
Dissociative Excitation of Adenine by Electron Impact
NASA Astrophysics Data System (ADS)
McConkey, J. William; Trocchi, Joshuah; Dech, Jeffery; Kedzierski, Wladek
2017-04-01
Dissociative excitation of adenine (C6H5NH2) into excited atomic fragments has been studied in the electron impact energy range from threshold to 300 eV. A crossed beam system coupled to a vacuum ultraviolet (VUV) monochromator is used to study emissions in the wavelength range from 110 to 200 nm. The beam of adenine vapor from a stainless steel oven is crossed at right angles by the electron beam and the resultant UV radiation is detected in a mutually orthogonal direction. The strongest feature in the spectrum is H Lyman- α. Financial support from NSERC and CFI, Canada, is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Bohr, Henrik G.; Malik, F. Bary
2013-11-01
The observed multiple de-excitation pathways of photo-absorbed electronic excited state in the peridinin-chlorophyll complex, involving both energy and charge transfers among its constituents, are analyzed using the bio-Auger (B-A) theory. It is also shown that the usually used Förster-Dexter theory, which does not allow for charge transfer, is a special case of B-A theory. The latter could, under appropriate circumstances, lead to excimers.
Quantum non demolition measurement of cyclotron excitations in a Penning trap
NASA Technical Reports Server (NTRS)
Marzoli, Irene; Tombesi, Paolo
1993-01-01
The quantum non-demolition measurement of the cyclotron excitations of an electron confined in a Penning trap could be obtained by measuring the resonance frequency of the axial motion, which is coupled to the cyclotron motion through the relativistic shift of the electron mass.
Electron-impact excitation heating rates in the atmosphere of Titan
NASA Astrophysics Data System (ADS)
Campbell, L.; Kato, H.; Brunger, M. J.; Bradshaw, M. D.
2010-09-01
A previous study of various heating rates in the atmosphere of Titan included electron-impact excitation of molecular nitrogen as one component. This work examines this component in more detail, using a statistical equilibrium calculation to avoid approximations made in the earlier work. The sensitivity of the results to different cross-section sets is investigated. It is found that using recent and more physical cross sections for vibrational excitation produces a significant increase in the heating rate. On the other hand, using more accurate cross sections for the electronic states had little apparent effect on the heating rates when used within the approximations made in the previous model. However, the inclusion of more transitions in this study produces a significant increase in the electronic state heating rates, as states that were originally neglected are now accounted for here.
NASA Astrophysics Data System (ADS)
Ulrich, C.; Khaliullin, G.; Guennou, M.; Roth, H.; Lorenz, T.; Keimer, B.
2015-10-01
Raman scattering experiments on stoichiometric, Mott-insulating LaTiO3 over a wide range of excitation energies reveal a broad electronic continuum which is featureless in the paramagnetic state, but develops a gap of ˜800 cm-1 upon cooling below the Néel temperature TN=146 K . In the antiferromagnetic state, the spectral weight below the gap is transferred to well-defined spectral features due to spin and orbital excitations. Low-energy phonons exhibit pronounced Fano anomalies indicative of strong interaction with the electron system for T >TN , but become sharp and symmetric for T
Farley, David R
2010-09-07
A model has been developed to calculate the ground state rotational populations of homonuclear diatomic molecules in kinetic gases, including the effects of electron-impact excitation, wall collisions, and gas feed rate. The equations are exact within the accuracy of the cross sections used and of the assumed equilibrating effect of wall collisions. It is found that the inflow of feed gas and equilibrating wall collisions can significantly affect the rotational distribution in competition with nonequilibrating electron-impact effects. The resulting steady-state rotational distributions are generally Boltzmann for N≥3, with a rotational temperature between the wall and feed gas temperatures. The N=0,1,2 rotational level populations depend sensitively on the relative rates of electron-impact excitation versus wall collision and gas feed rates.
Electron Collisions in our Atmosphere — How the Microscopic Drives the Macroscopic
NASA Astrophysics Data System (ADS)
Buckman, S. J.; Brunger, M. J.; Campbell, L.; Jelisavcic, M.; Petrovic, Z. Lj.
2005-05-01
Recent measurements of low energy, absolute electron scattering cross sections for vibrational excitation of NO have been used to update the cross set used for modeling atmospheric auroral processes. These new cross sections, which highlight the role that intermediate negative ions (resonances) play at energies below 5 eV in mediating vibrational excitation, also indicate that electron-driven processes play an important role in the infrared (˜5 um) auroral emissions from the NO molecule.
NASA Astrophysics Data System (ADS)
Lauer, S.; Liebel, H.; Vollweiler, F.; Schmoranzer, H.; Reichardt, G.; Wilhelmi, O.; Mentzel, G.; Schartner, K.-H.; Sukhorukov, V. L.; Lagutin, B. M.; Petrov, I. D.; Demekhin, Ph. V.
1998-10-01
The absolute Ar 3s-electron photoionization cross section was measured in the exciting-photon energy range from 30.65 to 31.75 eV by photon-induced fluorescence spectroscopy (PIFS). The bandwidth of the exciting synchrotron radiation was 4.8 meV. The profiles of the resonances observed in the Ar 3s-electron photoionization were compared with the profiles of the resonances in the total photoabsorption.
Characterization and Mitigation of Resistive Losses in a Large Area Laser Power Converter
2014-03-27
level lies between the valence and conduction band such that relatively few electrons are thermally excited into the conduction band. Pure crystalline...have an equal number of electrons in the conduction band and holes in the valence band when it is in thermal equilibrium. That is, the electron...easily be thermally excited into the conduction band and act as a mobile charge carrier within the material, now considered n-type for it contains a
Controlling the excitation process of free electrons by a femtosecond elliptically polarized laser
NASA Astrophysics Data System (ADS)
Gao, Lili; Wang, Feng; Jiang, Lan; Qu, Liangti; Lu, Yongfeng
2015-11-01
This paper is focused on the excitation rates of free electrons of an aluminum (Al) bulk irradiated by an elliptically polarized laser in simulation, using time-dependent density functional theory (TDDFT). The polarized 400 nm, 10 fs laser pulse consisted of two elementary sinusoidal beams, and is adjusted by changing the phase difference φ and the intersection angle θ of the polarization directions between the two beams. The simulation includes cases of φ = π/2 with θ = 30°, θ = 45°, θ = 60°, θ = 90°, θ = 120°, θ = 135°, θ = 150°, and cases of θ = 90° with φ = π/4, φ = π/3, φ = π/2, φ = 2π/3, φ = 3π/4. The absorbed energy, the excitation rates and the density distributions of free electrons after laser termination are investigated. At the given power intensity (1×1014Wcm-2), pulse width (10 fs) and wavelength (400 nm) of each elementary laser beam, computational results indicate that the excitation rate of free electrons is impacted by three major factors: the long axis direction of the laser projected profile, the amplitude difference of the first main oscillation (1st AD), and the total amplitude difference of main oscillations (TAD) of the external electric field. Among the aforementioned three factors for the excitation rate of free electrons, the direction of long axis plays the most significant role. The screen effect is crucial to compare the importance of the remaining two factors. The analysis approach to investigate the electron dynamics under an elliptically polarized laser is both pioneering and effective.
Conductance of a quantum wire at low electron density
NASA Astrophysics Data System (ADS)
Matveev, Konstantin
2006-03-01
We study the transport of electrons through a long quantum wire connecting two bulk leads. As the electron density in the wire is lowered, the Coulomb interactions lead to short-range crystalline ordering of electrons. In this Wigner crystal state the spins of electrons form an antiferromagnetic Heisenberg spin chain with exponentially small exchange coupling J. Inhomogeneity of the electron density due to the coupling of the wire to the leads results in violation of spin-charge separation in the device. As a result the spins affect the conductance of the wire. At zero temperature the low-energy spin excitations propagate freely through the wire, and its conductance remains 2e^2/h. At finite temperature some of the spin excitations are reflected by the wire and contribute to its resistance. Since the energy of the elementary excitations in the spin chain (spinons) cannot exceed πJ/2, the conductance of the wire acquires an exponentially small negative correction δG - (-πJ/2T) at low temperatures T J. At higher temperatures, T J, most of the spin excitations in the leads are reflected by the wire, and the conductance levels off at a new universal value e^2/h. This result is consistent with experimental observations of a mini-plateau of conductance at e^2/h in quantum wires in the absence of magnetic field.
Metastable Oxygen Production by Electron-Impact of Oxygen
NASA Astrophysics Data System (ADS)
Hein, J. D.; Malone, C. P.; Johnson, P. V.; Kanik, I.
2014-12-01
Electron-impact excitation processes involving atomic and molecular oxygen are important in atmospheric interactions. The production of long-lived metastable O(1S) and O(1D) through electron impact of oxygen-containing molecules plays a significant role in the dynamics of planetary atmospheres (Earth, Mars, Europa, Io, Enceladus) and cometary bodies (Hale-Bopp). The electron-impact excitation channels to O(1S) and O(1D) are important for determining energy partitioning and dynamics. To reliably model natural phenomena and interpret observational data, the accurate determination of underlying collision processes (cross sections, dissociation dynamics) through fundamental experimental studies is essential. The detection of metastable species in laboratory experiments requires a novel approach. Typical radiative de-excitation detection techniques cannot be performed due to the long-lived nature of excited species, and conventional particle detectors are insensitive to the low internal energies O(1S) and O(1D). We have recently constructed an apparatus to detect and characterize metastable oxygen production by electron impact using the "rare gas conversion technique." Recent results will be presented, including absolute excitation functions for target gases O2, CO, CO2, and N2O. This work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Financial support through NASA's OPR, PATM, and MFRP programs, as well as the NASA Postdoctoral Program (NPP) are gratefully acknowledged.
Relativistic electron beam generator
Mooney, L.J.; Hyatt, H.M.
1975-11-11
A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Friedrich; Herzig, Melanie; Knupfer, Martin
2015-11-14
The electronic properties of co-evaporated mixtures (blends) of manganese phthalocyanine and the fullerene C{sub 60} (MnPc:C{sub 60}) have been studied as a function of the concentration of the two constituents using two supplementary electron spectroscopic methods, photoemission spectroscopy (PES) and electron energy-loss spectroscopy (EELS) in transmission. Our PES measurements provide a detailed picture of the electronic structure measured with different excitation energies as well as different mixing ratios between MnPc and C{sub 60}. Besides a relative energy shift, the occupied electronic states of the two materials remain essentially unchanged. The observed energy level alignment is different compared to that ofmore » the related CuPc:C{sub 60} bulk heterojunction. Moreover, the results from our EELS investigations show that, despite the rather small interface interaction, the MnPc related electronic excitation spectrum changes significantly by admixing C{sub 60} to MnPc thin films.« less
Electronic Delocalization, Vibrational Dynamics and Energy Transfer in Organic Chromophores
Nelson, Tammie Renee; Fernandez Alberti, Sebastian; Roitberg, Adrian; ...
2017-06-12
The efficiency of materials developed for solar energy and technological applications depends on the interplay between molecular architecture and light-induced electronic energy redistribution. The spatial localization of electronic excitations is very sensitive to molecular distortions. Vibrational nuclear motions can couple to electronic dynamics driving changes in localization. The electronic energy transfer among multiple chromophores arises from several distinct mechanisms that can give rise to experimentally measured signals. Atomistic simulations of coupled electron-vibrational dynamics can help uncover the nuclear motions directing energy flow. Through careful analysis of excited state wave function evolution and a useful fragmenting of multichromophore systems, through-bond transportmore » and exciton hopping (through-space) mechanisms can be distinguished. Such insights are crucial in the interpretation of fluorescence anisotropy measurements and can aid materials design. Finally, this Perspective highlights the interconnected vibrational and electronic motions at the foundation of nonadiabatic dynamics where nuclear motions, including torsional rotations and bond vibrations, drive electronic transitions.« less
Electronic and atomic kinetics in solids irradiated with free-electron lasers or swift-heavy ions
NASA Astrophysics Data System (ADS)
Medvedev, N.; Volkov, A. E.; Ziaja, B.
2015-12-01
In this brief review we discuss the transient processes in solids under irradiation with femtosecond X-ray free-electron-laser (FEL) pulses and swift-heavy ions (SHI). Both kinds of irradiation produce highly excited electrons in a target on extremely short timescales. Transfer of the excess electronic energy into the lattice may lead to observable target modifications such as phase transitions and damage formation. Transient kinetics of material excitation and relaxation under FEL or SHI irradiation are comparatively discussed. The same origin for the electronic and atomic relaxation in both cases is demonstrated. Differences in these kinetics introduced by the geometrical effects (μm-size of a laser spot vs nm-size of an ion track) and initial irradiation (photoabsorption vs an ion impact) are analyzed. The basic mechanisms of electron transport and electron-lattice coupling are addressed. Appropriate models and their limitations are presented. Possibilities of thermal and nonthermal melting of materials under FEL and SHI irradiation are discussed.
Atmospheric Electron-Induced X-Ray Spectrometer (AEXS) Development
NASA Technical Reports Server (NTRS)
Wilcox, Jaroslava Z.; Urgiles, Eduardo; Toda, Risaku; George, Thomas; Douglas, Susanne; Crisp, Joy
2005-01-01
This paper describes the progress in the development of the so-called Atmospheric Electron X-ray Spectrometer (AEXS) instrument in our laboratory at JPL. The AEXS is a novel miniature instrument concept based on the excitation of characteristic X-Ray Fluorescence (XRF) and luminescence spectra using a focused electron beam, for non-destructive evaluation of surfaces of samples in situ, in planetary ambient atmosphere. In situ operation is obtained through the use of a thin electron transmissive membrane to isolate the vacuum within the AEXS electron source from the outside ambient atmosphere. By using a focused electron beam, the impinging electrons on samples in the external atmosphere excite XRF spectra from the irradiated spots with high-to-medium spatial resolution. The XRF spectra are analyzed using an energy-dispersive detector to determine surface elemental composition. The use of high- intensity electron beam results in rapid spectrum acquisition (several minutes), and consequently low energy consumption (several tens of Joules) per acquired XRF spectrum in comparison to similar portable instruments.
NASA Astrophysics Data System (ADS)
Itoh, Tamitake; Yamamoto, Yuko S.; Tamaru, Hiroharu; Biju, Vasudevanpillai; Murase, Norio; Ozaki, Yukihiro
2013-06-01
We find unique properties accompanying surface-enhanced fluorescence (SEF) from dye molecules adsorbed on Ag nanoparticle aggregates, which generate surface-enhanced Raman scattering. The properties are observed in excitation laser energy dependence of SEF after excluding plasmonic spectral modulation in SEF. The unique properties are large blue shifts of fluorescence spectra, deviation of ratios between anti-Stokes SEF intensity and Stokes from those of normal fluorescence, super-broadening of Stokes spectra, and returning to original fluorescence by lower energy excitation. We elucidate that these properties are induced by electromagnetic enhancement of radiative decay rates exceeding the vibrational relaxation rates within an electronic excited state, which suggests that molecular electronic dynamics in strong plasmonic fields can be largely deviated from that in free space.
Disordered dimer state in electron-doped Sr 3 Ir 2 O 7
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogan, Tom; Dally, Rebecca; Upton, Mary
2016-09-06
Spin excitations are explored in the electron-doped spin-orbit Mott insulator (Sr 1-xLa x) 3Ir 2O 7. As this bilayer square lattice system is doped into the metallic regime, long-range antiferromagnetism vanishes, yet a spectrum of gapped spin excitation remains. Excitation lifetimes are strongly damped with increasing carrier concentration, and the energy-integrated spectral weight becomes nearly momentum independent as static spin order is suppressed. Local magnetic moments, absent in the parent system, grow in metallic samples and approach values consistent with one J=12 impurity per electron doped. Our combined data suggest that the magnetic spectra of metallic (Sr 1-xLa x) 3Irmore » 2O 7 are best described by excitations out of a disordered dimer state.« less
Method and apparatus for secondary laser pumping by electron beam excitation
George, E. Victor; Krupke, William F.; Murray, John R.; Powell, Howard T.; Swingle, James C.; Turner, Jr., Charles E.; Rhodes, Charles K.
1978-01-01
An electron beam of energy typically 100 keV excites a fluorescer gas which emits ultraviolet radiation. This radiation excites and drives an adjacent laser gas by optical pumping or photolytic dissociation to produce high efficiency pulses. The invention described herein was made in the course of, or under, United States Energy Research and Development Administration Contract No. W-7405-Eng-48 with the University of California.
Scattering of charge and spin excitations and equilibration of a one-dimensional Wigner crystal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matveev, K. A.; Andreev, A. V.; Klironomos, A. D.
2014-07-01
We study scattering of charge and spin excitations in a system of interacting electrons in one dimension. At low densities, electrons form a one-dimensional Wigner crystal. To a first approximation, the charge excitations are the phonons in the Wigner crystal, and the spin excitations are described by the Heisenberg model with nearest-neighbor exchange coupling. This model is integrable and thus incapable of describing some important phenomena, such as scattering of excitations off each other and the resulting equilibration of the system. We obtain the leading corrections to this model, including charge-spin coupling and the next-nearest-neighbor exchange in the spin subsystem.more » We apply the results to the problem of equilibration of the one-dimensional Wigner crystal and find that the leading contribution to the equilibration rate arises from scattering of spin excitations off each other. We discuss the implications of our results for the conductance of quantum wires at low electron densities« less
Integral cross sections for electron impact excitation of electronic states of N2
NASA Astrophysics Data System (ADS)
Campbell, L.; Brunger, M. J.; Nolan, A. M.; Kelly, L. J.; Wedding, A. B.; Harrison, J.; Teubner, P. J. O.; Cartwright, D. C.; McLaughlin, B.
2001-04-01
We report integral cross sections (ICSs) for electron impact excitation of the A 3Σ+u, B 3Πg, W 3Δu, B' 3Σ-u, a' 1Σ-u, a 1Πg, ω1Δu, C 3Πu, E 3Σ+g and a'' 1Σ+g electronic states of N2. The present data, for each state, were derived at five incident electron energies in the range 15-50 eV, from the earlier crossed-beam differential cross section (DCS) measurements of our group. This was facilitated by using a molecular phase shift analysis technique to extrapolate the measured DCSs to 0° and 180°, before performing the integration. A comprehensive comparison of the present ICSs with the results of earlier experimental studies, both crossed beam and electron swarm, and theoretical calculations is provided. This comparison clearly indicates that some of the previous estimates for these excited electronic-state cross sections need to be reassessed. In addition, we have used the present ICSs in a Monte Carlo simulation for modelling the behaviour of an electron swarm in the bulk of a low current N2 discharge. The macroscopic transport parameters determined from this simulation are compared against those measured from independent swarm-based experiments and the self-consistency of our ICSs evaluated.
Photoinduced electron transfer between benzyloxy dendrimer phthalocyanine and benzoquinone
NASA Astrophysics Data System (ADS)
Zhang, Tiantian; Ma, Dongdong; Pan, Sujuan; Wu, Shijun; Jiang, Yufeng; Zeng, Di; Yang, Hongqin; Peng, Yiru
2016-10-01
Photo-induced electron transfer (PET) is an important and fundamental process in natural photosynthesis. To mimic such interesting PET process, a suitable donor and acceptor couple were properly chosen. Dendrimer phthalocyanines and their derivatives have emerged as promising materials for artificial photosynthesis systems. In this paper, the electron transfer between the light harvest dendrimer phthalocyanine (donor) and the 1,4-benzoquinone (acceptor) was studied by UV/Vis and fluorescence spectroscopic methods. It was found that fluorescence of phthalocyanine was quenched by benzoquinone (BQ) via excited state electron transfer, from the phthalocyanine to the BQ upon excitation at 610 nm. The Stern-Volmer constant (KSV) of electron transfer was calculated. Our study suggests that this dendritic phthalocyanine is an effective new electron donor and transmission complex and could be used as a potential artificial photosynthesis system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramanayaka, A. N.; Mani, R. G.; Wegscheider, W.
