Science.gov

Sample records for electronics cooling options

  1. Comparison of Hybrid Electric Vehicle Power Electronics Cooling Options

    SciTech Connect

    O'Keefe, M.; Bennion, K.

    2008-01-01

    This study quantifies the heat dissipation potential of three inverter package configurations over a range of control factors. These factors include coolant temperature, number of sides available for cooling, effective heat transfer coefficient, maximum semiconductor junction temperature, and interface material thermal resistance. Heat dissipation potentials are examined in contrast to a research goal to use 105..deg..C coolant and dissipate 200 W/cm2 heat across the insulated gate bipolar transistor and diode silicon area. Advanced double-sided cooling configurations with aggressive heat transfer coefficients show the possibility of meeting these targets for a 125..deg..C maximum junction temperature, but further investigation is needed. Even with maximum tolerable junction temperatures of 200..deg..C, effective heat transfer coefficients of 5,000 to 10,000 W/m2-K will be needed for coolant temperatures of 105..deg..C or higher.

  2. Cooling options for Astromag

    NASA Technical Reports Server (NTRS)

    Maytal, B. Z.; Van Sciver, S. W.

    1992-01-01

    A comparison of the various cooling options for the Astromag particle physics experiment is presented. The baseline design for the cryogenic system involves using a natural circulation fountain-effect driven flow loop (Hofmann type). The present paper considers two alternative options for cooling. The first design involves a thermal strap made of a high-conductivity metal, e.g., high-purity aluminum or copper, which connects the coil to the helium reservoir. Venting helium vapor can also be used to minimize the temperature of the magnet and recover from a quench. The second design is based on an He II heat pipe concept where steady state heat transport is by counterflow. Cavitation is prevented by use of a porous plug. Forced flow He II is also available but only during extraordinary operating conditions.

  3. Electron Cooling

    NASA Astrophysics Data System (ADS)

    Ellison, Timothy J. P.

    1991-08-01

    Electron cooling is a method of reducing the 6 -dimensional phase space volume of a stored ion beam. The technique was invented by Budker and first developed by him and his colleagues at the Institute for Nuclear Physics in Novosibirsk. Further studies of electron cooling were subsequently performed at CERN and Fermilab. At the Indiana University Cyclotron Facility (IUCF) an electron cooling system was designed, built, and commissioned in 1988. This was the highest energy system built to date (270 keV for cooling 500 MeV protons) and the first such system to be used as an instrument for performing nuclear and atomic physics experiments. This dissertation summarizes the design principles; measurements of the longitudinal drag rate (cooling force), equilibrium cooled beam properties and effective longitudinal electron beam temperature. These measurements are compared with theory and with the measured performance of other cooling systems. In addition the feasibility of extending this technology to energies an order of magnitude higher are discussed.

  4. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  5. Coherent electron cooling.

    PubMed

    Litvinenko, Vladimir N; Derbenev, Yaroslav S

    2009-03-20

    Cooling intense high-energy hadron beams poses a major challenge for modern accelerator physics. The synchrotron radiation emitted from such beams is feeble; even in the Large Hadron Collider (LHC) operating with 7 TeV protons, the longitudinal damping time is about 13 hours. None of the traditional cooling methods seem able to cool LHC-class protons beams. In this Letter, we present a novel method of coherent electron cooling based on a high-gain free-electron laser (FEL). This technique could be critical for reaching high luminosities in hadron and electron-hadron colliders.

  6. MEIC electron cooling program

    DOE PAGES

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is amore » high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  7. MEIC electron cooling program

    SciTech Connect

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.

  8. ELECTRON COOLING FOR RHIC.

    SciTech Connect

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  9. Electron Cooling Study for MEIC

    SciTech Connect

    He, Zhang; Douglas, David R.; Derbenev, Yaroslav S.; Zhang, Yuhong

    2015-09-01

    Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab's MEIC proposal. In the present MEIC design, a multi-staged cooling scheme is adapted, which includes DC electron cooling in the booster ring and bunched beam electron cooling in the collider ring at both the injection energy and the collision energy. We explored the feasibility of using both magnetized and non-magnetized electron beam for cooling, and concluded that a magnetized electron beam is necessary. Electron cooling simulation results for the newly updated MEIC design is also presented.

  10. Power electronics cooling apparatus

    DOEpatents

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  11. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W [Kingston, TN; Lowe, Kirk T [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  12. Electronic cooling using thermoelectric devices

    NASA Astrophysics Data System (ADS)

    Zebarjadi, M.

    2015-05-01

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  13. Electronic cooling using thermoelectric devices

    SciTech Connect

    Zebarjadi, M.

    2015-05-18

    Thermoelectric coolers or Peltier coolers are used to pump heat in the opposite direction of the natural heat flux. These coolers have also been proposed for electronic cooling, wherein the aim is to pump heat in the natural heat flux direction and from hot spots to the colder ambient temperature. In this manuscript, we show that for such applications, one needs to use thermoelectric materials with large thermal conductivity and large power factor, instead of the traditionally used high ZT thermoelectric materials. We further show that with the known thermoelectric materials, the active cooling cannot compete with passive cooling, and one needs to explore a new set of materials to provide a cooling solution better than a regular copper heat sink. We propose a set of materials and directions for exploring possible materials candidates suitable for electronic cooling. Finally, to achieve maximum cooling, we propose to use thermoelectric elements as fins attached to copper blocks.

  14. Cooling system for electronic components

    SciTech Connect

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2015-12-15

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  15. Cooling system for electronic components

    DOEpatents

    Anderl, William James; Colgan, Evan George; Gerken, James Dorance; Marroquin, Christopher Michael; Tian, Shurong

    2016-05-17

    Embodiments of the present invention provide for non interruptive fluid cooling of an electronic enclosure. One or more electronic component packages may be removable from a circuit card having a fluid flow system. When installed, the electronic component packages are coincident to and in a thermal relationship with the fluid flow system. If a particular electronic component package becomes non-functional, it may be removed from the electronic enclosure without affecting either the fluid flow system or other neighboring electronic component packages.

  16. Optimization of electron cooling in the Recycler

    SciTech Connect

    Shemyakin, A.; Burov, A.; Carlson, K.; Prost, L.R.; Sutherland, M.; Warner, A.; /Fermilab

    2009-04-01

    Antiprotons in Fermilab's Recycler ring are cooled by a 4.3 MeV, 0.1A DC electron beam (as well as by a stochastic cooling system). The paper describes electron cooling improvements recently implemented: adjustments of electron beam line quadrupoles to decrease the electron angles in the cooling section and better stabilization and control of the electron energy.

  17. Energy Efficient Electronics Cooling Project

    SciTech Connect

    Steve O'Shaughnessey; Tim Louvar; Mike Trumbower; Jessica Hunnicutt; Neil Myers

    2012-02-17

    Parker Precision Cooling Business Unit was awarded a Department of Energy grant (DE-EE0000412) to support the DOE-ITP goal of reducing industrial energy intensity and GHG emissions. The project proposed by Precision Cooling was to accelerate the development of a cooling technology for high heat generating electronics components. These components are specifically related to power electronics found in power drives focused on the inverter, converter and transformer modules. The proposed cooling system was expected to simultaneously remove heat from all three of the major modules listed above, while remaining dielectric under all operating conditions. Development of the cooling system to meet specific customer's requirements and constraints not only required a robust system design, but also new components to support long system functionality. Components requiring further development and testing during this project included pumps, fluid couplings, cold plates and condensers. All four of these major categories of components are required in every Precision Cooling system. Not only was design a key area of focus, but the process for manufacturing these components had to be determined and proven through the system development.

  18. Cooling Technology for Electronic Computers

    NASA Astrophysics Data System (ADS)

    Nakayama, Wataru

    The rapid growth of data processing speed in computers has been sustained by the advances in cooling technology. This article first presents a review of the published data of heat loads in recent Japanese large-scale computers. The survey indicates that, since around 1980, the high-level integration of microelectronic circuits has brought about almost four fold increase in the power dissipation from logic chips. The integration also has invited the evolutions of multichip modules and new schemes of electronic interconnections. Forced convection air-cooling and liquid cooling coupled with thermal connectors are discussed with reference to the designs employed in actual computers. More advanced cooling schemes are also discussed. Finally, the importance of thermal environmental control of computer rooms is emphasized.

  19. Emittance Reduction between EBIS LINAC and Booster by Electron Beam Cooling; Is Single Pass Cooling Possible?

    SciTech Connect

    Hershcovitch,A.

    2008-04-01

    Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Preliminary calculations indicate that single pass cooling is feasible; momentum spread can be reduced by more than an order of magnitude in less than one meter.

  20. Coherent electron cooling demonstration experiment

    SciTech Connect

    Litvinenko, V.N.; Belomestnykh, S.; Ben-Zvi, I.; Brutus, J.C.; Fedotov, A.; Hao, Y.; Kayran, D.; Mahler, G.; Marusic, A.; Meng, W.; McIntyre, G.; Minty, M.; Ptitsyn, V.; Pinayev, I.; Rao, T.; Roser, T.; Sheehy, B.; Tepikian, S.; Than, R.; Trbojevic, D.; Tuozzolo, J.; Wang, G.; Yakimenko, V.; Hutton, A.; Krafft, G.; Poelker, M.; Rimmer, R.; Bruhwiler, D.; Abell, D.T.; Nieter, C.; Ranjbar, V.; Schwartz, B.; Kholopov M.; Shevchenko, O.; McIntosh, P.; Wheelhouse, A.

    2011-09-04

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using SRF linac. In this paper, we describe the setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC. We plan to complete the program in five years. During first two years we will build coherent electron cooler in IP2 of RHIC. In parallel we will develop complete package of computer simulation tools for the start-to-end simulation predicting exact performance of a CeC. The later activity will be the core of Tech X involvement into the project. We will use these tools to predict the performance of our CeC device. The experimental demonstration of the CeC will be undertaken in years three to five of the project. The goal of this experiment is to demonstrate the cooling of ion beam and to compare its measured performance with predictions made by us prior to the experiments.

  1. Towards demonstration of electron cooling with bunched electron beam

    SciTech Connect

    Fedotov, A.

    2012-01-11

    All electron cooling systems which were in operation so far employed electron beam generated with an electrostatic electron gun in DC operating mode, immersed in a longitudinal magnetic field. At low energies magnetic field is also being used to transport electron beam through the cooling section from the gun to the collector. At higher energies (few MeV), it was shown that one can have simpler electron beam transport without continuous magnetic field. Because of a rather weak magnetic field on the cathode and in the cooling section the latter approach was referred to as 'non-magnetized cooling', since there was no suppression of the transverse angular spread of the electron beam with the magnetic field in the cooling section. Such a cooler successfully operated at FNAL (2005-11) at electron beam energy of 4.3 MeV. Providing cooling at even higher energies would be easier with RF acceleration of electron beam, and thus using bunched electron beam for cooling. Significant efforts were devoted to explore various aspects of such bunched electron beam cooling as part of R and D of high-energy electron cooling for RHIC. However, experimental studies of such cooling are still lacking. Establishing this technique experimentally would be extremely useful for future high-energy applications. Presently there is an ongoing effort to build Proof-of-Principle (PoP) experiment of Coherent Electron Cooling (CEC) at RHIC, which promises to be superior to conventional electron cooling for high energies. Since the CEC experiment is based on bunched electron beam and it has sections where electron beam co-propagates with the ion beam at the same velocity, it also provides a unique opportunity to explore experimentally conventional electron cooling but for the first time with a bunched electron beam. As a result, it allows us to explore techniques needed for the high-energy electron cooling such as 'painting' with a short electron beam and control of ion beam distribution under

  2. Electronic Information: Options for Access.

    ERIC Educational Resources Information Center

    Pesch, Oliver

    1994-01-01

    Discusses three electronic information formats: CD-ROM, tape loads, and online hosts; reviews some of the hardware platforms used for accessing information in these formats; and discusses some of the issues involved in interconnecting computer systems to increase access to electronic collections. (Author)

  3. A novel electronic cooling concept

    NASA Astrophysics Data System (ADS)

    Ponnappan, R.; Beam, J. E.

    Advanced electrical power conditioning systems for the More Electric Aircraft Initiative involve high currents and high voltages with the attendant waste heat generation and cooling problems. The use of solid state switching devices such as MCTs for these systems will result in power dissipation of several hundred Watts per square centimeter. Conventional forced air or low velocity single phase fluid cooling is inadequate to handle the waste heat dissipation of these high power devices. More advanced and innovative methods of cooling which can use fluids available in the aircraft and also easy to package are sought. A new approach called 'venturi flow cooling concept' is described. It is shown that localized cooling up to 200 W/sq cm is possible at the venturi throat region where the MCTs can be mounted. PAO coolant with Pr = 56 at 40 C can be conveniently used in aircraft.

  4. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    SciTech Connect

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  5. Direct Liquid Cooling for Electronic Equipment

    SciTech Connect

    Coles, Henry; Greenberg, Steve

    2014-03-01

    This report documents a demonstration of an electronic--equipment cooling system in the engineering prototype development stage that can be applied in data centers. The technology provides cooling by bringing a water--based cooling fluid into direct contact with high--heat--generating electronic components. This direct cooling system improves overall data center energy efficiency in three ways: High--heat--generating electronic components are more efficiently cooled directly using water, capturing a large portion of the total electronic equipment heat generated. This captured heat reduces the load on the less--efficient air--based data center room cooling systems. The combination contributes to the overall savings. The power consumption of the electronic equipment internal fans is significantly reduced when equipped with this cooling system. The temperature of the cooling water supplied to the direct cooling system can be much higher than that commonly provided by facility chilled water loops, and therefore can be produced with lower cooling infrastructure energy consumption and possibly compressor-free cooling. Providing opportunities for heat reuse is an additional benefit of this technology. The cooling system can be controlled to produce high return water temperatures while providing adequate component cooling. The demonstration was conducted in a data center located at Lawrence Berkeley National Laboratory in Berkeley, California. Thirty--eight servers equipped with the liquid cooling system and instrumented for energy measurements were placed in a single rack. Two unmodified servers of the same configuration, located in an adjacent rack, were used to provide a baseline. The demonstration characterized the fraction of heat removed by the direct cooling technology, quantified the energy savings for a number of cooling infrastructure scenarios, and provided information that could be used to investigate heat reuse opportunities. Thermal measurement data were used

  6. Attainment of Electron Beam Suitable for Medium Energy Electron Cooling

    SciTech Connect

    Seletskiy, Sergei M.

    2005-01-01

    Electron cooling of charged particle beams is a well-established technique at electron energies of up to 300 keV. However, up to the present time the advance of electron cooling to the MeV-range energies has remained a purely theoretical possibility. The electron cooling project at Fermilab has recently demonstrated the ¯rst cooling of 8.9 GeV/c antiprotons in the Recycler ring, and therefore, has proved the validity of the idea of relativistic electron cool- ing. The Recycler Electron Cooler (REC) is the key component of the Teva- tron Run II luminosity upgrade project. Its performance depends critically on the quality of electron beam. A stable electron beam of 4.3 MeV car- rying 0.5 A of DC current is required. The beam suitable for the Recycler Electron Cooler must have an angular spread not exceeding 200 ¹rad. The full-scale prototype of the REC was designed, built and tested at Fermilab in the Wideband laboratory to study the feasibility of attaining the high-quality electron beam. In this thesis I describe various aspects of development of the Fermilab electron cooling system, and the techniques used to obtain the electron beam suitable for the cooling process. In particular I emphasize those aspects of the work for which I was principally responsible.

  7. DETAILED STUDIES OF ELECTRON COOLING FRICTION FORCE.

    SciTech Connect

    FEDOTOV, A.V.; BRUHWILER, D.L.; ABELL, D.T.; SIDORIN, A.O.

    2005-09-18

    High-energy electron cooling for RHIC presents many unique features and challenges. An accurate estimate of the cooling times requires detailed simulation of the electron cooling process. The first step towards such calculations is to have an accurate description of the cooling force. Numerical simulations are being used to explore various features of the friction force which appear due to several effects, including the anisotropy of the electron distribution in velocity space and the effect of a strong solenoidal magnetic field. These aspects are being studied in detail using the VORFAL code, which explicitly resolves close binary collisions. Results are compared with available asymptotic and empirical formulas and also, using the BETACOOL code, with direct numerical integration of less approximate expressions over the specified electron distribution function.

  8. ELECTRON COOLING IN THE RECYCLER COOLER

    SciTech Connect

    SHEMYAKIN,A.; PROST, L.R.; FEDOTOV, A.; SIDORIN, A.

    2007-09-10

    A 0.1-0.5 A, 4.3 MeV DC electron beam provides cooling of 8 GeV antiprotons in Fermilab's Recycler storage ring. The most detailed information about the cooling properties of the electron beam comes from drag rate measurements. We find that the measured drag rate can significantly differ from the cooling force experienced by a single antiproton because the area of effective cooling is significantly smaller than the physical size of the electron beam and is comparable with the size of the antiproton beam used as a probe. Modeling by the BETACOOL code supports the conclusion about a large radial gradient of transverse velocities in the presently used electron beam.

  9. Detailed Studies of Electron Cooling Friction Force

    SciTech Connect

    Fedotov, A. V.; Bruhwiler, D. L.; Abell, D. T.; Sidorin, A. O.

    2006-03-20

    High-energy electron cooling for RHIC presents many unique features and challenges. An accurate estimate of the cooling times requires detailed simulation of the electron cooling process. The first step towards such calculations is to have an accurate description of the cooling force. Numerical simulations are being used to explore various features of the friction force which appear due to several effects, including the anisotropy of the electron distribution in velocity space and the effect of a strong solenoidal magnetic field. These aspects are being studied in detail using the VORPAL code, which explicitly resolves close binary collisions. Results are compared with available asymptotic and empirical formulas and also, using the BETACOOL code, with direct numerical integration of less approximate expressions over the specified electron distribution function.

  10. Simulation study of electron response amplification in coherent electron cooling

    SciTech Connect

    Hao Y.; Litvinenko, V.N.

    2012-05-20

    In Coherent Electron Cooling (CEC), it is essential to study the amplification of electron response to a single ion in the FEL process, in order to proper align the electron beam and the ion beam in the kicker to maximize the cooling effect. In this paper, we use Genesis to simulate the amplified electron beam response of single ion in FEL amplification process, which acts as Green's function of the FEL amplifier.

  11. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    SciTech Connect

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge

  12. Thermoelectric Devices Cool, Power Electronics

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Nextreme Thermal Solutions Inc., based in Research Triangle Park, North Carolina, licensed thermoelectric technology from NASA s Jet Propulsion Laboratory. This has allowed the company to develop cutting edge, thin-film thermoelectric coolers that effective remove heat generated by increasingly powerful and tightly packed microchip components. These solid-state coolers are ideal solutions for applications like microprocessors, laser diodes, LEDs, and even potentially for cooling the human body. Nextreme s NASA technology has also enabled the invention of thermoelectric generators capable of powering technologies like medical implants and wireless sensor networks.

  13. Methods and apparatus for cooling electronics

    DOEpatents

    Hall, Shawn Anthony; Kopcsay, Gerard Vincent

    2014-12-02

    Methods and apparatus are provided for choosing an energy-efficient coolant temperature for electronics by considering the temperature dependence of the electronics' power dissipation. This dependence is explicitly considered in selecting the coolant temperature T.sub.0 that is sent to the equipment. To minimize power consumption P.sub.Total for the entire system, where P.sub.Total=P.sub.0+P.sub.Cool is the sum of the electronic equipment's power consumption P.sub.0 plus the cooling equipment's power consumption P.sub.Cool, P.sub.Total is obtained experimentally, by measuring P.sub.0 and P.sub.Cool, as a function of three parameters: coolant temperature T.sub.0; weather-related temperature T.sub.3 that affects the performance of free-cooling equipment; and computational state C of the electronic equipment, which affects the temperature dependence of its power consumption. This experiment provides, for each possible combination of T.sub.3 and C, the value T.sub.0* of T.sub.0 that minimizes P.sub.Total. During operation, for any combination of T.sub.3 and C that occurs, the corresponding optimal coolant temperature T.sub.0* is selected, and the cooling equipment is commanded to produce it.

  14. Power electronics substrate for direct substrate cooling

    DOEpatents

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  15. Single Pass Electron Cooling Simulations for MEIC

    SciTech Connect

    Bell, G. I.; Pogorelov, I. V.; Schwartz, B. T.; Zhang, Yuhong; Zhang, He

    2013-12-01

    Cooling of medium energy protons is critical for the proposed Jefferson Lab Medium Energy Ion Collider (MEIC). We present simulations of electron cooling of protons up to 60 GeV. In the beam frame in which the proton and electrons are co-propagating, their motion is non-relativistic. We use a binary collision model which treats the cooling process as the sum of a large number of two-body collisions which are calculated exactly. This model can treat even very close collisions between an electron and ion with high accuracy. We also calculate dynamical friction using a delta-f PIC model. The code VSim (formerly Vorpal) is used to perform the simulations. We compare the friction rates with that obtained by a 3D integral over electron velocities which is used by BETACOOL.

  16. Method of fabricating a cooled electronic system

    DOEpatents

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2014-02-11

    A method of fabricating a liquid-cooled electronic system is provided which includes an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket. The method includes providing a liquid-cooled cold rail at the one end of the socket, and a thermal spreader to couple the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  17. IBS FOR ION DISTRIBUTION UNDER ELECTRON COOLING.

    SciTech Connect

    FEDOTOV,A.V.; BEN-ZVI,I.; EIDELMAN, YU.; LITVINENKO, V.; PARZEN, G.

    2005-05-16

    Standard models of the intra-beam scattering (IBS) are based on the growth of the rms beam parameters for a Gaussian distribution. As a result of electron cooling, the core of beam distribution is cooled much faster than the tails, producing a denser core. In this paper, we compare various approaches to IBS treatment for such distribution. Its impact on the luminosity is also discussed.

  18. Electron Cooling of Intense Ion Beam

    SciTech Connect

    Dietrich, J.; Kamerdjiev, V.; Maier, R.; Prasuhn, D.; Stein, J.; Stockhorst, H.; Korotaev, Yu.; Meshkov, I.; Sidorin, A.; Smirnov, A.

    2006-03-20

    Results of experimental studies of the electron cooling of a proton beam at COSY (Juelich, Germany) are presented. Intensity of the proton beam is limited by two general effects: particle loss directly after the injection and development of instability in a deep cooled ion beam. Results of the instability investigations performed at COSY during last years are presented in this report in comparison with previous results from HIMAC (Chiba, Japan) CELSIUS (Uppsala, Sweden) and LEAR (CERN). Methods of the instability suppression, which allow increasing the cooled beam intensity, are described. This work is supported by RFBR grant no. 05-02-16320 and INTAS grant no. 03-54-5584.

  19. Direct-Cooled Power Electronics Substrate

    SciTech Connect

    Wiles, R.; Ayers, C.; Wereszczak, A.

    2008-12-23

    The goal of the Direct-Cooled Power Electronics Substrate project is to reduce the size and weight of the heat sink for power electronics used in hybrid electric vehicles (HEVs) and plug-in hybrid electric vehicles (PHEVs). The concept proposed in this project was to develop an innovative power electronics mounting structure, model it, and perform both thermal and mechanical finite-element analysis (FEA). This concept involved integrating cooling channels within the direct-bonded copper (DBC) substrate and strategically locating these channels underneath the power electronic devices. This arrangement would then be directly cooled by water-ethylene glycol (WEG), essentially eliminating the conventional heat sink and associated heat flow path. The concept was evaluated to determine its manufacturability, its compatibility with WEG, and the potential to reduce size and weight while directly cooling the DBC and associated electronics with a coolant temperature of 105 C. This concept does not provide direct cooling to the electronics, only direct cooling inside the DBC substrate itself. These designs will take into account issues such as containment of the fluid (separation from the electronics) and synergy with the whole power inverter design architecture. In FY 2008, mechanical modeling of substrate and inverter core designs as well as thermal and mechanical stress FEA modeling of the substrate designs was performed, along with research into manufacturing capabilities and methods that will support the substrate designs. In FY 2009, a preferred design(s) will be fabricated and laboratory validation testing will be completed. In FY 2010, based on the previous years laboratory testing, the mechanical design will be modified and the next generation will be built and tested in an operating inverter prototype.

  20. Comparisons of housing, bedding, and cooling options for dairy calves.

    PubMed

    Hill, T M; Bateman, H G; Aldrich, J M; Schlotterbeck, R L

    2011-04-01

    Housing, bedding, and summer cooling were management options evaluated. Holstein calves (42±2 kg of body weight) initially 2 to 5 d of age were managed in southwest Ohio in poly hutches or wire mesh pens in a curtain-sided nursery with no supplemental heat. Calves were fed milk replacer (27% crude protein, 17% fat fed at 0.657 kg of dry matter per calf daily), starter (20% crude protein dry matter, textured, fed free-choice), and water (free-choice). Measurements were for 56 d. In trial 1, 28 calves per treatment were bedded with straw and housed in either hutches or nursery pens. This trial was conducted from September to March; the average temperature was 8°C and ranged from -17 to 31°C. In trial 2a, 16 calves per treatment were managed in nursery pens bedded with straw, in nursery pens bedded with sand, or in hutches bedded with sand. This trial was conducted from May to September; the average temperature was 21°C and ranged from 7 to 33°C. In trial 2b, 26 calves per treatment were housed in nursery pens and bedded with straw. This trial was conducted from May to September; the average temperature was 22°C and ranged from 8 to 34°C. One treatment was cooled with fans between 0800 and 1700 h and the other was not. Data were analyzed as repeated measures in a completely randomized block design by trial, with calf as the experimental unit. In trial 3, air in the nursery and calf hutches used above was sampled 35 d apart for calves aged 5 and 40 d. Air in individual hutches on 2 commercial farms was sampled for 5- and 40-d-old calves for 2 hutch types. Air in the multi-calf hutches was sampled for calves of 75 and 110 d of age. Bacterial concentrations of air samples were analyzed (log10) as odds ratios by Proc Logistic in SAS software (SAS Institute Inc., Cary, NC); differences were declared at P<0.05. In trial 1, weight gain of calves in nursery pens was 6% greater and feed efficiency was 4% greater than that of calves in hutches. In trial 2a, weight gain

  1. Analytical studies of coherent electron cooling

    SciTech Connect

    Wang,G.; Blaskiewicz, M.; Litvinenko, V.N.

    2009-05-04

    Under certain assumptions and simplifications, we studied a few physics processes of Coherent Electron Cooling using analytical approach. In the modulation process, the effect due to merging the ion beam with the electron beam is studied under single kick approximation. In the free electron laser (FEL) amplifier, we studied the amplification of the electron density modulation using 1D analytical approach. Both the electron charge density and the phase space density are derived in the frequency domain. The solutions are then transformed into the space domain through Fast Fourier Transformation (FFT).

  2. Runaway electron generation in a cooling plasma

    SciTech Connect

    Smith, H.; Helander, P.; Eriksson, L.-G.; Fueloep, T.

    2005-12-15

    The usual calculation of Dreicer [Phys. Rev. 115, 238 (1959); 117, 329 (1960)] generation of runaway electrons assumes that the plasma is in a steady state. In a tokamak disruption this is not necessarily true since the plasma cools down quickly and the collision time for electrons at the runaway threshold energy can be comparable to the cooling time. The electron distribution function then acquires a high-energy tail which can easily be converted to a burst of runaways by the rising electric field. This process is investigated and simple criteria for its importance are derived. If no rapid losses of fast electrons occur, this can be a more important source of runaway electrons than ordinary Dreicer generation in tokamak disruptions.

  3. Potential Refrigerants for Power Electronics Cooling

    SciTech Connect

    Starke, M.R.

    2005-10-24

    In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

  4. Cooling of electronics in collider experiments

    SciTech Connect

    Richard P. Stanek et al.

    2003-11-07

    Proper cooling of detector electronics is critical to the successful operation of high-energy physics experiments. Collider experiments offer unique challenges based on their physical layouts and hermetic design. Cooling systems can be categorized by the type of detector with which they are associated, their primary mode of heat transfer, the choice of active cooling fluid, their heat removal capacity and the minimum temperature required. One of the more critical detector subsystems to require cooling is the silicon vertex detector, either pixel or strip sensors. A general design philosophy is presented along with a review of the important steps to include in the design process. Factors affecting the detector and cooling system design are categorized. A brief review of some existing and proposed cooling systems for silicon detectors is presented to help set the scale for the range of system designs. Fermilab operates two collider experiments, CDF & D0, both of which have silicon systems embedded in their detectors. A review of the existing silicon cooling system designs and operating experience is presented along with a list of lessons learned.

  5. Dynamical backaction cooling with free electrons.

    PubMed

    Niguès, A; Siria, A; Verlot, P

    2015-09-18

    The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms.

  6. Dynamical backaction cooling with free electrons

    PubMed Central

    Niguès, A.; Siria, A.; Verlot, P.

    2015-01-01

    The ability to cool single ions, atomic ensembles, and more recently macroscopic degrees of freedom down to the quantum ground state has generated considerable progress and perspectives in fundamental and technological science. These major advances have been essentially obtained by coupling mechanical motion to a resonant electromagnetic degree of freedom in what is generally known as laser cooling. Here, we experimentally demonstrate the first self-induced coherent cooling mechanism that is not mediated by an electromagnetic resonance. Using a focused electron beam, we report a 50-fold reduction of the motional temperature of a nanowire. Our result primarily relies on the sub-nanometre confinement of the electron beam and generalizes to any delayed and spatially confined interaction, with important consequences for near-field microscopy and fundamental nanoscale dissipation mechanisms. PMID:26381454

  7. Two-Beam Instability in Electron Cooling

    SciTech Connect

    Burov, Alexey V.; /Fermilab

    2006-04-01

    The drift motion of cooling electrons makes them able to respond to transverse perturbations of a cooled ion beam. This response may lead to dipole or quadrupole transverse instabilities at specific longitudinal wave numbers. While the dipole instabilities can be suppressed by a combination of the Landau damping, machine impedance, and the active damper, the quadrupole and higher order modes can lead to either emittance growth, or a lifetime degradation, or both. The growth rates of these instabilities are strongly determined by the machine x-y coupling. Thus, tuning out of the coupling resonance and/or reduction of the machine coupling can be an efficient remedy for these instabilities.

  8. System for Cooling of Electronic Components

    NASA Astrophysics Data System (ADS)

    Vasil'ev, L. L.; Grakovich, L. P.; Dragun, L. A.; Zhuravlev, A. S.; Olekhnovich, V. A.; Rabetskii, M. I.

    2017-01-01

    Results of computational and experimental investigations of heat pipes having a predetermined thermal resistance and a system based on these pipes for air cooling of electronic components and diode assemblies of lasers are presented. An efficient compact cooling system comprising heat pipes with an evaporator having a capillary coating of a caked copper powder and a condenser having a developed outer finning, has been deviced. This system makes it possible to remove, to the ambient air, a heat flow of power more than 300 W at a temperature of 40-50°C.

  9. Single pass electron beam cooling of gold ions between EBIS LINAC and booster is theoretically possible!

    SciTech Connect

    Hershcovitch, A.

    2011-01-01

    Electron beam cooling is examined as an option to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster. Electron beam parameters are based on experimental data (obtained at BNL) of electron beams extracted from a plasma cathode. Many issues, regarding a low energy high current electron beam that is needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, were examined. Computations and some experimental data indicate that none of these issues is a show stopper. Preliminary calculations indicate that single pass cooling is feasible; momentum spread can be reduced by more than an order of magnitude in about one meter. Hence, this option cooling deserves further more serious considerations.