2013-12-04
We extract the electron temperature in the microwave photo-excited high mobility GaAs/AlGaAs two dimensional electron system (2DES) by studying the influence of microwave radiation on the amplitude of Shubnikov-de Haas oscillations (SdHOs) in a regime where the cyclotron frequency, ω{sub c}, and the microwave angular frequency, ω, satisfy 2ω ≤ ω{sub c} ≤ 3.5ω The results indicate that increasing the incident microwave power has a weak effect on the amplitude of the SdHOs and therefore the electron temperature, in comparison to the influence of modest temperature changes on the dark-specimen SdH effect. The results indicate negligible electron heating under modestmore » microwave photo-excitation, in good agreement with theoretical predictions.« less
Ultrafast Plasmon-Enhanced Hot Electron Generation at Ag Nanocluster/Graphite Heterojunctions.
Tan, Shijing; Liu, Liming; Dai, Yanan; Ren, Jindong; Zhao, Jin; Petek, Hrvoje
2017-05-03
Hot electron processes at metallic heterojunctions are central to optical-to-chemical or electrical energy transduction. Ultrafast nonlinear photoexcitation of graphite (Gr) has been shown to create hot thermalized electrons at temperatures corresponding to the solar photosphere in less than 25 fs. Plasmonic resonances in metallic nanoparticles are also known to efficiently generate hot electrons. Here we deposit Ag nanoclusters (NC) on Gr to study the ultrafast hot electron generation and dynamics in their plasmonic heterojunctions by means of time-resolved two-photon photoemission (2PP) spectroscopy. By tuning the wavelength of p-polarized femtosecond excitation pulses, we find an enhancement of 2PP yields by 2 orders of magnitude, which we attribute to excitation of a surface-normal Mie plasmon mode of Ag/Gr heterojunctions at 3.6 eV. The 2PP spectra include contributions from (i) coherent two-photon absorption of an occupied interface state (IFS) 0.2 eV below the Fermi level, which electronic structure calculations assign to chemisorption-induced charge transfer, and (ii) hot electrons in the π*-band of Gr, which are excited through the coherent screening response of the substrate. Ultrafast pump-probe measurements show that the IFS photoemission occurs via virtual intermediate states, whereas the characteristic lifetimes attribute the hot electrons to population of the π*-band of Gr via the plasmon dephasing. Our study directly probes the mechanisms for enhanced hot electron generation and decay in a model plasmonic heterojunction.
Joly, Laure; Antoine, Rodolphe; Broyer, Michel; Lemoine, Jérôme; Dugourd, Philippe
2008-02-07
Electron detachment from peptide dianions is studied as a function of the laser wavelength. The first step for the detachment is a resonant electronic excitation of the dianions. Electronic excitation spectra are reported for three peptides, including gramicidin. A comparative study of the detachment yield for 13 peptides was performed at 260 nm and at 220 nm. At 260 nm, the detachment yield is mainly driven by the sum of the absorption coefficients of the aromatic amino acids that are contained in the peptide. At 220 nm, no direct relation is observed between the electron photodetachement yields and the sum of absorption efficiencies. At this wavelength, the sequence and the structure of the peptide may have an influence on the photodetachment process.
Ferreira da Silva, F; Lange, E; Limão-Vieira, P; Jones, N C; Hoffmann, S V; Hubin-Franskin, M-J; Delwiche, J; Brunger, M J; Neves, R F C; Lopes, M C A; de Oliveira, E M; da Costa, R F; Varella, M T do N; Bettega, M H F; Blanco, F; García, G; Lima, M A P; Jones, D B
2015-10-14
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.
NASA Astrophysics Data System (ADS)
Ferreira da Silva, F.; Lange, E.; Limão-Vieira, P.; Jones, N. C.; Hoffmann, S. V.; Hubin-Franskin, M.-J.; Delwiche, J.; Brunger, M. J.; Neves, R. F. C.; Lopes, M. C. A.; de Oliveira, E. M.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Lima, M. A. P.; Jones, D. B.
2015-10-01
The electronic spectroscopy of isolated furfural (2-furaldehyde) in the gas phase has been investigated using high-resolution photoabsorption spectroscopy in the 3.5-10.8 eV energy-range, with absolute cross section measurements derived. Electron energy loss spectra are also measured over a range of kinematical conditions. Those energy loss spectra are used to derive differential cross sections and in turn generalised oscillator strengths. These experiments are supported by ab initio calculations in order to assign the excited states of the neutral molecule. The good agreement between the theoretical results and the measurements allows us to provide the first quantitative assignment of the electronic state spectroscopy of furfural over an extended energy range.
Electronic gating circuit and ultraviolet laser excitation permit improved dosimeter sensitivity
NASA Technical Reports Server (NTRS)
Eggenberger, D.; King, D.; Longnecker, A.; Schutt, D.
1968-01-01
Standard dosimeter reader, modified by adding an electronic gating circuit to trigger the intensity level photomultiplier, increases readout sensitivity of photoluminescent dosimeter systems. The gating circuit is controlled by a second photomultiplier which senses a short ultraviolet pulse from a laser used to excite the dosimeter.
Sykes, Matthew E; Stewart, Jon W; Akselrod, Gleb M; Kong, Xiang-Tian; Wang, Zhiming; Gosztola, David J; Martinson, Alex B F; Rosenmann, Daniel; Mikkelsen, Maiken H; Govorov, Alexander O; Wiederrecht, Gary P
2017-10-17
The creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy. We find evidence for three subpopulations of nonthermal carriers, which we propose arise from anisotropic electron-electron scattering within sp-bands near the Fermi surface. The bimetallic character of the metasurface strongly impacts the physics, with dissipation occurring primarily in the gold, whereas the quantum process of hot electron generation takes place in both components. Our calculations show that the choice of geometry and materials is crucial for producing strong ultrafast nonthermal electron components.The creation of energetic electrons through plasmon excitation has implications in optical energy conversion and ultrafast nanophotonics. Here, the authors find evidence for three subpopulations of nonthermal carriers which arise from anisotropic electron-electron scattering near the Fermi surface.
Electron-nuclear corellations for photoinduced dynamics in molecular dimers
NASA Astrophysics Data System (ADS)
Kilin, Dmitri S.; Pereversev, Yuryi V.; Prezhdo, Oleg V.
2003-03-01
Ultrafast photoinduced dynamics of electronic excitation in molecular dimers is drastically affected by dynamic reorganization of of inter- and intra- molecular nuclear configuration modelled by quantized nuclear degree of freedom [1]. The dynamics of the electronic population and nuclear coherence is analyzed with help of both numerical solution of the chain of coupled differential equations for mean coordinate, population inversion, electronic-vibrational correlation etc.[2] and by propagating the Gaussian wavepackets in relevant adiabatic potentials. Intriguing results were obtained in the approximation of small energy difference and small change of nuclear equilibrium configuration for excited electronic states. In the limiting case of resonance between electronic states energy difference and frequency of the nuclear mode these results have been justified by comparison to exactly solvable Jaynes-Cummings model. It has been found that the photoinduced processes in dimer are arranged according to their time scales:(i) fast scale of nuclear motion,(ii) intermediate scale of dynamical redistribution of electronic population between excited states as well as growth and dynamics of electronic -nuclear correlation,(iii) slow scale of electronic population approaching to the quasiequilibrium distribution, decay of electronic-nuclear correlation, and diminishing the amplitude of mean coordinate oscillations, accompanied by essential growth of the nuclear coordinate dispersion associated with the overall nuclear wavepacket width. Demonstrated quantum-relaxational features of photoinduced vibronic dinamical processess in molecular dimers are obtained by simple method, applicable to large biological systems with many degrees of freedom. [1] J. A. Cina, D. S. Kilin, T. S. Humble, J. Chem. Phys. (2003) in press. [2] O. V. Prezhdo, J. Chem. Phys. 117, 2995 (2002).
Smith, Eric R; Jonas, David M
2011-04-28
The pump-probe polarization anisotropy is computed for molecules with a nondegenerate ground state, two degenerate or nearly degenerate excited states with perpendicular transition dipoles, and no resonant excited-state absorption. Including finite pulse effects, the initial polarization anisotropy at zero pump-probe delay is predicted to be r(0) = 3/10 with coherent excitation. During pulse overlap, it is shown that the four-wave mixing classification of signal pathways as ground or excited state is not useful for pump-probe signals. Therefore, a reclassification useful for pump-probe experiments is proposed, and the coherent anisotropy is discussed in terms of a more general transition dipole and molecular axis alignment instead of experiment-dependent ground- versus excited-state pathways. Although coherent excitation enhances alignment of the transition dipole, the molecular axes are less aligned than for a single dipole transition, lowering the initial anisotropy. As the splitting between excited states increases beyond the laser bandwidth and absorption line width, the initial anisotropy increases from 3/10 to 4/10. Asymmetric vibrational coordinates that lift the degeneracy control the electronic energy gap and off-diagonal coupling between electronic states. These vibrations dephase coherence and equilibrate the populations of the (nearly) degenerate states, causing the anisotropy to decay (possibly with oscillations) to 1/10. Small amounts of asymmetric inhomogeneity (2 cm(-1)) cause rapid (130 fs) suppression of both vibrational and electronic anisotropy beats on the excited state, but not vibrational beats on the ground electronic state. Recent measurements of conical intersection dynamics in a silicon napthalocyanine revealed anisotropic quantum beats that had to be assigned to asymmetric vibrations on the ground electronic state only [Farrow, D. A.; J. Chem. Phys. 2008, 128, 144510]. Small environmental asymmetries likely explain the observed absence of excited-state asymmetric vibrations in those experiments.
NASA Astrophysics Data System (ADS)
Hein, J. D.; Johnson, P. V.; Liu, X.; Malone, C. P.; Khakoo, M. A.
2014-12-01
Shemansky et al. (2009, Planetary and Space Science 57: 1659-1670) have reported observations of hydrogen atoms flowing out of the top of Saturn's sunlit thermosphere in a confined, distinct plume of ballistic and escaping orbits, and a continuous distribution of H atoms from the top of Saturn's atmosphere to at least 45 Saturn radii (RS) in the satellite orbital plane and to 25 RS azimuthally above and below the plane. These observations have revealed the importance of the excitation of H2 by low energy electrons. H2 is efficiently excited to the triplet states by low energy electrons, and all triplet excitations result in the dissociation of H2 and the production of hot H atoms. Because of this, the electron impact excitation of H2 is an important energy deposition mechanism in the upper atmospheres of Saturn and other giant planets. The a 3Σg+ - b 3Σu continuum transition, which dominates all other H2 transitions in the 168-190 nm region, provides a unique spectral window through which the triplet transition can be observed with the Cassini spacecraft. The excitation and emission cross sections of the a 3Σg+ state and other triplet states are required for the extraction of the triplet emission and excitation rates from the apparent emission rate measured by the spacecraft. These emission and excitation rates, in turn, help to determine the energy deposition rate by electron impact excitation. Unfortunately, large discrepancies exist between published measurements of the a 3Σg+ - b 3Σu continuum transition. In order to begin to address this issue, we have recently revisited the problem by measuring electron impact induced a 3Σg+ - b 3Σu emission cross sections. We have also measured direct excitation cross sections of the triplet a 3Σg+ state. Using these, we are able to partition the excitation function into its direct and cascade components. As stated above, these results will enable improved understanding of phenomena observed in Saturn's atmosphere. Acknowledgement: This work was performed at the Jet Propulsion Laboratory (JPL), California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA). Financial support through NASA's PATM program, as well as the NASA Postdoctoral Program (NPP) are gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Pototschnig, Johann V.; Meyer, Ralf; Hauser, Andreas W.; Ernst, Wolfgang E.
2017-02-01
Research on ultracold molecules has seen a growing interest recently in the context of high-resolution spectroscopy and quantum computation. After forming weakly bound molecules from atoms in cold collisions, the preparation of molecules in low vibrational levels of the ground state is experimentally challenging, and typically achieved by population transfer using excited electronic states. Accurate potential energy surfaces are needed for a correct description of processes such as the coherent de-excitation from the highest and therefore weakly bound vibrational levels in the electronic ground state via couplings to electronically excited states. This paper is dedicated to the vibrational analysis of potentially relevant electronically excited states in the alkali-metal (Li, Na, K, Rb)- alkaline-earth metal (Ca,Sr) diatomic series. Graphical maps of Frank-Condon overlap integrals are presented for all molecules of the group. By comparison to overlap graphics produced for idealized potential surfaces, we judge the usability of the selected states for future experiments on laser-enhanced molecular formation from mixtures of quantum degenerate gases.
Collective relaxation processes in atoms, molecules and clusters
NASA Astrophysics Data System (ADS)
Kolorenč, Přemysl; Averbukh, Vitali; Feifel, Raimund; Eland, John
2016-04-01
Electron correlation is an essential driver of a variety of relaxation processes in excited atomic and molecular systems. These are phenomena which often lead to autoionization typically involving two-electron transitions, such as the well-known Auger effect. However, electron correlation can give rise also to higher-order processes characterized by multi-electron transitions. Basic examples include simultaneous two-electron emission upon recombination of an inner-shell vacancy (double Auger decay) or collective decay of two holes with emission of a single electron. First reports of this class of processes date back to the 1960s, but their investigation intensified only recently with the advent of free-electron lasers. High fluxes of high-energy photons induce multiple excitation or ionization of a system on the femtosecond timescale and under such conditions the importance of multi-electron processes increases significantly. We present an overview of experimental and theoretical works on selected multi-electron relaxation phenomena in systems of different complexity, going from double Auger decay in atoms and small molecules to collective interatomic autoionization processes in nanoscale samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Lin X.; Shelby, Megan L.; Lestrange, Patrick J.
2016-01-01
This report will describe our recent studies of transition metal complex structural dynamics on the fs and ps time scales using an X-ray free electron laser source, Linac Coherent Light Source (LCLS). Ultrafast XANES spectra at the Ni K-edge of nickel(II) tetramesitylporphyrin (NiTMP) were successfully measured for optically excited state at a timescale from 100 fs to 50 ps, providing insight into its sub-ps electronic and structural relaxation processes. Importantly, a transient reduced state Ni(I) (π, 3dx2-y2) electronic state is captured through the interpretation of a short-lived excited state absorption on the low-energy shoulder of the edge, which is aidedmore » by the computation of X-ray transitions for postulated excited electronic states. The observed and computed inner shell to valence orbital transition energies demonstrate and quantify the influence of electronic configuration on specific metal orbital energies. A strong influence of the valence orbital occupation on the inner shell orbital energies indicates that one should not use the transition energy from 1s to other orbitals to draw conclusions about the d-orbital energies. For photocatalysis, a transient electronic configuration could influence d-orbital energies up to a few eV and any attempt to steer the reaction pathway should account for this to ensure that external energies can be used optimally in driving desirable processes. NiTMP structural evolution and the influence of the porphyrin macrocycle conformation on relaxation kinetics can be likewise inferred from this study.« less
Low-energy d-d excitations in MnO studied by resonant x-ray fluorescence spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butorin, S.M.; Guo, J.; Magnuson, M.
1997-04-01
Resonant soft X-ray emission spectroscopy has been demonstrated to possess interesting abilities for studies of electronic structure in various systems, such as symmetry probing, alignment and polarization dependence, sensitivity to channel interference, etc. In the present abstract the authors focus on the feasibility of resonant soft X-ray emission to probe low energy excitations by means of resonant electronic X-ray Raman scattering. Resonant X-ray emission can be regarded as an inelastic scattering process where a system in the ground state is transferred to a low excited state via a virtual core excitation. The energy closeness to a core excitation of themore » exciting radiation enhances the (generally) low probability for inelastic scattering at these wavelengths. Therefore soft X-ray emission spectroscopy (in resonant electronic Raman mode) can be used to study low energy d-d excitations in transition metal systems. The involvement of the intermediate core state allows one to use the selection rules of X-ray emission, and the appearance of the elastically scattered line in the spectra provides the reference to the ground state.« less
New electron-energy transfer rates for vibrational excitation of O2
NASA Astrophysics Data System (ADS)
Jones, D. B.; Campbell, L.; Bottema, M. J.; Brunger, M. J.
2003-09-01
We report on our computation of electron-energy transfer rates for vibrational excitation of O2. This work was necessitated by inadequacies in the electron-impact cross section databases employed in previous studies and, in one case, an inaccurate approximate formulation to the rate equation. Both these inadequacies led to incorrect energy transfer rates being published in the literature. We also demonstrate the importance of using cross sections that encompass an energy range that is extended enough to appropriately describe the environment under investigation.
Electron Impact Excitation of the lowest-lying A^1B1 Electronic state of Water
NASA Astrophysics Data System (ADS)
Teubner, P. J. O.; Thorn, P. A.; Brunger, M. J.; Campbell, L.; Kato, H.; Makochekanwa, C.; Hoshino, M.; Tanaka, H.
2006-05-01
We report differential and integral cross sections for excitation of the A^1B1 electronic state of water. The energy range of these measurements is 15--50eV and, where possible, comparison is made to the results of available theory. We additionally report generalised oscillator strengths (at energies 30, 100 and 200eV) and a value of the optical oscillator strength (OOS) for this state. The present OOS is also compared to the results of earlier studies.
Exciton confinement in organic dendrimer quantum wells for opto-electronic applications
NASA Astrophysics Data System (ADS)
Lupton, J. M.; Samuel, I. D. W.; Burn, P. L.; Mukamel, S.
2002-01-01
Organic dendrimers are a fascinating new class of materials for opto-electronic applications. We present coupled electronic oscillator calculations on novel nanoscale conjugated dendrimers for use in organic light-emitting diodes. Strong confinement of excitations at the center of the dendrimers is observed, which accounts for the dependence of intermolecular interactions and charge transport on the degree of branching of the dendrimer. The calculated absorption spectra are in excellent agreement with the measured data and show that benzene rings are shared between excitations on the linear segments of the hyperbranched molecules. The coupled electronic oscillator approach is ideally suited to treat large dendritic molecules.
NASA Astrophysics Data System (ADS)
Chi, Xiao-Chun; Wang, Ying-Hui; Gao, Yu; Sui, Ning; Zhang, Li-Quan; Wang, Wen-Yan; Lu, Ran; Ji, Wen-Yu; Yang, Yan-Qiang; Zhang, Han-Zhuang
2018-04-01
Three push-pull chromophores comprising a triphenylamine (TPA) as electron-donating moiety and functionalized β-diketones as electron acceptor units are studied by various spectroscopic techniques. The time-correlated single-photon counting data shows that increasing the number of electron acceptor units accelerates photoluminescence relaxation rate of compounds. Transient spectra data shows that intramolecular charge transfer (ICT) takes place from TPA units to β-diketones units after photo-excitation. Increasing the number of electron acceptor units would prolong the generation process of ICT state, and accelerate the excited molecule reorganization process and the relaxation process of ICT state.
Self-assembly patterning of organic molecules on a surface
Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing
2017-04-04
The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.
NASA Astrophysics Data System (ADS)
Mahfouzi, Farzad; Kioussis, Nicholas
Gilbert damping in metallic ferromagnets is mainly governed by the exchange coupling between the electrons and the magnetic degree of freedom, where the time dependent evolution of the magnetization leads to the excitation of electrons and loss of energy as a result of flow of spin and charge currents. However, it turns out that when the magnetization evolves slowly in time, in the presence of spin-orbit interaction (SOI), the resonant electronic excitations has a major contribution to the damping which leads to infinite result in ballistic regime. In this work we consider the inelastic spin-flip scattering of electrons from the magnetic moments and show that in the presence of SOI it leads to the relaxation of the excited electrons. We show that in the case of clean crystal systems such scattering leads to a linear dependence of the Gilbert on the SOI strength and in the limit of diffusive systems we get the Gilbert damping expression obtained from Kambersky's Fermi breathing approach. This research was supported by NSF-PREM Grant No. DMR-1205734
NASA Astrophysics Data System (ADS)
Jones, D. B.; Limão-Vieira, P.; Mendes, M.; Jones, N. C.; Hoffmann, S. V.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Blanco, F.; García, G.; Ingólfsson, O.; Lima, M. A. P.; Brunger, M. J.