  10. Microbunched electron cooling for high-energy hadron beams.

    PubMed

    Ratner, D

    2013-08-23

    Electron and stochastic cooling are proven methods for cooling low-energy hadron beams, but at present there is no way of cooling hadrons as they near the TeV scale. In the 1980s, Derbenev suggested that electron instabilities, such as free-electron lasers, could create collective space charge fields strong enough to correct the hadron energies. This Letter presents a variation on Derbenev's electron cooling scheme using the microbunching instability as the amplifier. The large bandwidth of the instability allows for faster cooling of high-density beams. A simple analytical model illustrates the cooling mechanism, and simulations show cooling rates for realistic parameters of the Large Hadron Collider.

  11. Controlled cooling of an electronic system for reduced energy consumption

    DOEpatents

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-08-09

    Energy efficient control of a cooling system cooling an electronic system is provided. The control includes automatically determining at least one adjusted control setting for at least one adjustable cooling component of a cooling system cooling the electronic system. The automatically determining is based, at least in part, on power being consumed by the cooling system and temperature of a heat sink to which heat extracted by the cooling system is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on one or more experimentally obtained models relating the targeted temperature and power consumption of the one or more adjustable cooling components of the cooling system.

  12. Scalp cooling: management option for chemotherapy-induced alopecia.

    PubMed

    Roe, Helen

    Chemotherapy is increasingly being administered as a treatment for cancer and with it are a number of possible side effects. One, which has a negative impact on a patient's quality of life and their self-esteem, is that of chemotherapy-induced alopecia (CIA). A side effect of which, for some, could be prevented by the use of scalp cooling, dependent on the regimen being administered and patient choice. This article explores the issue of CIA from the patient's perspective and scalp cooling as a preventative measure, along with a review of the evidence around the risk associated with developing scalp metastases following scalp cooling. It also discusses why scalp cooling should be available for both male and female patients; along with the potential impact scalp cooling may have on clinical areas delivering chemotherapy.

  13. ELECTRON COOLING SIMULATION FOR ARBITRARY DISTRIBUTION OF ELECTRONS

    SciTech Connect

    SIDORIN,A.; SMIRNOV, A.; FEDOTOV, A.; BEN-ZVI, I.; KAYRAN, D.

    2007-09-10

    Typically, several approximations are being used in simulation of electron cooling process, for example, density distribution of electrons is calculated using an analytical expression and distribution in the velocity space is assumed to be Maxwellian in all degrees of freedom. However, in many applications, accurate description of the cooling process based on realistic distribution of electrons is very useful. This is especially true for a high-energy electron cooling system which requires bunched electron beam produced by an Energy Recovery Linac (Em). Such systems are proposed, for instance, for RHIC and electron - ion collider. To address unique features of the RHIC-I1 cooler, new algorithms were introduced in BETACOOL code which allow us to take into account local properties of electron distribution as well as calculate friction force for an arbitrary velocity distribution. Here, we describe these new numerical models. Results based on these numerical models are compared with typical approximations using electron distribution produced by simulations of electron bunch through ERL of RHIC-II cooler.

  14. Electron Cooling in a Magnetically Expanding Plasma.

    PubMed

    Little, J M; Choueiri, E Y

    2016-11-25

    Electron cooling in a magnetically expanding plasma, which is a fundamental process for plasma flow and detachment in magnetic nozzles, is experimentally investigated using a radio frequency plasma source and magnetic nozzle (MN). Probe measurements of the plasma density, potential, and electron temperature along the center line of the MN indicate that the expansion follows a polytropic law with exponent γ_{e}=1.15±0.03. This value contradicts isothermal electron expansion, γ_{e}=1, which is commonly assumed in MN models. The axial variation of the measured quantities can be described by a simple quasi-1D fluid model with classical electron thermal conduction, for which it has been previously shown that a value of γ_{e}≈1.19 is expected in the weakly collisional limit. A new criterion, derived from the model, ensures efficient ion acceleration when a critical value for the ratio of convected to conducted power is exceeded.

  15. Low material budget microfabricated cooling devices for particle detectors and front-end electronics

    NASA Astrophysics Data System (ADS)

    Mapelli, A.; Catinaccio, A.; Daguin, J.; van Lintel, H.; Nuessle, G.; Petagna, P.; Renaud, P.

    2011-06-01

    Novel cooling systems with very low material budget are being fabricated and studied. They consist of silicon wafers in which microchannels are etched and closed by bonding another wafer. This cooling option is being considered for future HEP detectors of the sLHC and linear colliders. It is currently under investigation as an option for the cooling of the NA62 Gigatracker silicon pixel detector and its front-end electronics where the microfabricated cooling plate would stand directly in the beam. In this particular case, microchannel cooling meets both the very aggressive X 0 (0.15%) specifications and the anticipated 2 W/cm 2 power dissipation by the active electronics.

  16. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-04-05

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  17. Cooled electronic system with liquid-cooled cold plate and thermal spreader coupled to electronic component

    DOEpatents

    Chainer, Timothy J.; Graybill, David P.; Iyengar, Madhusudan K.; Kamath, Vinod; Kochuparambil, Bejoy J.; Schmidt, Roger R.; Steinke, Mark E.

    2016-08-09

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled cold plate and a thermal spreader associated with the cold plate. The cold plate includes multiple coolant-carrying channel sections extending within the cold plate, and a thermal conduction surface with a larger surface area than a surface area of the component to be cooled. The thermal spreader includes one or more heat pipes including multiple heat pipe sections. One or more heat pipe sections are partially aligned to a first region of the cold plate, that is, where aligned to the surface to be cooled, and partially aligned to a second region of the cold plate, which is outside the first region. The one or more heat pipes facilitate distribution of heat from the electronic component to coolant-carrying channel sections of the cold plate located in the second region of the cold plate.

  18. Smart energy option: Reusing wastewater for cooling energy

    SciTech Connect

    Clapham, A.; Jackman, J.; Lundt, M.M.

    1996-12-31

    The King County Department of Metropolitan Services, an airplane manufacturer, and a Seattle utility are ready to begin operating the first commercial effluent-based cooling system for buildings in the Northwest. This paper details the studies undertaken to design the system and how the manufacturer addressed its employees` concerns about a new system. There are several environmental benefits to using effluent as a cooling medium. Considerable energy savings in chiller operations are achieved because the effluent temperature is 10 to 20 degrees cooler than water returned from cooling towers. Another major benefit is water conservation. Conventional cooling towers would consume several million gallons of water each year. By using effluent, the consumption of this water will be avoided. Water run through cooling towers is treated with chemicals to prevent corrosion and biological growth. With the effluent in a closed-loop system, there will be no need to treat the effluent. Consequently there will be a reduction in use of water treatment chemicals that are ultimately discharged into the sewer system. This reduces the treatment load to the county and helps to maintain a cleaner environment. The concept is simple: recover heat wasted from one activity for reuse in another. The delivery is easy: send effluent via a pipeline to customer`s chillers to pick up heat and return that heat to the plant. The selling of this idea is the focus of this paper.

  19. Radiative cooling of relativistic electron beams

    SciTech Connect

    Huang, Zhirong

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  20. Interim Policy Options for Commercialization of Solar Heating and Cooling Systems.

    ERIC Educational Resources Information Center

    Bezdek, Roger

    This interim report reviews the major incentive policy options available to accelerate market penetration of solar heating and cooling (SHAC) systems. Feasible policy options designed to overcome existing barriers to commercial acceptance and market penetration are identified and evaluated. The report is divided into seven sections, each dealing…

  1. High Temperature Gas-Cooled Test Reactor Options Status Report

    SciTech Connect

    Sterbentz, James William; Bayless, Paul David

    2015-08-01

    Preliminary scoping calculations are being performed for a 100 MWt gas-cooled test reactor. The initial design uses standard prismatic blocks and 15.5% enriched UCO fuel. Reactor physics and thermal-hydraulics simulations have been performed to identify some reactor design features to investigate further. Current status of the effort is described.

  2. Controlled cooling of an electronic system based on projected conditions

    DOEpatents

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2016-05-17

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  3. Controlled cooling of an electronic system based on projected conditions

    DOEpatents

    David, Milnes P.; Iyengar, Madhusudan K.; Schmidt, Roger R.

    2015-08-18

    Energy efficient control of a cooling system cooling an electronic system is provided based, in part, on projected conditions. The control includes automatically determining an adjusted control setting(s) for an adjustable cooling component(s) of the cooling system. The automatically determining is based, at least in part, on projected power consumed by the electronic system at a future time and projected temperature at the future time of a heat sink to which heat extracted is rejected. The automatically determining operates to reduce power consumption of the cooling system and/or the electronic system while ensuring that at least one targeted temperature associated with the cooling system or the electronic system is within a desired range. The automatically determining may be based, at least in part, on an experimentally obtained model(s) relating the targeted temperature and power consumption of the adjustable cooling component(s) of the cooling system.

  4. A GPU Accelerated Simulation Program for Electron Cooling Process

    NASA Astrophysics Data System (ADS)

    Zhang, He; Huang, He; Li, Rui; Chen, Jie; Luo, Li-Shi

    2015-04-01

    Electron cooling is essential to achieve high luminosity in the medium energy electron ion collider (MIEC) project at Jefferson Lab. Bunched electron beam with energy above 50 MeV is used to cool coasting and/or bunched ion beams. Although the conventional electron cooling technique has been widely used, such an implementation in MEIC is still challenging. We are developing a simulation program for the electron cooling process to fulfill the need of the electron cooling system design for MEIC. The program simulates the evolution of the ion beam under the intrabeam scattering (IBS) effect and the electron cooling effect using Monte Carlo method. To accelerate the calculation, the program is developed on a GPU platform. We will present some preliminary simulation results. Work supported by the Department of Energy, Laboratory Directed Research and Development Funding, under Contract No. DE-AC05-06OR23177.

  5. Options for Cryogenic Load Cooling with Forced Flow Helium Circulation

    SciTech Connect

    Peter Knudsen, Venkatarao Ganni, Roberto Than

    2012-06-01

    Cryogenic pumps designed to circulate super-critical helium are commonly deemed necessary in many super-conducting magnet and other cooling applications. Acknowledging that these pumps are often located at the coldest temperature levels, their use introduces risks associated with the reliability of additional rotating machinery and an additional load on the refrigeration system. However, as it has been successfully demonstrated, this objective can be accomplished without using these pumps by the refrigeration system, resulting in lower system input power and improved reliability to the overall cryogenic system operations. In this paper we examine some trade-offs between using these pumps vs. using the refrigeration system directly with examples of processes that have used these concepts successfully and eliminated using such pumps

  6. High heat flux cooling for spacecraft electronics

    SciTech Connect

    Leland, J.E.; Chow, L.C. )

    1991-01-05

    An experimental investigation of flow boiling in a curved channel has been performed to ascertain its value in electronics cooling applications. Results have been obtained for flow velocities of 1 to 5 m/s and subcooling of 0.5 to 40 K. These results were compared to those of straight channel under identical velocity and subcooling conditions. The critical heat flux of the curved channel was found to be greater than that of the straight channel. In some cases the increase was found to be marginal, however. An unexplained temperature shift in the nucleate boiling regime was experienced during some experiments. Because this shift only occurred for the first test of the day, it is thought to be related to the incipience phenomenon often experienced in pool boiling experiments. Finally, true incipience overshoot and nucleate boiling regime hysteresis were found to be negligible.

  7. Hydrogen cooling options for MgB{sub 2}-based superconducting systems

    SciTech Connect

    Stautner, W.; Xu, M.; Mine, S.; Amm, K.

    2014-01-29

    With the arrival of MgB{sub 2} for low-cost superconducting magnets, hydrogen cooling has become an interesting alternative to costly liquid helium. Hydrogen is generally regarded as the most efficient coolant in cryogenics and, in particular, is well suited for cooling superconducting magnets. Cooling methods need to take into account the specific quench propagation in the MgB{sub 2} magnet winding and facilitate a cryogenically reliable and safe cooling environment. The authors propose three different multi-coolant options for MRI scanners using helium or hydrogen within the same design framework. Furthermore, a design option for whole-body scanners which employs technology, components, fueling techniques and safety devices from the hydrogen automotive industry is presented, continuing the trend towards replacing helium with hydrogen as a safe and cost efficient coolant.

  8. ELECTRON COOLING AND ELECTRON-ION COLLIDERS AT BNL.

    SciTech Connect

    BEN-ZVI,I.

    2007-10-03

    Superconducting Energy Recovery Linacs (ERL) have significant potential uses in various fields, including High Energy Physics and Nuclear Physics. Brookhaven National Laboratory (BNL) is pursuing some of the potential applications in this area and the technology issues that are associated with these applications. The work addressed in this paper is carried out at BNL towards applications in electron cooling of high-energy hadron beams and electron-nucleon colliders. The common issues for these applications are the generation of high currents of polarized or high-brightness unpolarized electrons, high-charge per bunch and high-current. One must address the associated issue of High-Order Modes generation and damping. Superconducting ERLs have great advantages for these applications as will be outlined in the text.

  9. Fundamental research on convective heat transfer in electronic cooling technology

    NASA Astrophysics Data System (ADS)

    Ma, C. F.; Gan, Y. P.; Tian, Y. Q.; Lei, D. H.

    1992-03-01

    During the past six years comprehensive research programs have been conducted at the Beijing Polytechnic University to provide a better understanding of heat transfer characteristics of existing and condidate cooling techniques for electronic and microelectronic devices. This paper provides a review and summary of the programs with emphasis on direct liquid cooling. Included in this review are the heat transfer investigations related to the following cooling modes: liquid free, mixed and forced convection, liquid jet impingement, flowing liquid film cooling, pool boiling, spray cooling, foreign gas jet impingement in liquid pool, and forced convection air-cooling.

  10. Field measurements in the Fermilab electron cooling solenoid prototype

    SciTech Connect

    A. C. Crawford et al.

    2003-10-02

    To increase the Tevatron luminosity, Fermilab is developing a high-energy electron cooling system [1] to cool 8.9-GeV/c antiprotons in the Recycler ring. The schematic layout of the Recycler Electron Cooling (REC) system is shown in Figure 1. Cooling of antiprotons requires a round electron beam with a small angular spread propagating through a cooling section with a kinetic energy of 4.3 MeV. To confine the electron beam tightly and to keep its transverse angles below 10{sup -4} rad, the cooling section will be immersed into a solenoidal field of 50-150G. As part of the R&D effort, a cooling section prototype consisting of 9 modules (90% of the total length of a future section) was assembled and measured. This paper describes the technique of measuring and adjusting the magnetic field quality in the cooling section and presents preliminary results of solenoid prototype field measurements. The design of the cooling section solenoid is discussed in Chapter 2. Chapter 3 describes details of a dedicated measurement system, capable of measuring small transverse field components, while the system's measurement errors are analyzed in Chapter 4. Chapter 5 contains measured field distributions of individual elements of the cooling section as well as an evaluation of the magnetic shielding efficiency. An algorithm of field adjustments for providing lowest possible electron trajectory perturbations is proposed in Chapter 6; also, this chapter shows the results of our first attempts of implementing the algorithm.

  11. Development of the electron cooling simulation program for JLEIC

    SciTech Connect

    Zhang, He; Chen, Jie; Li, Rui; Zhang, Yuhong; Huang, He; Luo, Li-Shi

    2016-05-01

    In the JLab Electron Ion Collider (JLEIC) project the traditional electron cooling technique is used to reduce the ion beam emittance at the booster ring, and to compensate the intrabeam scattering effect and maintain the ion beam emittance during collision at the collider ring. A new electron cooling process simulation program has been developed to fulfill the requirements of the JLEIC electron cooler design. The new program allows the users to calculate the electron cooling rate and simulate the cooling process with either DC or bunched electron beam to cool either coasting or bunched ion beam. It has been benchmarked with BETACOOL in aspect of accuracy and efficiency. In typical electron cooling process of JLEIC, the two programs agree very well and we have seen a significant improvement of computational speed using the new one. Being adaptive to the modern multicore hardware makes it possible to further enhance the efficiency for computationally intensive problems. The new program is being actively used in the electron cooling study and cooler design for JLEIC. We will present our models and some simulation results in this paper.

  12. PROGRESS OF HIGH-ENERGY ELECTRON COOLING FOR RHIC.

    SciTech Connect

    FEDOTOV,A.V.

    2007-09-10

    The fundamental questions about QCD which can be directly answered at Relativistic Heavy Ion Collider (RHIC) call for large integrated luminosities. The major goal of RHIC-I1 upgrade is to achieve a 10 fold increase in luminosity of Au ions at the top energy of 100 GeV/nucleon. Such a boost in luminosity for RHIC-II is achievable with implementation of high-energy electron cooling. The design of the higher-energy cooler for RHIC-II recently adopted a non-magnetized approach which requires a low temperature electron beam. Such electron beams will be produced with a superconducting Energy Recovery Linac (ERL). Detailed simulations of the electron cooling process and numerical simulations of the electron beam transport including the cooling section were performed. An intensive R&D of various elements of the design is presently underway. Here, we summarize progress in these electron cooling efforts.

  13. Electron cooling for low-energy RHIC program

    SciTech Connect

    Fedotov, A.; Ben-Zvi, I.; Chang, X.; Kayran, D.; Litvinenko, V.N.; Pendzick, A.; Satogata, T.

    2009-08-31

    Electron cooling was proposed to increase luminosity of the RHIC collider for heavy ion beam energies below 10 GeV/nucleon. Providing collisions at such energies, termed RHIC 'low-energy' operation, will help to answer one of the key questions in the field of QCD about existence and location of critical point on the QCD phase diagram. The electron cooling system should deliver electron beam of required good quality over energies of 0.9-5 MeV. Several approaches to provide such cooling were considered. The baseline approach was chosen and design work started. Here we describe the main features of the cooling system and its expected performance. We have started design work on a low-energy RHIC electron cooler which will operate with kinetic electron energy range 0.86-2.8 (4.9) MeV. Several approaches to an electron cooling system in this energy range are being investigated. At present, our preferred scheme is to transfer the Fermilab Pelletron to BNL after Tevatron shutdown, and to use it for DC non-magnetized cooling in RHIC. Such electron cooling system can significantly increase RHIC luminosities at low-energy operation.

  14. Herding Cats: Options for Organizing Electronic Resources.

    ERIC Educational Resources Information Center

    Vellucci, Sherry L.

    1996-01-01

    Examines strengths and weaknesses of organizational systems developed to organize and access electronic resources available via the Internet. Highlights include library online catalogs; cataloging rules and MARC records; text encoding initiative (TEI) headers; the Internet union catalog; browsing lists; robot-generated indexes; a core data set of…

  15. Electronic Document Delivery: New Options for Libraries.

    ERIC Educational Resources Information Center

    Leach, Ronald G.; Tribble, Judith E.

    1993-01-01

    Examines commercial electronic document delivery services that are available to academic libraries. Highlights include collection development issues; criteria for selection and evaluation; remote access systems, including CARL UnCover 2, Faxon Finder and Faxon Xpress, ContentsFirst and ArticleFirst, and CitaDel; and on-site access systems,…

  16. Financing the Electronic Library: Models and Options.

    ERIC Educational Resources Information Center

    Waters, Richard L.; Kralisz, Victor Frank

    1981-01-01

    Places the cost considerations associated with public library automation in a framework of public finance comfortable to most administrators, discusses the importance of experience with use patterns in the electronic library in opening up new and innovative financing methods, and stresses the role of the library in the information industry. (JL)

  17. Detectors for low energy electron cooling in RHIC

    SciTech Connect

    Carlier, F. S.

    2016-02-15

    Low energy operation of RHIC is of particular interest to study the location of a possible critical point in the QCD phase diagram. The performance of RHIC at energies equal to or lower than 10 GV/nucleon is limited by nonlinearities, Intra-BeamScattering (IBS) processes and space-charge effects. To successfully address the luminosity and ion store lifetime limitations imposed by IBS the method of electron cooling has been envisaged. During electron cooling processes electrons are injected along with the ion beam at the nominal ion bunch velocities. The velocity spread of the ion beam is reduced in all planes through Coulomb interactions between the cold electron beam and the ion beam. The electron cooling system proposed for RHIC will be the first of its kind to use bunched beams for the delivery of the electron bunches, and will therefore be accompanied by the necessary challenges. The designed electron cooler will be located in IP2. The electron bunches will be accelerated by a linac before being injected along side the ion beams. Thirty consecutive electron bunches will be injected to overlap with a single ion bunch. They will first cool the yellow beam before being extracted turned by 180-degrees and reinjected into the blue beam for cooling. As such, both the yellow and blue beams will be cooled by the same ion bunches. This will pose considerable challenges to ensure proper electron beam quality to cool the second ion beam. Furthermore, no ondulator will be used in the electron cooler so radiative recombination between the ions and the electrons will occur.

  18. Use of an Electron Beam for Stochastic Cooling

    SciTech Connect

    Yaroslave Derbenev

    2007-09-10

    Microwave instability of an electron beam can be used for a multiple increase in the collective response for the perturbation caused by a particle of a co-moving ion beam, i.e. for enhancement of friction force in electron cooling method. The low scale (hundreds GHz and higher frequency range) space charge or FEL type instabilities can be produced (depending on conditions) by introducing an alternating magnetic fields along the electron beam path. Beams’ optics and noise conditioning for obtaining a maximal cooling effect and related limitations will be discussed. The method promises to increase by a few orders of magnitude the cooling rate for heavy particle beams with a large emittance for a wide energy range with respect to either electron and conventional stochastic cooling.

  19. Survey of Cooling Options for Application in a Low-TC Squid System for Fetal Magnetocardiography

    NASA Astrophysics Data System (ADS)

    Rijpma, A. P.; Uzunbajakau, S.; ter Brake, H. J. M.; Peters, M. J.; Rogalla, H.

    2004-06-01

    As part of the development of a low-Tc SQUID-based magnetometer system for measuring fetal heart activity, the means of cooling is evaluated. To lower the threshold for the clinical application of this fetal heart monitor, it should be simple to operate. It is, therefore, deemed necessary to replace the liquid helium by a closed-cycle refrigerator. In this paper, the requirements with respect to the cryogenic system are defined. These include operating temperature (4 K), temperature stability (<0.2 K), cooling power (>0.1 W) and requirements on magnetic and mechanical interference. The paper also reviews the most relevant options for the realization of the cryogenic system. After comparison, we selected a 4-K mechanical cooler. To reduce the interference, it is placed at several meters from the magnetometer. The cooling power is to be transferred by circulation of helium.

  20. New options for IRI electron density in the middle ionosphere

    NASA Technical Reports Server (NTRS)

    Bilitza, Dieter; Rawer, Karl

    1990-01-01

    This paper reviews the present International Reference Ionosphere (IRI) model of electron density in the middle ionosphere and explores two new options for future editions of IRI. The first of these options is a better description of the bottomside thickness parameters, and the second is an analytical representation from E- to F2-peak using LAY-functions. For this analytical representation a table of standard parameters and constraints for the four LAY-functions recommended for IRI have been established.

  1. The integration of cryogenic cooling systems with superconducting electronic systems

    SciTech Connect

    Green, Michael A.

    2003-07-01

    The need for cryogenic cooling has been critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of the superconducting circuit is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a disadvantage. This report will talk about the various methods for refrigerating superconducting devices. Cryocooler types will be compared for vibration, efficiency, and cost. Some solutions to specific problems of integrating cryocoolers to superconducting devices are presented.

  2. Cooling Methods for High-Power Electronic Systems

    NASA Astrophysics Data System (ADS)

    Blinov, Andrei; Vinnikov, Dmitri; Lehtla, Tõnu

    2011-01-01

    Thermal management is a crucial step in the design of power electronic applications, especially railroad traction and automotive systems. Mass/size parameters, robustness and reliability of the power electronic system greatly depend on the cooling system type and performance. This paper presents an approximate parameter estimation of the thermal management system required as well as different commercially available cooling solutions. Advantages and drawbacks of different designs ranging from simple passive heatsinks to complex evaporative systems are discussed.

  3. Cooling electrons by magnetic-field tuning of Andreev reflection.

    PubMed

    Giazotto, Francesco; Taddei, Fabio; Governale, Michele; Castellana, Carlo; Fazio, Rosario; Beltram, Fabio

    2006-11-10

    A solid-state cooling principle based on magnetic-field-driven tunable suppression of Andreev reflection in superconductor/two-dimensional electron gas nanostructures is proposed. This cooling mechanism can lead to very large heat fluxes per channel up to 10;{4} times greater than currently achieved with superconducting tunnel junctions. This efficacy and its availability in a two-dimensional electron system make this method of particular relevance for the implementation of quantum nanostructures operating at cryogenic temperatures.

  4. Hole Cooling Is Much Faster than Electron Cooling in PbSe Quantum Dots.

    PubMed

    Spoor, Frank C M; Kunneman, Lucas T; Evers, Wiel H; Renaud, Nicolas; Grozema, Ferdinand C; Houtepen, Arjan J; Siebbeles, Laurens D A

    2016-01-26

    In semiconductor quantum dots (QDs), charge carrier cooling is in direct competition with processes such as carrier multiplication or hot charge extraction that may improve the light conversion efficiency of photovoltaic devices. Understanding charge carrier cooling is therefore of great interest. We investigate high-energy optical transitions in PbSe QDs using hyperspectral transient absorption spectroscopy. We observe bleaching of optical transitions involving higher valence and conduction bands upon band edge excitation. The kinetics of rise of the bleach of these transitions after a pump laser pulse allow us to monitor, for the first time, cooling of hot electrons and hot holes separately. Our results show that holes cool significantly faster than electrons in PbSe QDs. This is in contrast to the common assumption that electrons and holes behave similarly in Pb chalcogenide QDs and has important implications for the utilization of hot charge carriers in photovoltaic devices.

  5. Coherent electron cooling proof of principle instrumentation design

    SciTech Connect

    Gassner D. M.; Litvinenko, V.; Michnoff, R.; Miller, T.; Minty, M.; Pinayev, I.

    2012-04-15

    The goal of the Coherent Electron Cooling Proof-of-Principle (CeC PoP) experiment being designed at RHIC is to demonstrate longitudinal (energy spread) cooling before the expected CD-2 for eRHIC. The scope of the experiment is to longitudinally cool a single bunch of 40 GeV/u gold ions in RHIC. This paper will describe the instrumentation systems proposed to meet the diagnostics challenges. These include measurements of beam intensity, emittance, energy spread, bunch length, position, orbit stability, and transverse and temporal alignment of electron and ion beams.

  6. Testing aspects of advanced coherent electron cooling technique

    SciTech Connect

    Litvinenko, V.; Jing, Y.; Pinayev, I.; Wang, G.; Samulyak, R.; Ratner, D.

    2015-05-03

    An advanced version of the Coherent-electron Cooling (CeC) based on the micro-bunching instability was proposed. This approach promises significant increase in the bandwidth of the CeC system and, therefore, significant shortening of cooling time in high-energy hadron colliders. In this paper we present our plans of simulating and testing the key aspects of this proposed technique using the set-up of the coherent-electron-cooling proof-of-principle experiment at BNL.

  7. Issues concerning high current lower energy electron beams required for ion cooling between EBIS LINAC and booster

    SciTech Connect

    Hershcovitch,A.

    2009-03-01

    Some issues, regarding a low energy high current electron beam that will be needed for electron beam cooling to reduce momentum of gold ions exiting the EBIS LINAC before injection into the booster, are examined. Options for propagating such an electron beam, as well as the effect of neutralizing background plasma on electron and ion beam parameters are calculated. Computations and some experimental data indicate that none of these issues is a show stopper.

  8. Effects of e-beam parameters on coherent electron cooling

    SciTech Connect

    Webb, S.D.; Litvinenko, V.N.; Wang, G.

    2011-03-28

    Coherent Electron Cooling (CeC) requires detailed control of the phase between the hadron an the FEL-amplified wave packet. This phase depends on local electron beam parameters such as the energy spread and the peak current. In this paper, we examine the effects of local density variations on the cooling rates for CeC. Coherent Electron Cooling (CeC) [1] is a new concept in intense, high energy hadron beamcooling, in which the Debye screened charge perturbation calculated in [2] is used to seed a high-gain free electron laser (FEL). Using delays to give the perturbing hadron an energy-dependent longitudinal displacement relative to its frequencymodulated charge perturbation, the hadron receives an energy-dependent kick which reduces its energy variation from the design energy. The equations of motion in [1] assume that the electron bunch is the same physical size as the hadron bunch, and has a homogeneous charge density across the entire bunch. In practice, the electron bunches will be much shorter than the hadron bunch, and this local spacial inhomogeneity in the charge distribution will alter the gain length of the FEL, resulting in both a change in the amplification of the initial signal and a phase shift. In this paper we consider these inhomogeneity effects, determining cooling equations for bunched beam CeC consistent with these effects and determining thresholds for the cooling parameters.

  9. Status of the Fermilab electron cooling recirculation project

    SciTech Connect

    Thomas K Kroc

    2002-10-24

    The electron cooling project requires a high current electron beam with high reliability to provide the consistent cooling required by Fermilab's physics program. We are using a 5URE-2 Pelletron to provide this beam. The program is developing a high current DC recirculating electron beam with high recovery efficiency. The present layout uses 2 sets of tubes with acceleration, a 180{sup o} bend, and deceleration for a total of about 10 meters of beam line. The project's nominal operating parameters are .5 A at 4.3 MeV with the emission cathode immersed in a 200-600 G magnetic field.

  10. ELECTRON COOLING IN THE PRESENCE OF UNDULATOR FIELDS

    SciTech Connect

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The design of the higher-energy cooler for Relativistic Heavy Ion Collider (RHIC) recently adopted a non-magnetized approach which requires a low temperature electron beam. However, to avoid significant loss of heavy ions due to recombination with electrons in the cooling section, the temperature of the electron beam should be high. These two contradictory requirements are satisfied in the design of the RWIC cooler with the help of the undulator fields. The model of the friction force in the presence of an undulator field was benchmarked vs. direct numerical simulations with an excellent agreement. Here, we discuss cooling dynamics simulations with a helical undulator, including recombination suppression and resulting luminosities.

  11. Direct electronic measurement of Peltier cooling and heating in graphene.

    PubMed

    Vera-Marun, I J; van den Berg, J J; Dejene, F K; van Wees, B J

    2016-05-10

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.

  12. Direct electronic measurement of Peltier cooling and heating in graphene

    NASA Astrophysics Data System (ADS)

    Vera-Marun, I. J.; van den Berg, J. J.; Dejene, F. K.; van Wees, B. J.

    2016-05-01

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials.

  13. Direct electronic measurement of Peltier cooling and heating in graphene

    PubMed Central

    Vera-Marun, I. J.; van den Berg, J. J.; Dejene, F. K.; van Wees, B. J.