2017-05-01
We report on a combination of experimental and theoretical investigations into the structure of electronically excited para-benzoquinone (pBQ). Here synchrotron photoabsorption measurements are reported over the 4.0-10.8 eV range. The higher resolution obtained reveals previously unresolved pBQ spectral features. Time-dependent density functional theory calculations are used to interpret the spectrum and resolve discrepancies relating to the interpretation of the Rydberg progressions. Electron-impact energy loss experiments are also reported. These are combined with elastic electron scattering cross section calculations performed within the framework of the independent atom model-screening corrected additivity rule plus interference (IAM-SCAR + I) method to derive differential cross sections for electronic excitation of key spectral bands. A generalized oscillator strength analysis is also performed, with the obtained results demonstrating that a cohesive and reliable quantum chemical structure and cross section framework has been established. Within this context, we also discuss some issues associated with the development of a minimal orbital basis for the single configuration interaction strategy to be used for our high-level low-energy electron scattering calculations that will be carried out as a subsequent step in this joint experimental and theoretical investigation.
Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, D. B.; Ellis-Gibbings, L.; García, G.
2015-09-07
We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energymore » condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.« less
Electron and hole dynamics in the electronic and structural phase transitions of VO2
NASA Astrophysics Data System (ADS)
Haglund, Richard
2015-03-01
The ultrafast, optically induced insulator-to-metal transition (IMT) and the associated structural phase transition (SPT) in vanadium dioxide (VO2) have been studied for over a decade. However, only recently have effects due to the combined presence of electron-hole pairs and injected electrons been observed. Here we compare and contrast IMT dynamics when both hot electrons and optically excited electron-hole pairs are involved, in (1) thin films of VO2 overlaid by a thin gold foil, in which hot electrons are generated by 1.5 eV photons absorbed in the foil and accelerated through the VO2 by an applied electric field; (2) VO2 nanoparticles covered with a sparse mesh of gold nanoparticles averaging 20-30 nm in diameter in which hot electrons are generated by resonant excitation and decay of the localized surface plasmon; and (3) bare VO2 thin films excited by intense near-single-cycle THz pulses. In the first case, the IMT is driven by excitation of the bulk gold plasmon, and the SPT appears on a few-picosecond time scale. In the second case, density-functional calculations indicate that above a critical carrier density, the addition of a single electron to a 27-unit supercell drives the catastrophic collapse of the coherent phonon associated with, and leading to, the SPT. In the third case, sub-bandgap-energy photons (approximately 0.1 eV) initiate the IMT, but exhibit the same sub-100 femtosecond switching time and coherent phonon dynamics as observed when the IMT is initiated by 1.5 eV photons. This suggests that the underlying mechanism must be quite different, possibly THz-field induced interband tunneling of spatially separated electron-hole pairs. The implications of these findings for ultrafast switching in opto-electronic devices - such as hybrid VO2 silicon ring resonators - are briefly considered. Support from the National Science Foundation (DMR-1207407), the Office of Science, U.S. Department of Energy (DE-FG02-01ER45916) and the Defense Threat-Reduction Agency (HDTRA1-10-1-0047) for these studies is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Yang, Juan; Li, An Yong
2018-06-01
To study the hydrogen bonds upon photoexcited, the time dependent density function method (TD DFT) was performed to investigate the excited state hydrogen bond properties of between o-nitroaniline (ONA) and formaldehyde (CH2O). The optimized structures of the complex and the monomers both in the ground state and the electronically excited states are calculated using DFT and TD DFT method respectively. Quantum chemical calculations of the electronic and vibrational absorption spectra are also carried out by TD DFT method at the different level. The complex ONA⋯CH2O forms the intramolecular hydrogen bond and intermolecular hydrogen bonds. Since the strength of hydrogen bonds can be measured by studying the vibrational absorption spectra of the characteristic groups on the hydrogen bonding acceptor and donor, it evidently confirms that the hydrogen bonds is strengthened in the S1/S2/T1 excited states upon photoexcitation. As a result, the hydrogen bonds cause that the CH stretch frequency of the proton donor CH2O has a blue shift, and the electron excitations leads to a frequency red shift of Ndbnd O and Nsbnd H stretch modes in the o-nitroaniline(ONA) and a small frequency blue shift of CH stretch mode in the formaldehyde(CH2O) in the S1 and S2 excited states. The excited states S1, S2 and T1 are locally excited states where only the ONA moiety is excited, but the CH2O moiety remains in its ground state.
Fe L-shell Excitation Cross Section Measurements on EBIT-I
NASA Astrophysics Data System (ADS)
Chen, Hui; Beiersdorfer, P.; Brown, G.; Boyce, K.; Kelley, R.; Kilbourne, C.; Porter, F.; Gu, M. F.; Kahn, S.
2006-09-01
We report the measurement of electron impact excitation cross sections for the strong iron L-shell 3-2 lines of Fe XVII to Fe XXIV at the LLNL EBIT-I electron beam ion trap using a crystal spectrometer and NASA-Goddard Space Flight Center's 6x6 pixel array microcalorimeter. The cross sections were determined by direct normalization to the well-established cross sections for radiative electron capture. Our results include the excitation cross section for over 50 lines at multiple electron energies. Although we have found that for 3C line in Fe XVII the measured cross sections differ significantly from theory, in most cases the measurements and theory agree within 20%. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W-7405-Eng-48 and supported by NASA APRA grants to LLNL, GSFC, and Stanford University.
CdSe quantum dot sensitized solar cells. Shuttling electrons through stacked carbon nanocups.
Farrow, Blake; Kamat, Prashant V
2009-08-12
The charge separation between excited CdSe semiconductor quantum dots and stacked-cup carbon nanotubes (SCCNTs) has been successfully tapped to generate photocurrent in a quantum dot sensitized solar cell (QDSC). By employing an electrophoretic deposition technique we have cast SCCNT-CdSe composite films on optically transparent electrodes (OTEs). The quenching of CdSe emission, as well as transient absorption measurements, confirms ultrafast electron transfer to SCCNTs. The rate constant for electron transfer increases from 9.51 x 10(9) s(-1) to 7.04 x 10(10) s(-1) as we decrease the size of CdSe nanoparticles from 4.5 to 3 nm. The ability of SCCNTs to collect and transport electrons from excited CdSe has been established from photocurrent measurements. The morphological and excited state properties of SCCNT-CdSe composites demonstrate their usefulness in energy conversion devices.
Plasma-screening effects on the electron-impact excitation of hydrogenic ions in dense plasmas
NASA Technical Reports Server (NTRS)
Jung, Young-Dae
1993-01-01
Plasma-screening effects are investigated on electron-impact excitation of hydrogenic ions in dense plasmas. Scaled cross sections Z(exp 4) sigma for 1s yields 2s and 1s yields 2p are obtained for a Debye-Hueckel model of the screened Coulomb interaction. Ground and excited bound wave functions are modified in the screened Coulomb potential (Debye-Hueckel model) using the Ritz variation method. The resulting atomic wave functions and their eigenenergies agree well with the numerical and high-order perturbation theory calculations for the interesting domain of the Debye length not less than 10. The Born approximation is used to describe the continuum states of the projectile electron. Plasma screening effects on the atomic electrons cannot be neglected in the high-density cases. Including these effects, the cross sections are appreciably increased for 1s yields 2s transitions and decreased for 1s yields 2p transitions.
NASA Astrophysics Data System (ADS)
Deminskii, M. A.; Konina, K. M.; Potapkin, B. V.
2018-03-01
The vibronic and electronic energy relaxation phenomena in the specific conditions of a gas turbine engine were investigated in this paper. The plasma-chemical mechanism has been augmented with the results of recent investigations of the processes that involve electronically and vibrationally excited species. The updated mechanism was employed for the computer simulation of plasma-assisted combustion of hydrogen-air and methane-air mixtures under high pressure and in the range of initial temperatures T = 500-900 K. The updated mechanism was verified using the experimental data. The influence of electronically excited nitrogen on the ignition delay time was analyzed. The rate coefficient of the vibration-vibration exchange between N2 and HO2 was calculated as well as the rate coefficient of HO2 decomposition.
NASA Astrophysics Data System (ADS)
Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud
2005-05-01
Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.
Acosta, D; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J-F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bolla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chu, M L; Chuang, S; Chung, J Y; Chung, W-H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; de Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, M; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H-C; Farrington, S; Fedorko, I; Feild, R G; Feindt, M; Fernandez, J P; Ferretti, C; Field, R D; Fiori, I; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Frisch, H; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Y; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Guenther, M; da Costa, J Guimaraes; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Hocker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S; Junk, T; Kamon, T; Kang, J; Karagoz Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; Lecompte, T; Lee, J; Lee, J; Lee, S W; Lefevre, R; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P; Lu, R-S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, M; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; NcNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Mukherjee, A; Mulhearn, M; Muller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A-S; Nigmanov, T; Nodulman, L; Norniella, O; Oesterberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R; Orava, R; Orejudos, W; Pagliarone, C; Palencia, E; Palmonari, F; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; St Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sanchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sisakyan, A; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stefanini, A; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, S; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tönnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A; Varganov, A; Vataga, E; Vejcik, S; Velev, G; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobouev, I; von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S
2005-03-18
We present a search for excited and exotic electrons (e(*)) decaying to an electron and a photon, both with high transverse momentum. We use 202 pb(-1) of data collected in pp collisions at sqrt[s] = 1.96 TeV with the Collider Detector at Fermilab II detector. No signal above standard model expectation is seen for associated ee(*) production. We discuss the e(*) sensitivity in the parameter space of the excited electron mass M(e(*)) and the compositeness energy scale Lambda. In the contact interaction model, we exclude 132 GeV/c(2)
NASA Astrophysics Data System (ADS)
Hudson, L. T.; Tolk, N. H.; Bao, C.; Nordlander, P.; Russell, D. P.; Xu, J.
2000-10-01
The desorption yields of excited hydrogen atoms from the surfaces of KCl, KBr, NaCl, NaF, and LiF have been measured as a function of incident photon and electron energy and flux, time of irradiation, dosing pressure of H2 and sample temperature. As these surfaces are exposed to H2 gas during electron or photon bombardment, the fluorescence from excited hydrogen atoms ejected from the surface is monitored. The desorption yields are found to be contingent upon surface damage induced by the incident particle radiation, leading to dissociative adsorption at surface sites containing an excess of alkali metal. A desorption mechanism is presented in which incident electrons or photons induce a valence excitation to a neutral, antibonding state of the surface alkali hydride molecule complex, leading to the desorption of hydrogen atoms possessing several eV of kinetic energy.
Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan
2015-07-28
The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclearmore » modulation spectrum.« less
NASA Astrophysics Data System (ADS)
Kohno, Masanori
2018-04-01
A fundamental issue of the Mott transition is how electrons behaving as single particles carrying spin and charge in a metal change into those exhibiting separated spin and charge excitations (low-energy spin excitation and high-energy charge excitation) in a Mott insulator. This issue has attracted considerable attention particularly in relation to high-temperature cuprate superconductors, which exhibit electronic states near the Mott transition that are difficult to explain in conventional pictures. Here, from a new viewpoint of the Mott transition based on analyses of the Hubbard model, we review anomalous features observed in high-temperature cuprate superconductors near the Mott transition.
Excited state electronic polarization and reappraisal of the n ← π∗ emission of acetone in water
NASA Astrophysics Data System (ADS)
Orozco-González, Yoelvis; Coutinho, Kaline; Canuto, Sylvio
2010-10-01
Electronic polarization of the acetone molecule in the excited n → π∗ state is considered and its influence on the solvent shift in the emission spectrum is analyzed. Using an iterative procedure the electronic polarizations of both the ground and the excited states are included and compared with previous results obtained with Car-Parrinello dynamics. Analysis of the emission transition obtained using CIS(D)/aug-cc-pVDZ on statistically uncorrelated solute-solvent structures, composed of acetone and twelve explicit water molecules embedded in the electrostatic field of remaining 263 water molecules, corroborates that the solvent effect is mild, calculated here between 80 and 380 cm -1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roth, Friedrich, E-mail: Friedrich.Roth@cfel.de; Knupfer, Martin, E-mail: M.Knupfer@ifw-dresden.de
We report the doping induced changes of the electronic structure of tetracene and pentacene probed by electron energy-loss spectroscopy in transmission. A comparison between the dynamic response of undoped and potassium-intercalated tetracene and pentacene emphasizes the appearance of a new excitation feature in the former gap upon potassium addition. Interestingly, the momentum dependency of this new excitation shows a negative dispersion. Moreover, the analysis of the C 1s and K 2p core-level excitation results in a significantly lower doping level compared to potassium doped picene, a recently discovered superconductor. Therefore, the present electronic structure investigations open a new pathway to better understandmore » the exceptional differences between acenes and phenacene and their divergent behavior upon alkali doping.« less
Ito, Akitaka; Stewart, David J.; Fang, Zhen; Brennaman, M. Kyle; Meyer, Thomas J.
2012-01-01
Distance-dependent energy transfer occurs from the Metal-to-Ligand Charge Transfer (MLCT) excited state to an anthracene-acrylate derivative (Acr-An) incorporated into the polymer network of a semirigid poly(ethyleneglycol)dimethacrylate monolith. Following excitation, to Acr-An triplet energy transfer occurs followed by long-range, Acr-3An—Acr-An → Acr-An—Acr-3An, energy migration. With methyl viologen dication (MV2+) added as a trap, Acr-3An + MV2+ → Acr-An+ + MV+ electron transfer results in sensitized electron transfer quenching over a distance of approximately 90 Å. PMID:22949698
Electron energy deposition in N2 gas
NASA Technical Reports Server (NTRS)
Fox, J. L.; Victor, G. A.
1988-01-01
The processes by which energetic electrons lose energy in a weakly ionized gas of molecular nitrogen are analyzed and calculations are carried out taking into account the discrete nature of the excitation processes. The excitation, ionization, dissociation and heating efficiencies are computed for energies up to 200 eV absorbed in a gas with fractional ionizations varying from 10(-6) to 10(-2). Individual vibrational excitations up to the seventh vibrational level are presented.
Fast pulsed excitation wiggler or undulator
van Steenbergen, Arie
1990-01-01
A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.
NASA Astrophysics Data System (ADS)
Belkic, Dzevad
Inelastic collisions between bare nuclei and hydrogen-like atomic systems are characterized by three main channels: electron capture, excitation, and ionization. Capture dominates at lower energies, whereas excitation and ionization prevail at higher impact energies. At intermediate energies and in the region of resonant scattering near the Massey peak, all three channels become competitive. For dressed or clothed nuclei possessing electrons, such as hydrogen-like ions, several additional channels open up, including electron loss (projectile ionization or stripping). The most important aspect of electron loss is the competition between one- and two-electron processes. Here, in a typical one-electron process, the projectile emits an electron, whereas the target final and initial states are the same. A prototype of double-electron transitions in loss processes is projectile ionization accompanied with an alteration of the target state. In such a two-electron process, the target could be excited or ionized. The relative importance of these loss channels with single- and double-electron transitions involving collisions of dressed projectiles with atomic systems is also strongly dependent on the value of the impact energy. Moreover, impact energies determine which theoretical method is likely to be more appropriate to use for predictions of cross sections. At low energies, an expansion of total scattering wave functions in terms of molecular orbitals is adequate. This is because the projectile spends considerable time in the vicinity of the target, and as a result, a compound system comprised of the projectile and the target can be formed in a metastable molecular state which is prone to decay. At high energies, a perturbation series expansion is more appropriate in terms of powers of interaction potentials. In the intermediate energy region, atomic orbitals are often used with success while expanding the total scattering wave functions. The present work is focused on quantum mechanical perturbation theories applied to electron loss collisions involving two hydrogen-like atoms. Both the one- and two-electron transitions (target unaffected by collision, as well as loss-ionization) are thoroughly examined in various intervals of impact energies varying from the threshold via the Massey peak to the Bethe asymptotic region. Systematics are established for the fast, simple, and accurate computations of cross sections for loss-excitation and loss-ionization accounting for the entire spectra of all four particles, including two free electrons and two free protons. The expounded algorithmic strategy of quantum mechanical methodologies is of great importance for wide applications to particle transport physics, especially in fusion research and hadron radiotherapy. This should advantageously replace the current overwhelming tendency in these fields for using phenomenological modeling with artificial functions extracted from fitting the existing experimental/theoretical data bases for cross sections.
Raman scattering in the Mott insulators LaTiO3 and YTiO3: evidence for orbital excitations.
Ulrich, C; Gössling, A; Grüninger, M; Guennou, M; Roth, H; Cwik, M; Lorenz, T; Khaliullin, G; Keimer, B
2006-10-13
Raman scattering is used to observe pronounced electronic excitations around 230 meV--well above the two-phonon range--in the Mott insulators LaTiO3 and YTiO3. Based on the temperature, polarization, and photon energy dependence, the modes are identified as orbital excitations. The observed profiles bear a striking resemblance to magnetic Raman modes in the insulating parent compounds of the superconducting cuprates, indicating an unanticipated universality of the electronic excitations in transition metal oxides.
Single-particle excitations in periodically modulated two-dimensional electron gas
NASA Astrophysics Data System (ADS)
Kushwaha, Manvir S.
2008-06-01
A theoretical investigation is made of the plasmon excitations in a two-dimensional electron gas subjected to a one-dimensional periodic potential. We embark on the single-particle excitations within a two-subband model in the framework of Bohm-Pines’ random-phase approximation. For such an anisotropic system with spatially modulated charge density, we observe the existence of interesting esthetic necktie gaps that are found to center at the zone boundaries within the intersubband single-particle excitations. We discuss the dependence of the size of necktie gaps on the modulation potential.
Zhao, Tao; Gong, Sen; Hu, Min; Zhong, Renbin; Liu, Diwei; Chen, Xiaoxing; Zhang, Ping; Wang, Xinran; Zhang, Chao; Wu, Peiheng; Liu, Shenggang
2015-01-01
Terahertz (THz) radiation can revolutionize modern science and technology. To this date, it remains big challenges to develop intense, coherent and tunable THz radiation sources that can cover the whole THz frequency region either by means of only electronics (both vacuum electronics and semiconductor electronics) or of only photonics (lasers, for example, quantum cascade laser). Here we present a mechanism which can overcome these difficulties in THz radiation generation. Due to the natural periodicity of 2π of both the circular cylindrical graphene structure and cyclotron electron beam (CEB), the surface plasmon polaritions (SPPs) dispersion can cross the light line of dielectric, making transformation of SPPs into radiation immediately possible. The dual natural periodicity also brings significant excellences to the excitation and the transformation. The fundamental and hybrid SPPs modes can be excited and transformed into radiation. The excited SPPs propagate along the cyclotron trajectory together with the beam and gain energy from the beam continuously. The radiation density is enhanced over 300 times, up to 105 W/cm2. The radiation frequency can be widely tuned by adjusting the beam energy or chemical potential. This mechanism opens a way for developing desired THz radiation sources to cover the whole THz frequency regime. PMID:26525516
NASA Astrophysics Data System (ADS)
Gartmann, Thomas E.; Yoder, Bruce L.; Chasovskikh, Egor; Signorell, Ruth
2017-09-01
The energetics and lifetimes of the first electronically excited states (;3p-states;) of NaH2O and NaD2O have been measured by pump-probe (740/780 and 400 nm) photoelectron imaging. The photoelectron spectra of NaH2O show two bands at an electron kinetic energy of 0.14 and 0.38 eV, respectively. We assign the former to excitation via the two energetically close lying ;pπ-states; with flat potential curves in the intermolecular degrees of freedom, and the latter to the excitation via the ;pσ-state; characterized by significantly steeper potential curves. The relaxation of all ;p-states; follows a double exponential decay with a lifetime around 110 ps for the dominant fast component.