    2016-01-01

    Thermoelectric effects allow the generation of electrical power from waste heat and the electrical control of cooling and heating. Remarkably, these effects are also highly sensitive to the asymmetry in the density of states around the Fermi energy and can therefore be exploited as probes of distortions in the electronic structure at the nanoscale. Here we consider two-dimensional graphene as an excellent nanoscale carbon material for exploring the interaction between electronic and thermal transport phenomena, by presenting a direct and quantitative measurement of the Peltier component to electronic cooling and heating in graphene. Thanks to an architecture including nanoscale thermometers, we detected Peltier component modulation of up to 15 mK for currents of 20 μA at room temperature and observed a full reversal between Peltier cooling and heating for electron and hole regimes. This fundamental thermodynamic property is a complementary tool for the study of nanoscale thermoelectric transport in two-dimensional materials. PMID:27161186

  14. Slow Electron Cooling in Colloidal Quantum Dots

    NASA Astrophysics Data System (ADS)

    Pandey, Anshu; Guyot-Sionnest, Philippe

    2008-11-01

    Hot electrons in semiconductors lose their energy very quickly (within picoseconds) to lattice vibrations. Slowing this energy loss could prove useful for more efficient photovoltaic or infrared devices. With their well-separated electronic states, quantum dots should display slow relaxation, but other mechanisms have made it difficult to observe. We report slow intraband relaxation (>1 nanosecond) in colloidal quantum dots. The small cadmium selenide (CdSe) dots, with an intraband energy separation of ~0.25 electron volts, are capped by an epitaxial zinc selenide (ZnSe) shell. The shell is terminated by a CdSe passivating layer to remove electron traps and is covered by ligands of low infrared absorbance (alkane thiols) at the intraband energy. We found that relaxation is markedly slowed with increasing ZnSe shell thickness.

  15. ELECTRON COOLING SIMULATIONS FOR LOW-ENERGY RHIC OPERATION.

    SciTech Connect

    FEDOTOV,A.V.; BEN-ZVI, I.; CHANG, X.; KAYRAN, D.; SATOGATA, T.

    2007-09-10

    Recently, a strong interest emerged in running the Relativistic Heavy Ion Collider (RHIC) at low beam total energies of 2.5-25 GeV/nucleon, substantially lower than the nominal beam total energy of 100 GeV/nucleon. Collisions in this low energy range are motivated by one of the key questions of quantum chromodynamics (QCD) about the existence and location of critical point on the QCD phase diagram. Applying electron cooling directly at these low energies in RHIC would result in significant luminosity increase and long beam stores for physics. Without direct cooling in RHIC at these low energies, beam lifetime and store times are very short, limited by strong transverse and longitudinal intrabeam scattering (IBS). In addition, for the lowest energies of the proposed energy scan, the longitudinal emittance of ions injected from the AGS into RHIC may be too big to fit into the RHIC RF bucket. An improvement in the longitudinal emittance of the ion beam can be provided by an electron cooling system at the AGS injection energy. Simulations of electron cooling both for direct cooling at low energies in RHIC and for injection energy cooling in the AGS were performed and are summarized in this report.

  16. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    SciTech Connect

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  17. HIGH-ENERGY ELECTRON COOLING BASED ON REALISTIC SIX-DIMENSIONAL DISTRIBUTION OF ELECTRONS

    SciTech Connect

    FEDOTOV,A.; BEN-ZVI, I.; ET AL.

    2007-06-25

    The high-energy electron cooling system for RHIC-II is unique compared to standard coolers. It requires bunched electron beam. Electron bunches are produced by an Energy Recovery Linac (ERL), and cooling is planned without longitudinal magnetic field. To address unique features of the RHIC cooler, a generalized treatment of cooling force was introduced in BETACOOE code which allows us to calculate friction force for an arbitrary distribution of electrons. Simulations for RHIC cooler based on electron distribution from ERL are presented.

  18. Search for electron EDM with laser cooled radioactive atom

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, T.; Kawamura, H.; Nataraj, H. S.; Sato, T.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2013-05-01

    The permanent electric dipole moment (EDM) of the elementary particle has the sensitivity to the CP violation in the theories beyond the standard model (SM). The search for the EDM constitutes the stringent test to discriminate between the SM and beyond it. We plan to perform the electron EDM search by using the laser cooled francium (Fr) atom which has the largest enhancement factor of the electron EDM in the alkali atoms. In this paper, the present status of the laser cooled Fr factory that is being constructed at Cyclotron and Radioisotope Center (CYRIC), Tohoku University are reported.

  19. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    SciTech Connect

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  20. Passive Two-Phase Cooling for Automotive Power Electronics

    SciTech Connect

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-01-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated and tested using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245 fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator concept that incorporates features to improve performance and reduce its size was designed. Simulation results indicate the concept's thermal resistance can be 58% to 65% lower than automotive dual-side-cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers-plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  1. Electronic cooling of a submicron-sized metallic beam

    NASA Astrophysics Data System (ADS)

    Muhonen, J. T.; Niskanen, A. O.; Meschke, M.; Pashkin, Yu. A.; Tsai, J. S.; Sainiemi, L.; Franssila, S.; Pekola, J. P.

    2009-02-01

    We demonstrate electronic cooling of a suspended AuPd island using superconductor-insulator-normal metal tunnel junctions. This was achieved by developing a simple fabrication method for reliably releasing narrow submicron-sized metal beams. The process is based on reactive ion etching and uses a conducting substrate to avoid charge-up damage and is compatible with, e.g., conventional e-beam lithography, shadow-angle metal deposition, and oxide tunnel junctions. The devices function well and exhibit clear cooling, up to a factor of 2 at sub-Kelvin temperatures.

  2. Physical installation of Pelletron and electron cooling system

    SciTech Connect

    Hurh, P.

    1997-09-01

    Bremsstrahlung of 5 MeV electrons at a loss current of 50 microamp in the acceleration region is estimated to produce X-ray intensities of 7 Rad/sec. Radiation losses due to a misteer or sudden obstruction will of course be much higher still (estimated at 87,500 Rad/hr for a 0.5 mA beam current). It is estimated that 1.8 meters of concrete will be necessary to adequately shield the surrounding building areas at any possible Pelletron installation site. To satisfy our present electron cooling development plan, two Pelletron installations are required, the first at our development lab in the Lab B/NEF Enclosure area and the second at the operational Main Injector service building, MI-30, in the main Injector ring. The same actual Pelletron and electron beam-line components will be used at both locations. The Lab B installation will allow experimentation with actual high energy electron beam to develop the optics necessary for the cooling straight while Main Injector/Recycler commissioning is taking place. The MI-30 installation is obviously the permanent home for the Pelletron when electron cooling becomes operational. Construction plans for both installations will be discussed here.

  3. Options for Shielding Tokamak Cooling Water Electrical Components against High Magnetic Fields

    SciTech Connect

    Korsah, Kofi; Michael, Smith; Kim, Seokho H; Charles, Neumeyer

    2011-01-01

    The Tokamak Cooling Water System (TCWS) Instrumentation and Control (I&C) components of ITER will be located in areas of relatively high magnetic fields. Previous tests on electrical and I&C components have indicated that shielding will be required to protect these components from such magnetic fields. To accomplish this, studies were performed by AREVA Federal Services (AFS) in support of the TCWS Design project with the intent of identifying an optimal solution for shielding I&C components. This report presents a summary of these studies and presents design options for providing magnetic shielding to ITER TCWS I&C components and electrical equipment that are susceptible to the magnetic fields present.

  4. Part II/Addendum Electron Beam Cooling between EBIS LINAC and Booster; Is Single Pass Cooling Possible?

    SciTech Connect

    Hershcovitch,A.

    2008-07-01

    Due to some miscommunication, incomplete data was erroneously used in examining electron beam cooling for reducing momentum of gold ions exiting the EBIS LINAC before injection into the booster. Corrected calculations still indicate that single pass cooling is, in principle, feasible; momentum spread can be reduced by an order of magnitude in about one meter. Preliminary results suggest that this cooling deserves further consideration.

  5. Two-Phase Cooling Method Using R134a Refrigerant to Cool Power Electronic Devices

    SciTech Connect

    Lowe, Kirk T; Tolbert, Leon M; Ayers, Curtis William; Ozpineci, Burak; Campbell, Jeremy B

    2007-01-01

    This paper presents a two-phase cooling method using R134a refrigerant to dissipate the heat energy (loss) generated by power electronics (PE) such as those associated with rectifiers, converters, and inverters for a specific application in hybrid-electric vehicles (HEVs). The cooling method involves submerging PE devices in an R134a bath, which limits the junction temperature of PE devices while conserving weight and volume of the heat sink without sacrificing equipment reliability. First, experimental tests that included an extended soak for more than 300 days were performed on a submerged IGBT and gate-controller card to study dielectric characteristics, deterioration effects, and heat flux capability of R134a. Results from these tests illustrate that R134a has high dielectric characteristics, no deterioration on electrical components, and a heat flux of 114 W/cm 2 for the experimental configuration. Second, experimental tests that included simultaneous operation with a mock automotive air-conditioner (A/C) system were performed on the same IGBT and gate controller card. Data extrapolation from these tests determined that a typical automotive A/C system has more than sufficient cooling capacity to cool a typical 30 kW traction inverter. Last, a discussion and simulation of active cooling of the IGBT junction layer with R134a refrigerant is given. This technique will drastically increase the forward current ratings and reliability of the PE device

  6. Progress on a cryogenically cooled RF gun polarized electron source

    SciTech Connect

    Fliller, R.P., III; Edwards, H.; /Fermilab

    2006-08-01

    RF guns have proven useful in multiple accelerator applications. An RF gun capable of producing polarized electrons is an attractive electron source for the ILC or an electron-ion collider. Producing such a gun has proven elusive. The NEA GaAs photocathode needed for polarized electron production is damaged by the vacuum environment in an RF gun. Electron and ion back bombardment can also damage the cathode. These problems must be mitigated before producing an RF gun polarized electron source. In this paper we report continuing efforts to improve the vacuum environment in a normal conducting RF gun by cooling it with liquid nitrogen after a high temperature vacuum bake out. We also report on a design of a cathode preparation chamber to produce bulk GaAs photocathodes for testing in such a gun. Future directions are also discussed.

  7. The development of advanced cooling methods for high-power electronics

    NASA Astrophysics Data System (ADS)

    Bland, T. J.; Ciaccio, M. P.; Downing, R. S.; Smith, W. G.

    1990-10-01

    Consideration is given to various technologies developed to meet the difficult cooling requirements of high-density power electronics equipment for the aerospace industry. Topics discussed include liquid impingement cooling, compact high-density cooler, integrally cooled semiconductor, high heat flux cold plane, immersion cooling, modular reflux cooler, and forced-flow two-phase cooling systems. It is concluded that the new technologies are capable of providing the temperature control necessary to maintain desired electronic reliabilities using high-conductance cooling approaches.

  8. Cold electron sources using laser-cooled atoms

    NASA Astrophysics Data System (ADS)

    McCulloch, Andrew J.; Sparkes, Ben M.; Scholten, Robert E.

    2016-08-01

    Since the first observation of electron diffraction in 1927, electrons have been used to probe the structure of matter. High-brightness sources of thermal electrons have recently emerged that are capable of simultaneously providing high spatial resolving power along with ultrafast temporal resolution, however they are yet to demonstrate the holy grail of single-shot diffraction of non-crystalline objects. The development of the cold atom electron source, based around the ionisation of laser cooled atoms, has the potential to contribute to this goal. Electron generation from laser cooled atoms is in its infancy, but in just ten years has moved from a proposal to a source capable of performing single-shot diffraction imaging of crystalline structures. The high brightness, high transverse coherence length, and small energy spread of cold electron sources are also potentially advantageous for applications ranging from seeding of x-ray free-electron lasers and synchrotrons to coherent diffractive imaging and microscopy. In this review we discuss the context which motivates the development of these sources, the operating principles of the source, and recent experimental results. The achievements demonstrated thus far combined with theoretical proposals to alleviate current bottlenecks in development promise a bright future for these sources.

  9. Analysis and simulation for laser-Compton cooling of electron beams

    SciTech Connect

    Ohgaki, T.

    1999-10-01

    The method of the Laser-Compton cooling of the electron beams is studied. Using a Monte Carlo code, we have evaluated the effects of the Laser-electron interaction for cooling. The optics with and without chromatic correction for cooling are examined. Problems of the optics for cooling are discussed.

  10. A Project for synchrotron with electron cooling for cancer therapy

    NASA Astrophysics Data System (ADS)

    Vostrikov, V. A.; Kiselev, V. A.; Levichev, E. B.; Parkhomchuk, V. V.; Reva, V. B.; Sinyatkin, S.

    2012-07-01

    A project for a new generation of proton and ion accelerator facilities for cancer therapy has been developed at the Budker Institute of Nuclear Physics (BINP), Siberian Branch, Russian Academy of Sciences (SB RAS). This facility includes an electrostatic injector, a booster with a 10-Hz repetition rate, and a main synchrotron with electron cooling and beam transport lines for delivering the beam to treatment rooms. The application of electron cooling makes it possible to increase the beam intensity and reduce the apertures of both the synchrotron and the high-energy transport lines, as well as save construction costs and energy consumption as required by the accelerator complex. This paper describes the main features of the synchrotron and the requirements for its main systems and their parameters.

  11. Electronic Data Collection Options for Practice-Based Research Networks

    PubMed Central

    Pace, Wilson D.; Staton, Elizabeth W.

    2005-01-01

    PURPOSE We wanted to describe the potential benefits and problems associated with selected electronic methods of collecting data within practice-based research networks (PBRNs). METHODS We considered a literature review, discussions with PBRN researchers, industry information, and personal experience. This article presents examples of selected PBRNs’ use of electronic data collection. RESULTS Collecting research data in the geographically dispersed PBRN environment requires considerable coordination to ensure completeness, accuracy, and timely transmission of the data, as well as a limited burden on the participants. Electronic data collection, particularly at the point of care, offers some potential solutions. Electronic systems allow use of transparent decision algorithms and improved data entry and data integrity. These systems may improve data transfer to the central office as well as tracking systems for monitoring study progress. PBRNs have available to them a wide variety of electronic data collection options, including notebook computers, tablet PCs, personal digital assistants (PDAs), and browser-based systems that operate independent of or over the Internet. Tablet PCs appear particularly advantageous for direct patient data collection in an office environment. PDAs work well for collecting defined data elements at the point of care. Internet-based systems work well for data collection that can be completed after the patient visit, as most primary care offices do not support Internet connectivity in examination rooms. CONCLUSIONS When planning to collect data electronically, it is important to match the electronic data collection method to the study design. Focusing an inappropriate electronic data collection method onto users can interfere with accurate data gathering and may also anger PBRN members. PMID:15928215

  12. Jumping-droplet electronics hot-spot cooling

    DOE PAGES

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; ...

    2017-03-20

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm x 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobicmore » surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25°C air temperature, 20-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm), and heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈ 200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. Finally, this work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.« less

  13. Jumping-droplet electronics hot-spot cooling

    NASA Astrophysics Data System (ADS)

    Oh, Junho; Birbarah, Patrick; Foulkes, Thomas; Yin, Sabrina L.; Rentauskas, Michelle; Neely, Jason; Pilawa-Podgurski, Robert C. N.; Miljkovic, Nenad

    2017-03-01

    Demand for enhanced cooling technologies within various commercial and consumer applications has increased in recent decades due to electronic devices becoming more energy dense. This study demonstrates jumping-droplet based electric-field-enhanced (EFE) condensation as a potential method to achieve active hot spot cooling in electronic devices. To test the viability of EFE condensation, we developed an experimental setup to remove heat via droplet evaporation from single and multiple high power gallium nitride (GaN) transistors acting as local hot spots (4.6 mm × 2.6 mm). An externally powered circuit was developed to direct jumping droplets from a copper oxide (CuO) nanostructured superhydrophobic surface to the transistor hot spots by applying electric fields between the condensing surface and the transistor. Heat transfer measurements were performed in ambient air (22-25 °C air temperature, 20%-45% relative humidity) to determine the effect of gap spacing (2-4 mm), electric field (50-250 V/cm) and applied heat flux (demonstrated to 13 W/cm2). EFE condensation was shown to enhance the heat transfer from the local hot spot by ≈200% compared to cooling without jumping and by 20% compared to non-EFE jumping. Dynamic switching of the electric field for a two-GaN system reveals the potential for active cooling of mobile hot spots. The opportunity for further cooling enhancement by the removal of non-condensable gases promises hot spot heat dissipation rates approaching 120 W/cm2. This work provides a framework for the development of active jumping droplet based vapor chambers and heat pipes capable of spatial and temporal thermal dissipation control.

  14. High power electronic devices cooling at minimum ventilation power

    NASA Astrophysics Data System (ADS)

    Fabbri, Giampietro

    2008-01-01

    In the present work, the cooling of a high power electronic device is studied. The device is in contact with a heat dissipator crossed by air. The air motion through the dissipator is forced by a fan whose supplied power is to be minimized. A finite element dynamic model of the dissipator is firstly created, taking geometrical and physical properties into account as well as steady state experimental data. A simplified model is then obtained, which reproduces the time pattern of the maximum dissipator temperature as a response of the thermal flux removed from the electronic device and the mass flow rate of the air. Afterwards, the simplified model is utilized to build a control system which allows the electronic device to be correctly cooled at minimum air ventilation power during transition to steady states. Genetic algorithms are used to find the parameters of the finite element model and of the control system. Some functioning conditions of the electronic device are lastly considered and discussed.

  15. Electron guns and collectors developed at INP for electron cooling devices

    SciTech Connect

    Sharapa, A.N.; Shemyakin, A.V.

    1997-09-01

    Institute of Nuclear Physics (INP) has a rich experience in designing electron guns and collectors for electron cooling devices. This paper is a review of the experience of several INP research groups in this field. Some results obtained at INP for systems without a guiding magnetic field are also discussed.

  16. Cooled electronic system with thermal spreaders coupling electronics cards to cold rails

    DOEpatents

    Chainer, Timothy J; Gaynes, Michael A; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Schultz, Mark D; Simco, Daniel P; Steinke, Mark E

    2013-07-23

    Liquid-cooled electronic systems are provided which include an electronic assembly having an electronics card and a socket with a latch at one end. The latch facilitates securing of the card within the socket or removal of the card from the socket. A liquid-cooled cold rail is disposed at the one end of the socket, and a thermal spreader couples the electronics card to the cold rail. The thermal spreader includes first and second thermal transfer plates coupled to first and second surfaces on opposite sides of the card, and thermally conductive extensions extending from end edges of the plates, which couple the respective transfer plates to the liquid-cooled cold rail. The thermally conductive extensions are disposed to the sides of the latch, and the card is securable within or removable from the socket using the latch without removing the cold rail or the thermal spreader.

  17. Diffusion-Cooled Tantalum Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, Anders; McGrath, William; Bumble, Bruce; LeDuc, Henry

    2004-01-01

    A batch of experimental diffusion-cooled hot-electron bolometers (HEBs), suitable for use as mixers having input frequencies in the terahertz range and output frequencies up to about a gigahertz, exploit the superconducting/normal-conducting transition in a thin strip of tantalum. The design and operation of these HEB mixers are based on mostly the same principles as those of a prior HEB mixer that exploited the superconducting/normal- conducting transition in a thin strip of niobium and that was described elsewhere.

  18. Air Cooling for High Temperature Power Electronics (Presentation)

    SciTech Connect

    Waye, S.; Musselman, M.; King, C.

    2014-09-01

    Current emphasis on developing high-temperature power electronics, including wide-bandgap materials such as silicon carbide and gallium nitride, increases the opportunity for a completely air-cooled inverter at higher powers. This removes the liquid cooling system for the inverter, saving weight and volume on the liquid-to-air heat exchanger, coolant lines, pumps, and coolant, replacing them with just a fan and air supply ducting. We investigate the potential for an air-cooled heat exchanger from a component and systems-level approach to meet specific power and power density targets. A proposed baseline air-cooled heat exchanger design that does not meet those targets was optimized using a parametric computational fluid dynamics analysis, examining the effects of heat exchanger geometry and device location, fixing the device heat dissipation and maximum junction temperature. The CFD results were extrapolated to a full inverter, including casing, capacitor, bus bar, gate driver, and control board component weights and volumes. Surrogate ducting was tested to understand the pressure drop and subsequent system parasitic load. Geometries that met targets with acceptable loads on the system were down-selected for experimentation. Nine baseline configuration modules dissipated the target heat dissipation, but fell below specific power and power density targets. Six optimized configuration modules dissipated the target heat load, exceeding the specific power and power density targets. By maintaining the same 175 degrees C maximum junction temperature, an optimized heat exchanger design and higher device heat fluxes allowed a reduction in the number of modules required, increasing specific power and power density while still maintaining the inverter power.

  19. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOEpatents

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-05-12

    Apparatus and method are provided for facilitating cooling of an electronic component. The apparatus includes a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  20. Thermoelectric-enhanced, liquid-based cooling of a multi-component electronic system

    DOEpatents

    Chainer, Timothy J; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Schmidt, Roger R; Steinke, Mark E

    2015-11-10

    Methods are provided for facilitating cooling of an electronic component. The methods include providing: a liquid-cooled structure, a thermal conduction path coupling the electronic component and the liquid-cooled structure, a coolant loop in fluid communication with a coolant-carrying channel of the liquid-cooled structure, and an outdoor-air-cooled heat exchange unit coupled to facilitate heat transfer from the liquid-cooled structure via, at least in part, the coolant loop. The thermoelectric array facilitates transfer of heat from the electronic component to the liquid-cooled structure, and the heat exchange unit cools coolant passing through the coolant loop by dissipating heat from the coolant to outdoor ambient air. In one implementation, temperature of coolant entering the liquid-cooled structure is greater than temperature of the outdoor ambient air to which heat is dissipated.

  1. Thermal transfer structures coupling electronics card(s) to coolant-cooled structure(s)

    DOEpatents

    David, Milnes P; Graybill, David P; Iyengar, Madhusudan K; Kamath, Vinod; Kochuparambil, Bejoy J; Parida, Pritish R; Schmidt, Roger R

    2014-12-16

    Cooling apparatuses and coolant-cooled electronic systems are provided which include thermal transfer structures configured to engage with a spring force one or more electronics cards with docking of the electronics card(s) within a respective socket(s) of the electronic system. A thermal transfer structure of the cooling apparatus includes a thermal spreader having a first thermal conduction surface, and a thermally conductive spring assembly coupled to the conduction surface of the thermal spreader and positioned and configured to reside between and physically couple a first surface of an electronics card to the first surface of the thermal spreader with docking of the electronics card within a socket of the electronic system. The thermal transfer structure is, in one embodiment, metallurgically bonded to a coolant-cooled structure and facilitates transfer of heat from the electronics card to coolant flowing through the coolant-cooled structure.

  2. 75 FR 27986 - Electronic Filing System-Web (EFS-Web) Contingency Option

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... United States Patent and Trademark Office Electronic Filing System--Web (EFS-Web) Contingency Option..., Electronic Filing System--Web (EFS-Web) by providing a new contingency option when the primary portal to EFS-Web has an unscheduled outage. Previously, the entire EFS-Web system is not available to the users...

  3. Heating and cooling of a two-dimensional electron gas by terahertz radiation

    SciTech Connect

    Budkin, G. V.; Tarasenko, S. A.

    2011-04-15

    The absorption of terahertz radiation by free charge carriers in n-type semiconductor quantum wells accompanied by the interaction of electrons with acoustic and optical phonons is studied. It is shown that intrasubband optical transitions can cause both heating and cooling of the electron gas. The cooling of charge carriers occurs in a certain temperature and radiation frequency region where light is most efficiently absorbed due to intrasubband transitions with emission of optical phonons. In GaAs quantum wells, the optical cooling of electrons occurs most efficiently at liquid nitrogen temperatures, while cooling is possible even at room temperature in GaN heterostructures.

  4. Commissioning of Fermilab's electron cooling system for 8-GeV antiprotons

    SciTech Connect

    Nagaitsev, S.; Broemmelsiek, D.; Burov, A.; Carlson, K.; Gattuso, C.; Hu, M.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Seletsky, S.; Gai, W.; Kazakevich, Grigory M.; /Novosibirsk, IYF

    2005-05-01

    A 4.3-MeV electron cooling system [1] has been installed at Fermilab in the Recycler antiproton storage ring and is currently being commissioned. The cooling system is designed to assist accumulation of 8.9-GeV/c antiprotons for the Tevatron collider operations. This paper reports on the progress of the electron beam commissioning effort as well as on detailed plans of demonstrating the cooling of antiprotons.

  5. Spray cooling characteristics of nanofluids for electronic power devices.

    PubMed

    Hsieh, Shou-Shing; Leu, Hsin-Yuan; Liu, Hao-Hsiang

    2015-01-01

    The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm(2) with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10(-4) kg/cm(2)s.

  6. Spray cooling characteristics of nanofluids for electronic power devices

    NASA Astrophysics Data System (ADS)

    Hsieh, Shou-Shing; Leu, Hsin-Yuan; Liu, Hao-Hsiang

    2015-03-01

    The performance of a single spray for electronic power devices using deionized (DI) water and pure silver (Ag) particles as well as multi-walled carbon nanotube (MCNT) particles, respectively, is studied herein. The tests are performed with a flat horizontal heated surface using a nozzle diameter of 0.5 mm with a definite nozzle-to-target surface distance of 25 mm. The effects of nanoparticle volume fraction and mass flow rate of the liquid on the surface heat flux, including critical heat flux (CHF), are explored. Both steady state and transient data are collected for the two-phase heat transfer coefficient, boiling curve/ cooling history, and the corresponding CHF. The heat transfer removal rate can reach up to 274 W/cm2 with the corresponding CHF enhancement ratio of 2.4 for the Ag/water nanofluids present at a volume fraction of 0.0075% with a low mass flux of 11.9 × 10-4 kg/cm2s.

  7. Nano-PCMs for passive electronic cooling applications

    NASA Astrophysics Data System (ADS)

    Colla, L.; Fedele, L.; Mancin, S.; Buonomo, B.; Ercole, D.; Manca, O.

    2015-11-01

    The present work aims at investigating a new challenging use of oxide (TiO2, Al2O3, etc.) nanoparticles to enhance the thermal properties: thermal conductivity, specific heat, and latent heat of pure paraffin waxes to obtain a new class of Phase Change Materials (PCMs), the so-called nano-PCMs. The nano-PCMs were obtained by seeding different amounts of oxide nanoparticles in a paraffin wax having a melting temperature of 45°C. The thermophysical properties such as latent heat and thermal conductivity were then measured to understand the effects of the nanoparticles on the thermal properties of both the solid and liquid PCM. Finally, a numerical comparison between the use of the pure paraffin wax and the nano-PCM in a typical electronics passive cooling device was implemented. Numerical simulations were carried out using the Ansys-Fluent 15.0 code. Results in terms of solid and liquid phase temperatures, melting time and junction temperature were reported. Moreover, a comparison with experimental results was also performed.

  8. Electron cooling of 8-GeV antiprotons at Fermilab's Recycler: Results and operational implications

    SciTech Connect

    Prost, L.R.; Broemmelsiek, D.; Burov, Alexey V.; Carlson, K.; Gattuso, C.; Hu, M.; Kroc, T.; Leibfritz, J.; Nagaitsev, S.; Pruss, S.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; /Fermilab

    2006-05-01

    Electron cooling of 8 GeV antiprotons at Fermilab's Recycler storage ring is now routinely used in the collider operation. It requires a 0.1-0.5 A, 4.3 MeV dc electron beam and is designed to increase the longitudinal phase-space density of the circulating antiproton beam. This paper briefly describes the characteristics of the electron beam that were achieved to successfully cool antiprotons. Then, results from various cooling force measurements along with comparison to a nonmagnetized model are presented. Finally, operational aspects of the implementation of electron cooling at the Recycler are discussed, such as adjustments to the cooling rate and the influence of the electron beam on the antiproton beam lifetime.

  9. A robust platform cooled by superconducting electronic refrigerators

    SciTech Connect

    Nguyen, H. Q.; Meschke, M.; Pekola, J. P.

    2015-01-05

    A biased tunnel junction between a superconductor and a normal metal can cool the latter electrode. Based on a recently developed cooler with high power and superior performance, we have integrated it with a dielectric silicon nitride membrane, and cooled phonons from 305 mK down to 200 mK. Without perforation and covered under a thin alumina layer, the membrane is rigorously transformed into a cooling platform that is robust and versatile for multiple practical purposes. We discussed our results and possibilities to further improve the device.

  10. Decontamination in the Electron Probe Microanalysis with a Peltier-Cooled Cold Finger.

    PubMed

    Buse, Ben; Kearns, Stuart; Clapham, Charles; Hawley, Donovan

    2016-10-01

    A prototype Peltier thermoelectric cooling unit has been constructed to cool a cold finger on an electron microprobe. The Peltier unit was tested at 15 and 96 W, achieving cold finger temperatures of -10 and -27°C, respectively. The Peltier unit did not adversely affect the analytical stability of the instrument. Heat conduction between the Peltier unit mounted outside the vacuum and the cold finger was found to be very efficient. Under Peltier cooling, the vacuum improvement associated with water vapor deposition was not achieved; this has the advantage of avoiding severe degradation of the vacuum observed when warming up a cold finger from liquid nitrogen (LN2) temperatures. Carbon contamination rates were reduced as cooling commenced; by -27°C contamination rates were found to be comparable with LN2-cooled devices. Peltier cooling, therefore, provides a viable alternative to LN2-cooled cold fingers, with few of their associated disadvantages.

  11. SRF photoinjector for proof-of-principle experiment of coherent electron cooling at RHIC

    SciTech Connect

    Kayran D.; Belomestnykh, S.; Ben-Zvi, I.; Brutus, J.C.; et al

    2012-05-20

    Coherent Electron Cooling (CEC) based on Free Electron Laser (FEL) amplifier promises to be a very good way to cool protons and ions at high energies. A proof of principle experiment to demonstrate cooling at 40 GeV/u is under construction at BNL. One of possible sources to provide sufficient quality electron beam for this experiment is a SRF photoinjector. In this paper we discuss design and simulated performance of the photoinjector based on existing 112 MHz SRF gun and newly designed single-cavity SRF linac operating at 704 MHz.

  12. Thermal management in high-power electronics cooled down using capillary pump

    NASA Astrophysics Data System (ADS)

    Wiecek, Boguslaw; Wajman, Tomasz; Felczak, Mariola; Berlinski, Marek

    2003-04-01

    By using the evaporation of working fluid in the capillary it is possible to design and build cooling device, with high cooling effectiveness. This paper presents a preliminary cooling system integrated with electronic device., which is supported by evaporation and capillarity effects. A simplified modeling of conjugate heat transfer including evaporation using FLUENT package is discussed. The experiments for open and close loop capillary pomp are shown to compare and verify the measurements and simulation results.

  13. A Unique Approach to Power Electronics and Motor Cooling in a Hybrid Electric Vehicle Environment

    SciTech Connect

    Ayers, Curtis William; Hsu, John S; Lowe, Kirk T; Conklin, Jim

    2007-01-01

    An innovative system for cooling the power electronics of hybrid electric vehicles is presented. This system uses a typical automotive refrigerant R-134a (1,1,1,2 tetrafluoroethane) as the cooling fluid in a system that can be used as either part of the existing vehicle passenger air conditioning system or separately and independently of the existing air conditioner. Because of the design characteristics, the cooling coefficient of performance is on the order of 40. Because liquid refrigerant is used to cool the electronics directly, high heat fluxes can result while maintaining an electronics junction temperature at an acceptable value. In addition, an inverter housing that occupies only half the volume of a conventional inverter has been designed to take advantage of this cooling system. Planned improvements should result in further volume reductions while maintaining a high power level.