Positron annihilation induced Auger electron emission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, A.; Jibaly, M.; Lei, Chun
1988-01-01
We report on measurements of Auger electron emission from Cu and Fe due to core hole excitations produced by the removal of core electrons by matter-antimatter annihilation. Estimates are developed of the probability of positrons annihilating with a 3p electron in these materials. Several important advantages of Positron annihilation induced Auger Electron Spectroscopy (PAES) for surface analysis are suggested. 10 refs., 2 figs.
Spectral Interferometry with Electron Microscopes
Talebi, Nahid
2016-01-01
Interference patterns are not only a defining characteristic of waves, but also have several applications; characterization of coherent processes and holography. Spatial holography with electron waves, has paved the way towards space-resolved characterization of magnetic domains and electrostatic potentials with angstrom spatial resolution. Another impetus in electron microscopy has been introduced by ultrafast electron microscopy which uses pulses of sub-picosecond durations for probing a laser induced excitation of the sample. However, attosecond temporal resolution has not yet been reported, merely due to the statistical distribution of arrival times of electrons at the sample, with respect to the laser time reference. This is however, the very time resolution which will be needed for performing time-frequency analysis. These difficulties are addressed here by proposing a new methodology to improve the synchronization between electron and optical excitations through introducing an efficient electron-driven photon source. We use focused transition radiation of the electron as a pump for the sample. Due to the nature of transition radiation, the process is coherent. This technique allows us to perform spectral interferometry with electron microscopes, with applications in retrieving the phase of electron-induced polarizations and reconstructing dynamics of the induced vector potential. PMID:27649932
Electron Spectroscopic Methods in Teaching.
ERIC Educational Resources Information Center
Allan, Michael
1987-01-01
Discusses electron-loss spectroscopy and the experimentally observed excitation energies in terms of qualitative MO theory. Reviews information on photoelectron spectroscopy and electron transmission spectroscopy and their relation to the occupied and unoccupied orbital levels. Focuses on teaching applications. (ML)
Quantum tunneling of electron snake states in an inhomogeneous magnetic field.
Hoodbhoy, Pervez
2018-05-10
In a two dimensional free electron gas subjected to a perpendicular spatially varying magnetic field, the classical paths of electrons are snake-like trajectories that weave along the line where the field crosses zero. But quantum mechanically this system is described by a symmetric double well potential which, for low excitations, leads to very different electron behavior. We compute the spectrum, as well as the wavefunctions, for states of definite parity in the limit of nearly degenerate states, i.e. for electrons sufficiently far from the B z = 0 line. Transitions between the states are shown to give rise to a tunneling current. If the well is made asymmetrical by a time-dependent parity breaking perturbation then Rabi-like oscillations between parity states occur. Resonances can be excited and used to stimulate the transfer of electrons from one side of the potential barrier to the other through quantum tunneling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asahi, Y., E-mail: y.asahi@nr.titech.ac.jp; Tsutsui, H.; Tsuji-Iio, S.
2014-05-15
Turbulent transport caused by electron temperature gradient (ETG) modes was investigated by means of gyrokinetic simulations. It was found that the ETG turbulence can be regulated by meso-scale zonal flows driven by trapped electron modes (TEMs), which are excited with much smaller growth rates than those of ETG modes. The zonal flows of which radial wavelengths are in between the ion and the electron banana widths are not shielded by trapped ions nor electrons, and hence they are effectively driven by the TEMs. It was also shown that an E × B shearing rate of the TEM-driven zonal flows is larger thanmore » or comparable to the growth rates of long-wavelength ETG modes and TEMs, which make a main contribution to the turbulent transport before excitation of the zonal flows.« less
NASA Astrophysics Data System (ADS)
Korenev, V. L.
2011-06-01
The periodical modulation of circularly polarized light with a frequency close to the electron spin resonance frequency induces a sharp change of the single electron spin orientation. Hyperfine interaction provides a feedback, thus fixing the precession frequency of the electron spin in the external and the Overhauser field near the modulation frequency. The nuclear polarization is bidirectional and the electron-nuclear spin system (ENSS) possesses a few stable states. The same physics underlie the frequency-locking effect for two-color and mode-locked excitations. However, the pulsed excitation with mode-locked laser brings about the multitudes of stable states in ENSS in a quantum dot. The resulting precession frequencies of the electron spin differ in these states by the multiple of the modulation frequency. Under such conditions ENSS represents a digital frequency converter with more than 100 stable channels.
Damage-free vibrational spectroscopy of biological materials in the electron microscope
Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L.; Dellby, Niklas; Lovejoy, Tracy C.; Wolf, Sharon G.; Cohen, Hagai
2016-01-01
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be ‘safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope. PMID:26961578
Damage-free vibrational spectroscopy of biological materials in the electron microscope.
Rez, Peter; Aoki, Toshihiro; March, Katia; Gur, Dvir; Krivanek, Ondrej L; Dellby, Niklas; Lovejoy, Tracy C; Wolf, Sharon G; Cohen, Hagai
2016-03-10
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an 'aloof' electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies <1 eV can be 'safely' investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C-H, N-H and C=O vibrational signatures with no observable radiation damage. The technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ∼10 nm, simultaneously combined with imaging in the electron microscope.
Quantum tunneling of electron snake states in an inhomogeneous magnetic field
NASA Astrophysics Data System (ADS)
Hoodbhoy, Pervez
2018-05-01
In a two dimensional free electron gas subjected to a perpendicular spatially varying magnetic field, the classical paths of electrons are snake-like trajectories that weave along the line where the field crosses zero. But quantum mechanically this system is described by a symmetric double well potential which, for low excitations, leads to very different electron behavior. We compute the spectrum, as well as the wavefunctions, for states of definite parity in the limit of nearly degenerate states, i.e. for electrons sufficiently far from the B z = 0 line. Transitions between the states are shown to give rise to a tunneling current. If the well is made asymmetrical by a time-dependent parity breaking perturbation then Rabi-like oscillations between parity states occur. Resonances can be excited and used to stimulate the transfer of electrons from one side of the potential barrier to the other through quantum tunneling.
NASA Astrophysics Data System (ADS)
Kaniel, A.; Igra, O.; Ben-Dor, G.; Mond, M.
The flow field in the ionizing relaxation zone developed behind a normal shock wave in an electrically neutral, homogeneous, two temperature mixture of thermally ideal gases (molecules, atoms, ions, electrons) was numerically solved. The heat transfer between the electron gas and the other components was taken into account while all the other transport phenomena (molecular, turbulent and radiative) were neglected in the relaxation zone, since it is dominated by inelastic collisions. The threshold cross sections measured by Specht (1981), for excitation of argon by electron collisions, were used. The calculated results show good agreement with the results of the shock tube experiments presented by Glass and Liu (1978), especially in the electron avalanche region. A critical examination was made of the common assumptions regarding the average energy with which electrons are produced by atom-atom collisions and the relative effectiveness of atom-atom collisions (versus electron-atom collisions) in ionizing excited argon.
Damage-free vibrational spectroscopy of biological materials in the electron microscope
Rez, Peter; Aoki, Toshihiro; March, Katia; ...
2016-03-10
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies o1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with nomore » observable radiation damage. Furthermore, the technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10nm, simultaneously combined with imaging in the electron microscope.« less
Damage-free vibrational spectroscopy of biological materials in the electron microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rez, Peter; Aoki, Toshihiro; March, Katia
Vibrational spectroscopy in the electron microscope would be transformative in the study of biological samples, provided that radiation damage could be prevented. However, electron beams typically create high-energy excitations that severely accelerate sample degradation. Here this major difficulty is overcome using an ‘aloof’ electron beam, positioned tens of nanometres away from the sample: high-energy excitations are suppressed, while vibrational modes of energies o1 eV can be ‘safely’ investigated. To demonstrate the potential of aloof spectroscopy, we record electron energy loss spectra from biogenic guanine crystals in their native state, resolving their characteristic C–H, N–H and C=O vibrational signatures with nomore » observable radiation damage. Furthermore, the technique opens up the possibility of non-damaging compositional analyses of organic functional groups, including non-crystalline biological materials, at a spatial resolution of ~10nm, simultaneously combined with imaging in the electron microscope.« less
2014-07-22
differences among electronically excited nitro-containing molecules with different X–NO2 (X = C, N, O) bond connections. Nitromethane (NM...Dynamics of Nitromethane at 226 nm and 271 nm at both Nanosecond and Femtosecond Temporal Scales," J. Phys. Chem. A 113, 85 (2009).
Electron impact excitation coefficients for laboratory and astrophysical plasmas
NASA Technical Reports Server (NTRS)
Davis, J.; Kepple, P. C.; Blaha, M.
1976-01-01
Electron impact excitation rate coefficients have been obtained for a number of transitions in highly ionized ions of interest to astrophysical and laboratory plasmas. The calculations were done using the method of distorted waves. Results are presented for various transitions in highly ionized Ne, Na, Al, Si, A, Ca, Ni and Fe.
Molecular alignment effect on the photoassociation process via a pump-dump scheme.
Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin
2015-09-07
The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X(1)Σ(+)) is associated into the molecule in the bound states of the excited state (A(1)Σ(+)) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j〉 on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.
Molecular alignment effect on the photoassociation process via a pump-dump scheme
NASA Astrophysics Data System (ADS)
Wang, Bin-Bin; Han, Yong-Chang; Cong, Shu-Lin
2015-09-01
The photoassociation processes via the pump-dump scheme for the heternuclear (Na + H → NaH) and the homonuclear (Na + Na → Na2) molecular systems are studied, respectively, using the time-dependent quantum wavepacket method. For both systems, the initial atom pair in the continuum of the ground electronic state (X1Σ+) is associated into the molecule in the bound states of the excited state (A1Σ+) by the pump pulse. Then driven by a time-delayed dumping pulse, the prepared excited-state molecule can be transferred to the bound states of the ground electronic state. It is found that the pump process can induce a superposition of the rovibrational levels |v, j> on the excited state, which can lead to the field-free alignment of the excited-state molecule. The molecular alignment can affect the dumping process by varying the effective coupling intensity between the two electronic states or by varying the population transfer pathways. As a result, the final population transferred to the bound states of the ground electronic state varies periodically with the delay time of the dumping pulse.
NASA Astrophysics Data System (ADS)
Sehdev, Neeru; Medwal, Rohit; Malik, Rakesh; Kandasami, Asokan; Kanjilal, Dinakar; Annapoorni, S.
2018-04-01
Present study investigates the importance of thermal annealing and transient electronic excitations (using 100 MeV oxygen ions) in assisting the interfacial atomic diffusion, alloy composition, and magnetic switching field distributions in Pt/Co/Pt stacked trilayer. X-ray diffraction analysis reveals that thermal annealing results in the formation of the face centered tetragonal L1°CoPt phase. The Rutherford back scattering spectra shows a trilayer structure for as-deposited and as-irradiated films. Interlayer mixing on the thermally annealed films further improves by electronic excitations produced by high energy ion irradiation. Magnetically hard face centered tetragonal CoPt alloy retains its hard phase after ion irradiation and reveals an enhancement in the structural ordering and magnetic stability. Enhancement in the homogeneity of alloy composition and its correlation with the magnetic switching field is evident from this study. A detailed investigation of the contributing parameters shows that the magnetic switching behaviour varies with the type of thermal annealing, transient electronic excitations of ion beams and combination of these processes.
NASA Astrophysics Data System (ADS)
Suzuki, I. H.; Kono, Y.; Sakai, K.; Kimura, M.; Ueda, K.; Tamenori, Y.; Takahashi, O.; Nagaoka, S.
2013-04-01
Spectator resonant Auger electron spectra with the Si 1s photoexcitation of SiCl4 have been measured using an electron spectroscopic technique combined with undulator radiation. The transition with the highest intensity in the total ion yield (TIY) spectrum, coming from excitation of a 1s electron into the 9t2 valence orbital, generates the resonant Auger decay in which the excited electron remains in the 9t2 orbital. A TIY peak positioned slightly above the 1s ionization threshold induces Auger decay in which the slow photoelectron is re-captured into a higher lying Rydberg orbital or the normal Auger peak shape is distorted due to a post-collision interaction effect. Another structure above the threshold, originating from a doubly excited state, yields the normal Auger peak with the distortion of peak shape and a resonant Auger peak with a higher kinetic energy. These findings provide a clear understanding of the properties of the excited orbitals which were ambiguous previously.
NASA Astrophysics Data System (ADS)
Ovchinnikov, Sergey G.; Makarov, Ilya A.; Kozlov, Peter A.
2017-03-01
In this work dependences of the electron band structure and spectral function in the HTSC cuprates on magnitude of electron-phonon interaction (EPI) and temperature are investigated. We use three-band p-d model with diagonal and offdiagonal EPI with breathing and buckling phonon mode in the frameworks of polaronic version of the generalized tight binding (GTB) method. The polaronic quasiparticle excitation in the system with EPI within this approach is formed by a hybridization of the local multiphonon Franck-Condon excitations with lower and upper Hubbard bands. Increasing EPI leads to transfer of spectral weight to high-energy multiphonon excitations and broadening of the spectral function. Temperature effects are taken into account by occupation numbers of local excited polaronic states and variations in the magnitude of spin-spin correlation functions. Increasing the temperature results in band structure reconstruction, spectral weight redistribution, broadening of the spectral function peak at the top of the valence band and the decreasing of the peak intensity. The effect of EPI with two phonon modes on the polaron spectral function is discussed.
Production of O2 on icy satellites by electronic excitation of low-temperature water ice.
Sieger, M T; Simpson, W C; Orlando, T M
1998-08-06
The signature of condensed molecular oxygen has been reported in recent optical-reflectance measurements of the jovian moon Ganymede, and a tenuous oxygen atmosphere has been observed on Europa. The surfaces of these moons contain large amounts of water ice, and it is thought that O2 is formed by the sputtering of ice by energetic particles from the jovian magnetosphere. Understanding how O2 might be formed from low-temperature ice is crucial for theoretical and experimental simulations of the surfaces and atmospheres of icy bodies in the Solar System. Here we report laboratory measurements of the threshold energy, cross-section and temperature dependence of O2 production by electronic excitation of ice in vacuum, following electron-beam irradiation. Molecular oxygen is formed by direct excitation and dissociation of a stable precursor molecule, rather than (as has been previously thought) by diffusion and chemical recombination of precursor fragments. The large cross-section for O2 production suggests that electronic excitation plays an important part in the formation of O2 on Ganymede and Europa.
NASA Astrophysics Data System (ADS)
Stevens, Amy E.; Feigerle, C. S.; Lineberger, W. C.
1983-05-01
The laser photoelectron spectra of MnH- and MnD-, and FeH- and FeD- are reported. A qualitative description of the electronic structure of the low-spin and high-spin states of the metal hydrides is developed, and used to interpret the spectra. A diagonal transition in the photodetachment to the known high-spin, 7Σ+, ground state of MnH is observed. An intense off-diagonal transition to a state of MnH, at 1725±50 cm-1 excitation energy, is attributed to loss of an antibonding electron from MnH-, to yield a low-spin quintet state of MnH. For FeH- the photodetachment to the ground state is an off-diagonal transition, attributed to loss of the antibonding electron from FeH-, to yield a low-spin quartet ground state of FeH. A diagonal transition results in an FeH state at 1945±55 cm-1; this state of FeH is assigned as the lowest-lying high-spin sextet state of FeH. An additional excited state of MnH and two other excited states of FeH are observed. Excitation energies for all the states are reported; vibrational frequencies and bond lengths for the ions and several states of the neutrals are also determined from the spectra. The electron affinity of MnH is found to be 0.869±0.010 eV; and the electron affinity of FeH is determined to be 0.934±0.011 eV. Spectroscopic constants for the various deuterides are also reported.
NASA Astrophysics Data System (ADS)
Green, M. A.; Teubner, P. J. O.; Campbell, L.; Brunger, M. J.; Hoshino, M.; Ishikawa, T.; Kitajima, M.; Tanaka, H.; Itikawa, Y.; Kimura, M.; Buenker, R. J.
2002-02-01
Absolute differential cross sections (DCSs) for electron impact excitation of electronic states of CO2 in the 10.8-11.5 eV energy-loss range are reported. These data were obtained at the incident electron energies 20,30,60,100 and 200 eV and over the scattered electron angular range 3.5°-90°. The accuracy of our experimental methods has been established independently by using several different normalization techniques at both Sophia and Flinders Universities. Generalized oscillator strengths were derived from our measured DCSs and then extrapolated to zero momentum transfer, in order to determine the optical oscillator strengths. These optical oscillator strengths, where possible, are compared with the results from previous measurements and calculations.
Angle-resolved Auger electron spectra induced by neon ion impact on aluminum
NASA Technical Reports Server (NTRS)
Pepper, S. V.; Aron, P. R.
1986-01-01
Auger electron emission from aluminum bombarded with 1 to 5 keV neon ions was studied by angle-resolved electron spectroscopy. The position and shape of the spectral features depended on the incident ion energy, angle of ion incidence, and electron take-off angle with respect to the aluminum surface. These spectral dependencies were interpreted in terms of the Doppler shift given to the Auger electron velocity by the excited atom ejected into the vacuum. For oblique ion incidence it is concluded that a flux of high energy atoms are ejected in a direction close to the projection of the ion beam on the target surface. In addition, a new spectral feature was found and identified as due to Auger emission from excited neon in the aluminum matrix.
Casanova, David
2012-08-28
The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S(0)) and excited (S(1)) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S(0)/S(1) conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2(1)A(g)(-), 1(1)B(u)(+), 1(1)B(u)(-), and 1(3)B(u)(-) states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to show the possibility to use an excitation operator with any number of α-to-β electronic promotions.
Observation of correlated electronic decay in expanding clusters triggered by near-infrared fields
Schütte, B.; Arbeiter, M.; Fennel, T.; Jabbari, G.; Kuleff, A.I.; Vrakking, M.J.J.; Rouzée, A.
2015-01-01
When an excited atom is embedded into an environment, novel relaxation pathways can emerge that are absent for isolated atoms. A well-known example is interatomic Coulombic decay, where an excited atom relaxes by transferring its excess energy to another atom in the environment, leading to its ionization. Such processes have been observed in clusters ionized by extreme-ultraviolet and X-ray lasers. Here, we report on a correlated electronic decay process that occurs following nanoplasma formation and Rydberg atom generation in the ionization of clusters by intense, non-resonant infrared laser fields. Relaxation of the Rydberg states and transfer of the available electronic energy to adjacent electrons in Rydberg states or quasifree electrons in the expanding nanoplasma leaves a distinct signature in the electron kinetic energy spectrum. These so far unobserved electron-correlation-driven energy transfer processes may play a significant role in the response of any nano-scale system to intense laser light. PMID:26469997
Light-induced electronic non-equilibrium in plasmonic particles.
Kornbluth, Mordechai; Nitzan, Abraham; Seideman, Tamar
2013-05-07
We consider the transient non-equilibrium electronic distribution that is created in a metal nanoparticle upon plasmon excitation. Following light absorption, the created plasmons decohere within a few femtoseconds, producing uncorrelated electron-hole pairs. The corresponding non-thermal electronic distribution evolves in response to the photo-exciting pulse and to subsequent relaxation processes. First, on the femtosecond timescale, the electronic subsystem relaxes to a Fermi-Dirac distribution characterized by an electronic temperature. Next, within picoseconds, thermalization with the underlying lattice phonons leads to a hot particle in internal equilibrium that subsequently equilibrates with the environment. Here we focus on the early stage of this multistep relaxation process, and on the properties of the ensuing non-equilibrium electronic distribution. We consider the form of this distribution as derived from the balance between the optical absorption and the subsequent relaxation processes, and discuss its implication for (a) heating of illuminated plasmonic particles, (b) the possibility to optically induce current in junctions, and (c) the prospect for experimental observation of such light-driven transport phenomena.