  14. EXTERNAL COMPTON EMISSION IN BLAZARS OF NONLINEAR SYNCHROTRON SELF-COMPTON-COOLED ELECTRONS

    SciTech Connect

    Zacharias, Michael; Schlickeiser, Reinhard E-mail: rsch@tp4.rub.de

    2012-12-20

    The origin of the high-energy component in spectral energy distributions (SEDs) of blazars is still something of a mystery. While BL Lac objects can be successfully modeled within the one-zone synchrotron self-Compton (SSC) scenario, the SED of low-peaked flat spectrum radio quasars is more difficult to reproduce. Their high-energy component needs the abundance of strong external photon sources, giving rise to stronger cooling via the inverse Compton (IC) channel, and thus to a powerful component in the SED. Recently, we have been able to show that such a powerful inverse Compton component can also be achieved within the SSC framework. This, however, is only possible if the electrons cool by SSC, which results in a nonlinear process, since the cooling depends on an energy integral over the electrons. In this paper, we aim to compare the nonlinear SSC framework with the external Compton (EC) output by calculating analytically the EC component with the underlying electron distribution being either linearly or nonlinearly cooled. Due to the additional linear cooling of the electrons with the external photons, higher number densities of electrons are required to achieve nonlinear cooling, resulting in more powerful IC components. If the electrons initially cool nonlinearly, the resulting SED can exhibit a dominant SSC over the EC component. However, this dominance depends strongly on the input parameters. We conclude that, with the correct time-dependent treatment, the SSC component should be taken into account in modeling blazar flares.

  15. Transverse Electron Cooling Measurements with a Kicked Pencil Beam in CELSIUS

    SciTech Connect

    Ziemann, Volker

    2005-06-08

    We report first results from measuring transverse cooling times by kicking the beam and then observing turn-by-turn beam positions which decay as a function of time. The measurements are done for several electron beam currents.

  16. Fundamental studies in cryogenic cooling of power electronics

    NASA Astrophysics Data System (ADS)

    Chow, L. C.; Sehmbey, M. S.; Hahm, O. J.; Chui, C. J.

    1994-09-01

    This study details the results from experiments conducted to study the heat transfer characteristics during liquid nitrogen spray cooling and pool boiling from a heater array. Four different nozzles at various pressures were used to study the variation in spray cooling heat transfer at liquid nitrogen temperature. Effect of nozzle and flow rate on the critical heat flux and the heat transfer coefficient are presented. This study also provides empirical correlations for the spray cooling characteristics. The critical heat flux and the heat transfer coefficient have been correlated using nondimensional numbers. The study also shows the importance of surface roughness for spray cooling with liquid nitrogen. The rougher surfaces were shown to have significantly higher heat transfer rates and similar critical heat fluxes occurring at lower temperatures. The results from experiments conducted to study the pool boiling heat transfer from a vertical array with flush mounted heat sources are also presented. The lower heaters were found to enhance the heat transfer from the upper heaters due to bubble pumped convection.

  17. Electronic Spectra of the Jet-Cooled Acetaminophen

    NASA Astrophysics Data System (ADS)

    Lee, Seung Jun; Min, Ahreum; Kim, Yusic; Choi, Myong Yong; Chang, Jinyoung; Lee, Sang Hak; Kim, Seong Keun

    2010-06-01

    Resonant two-photon ionization (R2PI), laser induced fluorescence (LIF) and UV-UV double resonance spectra of the jet-cooled acetaminophen, widely used as a pain reliever and fever reducer, were obtained in the gas phase. Conformational characterizations for acetaminophen will be presented with an aid of spectroscopic techniques and DFT B3LYP calculations.

  18. Experimental search for the electron electric dipole moment with laser cooled francium atoms

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kawamura, H.; Uchiyama, A.; Aoki, T.; Asahi, K.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Yoshimi, A.; Sakemi, Y.

    2015-04-01

    A laser cooled heavy atom is one of the candidates to search for the permanent electric dipole moment (EDM) of the electron due to the enhancement mechanism and its long coherence time. The laser cooled francium (Fr) factory has been constructed to perform the electron EDM search at the Cyclotron and Radioisotope Center, Tohoku University. The present status of Fr production and the EDM measurement system is presented.

  19. 77 FR 52319 - Notice of Submission for OMB Review; Federal Student Aid; Electronic Debit Payment Option for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... Notice of Submission for OMB Review; Federal Student Aid; Electronic Debit Payment Option for Student... records. Title of Collection: Electronic Debit Payment Option for Student Loans. OMB Control Number: 1845... option to repay federally funded student loans via automatic debit deductions from their checking...

  20. 77 FR 52703 - Notice of Submission for OMB Review; Federal Student Aid; Electronic Debit Payment Option for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-30

    ... Notice of Submission for OMB Review; Federal Student Aid; Electronic Debit Payment Option for Student... records. Title of Collection: Electronic Debit Payment Option for Student Loans. OMB Control Number: 1845... option to repay federally funded student loans via automatic debit deductions from their checking...

  1. Enhancing Response Rates in Physician Surveys: The Limited Utility of Electronic Options

    PubMed Central

    Nicholls, Keith; Chapman, Kathryn; Shaw, Thomas; Perkins, Allen; Sullivan, Margaret Murray; Crutchfield, Susan; Reed, Eddie

    2011-01-01

    Objective To evaluate the utility of offering physicians electronic options as alternatives to completing mail questionnaires. Data Source A survey of colorectal cancer screening practices of Alabama primary care physicians, conducted May–June 2010. Study Design In the follow-up to a mail questionnaire, physicians were offered options of completing surveys by telephone, fax, email, or online. Data Collection Method Detailed records were kept on the timing and mode of completion of surveys. Principal Findings Eighty-eight percent of surveys were returned by mail, 10 percent were returned by fax, and only 2 percent were completed online; none were completed by telephone or email. Conclusions Offering fax options increases response rates, but providing other electronic options does not. PMID:21492157

  2. Enhancing response rates in physician surveys: the limited utility of electronic options.

    PubMed

    Nicholls, Keith; Chapman, Kathryn; Shaw, Thomas; Perkins, Allen; Sullivan, Margaret Murray; Crutchfield, Susan; Reed, Eddie

    2011-10-01

    To evaluate the utility of offering physicians electronic options as alternatives to completing mail questionnaires. A survey of colorectal cancer screening practices of Alabama primary care physicians, conducted May-June 2010. In the follow-up to a mail questionnaire, physicians were offered options of completing surveys by telephone, fax, email, or online. Detailed records were kept on the timing and mode of completion of surveys. Eighty-eight percent of surveys were returned by mail, 10 percent were returned by fax, and only 2 percent were completed online; none were completed by telephone or email. Offering fax options increases response rates, but providing other electronic options does not. © Health Research and Educational Trust.

  3. The integration of liquid cryogen cooling and cryocoolers withsuperconducting electronic systems

    SciTech Connect

    Green, Michael A.

    2003-07-09

    The need for cryogenic cooling has been a critical issuethat has kept superconducting electronic devices from reaching the marketplace. Even though the performance of many of the superconductingcircuits is superior to silicon electronics, the requirement forcryogenic cooling has put the superconducting devices at a seriousdisadvantage. This report discusses the process of refrigeratingsuperconducting devices with cryogenic liquids and small cryocoolers.Three types of cryocoolers are compared for vibration, efficiency, andreliability. The connection of a cryocooler to the load is discussed. Acomparison of using flexible copper straps to carry the heat load andusing heat pipe is shown. The type of instrumentation needed formonitoring and controlling the cooling is discussed.

  4. Use of LHP for cooling power electronic components

    NASA Astrophysics Data System (ADS)

    Smitka, M.; Malcho, M.; Nemec, P.; Kolková, Z.

    2013-04-01

    The paper deals with use of cooling equipment build on basis two phase thermosyphon loop. This device belongs to a group of loop heat pipe (LHP). This LHP is a two-phase device with extremely high effective thermal conductivity that utilizes the thermodynamic pressure difference to circulate fluid. It was invented in Russia in the early 1980´s. Thermosyphon loop is similar as LHP but it doesn't contain wick and circulation of the fluid using gravitation force instead of capillary pressure as it is in LHP. The work deals with the cooling insulated gate bipolar transistor with 370 W. The paper describes the course of the heat dissipation using ribbed cooler for natural convection and using fin for forced convection. The results are compared with heat dissipation through thermosyphon loop.

  5. Recycler Electron Cooling Project: Mechanical vibrations in the Pelletron and their effect on the beam

    SciTech Connect

    Kazakevich, Grigory M.; Burov, A.; Boffo, C.; Joireman, P.; Saewert, G.; Schmidt, C.W.; Shemyakin, A.; /Fermilab

    2005-07-01

    The Fermilab's Recycler ring will employ an electron cooler to cool stored 8.9 GeV antiprotons [1]. The cooler is based on an electrostatic accelerator, Pelletron [2], working in an energy-recovery regime. A full-scale prototype of the cooler has been assembled and commissioned in a separate building [3]. The main goal of the experiments with the prototype was to demonstrate stable operation with a 3.5 MeV, 0.5 A DC electron beam while preserving a high beam quality in the cooling section. The quality is characterized, first of all, by a spread of electron velocities in the cooling section, which may be significantly affected by mechanical vibration of the Pelletron elements. This paper describes the results of vibration measurements in the Pelletron terminal and correlates them with the beam motion in the cooling section.

  6. Final Report for 'ParSEC-Parallel Simulation of Electron Cooling"

    SciTech Connect

    David L Bruhwiler

    2005-09-16

    The Department of Energy has plans, during the next two or three years, to design an electron cooling section for the collider ring at RHIC (Relativistic Heavy Ion Collider) [1]. Located at Brookhaven National Laboratory (BNL), RHIC is the premier nuclear physics facility. The new cooling section would be part of a proposed luminosity upgrade [2] for RHIC. This electron cooling section will be different from previous electron cooling facilities in three fundamental ways. First, the electron energy will be 50 MeV, as opposed to 100's of keV (or 4 MeV for the electron cooling system now operating at Fermilab [3]). Second, both the electron beam and the ion beam will be bunched, rather than being essentially continuous. Third, the cooling will take place in a collider rather than in a storage ring. Analytical work, in combination with the use and further development of the semi-analytical codes BETACOOL [4,5] and SimCool [6,7] are being pursued at BNL [8] and at other laboratories around the world. However, there is a growing consensus in the field that high-fidelity 3-D particle simulations are required to fully understand the critical cooling physics issues in this new regime. Simulations of the friction coefficient, using the VORPAL code [9], for single gold ions passing once through the interaction region, have been compared with theoretical calculations [10,11], and the results have been presented in conference proceedings papers [8,12,13,14] and presentations [15,16,17]. Charged particles are advanced using a fourth-order Hermite predictor corrector algorithm [18]. The fields in the beam frame are obtained from direct calculation of Coulomb's law, which is more efficient than multipole-type algorithms for less than {approx} 10{sup 6} particles. Because the interaction time is so short, it is necessary to suppress the diffusive aspect of the ion dynamics through the careful use of positrons in the simulations, and to run 100's of simulations with the same

  7. FEL-based coherent electron cooling for high-energy hadron colliders

    SciTech Connect

    Litvinenko,V.N.; Derbenev, Y.S.

    2008-06-23

    Cooling intense high-energy hadron beams is a major challenge in modern accelerator physics. Synchrotron radiation is too feeble and two common methods--stochastic and electron cooling--are not efficient in providing significant cooling for high energy, high intensity proton colliders. In this paper they discuss a practical scheme of Coherent Electron Cooling (CeC), which promises short cooling times (below one hour) for intense proton beams in RHIC at 250 GeV or in LHC at 7 TeV. A possibility of CeC using various microwave instabilities was discussed since 1980s. In this paper, they present first evaluation of specific CeC scheme based on capabilities of present-day accelerator technology, ERLs, and high-gain Free-Electron lasers (FELs). They discuss the principles, the main limitations of this scheme and present some predictions for Coherent Electron Cooling in RHIC and the LHC operating with ions or protons, summarized in Table 1.

  8. Electron cooling for the Fermilab recycler: Present concept and provisional parameters

    SciTech Connect

    Nagaitsev, S.

    1997-09-01

    In all scenarios of the possible Tevatron upgrades, luminosity is essentially proportional to the number of antiprotons. Thus, a tenfold increase in luminosity could be achieved by putting five times more protons on the antiproton production target and gaining an additional factor of two from recycling antiprotons left over from the previous store. Stacking and storing ten times more antiprotons puts an unbearable burden on the stochastic cooling system of the existing Accumulator Ring. Thus, one is led to consider an additional stage of antiproton storage the so called Recycler Ring. Electron cooling of the 8 GeV antiprotons in the Recycler could provide an attractive way around the problems of large stacks. Such a system would look much like the IUCF proposal to cool 12 GeV protons in the SSC Medium Energy Booster. Although electron cooling has now become a routine tool in many laboratories, its use has been restricted to lower energy accelerators (< 500 MeV/nucleon). An R&D program is currently underway at Fermilab to extend electron cooling technology to the GeV range. This paper describes the electron cooling system design as well as the Recycler ring parameters required to accommodate this system.

  9. Proof-of-Principle Experiment for FEL-based Coherent Electron Cooling

    SciTech Connect

    Litvinenko, V; Bengtsson, J; Fedotov, A V; Hao, Y; Kayran, D; Mahler, G J; Meng, W; Roser, T; Sheehy, B; Than, R; Tuozzolo, J E; Wang, G; Webb, S D; Yakimenko, V; Bell, G I; Bruhwiler, D L; Schwartz, B T; Hutton, A; Krafft, G A; Poelker, M; Rimmer, R A

    2011-03-01

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders*. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using one of JLab’s SRF cryo-modules. In this paper, we describe the experimental setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC.

  10. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene.

    PubMed

    Mihnev, Momchil T; Tolsma, John R; Divin, Charles J; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A; MacDonald, Allan H; Norris, Theodore B

    2015-09-24

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron-phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied.

  11. Cooling of electronics by heat pipes and thermosyphons -- A review of methods and possibilities

    SciTech Connect

    Palm, B.; Tengblad, N.

    1996-12-31

    In this paper, passive techniques for cooling of electronic components by boiling and condensation are reviewed. Heat pipes, thermosyphon pipes, as well as simple and advanced thermosyphon loops are treated. Performance limitations for each type are discussed, as well as benefits and disadvantages with immersion boiling compared to indirect cooling. Numerous examples of designs from the literature are shown and their performance characteristics are cited.

  12. Strategy for alignment of electron beam trajectory in LEReC cooling section

    SciTech Connect

    Seletskiy, S.; Blaskiewicz, M.; Fedotov, A.; Kayran, D.; Kewisch, J.; Michnoff, R.; Pinayev, I.

    2016-09-23

    We considered the steps required to align the electron beam trajectory through the LEReC cooling section. We devised a detailed procedure for the beam-based alignment of the cooling section solenoids. We showed that it is critical to have an individual control of each CS solenoid current. Finally, we modeled the alignment procedure and showed that with two BPM fitting the solenoid shift can be measured with 40 um accuracy and the solenoid inclination can be measured with 30 urad accuracy. These accuracies are well within the tolerances of the cooling section solenoid alignment.

  13. 49 CFR 1104.1 - Address, identification, and electronic filing option.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-VERIFICATION-SERVICE-PLEADINGS, GENERALLY § 1104.1 Address, identification, and electronic filing option. (a... other pertinent information are available on the Board's Web site, http://www.stb.dot.gov. If the e... determined by reference to the information on the Board's Web site), then the applicable requirements will be...

  14. 49 CFR 1104.1 - Address, identification, and electronic filing option.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-VERIFICATION-SERVICE-PLEADINGS, GENERALLY § 1104.1 Address, identification, and electronic filing option. (a... other pertinent information are available on the Board's Web site, http://www.stb.dot.gov. If the e... determined by reference to the information on the Board's Web site), then the applicable requirements will be...

  15. Electronic cooling via interlayer Coulomb coupling in multilayer epitaxial graphene

    PubMed Central

    Mihnev, Momchil T.; Tolsma, John R.; Divin, Charles J.; Sun, Dong; Asgari, Reza; Polini, Marco; Berger, Claire; de Heer, Walt A.; MacDonald, Allan H.; Norris, Theodore B.

    2015-01-01

    In van der Waals bonded or rotationally disordered multilayer stacks of two-dimensional (2D) materials, the electronic states remain tightly confined within individual 2D layers. As a result, electron–phonon interactions occur primarily within layers and interlayer electrical conductivities are low. In addition, strong covalent in-plane intralayer bonding combined with weak van der Waals interlayer bonding results in weak phonon-mediated thermal coupling between the layers. We demonstrate here, however, that Coulomb interactions between electrons in different layers of multilayer epitaxial graphene provide an important mechanism for interlayer thermal transport, even though all electronic states are strongly confined within individual 2D layers. This effect is manifested in the relaxation dynamics of hot carriers in ultrafast time-resolved terahertz spectroscopy. We develop a theory of interlayer Coulomb coupling containing no free parameters that accounts for the experimentally observed trends in hot-carrier dynamics as temperature and the number of layers is varied. PMID:26399955

  16. ECOFUSION: AN ELECTRON-COOLED, CELLULAR APPROACH TO HARNESSING FUSION POWER

    SciTech Connect

    Larson, D. J.

    2009-07-26

    A cellular electron-cooled storage ring system for achieving particle-beam fusion-based-energy is described. The system uses multiple electron-cooled, overlapping storage rings to enable colliding-beam fusion. Particles are continuously fed into the storage rings, and the electron cooling systems continuously correct the ion beam trajectories, compensating for various scattering events that occur in the system. This allows for large currents to be built up in the ion storage rings. The rate of fusion reactions that occur in the overlap regions between the storage rings can be increased by focusing to enable power outputs of interest for fusion-based power reactors. The system can be built with technology readily available today.

  17. Femtosecond cooling of hot electrons in CdSe quantum-well platelets.

    PubMed

    Sippel, Philipp; Albrecht, Wiebke; van der Bok, Johanna C; Van Dijk-Moes, Relinde J A; Hannappel, Thomas; Eichberger, Rainer; Vanmaekelbergh, Daniel

    2015-04-08

    Semiconductor quantum wells are ubiquitous in high-performance optoelectronic devices such as solar cells and lasers. Understanding and controlling of the (hot) carrier dynamics is essential to optimize their performance. Here, we study hot electron cooling in colloidal CdSe quantum-well nanoplatelets using ultrafast two-photon photoemission spectroscopy at low excitation intensities, resulting typically in 1-5 hot electrons per platelet. We observe initial electron cooling in the femtosecond time domain that slows down with decreasing electron energy and is finished within 2 ps. The cooling is considerably faster at cryogenic temperatures than at room temperature, and at least for the systems that we studied, independent of the thickness of the platelets (here 3-5 CdSe units) and the presence of a CdS shell. The cooling rates that we observe are orders of magnitude faster than reported for similar CdSe platelets under strong excitation. Our results are understood by a classic cooling mechanism with emission of longitudinal optical phonons without a significant influence of the surface.

  18. Enhancement in Cooling of Electronic Components by Nanofluids

    NASA Astrophysics Data System (ADS)

    Khatak, Pankaj; Jakhar, Rahul; Kumar, Mahesh

    2015-04-01

    In this study, heat transfer during spray cooling was studied experimentally using water and ZnO nanofluid. Various experiments were performed using a spray nozzle impinging fluid normal to the flat end of a copper heated surface (copper cylinder 20 mm diameter). The heat flux and surface temperature have been calculated by measuring temperature gradients along the target length under steady state conditions. In this experimental study, water flow rate was varied from 15 to 25 ml/min. In the same test conditions to compare water results with nanofluids, ZnO nanofluid was sprayed at a flow rate of 20 ml/min. It can be observed that a surface temperature 74.1 °C was obtained with maximum heat flux of 102.40 W/cm2 under the test condition for heater power 140 W and a water flow rate 25 ml/min. The use of ZnO nanofluid as a coolant is observed to increase the heat flux by about 20.2 % and decrease surface temperature of the test specimen by about 15 % at 180 W heat input and flow rate of 20 ml/min. The uncertainty in heat flux is observed to vary from 8.63 to 10.93 %.

  19. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current.

    PubMed

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C

    2016-03-21

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  20. Single-molecule electronics: Cooling individual vibrational modes by the tunneling current

    NASA Astrophysics Data System (ADS)

    Lykkebo, Jacob; Romano, Giuseppe; Gagliardi, Alessio; Pecchia, Alessandro; Solomon, Gemma C.

    2016-03-01

    Electronic devices composed of single molecules constitute the ultimate limit in the continued downscaling of electronic components. A key challenge for single-molecule electronics is to control the temperature of these junctions. Controlling heating and cooling effects in individual vibrational modes can, in principle, be utilized to increase stability of single-molecule junctions under bias, to pump energy into particular vibrational modes to perform current-induced reactions, or to increase the resolution in inelastic electron tunneling spectroscopy by controlling the life-times of phonons in a molecule by suppressing absorption and external dissipation processes. Under bias the current and the molecule exchange energy, which typically results in heating of the molecule. However, the opposite process is also possible, where energy is extracted from the molecule by the tunneling current. Designing a molecular "heat sink" where a particular vibrational mode funnels heat out of the molecule and into the leads would be very desirable. It is even possible to imagine how the vibrational energy of the other vibrational modes could be funneled into the "cooling mode," given the right molecular design. Previous efforts to understand heating and cooling mechanisms in single molecule junctions have primarily been concerned with small models, where it is unclear which molecular systems they correspond to. In this paper, our focus is on suppressing heating and obtaining current-induced cooling in certain vibrational modes. Strategies for cooling vibrational modes in single-molecule junctions are presented, together with atomistic calculations based on those strategies. Cooling and reduced heating are observed for two different cooling schemes in calculations of atomistic single-molecule junctions.

  1. Cooling of nanomechanical resonators by thermally activated single-electron transport.

    PubMed

    Santandrea, F; Gorelik, L Y; Shekhter, R I; Jonson, M

    2011-05-06

    We show that the vibrations of a nanomechanical resonator can be cooled to near its quantum ground state by tunneling injection of electrons from a scanning tunneling microscope tip. The interplay between two mechanisms for coupling the electronic and mechanical degrees of freedom results in a bias-voltage-dependent difference between the probability amplitudes for vibron emission and absorption during tunneling. For a bias voltage just below the Coulomb blockade threshold, we find that absorption dominates, which leads to cooling corresponding to an average vibron population of the fundamental bending mode of 0.2.

  2. Experimental study of high-temperature superconductor shield for electron cooling system

    NASA Astrophysics Data System (ADS)

    Smirnov, A.; Dorofeev, G.; Drobin, V.; Kulikov, E.; Malinovski, H.

    2016-12-01

    The NICA project includes a system of electron cooling for charged particle beams for total ion energy of 4.5 GeV/n. To achieve the required cooling time, the magnetic field homogeneity in the cooling section should be at least 10-5 for a solenoid length in the cooling system of about 6 m. The cost of such solenoid, however, is very high due to the complexity of high-precision winding. The application of the superconducting shield could help to resolve this problem. In this study we present the results of an experimental investigation of the prototype of the shield manufactured from high-temperature superconductor (HTS) tapes. The measurements were performed at different quasistationary operating conditions. The requirements for the HTS shield and solenoid parameters are formulated.

  3. The integration of liquid cryogen cooling and cryocoolers with superconducting electronic systems

    NASA Astrophysics Data System (ADS)

    Green, Michael A.

    2003-12-01

    The need for cryogenic cooling has been a critical issue that has kept superconducting electronic devices from reaching the market place. Even though the performance of many of the superconducting circuits is superior to silicon electronics, the requirement for cryogenic cooling has put the superconducting devices at a serious disadvantage. This paper discusses the process of refrigerating superconducting devices with cryogenic liquids and small cryocoolers. Three types of cryocoolers are compared for vibration, efficiency and reliability. The connection of a cryocooler to the load is discussed. A comparison of using flexible copper straps to carry the heat load and using heat pipe is shown. The type of instrumentation needed for monitoring and controlling the cooling is discussed.

  4. Micro-Stirling Active Cooling Module (MS/ACM) for DoD Electronics Systems

    DTIC Science & Technology

    2012-03-01

    coolers the dominant type of cooler for cooling space-based electronics. In theory, the Stirling refrigeration cycle can achieve the Carnot COP (the...indicates the ideal Stirling refrigeration cycle achieves the Carnot COP, which is the theoretical maximum possible achievable COP. However...overcoming the technical challenges. Finally we describe the wide range of applications for Stirling- cycle coolers, cryocoolers, and generators

  5. NREL Helps Cool the Power Electronics in Electric Vehicles (Fact Sheet)

    SciTech Connect

    Not Available

    2011-07-01

    Researchers at the National Renewable Energy Laboratory (NREL) are developing and demonstrating innovative heat-transfer technologies for cooling power electronics devices in hybrid and electric vehicles. In collaboration with 3M and Wolverine Tube, Inc., NREL is using surface enhancements to dissipate heat more effectively, permitting a reduction in the size of power electronic systems and potentially reducing the overall costs of electric vehicles.

  6. On Taylor dispersion in liquid-cooled electronics applications

    NASA Astrophysics Data System (ADS)

    Tilley, B. S.

    2013-11-01

    We are interested in extending classical asymptotic approaches to allow for the spatial pattern wavenumber to vary on the macroscale variables and to find how changes in microstructure geometry affect macroscopic properties and transport. To this end, we consider here the thermal transport of a coolant through nonuniformly spaced laminates, as a simple model for heat sinks in electronics. Power is continuously being generated by the laminates, and the local rates of heat transport depend on convection, fluid inertia, buoyancy and Taylor dispersion in the coolant and conduction within both the fluid and the laminates. We find a coupled system of partial differential equations that describe the local microscale temperature and deviations from the Darcy pressure. Microscale values of all of these quantities are known in terms of the solutions to these effective eqautions. We are especially interested in geometries in the laminate spacing which allow for better thermal transport by the coolant for a prescribed power distribution. The choice of the channel geometries depend on the ability to transfer heat from the device to the enviornment, the orientation of the device with respect to gravity, and the available power needed to drive the fluid motion. This work is supported by a grant from the Air Force Office of Scientific Research, (Award No. FA9550-11-1-0197).

  7. Electronics cooling of Phenix multiplicity and vertex detector

    SciTech Connect

    Chen, Z.; Gregory, W.S.

    1996-08-01

    The Multiplicity and Vertex Detector (MVD) uses silicon strip sensors arranged in two concentric barrels around the beam pipe of the PHENIX detector that will be installed at Brookhaven National Laboratory. Each silicon sensor is connected by a flexible kapton cable to its own front-end electronics printed circuit board that is a multi-chip module or MCM. The MCMs are the main heat source in the system. To maintain the MVD at optimized operational status, the maximum temperature of the multi-chip modules must be below 40 C. Using COSMOS/M HSTAR for the Heat Transfer analysis, a finite element model of a typical MCM plate was created to simulate a 9m/s airflow and 9m/s mixed flow composed of 50% helium and 50% air respectively, with convective heat transfer on both sides of the plate. The results using a mixed flow of helium and air show that the average maximum temperature reached by the MCMs is 37.5 C. The maximum temperature which is represented by the hot spots on the MCM is 39.43 C for the helium and air mixture which meets the design temperature requirement 40 C. To maintain the Multiplicity and Vertex Detector at optimized operational status, the configuration of the plenum chamber, the power dissipated by the silicon chips, the fluid flow velocity and comparison on the MCM design parameters will be discussed.

  8. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions

    NASA Astrophysics Data System (ADS)

    Lobato, I.; Rojas, J.; Landauro, C. V.; Torres, J.

    2009-02-01

    The structural evolution and dynamics of silver nanodrops Ag2869 (4.4 nm in diameter) under rapid cooling conditions have been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modelled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique are used to reveal the structural transition in the process of solidification. It is shown that Ag nanoparticles evolve into different nanostructures under different cooling processes. At a cooling rate of 1.5625 × 1013 K s-1 the nanoparticles preserve an amorphous-like structure containing a large amount of 1551 and 1541 pairs which correspond to icosahedral symmetry. For a lower cooling rate (1.5625 × 1012 K s-1), the nanoparticles transform into a crystal-like structure consisting mainly of 1421 and 1422 pairs which correspond to the face centred cubic and hexagonal close packed structures, respectively. The variations of the electronic density of states for the differently cooled nanoparticles are small, but in correspondence with the structural changes.

  9. Attachment cooling of electrons in oxygen-argon and SF6-argon mixtures

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia; Kim, Sung Jin; Park, Gan Young; Lee, Jae Koo

    2004-09-01

    In e-beam sustained plasma different electron temperature can be obtained. Thus, in plasma of capacitive RF discharges in inert gases typical electron temperature is of the order of 2-3 eV. At certain conditions, in plasma of electronegative gases electron temperature can approach ion/neutral temperature. We consider e-beam sustained plasma of electronegative gases and their mixtures with argon where the main mechanism of plasma neutralization is connected with electron-molecule attachment. In such plasma, due to retardation of fast electrons of e-beam secondary electrons are created which loose their energy due to attachment. It is shown, that at certain conditions (in dependence of the e-beam intensity and spectrum of secondary electrons) electron temperature can obtain the values comparable or even less than temperature of neutral component. The effect can be explained by the increase of attachment rate coefficient with the increase of electron temperature (mean electron energy). Such a dependence leads to attachment of the fastest plasma electrons and selective loss of electrons whose energy exceeds the mean electron energy and, as a result, to effective electron cooling. The theoretical and numerical analysis of the problem has been conducted. The numerical results obtained using ELENDIF code are compared with Particle-in-cell/Monte Carlo simulations under similar conditions.

  10. Cryogenic systems for proof of the principle experiment of coherent electron cooling at RHIC

    SciTech Connect

    Huang, Yuenian; Belomestnykh, Sergey; Brutus, Jean Clifford; Lederle, Dewey; Orfin, Paul; Skaritka, John; Soria, Victor; Tallerico, Thomas; Than, Roberto

    2014-01-29

    The Coherent electron Cooling (CeC) Proof of Principle (PoP) experiment is proposed to be installed in the Relativistic Heavy Ion Collider (RHIC) to demonstrate proton and ion beam cooling with this new technique that may increase the beam luminosity in certain cases, by as much as tenfold. Within the scope of this project, a 112 MHz, 2MeV Superconducting Radio Frequency (SRF) electron gun and a 704 MHz 20MeV 5-cell SRF cavity will be installed at IP2 in the RHIC ring. The superconducting RF electron gun will be cooled in a liquid helium bath at 4.4 K. The 704 MHz 5-cell SRF cavity will be cooled in a super-fluid helium bath at 2.0 K. This paper discusses the cryogenic systems designed for both cavities. For the 112 MHz cavity cryogenic system, a condenser/boiler heat exchanger is used to isolate the cavity helium bath from pressure pulses and microphonics noise sources. For the 704 MHz 5-cell SRF cavity, a heat exchanger is also used to isolate the SRF cavity helium bath from noise sources in the sub-atmospheric pumping system operating at room temperature. Detailed designs, thermal analyses and discussions for both systems will be presented in this paper.

  11. Laser cooling of electron – ion plasma in the case of optimal scanning of the laser frequency

    SciTech Connect

    Gavrilyuk, A P; Isaev, I L

    2015-11-30

    Laser cooling of ions of electron – ion plasma is studied under the action of spontaneous radiation pressure forces. It is shown that the use of a constant detuning of the laser frequency from the quantum transition frequency w0 in ions significantly limits the conditions under which the ions are cooled. To extend the range of initial temperatures of possible cooling of ions and to increase the cooling efficiency we suggest scanning the laser frequency detuning so that the cooling rate remained maximal in the process of changing the temperature of ions. In the case of an optimal detuning, we have found an asymptotic expression for the cooling rate and identified intervals of electron concentrations and temperatures, where cooling of ions is possible. (interaction of laser radiation with matter. laser plasma)

  12. Proof-of-principle experiment for FEL-based coherent electron cooling

    SciTech Connect

    Litvinenko, V.N.; Belomestnykh, S.; Ben-Zvi, I.; Brutus, J.C.; Fedotov, A.; Hao, Y.; Kayran, D.; Mahler, G.; Marusic, A.; Meng, W.; McIntyre, G.; Minty, M.; Ptitsyn, V.; Pinayev, I.; Rao, T.; Roser, T.; Sheehy, B.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tuozzolo, J.; Wang, G.; Yakimenko, V.; Poelker, M.; Hutton, A.; Kraft, G.; Rimmer, R.; Bruhwiler, D.L.; Abell, D.T.; Nieter, C.; Ranjbar, V.; Schwartz, B.T.; Vobly, P.; Kholopov, M.; Shevchenko, O.; Mcintosh, P.; Wheelhouse, A.

    2011-08-21

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron-hadron and electron-hadron colliders. In a CEC system, a hadron beam interacts with a cooling electron beam. A perturbation of the electron density caused by ions is amplified and fed back to the ions to reduce the energy spread and the emittance of the ion beam. To demonstrate the feasibility of CEC we propose a proof-of-principle experiment at RHIC using SRF linac. In this paper, we describe the setup for CeC installed into one of RHIC's interaction regions. We present results of analytical estimates and results of initial simulations of cooling a gold-ion beam at 40 GeV/u energy via CeC. We plan to complete the program in five years. During first two years we will build coherent electron cooler in IP2 of RHIC. In parallel we will develop complete package of computer simulation tools for the start-to-end simulation predicting exact performance of a CeC. The later activity will be the core of Tech X involvement into the project. We will use these tools to predict the performance of our CeC device. The experimental demonstration of the CeC will be undertaken in years three to five of the project. The goal of this experiment is to demonstrate the cooling of ion beam and to compare its measured performance with predictions made by us prior to the experiments.

  13. Status of Proof-of-principle Experiment for Coherent Electron Cooling

    SciTech Connect

    Pinayev, I; Ben-Zvi, I; Bengtsson, J; Elizarov, A; Fedotov, A V; Gassner, D M; Hao, Y; Kayran, D; Litvinenko, V; Mahler, G J; Meng, W; Roser, T; Sheehy, B; Than, R; Tuozzolo, J E; Wang, G; Webb, S D; Yakimenko, V; Bell, G I; Bruhwiler, D L; Ranjbar, V H; Schwartz, B T; Hutton, A; Krafft, G A; Poelker, M; Rimmer, R A; Kholopov, M A; Vobly, P

    2012-07-01

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron colliders. To verify the concept we conduct proof-of-the-principle experiment at RHIC. In this paper, we describe the current experimental setup to be installed into 2 o'clock RHIC interaction regions. We present current design, status of equipment acquisition and estimates for the expected beam parameters.

  14. The design of an asymmetric bionic branching channel for electronic chips cooling

    NASA Astrophysics Data System (ADS)

    Xu, Shanglong; Qin, Jie; Guo, Wei; Fang, Kuang

    2013-06-01

    Inspired by the wing vein of Lepidoptera, a designment of asymmetric bionic branching channel for electronic chips cooling is developed. Lepidoptera vein D was chosen to measure the angle of first and second branch level. Based on these regular patterns, an asymmetric bionic branching channel is designed in a 35 mm × 35 mm chip. Comparing with fractal-like branching channel, it provides a stronger heat transfer capability, lower pressure drop and lower flow resistance in the experiment.

  15. Towards the measurement of the electron EDM with laser cooled francium atoms

    NASA Astrophysics Data System (ADS)

    Kawamura, Hirokazu; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Inoue, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Sakamoto, K.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Nataraj, H. S.; Sato, T.; Shimizu, Y.; Yoshida, H. P.; Wakasa, T.; Sakemi, Y.

    2014-09-01

    The electric dipole moment (EDM) of a particle is a probe into new physics beyond the standard model. The electron EDM might be observed with an enhancement in heavier paramagnetic atoms. Francium (Fr), whose electron structure is useful for laser-cooling and trapping, has a large enhancement factor. Fr produced at high temperature via a fusion reaction will be laser-cooled and trapped in an optical lattice where the EDM is measured. The magneto-optical trapping of Fr is required in advance of the lattice trapping. The technique observing a small number of atoms makes it easy to search for the resonant frequency of Fr. The improvement of the beam purity should lead to a more efficient trap. The techniques towards Fr trapping and EDM measurement have been developed. The electric dipole moment (EDM) of a particle is a probe into new physics beyond the standard model. The electron EDM might be observed with an enhancement in heavier paramagnetic atoms. Francium (Fr), whose electron structure is useful for laser-cooling and trapping, has a large enhancement factor. Fr produced at high temperature via a fusion reaction will be laser-cooled and trapped in an optical lattice where the EDM is measured. The magneto-optical trapping of Fr is required in advance of the lattice trapping. The technique observing a small number of atoms makes it easy to search for the resonant frequency of Fr. The improvement of the beam purity should lead to a more efficient trap. The techniques towards Fr trapping and EDM measurement have been developed. Supported by MEXT/JSPS KAKENHI Grants (21104005, 25610112 and 26220705) and Tohoku University's Focused Research Project.

  16. Experimental comparison of different heat sink designs for cooling of electronics

    SciTech Connect

    Jonsson, H.; Palm, B.

    1996-12-31

    Four different fin designs have been tested to determine which design to prefer for heat sinks used for cooling of electronics. The different fin designs include straight fins and pin fins with circular, quadratic and elliptical cross section. The thermal performance of the heat sinks is evaluated by comparing the thermal resistance of the heat sinks at equal velocity and equal pressure drop. The average heat transfer coefficient is also calculated.

  17. Status of construction of the electron cooling system for the NICA booster

    NASA Astrophysics Data System (ADS)

    Bryzgunov, M. I.; Bubley, A. V.; Goncharov, A. D.; Panasyuk, V. M.; Parkhomchuk, V. V.; Reva, V. B.

    2016-12-01

    According to the agreement, the electron cooling system for the NICA booster should be commissioned in late 2015. The degree of completion of various units and components of the installation as of September 2015 is characterized in the present report. Part of the report is devoted to discussing the performance parameters of the installation and the engineering solutions that had to be implemented to achieve such parameters.

  18. Cool and Quiet: Partnering to Enhance the Aerodynamic and Acoustic Performance of Installed Electronics Cooling Fans: A White Paper

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; VanZante, Dale E.

    2006-01-01

    Breathtaking images of distant planets. Spacewalks to repair a telescope in orbit. Footprints on the moon. The awesome is made possible by the mundane. Every achievement in space exploration has relied on solid, methodical advances in engineering. Space exploration fuels economic development like no other endeavor can. But which advances will make their way into our homes and businesses? And how long will it take? Answers to these questions are dependent upon industrial involvement in government sponsored research initiatives, market demands, and timing. Recognizing an opportunity is half the battle. This proposal describes the framework for a collaborative research program aimed at improving the aerodynamic and acoustic performance of electronics cooling fans. At its best, the program would involve NASA and academic researchers, as well as corporate researchers representing the Information Technology (IT) and fan manufacturing industries. The momentum of space exploration, the expertise resultant from the nation's substantial investment in turbofan noise reduction research, and the competitiveness of the IT industry are intended to be catalysts of innovation.

  19. High-coherence electron and ion bunches from laser-cooled atoms.

    PubMed

    Sparkes, Ben M; Thompson, Daniel J; McCulloch, Andrew J; Murphy, Dene; Speirs, Rory W; Torrance, Joshua S J; Scholten, Robert E

    2014-08-01

    Cold atom electron and ion sources produce electron bunches and ion beams by photoionization of laser-cooled atoms. They offer high coherence and the potential for high brightness, with applications including ultra-fast electron-diffractive imaging of dynamic processes at the nanoscale. The effective brightness of electron sources has been limited by nonlinear divergence caused by repulsive interactions between the electrons, known as the Coulomb explosion. It has been shown that electron bunches with ellipsoidal shape and uniform density distribution have linear internal Coulomb fields, such that the Coulomb explosion can be reversed using conventional optics. Our source can create bunches shaped in three dimensions and hence in principle achieve the transverse spatial coherence and brightness needed for picosecond-diffractive imaging with nanometer resolution. Here we present results showing how the shaping capability can be used to measure the spatial coherence properties of the cold electron source. We also investigate space-charge effects with ions and generate electron bunches with durations of a few hundred picoseconds. Future development of the cold atom electron and ion source will increase the bunch charge and charge density, demonstrate reversal of Coulomb explosion, and ultimately, ultra-fast coherent electron-diffractive imaging.

  20. Cooling of Electronically-Excited He2 Molecules in a Microcavity Plasma Jet

    NASA Astrophysics Data System (ADS)

    Su, Rui; Houlahan, Thomas J., Jr.; Eden, J. Gary

    2016-06-01

    Helium dimers in the d3Σ+u excited electronic state with potential energy >24 eV and radiative lifetime of 25 ns have been generated in a microcavity plasma jet and rotationally cooled by supersonic expansion in vacuum. The dynamic process of cooling is recorded by imaging the axis of expansion onto the slit of Czerny-Turner spectrometer, yielding spatial-temporal spectrograms of d3Σ+u→b3Πg (v', v'')=(0, 0) emission. Analysis of the data shows the spatial-temporal evolution of the rotational temperature to be a damped sinusoid that reaches a minimum value of 100K. This reproducible behavior is attributed to the reflection of electrons from a virtual cathode located downstream of the nozzle and indicates that the spatially-averaged electron density is 108 cm-3. We present this observed rotational temperature oscillation during the supersonic cooling process as an example of the potential of our supersonic microplasma expansion as a tool to explore physical dynamics in diatomic molecules having high excitation energies and small lifetimes.

  1. Low Energy Electron Cooling and Accelerator Physics for the Heidelberg CSR

    SciTech Connect

    Fadil, H.; Grieser, M.; Hahn, R. von; Orlov, D.; Schwalm, D.; Wolf, A.; Zajfman, D.

    2006-03-20

    The Cryogenic Storage Ring (CSR) is currently under construction at MPI-K in Heidelberg. The CSR is an electrostatic ring with a total circumference of about 34 m, straight section length of 2.5 m and will store ions in the 20 {approx} 300 keV energy range (E/Q). The cryogenic system in the CSR is expected to cool the inner vacuum chamber down to 2 K. The CSR will be equipped with an electron cooler which has also to serve as an electron target for high resolution recombination experiments. In this paper we present the results of numerical investigations of the CSR lattice with finite element calculations of the deflection and focusing elements of the ring. We also present a layout of the CSR electron cooler which will have to operate in low energy mode to cool 20 keV protons in the CSR, as well as numerical estimations of the cooling times to be expected with this device.

  2. High-Temperature Air-Cooled Power Electronics Thermal Design: Annual Progress Report

    SciTech Connect

    Waye, Scot

    2016-08-01

    Power electronics that use high-temperature devices pose a challenge for thermal management. With the devices running at higher temperatures and having a smaller footprint, the heat fluxes increase from previous power electronic designs. This project overview presents an approach to examine and design thermal management strategies through cooling technologies to keep devices within temperature limits, dissipate the heat generated by the devices and protect electrical interconnects and other components for inverter, converter, and charger applications. This analysis, validation, and demonstration intends to take a multi-scale approach over the device, module, and system levels to reduce size, weight, and cost.

  3. Extremely field-aligned cool electrons in the dayside outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Mozer, F. S.; Agapitov, O. A.; Angelopoulos, V.; Hull, A.; Larson, D.; Lejosne, S.; McFadden, J. P.

    2017-01-01

    For 200 days in 2016 while Time History of Events and Macroscale Interactions during Substorms D (THEMIS-D) was in the dayside, equatorial magnetosphere, its electron energy coverage was modified such that the first 15 energy steps covered the range of 1-30 eV and 16 steps covered energies to 30 keV. These measurements were free of backgrounds from photoelectrons, secondaries, or ionospheric plasma plumes. Three energy bands of electrons were observed: cold electrons having energies below 1 eV (plasmaspheric plumes measured by the spacecraft potential); cool electrons, defined as electrons having energies of 1-25 eV; and hot electrons having energies of 25 eV to 30 keV. The cool electron fluxes at fixed radial distances varied by an order of magnitude from one orbit to the next. These fluxes often increased with increasing radial distance, suggesting an external source. They were extremely field aligned, having pitch angle ratios (flux at 0-20° and 160-180° divided by the flux at 80-100°) greater than 100. Evidence is presented that they resulted from cusp electrons moving from open to closed magnetospheric field lines due to their E × B/B2 drift. They constituted the majority of the electron energy density at such times and places. They were not associated with magnetopause reconnection because they were not observed at the magnetopause, but they were observed as far as 3 RE inside of it. Their occurrence probability in the outer magnetosphere was 50% in June and 10% in September, suggesting a dayside source attributed to the tilt of the northern cusp toward the Sun during the summer.

  4. Semianalytical description of the modulator section of the coherent electron cooling

    NASA Astrophysics Data System (ADS)

    Elizarov, Andrey; Litvinenko, Vladimir

    2013-12-01

    In the coherent electron cooling, the modern hadron beam cooling technique, each hadron receives an individual kick from the electric field of the amplified electron density perturbation created in the modulator by this hadron in a copropagating electron beam. We developed a method for computing the dynamics of these density perturbations in an infinite electron plasma with any equilibrium velocity distribution—a possible model for the modulator. We derived analytical expressions for the dynamics of the density perturbations in the Fourier-Laplace domain for a variety of 1D, 2D, and 3D equilibrium distributions of the electron beam. To obtain the space-time dynamics, we employed the fast Fourier transform algorithm. We also found an analytical solution in the space-time domain for the 1D Cauchy equilibrium distribution, which serves as a benchmark for our general approach based on numerical evaluation of the integral transforms and as a fast alternative to the numerical computations. We tested the method for various distributions and initial conditions.

  5. Production and ion-ion cooling of highly charged ions in electron string ion source.

    PubMed

    Donets, D E; Donets, E D; Donets, E E; Salnikov, V V; Shutov, V B; Syresin, E M

    2009-06-01

    The scheme of an internal injection of Au atoms into the working space of the "Krion-2" electron string ion source (ESIS) was applied and tested. In this scheme Au atoms are evaporated from the thin tungsten wire surface in vicinity of the source electron string. Ion beams with charge states up to Au51+ were produced. Ion-ion cooling with use of C and O coolant ions was studied. It allowed increasing of the Au51+ ion yield by a factor of 2. Ions of Kr up to charge state 28+ were also produced in the source. Electron strings were first formed with injection electron energy up to 6 keV. Methods to increase the ESIS ion output are discussed.

  6. Simulation of cooling efficiency via miniaturised channels in multilayer LTCC for power electronics

    NASA Astrophysics Data System (ADS)

    Pietrikova, Alena; Girasek, Tomas; Lukacs, Peter; Welker, Tilo; Müller, Jens

    2017-03-01

    The aim of this paper is detailed investigation of thermal resistance, flow analysis and distribution of coolant as well as thermal distribution inside multilayer LTCC substrates with embedded channels for power electronic devices by simulation software. For this reason four various structures of internal channels in the multilayer LTCC substrates were designed and simulated. The impact of the volume flow, structures of channels, and power loss of chip was simulated, calculated and analyzed by using the simulation software Mentor Graphics FloEFDTM. The structure, size and location of channels have the significant impact on thermal resistance, pressure of coolant as well as the effectivity of cooling power components (chips) that can be placed on the top of LTCC substrate. The main contribution of this paper is thermal analyze, optimization and impact of 4 various cooling channels embedded in LTCC multilayer structure. Paper investigate, the effect of volume flow in cooling channels for achieving the least thermal resistance of LTCC substrate that is loaded by power thermal chips. Paper shows on the impact of the first chips thermal load on the second chip as well as. This possible new technology could ensure in the case of practical realization effective cooling and increasing reliability of high power modules.

  7. Laser Cooled Francium Factory for the Electron Electric Dipole Moment Search

    NASA Astrophysics Data System (ADS)

    Hayamizu, Tomohiro; Arikawa, Hiroshi; Ezure, Saki; Harada, Ken-ichi; Inoue, Takeshi; Ishikawa, Taisuke; Itoh, Masatoshi; Kato, Tomohiro; Kawamura, Hirokazu; Sato, Tomoya; Ando, Shun; Aoki, Takahiro; Kato, Ko; Uchiyama, Aiko; Aoki, Takatoshi; Furukawa, Takeshi; Hatakeyama, Atsushi; Hatanaka, Kichiji; Imai, Kenichi; Murakami, Tetsuya; Nataraj, Huliyar; Shimizu, Yasuhiro; Wakasa, Tomotsugu; Yoshida, Hidetomo; Sakemi, Yasuhiro

    A permanent electric dipole moment (EDM) of an elementary particle is a candidate observable exhibiting CP violation beyond the standard model. In the present study, we plan to search for the electron EDM in francium (Fr), which is the heaviest alkali atom, captured in a far-off resonance optical trap. Since the number of Fr atoms is essential to high precision measurements, we have developed a cold Fr source called "Laser cooled Fr factory" in order to trap the radioactive Fr produced through a nuclear fusion reaction. The Fr produced was released as an ion from a gold production target in a Fr ion source, transported as an ion beam, and converted from ion to atom in a neutralizer. The neutralized Fr atom will be trapped in a magneto-optical trap(MOT) and then be transferred to an optical dipole trap. The rate of Fr atoms so far achieved was 1 × 106 ions/sec from the ion source and 1 atom/sec of the neutralized Fr atom from the neutralizer. In order to optimize performance of the Fr beam line, Rb atoms were trapped in the MOT. In addition to the beam-line experiment, in an off-line MOT system, polarization gradient cooling was applied to the trapped Rb atoms to cool them down to temperatures lower than the Rb Doppler-cooling limit. In this paper, we describe the present status of this experimental apparatus.

  8. Structured Identification of Response Options to Address Environmental Health Risks at the Agbogbloshie Electronic Waste Site.

    PubMed

    Cazabon, Danielle; Fobil, Julius N; Essegbey, George; Basu, Niladri

    2017-07-25

    Electronic waste (E-waste) is a growing problem across low- and middle-income countries. Agbogbloshie (Accra, Ghana) is among the world's largest and most notorious e-waste sites, with an increasing number of studies documenting a range of environmental health risks. This study aimed to provide national, regional, and international stakeholders with a summary of expert opinion on the most pressing problems arising from e-waste activities at Agbogbloshie, as well as suggested solutions to address these problems. Structured interviews were performed between April and September (2015) that used a Logical Framework Approach as a scoping exercise to gauge problems and benefits of e-waste recycling, and the Delphi methodology to identify response options. Stakeholders (n=19) from fifteen institutions were interviewed with two rounds of a Delphi Poll; open-ended interviews followed by an electronic questionnaire in which experts ranked various proposed response options based on health, environmental, social, and economic benefit and feasibility. The goal was to prioritize potential interventions that would address identified problems at Agbogbloshie. Experts identified the most beneficial and feasible options in decreasing rank order as follows and prefaced by the statement "it is recommended that": 1) there be further research on the health effects; 2) e-waste workers be given appropriate personal protective equipment; 3) the Ministry of the Environment, Science, Technology and Innovation re-visit Ghana's Hazardous Waste Bill; 4) e-waste workers be involved in the planning process of interventions and are kept informed of any results; and 5) there be increased education and sensitization on hazards related to e-waste for both workers and the general public. These solutions are discussed in relation to on-going dialogue at the international level concerning e-waste recycling interventions, with strengths and weaknesses examined for the Ghanaian context. This article is

  9. Electronics and Sensor Cooling with a Stirling Cycle for Venus Surface Mission

    NASA Technical Reports Server (NTRS)

    Mellott, Ken

    2004-01-01

    The inhospitable ambient surface conditions of Venus, with a 450 C temperature and 92 bar pressure, may likely require any extended-duration surface exploratory mission to incorporate some type of cooling for probe electronics and sensor devices. A multiple-region Venus mission study was completed at NASA GRC in December of 2003 that resulted in the preliminary design of a kinematically-driven, helium charged, Stirling cooling cycle with an estimated over-all COP of 0.376 to lift 100 watts of heat from a 200 C cold sink temperature and reject it at a hot sink temperature of 500 C. This paper briefly describes the design process and also describes and summarizes key features of the kinematic, Stirling cooler preliminary design concept.

  10. Computational analysis of embedded droplet impingement for integrated cooling of electronics

    NASA Astrophysics Data System (ADS)

    Wu, Chi-fu; Murthy, Jayathi Y.; Yao, S. C.

    1999-08-01

    An embedded droplet impingement device is being designed for cooling electronic chip packages which utilizes the latent heat of vaporization of dielectric coolants and provides adaptive on-demand cooling. The device must generate micro- droplets in the 50 - 250 micron range and must be small enough to be embedded in the chip package. A simplex swirl atomizer is one of the designs being considered to generate the spray. This numerical study investigates the design and performance of a micro-scale simplex swirl atomizer. Alternative atomizer designs are considered, and the flow field inside the atomizer is computed over a range of operating parameters. Local and global flow quantities, including exit swirl velocity and pressure profiles, as well as overall pressure drop parameters are computed to characterize alternative designs. These indices are useful in predicting spray quality and in identifying important geometric variables.

  11. Floating Refrigerant Loop Based on R-134a Refrigerant Cooling of High-Heat Flux Electronics

    SciTech Connect

    Lowe, K.T.

    2005-10-07

    The Oak Ridge National Laboratory (ORNL) Power Electronics and Electric Machinery Research Center (PEEMRC) have been developing technologies to address the thermal issues associated with hybrid vehicles. Removal of the heat generated from electrical losses in traction motors and their associated power electronics is essential for the reliable operation of motors and power electronics. As part of a larger thermal control project, which includes shrinking inverter size and direct cooling of electronics, ORNL has developed U.S. Patent No. 6,772,603 B2, ''Methods and Apparatus for Thermal Management of Vehicle Systems and Components'' [1], and patent pending, ''Floating Loop System for Cooling Integrated Motors and Inverters Using Hot Liquid Refrigerant'' [2]. The floating-loop system provides a large coefficient of performance (COP) for hybrid-drive component cooling. This loop (based on R-134a) is integrated with a vehicle's existing air-conditioning (AC) condenser, which dissipates waste heat to the ambient air. Because the temperature requirements for cooling of power electronics and electric machines are not as low as that required for passenger compartment air, this adjoining loop can operate on the high-pressure side of the existing AC system. This arrangement also allows the floating loop to run without the need for the compressor and only needs a small pump to move the liquid refrigerant. For the design to be viable, the loop must not adversely affect the existing system. The loop should also provide a high COP, a flat-temperature profile, and low-pressure drop. To date, the floating-loop test prototype has successfully removed 2 kW of heat load in a 9 kW automobile passenger AC system with and without the automotive AC system running. The COP for the tested floating-loop system ranges from 40-45, as compared to a typical AC system COP of about 2-4. The estimated required waste-heat load for future hybrid applications is 5.5 kW and the existing system could be

  12. Fraunhofer diffraction of atomic matter waves: electron transfer studies with a laser cooled target.

    PubMed

    van der Poel, M; Nielsen, C V; Gearba, M A; Andersen, N

    2001-09-17

    We have constructed an apparatus combining the experimental techniques of cold target recoil ion momentum spectroscopy and a laser cooled target. We measure angle differential cross sections in Li(+)+Na-->Li+Na(+) electron transfer collisions in the keV energy regime with a momentum resolution of 0.12 a.u. yielding an order of magnitude better angular resolution than previous measurements. We resolve Fraunhofer-type diffraction patterns in the differential cross sections. Good agreement with predictions of the semiclassical impact parameter method is obtained.

  13. The influence of longitudinal space charge fields on the modulation process of coherent electron cooling

    SciTech Connect

    Wang, G.; Blaskiewicz, M.; Litvinenko, V. N.

    2014-05-21

    Initial modulation in Coherent electron cooling (CeC) scheme relies on ion charge screening by electrons. In a CeC system with bunched electron beam, the long-range longitudinal space charge force is inevitably induced. For a relatively dense electron beam, it can be comparable or even greater than the attractive force from the ion. Hence, space-charge field influence to the modulation process could be important. If the longitudinal Debye length is much smaller than the electron bunch length, the modulation induced by the ion happens locally. In this case, the long-range longitudinal space charge field can be approximated as a uniform electric field across the region. In this paper we developed an analytical model to study the dynamics of ion shielding in the presence of a uniform electric field. We are solving the coupled Vlasov-Poisson equation system for infinite anisotropic electron plasma and estimate the influences of the longitudinal space charge field to the modulation process. We present numerical estimates for a case of the proof of CeC principle experiment at RHIC.

  14. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    DOE PAGES

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; ...

    2016-09-09

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas has been increasingly difficult because of the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas.more » This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1$-$xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. Lastly, this study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.« less

  15. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling.

    PubMed

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S; Bud'ko, Sergey L; Canfield, Paul C; Gegenwart, Philipp

    2016-09-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with (3)He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require (3)He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1-x Sc x Co2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.

  16. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    PubMed Central

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud’ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-01-01

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 K. However, usage of the gas has been increasingly difficult because of the current worldwide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1−xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. This study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration. PMID:27626073

  17. Laser cooling of the AlCl molecule with a three-electronic-level theoretical model

    NASA Astrophysics Data System (ADS)

    Wan, Mingjie; Yuan, Di; Jin, Chengguo; Wang, Fanhou; Yang, Yujie; Yu, You; Shao, Juxiang

    2016-07-01

    Feasibility of laser-cooling AlCl molecule is investigated using ab initio quantum chemistry. Potential energy curves, permanent dipole moments, and transition dipole moments for the X1Σ+, a3Π, and A1Π states are studied based on multi-reference configuration interaction plus Davidson corrections (MRCI+Q) method with ACVQZ basis set, spin-orbit coupling effects are considered at the MRCI+Q level. Highly diagonally distributed Franck-Condon factors (f00 = 0.9988 and f11 = 0.9970) and branching ratios (R00 = 0.9965, R01 = 2.85 × 10-3, R02 = 6.35 × 10-4, and R03 = 2.05 × 10-6) for the A 1 Π 1 ( ν ' = 0 ) → X 1 Σ0 + + ( ν ″ = 0 ) transition are determined. A sufficiently radiative lifetime τ (A1Π1) = 4.99 ns is predicted for rapid laser cooling. The proposed cooling wavelength is deep in the ultraviolet region at λ00 = 261.75 nm. Total emission rates for the a 3 Π 0 + → X 1 Σ0 + + , a 3 Π 1 → X 1 Σ0 + + , A1Π1 → a3Π0+, and A1Π1 → a3Π1 transitions are particularly small (˜10 s-1-650 s-1). The calculated vibrational branching loss ratio to the intermediate a3Π0+ and a3Π1 states can be negligible. The results imply the probability of laser cooling AlCl molecule with three-electronic-level.

  18. Laser cooling of the AlCl molecule with a three-electronic-level theoretical model.

    PubMed

    Wan, Mingjie; Yuan, Di; Jin, Chengguo; Wang, Fanhou; Yang, Yujie; Yu, You; Shao, Juxiang

    2016-07-14

    Feasibility of laser-cooling AlCl molecule is investigated using ab initio quantum chemistry. Potential energy curves, permanent dipole moments, and transition dipole moments for the X(1)Σ(+), a(3)Π, and A(1)Π states are studied based on multi-reference configuration interaction plus Davidson corrections (MRCI+Q) method with ACVQZ basis set, spin-orbit coupling effects are considered at the MRCI+Q level. Highly diagonally distributed Franck-Condon factors (f00 = 0.9988 and f11 = 0.9970) and branching ratios (R00 = 0.9965, R01 = 2.85 × 10(-3), R02 = 6.35 × 10(-4), and R03 = 2.05 × 10(-6)) for the A(1)Π1(ν(')=0)→X(1)Σ0(+) (+)(ν(″)=0) transition are determined. A sufficiently radiative lifetime τ (A(1)Π1) = 4.99 ns is predicted for rapid laser cooling. The proposed cooling wavelength is deep in the ultraviolet region at λ00 = 261.75 nm. Total emission rates for the a(3)Π0(+) →X(1)Σ0(+) (+), a(3)Π1→X(1)Σ0(+) (+), A(1)Π1 → a(3)Π0(+) , and A(1)Π1 → a(3)Π1 transitions are particularly small (∼10 s(-1)-650 s(-1)). The calculated vibrational branching loss ratio to the intermediate a(3)Π0(+) and a(3)Π1 states can be negligible. The results imply the probability of laser cooling AlCl molecule with three-electronic-level.

  19. Methods of beam cooling

    SciTech Connect

    Sessler, A.M.

    1996-02-01

    Diverse methods which are available for particle beam cooling are reviewed. They consist of some highly developed techniques such as radiation damping, electron cooling, stochastic cooling and the more recently developed, laser cooling. Methods which have been theoretically developed, but not yet achieved experimentally, are also reviewed. They consist of ionization cooling, laser cooling in three dimensions and stimulated radiation cooling.

  20. The design and implementation of the machine protection system for the Fermilab electron cooling facility

    SciTech Connect

    Warner, A.; Carmichael, L.; Carlson, K.; Crisp, J.; Goodwin, R.; Prost, L.; Saewert, G.; Shemyakin, A.; /Fermilab

    2009-05-01

    The Fermilab Recycler ring employs an electron cooler to store and cool 8.9-GeV antiprotons. The cooler is based on a 4.3-MV, 0.1-A, DC electrostatic accelerator for which current losses have to remain low ({approx}10{sup -5}) in order to operate reliably. The Machine Protection System (MPS) has been designed to interrupt the beam in a matter of 1-2 {micro}s when losses higher than a safe limit are detected, either in the accelerator itself or in the beam lines. This paper highlights the various diagnostics, electronics and logic that the MPS relies upon to successfully ensure that no damage be sustained to the cooler or the Recycler ring.

  1. Frequency-Domain Analysis of Diffusion-Cooled Hot-Electron Bolometer Mixers

    NASA Technical Reports Server (NTRS)

    Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.

    1998-01-01

    A new theoretical model is introduced to describe heterodyne mixer conversion efficiency and noise (from thermal fluctuation effects) in diffusion-cooled superconducting hot-electron bolometers. The model takes into account the non-uniform internal electron temperature distribution generated by Wiedemann-Franz heat conduction, and accepts for input an arbitrary (analytical or experimental) superconducting resistance-versus- temperature curve. A non-linear large-signal solution is solved iteratively to calculate the temperature distribution, and a linear frequency-domain small-signal formulation is used to calculate conversion efficiency and noise. In the small-signal solution the device is discretized into segments, and matrix algebra is used to relate the heating modulation in the segments to temperature and resistance modulations. Matrix expressions are derived that allow single-sideband mixer conversion efficiency and coupled noise power to be directly calculated. The model accounts for self-heating and electrothermal feedback from the surrounding bias circuit.

  2. Electron cooling system in the booster synchrotron of the HIAF project

    NASA Astrophysics Data System (ADS)

    Mao, L. J.; Yang, J. C.; Xia, J. W.; Yang, X. D.; Yuan, Y. J.; Li, J.; Ma, X. M.; Yan, T. L.; Yin, D. Y.; Chai, W. P.; Sheng, L. N.; Shen, G. D.; Zhao, H.; Tang, M. T.

    2015-06-01

    The High Intensity heavy ion Accelerator Facility (HIAF) is a new accelerator complex under design at the Institute of Modern Physics (IMP). The facility is aiming at the production of high intensity heavy ion beams for a wide range of experiments in high energy density physics, nuclear physics, atomic physics and other applications. It consists of a superconducting electron-cyclotron-resonance ion source and an intense proton ion source, a linear accelerator, a 34 Tm booster synchrotron ring, a 43 Tm multifunction compression synchrotron ring, a 13 Tm high precision spectrometer ring and several experimental terminals. A magnetized electron cooling device is supposed to be used in the booster ring for decreasing the transverse emittance of injected beams. The conceptual design and main parameters of this cooler are presented in this paper.