Multiplet exchange Auger transitions following resonant Auger decays in Ne 1s photoexcitation
NASA Astrophysics Data System (ADS)
Tamenori, Yusuke; Suzuki, Isao H.
2014-07-01
Secondary electron emission with very low kinetic energy (KE) has been measured in the Ne 1s photoexcitation region. A new decay channel for Auger transitions following Ne 1s to 3p excitation has been identified using a two-dimensional mapping technique, in which slow Auger electron signals are displayed as functions of electron kinetic energy and photon energy. Electrons with about 0.68 eV KEs have been ascribed to multiplet exchange Auger electrons from the 2p-2(1S)3d state. This state is formed through the resonant Auger transition from the 1s-13p state, in which the excited 3p electron changes its azimuthal quantum number. Another cascade Auger decay of multiplet exchanging was found as electron emission of about 2.0 eV KEs; 2p-2(1S)4p → 2p-2(3P) + e-. Several cascade decays were found to occur via the photoexcitation into 1s-14p and 1s-15p states.
NASA Astrophysics Data System (ADS)
Gervasoni, J. L.; Jenko, M.; Poniku, B.; Belič, I.; Juan, A.
2015-07-01
In this work, we investigate in detail the effects due to the interaction between an electron and a stationary positive ion (or atomic hole) in the neighborhood of a surface of Fe-Si, having a strong plasmon peak in their electron energy loss spectra, when it is excited with synchrotron radiation. We take into account the effects due to the sudden creation of an electron and the residual holes, one in the case of X-ray photoemission spectroscopy (XPS) and two in the case of Auger electron spectroscopy (AES). We use a semi classical dielectric formulation for the photoelectron trajectory, and we estimated the parameter rs, the radius of the sphere occupied by one electron in the solid, which is critical in order to define the electron density of the alloy. With the cited formulation, we have obtained a detailed behavior of the different contributions of the collective excitations in both processes.
Sobolewski, Andrzej L.; Domcke, Wolfgang; Hättig, C.
2005-01-01
The UV spectra of three different conformers of the guanine/cytosine base pair were recorded recently with UV-IR double-resonance techniques in a supersonic jet [Abo-Riziq, A., Grace, L., Nir, E., Kabelac, M., Hobza, P. & de Vries, M. S. (2005) Proc. Natl. Acad. Sci. USA 102, 20–23]. The spectra provide evidence for a very efficient excited-state deactivation mechanism that is specific for the Watson–Crick structure and may be essential for the photostability of DNA. Here we report results of ab initio electronic-structure calculations for the excited electronic states of the three lowest-energy conformers of the guanine/cytosine base pair. The calculations reveal that electron-driven interbase proton-transfer processes play an important role in the photochemistry of these systems. The exceptionally short lifetime of the UV-absorbing states of the Watson–Crick conformer is tentatively explained by the existence of a barrierless reaction path that connects the spectroscopic 1π π * excited state with the electronic ground state via two electronic curve crossings. For the non-Watson–Crick structures, the photochemically reactive state is located at higher energies, resulting in a barrier for proton transfer and, thus, a longer lifetime of the UV-absorbing 1π π * state. The computational results support the conjecture that the photochemistry of hydrogen bonds plays a decisive role for the photostability of the molecular encoding of the genetic information in isolated DNA base pairs. PMID:16330778
Selfconsistent vibrational and free electron kinetics for CO2 dissociation in cold plasmas
NASA Astrophysics Data System (ADS)
Capitelli, Mario
2016-09-01
The activation of CO2 by cold plasmas is receiving new theoretical interest thanks to two European groups. The Bogaerts group developed a global model for the activation of CO2 trying to reproduce the experimental values for DBD and microwave discharges. The approach of Pietanza et al was devoted to understand the dependence of electron energy distribution function (eedf) of pure CO2 on the presence of concentrations of electronically and vibrationally excited states taken as parameter. To understand the importance of the vibrational excitation in the dissociation process Pietanza et al compared an upper limit to the dissociation process from a pure vibrational mechanism (PVM) with the corresponding electron impact dissociation rate, the prevalence of the two models depending on the reduced electric field and on the choice of the electron molecule cross section database. Improvement of the Pietanza et al model is being considered by coupling the time dependent Boltzmann solver with the non equilibrium vibrational kinetics of asymmetric mode and with simplified plasma chemistry kinetics describing the ionization/recombination process and the excitation-deexcitation of a metastable level at 10.5eV. A new PVM mechanism is also considered. Preliminary results, for both discharge and post discharge conditions, emphasize the action of superelastic collisions involving both vibrationally and electronically excited states in affecting the eedf. The new results can be used to plan a road map for future developments of numerical codes for rationalizing existing experimental values, as well as, for indicating new experimental situations.
NASA Astrophysics Data System (ADS)
Liang, G. Y.; Badnell, N. R.
2011-04-01
We present results for the electron-impact excitation of all Li-like ions from Be+ to Kr33+ which we obtained using the radiation- and Auger-damped intermediate-coupling frame transformation R-matrix approach. We have included both valence- and core-electron excitations up to the 1s25l and 1s2l4l' levels, respectively. A detailed comparison of the target structure and collision data has been made for four specific ions (O5+, Ar15+, Fe23+ and Kr33+) spanning the sequence so as to assess the accuracy for the entire sequence. Effective collision strengths (Υs) are presented at temperatures ranging from 2 × 102(z + 1)2 K to 2 × 106(z + 1)2 K (where z is the residual charge of the ions, i.e. Z - 3). Detailed comparisons for the Υs are made with the results of previous calculations for several ions which span the sequence. The radiation and Auger damping effects were explored for core-excitations along the iso-electronic sequence. Furthermore, we examined the iso-electronic trends of effective collision strengths as a function of temperature. These data are made available in the archives of APAP via http://www.apap-network.org, OPEN-ADAS via http://open.adas.ac.uk, as well as anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/528/A69
A brightness exceeding simulated Langmuir limit
NASA Astrophysics Data System (ADS)
Nakasuji, Mamoru
2013-08-01
When an excitation of the first lens determines a beam is parallel beam, a brightness that is 100 times higher than Langmuir limit is measured experimentally, where Langmuir limits are estimated using a simulated axial cathode current density which is simulated based on a measured emission current. The measured brightness is comparable to Langmuir limit, when the lens excitation is such that an image position is slightly shorter than a lens position. Previously measured values of brightness for cathode apical radii of curvature 20, 60, 120, 240, and 480 μm were 8.7, 5.3, 3.3, 2.4, and 3.9 times higher than their corresponding Langmuir limits, respectively, in this experiment, the lens excitation was such that the lens and the image positions were 180 mm and 400 mm, respectively. From these measured brightness for three different lens excitation conditions, it is concluded that the brightness depends on the first lens excitation. For the electron gun operated in a space charge limited condition, some of the electrons emitted from the cathode are returned to the cathode without having crossed a virtual cathode. Therefore, method that assumes a Langmuir limit defining method using a Maxwellian distribution of electron velocities may need to be revised. For the condition in which the values of the exceeding the Langmuir limit are measured, the simulated trajectories of electrons that are emitted from the cathode do not cross the optical axis at the crossover, thus the law of sines may not be valid for high brightness electron beam systems.
Kai, Takeshi; Yokoya, Akinari; Ukai, Masatoshi; Fujii, Kentaro; Watanabe, Ritsuko
2016-11-01
To simulate the deceleration processes of secondary electrons produced by a high-energy Auger electron in water, and particularly to focus on the spatial and temporal distributions of the secondary electron and the collision events (e.g. ionization, electronic excitation, and dissociative electron attachment) that are involved in the multiplication of lesions at sites of DNA damage. We developed a dynamic Monte Carlo code that considers the Coulombic force between an ejected electron and its parent cation produced by the Auger electron in water. Thus our code can simulate some return electrons to the parent cations. Using the code, we calculated to within the order of femtoseconds the temporal evolution of collision events, the mean energy, and the mean traveling distance (including its spatial probability distribution) of the electron at an ejected energy of 20 eV. Some of the decelerating electrons in water in the Coulombic field were attracted to the ionized atoms (cations) by the Coulombic force within hundreds of femtoseconds, although the force did not significantly enhance the number of ionization, electronic excitation, and dissociative electron attachment collision events leading to water radiolysis. The secondary electrons are decelerated in water by the Coulombic force and recombined to the ionized atoms (cations). Furthermore, the some return electrons might be prehydrated in water layer near the parent cation in DNA if the electrons might be emitted from the DNA. The prehydrated electron originated from the return electron might play a significant role in inducing DNA damage.
Three chamber negative ion source
Leung, Ka-Ngo; Ehlers, Kenneth W.; Hiskes, John R.
1985-01-01
A negative ion vessel is divided into an excitation chamber, a negative ionization chamber and an extraction chamber by two magnetic filters. Input means introduces neutral molecules into a first chamber where a first electron discharge means vibrationally excites the molecules which migrate to a second chamber. In the second chamber a second electron discharge means ionizes the molecules, producing negative ions which are extracted into or by a third chamber. A first magnetic filter prevents high energy electrons from entering the negative ionization chamber from the excitation chamber. A second magnetic filter prevents high energy electrons from entering the extraction chamber from the negative ionizing chamber. An extraction grid at the end of the negative ion vessel attracts negative ions into the third chamber and accelerates them. Another grid, located adjacent to the extraction grid, carries a small positive voltage in order to inhibit positive ions from migrating into the extraction chamber and contour the plasma potential. Additional electrons can be suppressed from the output flux using ExB forces provided by magnetic field means and the extractor grid electric potential.
Electronic excitation of Na due to low-energy He collisions
NASA Astrophysics Data System (ADS)
Lin, C. Y.; Liebermann, H. P.
2005-05-01
In warm astrophysical environments electron collisions are the primary mechanism for thermalizing the internal energy of ambient atoms and molecules. However, in cool stellar and planetary atmospheres, the electron abundance is extremely low so that thermalization is only possible through collisions of the dominant neutral species, H2, He, and H. Typically, the neutral cross sections are much smaller than those due to electrons, so that the level populations of the atmospheric constituents may display departures from equilibrium. Unfortunately, these cross sections are generally not available for collision energies typical of stellar/planetary environments. In this work, we investigate the electronic excitation of Na due to collisions with He for energies near and just above threshold. The calculations are performed with the quantum-mechanical molecular-orbital close-coupling method utilizing ab initio adiabatic potential curves and nonadiabatic radial and rotational coupling matrix elements obtained from multireference single- and double- excitation configuration interaction approach. State-to-state cross sections and rate coefficients will be presented and compared with other theoretical and experimental data where available.
Nonlinear excitations in electron-positron-ion plasmas in accretion disks of active galactic nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslem, W. M.; Kourakis, I.; Shukla, P. K.
2007-10-15
The propagation of acoustic nonlinear excitations in an electron-positron-ion (e-p-i) plasma composed of warm electrons and positrons, as well as hot ions, has been investigated by adopting a two-dimensional cylindrical geometry. The electrons and positrons are modeled by hydrodynamic fluid equations, while the ions are assumed to follow a temperature-parametrized Boltzmann distribution (the fixed ion model is recovered in the appropriate limit). This situation applies in the accretion disk near a black hole in active galactic nuclei, where the ion temperature may be as high as 3 to 300 times that of the electrons. Using a reductive perturbation technique, amore » cylindrical Kadomtsev-Petviashvili equation is derived and its exact soliton solutions are presented. Furthermore, real situations in which the strength of the nonlinearity may be weak are considered, so that higher-order nonlinearity plays an important role. Accordingly, an extended cylindrical Kadomtsev-Petviashvili equation is derived, which admits both soliton and double-layer solutions. The characteristics of the nonlinear excitations obtained are investigated in detail.« less
Spin-orbit excitations and electronic structure of the putative Kitaev magnet α -RuCl3
NASA Astrophysics Data System (ADS)
Sandilands, Luke J.; Tian, Yao; Reijnders, Anjan A.; Kim, Heung-Sik; Plumb, K. W.; Kim, Young-June; Kee, Hae-Young; Burch, Kenneth S.
2016-02-01
Mott insulators with strong spin-orbit coupling have been proposed to host unconventional magnetic states, including the Kitaev quantum spin liquid. The 4 d system α -RuCl3 has recently come into view as a candidate Kitaev system, with evidence for unusual spin excitations in magnetic scattering experiments. We apply a combination of optical spectroscopy and Raman scattering to study the electronic structure of this material. Our measurements reveal a series of orbital excitations involving localized total angular momentum states of the Ru ion, implying that strong spin-orbit coupling and electron-electron interactions coexist in this material. Analysis of these features allows us to estimate the spin-orbit coupling strength, as well as other parameters describing the local electronic structure, revealing a well-defined hierarchy of energy scales within the Ru d states. By comparing our experimental results with density functional theory calculations, we also clarify the overall features of the optical response. Our results demonstrate that α -RuCl3 is an ideal material system to study spin-orbit coupled magnetism on the honeycomb lattice.
Charge and energy dynamics in photo-excited poly(para-phenylenevinylene) systems
NASA Astrophysics Data System (ADS)
Gisslén, L.; Johansson, A.˚.; Stafström, S.
2004-07-01
We report results from simulations of charge and energy dynamics in poly(para-phenylenevinylene) (PPV) and PPV interacting with C60. The simulations were performed by solving the time-dependent Schrödinger equation and the lattice equation of motion simultaneously and nonadiabatically. The electronic system and the coupling of the electrons to the lattice were described by an extended three-dimensional version of the Su-Schrieffer-Heeger model, which also included an external electric field. Electron and lattice dynamics following electronic excitations at different energies have been simulated. The effect of additional lattice energy was also included in the simulations. Our results show that both exciton diffusion and transitions from high to lower lying excitations are stimulated by increasing the lattice energy. Also field induced charge separation occurs faster if the lattice energy is increased. This separation process is highly nonadiabatic and involves a significant rearrangement of the electron distribution. In the case of PPV coupled to C60, we observe a spontaneous charge separation. The separation time is in this case limited by the local concentration of C60 molecules close to the PPV chain.
Hopkins Ultraviolet Telescope determination of the Io torus electron temperature
NASA Technical Reports Server (NTRS)
Hall, D. T.; Bednar, C. J.; Durrance, S. T.; Feldman, P. D.; Mcgrath, M. A.; Moos, H. W.; Strobel, D. F.
1994-01-01
Sulfur ion emissions from the Io plasma torus observed by the Hopkins Ultraviolet Telescope (HUT) in 1990 December have been analyzed to determine the effective temperature of the exciting electrons. Spectra were obtained with a long slit that extended from 3.1 to 8.7 Jupiter radii R(sub J) on both dawn and dusk torus ansae. The average temperature of electrons exciting S(2+) emissions from the dawn ansa is (4800 +/- 2400) K lower than on the dusk ansa, a dawn-dusk asymmetry comparable in both sign and magnitude to that measured by the Voyager Ultraviolet Spectrograph (UVS) experiment. Emissions from S(2+) ions are generated in a source region with electron temperatures in the range 32,000-56,000 K; S(3+) ion emissions are excited by electrons that average 20,000-40,000 K hotter. This distinct difference suggests that the S(3+) emission source region is spatially separate from the S(2+) source region. Estimated relative aperture filling factors suggest that the S(3+) emissions originate from a region more extended out of the centrifugal plane than the S(2+) emissions.
Nuclear conversion theory: molecular hydrogen in non-magnetic insulators
NASA Astrophysics Data System (ADS)
Ilisca, Ernest; Ghiglieno, Filippo
2016-09-01
The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.
PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges
NASA Astrophysics Data System (ADS)
Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.
2018-05-01
Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu
2016-01-14
In this work, we demonstrate that for moderate sized systems, here a system with 13 atoms, global coupled potential energy surfaces defined for several electronic states over a wide energy range and for distinct regions of nuclear coordinate space characterized by distinct electron configurations, can be constructed with precise energetics and an excellent description of non-adiabatic interactions in all regions. This is accomplished using a recently reported algorithm for constructing quasi-diabatic representations, H{sup d}, of adiabatic electronic states coupled by conical intersections. In this work, the algorithm is used to construct an H{sup d} to describe the photodissociation of phenolmore » from its first and second excited electronic states. The representation treats all 33 internal degrees of freedom in an even handed manner. The ab initio adiabatic electronic structure data used to construct the fit are obtained exclusively from multireference configuration interaction with single and double excitation wave functions comprised of 88 × 10{sup 6} configuration state functions, at geometries determined by quasi-classical trajectories. Since the algorithm uses energy gradients and derivative couplings in addition to electronic energies to construct H{sup d}, data at only 7379 nuclear configurations are required to construct a representation, which describes all nuclear configurations involved in H atom photodissociation to produce the phenoxyl radical in its ground or first excited electronic state, with a mean unsigned energy error of 202.9 cm{sup −1} for electronic energies <60 000 cm{sup −1}.« less
Inelastic scattering of electrons at real metal surfaces
NASA Astrophysics Data System (ADS)
Ding, Z.-J.
1997-04-01
A theory is presented to calculate the electron inelastic scattering cross section for a moving electron near the surface region at an arbitrary takeoff angle. The theory is based on using a bulk plasmon-pole approximation to derive the numerically computable expression of the electron self-energy in the random-phase approximation for a surface system, through the use of experimental optical constants. It is shown that the wave-vector-dependent surface dielectric function satisfies the surface sum rules in this scheme. The theory provides a detailed knowledge of electron self-energy depending on the kinetic energy, distance from surface, and velocity vector of an electron moving in any metal of a known dielectric constant, accommodating the formulation to practical situation in surface electron spectroscopies. Numerical computations of the energy-loss cross section have been made for Si and Au. The contribution to the total differential scattering cross section from each component is analyzed. The depth dependence informs us in detail how the bulk excitation mode changes to a surface excitation mode with an electron approaching the surface from the interior of a medium.
Maity, Partha; Debnath, Tushar; Chopra, Uday; Ghosh, Hirendra Nath
2015-02-14
Ultrafast cascading hole and electron transfer dynamics have been demonstrated in a CdS/CdTe type II core-shell sensitized with Br-PGR using transient absorption spectroscopy and the charge recombination dynamics have been compared with those of CdS/Br-PGR composite materials. Steady state optical absorption studies suggest that Br-PGR forms strong charge transfer (CT) complexes with both the CdS QD and CdS/CdTe core-shell. Hole transfer from the photo-excited QD and QD core-shell to Br-PGR was confirmed by both steady state and time-resolved emission spectroscopy. Charge separation was also confirmed by detecting electrons in the conduction band of the QD and the cation radical of Br-PGR as measured from femtosecond transient absorption spectroscopy. Charge separation in the CdS/Br-PGR composite materials was found to take place in three different pathways, by transferring the photo-excited hole of CdS to Br-PGR, electron injection from the photo-excited Br-PGR to the CdS QD, and direct electron transfer from the HOMO of Br-PGR to the conduction band of the CdS QD. However, in the CdS/CdTe/Br-PGR system hole transfer from the photo-excited CdS to Br-PGR and electron injection from the photo-excited Br-PGR to CdS take place after cascading through the CdTe shell QD. Charge separation also takes place via direct electron transfer from the Br-PGR HOMO to the conduction band of CdS/CdTe. Charge recombination (CR) dynamics between the electron in the conduction band of the CdS QD and the Br-PGR cation radical were determined by monitoring the bleach recovery kinetics. The CR dynamics were found to be much slower in the CdS/CdTe/Br-PGR system than in the CdS/Br-PGR system. The formation of the strong CT complex and the separation of charges cascading through the CdTe shell help to slow down charge recombination in the type II regime.
Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E.; Kohler, Bern
2008-01-01
Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal nucleobases dramatically slows the relaxation of excess electronic energy. The decay rates of the long-lived states decrease with increasing energy of the charge-transfer state produced by transferring an electron from one base to another. The charge-transfer character of the long-lived states revealed by this analysis supports their assignment to excimer or exciplex states. Identical bleach recovery signals were seen for ApA, (A)4, and poly(A) at delay times >10 ps after photoexcitation. This indicates that excited states localized on a stack of just two bases are the common trap states independent of the number of stacked nucleotides. The fraction of initial excitations that decay to long-lived exciplex states is approximately equal to the fraction of stacked bases determined by NMR measurements. This supports a model in which excitations associated with two stacked bases decay to exciplex states, whereas excitations in unstacked bases decay via ultrafast internal conversion. These results establish the importance of charge transfer-quenching pathways for UV-irradiated RNA and DNA in room-temperature solution. PMID:18647840
Takaya, Tomohisa; Su, Charlene; de La Harpe, Kimberly; Crespo-Hernández, Carlos E; Kohler, Bern
2008-07-29
Excited electronic states created by UV excitation of the diribonucleoside monophosphates ApA, ApG, ApC, ApU, and CpG were studied by the femtosecond transient-absorption technique. Bleach recovery signals recorded at 252 nm show that long-lived excited states are formed in all five dinucleosides. The lifetimes of these states exceed those measured in equimolar mixtures of the constituent mononucleotides by one to two orders of magnitude, indicating that electronic coupling between proximal nucleobases dramatically slows the relaxation of excess electronic energy. The decay rates of the long-lived states decrease with increasing energy of the charge-transfer state produced by transferring an electron from one base to another. The charge-transfer character of the long-lived states revealed by this analysis supports their assignment to excimer or exciplex states. Identical bleach recovery signals were seen for ApA, (A)(4), and poly(A) at delay times >10 ps after photoexcitation. This indicates that excited states localized on a stack of just two bases are the common trap states independent of the number of stacked nucleotides. The fraction of initial excitations that decay to long-lived exciplex states is approximately equal to the fraction of stacked bases determined by NMR measurements. This supports a model in which excitations associated with two stacked bases decay to exciplex states, whereas excitations in unstacked bases decay via ultrafast internal conversion. These results establish the importance of charge transfer-quenching pathways for UV-irradiated RNA and DNA in room-temperature solution.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebolini, Elisa, E-mail: rebolini@lct.jussieu.fr; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr; Savin, Andreas, E-mail: savin@lct.jussieu.fr
We present a study of the variation of total energies and excitation energies along a range-separated adiabatic connection. This connection links the non-interacting Kohn–Sham electronic system to the physical interacting system by progressively switching on the electron–electron interactions whilst simultaneously adjusting a one-electron effective potential so as to keep the ground-state density constant. The interactions are introduced in a range-dependent manner, first introducing predominantly long-range, and then all-range, interactions as the physical system is approached, as opposed to the conventional adiabatic connection where the interactions are introduced by globally scaling the standard Coulomb interaction. Reference data are reported for themore » He and Be atoms and the H{sub 2} molecule, obtained by calculating the short-range effective potential at the full configuration-interaction level using Lieb's Legendre-transform approach. As the strength of the electron–electron interactions increases, the excitation energies, calculated for the partially interacting systems along the adiabatic connection, offer increasingly accurate approximations to the exact excitation energies. Importantly, the excitation energies calculated at an intermediate point of the adiabatic connection are much better approximations to the exact excitation energies than are the corresponding Kohn–Sham excitation energies. This is particularly evident in situations involving strong static correlation effects and states with multiple excitation character, such as the dissociating H{sub 2} molecule. These results highlight the utility of long-range interacting reference systems as a starting point for the calculation of excitation energies and are of interest for developing and analyzing practical approximate range-separated density-functional methodologies.« less
Electronic quenching of OH A 2Σ + radicals in collisions with molecular hydrogen
NASA Astrophysics Data System (ADS)
Pollack, Ilana B.; Lei, Yuxiu; Stephenson, Thomas A.; Lester, Marsha I.
2006-04-01
Collisional quenching of electronically excited OH A 2Σ + radicals by molecular hydrogen introduces nonradiative pathways that rapidly remove OH population from the excited state, and result in a significantly decreased fluorescence lifetime. One of these pathways is shown to lead to ground state OH X 2Π products with ˜1 eV of internal excitation in both highly excited rotational levels of v = 1 and the lowest rotational levels of v = 2. This highly nonstatistical OH X 2Π product distribution reflects the passage of the HO-H 2 system through the conical intersection regions that couple the ground and excited state surfaces.
NASA Astrophysics Data System (ADS)
Egidi, Franco; Segado, Mireia; Koch, Henrik; Cappelli, Chiara; Barone, Vincenzo
2014-12-01
In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π*, π-π*, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Egidi, Franco, E-mail: franco.egidi@sns.it; Segado, Mireia; Barone, Vincenzo, E-mail: vincenzo.barone@sns.it
In this work, we report a comparative study of computed excitation energies, oscillator strengths, and excited-state energy gradients of (S)-nicotine, chosen as a test case, using multireference methods, coupled cluster singles and doubles, and methods based on time-dependent density functional theory. This system was chosen because its apparent simplicity hides a complex electronic structure, as several different types of valence excitations are possible, including n-π{sup *}, π-π{sup *}, and charge-transfer states, and in order to simulate its spectrum it is necessary to describe all of them consistently well by the chosen method.
NASA Astrophysics Data System (ADS)
Jones, D. B.; da Costa, R. F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; Blanco, F.; García, G.; Brunger, M. J.
2016-04-01
We report absolute experimental integral cross sections (ICSs) for electron impact excitation of bands of electronic-states in furfural, for incident electron energies in the range 20-250 eV. Wherever possible, those results are compared to corresponding excitation cross sections in the structurally similar species furan, as previously reported by da Costa et al. [Phys. Rev. A 85, 062706 (2012)] and Regeta and Allan [Phys. Rev. A 91, 012707 (2015)]. Generally, very good agreement is found. In addition, ICSs calculated with our independent atom model (IAM) with screening corrected additivity rule (SCAR) formalism, extended to account for interference (I) terms that arise due to the multi-centre nature of the scattering problem, are also reported. The sum of those ICSs gives the IAM-SCAR+I total cross section for electron-furfural scattering. Where possible, those calculated IAM-SCAR+I ICS results are compared against corresponding results from the present measurements with an acceptable level of accord being obtained. Similarly, but only for the band I and band II excited electronic states, we also present results from our Schwinger multichannel method with pseudopotentials calculations. Those results are found to be in good qualitative accord with the present experimental ICSs. Finally, with a view to assembling a complete cross section data base for furfural, some binary-encounter-Bethe-level total ionization cross sections for this collision system are presented.
Photoinduced electron transfer at the tetrapyrrole-TiO2 interface: Effect of the energy alignment
NASA Astrophysics Data System (ADS)
Nieto-Pescador, Jesus S.
Photoinduced electron transfer is a ubiquitous process behind several physical, chemical, and biological processes. Its potential applications, ranging from solar cell technologies to photodynamic cancer therapy, require a thorough understanding of the basics of the reaction. This dissertation addresses open questions for a particular case of electron transfer processes: Heterogeneous Electron Transfer (HET). In this process, an electron is transferred between a localized donor and a multitude of delocalized acceptor states. HET between photoexcited tetrapyrroles and colloidal TiO2 has been investigated using femtosecond transient absorption spectroscopy. Specifically, this work explores the not well-understood influence of the availability of states on the HET reaction. This problem is addressed by measuring electron injection times as a function of the energy difference between the LUMO and the conduction band of TiO2. The change in the energy alignment was done using two experimental strategies. The first one employs a recently synthesized phlorin with two different excited states above the conduction band of TiO2. This molecule allows comparing HET rates from two different excited states. The second strategy measures the electron injection rates after exciting the same electronic state of a set of specially designed porphyrins. The novelty of the approach is that the difference in energy alignment is attained by the introduction of dipole groups within the bridge group of the molecule. This strategy generates a difference in energy alignment of up to 200 meV. The reported measurements were carried in a high vacuum environment with an apparatus capable of resolving sub 30 fs processes. Disentanglement of the electron transfer processes was done, after careful study of the relaxation dynamics of the molecules in solution, by monitoring the decay of the excited state absorption and the rise of the cation spectral signatures. Within our time resolution, our results show that the increase in the availability of acceptor states does not influence the electron injection dynamics. The results suggest that the injection process takes place into a spectrum of states different from those obtained by steady state calculations.
On the analysis of photo-electron spectra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, C.-Z., E-mail: gao@irsamc.ups-tlse.fr; CNRS, LPT; Dinh, P.M.
2015-09-15
We analyze Photo-Electron Spectra (PES) for a variety of excitation mechanisms from a simple mono-frequency laser pulse to involved combination of pulses as used, e.g., in attosecond experiments. In the case of simple pulses, the peaks in PES reflect the occupied single-particle levels in combination with the given laser frequency. This usual, simple rule may badly fail in the case of excitation pulses with mixed frequencies and if resonant modes of the system are significantly excited. We thus develop an extension of the usual rule to cover all possible excitation scenarios, including mixed frequencies in the attosecond regime. We find thatmore » the spectral distributions of dipole, monopole and quadrupole power for the given excitation taken together and properly shifted by the single-particle energies provide a pertinent picture of the PES in all situations. This leads to the derivation of a generalized relation allowing to understand photo-electron yields even in complex experimental setups.« less
Electrostatic ion-cyclotron waves in a nonuniform magnetic field
NASA Technical Reports Server (NTRS)
Cartier, S. L.; Dangelo, N.; Merlino, R. L.
1985-01-01
The properties of electrostatic ion-cyclotron waves excited in a single-ended cesium Q machine with a nonuniform magnetic field are described. The electrostatic ion-cyclotron waves are generated in the usual manner by drawing an electron current to a small exciter disk immersed in the plasma column. The parallel and perpendicular (to B) wavelengths and phase velocities are determined by mapping out two-dimensional wave phase contours. The wave frequency f depends on the location of the exciter disk in the nonuniform magnetic field, and propagating waves are only observed in the region where f is approximately greater than fci, where fci is the local ion-cyclotron frequency. The parallel phase velocity is in the direction of the electron drift. From measurements of the plasma properties along the axis, it is inferred that the electron drift velocity is not uniform along the entire current channel. The evidence suggests that the waves begin being excited at that axial position where the critical drift velocity is first exceeded, consistent with a current-driven excitation mechanism.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Li, Tingyu
2017-09-01
Solar cells sensitized by polypyridyl Ru(II) complexes exhibit relatively high efficiency, however those photo-sensitizers did not absorb the photons in the far-red and near-infrared region. At present, squaraine dyes have received considerable attention as their attractively intrinsic red light absorption and unusual high molar extinction coefficient. Here we applied density functional theory and time dependent density functional theory to investigate the properties of electronically excited states of four squaraine dyes and their complexes with fullerene C70. The influences of different functionals, basis sets and solvent effects are evaluated. To understand the photophysical properties, the investigations are basing on a classification method which splits the squaraine dyes and their complexes with fullerene C70 into two units to characterize the intramolecular density distribution. We present the signatures of their electronically excited states which are characterized as local excitation or charge-transfer excitation. The relationship between open-circuit voltage and the number of intramolecular hydrogen bonds in squaraine dyes are discussed.
Kirschner, Matthew S.; Hannah, Daniel C.; Diroll, Benjamin T.; ...
2017-07-28
Ultrafast optical pump, X-ray diffraction probe experiments were performed on CdSe nanocrystal (NC) colloidal dispersions as functions of particle size, polytype, and pump fluence. Bragg peak shifts relate heating and peak amplitude reduction confers lattice disordering. For smaller NCs, melting initiates upon absorption of as few as ~15 electron-hole pair excitations per NC on average (0.89 excitations/nm 3 for a 1.5-nm radius) with roughly the same excitation density inducing melting for all examined NCs. Diffraction intensity recovery kinetics, attributable to recrystallization, occur over hundreds of picoseconds with slower recoveries for larger particles. Zincblende and wurtzite NCs revert to initial structuresmore » following intense photoexcitation suggesting melting occurs primarily at the surface, as supported by simulations. Electronic structure calculations relate significant band gap narrowing with decreased crystallinity. Here, these findings reflect the need to consider the physical stability of nanomaterials and related electronic impacts in high intensity excitation applications such as lasing and solid-state lighting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirschner, Matthew S.; Hannah, Daniel C.; Diroll, Benjamin T.
Ultrafast optical pump, X-ray diffraction probe experiments were performed on CdSe nanocrystal (NC) colloidal dispersions as functions of particle size, polytype, and pump fluence. Bragg peak shifts relate heating and peak amplitude reduction confers lattice disordering. For smaller NCs, melting initiates upon absorption of as few as ~15 electron-hole pair excitations per NC on average (0.89 excitations/nm 3 for a 1.5-nm radius) with roughly the same excitation density inducing melting for all examined NCs. Diffraction intensity recovery kinetics, attributable to recrystallization, occur over hundreds of picoseconds with slower recoveries for larger particles. Zincblende and wurtzite NCs revert to initial structuresmore » following intense photoexcitation suggesting melting occurs primarily at the surface, as supported by simulations. Electronic structure calculations relate significant band gap narrowing with decreased crystallinity. Here, these findings reflect the need to consider the physical stability of nanomaterials and related electronic impacts in high intensity excitation applications such as lasing and solid-state lighting.« less
Optoelectronics of organic nanofibers formed by co-assembly of porphyrin and perylenediimide.
Li, Yuangang; Wang, Weina; Leow, Wan Ru; Zhu, Bowen; Meng, Fanben; Zheng, Liyan; Zhu, Jia; Chen, Xiaodong
2014-07-23
Organic nanofibers are formed by simple ionic co-assembly of positively charged porphyrin (electron donor) and negatively charged perylenediimide (electron acceptor) derivatives in aqueous solution. Two kinds of electron transfer routes between electron donor and electron acceptor under light excitation in nanofibers are confirmed by DFT calculations and experimental data. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Robson, R. E.; White, R. D.; Morrison, Michael A.
2003-10-01
We commence a fundamental re-examination of the kinetic theory of charged particle swarms in molecular gases, focusing on collisional excitation of molecular rotational and ro-vibrational states by electrons. Modern day analysis of electron swarms has been based upon the kinetic equation of Wang-Chang et al, which simply treats all processes as scalar energy excitations, and ignores angular momentum conservation and the vector dynamics associated with rotational excitation. It is pointed out that there is no alternative, more exact kinetic equation readily available for electrons which enables one to directly ascertain the degree of error introduced by this approximation. Thus in this preliminary study, we approach the problem indirectly, from the standpoint of the neutral molecules, using the Waldmann-Snider quantum kinetic equation, and insist that an electron-molecule collision must look the same from the perspective of both electron and molecule. We give a formula for quantitatively assessing the importance of scalar versus vectorial treatments of rotational excitation by looking at the post-collisional 'echo' produced by an electron swarm as it passes through the gas. It is then pointed out that in order to remedy any deficiency, it will be necessary to introduce a kinetic collisional operator non-local in space to properly account for angular momentum conservation, as has long been established in the literature. This is a major exercise and given the preliminary nature of this study, we consider the inclusion of such effects from a formal point of view only. In particular we show how non-local effects lead to a spatially dependent 'source' term in the equation of continuity, and hence to corrections for both drift velocity and diffusion coefficients. The magnitude of these corrections has yet to be established.
Photoemission into water adsorbed on metals: Probing dissociative electron transfer using theory
NASA Astrophysics Data System (ADS)
Zhang, Yu; Whitten, J. L.
The photoinduced dissociation of water adsorbed on a silver nanoparticle is explored using theory to probe reaction pathways that produce hydrogen. Ab initio configuration theory is used to describe the systems. A formulation that allows excited electronic states embedded in a near continuum of lower energy states to be calculated accurately is described. Electron attachment of a photoemitted electron to adsorbed water can lead to the formation of H2 at a very low energy barrier with oxygen remaining on the Ag surface. A large energy barrier to form H2 plus adsorbed O is found for the ground state. The excited state has a much smaller barrier to OH stretch; however, to dissociate, the system must cross over from the excited state to the ground state potential energy surface. The cross over point is near the transition state for a ground state process. A characteristic feature of the excited state potential curve is an increase in energy in the early stages of OH stretch as the charge transfer state evolves from a state with considerable Rydberg character to one that has a typical OH antibonding molecular orbital. Another pathway releases a H atom leaving OH on the surface. Effects due to doping of a Ag nanoparticle with a K electron donor atom are compared with those caused by a Fermi level shift due to an applied potential. Results are also reported for electron transfer to a solvated lithium ion, Li(H2O) 6+, near the surface of a silver particle. A steering mechanism is found that involves the interaction of a hydridic hydrogen formed after electron transfer with an acidic hydrogen of a second solvated water molecule.
Tanabe, T; Noda, K; Saito, M; Starikov, E B; Tateno, M
2004-07-23
Electron-DNA anion collisions were studied using an electrostatic storage ring with a merging electron-beam technique. The rate of neutral particles emitted in collisions started to increase from definite threshold energies, which increased regularly with ion charges in steps of about 10 eV. These threshold energies were almost independent of the length and sequence of DNA, but depended strongly on the ion charges. Neutral particles came from breaks of DNAs, rather than electron detachment. The step of the threshold energy increase approximately agreed with the plasmon excitation energy. It is deduced that plasmon excitation is closely related to the reaction mechanism. Copyright 2004 The American Physical Society
Electron Impact Excitation of the Electronic States of Water
NASA Astrophysics Data System (ADS)
Thorn, Penny; Diakomichalis, N.; Brunger, M. J.; Campbell, L.; Teubner, P. J. O.; Kato, H.; Makochekanwa, C.; Hoshino, M.; Tanaka, H.
2006-10-01
We report differential and integral cross sections for excitation of the lowest lying ^3B1, ^1B1, ^3A1 and ^1A1 electronic states of water. The energy range of these measurements is 15-50eV and the angular range of the DCS measurements is 10-90^o. From these DCS the corresponding ICS is calculated using a molecular phase shift analysis technique. Where possible, comparison is made to the results of available theory. One of the main objectives of this study is to perform statistical equilibrium calculations to determine if the origin of the OH Meinel bands in our atmosphere are due to electron driven processes.
Electron-impact dissociation of molecular hydrogen into neutral fragments
NASA Astrophysics Data System (ADS)
Scarlett, Liam H.; Tapley, Jonathan K.; Fursa, Dmitry V.; Zammit, Mark C.; Savage, Jeremy S.; Bray, Igor
2018-02-01
We present convergent close-coupling calculations of electron-impact dissociation of the ground state of molecular hydrogen into neutral fragments over the range of impact energies from 6 to 300 eV. The calculations account for dissociative excitation, excitation radiative decay dissociation, and predissociation through all bound electronic triplet states, and singlet states up to the D' 1 Π u state. An estimate is given for the contribution from the remaining bound electronic singlet states. Our results are in agreement with the recommended data of Yoon et al. [J. Phys. Chem. Ref. Data 37, 913 (2008)] in the low (6-12 eV) and high (60-70 eV) energy regions, but somewhat lower at the intermediate energies.
NASA Astrophysics Data System (ADS)
Takeuchi, Noboru; Selloni, Annabella; Myers, T. H.; Doolittle, A.
2005-09-01
We present density-functional-theory calculations of the binding and diffusion of Ga and N adatoms on GaN (0001) and (000-1) surfaces under different conditions, including stoichiometric and Ga-rich surfaces, as well as in the presence of electron-hole (e-h) pairs induced by light- or electron-beam irradiation. We find that both Ga-rich conditions and electronic excitations cause a significant reduction of the adatom diffusion barriers, as required to improve the quality of the material. However, the two effects are nonadditive, as the influence of e-h pairs are found to be less important for the more metallic situations.
Li, H; Mignolet, B; Wachter, G; Skruszewicz, S; Zherebtsov, S; Süssmann, F; Kessel, A; Trushin, S A; Kling, Nora G; Kübel, M; Ahn, B; Kim, D; Ben-Itzhak, I; Cocke, C L; Fennel, T; Tiggesbäumker, J; Meiwes-Broer, K-H; Lemell, C; Burgdörfer, J; Levine, R D; Remacle, F; Kling, M F
2015-03-27
Strong laser fields can be used to trigger an ultrafast molecular response that involves electronic excitation and ionization dynamics. Here, we report on the experimental control of the spatial localization of the electronic excitation in the C_{60} fullerene exerted by an intense few-cycle (4 fs) pulse at 720 nm. The control is achieved by tailoring the carrier-envelope phase and the polarization of the laser pulse. We find that the maxima and minima of the photoemission-asymmetry parameter along the laser-polarization axis are synchronized with the localization of the coherent electronic wave packet at around the time of ionization.
NASA Astrophysics Data System (ADS)
Obukhov, A. E.
2017-01-01
In this work we demonstrate the physical foundations of the spectroscopy of the grounds states: E- and X-ray, (RR) Raman scattering the NMR 1H and 13C and IR-, EPR- absorption and the singlets and triplets electronic excited states in the multinuclear hydrocarbons in chemmotology. The parameters of UV-absorption, RR-Raman scattering of light, the fluorescence and the phosphorescence and day-lasers at the pumping laser and lamp, OLEDs and OTETs- are measurements. The spectral-energy properties are briefly studied. The quantum-chemical LCAO-MO SCF expanded-CI PPP/S and INDO/S methods in the electronic and spatial structure hidrocarbons are considered.
Impact of Relativistic Electron Beam on Hole Acoustic Instability in Quantum Semiconductor Plasmas
NASA Astrophysics Data System (ADS)
Siddique, M.; Jamil, M.; Rasheed, A.; Areeb, F.; Javed, Asif; Sumera, P.
2018-01-01
We studied the influence of the classical relativistic beam of electrons on the hole acoustic wave (HAW) instability exciting in the semiconductor quantum plasmas. We conducted this study by using the quantum-hydrodynamic model of dense plasmas, incorporating the quantum effects of semiconductor plasma species which include degeneracy pressure, exchange-correlation potential and Bohm potential. Analysis of the quantum characteristics of semiconductor plasma species along with relativistic effect of beam electrons on the dispersion relation of the HAW is given in detail qualitatively and quantitatively by plotting them numerically. It is worth mentioning that the relativistic electron beam (REB) stabilises the HAWs exciting in semiconductor (GaAs) degenerate plasma.
Tentative anatomy of ZnS-type electroluminescence
NASA Astrophysics Data System (ADS)
Bringuier, E.
1994-05-01
The paper reviews the electrical and optical mechanisms at work in sulfide-based thin-film electroluminescence display devices within the framework of general semiconductor physics. The electrical problem is twofold: (i) charge carriers are sourced at high electric field in a nominally insulating material, the carrier density increasing by almost eight orders of magnitude; (ii) the carriers are transported at high field, with an average energy largely exceeding the thermal one. (i) Carrier sourcing is best understood from direct-current-driven ZnS films, and is ascribed to partly filled deep donors transferring electrons to the conduction band by Fowler-Nordheim tunneling. The deep donors also act as carrier sinkers, and evidence for space charge is afforded by small-signal impedance analysis disclosing a markedly inductive behavior. The conduction picture obtained from dc-driven films is then used to clarify the operation of alternating-current electroluminescence structures where the sulfide is sandwiched between two blocking oxide layers. The electrostatics of the ac structure is investigated in detail including space charge and field nonuniformity, and external observables are related to internal quantities. The simple model of interfacial carrier sourcing and sinking is examined. (ii) High-field electronic transport is controlled by the electron-phonon interaction, and the modeling resorts to numerical simulations or the lucky-drift concept. At low electron energies the interaction with phonons is predominantly polar, while at optical energies it proceeds via deformation potential scattering. In spite of the uncertainties in transport models in that range, it is likely that ˜50% of the electrons overtake 2 eV at the usual operating fields in ZnS. Light emission is associated with impurity luminescence centers embedded in the sulfide host. They are excited while current is flowing, and the ensuing relaxation is partly radiative. We describe the two ways in which an impurity may be excited electrically, namely, impact excitation (internal promotion of the center to a state of higher energy) or impact ionization (with an electron released to the host conduction band). The actual excitation mechanism depends on the position of the impurity excited level relative to the host energy bands. A calculation of the excitation yield (number of excited centers per transferred electron) is detailed in the case of impact excitation. Lastly, a phenomenological description of the various relaxation channels is given in terms of formal kinetics, and the relative importance of radiative relaxation is assessed by means of the deexcitation yield (fraction of centers decaying radiatively), which is defined in the case of the impulse response.
The energy structure and decay channels of the 4p6-shell excited states in Sr
NASA Astrophysics Data System (ADS)
Kupliauskienė, A.; Kerevičius, G.; Borovik, V.; Shafranyosh, I.; Borovik, A.
2017-11-01
The ejected-electron spectra arising from the decay of the 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } autoionizing states in Sr atoms have been studied precisely at the incident-electron energies close to excitation and ionization thresholds of the 4{{{p}}}6 subshell. The excitation behaviors for 58 lines observed between 12 and 21 eV ejected-electron kinetic energy have been investigated. Also, the ab initio calculations of excitation energies, autoionization probabilities and electron-impact excitation cross sections of the states 4p{}5{{nln}}{\\prime }{l}{\\prime }{n}{\\prime\\prime }{l}{\\prime\\prime } (nl = 4d, 5s, 5p; {n}{\\prime }{l}{\\prime } = 4d, 5s, 5p; {n}{\\prime\\prime }{l}{\\prime\\prime } = 5s, 6s, 7s, 8s, 9s, 5p, 6p, 5d, 6d, 7d, 8d, 4f, 5g) have been performed by employing the large-scale configuration-interaction method in the basis of the solutions of Dirac-Fock-Slater equations. The obtained experimental and theoretical data have been used for the accurate identification of the 60 lines in ejected-electron spectra and the 68 lines observed earlier in photoabsorption spectra. The excitation and decay processes for 105 classified states in the 4p55s{}2{nl}, 4p54d{}2{nl} and 4p55s{{nln}}{\\prime }{l}{\\prime } configurations have been considered in detail. In particular, most of the states lying below the ionization threshold of the 4p6 subshell at 26.92 eV possess up to four decay channels with formation of Sr+ in 5s{}1/2, 4d{}3/{2,5/2} and 5p{}1/{2,3/2} states. Two-step autoionization and two-electron Auger transitions with formation of Sr2+ in the 4p6 {}1{{{S}}}0 ground state are the main decay paths for high-lying autoionizing states. The excitation threshold of the 4{{{p}}}6 subshell in Sr has been established at 20.98 ± 0.05 eV.
Effects of excitation frequency on high-order terahertz sideband generation in semiconductors
NASA Astrophysics Data System (ADS)
Xie, Xiao-Tao; Zhu, Bang-Fen; Liu, Ren-Bao
2013-10-01
We theoretically investigate the effects of the excitation frequency on the plateau of high-order terahertz sideband generation (HSG) in semiconductors driven by intense terahertz (THz) fields. We find that the plateau of the sideband spectrum strongly depends on the detuning between the near-infrared laser field and the band gap. We use the quantum trajectory theory (three-step model) to understand the HSG. In the three-step model, an electron-hole pair is first excited by a weak laser, then driven by the strong THz field, and finally recombined to emit a photon with energy gain. When the laser is tuned below the band gap (negative detuning), the electron-hole generation is a virtual process that requires quantum tunneling to occur. When the energy gained by the electron-hole pair from the THz field is less than 3.17 times the ponderomotive energy (Up), the electron and the hole can be driven to the same position and recombined without quantum tunneling, so that the HSG will have large probability amplitude. This leads to a plateau feature of the HSG spectrum with a high-frequency cutoff at about 3.17Up above the band gap. Such a plateau feature is similar to the case of high-order harmonics generation in atoms where electrons have to overcome the binding energy to escape the atomic core. A particularly interesting excitation condition in HSG is that the laser can be tuned above the band gap (positive detuning), corresponding to the unphysical ‘negative’ binding energy in atoms for high-order harmonic generation. Now the electron-hole pair is generated by real excitation, but the recombination process can be real or virtual depending on the energy gained from the THz field, which determines the plateau feature in HSG. Both the numerical calculation and the quantum trajectory analysis reveal that for positive detuning, the HSG plateau cutoff depends on the frequency of the excitation laser. In particular, when the laser is tuned more than 3.17Up above the band gap, the HSG spectrum presents no plateau feature but instead sharp peaks near the band edge and near the excitation frequency.
NASA Technical Reports Server (NTRS)
James, G. K.; Slevin, J. A.; Shemansky, D. E.; McConkey, J. W.; Bray, I.; Dziczek, D.; Kanik, I.; Ajello, J. M.
1997-01-01
The optical excitation function of prompt Lyman-Alpha radiation, produced by electron impact on atomic hydrogen, has been measured over the extended energy range from threshold to 1.8 keV. Measurements were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source. A vacuum-ultraviolet mono- chromator system was used to measure the emitted Lyman-Alpha radiation. The absolute H(1s-2p) electron impact excitation cross section was obtained from the experimental optical excitation function by normalizing to the accepted optical oscillator strength, with corrections for polarization and cascade. Statistical and known systematic uncertainties in our data range from +/- 4% near threshold to +/- 2% at 1.8 keV. Multistate coupling affecting the shape of the excitation function up to 1 keV impact energy is apparent in both the present experimental data and present theoretical results obtained with convergent close- coupling (CCC) theory. This shape function effect leads to an uncertainty in absolute cross sections at the 10% level in the analysis of the experimental data. The derived optimized absolute cross sections are within 7% of the CCC calculations over the 14 eV-1.8 keV range. The present CCC calculations converge on the Bethe- Fano profile for H(1s-2p) excitation at high energy. For this reason agreement with the CCC values to within 3% is achieved in a nonoptimal normalization of the experimental data to the Bethe-Fano profile. The fundamental H(1s-2p) electron impact cross section is thereby determined to an unprecedented accuracy over the 14 eV - 1.8 keV energy range.
NASA Astrophysics Data System (ADS)
Grimme, Stefan
2013-06-01
Two approximations in the Tamm-Dancoff density functional theory approach (TDA-DFT) to electronically excited states are proposed which allow routine computations for electronic ultraviolet (UV)- or circular dichroism (CD) spectra of molecules with 500-1000 atoms. Speed-ups compared to conventional time-dependent DFT (TD-DFT) treatments of about two to three orders of magnitude in the excited state part at only minor loss of accuracy are obtained. The method termed sTDA ("s" for simplified) employs atom-centered Löwdin-monopole based two-electron repulsion integrals with the asymptotically correct 1/R behavior and perturbative single excitation configuration selection. It is formulated generally for any standard global hybrid density functional with given Fock-exchange mixing parameter ax. The method performs well for two standard benchmark sets of vertical singlet-singlet excitations for values of ax in the range 0.2-0.6. The mean absolute deviations from reference data are only 0.2-0.3 eV and similar to those from standard TD-DFT. In three cases (two dyes and one polypeptide), good mutual agreement between the electronic spectra (up to 10-11 eV excitation energy) from the sTDA method and those from TD(A)-DFT is obtained. The computed UV- and CD-spectra of a few typical systems (e.g., C60, two transition metal complexes, [7]helicene, polyalanine, a supramolecular aggregate with 483 atoms and about 7000 basis functions) compare well with corresponding experimental data. The method is proposed together with medium-sized double- or triple-zeta type atomic-orbital basis sets as a quantum chemical tool to investigate the spectra of huge molecular systems at a reliable DFT level.
Vibrational excitation of water by electron impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M. A.; Winstead, C.; McKoy, V.
2009-05-15
Experimental and calculated differential cross sections (DCSs) for electron-impact excitation of the (010) bending mode and unresolved (100) symmetric and (001) antisymmetric stretching modes of water are presented. Measurements are reported at incident energies of 1-100 eV and scattering angles of 10 deg. - 130 deg. and are normalized to the elastic-scattering DCSs for water determined earlier by our group. The calculated cross sections are obtained in the adiabatic approximation from fixed-nuclei, electronically elastic scattering calculations using the Schwinger multichannel method. The present results are compared to available experimental and theoretical data.
Electron-impact vibrational excitation of furan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hargreaves, L. R.; Albaridy, R.; Serna, G.
2011-12-15
We report measurements of differential cross sections for the vibrational excitation of furan (C{sub 4}H{sub 4}O), obtaining results for nine features spanning the electron energy loss range from 0 to 0.8 eV, at electron-impact energies of 5, 6, 7.5, 10, and 15 eV and for scattering angles ranging from 10{sup o} to 130{sup o}. The normalization of the differential cross sections was done using elastic differential cross sections for furan determined earlier by our group [Khakoo et al., Phys. Rev A 81, 062716 (2010)].
NASA Astrophysics Data System (ADS)
Green, M. A.; Teubner, P. J. O.; Brunger, M. J.; Cartwright, D. C.; Campbell, L.
2001-03-01
We report integral cross sections (ICSs) for electron impact excitation of the sum (c 1Σ-u + A' 3Δu + A 3Σ+u) of the three states that constitute the Herzberg pseudocontinuum in O2. These ICSs were measured at seven incident electron energies in the range 9-20 eV in order to investigate for the existence of the strong resonance feature predicted by earlier R-matrix calculations. No such structure was observed in this letter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakano, Hiroshi; Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8245
2015-12-31
Electronic polarization effects of a medium can have a significant impact on a chemical reaction in condensed phases. We discuss the effects on the charge transfer excitation of a chromophore, N,N-dimethyl-4-nitroaniline, in various solvents using the mean-field QM/MM method with a polarizable force field. The results show that the explicit consideration of the solvent electronic polarization effects is important especially for a solvent with a low dielectric constant when we study the solvatochromism of the chromophore.
Excited-state thermionic emission in III-antimonides: Low emittance ultrafast photocathodes
NASA Astrophysics Data System (ADS)
Berger, Joel A.; Rickman, B. L.; Li, T.; Nicholls, A. W.; Andreas Schroeder, W.
2012-11-01
The normalized rms transverse emittance of an electron source is shown to be proportional to √m* , where m* is the effective mass of the state from which the electron is emitted, by direct observation of the transverse momentum distribution for excited-state thermionic emission from two III-V semiconductor photocathodes, GaSb and InSb, together with a control experiment employing two-photon emission from gold. Simulations of the experiment using an extended analytical Gaussian model of electron pulse propagation are in close agreement with the data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, D.C.; Miskowski, V.M.; Gray, H.B.
1990-05-09
Electronic absorption and magnetic circular dichroism (MCD) spectra of Rh{sub 2}(TMB){sub 4}{sup 2+} and Ir{sub 2}(TMB){sub 4}{sup 2+} are reported along with polarized single-crystal absorption spectra of (Ir{sub 2}(TMB){sub 4})(B(C{sub 6}H{sub 5}){sub 4}){sub 2} {times} CH{sub 3}C{sub 6}H{sub 5} (TMB = 2,5-diisocyano-2,5-dimethylhexane). Interpretation of the spectra is based on a valence-bond model that accommodates highly perturbed dimer transitions as well as monomer-like dimer excitations. In this model, half of the dimer electronic excited states possess ionic character; these states involve metal-to-metal charge transfer (MMCT). The most prominent of the weak features ({approximately} 430 nm) is assigned to the transition tomore » {sup 1}A{sub 1g} (a single-center d{sub z{sup 2}} {yields} p{sub z} excitation). High-energy features ({lambda} < 300 nm) in the spectra of Rh{sub 2}(TMB){sub 4}{sup 2+} and Ir{sub 2}(TMB){sub 4}{sup 2+} are assigned to MMCT arising from d{sub xzyz} {yields} p{sub z} excitations.« less
Chemical Excitation of Electrons: A Dark Path to Melanoma
Premi, Sanjay; Brash, Douglas E.
2016-01-01
Sunlight’s ultraviolet wavelengths induce cyclobutane pyrimidine dimers (CPDs), which then cause mutations that lead to melanoma or to cancers of skin keratinocytes. In pigmented melanocytes, we found that CPDs arise both instantaneously and for hours after UV exposure ends. Remarkably, the CPDs arising in the dark originate by a novel pathway that resembles bioluminescence but does not end in light: First, UV activates the enzymes nitric oxide synthase (NOS) and NADPH oxidase (NOX), which generate the radicals nitric oxide (NO•) and superoxide (O2•−); these combine to form the powerful oxidant peroxynitrite (ONOO−). A fragment of the skin pigment melanin is then oxidized, exciting an electron to an energy level so high that it is rarely seen in biology. This process of chemically exciting electrons, termed “chemiexcitation”, is used by fireflies to generate light but it had never been seen in mammalian cells. In melanocytes, the energy transfers radiationlessly to DNA, inducing CPDs. Chemiexcitation is a new source of genome instability, and it calls attention to endogenous mechanisms of genome maintenance that prevent electronic excitation or dissipate the energy of excited states. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin. PMID:27262612
Chemical excitation of electrons: A dark path to melanoma.
Premi, Sanjay; Brash, Douglas E
2016-08-01
Sunlight's ultraviolet wavelengths induce cyclobutane pyrimidine dimers (CPDs), which then cause mutations that lead to melanoma or to cancers of skin keratinocytes. In pigmented melanocytes, we found that CPDs arise both instantaneously and for hours after UV exposure ends. Remarkably, the CPDs arising in the dark originate by a novel pathway that resembles bioluminescence but does not end in light: First, UV activates the enzymes nitric oxide synthase (NOS) and NADPH oxidase (NOX), which generate the radicals nitric oxide (NO) and superoxide (O2(-)); these combine to form the powerful oxidant peroxynitrite (ONOO(-)). A fragment of the skin pigment melanin is then oxidized, exciting an electron to an energy level so high that it is rarely seen in biology. This process of chemically exciting electrons, termed "chemiexcitation", is used by fireflies to generate light but it had never been seen in mammalian cells. In melanocytes, the energy transfers radiationlessly to DNA, inducing CPDs. Chemiexcitation is a new source of genome instability, and it calls attention to endogenous mechanisms of genome maintenance that prevent electronic excitation or dissipate the energy of excited states. Chemiexcitation may also trigger pathogenesis in internal tissues because the same chemistry should arise wherever superoxide and nitric oxide arise near cells that contain melanin. Copyright © 2016 Elsevier B.V. All rights reserved.
Using pipe with corrugated walls for a subterahertz free electron laser
Stupakov, Gennady
2015-03-18
A metallic pipe with corrugated walls supports propagation of a high-frequency mode that is in resonance with a relativistic beam propagating along the axis of the pipe. This mode can be excited by a beam whose length is a fraction of the wavelength. In this paper, we study another option of excitation of the resonant mode—via the mechanism of the free electron laser instability. This mechanism works if the bunch length is much longer than the wavelength of the radiation and, hence, does not require bunch compression. As a result, it provides an alternative to excitation by short bunches thatmore » can be realized with relatively low energy and low peak-current electron beams.« less
Rotationally resolved electronic spectroscopy study of the conformational space of 3-methoxyphenol
NASA Astrophysics Data System (ADS)
Wilke, Martin; Schneider, Michael; Wilke, Josefin; Ruiz-Santoyo, José Arturo; Campos-Amador, Jorge J.; González-Medina, M. Elena; Álvarez-Valtierra, Leonardo; Schmitt, Michael
2017-07-01
Conformational preferences are determined by (de-)stabilization effects like intramolecular hydrogen bonds or steric hindrance of adjacent substituents and thus, influence the stability and reactivity of the conformers. In the present contribution, we investigate the conformational landscape of 3-methoxyphenol using a combination of high resolution electronic spectroscopy and ab initio calculations. Three of the four possible conformational isomers were characterized in their electronic ground and lowest excited singlet states on the basis of their rotational constants and other molecular parameters. The absence of one conformer in molecular beam studies can be explained by its non-planar structure in the excited state, which leads to a vanishingly small Franck-Condon factor of the respective origin excitation.