  3. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    SciTech Connect

    Rufai, O. R. Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  4. Status of proof-of-principle experiment for coherent electron cooling

    SciTech Connect

    Pinayev I.; Belomestnykh, S.; Bengtsson, J.; Ben-Zvi, I.; Elizarov, A. et al

    2012-05-20

    Coherent electron cooling (CEC) has a potential to significantly boost luminosity of high-energy, high-intensity hadron colliders. To verify the concept we conduct proof-of-the-principle experiment at RHIC. In this paper, we describe the current experimental setup to be installed into 2 o'clock RHIC interaction regions. We present current design, status of equipment acquisition and estimates for the expected beam parameters. We use a dogleg to merge the electron and ion beams. The ions 'imprint' their distribution into the electron beam via a space charge density modulation. The modulation is amplified in an FEL comprised of a 7-m long helical wiggler. The ions are co-propagating with electron beam through the FEL. The ion's average velocity is matched to the group velocity of the wave-packet of e-beam density modulation in the FEL. A three-pole wiggler at the exit of the FEL tune the phase of the wave-packet so the ion with the central energy experience the maximum of the e-beam density modulation, where electric field is zero. The time-of-flight dependence on ion's provides for the electrical field caused by the density modulation to reduce energy spread of the ion beam. The used electron beam is bent off the ion path and damped.

  5. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.

    2017-02-01

    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  6. Electron Lenses and Cooling for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect

    Stancari, G.; Burov, A.; Lebedev, V.; Nagaitsev, S.; Prebys, E.; Valishev, A.

    2015-11-05

    Recently, the study of integrable Hamiltonian systems has led to nonlinear accelerator lattices with one or two transverse invariants and wide stable tune spreads. These lattices may drastically improve the performance of high-intensity machines, providing Landau damping to protect the beam from instabilities, while preserving dynamic aperture. The Integrable Optics Test Accelerator (IOTA) is being built at Fermilab to study these concepts with 150-MeV pencil electron beams (single-particle dynamics) and 2.5-MeV protons (dynamics with self fields). One way to obtain a nonlinear integrable lattice is by using the fields generated by a magnetically confined electron beam (electron lens) overlapping with the circulating beam. The required parameters are similar to the ones of existing devices. In addition, the electron lens will be used in cooling mode to control the brightness of the proton beam and to measure transverse profiles through recombination. More generally, it is of great interest to investigate whether nonlinear integrable optics allows electron coolers to exceed limitations set by both coherent or incoherent instabilities excited by space charge.

  7. Design of a Prototype EHD Air Pump for Electronic Chip Cooling Applications

    NASA Astrophysics Data System (ADS)

    Emmanouil, D. Fylladitakis; Antonios, X. Moronis; Konstantinos, Kiousis

    2014-05-01

    This paper presents the design, optimization and fabrication of an EHD air pump intended for high-power electronic chip cooling applications. Suitable high-voltage electrode configurations were selected and studied, in terms of the characteristics of the generated electric field, which play an important role in ionic wind flow. For this purpose, dedicated software is used to implement finite element analysis. Critical design parameters, such as the electric field intensity, wind velocity, current flow and power consumption are investigated. Two different laboratory prototypes are fabricated and their performances experimentally assessed. This procedure leads to the fabrication of a final prototype, which is then tested as a replacement of a typical fan for cooling a high power density electronic chip. To assist towards that end, an experimental thermal testing setup is designed and constructed to simulate the size of a personal computer's CPU core of variable power. The parametric study leads to the fabrication of experimental single-stage EHD pumps, the optimal design of which is capable of delivering an air flow of 51 CFM with an operating voltage of 10.5 kV. Finally, the theoretical and experimental results are evaluated and potential applications are proposed.

  8. Pulse length of ultracold electron bunches extracted from a laser cooled gas

    PubMed Central

    Franssen, J. G. H.; Frankort, T. L. I.; Vredenbregt, E. J. D.; Luiten, O. J.

    2017-01-01

    We present measurements of the pulse length of ultracold electron bunches generated by near-threshold two-photon photoionization of a laser-cooled gas. The pulse length has been measured using a resonant 3 GHz deflecting cavity in TM110 mode. We have measured the pulse length in three ionization regimes. The first is direct two-photon photoionization using only a 480 nm femtosecond laser pulse, which results in short (∼15 ps) but hot (∼104 K) electron bunches. The second regime is just-above-threshold femtosecond photoionization employing the combination of a continuous-wave 780 nm excitation laser and a tunable 480 nm femtosecond ionization laser which results in both ultracold (∼10 K) and ultrafast (∼25 ps) electron bunches. These pulses typically contain ∼103 electrons and have a root-mean-square normalized transverse beam emittance of 1.5 ± 0.1 nm rad. The measured pulse lengths are limited by the energy spread associated with the longitudinal size of the ionization volume, as expected. The third regime is just-below-threshold ionization which produces Rydberg states which slowly ionize on microsecond time scales. PMID:28396879

  9. Simulation of Electron Beam Dynamics in the 22 MeV Accelerator for a Coherent Electron Cooling Proof of Principle Experiment

    SciTech Connect

    Owen, Justin

    2013-12-01

    Coherent electron cooling (CeC) offers a potential new method of cooling hadron beams in colliders such as the Relativistic Heavy Ion Collider (RHIC) or the future electron ion collider eRHIC. A 22 MeV linear accelerator is currently being built as part of a proof of principle experiment for CeC at Brookhaven National Laboratory (BNL). In this thesis we present a simulation of electron beam dynamics including space charge in the 22 MeV CeC proof of principle experiment using the program ASTRA (A Space charge TRacking Algorithm).

  10. Super-heavy electron material as metallic refrigerant for adiabatic demagnetization cooling

    SciTech Connect

    Tokiwa, Yoshifumi; Piening, Boy; Jeevan, Hirale S.; Bud'ko, Sergey L.; Canfield, Paul C.; Gegenwart, Philipp

    2016-09-09

    Low-temperature refrigeration is of crucial importance in fundamental research of condensed matter physics, because the investigations of fascinating quantum phenomena, such as superconductivity, superfluidity, and quantum criticality, often require refrigeration down to very low temperatures. Currently, cryogenic refrigerators with 3He gas are widely used for cooling below 1 Kelvin. However, usage of the gas has been increasingly difficult because of the current world-wide shortage. Therefore, it is important to consider alternative methods of refrigeration. We show that a new type of refrigerant, the super-heavy electron metal YbCo2Zn20, can be used for adiabatic demagnetization refrigeration, which does not require 3He gas. This method has a number of advantages, including much better metallic thermal conductivity compared to the conventional insulating refrigerants. We also demonstrate that the cooling performance is optimized in Yb1$-$xScxCo2Zn20 by partial Sc substitution, with x ~ 0.19. The substitution induces chemical pressure that drives the materials to a zero-field quantum critical point. This leads to an additional enhancement of the magnetocaloric effect in low fields and low temperatures, enabling final temperatures well below 100 mK. This performance has, up to now, been restricted to insulators. For nearly a century, the same principle of using local magnetic moments has been applied for adiabatic demagnetization cooling. Lastly, this study opens new possibilities of using itinerant magnetic moments for cryogen-free refrigeration.

  11. Current-Induced Cooling Phenomenon in a Two-Dimensional Electron Gas Under a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Hirayama, Naomi; Endo, Akira; Fujita, Kazuhiro; Hasegawa, Yasuhiro; Hatano, Naomichi; Nakamura, Hiroaki; Shirasaki, Ryōen; Yonemitsu, Kenji

    2013-07-01

    We investigate the spatial distribution of temperature induced by a dc current in a two-dimensional electron gas (2DEG) subjected to a perpendicular magnetic field. We numerically calculate the distributions of the electrostatic potential ϕ and the temperature T in a 2DEG enclosed in a square area surrounded by insulated-adiabatic (top and bottom) and isopotential-isothermal (left and right) boundaries (with ϕ left< ϕ right and T left= T right), using a pair of nonlinear Poisson equations (for ϕ and T) that fully take into account thermoelectric and thermomagnetic phenomena, including the Hall, Nernst, Ettingshausen, and Righi-Leduc effects. We find that, in the vicinity of the left-bottom corner, the temperature becomes lower than the fixed boundary temperature, contrary to the naive expectation that the temperature is raised by the prevalent Joule heating effect. The cooling is attributed to the Ettingshausen effect at the bottom adiabatic boundary, which pumps up the heat away from the bottom boundary. In order to keep the adiabatic condition, downward temperature gradient, hence the cooled area, is developed near the boundary, with the resulting thermal diffusion compensating the upward heat current due to the Ettingshausen effect.

  12. Strong neutrino cooling by cycles of electron capture and β- decay in neutron star crusts.

    PubMed

    Schatz, H; Gupta, S; Möller, P; Beard, M; Brown, E F; Deibel, A T; Gasques, L R; Hix, W R; Keek, L; Lau, R; Steiner, A W; Wiescher, M

    2014-01-02

    The temperature in the crust of an accreting neutron star, which comprises its outermost kilometre, is set by heating from nuclear reactions at large densities, neutrino cooling and heat transport from the interior. The heated crust has been thought to affect observable phenomena at shallower depths, such as thermonuclear bursts in the accreted envelope. Here we report that cycles of electron capture and its inverse, β(-) decay, involving neutron-rich nuclei at a typical depth of about 150 metres, cool the outer neutron star crust by emitting neutrinos while also thermally decoupling the surface layers from the deeper crust. This 'Urca' mechanism has been studied in the context of white dwarfs and type Ia supernovae, but hitherto was not considered in neutron stars, because previous models computed the crust reactions using a zero-temperature approximation and assumed that only a single nuclear species was present at any given depth. The thermal decoupling means that X-ray bursts and other surface phenomena are largely independent of the strength of deep crustal heating. The unexpectedly short recurrence times, of the order of years, observed for very energetic thermonuclear superbursts are therefore not an indicator of a hot crust, but may point instead to an unknown local heating mechanism near the neutron star surface.

  13. Pumped helium system for cooling positron and electron traps to 1.2 K

    NASA Astrophysics Data System (ADS)

    Wrubel, J.; Gabrielse, G.; Kolthammer, W. S.; Larochelle, P.; McConnell, R.; Richerme, P.; Grzonka, D.; Oelert, W.; Sefzick, T.; Zielinski, M.; Borbely, J. S.; George, M. C.; Hessels, E. A.; Storry, C. H.; Weel, M.; Müllers, A.; Walz, J.; Speck, A.

    2011-06-01

    Extremely precise tests of fundamental particle symmetries should be possible via laser spectroscopy of trapped antihydrogen ( H¯) atoms. H¯ atoms that can be trapped must have an energy in temperature units that is below 0.5 K—the energy depth of the deepest magnetic traps that can currently be constructed with high currents and superconducting technology. The number of atoms in a Boltzmann distribution with energies lower than this trap depth depends sharply upon the temperature of the thermal distribution. For example, ten times more atoms with energies low enough to be trapped are in a thermal distribution at a temperature of 1.2 K than for a temperature of 4.2 K. To date, H¯ atoms have only been produced within traps whose electrode temperature is 4.2 K or higher. A lower temperature apparatus is desirable if usable numbers of atoms that can be trapped are to eventually be produced. This report is about the pumped helium apparatus that cooled the trap electrodes of an H¯ apparatus to 1.2 K for the first time. Significant apparatus challenges include the need to cool a 0.8 m stack of 37 trap electrodes separated by only a mm from the substantial mass of a 4.2 K Ioffe trap and the substantial mass of a 4.2 K solenoid. Access to the interior of the cold electrodes must be maintained for antiprotons, positrons, electrons and lasers.

  14. Strong neutrino cooling by cycles of electron capture and decay in neutron star crusts

    SciTech Connect

    Schatz, Hendrik; Gupta, Sanjib; Moeller, Peter; Beard, Mary; Brown, Edward; Deibel, A. T.; Gasques, Leandro; Hix, William Raphael; Keek, Laurens; Lau, Rita; Steiner, Andrew M; Wiescher, Michael

    2013-01-01

    The temperature in the crust of an accreting neutron star, which comprises its outermost kilometre, is set by heating from nuclear reactions at large densities, neutrino cooling and heat transport from the interior. The heated crust has been thought to affect observable phenomena at shallower depths, such as thermonuclear bursts in the accreted envelope. Here we report that cycles of electron capture and its inverse, decay, involving neutron-rich nuclei at a typical depth of about 150 metres, cool the outer neutron star crust by emitting neutrinos while also thermally decoupling the surface layers from the deeper crust. This Urca mechanism has been studied in the context of white dwarfs13 and type Ia supernovae, but hitherto was not considered in neutron stars, because previous models1, 2 computed the crust reactions using a zero-temperature approximation and assumed that only a single nuclear species was present at any given depth. The thermal decoupling means that X-ray bursts and other surface phenomena are largely independent of the strength of deep crustal heating. The unexpectedly short recurrence times, of the order of years, observed for very energetic thermonuclear superbursts are therefore not an indicator of a hot crust, but may point instead to an unknown local heating mechanism near the neutron star surface.

  15. Air-Cooled Heat Exchanger for High-Temperature Power Electronics: Preprint

    SciTech Connect

    Waye, S. K.; Lustbader, J.; Musselman, M.; King, C.

    2015-05-06

    This work demonstrates a direct air-cooled heat exchanger strategy for high-temperature power electronic devices with an application specific to automotive traction drive inverters. We present experimental heat dissipation and system pressure curves versus flow rate for baseline and optimized sub-module assemblies containing two ceramic resistance heaters that provide device heat fluxes. The maximum allowable junction temperature was set to 175 deg.C. Results were extrapolated to the inverter scale and combined with balance-of-inverter components to estimate inverter power density and specific power. The results exceeded the goal of 12 kW/L and 12 kW/kg for power density and specific power, respectively.

  16. Injection method of barrier bucket supported by off-aligned electron cooling for CRing of HIAF

    NASA Astrophysics Data System (ADS)

    Shen, Guo-Dong; Yang, Jian-Cheng; Xia, Jia-Wen; Mao, Li-Jun; Yin, Da-Yu; Chai, Wei-Ping; Shi, Jian; Sheng, Li-Na; Smirnov, A.; Wu, Bo; Zhao, He

    2016-08-01

    A new accelerator complex, HIAF (the High Intensity Heavy Ion Accelerator Facility), has been approved in China. It is designed to provide intense primary and radioactive ion beams for research in high energy density physics, nuclear physics, atomic physics as well as other applications. In order to achieve a high intensity of up to 5×1011 ppp 238U34+, the Compression Ring (CRing) needs to stack more than 5 bunches transferred from the Booster Ring (BRing). However, the normal bucket to bucket injection scheme can only achieve an intensity gain of 2, so an injection method, fixed barrier bucket (BB) supported by electron cooling, is proposed. To suppress the severe space charge effect during the stacking process, off-alignment is adopted in the cooler to control the transverse emittance. In this paper, simulation and optimization with the BETACOOL program are presented. Supported by New Interdisciplinary and Advanced Pilot Fund of Chinese Academy of Sciences

  17. Modular jet impingement assemblies with passive and active flow control for electronics cooling

    DOEpatents

    Zhou, Feng; Dede, Ercan Mehmet; Joshi, Shailesh

    2016-09-13

    Power electronics modules having modular jet impingement assembly utilized to cool heat generating devices are disclosed. The modular jet impingement assemblies include a modular manifold having a distribution recess, one or more angled inlet connection tubes positioned at an inlet end of the modular manifold that fluidly couple the inlet tube to the distribution recess and one or more outlet connection tubes positioned at an outlet end of the modular manifold that fluidly coupling the outlet tube to the distribution recess. The modular jet impingement assemblies include a manifold insert removably positioned within the distribution recess and include one or more inlet branch channels each including an impinging slot and one or more outlet branch channels each including a collecting slot. Further a heat transfer plate coupled to the modular manifold, the heat transfer plate comprising an impingement surface including an array of fins that extend toward the manifold insert.

  18. Electronic spectra of jet-cooled isoindoline: Spectroscopic determination of energy difference between conformational isomers

    NASA Astrophysics Data System (ADS)

    Tanaka, Sei'ichi; Okuyama, Katsuhiko

    2010-04-01

    The electronic spectra of jet-cooled isoindoline between the electronic ground (S0) state and the ππ ∗ lowest-excited singlet state (S1) were observed by the fluorescence excitation and single-vibronic-level dispersed fluorescence methods. The low-frequency progression due to the puckering vibration appeared in both spectra. Analysis of dispersed spectra together with geometry optimization at the level of B3LYP/6-311+G(d) indicated the presence of conformational isomers possessing axial and equatorial N-H bonds with respect to the molecular plane. The 0-0 bands of the axial and equatorial conformers were measured at 37 022 and 36 761 cm-1, respectively. Three common levels in the S1 state accessible from the respective S0-state zero levels were observed. From their transition frequencies, the S0-state energy difference between the isomers was determined to be 47.7±0.2 cm-1, where the axial conformer was more stable. In the S1 state, the energy difference was 213.7±0.2 cm-1, and the equatorial conformer was more stable. The cause of switching from a stable conformation upon excitation is discussed in terms of the electron conjugation between the π∗ orbital in benzene and the lone pair orbital of nitrogen.

  19. Electron cooling and finite potential drop in a magnetized plasma expansion

    SciTech Connect

    Martinez-Sanchez, M.; Navarro-Cavallé, J.; Ahedo, E.

    2015-05-15

    The steady, collisionless, slender flow of a magnetized plasma into a surrounding vacuum is considered. The ion component is modeled as mono-energetic, while electrons are assumed Maxwellian upstream. The magnetic field has a convergent-divergent geometry, and attention is restricted to its paraxial region, so that 2D and drift effects are ignored. By using the conservation of energy and magnetic moment of particles and the quasi-neutrality condition, the ambipolar electric field and the distribution functions of both species are calculated self-consistently, paying attention to the existence of effective potential barriers associated to magnetic mirroring. The solution is used to find the total potential drop for a set of upstream conditions, plus the axial evolution of various moments of interest (density, temperatures, and heat fluxes). The results illuminate the behavior of magnetic nozzles, plasma jets, and other configurations of interest, showing, in particular, in the divergent plasma the collisionless cooling of electrons, and the generation of collisionless electron heat fluxes.

  20. Progress towards an electron electric dipole moment measurement with laser-cooled atoms

    NASA Astrophysics Data System (ADS)

    Solmeyer, Neal

    This dissertation recounts the progress made towards a measurement of the electron electric dipole moment. The existence of a permanent electric dipole moment of any fundamental particle would imply that both time reversal and parity invariance are violated. If an electric dipole moment were measured within current experimental limits it would be the first direct evidence for physics beyond the standard model. For our measurement we use laser-cooled alkali atoms trapped in a pair of 1D optical lattices. The lattices run through three electric field plates so that the two groups of atoms see opposing electric fields. The measurement chamber is surrounded by a four layer mu-metal magnetic shield. Under electric field quantization, the atoms are prepared in a superposition of magnetic sublevels that is sensitive to the electron electric dipole moment in Ramsey-like spectroscopy. The experiment requires very large electric fields and very small magnetic fields. Engineering a system compatible with both of these goals simultaneously is not trivial. Searches for electric dipole moments using neutral atoms in optical lattices have much longer possible interaction times and potentially give more precise information about the inherent symmetry breaking than other methods. This comes at the cost of a higher sensitivity to magnetic fields and possible sources of error associated with the trapping light. If noise and systematic errors can be controlled to our design specifications our experiment will significantly improve the current experimental limit of the electron electric dipole moment.

  1. OTR Measurements and Modeling of the Electron Beam Optics at the E-Cooling Facility

    NASA Astrophysics Data System (ADS)

    Warner, A.; Burov, A.; Carlson, K.; Kazakevich, G.; Nagaitsev, S.; Prost, L.; Sutherland, M.; Tiunov, M.

    2006-03-01

    Optics of the electron beam accelerated in the Pelletron, intended for the electron cooling of 8.9 GeV antiprotons in the Fermilab recycler storage ring, has been studied. The beam profile parameters were measured under the accelerating section using Optical Transition Radiation (OTR) monitor. The monitor employs a highly-reflective 2 inch-diameter aluminum OTR-screen with a thickness of 5 μm and a digital CCD camera. The measurements were done in a pulse-signal mode in the beam current range of 0.03-0.8 A and at pulse durations ranging from 1 μs to 4 μs. Differential profiles measured in pulsed mode are compared with results obtained by modeling of the DC beam dynamics from the Pelletron cathode to the OTR monitor. The modeling was done with SAM, ULTRASAM and BEAM programs. An adjustment of the magnetic fields in the lenses of the accelerating section was done in the simulations. The simulated electron beam optics downstream of the accelerating section was in good agreement with the measurements made with pulsed beam.

  2. Design principles and applications of a cooled CCD camera for electron microscopy.

    PubMed

    Faruqi, A R

    1998-01-01

    Cooled CCD cameras offer a number of advantages in recording electron microscope images with CCDs rather than film which include: immediate availability of the image in a digital format suitable for further computer processing, high dynamic range, excellent linearity and a high detective quantum efficiency for recording electrons. In one important respect however, film has superior properties: the spatial resolution of CCD detectors tested so far (in terms of point spread function or modulation transfer function) are inferior to film and a great deal of our effort has been spent in designing detectors with improved spatial resolution. Various instrumental contributions to spatial resolution have been analysed and in this paper we discuss the contribution of the phosphor-fibre optics system in this measurement. We have evaluated the performance of a number of detector components and parameters, e.g. different phosphors (and a scintillator), optical coupling with lens or fibre optics with various demagnification factors, to improve the detector performance. The camera described in this paper, which is based on this analysis, uses a tapered fibre optics coupling between the phosphor and the CCD and is installed on a Philips CM12 electron microscope equipped to perform cryo-microscopy. The main use of the camera so far has been in recording electron diffraction patterns from two dimensional crystals of bacteriorhodopsin--from wild type and from different trapped states during the photocycle. As one example of the type of data obtained with the CCD camera a two dimensional Fourier projection map from the trapped O-state is also included. With faster computers, it will soon be possible to undertake this type of work on an on-line basis. Also, with improvements in detector size and resolution, CCD detectors, already ideal for diffraction, will be able to compete with film in the recording of high resolution images.

  3. Options for diabetes management in sub-Saharan Africa with an electronic medical record system.

    PubMed

    Kouematchoua Tchuitcheu, G; Rienhoff, O

    2011-01-01

    An increase of diabetes prevalence of up to 80% is predicted in sub-Saharan Africa (SSA) by 2025 exceeding the worldwide 55%. Mortality rates of diabetes and HIV/AIDS are similar. Diabetes shares several common factors with HIV/AIDS and multidrug-resistant tuberculosis (MDR-TB). The latter two health problems have been efficiently managed by an open source electronic medical record system (EMRS) in Latin America. Therefore a similar solution for diabetes in SSA could be extremely helpful. The aim was to design and validate a conceptual model for an EMRS to improve diabetes management in SSA making use of the HIV and TB experience. A review of the literature addressed diabetes care and management in SSA as well as existing examples of information and communication technology (ICT) use in SSA. Based on a need assessment conducted in SSA a conceptual model based on the traditionally structured healthcare system in SSA was mapped into a three-layer structure. Application modules were derived and a demonstrator programmed based on an open source EMRS. Then the approach was validated by SSA experts. A conceptual model could be specified and validated which enhances a problem-oriented approach to diabetes management processes. The prototyp EMRS demonstrates options for a patient portal and simulation tools for education of health professional and patients in SSA. It is possible to find IT solutions for diabetes care in SSA which follow the same efficiency concepts as HIV or TB modules in Latin America. The local efficiency and sustainability of the solution will, however, depend on training and changes in work behavior.

  4. Thermal Enhancement of Silicon Carbide (SiC) Power Electronics and Laser Bars: Statistical Design Optimization of a Liquid-Cooled Power Electronic Heat Sink

    DTIC Science & Technology

    2015-08-01

    AFRL-RQ-WP-TR-2015-0138 THERMAL ENHANCEMENT OF SILICON CARBIDE (SiC) POWER ELECTRONICS AND LASER BARS: Statistical Design Optimization of a Liquid...Cooled Power Electronic Heat Sink James D. Scofield Electrical Systems Branch Power and Control Division AUGUST2015 Final Report Approved for...GREGORY L. FRONISTA, Chief Electrical Systems Branch Power and Control Division JAMES D. SCOFIELD Program Manager Electrical Systems Branch

  5. New computational approaches to the N-body problem with applications to electron cooling of heavy ion beams

    NASA Astrophysics Data System (ADS)

    Abeyratne, Pulukkuttige D. Sumana

    Thomas Jefferson National Accelerator Facility (JLab) has proposed a new Electron- Ion Collider, JLEIC. In this collider, a polarized electron beam and a counter rotating ion beam collide at the interaction point(s). A critical problem for the JLEIC collider is cooling the ion beam to ensure small emittance and to achieve high luminosity. Since electron cooling --a method of cooling 'hot' ion beams through Coulomb interactions with 'cold' electron beams--is one of the most effective cooling methods, it will be used by JLEIC. However, the most naive way of calculating Coulomb forces through the pair-wise method becomes infeasible even with the most high performing computers since the computational complexity grows O(N2), where N is the number of particles as large as 1011. In this dissertation, we have developed new computational tools and a high performance computer code that allows, for the first time, a particle-based simulation of realistic electron cooling scenarios of heavy ion beams. Our toolset, collectively referred to as the Particles High-Order Adaptive Dynamics (PHAD), contains three specific tools. The first tool, the adaptive multi-level Fast Multipole Method, reduces the computational cost of computing Coulomb forces to only O(N). Our platform supports particles of any complex distribution (2D or 3D). The second tool, the Picard iteration-based integrator, resolves close encounters of particles efficiently and accurately. Finally, the third tool, the Strang operator splitting, reduces the runtime while maintaining the accuracy. The high performance code is comprised of these three main components. Although, the proposed toolset is both precise and fast, completely simulating the electron cooling of the ion beam still takes a long time on a modern computer cluster due to the millions of small time steps that needs to be simulated. In order to overcome this challenge, we have developed an MPI-parallel high performance computer code to speed up our

  6. Effect of Material Inhomogeneity on Thermal Performance of a Rheocast Aluminum Heatsink for Electronics Cooling

    NASA Astrophysics Data System (ADS)

    Payandeh, M.; Belov, I.; Jarfors, A. E. W.; Wessén, M.

    2016-06-01

    The relation between microstructural inhomogeneity and thermal conductivity of a rheocast component manufactured from two different aluminum alloys was investigated. The formation of two different primary α-Al particles was observed and related to multistage solidification process during slurry preparation and die cavity filling process. The microstructural inhomogeneity of the component was quantified as the fraction of α 1-Al particles in the primary Al phase. A high fraction of coarse solute-lean α 1-Al particles in the primary Al phase caused a higher thermal conductivity of the component in the near-to-gate region. A variation in thermal conductivity through the rheocast component of 10% was discovered. The effect of an inhomogeneous temperature-dependent thermal conductivity on the thermal performance of a large rheocast heatsink for electronics cooling in an operation environment was studied by means of simulation. Design guidelines were developed to account for the thermal performance of heatsinks with inhomogeneous thermal conductivity, as caused by the rheocasting process. Under the modeling assumptions, the simulation results showed over 2.5% improvement in heatsink thermal resistance when the higher conductivity near-to-gate region was located at the top of the heatsink. Assuming homogeneous thermo-physical properties in a rheocast heatsink may lead to greater than 3.5% error in the estimation of maximum thermal resistance of the heatsink. The variation in thermal conductivity within a large rheocast heatsink was found to be important for obtaining of a robust component design.

  7. Characterization of a high performance ultra-thin heat pipe cooling module for mobile hand held electronic devices

    NASA Astrophysics Data System (ADS)

    Ahamed, Mohammad Shahed; Saito, Yuji; Mashiko, Koichi; Mochizuki, Masataka

    2017-03-01

    In recent years, heat pipes have been widely used in various hand held mobile electronic devices such as smart phones, tablet PCs, digital cameras. With the development of technology these devices have different user friendly features and applications; which require very high clock speeds of the processor. In general, a high clock speed generates a lot of heat, which needs to be spreaded or removed to eliminate the hot spot on the processor surface. However, it is a challenging task to achieve proper cooling of such electronic devices mentioned above because of their confined spaces and concentrated heat sources. Regarding this challenge, we introduced an ultra-thin heat pipe; this heat pipe consists of a special fiber wick structure named as "Center Fiber Wick" which can provide sufficient vapor space on the both sides of the wick structure. We also developed a cooling module that uses this kind of ultra-thin heat pipe to eliminate the hot spot issue. This cooling module consists of an ultra-thin heat pipe and a metal plate. By changing the width, the flattened thickness and the effective length of the ultra-thin heat pipe, several experiments have been conducted to characterize the thermal properties of the developed cooling module. In addition, other experiments were also conducted to determine the effects of changes in the number of heat pipes in a single module. Characterization and comparison of the module have also been conducted both experimentally and theoretically.

  8. Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors

    SciTech Connect

    Petrovic, Bojan; Maldonado, Ivan

    2016-04-14

    The research performed in this project addressed the issue of low heavy metal loading and the resulting reduced cycle length with increased refueling frequency, inherent to all FHR designs with solid, non-movable fuel based on TRISO particles. Studies performed here focused on AHTR type of reactor design with plate (“plank”) fuel. Proposal to FY12 NEUP entitled “Fuel and Core Design Options to Overcome the Heavy Metal Loading Limit and Improve Performance and Safety of Liquid Salt Cooled Reactors” was selected for award, and the 3-year project started in August 2012. A 4-month NCE was granted and the project completed on December 31, 2015. The project was performed by Georgia Tech (Prof. Bojan Petrovic, PI) and University of Tennessee (Prof. Ivan Maldonado, Co-PI), with a total funding of $758,000 over 3 years. In addition to two Co-PIs, the project directly engaged 6 graduate students (at doctoral or MS level) and 2 postdoctoral researchers. Additionally, through senior design projects and graduate advanced design projects, another 23 undergraduate and 12 graduate students were exposed to and trained in the salt reactor technology. We see this as one of the important indicators of the project’s success and effectiveness. In the process, 1 journal article was published (with 3 journal articles in preparation), together with 8 peer-reviewed full conference papers, 8 peer-reviewed extended abstracts, as well as 1 doctoral dissertation and 2 master theses. The work included both development of models and methodologies needed to adequately analyze this type of reactor, fuel, and its fuel cycle, as well as extensive analyses and optimization of the fuel and core design.

  9. Transport-Coefficient Dependence of Current-Induced Cooling Effect in a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Hirayama, Naomi; Endo, Akira; Fujita, Kazuhiro; Hasegawa, Yasuhiro; Hatano, Naomichi; Nakamura, Hiroaki; Shirasaki, Ryōen; Yonemitsu, Kenji

    2012-06-01

    The dependence of the current-induced cooling effect on the electron mobility μ e is explored for a two-dimensional electron gas (2DEG) subjected to a perpendicular magnetic field. We calculate the distributions of the electrochemical potentials and the temperatures under a magnetic field, fully taking account of thermoelectric and thermomagnetic phenomena. Whereas the electrochemical potential and the electric current remain qualitatively unchanged, the temperature distribution exhibits drastic mobility dependence. The lower-mobility system has cold and hot areas at opposite corners, which results from the heat current brought about by the Ettingshausen effect in the vicinity of the adiabatic boundaries. The cooling effect is intensified by an increase in μ e. Intriguingly, the cold and hot areas change places with each other as the mobility μ e is further increased. This is because the heating current on the adiabatic edges due to the Righi-Leduc effect exceeds that due to the Ettingshausen effect in the opposite direction.

  10. Microgravity experiments on boiling and applications: research activity of advanced high heat flux cooling technology for electronic devices in Japan.

    PubMed

    Suzuki, Koichi; Kawamura, Hiroshi

    2004-11-01

    Research and development on advanced high heat flux cooling technology for electronic devices has been carried out as the Project of Fundamental Technology Development for Energy Conservation, promoted by the New Energy and Industrial Technology Development Organization of Japan (NEDO). Based on the microgravity experiments on boiling heat transfer, the following useful results have obtained for the cooling of electronic devices. In subcooled flow boiling in a small channel, heat flux increases considerably more than the ordinary critical heat flux with microbubble emission in transition boiling, and dry out of the heating surface is disturbed. Successful enhancement of heat transfer is achieved by a capillary effect from grooved surface dual subchannels on the liquid supply. The critical heat flux increases 30-40 percent more than for ordinary subchannels. A self-wetting mechanism has been proposed, following investigation of bubble behavior in pool boiling of binary mixtures under microgravity. Ideas and a new concept have been proposed for the design of future cooling system in power electronics.

  11. HIGH-ORDER MODELING OF AN ERL FOR ELECTRON COOLING IN THE RHIC LUMINOSITY UPGRADE USING MARYLIE/IMPACT.

    SciTech Connect

    RANJBAR,V.; BEN-ZVI,I.; PAUL, K.; ABELL, D.T.; TECH-X CORP.; KEWISCH, J.; RYNE, R.D.; QIANG, J.

    2007-06-25

    Plans for the RHIC luminosity upgrade call for an electron cooling system that will place substantial demands on the energy, current, brightness, and beam quality of the electron beam. In particular, the requirements demand a new level of fidelity in beam dynamics simulations. New developments in MARYLIE/IMPACT have improved both the space charge computations for beams with large aspect ratios and the beam dynamic computations for rf cavities. We present the results of beam dynamics simulations that include the effects of space charge and nonlinearities, and aim to assess the tolerance for errors and nonlinearities on current designs for a super-conducting ERL.

  12. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W.; Xiong, B.; Guo, S. Q.; Cao, R.; Ruan, L.; Zhang, X. Z.; Sun, L. T.; Feng, Y. C.; Ma, B. H.; Zhao, H. W.

    2014-02-15

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0–1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  13. Progress of a room temperature electron cyclotron resonance ion source using evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Xiong, B; Zhang, X Z; Sun, L T; Feng, Y C; Ma, B H; Guo, S Q; Cao, R; Ruan, L; Zhao, H W

    2014-02-01

    A new room temperature ECR ion source, Lanzhou Electron Cyclotron Resonance ion source No. 4 (LECR4, previously named DRAGON), is under intense construction at Institute of Modern Physics. LECR4 is designed to operate with 18 GHz microwave frequency. The maximum axial magnetic fields are 2.3 T at injection and 1.3 T at extraction, and the radial field at the plasma chamber wall of 76 mm inner diameter is 1.0-1.2 T. One of the unique features for LECR4 is that its axial solenoids are winded with solid square copper wires which are immersed in a kind of special evaporative cooling medium for cooling purpose. Till now, a prototype of the cooling system has been successfully constructed and tested, which has demonstrated that the cooling efficiency of the designed system could meet the requirements of LECR4 under the routine operation conditions. All the main components of the ion source have been completed. Assembly and commissioning is ongoing. The latest developments and test results will be presented in this paper.

  14. High current magnetized plasma discharges and electron beams for capture and cooling of charged leptons and hadrons

    SciTech Connect

    Hershcovitch, A.

    1997-07-01

    Nowadays most magnetic lenses used to capture and to focus pions and muons utilize azimuthal magnetic fields generated by large axial currents, like horns or lithium rods (or even a Z-pinch at GSI). Capture and focusing angle is proportional to the product of the current and length of the lens. State-of-the-art for these lenses is no more than 750 kA and 70 cm. A meter long, multi-MA, magnetized axial discharges were generated by the early days of fusion. Lenses based of such devices can increase the capture angle of pions, e.g., by more than a factor of 2. Electron beam cooling is presently achieved in storage rings by having charged particles interact with a co-moving electron beam. In these devices, typical parameters are electron beam currents of about 1 A, an interaction length of about 1 meter, and interaction time of about 30 msec. Multi-MA electron beams can be used for single-pass final stage cooling in a number of machines. Calculations for some applications, as well as other advantages indicate that these schemes deserve further more serious consideration.

  15. Review of material recovery from used electric and electronic equipment-alternative options for resource conservation.

    PubMed

    Friege, Henning

    2012-09-01

    For waste from electric and electronic equipment, the WEEE Directive stipulates the separate collection of electric and electronic waste. As to new electric and electronic devices, the Restriction of Hazardous Substances (RoHS) Directive bans the use of certain chemicals dangerous for man and environment. From the implementation of the WEEE directive, many unsolved problems have been documented: poor collection success, emission of dangerous substances during collection and recycling, irretrievable loss of valuable metals among others. As to RoHS, data from the literature show a satisfying success. The problems identified in the process can be reduced to some basic dilemmas at the borders between waste management, product policy and chemical safety. The objectives of the WEEE Directive and the specific targets for use and recycling of appliances are not consistent. There is no focus on scarce resources. Extended producer responsibility is not sufficient to guarantee sustainable waste management. Waste management reaches its limits due to problems of implementation but also due to physical laws. A holistic approach is necessary looking at all branch points and sinks in the stream of used products and waste from electric and electronic equipment. This may be done with respect to the general rules for sustainable management of material streams covering the three dimensions of sustainable policy. The relationships between the players in the field of electric and electronic devices have to be taken into account. Most of the problems identified in the implementation process will not be solved by the current amendment of the WEEE Directive.

  16. Integrated three-dimensional module heat exchanger for power electronics cooling

    SciTech Connect

    Bennion, Kevin; Lustbader, Jason

    2013-09-24

    Embodiments discussed herein are directed to a power semiconductor packaging that removes heat from a semiconductor package through one or more cooling zones that are located in a laterally oriented position with respect to the semiconductor package. Additional embodiments are directed to circuit elements that are constructed from one or more modular power semiconductor packages.

  17. 49 CFR 1104.1 - Address, identification, and electronic filing option.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... electronically filing (e-filing) certain types of pleadings and documents instead of filing paper copies. Details... applicable to filing of paper copies will not apply to the e-filed pleadings and documents (these... of compact disks or floppy diskettes for documents of 20 pages or more, signature “in ink,”...

  18. Storage Technology: A Review of Options and Their Implications for Electronic Publishing.

    ERIC Educational Resources Information Center

    Arnold, Stephen E.

    1991-01-01

    Describes computer storage devices and suggests implications for electronic publishing. Highlights include magnetic storage media, including digital audio tape (DAT); high-capacity magnetic drives; optical storage technologies, including CD-ROM and WORM; magneto-optical drives; and a sidebar that discusses other storage technologies. (21…

  19. Novel treatment options for nonmelanoma skin cancer: focus on electronic brachytherapy

    PubMed Central

    Kasper, Michael E; Chaudhary, Ahmed A

    2015-01-01

    Nonmelanoma skin cancer (NMSC) is an increasing health care issue in the United States, significantly affecting quality of life and impacting health care costs. Radiotherapy has a long history in the treatment of NMSC. Shortly after the discovery of X-rays and 226Radium, physicians cured patients with NMSC using these new treatments. Both X-ray therapy and brachytherapy have evolved over the years, ultimately delivering higher cure rates and lower toxicity. Electronic brachytherapy for NMSC is based on the technical and clinical data obtained from radionuclide skin surface brachytherapy and the small skin surface applicators developed over the past 25 years. The purpose of this review is to introduce electronic brachytherapy in the context of the history, data, and utilization of traditional radiotherapy and brachytherapy. PMID:26648763

  20. Staging Options for the Air Force’s Electronic Combat Test Capability: a Cost Analysis

    DTIC Science & Technology

    1990-09-01

    strategic in nature and completely different than daily operating decisions (20:6). Horngren , in his book Cost Accounting: A Managerial Emphasis...capital projects (5). The net present value model is also referred to as the discounted cash-flow model. Horngren states that "[blecause the discounted...Office, September 1986. 10. Fletcher, Capt Charles D. Design Reguirements for a Decision Suport System for the Dynamic Retasking of Electronic Combat

  1. Improvement of cooling performance for electronic devices by nucleate boiling of immisible mixtures

    NASA Astrophysics Data System (ADS)

    Okayama, Satoshi; Iwata, Keisuke; Shinmoto, Yasuhisa; Ohta, Haruhiko

    2016-09-01

    The employment of immiscible mixtures in nucleate boiling improves the cooling performance drastically. Increase of CHF is possible by high subcooling of less-volatile liquid compressed by high-vapor pressure of more-volatile component. In addition, the reduction of surface temperature from that of pure less-volatile liquid is resulted from the co-existed vapor of more-volatile component. And the increase of pressure above the atmospheric keeping low liquid temperature is possible to prevent the mixing of incondensable gases. Furthermore, boiling can be initiated at lower surface temperature, which is required for the cooling of e.g. automobile inverters accompanied by large variation of thermal load. The performance of immiscible mixtures in nucleate boiling are summarized with reference to new data for Novec7100/water and FC72/ethanol and existing data obtained by the present authors.

  2. Thermal Analysis and Design of Air Cooled Electronic Circuit Boards Using a Desktop Computer.

    DTIC Science & Technology

    1980-06-01

    tabular and graphical. By using internal selection of heat transfer corre- lations, the THERMELEX system depends only on input of physical parameters...only on input of physical parameters for thermal predictions. 4 TABLE OF CONTENTS I. INTRODUCTION---------------------------------------- 13 A...depending only on natural circulation for cooling. The major emphasis over the last 15 years has been a continuing effort toward a reduction in physical

  3. The relative risk of police use-of-force options: evaluating the potential for deployment of electronic weaponry.

    PubMed

    Jenkinson, Emma; Neeson, Clare; Bleetman, Anthony

    2006-07-01

    An electronic weapon, the Taser M26, has recently entered the use-of-force continuum for police officers in England and Wales and is currently licensed for use by authorised firearms officers only. The aim of this report was to assess the relative risk of injury to officers and subjects of police use-of-force options and to evaluate whether the current positioning of the M26 in the use-of-force hierarchy is appropriate. We analysed use-of-force data from Northamptonshire Police Force and M26 field use data from TASER International. We found officer injury rates associated with M26 deployment were lower than those for CS spray and baton use. Subject injury rates were lower in M26 deployment than in deployment of CS spray, batons or police dogs. We suggest that the M26 should be made more widely available to police officers in the UK.

  4. Spectroscopic parameters of the low-lying electronic states and laser cooling feasibility of NH+ cation and NH- anion

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Qing; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2017-10-01

    The potential energy curves and transition dipole moments of 12Σ+, 22Σ+, 12Π and 22Π states of NH+ cation and NH- anion are calculated by using multi-reference configuration interaction method and large all-electron basis sets. Based on the obtained potential energy curves, the rotational and vibrational energy levels of the states are obtained by solving the Schrödinger equation of nuclear movement. The calculated spectroscopic parameters for NH+ cation and NH- anion are in good agreement with available theoretical and experimental results. The spin orbit coupling effect of the 2Π states for both NH+ cation and NH- anion are calculated. The feasibility of laser cooling of the two molecules is examined by using the results of the molecular structure and spectroscopy. The highly diagonal Franck-Condon factors for the 12Π (v″ = 0) ↔ 12Σ+ (v‧ = 0) transition of NH+ and NH- are 0.821 and 0.999, while the radiative lifetimes of the 12Σ+ (v‧ = 0) state for the two molecules are 384 ns and 52.4 ns, respectively. The results indicate that NH+ cation and NH- anion are good candidate molecules for laser cooling. The cooling scheme via Sisyphus process for the NH+ cation and NH- anion are proposed in the paper. The laser wavelengths for the close cycles of the absorption and radiation are also determined. Unfortunately, the potential energy curve of the ground state of the neutral NH molecule shows that the auto-detachment of NH- anion is possible, implying the optical scheme of laser cooling for NH- anion is not easy to achieve in the experiment although it has larger Franck-Condon factor.

  5. Spectroscopic parameters of the low-lying electronic states and laser cooling feasibility of NH(+) cation and NH(-) anion.

    PubMed

    Zhang, Qing-Qing; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2017-10-05

    The potential energy curves and transition dipole moments of 1(2)Σ(+), 2(2)Σ(+), 1(2)Π and 2(2)Π states of NH(+) cation and NH(-) anion are calculated by using multi-reference configuration interaction method and large all-electron basis sets. Based on the obtained potential energy curves, the rotational and vibrational energy levels of the states are obtained by solving the Schrödinger equation of nuclear movement. The calculated spectroscopic parameters for NH(+) cation and NH(-) anion are in good agreement with available theoretical and experimental results. The spin orbit coupling effect of the (2)Π states for both NH(+) cation and NH(-) anion are calculated. The feasibility of laser cooling of the two molecules is examined by using the results of the molecular structure and spectroscopy. The highly diagonal Franck-Condon factors for the 1(2)Π (v″=0)↔1(2)Σ(+) (v'=0) transition of NH(+) and NH(-) are 0.821 and 0.999, while the radiative lifetimes of the 1(2)Σ(+) (v'=0) state for the two molecules are 384ns and 52.4ns, respectively. The results indicate that NH(+) cation and NH(-) anion are good candidate molecules for laser cooling. The cooling scheme via Sisyphus process for the NH(+) cation and NH(-) anion are proposed in the paper. The laser wavelengths for the close cycles of the absorption and radiation are also determined. Unfortunately, the potential energy curve of the ground state of the neutral NH molecule shows that the auto-detachment of NH(-) anion is possible, implying the optical scheme of laser cooling for NH(-) anion is not easy to achieve in the experiment although it has larger Franck-Condon factor. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Theoretical electronic structure of the molecule SrCl for the feasibility of laser cooling

    NASA Astrophysics Data System (ADS)

    Rafei, B.; Younes, G.; Korek, M.

    2017-07-01

    Electronic structure of the molecule SrCl has been investigated by employing the ab initio methods CASSCF/MRCI+Q with Davidson correction in the representation 2s+1Λ±, neglecting spin-orbit effects, and using the computational program Molpro. The potential energy curves of the low-lying doublet and quartet electronic states have been investigated. The harmonic vibrational wave number ωe, the relative electronic energy Te, referred to the ground state, the rotational constant Be and the equilibrium internuclear distance Re, have been calculated for the investigated electronic states. Moreover, the static dipolar moments have been determined in term of the internuclear distance Re.

  7. Experimental investigation on flow and heat transfer performance of a novel heat fin-plate radiator for electronic cooling

    NASA Astrophysics Data System (ADS)

    Peng, Hao; Ling, Xiang

    2009-10-01

    Within the electronics industry, high degree of integration and enhanced performance has led to high heat dissipation electronic devices. This has identified the future development of very high heat flux components. In this paper, a novel and high efficient diffusion welded heat fin-plate radiator (HFPR) was proposed and designed. Various parameters affect the thermal performance of HFPR. The effect of three parameters: the working fluid filling ratios (8% < FR < 70%), the vacuum degrees (0.001 Pa < VD < 0.1 Pa), and the air flow velocities (0.5 m/s < u < 6 m/s) were investigated experimentally. Using distilled water and ethanol as working fluids, a series of tests were carried out to find the influence of the above parameters on steady-state heat transfer characteristics of HFPR. The experimental results indicated that the filling ratio and vacuum degree had a significant influence on thermal performance of HFPR. Also compared with cooling performance using distilled water and ethanol, the HFPR cooling component using distilled water had a stronger heat dissipation capacity for the same filling ratio. The results also can provide a basis for optimal design of HFPR structure.

  8. Ultrafast Relaxation Dynamics of Photoexcited Heme Model Compounds: Observation of Multiple Electronic Spin States and Vibrational Cooling.

    PubMed

    Govind, Chinju; Karunakaran, Venugopal

    2017-04-13

    Hemin is a unique model compound of heme proteins carrying out variable biological functions. Here, the excited state relaxation dynamics of heme model compounds in the ferric form are systematically investigated by changing the axial ligand (Cl/Br), the peripheral substituent (vinyl/ethyl-meso), and the solvent (methanol/DMSO) using femtosecond pump-probe spectroscopy upon excitation at 380 nm. The relaxation time constants of these model compounds are obtained by global analysis. Excited state deactivation pathway of the model compounds comprising the decay of the porphyrin excited state (S*) to ligand to metal charge transfer state (LMCT, τ1), back electron transfer from metal to ligand (MLCT, τ2), and relaxation to the ground state through different electronic spin states of iron (τ3 and τ4) are proposed along with the vibrational cooling processes. This is based on the excited state absorption spectral evolution, similarities between the transient absorption spectra of the ferric form and steady state absorption spectra of the low-spin ferrous form, and the data analysis. The observation of an increase of all the relaxation time constants in DMSO compared to the methanol reflects the stabilization of intermediate states involved in the electronic relaxation. The transient absorption spectra of met-myoglobin are also measured for comparison. Thus, the transient absorption spectra of these model compounds reveal the involvement of multiple iron spin states in the electronic relaxation dynamics, which could be an alternative pathway to the ground state beside the vibrational cooling processes and associated with the inherent features of the heme b type.

  9. Super-Planckian Electron Cooling in a van der Waals Stack

    NASA Astrophysics Data System (ADS)

    Principi, Alessandro; Lundeberg, Mark B.; Hesp, Niels C. H.; Tielrooij, Klaas-Jan; Koppens, Frank H. L.; Polini, Marco

    2017-03-01

    Radiative heat transfer (RHT) between macroscopic bodies at separations that are much smaller than the thermal wavelength is ruled by evanescent electromagnetic modes and can be orders of magnitude more efficient than its far-field counterpart, which is described by the Stefan-Boltzmann law. In this Letter, we present a microscopic theory of RHT in van der Waals stacks comprising graphene and a natural hyperbolic material, i.e., hexagonal boron nitride (hBN). We demonstrate that RHT between hot carriers in graphene and hyperbolic phonon polaritons in hBN is extremely efficient at room temperature, leading to picosecond time scales for the carrier cooling dynamics.

  10. Super-Planckian Electron Cooling in a van der Waals Stack.

    PubMed

    Principi, Alessandro; Lundeberg, Mark B; Hesp, Niels C H; Tielrooij, Klaas-Jan; Koppens, Frank H L; Polini, Marco

    2017-03-24

    Radiative heat transfer (RHT) between macroscopic bodies at separations that are much smaller than the thermal wavelength is ruled by evanescent electromagnetic modes and can be orders of magnitude more efficient than its far-field counterpart, which is described by the Stefan-Boltzmann law. In this Letter, we present a microscopic theory of RHT in van der Waals stacks comprising graphene and a natural hyperbolic material, i.e., hexagonal boron nitride (hBN). We demonstrate that RHT between hot carriers in graphene and hyperbolic phonon polaritons in hBN is extremely efficient at room temperature, leading to picosecond time scales for the carrier cooling dynamics.

  11. Gender preferences among electronic healthcare options: choices concerning neonatal care among professionals.

    PubMed

    Smith, Alan D; Smith, Amber A

    2009-01-01

    Technological advancements have migrated from personal-use electronics into the healthcare setting for security enhancements. Within maternity ward and nurseries, technology was seen as one of best way to protect newborns from abduction. Through hypothesis-testing and exploratory analysis, gender biases and extremely high levels of security were found within a web-enabled and professional sample of 200 respondents. As evident in the hypothesis-testing and exploratory aspects of the present study, security of neonatal care is paramount and people are willing to select a healthcare provider based on their reputation in providing technological solutions to the issue of security. For females, they were statistically more concerned than males with the 11 major independent variables that made up the Hospital Security System (HSS) factor-based construct, such as changes in hospital security and creation of software/hardware packages and technology being used to protect infants comforts the expecting patients. Although there were significant differences among gender concerning the degree of support for HSS-related applications, such technology-based systems were on top of the list in the factor analysis as the most important factor in selecting a hospital for expecting parents to give birth.

  12. Shaping of nested potentials for electron cooling of highly-charged ions in a cooler Penning trap

    NASA Astrophysics Data System (ADS)

    Paul, Stefan; Kootte, Brian; Lascar, Daniel; Gwinner, Gerald; Dilling, Jens; Titan Collaboration

    2016-09-01

    TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN) is dedicated to mass spectrometry and decay spectroscopy of short-lived radioactive nuclides in a series of ion traps including a precision Penning trap. In order to boost the achievable precision of mass measurements TITAN deploys an Electron Beam Ion Trap (EBIT) providing Highly-Charged Ions (HCI). However, the charge breeding process in the EBIT leads to an increase in the ion bunch's energy spread which is detrimental to the overall precision gain. To reduce this effect a new cylindrical Cooler PEnning Trap (CPET) is being commissioned to sympathetically cool the HCI via a simultaneously trapped electron plasma. Simultaneous trapping of ions and electrons requires a high level of control over the nested potential landscape and sophisticated switching schemes for the voltages on CPET's multiple ring electrodes. For this purpose, we are currently setting up a new experimental control system for multi-channel voltage switching. The control system employs a Raspberry Pi communicating with a digital-to-analog board via a serial peripheral interface. We report on the implementation of the voltage control system and its performance with respect to electron and ion manipulation in CPET. University of British Columbia, Vancouver, BC, Canada.

  13. Optimized Supercritical Fluid Refrigeration Cycle for Venus Lander Payload Electronics Active Cooling

    NASA Astrophysics Data System (ADS)

    Anderson, K. R.; McNamara, C.; Gatti, A.; Guererro, J.

    2017-05-01

    This paper presents an active electronics thermal control system allowing for continuous operation of instruments for Venus lander missions. The thermal control system uses supercritical fluids cascaded and optimized for minimum compressor power.

  14. Contributions to the second workshop on medium energy electron cooling - MEEC96

    SciTech Connect

    MacLachlan, J.

    1997-09-01

    MEEC96 was a workshop devoted primarily to discussion within four working groups, not a mini-conference of prepared reports. Therefore, although there are contributions bearing the name of a single author, much of what was learned came in extemporaneous discussion of the issues posed to the participants. The original plan to produce formal proceedings has been dropped because of the limited number of participants willing to write up their own contributions and because of the difficulty of converting free-wheeling discussion to the written word. The premsise for the 1996 gathering was to set a critique of Fermilab`s R&D effort at cooling a ring of 8 GeV {bar p}`s. Separate abstracts have been submitted to the energy database for contributions to this workshop.

  15. Development of an electric field application system with transparent electrodes towards the electron EDM measurement with laser-cooled Fr atoms

    NASA Astrophysics Data System (ADS)

    Ishikawa, Taisuke; Ando, Shun; Aoki, Takahiro; Arikawa, Hiroshi; Harada, Ken-Ichi; Hayamizu, Tomohiro; Inoue, Takeshi; Itoh, Masatoshi; Kawamura, Hirokazu; Kato, Ko; Sakamoto, Kosuke; Uchiyama, Aiko; Sakemi, Yasuhiro

    2014-09-01

    The permanent electric dipole moment (EDM) of elementary particles is a good probe for new physics beyond the standard model. Since the francium (Fr) atom has a large enhancement factor of the electron EDM and laser-cooled atoms can have long coherence times, we plan to utilize laser-cooled Fr atoms for the electron EDM search experiment. Besides, a strong electric field is one of key issues for the EDM experiment. Recently, we have embarked on a development of the electric field application system with transparent electrodes coated by tin-doped indium oxide (ITO). The ITO electrodes break the difficulty in the coexistence of electrodes with several cooling laser lights. The actual electric field applied to the atom is evaluated by measuring the dc Stark shift for the laser-cooled rubidium atoms. In this presentation, the present status of the electric field application system will be reported. The permanent electric dipole moment (EDM) of elementary particles is a good probe for new physics beyond the standard model. Since the francium (Fr) atom has a large enhancement factor of the electron EDM and laser-cooled atoms can have long coherence times, we plan to utilize laser-cooled Fr atoms for the electron EDM search experiment. Besides, a strong electric field is one of key issues for the EDM experiment. Recently, we have embarked on a development of the electric field application system with transparent electrodes coated by tin-doped indium oxide (ITO). The ITO electrodes break the difficulty in the coexistence of electrodes with several cooling laser lights. The actual electric field applied to the atom is evaluated by measuring the dc Stark shift for the laser-cooled rubidium atoms. In this presentation, the present status of the electric field application system will be reported. This work is supported by Grants-in-Aid for Scientific Research (No. 26220705) and Tohoku University's Focused Research Project.

  16. Toward sub-Kelvin resistive cooling and non destructive detection of trapped non-neutral electron plasma

    NASA Astrophysics Data System (ADS)

    Di Domizio, S.; Krasnický, D.; Lagomarsino, V.; Testera, G.; Vaccarone, R.; Zavatarelli, S.

    2015-01-01

    A resonant circuit tuned to a particular frequency of the motion of charged particles stored in a Penning trap and connected to a low noise amplifier allows, at the same time, cooling and non destructive detection of the particles. Its use is widely diffused when single or few particles are stored near the centre of a hyperbolic Penning trap. We present a consistent model that predicts the shape of the induced signal when the tuned circuit is used to detect and cool the axial motion of a cold non neutral plasma stored in an open-ended cylindrical Penning trap. The model correctly accounts for the not negligible axial plasma size. We show that the power spectrum of the signal measured across the tuned circuit provides information about the particle number and insights about the plasma temperature. We report on the design of a HEMT-based cryogenic amplifier working at 14.4 MHz and 4.2 K and the results of the noise measurements. We have measured a drain current noise in the range from 6 to 17 pA/√Hz, which corresponds to an increase of the tuned circuit equivalent temperature of at maximum 0.35 K. The cryogenic amplifier has a very low power consumption from few tens to few hundreds of μW corresponding to a drain current in the range 100-800 μ A. An additional contribution due to the gate noise has been identified when the drain current is below 300 μA above that value an upper limit of the increase of the equivalent tuned circuit temperature due to this contribution of 0.02 K has been obtained. These features make the tuned circuit connected to this amplifier a promising device for detecting and cooling the axial motion of an electron plasma when the Penning trap is mounted inside a dilution refrigerator.

  17. The low-lying electronic states and optical schemes for the laser cooling of the BH+ and BH- ions

    NASA Astrophysics Data System (ADS)

    Zhang, Qing-Qing; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2017-07-01

    The potential energy curves and transition dipole moments for the 12Σ+, 22Σ+, 12Π and 22Π electronic states of the two molecules are calculated using multi-reference configuration interaction and the large basis sets aug-cc-pwCV5Z. Based on the obtained potential energy curves, the rotational and vibrational energy levels of the states are obtained by solving the Schrödinger equation of nuclear motion, and the spectroscopic parameters are then obtained by fitting the energy levels to Dunham series expansions. The spin-orbit coupling effect of the 2Π states for both the BH+ cation and BH- anion are calculated. Highly diagonally distributed Franck-Condon factors are determined for the 12Σ+ (v″ = 0) ↔ 12Π (v‧ = 0) transition, ƒ00 (BH+) = 0.943, while the Franck-Condon factors for the 12Π (v″ = 0) ↔ 12Σ+ (v‧ = 0) transition is ƒ00 (BH-) = 0.942. Moreover, the radiative lifetime of 38.2 ns for the excited 12Π state of the BH+ and 91.8 ns for the 12Σ+ state of the BH- are obtained, which are short enough for rapid laser cooling. A three-step optical scheme of the laser cooling is constructed for either the BH+ cation or the BH- anion.

  18. The low-lying electronic states and optical schemes for the laser cooling of the BH(+) and BH(-) ions.

    PubMed

    Zhang, Qing-Qing; Yang, Chuan-Lu; Wang, Mei-Shan; Ma, Xiao-Guang; Liu, Wen-Wang

    2017-07-05

    The potential energy curves and transition dipole moments for the 1(2)Σ(+), 2(2)Σ(+), 1(2)Π and 2(2)Π electronic states of the two molecules are calculated using multi-reference configuration interaction and the large basis sets aug-cc-pwCV5Z. Based on the obtained potential energy curves, the rotational and vibrational energy levels of the states are obtained by solving the Schrödinger equation of nuclear motion, and the spectroscopic parameters are then obtained by fitting the energy levels to Dunham series expansions. The spin-orbit coupling effect of the (2)Π states for both the BH(+) cation and BH(-) anion are calculated. Highly diagonally distributed Franck-Condon factors are determined for the 1(2)Σ(+) (v″=0)↔1(2)Π (v'=0) transition, ƒ00 (BH(+))=0.943, while the Franck-Condon factors for the 1(2)Π (v″=0)↔1(2)Σ(+) (v'=0) transition is ƒ00 (BH(-))=0.942. Moreover, the radiative lifetime of 38.2ns for the excited 1(2)Π state of the BH(+) and 91.8ns for the 1(2)Σ(+) state of the BH(-) are obtained, which are short enough for rapid laser cooling. A three-step optical scheme of the laser cooling is constructed for either the BH(+) cation or the BH(-) anion. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. The cooling of particle beams

    SciTech Connect

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling.

  20. Neutrinos from SN 1987A - Implications for cooling of the nascent neutron star and the mass of the electron antineutrino

    NASA Technical Reports Server (NTRS)

    Loredo, Thomas J.; Lamb, Don Q.

    1989-01-01

    Data on neutrinos from SN 1987A are compared here with parameterized models of the neutrino emission using a consistent and straightforward statistical methodology. The empirically measured detector background spectra are included in the analysis, and the data are compared with a much wider variety of neutrino emission models than was explored previously. It is shown that the inferred neutrino emission model parameters are strongly correlated. The analysis confirms that simple models of the neutrino cooling of the nascent neutron star formed by the SN adequately explain the data. The inferred radius and binding energy of the neutron star are in excellent agreement with model calculations based on a wide range of equations of state. The results also raise the upper limit of the electron antineutrino rest mass to roughly 25 eV at the 95 percent confidence level, roughly 1.5-5 times higher than found previously.

  1. On the use of a small-scale two-phase thermosiphon to cool high-power electronics

    NASA Astrophysics Data System (ADS)

    Schrage, D. S.

    1990-01-01

    An experimental and analytical investigation of the steady-state thermal-hydraulic operating characteristics of a small-scale two-phase thermosiphon cooling actual power electronics are presented. Boiling heat transfer coefficients and circulation mass velocities were measured while varying heat load and pressure. Both a plain and augmented riser structure, utilizing micro-fins and reentrant cavities, were simultaneously tested. The boiling heat transfer coefficients increased with both increasing heat load and pressure. The mass velocity increased with increasing pressure while both increasing and then decreasing with increasing heat load. The reentrant cavity enhancement factor, a ratio of the augmented-to-plain riser nucleate boiling heat transfer coefficients, ranged from 1 to 1.4. High-speed photography revealed bubbly, slug, churn, wispy-annular and annular flow patterns. The experimental mass velocity and heat transfer coefficient data were compared to an analytical model with average absolute deviations of 16.3 and 26.3 percent, respectively.

  2. Neutrinos from SN 1987A - Implications for cooling of the nascent neutron star and the mass of the electron antineutrino

    NASA Technical Reports Server (NTRS)

    Loredo, Thomas J.; Lamb, Don Q.