Using pipe with corrugated walls for a subterahertz free electron laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stupakov, Gennady
A metallic pipe with corrugated walls supports propagation of a high-frequency mode that is in resonance with a relativistic beam propagating along the axis of the pipe. This mode can be excited by a beam whose length is a fraction of the wavelength. In this paper, we study another option of excitation of the resonant mode—via the mechanism of the free electron laser instability. This mechanism works if the bunch length is much longer than the wavelength of the radiation and, hence, does not require bunch compression. As a result, it provides an alternative to excitation by short bunches thatmore » can be realized with relatively low energy and low peak-current electron beams.« less
The contribution of electron collisions to rotational excitations of cometary water
NASA Technical Reports Server (NTRS)
Xie, Xingfa; Mumma, Michael J.
1992-01-01
The e-H2O collisional rate for exciting rotational transitions in cometary water is evaluated for conditions found in comet Halley during the Giotto spacecraft encounter. In the case of the O(sub 00) yields 1(sub 11) rotational transition, the e-H2O collisional rate exceeds that for excitation by neutral-neutral collisions at distances exceeding 3000 km from the cometary nucleus. Thus, the rotational temperature of the water molecule in the intermediate coma may be controlled by collisions with electrons rather than with neutral collisions, and the rotational temperature retrieved from high resolution infrared spectra of water in comet Halley may reflect electron temperatures rather than neutral gas temperature in the intermediate coma.
Recombination dynamics of optically excited charge carriers in bulk MoS2
NASA Astrophysics Data System (ADS)
Völzer, Tim; Lütgens, Matthias; Fennel, Franziska; Lochbrunner, Stefan
2017-10-01
Transition metal dichalcogenides (TMDCs), such as MoS2, are promising candidates for optoelectronic or catalytic applications. On that account, a detailed characterization of the electronic dynamics in these materials is of pivotal importance. Here, we investigate the temporal evolution of an excited carrier population by all-optical pump-probe spectroscopy. On the sub-picosecond time scale we observe thermal relaxation of the excited carriers by electron-phonon coupling. The dynamics on the nanosecond time scale can be understood in terms of defect-assisted Auger recombination over a broad carrier density regime spanning more than one order of magnitude. Hence, our results emphasize the importance of defect states for electronic processes in TMDCs at room temperature.
NASA Astrophysics Data System (ADS)
Sjulstok, Emil; Olsen, Jógvan Magnus Haugaard; Solov'Yov, Ilia A.
2015-12-01
Various biological processes involve the conversion of energy into forms that are usable for chemical transformations and are quantum mechanical in nature. Such processes involve light absorption, excited electronic states formation, excitation energy transfer, electrons and protons tunnelling which for example occur in photosynthesis, cellular respiration, DNA repair, and possibly magnetic field sensing. Quantum biology uses computation to model biological interactions in light of quantum mechanical effects and has primarily developed over the past decade as a result of convergence between quantum physics and biology. In this paper we consider electron transfer in biological processes, from a theoretical view-point; namely in terms of quantum mechanical and semi-classical models. We systematically characterize the interactions between the moving electron and its biological environment to deduce the driving force for the electron transfer reaction and to establish those interactions that play the major role in propelling the electron. The suggested approach is seen as a general recipe to treat electron transfer events in biological systems computationally, and we utilize it to describe specifically the electron transfer reactions in Arabidopsis thaliana cryptochrome-a signaling photoreceptor protein that became attractive recently due to its possible function as a biological magnetoreceptor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, T.G.; Alston, S.G.
The research program of Winter and Alston addresses the fundamental processes of electron transfer, ionization, and excitation in ion-atom, ion-ion, and ion-molecule collisions. Attention is focussed on one- and two-electron systems and, more recently, quasi-one-electron systems whose electron-target-core interaction can be accurately modeled by one-electron potentials. The basic computational approaches can then be taken with few, if any, approximations, and the underlying collisional mechanisms can be more clearly revealed. Winter has focussed on intermediate collision energies (e.g., proton energies for p-He{sup +} collisions on the order of 100 kilo-electron volts), in which many electron states are strongly coupled during themore » collision and a coupled-state approach, such as a coupled-Sturmian-pseudostate approach, is appropriate. Alston has concentrated on higher collision energies (million electron-volt energies), or asymmetric collision systems, for which the coupling of the projectile is weaker with, however, many more target states being coupled together so that high-order perturbation theory is essential. Several calculations by Winter and Alston are described, as set forth in the original proposal.« less
Orbital-exchange and fractional quantum number excitations in an f-electron metal Yb 2Pt 2Pb
L. S. Wu; Zaliznyak, I. A.; Gannon, W. J.; ...
2016-06-03
Exotic quantum states and fractionalized magnetic excitations, such as spinons in one-dimensional chains, are generally expected to occur in 3d transition metal systems with spin 1/2. Our neutron-scattering experiments on the 4f-electron metal Yb 2Pt 2Pb overturn this conventional wisdom. We observe broad magnetic continuum dispersing in only one direction, which indicates that the underlying elementary excitations are spinons carrying fractional spin-1/2. These spinons are the emergent quantum dynamics of the anisotropic, orbital-dominated Yb moments. Owing to their unusual origin, only longitudinal spin fluctuations are measurable, whereas the transverse excitations such as spin waves are virtually invisible to magnetic neutronmore » scattering. Furthermore, the proliferation of these orbital-spinons strips the electrons of their orbital identity, resulting in charge-orbital separation.« less
NASA Astrophysics Data System (ADS)
Murphy, M. W.; Yiu, Y. M.; Ward, M. J.; Liu, L.; Hu, Y.; Zapien, J. A.; Liu, Yingkai; Sham, T. K.
2014-11-01
The electronic structure and optical properties of a series of iso-electronic and iso-structural CdSxSe1-x solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.
Distinct magnetic spectra in the hidden order and antiferromagnetic phases in URu 2 - x Fe x Si 2
Butch, Nicholas P.; Ran, Sheng; Jeon, Inho; ...
2016-11-07
We use neutron scattering to compare the magnetic excitations in the hidden order (HO) and antiferromagnetic (AFM) phases in URu 2-xFe xSi 2 as a function of Fe concentration. The magnetic excitation spectra change significantly between x = 0.05 and x = 0.10, following the enhancement of the AFM ordered moment, in good analogy to the behavior of the parent compound under applied pressure. Prominent lattice-commensurate low-energy excitations characteristic of the HO phase vanish in the AFM phase. The magnetic scattering is dominated by strong excitations along the Brillouin zone edges, underscoring the important role of electron hybridization to bothmore » HO and AFM phases, and the similarity of the underlying electronic structure. The stability of the AFM phase is correlated with enhanced local-itinerant electron hybridization.« less
Nuclear Spin Locking and Extended Two-Electron Spin Decoherence Time in an InAs Quantum Dot Molecule
NASA Astrophysics Data System (ADS)
Chow, Colin; Ross, Aaron; Steel, Duncan; Sham, L. J.; Bracker, Allan; Gammon, Daniel
2015-03-01
The spin eigenstates for two electrons confined in a self-assembled InAs quantum dot molecule (QDM) consist of the spin singlet state, S, with J = 0 and the triplet states T-, T0 and T+, with J = 1. When a transverse magnetic field (Voigt geometry) is applied, the two-electron system can be initialized to the different states with appropriate laser excitation. Under the excitation of a weak probe laser, non-Lorentzian lineshapes are obtained when the system is initialized to either T- or T+, where T- results in a ``resonance locking'' lineshape while T+ gives a ``resonance avoiding '' lineshape: two different manifestations of hysteresis showing the importance of memory in the system. These observations signify dynamic nuclear spin polarization (DNSP) arising from a feedback mechanism involving hyperfine interaction between lattice nuclei and delocalized electron spins, and Overhauser shift due to nuclear spin polarization. Using pump configurations that generate coherent population trapping, the isolation of the electron spin from the optical excitation shows the stabilization of the nuclear spin ensemble. The dark-state lineshape measures the lengthened electron spin decoherence time, from 1 ns to 1 μs. Our detailed spectra highlight the potential of QDM for realizing a two-qubit gate. This work is supported by NSF, ARO, AFOSR, DARPA, and ONR.
Electron-hole pair effects in methane dissociative chemisorption on Ni(111)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xuan; Jiang, Bin, E-mail: bjiangch@ustc.edu.cn; Juaristi, J. Iñaki
The dissociative chemisorption of methane on metal surfaces has attracted much attention in recent years as a prototype of gas-surface reactions in understanding the mode specific and bond selective chemistry. In this work, we systematically investigate the influence of electron-hole pair excitations on the dissociative chemisorption of CH{sub 4}/CH{sub 3}D/CHD{sub 3} on Ni(111). The energy dissipation induced by surface electron-hole pair excitations is modeled as a friction force introduced in the generalized Langevin equation, in which the independent atomic friction coefficients are determined within the local-density friction approximation. Quasi-classical trajectory calculations for CH{sub 4}/CH{sub 3}D/CHD{sub 3} have been carried outmore » on a recently developed twelve-dimensional potential energy surface. Comparing the dissociation probabilities obtained with and without friction, our results clearly indicate that the electron-hole pair effects are generally small, both on absolute reactivity of each vibrational state and on the mode specificity and bond selectivity. Given similar observations in both water and methane dissociation processes, we conclude that electron-hole pair excitations would not play an important role as long as the reaction is direct and the interaction time between the molecule and metal electrons is relatively short.« less
NASA Astrophysics Data System (ADS)
Dhiflaoui, J.; Bejaoui, M.; Farjallah, M.; Berriche, H.
2018-05-01
The potential energy and spectroscopic constants of the ground and many excited states of the Be+He van der Waals system have been investigated using a one-electron pseudo-potential approach, which is used to replace the effect of the Be2+ core and the electron-He interactions by effective potentials. Furthermore, the core-core interactions are incorporated. This permits the reduction of the number of active electrons of the Be+He van der Waals system to only one electron. Therefore, the potential energy of the ground state as well as the excited states is performed at the SCF level and considering the spin-orbit interaction. The core-core interaction for Be2+He ground state is included using accurate CCSD (T) calculations. Then, the spectroscopic properties of the Be+He electronic states are extracted and compared with the previous theoretical and experimental studies. This comparison has shown a very good agreement for the ground and the first excited states. Moreover, the transition dipole moment has been determined for a large and dense grid of internuclear distances including the spin orbit effect. In addition, a vibrational spacing analysis for the Be2+He and Be+He ground states is performed to extract the He atomic polarisability.
NASA Technical Reports Server (NTRS)
Chaban, Galina M.; Salter, Latasha M.; Kwak, Dochan (Technical Monitor)
2002-01-01
Geometrical structures and energetic properties for four different tautomers of adenine are calculated in this study, using multi-configurational wave functions. Both the ground and the lowest single excited state potential energy surface are studied. The energetic order of the tautomers on the ground state potential surface is 9H less than 7H less than 3H less than 1H, while on the excited state surface this order is found to be different: 3H less than 1H less than 9H less than 7H. Minimum energy reaction paths are obtained for hydrogen atom transfer (9 yields 3 tautomerization) reactions in the ground and the lowest excited electronic state. It is found that the barrier heights and the shapes of the reaction paths are different for the ground and the excited electronic state, suggesting that the probability of such tautomerization reaction is higher on the excited state potential energy surface. The barrier for this reaction in the excited state may become very low in the presence of water or other polar solvent molecules, and therefore such tautomerization reaction may play an important role in the solution phase photochemistry of adenine.
Born Hartree Bethe approximation in the theory of inelastic electron molecule scattering
NASA Astrophysics Data System (ADS)
Kretinin, I. Yu; Krisilov, A. V.; Zon, B. A.
2008-11-01
We propose a new approximation in the theory of inelastic electron atom and electron molecule scattering. Taking into account the completeness property of atomic and molecular wavefunctions, considered in the Hartree approximation, and using Bethe's parametrization for electronic excitations during inelastic collisions via the mean excitation energy, we show that the calculation of the inelastic total integral cross-sections (TICS), in the framework of the first Born approximation, involves only the ground-state wavefunction. The final analytical formula obtained for the TICS, i.e. for the sum of elastic and inelastic ones, contains no adjusting parameters. Calculated TICS for electron scattering by light atoms and molecules (He, Ne, and H2) are in good agreement within the experimental data; results show asymptotic coincidence for heavier ones (Ar, Kr, Xe and N2).
Positron annihilation induced Auger electron spectroscopy
NASA Technical Reports Server (NTRS)
Weiss, Alex; Koymen, A. R.; Mehl, David; Jensen, K. O.; Lei, Chun; Lee, K. H.
1990-01-01
Recently, Weiss et al. have demonstrated that it is possible to excite Auger transitions by annihilating core electrons using a low energy (less than 30eV) beam of positrons. This mechanism makes possible a new electron spectroscopy, Positron annihilation induced Auger Electron Spectroscopy (PAES). The probability of exciting an Auger transition is proportional to the overlap of the positron wavefunction with atomic core levels. Since the Auger electron energy provides a signature of the atomic species making the transition, PAES makes it possible to determine the overlap of the positron wavefunction with a particular element. PAES may therefore provide a means of detecting positron-atom complexes. Measurements of PAES intensities from clean and adsorbate covered Cu surfaces are presented which indicate that approx. 5 percent of positrons injected into CU at 25eV produce core annihilations that result in Auger transitions.
Electron elevator: Excitations across the band gap via a dynamical gap state
Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...
2016-01-27
We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less
Excitation of a global plasma mode by an intense electron beam in a dc discharge
Sydorenko, D.; Kaganovich, I. D.; Ventzek, P. L. G.; ...
2018-01-01
The interaction of an intense electron beam with a finite-length, inhomogeneous plasma is investigated numerically. The plasma density profile is maximal in the middle and decays towards the plasma edges. Two regimes of the two-stream instability are observed. In one regime, the frequency of the instability is the plasma frequency at the density maximum and plasma waves are excited in the middle of the plasma. In the other regime, the frequency of the instability matches the local plasma frequency near the edges of the plasma and the intense plasma oscillations occur near plasma boundaries. The latter regime appears sporadically andmore » only for strong electron beam currents. This instability generates a copious amount of suprathermal electrons. Finally, the energy transfer to suprathermal electrons is the saturation mechanism of the instability.« less
NASA Astrophysics Data System (ADS)
Suzuki, Yosuke; Ebina, Kuniyoshi; Tanaka, Shigenori
2016-08-01
A computational scheme to describe the coherent dynamics of excitation energy transfer (EET) in molecular systems is proposed on the basis of generalized master equations with memory kernels. This formalism takes into account those physical effects in electron-bath coupling system such as the spin symmetry of excitons, the inelastic electron tunneling and the quantum features of nuclear motions, thus providing a theoretical framework to perform an ab initio description of EET through molecular simulations for evaluating the spectral density and the temporal correlation function of electronic coupling. Some test calculations have then been carried out to investigate the dependence of exciton population dynamics on coherence memory, inelastic tunneling correlation time, magnitude of electronic coupling, quantum correction to temporal correlation function, reorganization energy and energy gap.
Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.
Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A
2016-01-29
We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.
Schiwietz, G; Kühn, D; Föhlisch, A; Holldack, K; Kachel, T; Pontius, N
2016-09-01
A comprehensive investigation of the emission characteristics for electrons induced by X-rays of a few hundred eV at grazing-incidence angles on an atomically clean Cu(111) sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation (high peak current of photoemission) on the properties of Auger and photoelectrons liberated by a probe X-ray beam is investigated in time-resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space-charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical results.
Excitation of a global plasma mode by an intense electron beam in a dc discharge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sydorenko, D.; Kaganovich, I. D.; Ventzek, P. L. G.
The interaction of an intense electron beam with a finite-length, inhomogeneous plasma is investigated numerically. The plasma density profile is maximal in the middle and decays towards the plasma edges. Two regimes of the two-stream instability are observed. In one regime, the frequency of the instability is the plasma frequency at the density maximum and plasma waves are excited in the middle of the plasma. In the other regime, the frequency of the instability matches the local plasma frequency near the edges of the plasma and the intense plasma oscillations occur near plasma boundaries. The latter regime appears sporadically andmore » only for strong electron beam currents. This instability generates a copious amount of suprathermal electrons. Finally, the energy transfer to suprathermal electrons is the saturation mechanism of the instability.« less
NASA Astrophysics Data System (ADS)
Mark Britt, B.; McHale, Jeanne L.
1997-05-01
Raman excitation profiles are presented for the 2:1 electron donor-acceptor (EDA) complex of hexamethylbenzene (HMB) and tetracyanoethylene (TCNE) in cyclohexane. Though the absorption and Raman spectra of the 1:1 and 2:1 complexes are similar, distinct differences are found in the Raman excitation profiles (REPs) of vibrational modes common to both systems. REPs of the 2:1 complex show intensity cancellation that is taken as evidence for interference of two charge-transfer excited states. The implications of the observed spectra concerning excited state electron delocalization are considered.
Role of electronic excitation in the amorphization of Ge-Sb-Te alloys.
Li, Xian-Bin; Liu, X Q; Liu, Xin; Han, Dong; Zhang, Z; Han, X D; Sun, Hong-Bo; Zhang, S B
2011-07-01
First-principles molecular dynamics simulation reveals the effects of electronic excitation in the amorphization of Ge-Sb-Te. The excitation makes the phase change an element-selective process, lowers the critical amorphization temperature considerably, for example, to below 700 K at a 9% excitation, and reduces the atomic diffusion coefficient with respect to that of melt by at least 1 order of magnitude. Noticeably, the resulting structure has fewer wrong bonds and significantly increased phase-change reversibility. Our results point to a new direction in manipulating ultrafast phase-change processes with improved controllability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laursen, S.L.
Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.
Electronic excitations and chemistry in Nitromethane and HMX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reed, E J; Manaa, M R; Joannopoulos, J D
2001-06-19
The nature of electronic excitations in crystalline solid nitromethane under conditions of shock loading and static compression are examined. Density functional theory calculations are used to determine the crystal bandgap under hydrostatic stress, uniaxial strain, and shear strain. Bandgap lowering under uniaxial strain due to molecular defects and vacancies is considered. In all cases, the bandgap is not lowered enough to produce a significant population of excited states in the crystal. Preliminary simulations on the formation of detonation product molecules from HMX are discussed.
Electron scattering by laser-excited barium atoms
NASA Technical Reports Server (NTRS)
Register, D. F.; Trajmar, S.; Jensen, S. W.; Poe, R. T.
1978-01-01
Inelastic and superelastic scattering of 30- and 100-eV electrons by laser-excited 6s 6p 1P and subsequent cascade-populated 6s 6p 3P, 6s 5d 1D, and 6s 5d 3D Ba atoms have been observed. Absolute differential cross sections for the singlet and relative scattering intensities for the triplet species have been determined in the 5 to 20 deg angular region. Under the present conditions excitations dominate over deexcitations.
Cross sections for electron collisions with nitric oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Itikawa, Yukikazu, E-mail: yukitikawa@nifty.com
Cross section data are reviewed for electron collisions with nitric oxide. Collision processes considered are total scattering, elastic scattering, momentum transfer, excitations of rotational, vibrational, and electronic states, ionization, and dissociative electron attachment. After a survey of the literature (up to the end of 2015), recommended values of the cross section are determined, as far as possible.