    1989-01-01

    Data on neutrinos from SN 1987A are compared here with parameterized models of the neutrino emission using a consistent and straightforward statistical methodology. The empirically measured detector background spectra are included in the analysis, and the data are compared with a much wider variety of neutrino emission models than was explored previously. It is shown that the inferred neutrino emission model parameters are strongly correlated. The analysis confirms that simple models of the neutrino cooling of the nascent neutron star formed by the SN adequately explain the data. The inferred radius and binding energy of the neutron star are in excellent agreement with model calculations based on a wide range of equations of state. The results also raise the upper limit of the electron antineutrino rest mass to roughly 25 eV at the 95 percent confidence level, roughly 1.5-5 times higher than found previously.

  3. Photodetachment, electron cooling, and recombination, in a series of neat aliphatic room temperature ionic liquids.

    PubMed

    Molins i Domenech, Francesc; Healy, Andrew T; Blank, David A

    2015-08-14

    Transient absorption following photodetachment of a series of neat methyl-alkyl-pyrrolidinium bis(trifluoromethylsulfonyl)amides at 6.20 eV was measured with sub-picosecond time resolution in the visible and near-IR portions of the spectrum. This series spans the onset of structuring in the liquids in the form of polarity alternation. Excitation promotes the electron into a delocalized state with a very large reactive radius. Strong transient absorption is observed in the visible spectrum with a ∼700 fs lifetime, and much weaker, long-lived absorption is observed in the near-IR spectrum. Absorption in the visible is shown to be consistent with the hole, and absorption in the near-IR is assigned to the free solvated electron. Yield of free electrons is estimated at ∼4%, is insensitive to the size of the cation, and is determined in less than 1 ps. Solvation of free electrons depends strongly on the size of the cation and correlates well with the viscosity of the liquid. In addition to radiolytic stability of the aliphatic cations, ultrafast, efficient recombination of separated charge in NTf2 (-) based ionic liquids following photo-excitation near the band-gap may prevent subsequent reactive damage associated with anions.

  4. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    SciTech Connect

    Grapes, Michael D.; LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H.; Friedman, Lawrence H.; LaVan, David A.; Weihs, Timothy P.

    2014-08-15

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  5. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling.

    PubMed

    Grapes, Michael D; LaGrange, Thomas; Friedman, Lawrence H; Reed, Bryan W; Campbell, Geoffrey H; Weihs, Timothy P; LaVan, David A

    2014-08-01

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns-500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10(2) K/s-10(5) K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  6. Dynamic changes of emitting electron distribution in the jet of 3C 279: signatures of acceleration and cooling

    NASA Astrophysics Data System (ADS)

    Yan, Dahai; He, Jianjian; Liao, Jinyuan; Zhang, Li; Zhang, Shuang-Nan

    2016-02-01

    We study the dynamic changes of electron energy distribution (EED) through systematically analysing the quasi-simultaneous spectral energy distributions (SEDs) of the flat spectrum radio quasar 3C 279 in different states. With Markov chain Monte Carlo technique we model fourteen SEDs of 3C 279 using a leptonic model with a three-parameter log-parabola EED. The 14 SEDs can be satisfactorily fitted with the one-zone leptonic model. The observed γ rays in 13 states are attributed to Compton scattering of external infrared photons from a surrounding dusty torus. The curved γ ray spectrum observed during 2014 2-8 April is well explained by the external Compton of dust radiation. It is found that there is a clear positive correlation between the curvature parameter b of the EED and the electron peak energy γ ^' }_pk. No significant correlation between b and the synchrotron peak frequency νs is found, due to the varied product of Doppler factor and fluid magnetic field from state to state. We interpret the correlation of b-γ ^' }_pk in a stochastic acceleration scenario. This positive correlation is in agreement with the prediction in the stage when the balance between acceleration and radiative cooling of the electrons is nearly established in the case of the turbulence spectral index q = 2.

  7. Fact Sheet on Revisions to the Clean Air Act Section 110 Submission Requirements for State Implementation Plans and Notice of Availability of an Option for Electronic Reporting

    EPA Pesticide Factsheets

    On February 3, 2015, the U.S. Environmental Protection Agency notified state, local and tribal air agencies that they have the option to submit state implementation plans (SIPs) using the EPA’s new electronic web-based SIP (eSIP) submission system.

  8. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    SciTech Connect

    Lu, W. Sun, L. T.; Qian, C.; Feng, Y. C.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Zhao, H. W.; Guo, J. W.; Fang, X.; Yang, Y.; Xiong, B.; Guo, S. Q.; Ruan, L.

    2015-04-15

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months’ commissioning, some outstanding results have been achieved, such as 1.97 emA of O{sup 6+}, 1.7 emA of Ar{sup 8+}, 1.07 emA of Ar{sup 9+}, and 118 euA of Bi{sup 28+}. The source has also successfully delivered O{sup 5+} and Ar{sup 8+} ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  9. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics

    NASA Astrophysics Data System (ADS)

    Lu, W.; Sun, L. T.; Qian, C.; Guo, J. W.; Fang, X.; Feng, Y. C.; Yang, Y.; Ma, H. Y.; Zhang, X. Z.; Ma, B. H.; Xiong, B.; Guo, S. Q.; Ruan, L.; Zhao, H. W.

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O6+, 1.7 emA of Ar8+, 1.07 emA of Ar9+, and 118 euA of Bi28+. The source has also successfully delivered O5+ and Ar8+ ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  10. The development of a room temperature electron cyclotron resonance ion source (Lanzhou electron cyclotron resonance ion source No. 4) with evaporative cooling technology at Institute of Modern Physics.

    PubMed

    Lu, W; Sun, L T; Qian, C; Guo, J W; Fang, X; Feng, Y C; Yang, Y; Ma, H Y; Zhang, X Z; Ma, B H; Xiong, B; Guo, S Q; Ruan, L; Zhao, H W

    2015-04-01

    LECR4 (Lanzhou electron cyclotron resonance ion source No. 4) has been successfully constructed at IMP and has also been connected with the Low Energy Beam Transport (LEBT) and Radio Frequency Quadrupole (RFQ) systems. These source magnet coils are cooled through evaporative cooling technology, which is the first attempt with an ECR ion source in the world. The maximum mirror field is 2.5 T (with iron plug) and the effective plasma chamber volume is 1.2 l. It was designed to be operated at 18 GHz and aimed to produce intense multiple charge state heavy ion beams for the linear injector project SSC-Linac at IMP. In February 2014, the first analyzed beam at 18 GHz was extracted. During about three months' commissioning, some outstanding results have been achieved, such as 1.97 emA of O(6+), 1.7 emA of Ar(8+), 1.07 emA of Ar(9+), and 118 euA of Bi(28+). The source has also successfully delivered O(5+) and Ar(8+) ion beams for RFQ commissioning in April 2014. This paper will give a brief overview of the design of LECR4. Then, the latest results of this source at 18 GHz will be presented.

  11. Do Type III-associated Escaping Electron Beams Cool The Corona?

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, Pascal; Wang, L.; Christe, S. D.; Vilmer, N.; Kerdraon, A.; Lin, R. P.

    2012-05-01

    A recent study of decimetric Type III radio burst emission from data from the Nancay Radio Heliograph (NRH) will be presented. It examined sizes, locations, and fluxes of close to 10'000 decimetric Type III bursts. The flux study suggests that electron beams related to Type III emission could be responsible for carrying energy away from the corona in a proportion similar to that of EUV nanoflare heating. This tentative conclusion was reached from comparing Type III dN/dS distributions to the dN/dS of EUV/SXR nano-/micro-flares. The biggest uncertainty is the radiative efficiency, i.e. the ratio of radiated energy in decimetric Type III bursts and the energy of the electrons in the beams associated with them. We will constrain this value through other, new observations: we have already computed the amount of Type III radiated energy from NRH observations, and we will now compare them with the amount of energy in the corresponding beam electron detected in-situ by the Wind spacecraft. Given our sample of close to 10'000 decimetric Type IIIs, we expect a decent amount of in-situ beam energy estimates from magnetically connected events. Moreover, we will compare with X-ray-derived energies from corresponding RHESSI (micro)flares, when such an association exists.

  12. "Do Type III-associated escaping electron beams cool the corona?"

    NASA Astrophysics Data System (ADS)

    Saint-Hilaire, P.; Wang, L.; Vilmer, N.; Kerdraon, A.

    2012-12-01

    A recent study of decimetric Type III radio burst emission from data from the Nancay Radio Heliograph will be presented. It examined sizes, locations, and fluxes of close to 10'000 decimetric Type III bursts. The flux study suggests that electron beams related to Type III emission could be responsible for carrying energy away from the corona in a proportion similar to EUV nanoflares. This tentative conclusion was reached from comparing Type III dN/dS distributions to the dN/dS of EUV/SXR nano-/micro-flares. The biggest uncertainty is the radiative efficiency, i.e. the ratio of radiated energy in decimetric Type III bursts and the energy of the electrons in the beams associated with them. We will constrain this value through other, new observations: we have already computed the amount of Type III radiated energy from NRH observations, and we will now compare them with the amount of energy in the corresponding beam electron detected in-situ by the Wind spacecraft. Given our sample of close to 10'000 decimetric Type IIIs, we expect a decent amount of in-situ beam energy estimates from magnetically connected events. Moreover, we will compare with X-ray-derived energies from corresponding RHESSI (micro)flares, when such an association exists.

  13. Enhancement of Natural Convection by Carbon Nanotube Films Covered Microchannel-Surface for Passive Electronic Cooling Devices.

    PubMed

    Zhang, Guang; Jiang, Shaohui; Yao, Wei; Liu, Changhong

    2016-11-16

    Owing to the outstanding properties of thermal conduction, lightweight, and chemical durability, carbon nanotubes (CNTs) have revealed promising applications in thermal management materials. Meanwhile, the increasingly popular portable electronics and the rapid development of space technology need lighter weight, smaller size, and more effective thermal management devices. Here, a novel kind of heat dissipation devices based on the superaligned CNT films and underlying microchannels is proposed, and the heat dissipation properties are measured at the natural condition. Distinctive from previous studies, by combining the advantages of microchannels and CNTs, such a novel heat dissipation device enables superior natural convection heat transfer properties. Our findings prove that the novel CNT-based devices could show an 86.6% larger total natural heat dissipation properties than bare copper plate. Further calculations of the radiation and natural convection heat transfer properties demonstrate that the excellent passive cooling properties of these CNT-based devices are primarily caused by the reinforcement of the natural convection heat transfer properties. Furthermore, the heat dissipation mechanisms are briefly discussed, and we propose that the very high heat transfer coefficients and the porous structures of superaligned CNT films play critical roles in reinforcing the natural convection. The novel CNT-based heat dissipation devices also have advantages of energy-saving, free-noise, and without additional accessories. So we believe that the CNT-based heat dissipation devices would replace the traditional metal-finned heat dissipation devices and have promising applications in electronic devices, such as photovoltaic devices, portable electronic devices, and electronic displays.

  14. Precise convective cooling simulation of electronic equipment under various g-conditions

    NASA Astrophysics Data System (ADS)

    Adam, Johannes; Stuempel, Dieter; Rath, Michael

    1991-12-01

    Using the thermohydraulic code 'THEBES' a three dimensional flow analysis of a Spacelab rack under forced convection and a combined convective, conductive and radiative analysis of a closed electronic box under various g conditions are presented. The capabilities and features of THEBES are described. The motivation to extend the thermal analysis cycle for better treatment of fluid flow and solid to air heat transfer is discussed. It is proposed to include THEBES in a thermal analysis toolsat and present a concept for integration of THEBES with ESABASE.

  15. Measuring the electron electric dipole moment using laser-cooled cesium atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Zhu, Kunyan

    Semiconductor photocatalysis is a dynamic field at the forefront of environmental and energy research. This dissertation has focused on the development of novel nanomaterials to exceed performance for environmental and energy related applications in both liquid and gas phases as compared to traditional materials. This project investigated the impact of size of noble metal clusters on photocatalytic activity induced by UV and visible light. Compared to larger particles, sub-nanometer particles have shown much better activity for catalytic reactions in both liquid and gas phases. These nanoclusters supported on various semiconductors, such as TiO2 and CdS showed outstanding catalytic properties for oxidation of phenol in gas phase, removal of NO2 from gas phase via both oxidation and reduction routes and hydrogen production from water. The catalytic activities of sub-nanometer particles were much higher than those of known commercially available catalysts. Overall, this project has provided the first ever demonstration of the unique properties of ultra-small nanoparticles in sub-nanometer range for photocatalytic applications. Additionally, this project has focused on utilization of novel nanostructures to provide a high surface area support for photocatalysts and to achieve better dispersion of nanoparticles. More specifically, this research has focused on a new generation of highly ordered mesoporous SBA-15 sieves, which have large pore diameter (22 nm) and short pore length (500 nm), which were subsequently templated to facilitate photo-oxidation reactions. In addition, this project has focused on inverse opal structures to facilitate a better light capture inside these 3D structures, which can potentially lead to enhancement of photocatalytic reactions. All catalysts and catalysts' precursors were characterized using high resolution electron microscopy (HR-EM), which included Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Scanning

  16. Neutrino signal of electron-capture supernovae from core collapse to cooling.

    PubMed

    Hüdepohl, L; Müller, B; Janka, H-T; Marek, A; Raffelt, G G

    2010-06-25

    An 8.8M{⊙} electron-capture supernova was simulated in spherical symmetry consistently from collapse through explosion to essentially complete deleptonization of the forming neutron star. The evolution time (∼9  s) is short because high-density effects suppress our neutrino opacities. After a short phase of accretion-enhanced luminosities (∼200  ms), luminosity equipartition among all species becomes almost perfect and the spectra of ν{e} and ν{μ,τ} very similar, ruling out the neutrino-driven wind as r-process site. We also discuss consequences for neutrino flavor oscillations.

  17. Neutrino Signal of Electron-Capture Supernovae from Core Collapse to Cooling

    SciTech Connect

    Huedepohl, L.; Mueller, B.; Janka, H.-T.; Marek, A.; Raffelt, G. G.

    2010-06-25

    An 8.8M{sub {center_dot}}electron-capture supernova was simulated in spherical symmetry consistently from collapse through explosion to essentially complete deleptonization of the forming neutron star. The evolution time ({approx}9 s) is short because high-density effects suppress our neutrino opacities. After a short phase of accretion-enhanced luminosities ({approx}200 ms), luminosity equipartition among all species becomes almost perfect and the spectra of {nu}{sub e} and {nu}{sub {mu},{tau}}very similar, ruling out the neutrino-driven wind as r-process site. We also discuss consequences for neutrino flavor oscillations.

  18. The recent and prospective developments of cooled IR FPAs for double application at Electron NRI

    NASA Astrophysics Data System (ADS)

    Arutunov, V. A.; Vasilyev, I. S.; Ivanov, V. G.; Prokofyev, A. E.

    2003-09-01

    The recent and prospective developments of monolithic silicon IR-Schottky-barrier staring focal plane arrays (IR SB FPAs), photodetector assembly, and digital thermal imaging cameras (TICs) at Electron National Research Institute (Electron NRI) are considered. Basic parameters for IR SB FPAs with 256x256 and 512x512 pixels, and TICs based on these arrays are presented. The problems emerged while proceeding from the developments of IR SB FPAs for the wavelength range from 3 μm to 5 μm to the developments of those ones for xLWIR range are indicated (an abrupt increase in the level of background architecture). Possibility for further improvement in basic parameters of IR SB FPAs are discussed (a decrease in threshold signal power down to 0.5-1.0"1013 W/element with an increase in quantum efficiency, a decrease in output noise and proceeding to Schottky barriers of degenerated semiconductor/silicon heterojunction, and implementation of these array parameters in photodetector assembly with improved thermal background shielding taking into consideration an optical structure of TIC for concrete application). It is concluded that relative simplicity of the technology and expected low cost of monolithic silicon IR SB FPAs with basic parameters compared with hybrid IR FPAs for the wavelength ranges from 3 μm to 5 μm and from 8 μm to 12 μm maintain large monolithic IR SB FPAs as a basis for developments of double application digital TICs in the Russian Federation.

  19. Cooling of Stored Beams

    SciTech Connect

    Mills, F.

    1986-06-10

    Beam cooling methods developed for the accumulation of antiprotons are being employed to assist in the performance of experiments in Nuclear and Particle Physics with ion beams stored in storage rings. The physics of beam cooling, and the ranges of utility of stochastic and electron cooling are discussed in this paper.

  20. Cooling and Laser-Induced Fluorescence of Electronically-Excited He2 in a Supersonic Microcavity Plasma Jet

    NASA Astrophysics Data System (ADS)

    Su, Rui; Mironov, Andrey; Houlahan, Thomas, Jr.; Eden, J. Gary; LaboratoryOptical Physics; Engineering Team

    2016-09-01

    Laser-induced fluorescence (LIF) resulting from transitions between different electronic states of helium dimers generated within a microcavity plasma jet was studied with rotational resolution. In particular, the d3Σu+ , e3Πg and f3Σu+ states, all having electronic energies above 24 eV, are populated by a microplasma in 4 bar of helium gas and rotationally cooled through supersonic expansion. Analysis of two dimensional maps (spectrograms) of dimer emission spectra as a function of distance from the nozzle orifice indicates collisional coupling during the expansion between the lowest rotational levels of the e3Πg , f3Σu+ states and high rotational levels (around N=11) of the d3Σu+ state (all of which are in the v = 0 vibrational state). In an attempt to verify the coupling, a scanning dye laser (centered near 596 nm) pumps the b3Πg -> f3Σu+ transition of the molecule several hundred micrometers downstream of the nozzle. As a result, the emission intensities of relevant rotational lines are observed to be enhanced. This research shows the potential of utilizing microcavity plasma jets as a tool to study and manipulate the collisional dynamics of highly-excited diatomic molecules.

  1. Liquid nitrogen cooled integrated power electronics module with high current carrying capability and lower on resistance

    NASA Astrophysics Data System (ADS)

    Ye, Hua; Lee, Changwoo; Simon, Randy W.; Haldar, Pradeep; Hennessy, Michael J.; Mueller, Eduard K.

    2006-11-01

    This letter presents the development of high-performance integrated cryogenic power modules, where both driver components and power metal-oxide semiconductor field-effect transistors are integrated in a single package, to be used in a 50kW prototype cryogenic inverter operating at liquid nitrogen temperature. The authors have demonstrated a compact high-voltage, cryogenic integrated power module that exhibited more than 14 times improvement in on-resistance and continuous current carrying capability exceeding 40A. The modules are designed to operate at liquid nitrogen temperature with extreme thermal cycling. The power electronic modules are necessary components that provide control and switching for second generation, yttrium barium copper oxide-based high temperature superconductor devices including cables, motors, and generators.

  2. Cooling in a compound bucket

    SciTech Connect

    Shemyakin, A.; Bhat, C.; Broemmelsiek, D.; Burov, A.; Hu, M.; /Fermilab

    2007-09-01

    Electron cooling in the Fermilab Recycler ring is found to create correlation between longitudinal and transverse tails of the antiproton distribution. By separating the core of the beam from the tail and cooling the tail using 'gated' stochastic cooling while applying electron cooling on the entire beam, one may be able to significantly increase the overall cooling rate. In this paper, we describe the procedure and first experimental results.

  3. Noise Temperature and IF Bandwidth of a 530 GHz Heterodyne Receiver Employing a Diffusion-Cooled Superconducting Hot-Electron Mixer

    NASA Technical Reports Server (NTRS)

    Skalare, A.; McGrath, W. R.; Bumble, B.; LeDuc, H. G.; Burke, P. J.; Verheijen, A. A.; Prober, D. E.

    1995-01-01

    We report on the first heterodyne measurements with a diffusion-cooled hot-electron bolometer mixer in the submillimeter wave band, using a waveguide mixer cooled to 2.2 K. The best receiver noise temperature at a local oscillator frequency of 533 GHz and an intermediate frequency of 1.4 GHz was 650 K (double sideband). The 3 dB IF roll-off frequency was around 1.7 to 1.9 GHz, with a weak dependence on the device bias conditions.

  4. Advanced composite materials and subcooled liquid change-of-phase (COP) cooling for thermal management in advanced electronic systems

    SciTech Connect

    Morgan, R.E.; Ehlers, S.L.; Mudawar, I.

    1996-12-31

    High performance, high density airborne and spaceborne electronic systems (both DoD and commercial) are performance and reliability limited by materials and thermal management. There is a continual need to improve performance and reliability in high density systems and to reduce adverse effects induced by excessive weight, dissipated heat, and related environmental incompatibilities. The penalties effected by these limitations prevail from cradle-to-grave in the life of high performance airborne systems, beginning at the development stage, continuing through manufacturing and procurement, and throughout system life, ultimately raising the cost of ownership. The objective of this effort is to investigate the use of selected high specific property composites and change-of-phase (COP) (i.e., liquid to vapor) cooling (using non-CFC, perfluorohexane fluids) to combat these limitations. High density (e.g., 2 kw SEM-E configuration), miniaturized avionics are assumed. Material systems for enclosure and module packaging as well as COP mechanisms will be discussed at this time relative to a retrofit scenario, interfacing with existing aircraft environmental control systems (ECS) for coolant reconditioning.

  5. Experimental investigation of dissociation pathways of cooled HeH{sup +} following valence electron excitation at 32 nm by intense free-electron-laser radiation

    SciTech Connect

    Pedersen, H. B.; Lammich, L.; Domesle, C.; Jordon-Thaden, B.; Ullrich, J.; Wolf, A.; Heber, O.; Treusch, R.; Guerassimova, N.

    2010-08-15

    The dissociation pathways of HeH{sup +} have been investigated below the first ionization continuum by photoabsorption at 32 nm, using fragment momentum imaging in a crossed-beams experiment at the free-electron laser in Hamburg (FLASH). Investigations were done both for ions with several vibrational levels excited in the ion source and for ions vibrationally cooled in an electrostatic ion trap prior to the irradiation. The product channels He{sup +}(1s)+H(nl) and He(1snl)+H{sup +} were separated and the He(1snl)+H{sup +} channel was particularly studied by coincidence detection of the He and H{sup +} fragments on two separate fragment detectors. At 32 nm excitation, the branching ratio between the product channels was found to be {sigma}{sub He}{sup +}{sub +H}/{sigma}{sub He+H}{sup +}=0.96{+-}0.11 for vibrationally hot and 1.70{+-}0.48 for vibrationally cold ions. The spectra of kinetic energy releases for both channels revealed that photodissociation at 32 nm leads to high Rydberg states (n > or approx. 3-4) of the emerging atomic fragments irrespective of the initial vibrational excitation of HeH{sup +}. The fragment angular distributions showed that dissociation into the He+H{sup +} channel mostly ({approx}70%) proceeds through {sup 1{Pi}} states, while for the He{sup +}+H channel {sup 1{Sigma}} and {sup 1{Pi}} states are of about equal importance.

  6. District cooling in Scandinavia

    SciTech Connect

    Andersson, B.

    1996-11-01

    This paper will present the status of the development of district cooling systems in Scandinavia over the last 5 years. It will describe the technologies used in the systems that have been constructed as well as the options considered in different locations. It will identify the drivers for the development of the cooling business to-date, and what future drivers for a continuing development of district cooling in Sweden. To-date, approximately 25 different cities of varying sizes have completed feasibility studies to determine if district cooling is an attractive option. In a survey, that was conducted by the Swedish District Heating Association, some 25 cities expected to have district cooling systems in place by the year 2000. In Sweden, district heating systems with hot water is very common. In many cases, it is simply an addition to the current service for the district heating company to also supply district cooling to the building owners. A parallel from this can be drawn to North America where district cooling systems now are developing rapidly. I am convinced that in these cities a district heating service will be added as a natural expansion of the district cooling company`s service.

  7. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  8. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  9. Hydronic rooftop cooling systems

    DOEpatents

    Bourne, Richard C [Davis, CA; Lee, Brian Eric [Monterey, CA; Berman, Mark J [Davis, CA

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  10. Rehabilitation Options

    MedlinePlus

    ... Speech Pathology Occupational Therapy Art Therapy Recreational therapy Neuropsychology Home Care Options Advanced Care Planning Palliative Care ... Speech Pathology Occupational Therapy Art Therapy Recreational therapy Neuropsychology Home Care Options Advanced Care Planning Palliative Care ...

  11. Formation of very hard electron and gamma-ray spectra of flat-spectrum radio quasars in the fast-cooling regime

    NASA Astrophysics Data System (ADS)

    Yan, Dahai; Zhang, Li; Zhang, Shuang-Nan

    2016-07-01

    In the external Compton scenario, we investigate the formation of a very hard electron spectrum in the fast-cooling regime, using a time-dependent emission model. It is shown that a very hard electron distribution, N^' }_e({γ ^' })∝ {γ ^' }^{-p}, with spectral index p ˜ 1.3 is formed below the minimum energy of injection electrons when inverse Compton scattering takes place in the Klein-Nishina regime, i.e. inverse Compton scattering of relativistic electrons on broad-line region radiation in flat-spectrum radio quasars. This produces a very hard gamma-ray spectrum and can explain in reasonable fashion the very hard Fermi-Large Area Telescope (LAT) spectrum of the flat-spectrum radio quasar 3C 279 during the extreme gamma-ray flare in 2013 December.

  12. Pricing Options.

    ERIC Educational Resources Information Center

    Tenopir, Carol

    1998-01-01

    Presents results of a recent survey of over 100 public and academic libraries about pricing options from online companies. Most options fall into three categories: pay-as-you-go, fixed-rate, and user-based. Results are discussed separately for public and academic libraries and for consortial discounts. Trends in pricing options preferred by…

  13. Pricing Options.

    ERIC Educational Resources Information Center

    Tenopir, Carol

    1998-01-01

    Presents results of a recent survey of over 100 public and academic libraries about pricing options from online companies. Most options fall into three categories: pay-as-you-go, fixed-rate, and user-based. Results are discussed separately for public and academic libraries and for consortial discounts. Trends in pricing options preferred by…

  14. Ab initio study on the electronic states and laser cooling of AlCl and AlBr

    NASA Astrophysics Data System (ADS)

    Rong, Yang; Bin, Tang; Tao, Gao

    2016-04-01

    We investigate whether AlCl and AlBr are promising candidates for laser cooling. We report new ab initio calculations on the ground state X1Σ+ and two low-lying states (A1Π and a3Π) of AlCl and AlBr. The calculated spectroscopic constants show good agreement with available theoretical and experimental results. We also obtain the permanent dipole moments (PDMs) curve at multi-reference configuration interaction (MRCI) level of theory. The transition properties of A1Π and a3Π states are predicted, including the transition dipole moments (TDMs), Franck-Condon factors (FCFs), radiative times and radiative width. The calculated radiative lifetimes are of the order of a nanosecond, implying that they are sufficiently short for rapid laser cooling. Both AlCl and AlBr have highly diagonally distributed FCFs which are crucial requirement for molecular laser cooling. The results demonstrate the feasibility of laser cooling AlCl and AlBr, and we propose laser cooling schemes for AlCl and AlBr.

  15. Experimental measurement, calculation and thermal visualization condenser temperature of cooling device with a heat pipe technology

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan; Kaduchová, Katarína

    This work deal with evaluation of condenser temperature by experimental measurement, calculation and thermal visualization of cooling device working with a heat pipe technology. The referred device in the article is cooling device capable transfer high heat fluxes from electric elements to the surrounding. One from many things influenced the heat flux amount transferred from electronic elements through the cooling device to the surrounding is condenser construction, its capacity and option of heat removal. The work contain description, working principle and construction of cooling device. Experimental part describe the measuring method and mathematical calculation to condenser temperature evaluation of cooling device depending on the loaded heat of electronic components in range from 250 to 750 W. The mathematical calculation is based on physical phenomena of boiling, condensation and natural convection heat transfer. The results of experimental measurement and mathematical calculation are verified by thermal imagining of device condenser by IR camera.

  16. Cooling of a multichip electronic module by means of confined two-dimensional jets of dielectric liquid

    NASA Astrophysics Data System (ADS)

    Wadsworth, D. C.; Mudawar, I.

    1990-11-01

    Experiments were performed to investigate single-phase heat transfer from a smooth 12.7 x 12.7-sq-mm simulated chip to a two-dimensional jet of dielectric FC-72 liquid issuing from a thin rectangular slot into a channel confined between the chip surface and nozzle plate. The effects of jet width, confinement channel height, and impingement velocity have been examined. Channel height had a negligible effect on the heat-transfer performance of the jet. A correlation for the convective heat-transfer coefficient is presented as a function of jet width, heater length, flow velocity, and fluid properties. A self-contained multichip cooling module consisting of a 3 x 3 array of heat sources confirmed the uniformity and predictability of cooling for each of the nine chips, and proved the cooling module is well suited for packaging large arrays of high-power-density chips.

  17. Cooling of a multichip electronic module by means of confined two-dimensional jets of dielectric liquid

    SciTech Connect

    Wadsworth, D.C.; Mudawar, I. )

    1990-11-01

    Experiments were performed to investigate single-phase heat transfer froma smooth 12.7 {times} 12.7 mm{sup 2} simulated chip to a two-dimensional jet of dielectric Fluorinert FC-72 liquid issuing from a thin rectangular slot into a channel confined between the chip surface and nozzle plate. The effects of jet width, confined channel height, and impingement velocity have been examined. Channel height had a negligible effect ont eh theat transfer performance of the jet for the conditions of the present study. A correlation for the convective heat transfer coefficient is presented as a function of jet, width, heat length, flow velocity, and fluid properties. A self-contained multichip cooling module consisting of a 3 {times} 3 array of heat sources confirmed the uniformity and predictability of cooling for each of the nine chips, and proved the cooling module is well suited for packaging large arrays of high-power density chips.

  18. Alternative lattice options for energy recovery in high-average-power high-efficiency free-electron lasers

    SciTech Connect

    Piot, P.; /Northern Illinois U. /NICADD, DeKalb /Fermilab

    2009-03-01

    High-average-power free-electron lasers often rely on energy-recovering linacs. In a high-efficiency free electron laser, the main limitation to high average power stems from the fractional energy spread induced by the free-electron laser process. Managing beams with large fractional energy spread while simultaneously avoiding beam losses is extremely challenging and relies on intricate longitudinal phase space manipulations. In this paper we discuss a possible alternative technique that makes use of an emittance exchange between one of the transverse and the longitudinal phase spaces.

  19. Effects of cooling rate and glycerol concentration on the structure of the frozen kidney: assessment by cryo-scanning electron microscopy.

    PubMed

    Bischof, J; Hunt, C J; Rubinsky, B; Burgess, A; Pegg, D E

    1990-06-01

    An experimental technique, employing a directional solidification stage for controlled freezing of tissue samples and low-temperature scanning electron microscopy for observation of the structure of the frozen-hydrated samples, was used to study freezing processes in the kidney. Parametric studies in which the cooling rate during freezing and the concentration of glycerol in the tissue were varied confirmed the results of earlier freeze-substitution studies. The results suggest a mechanism for ice propagation in the kidney similar to that already proposed for the liver, in which ice originates in, and is subsequently propagated through, the peritubular vasculature. The ice front dehydrates the cells and tubular structures encountered in its path, thus preventing intraluminal freezing. At higher rates of cooling and increased concentrations of glycerol there is less dehydration of cortical structure and intraluminal freezing occurs.

  20. Design aspects of an electrostatic electron cooler for low-energy RHIC operation

    SciTech Connect

    Fedotov, A.; Ben-Zvi, I.; Brodowski, J.; Chang, X.Y.; Gassner, D.; Hoff, L.; Kayran, D.; Kewisch, J.; Oerter, B.; Pendzick, A.; Tepikian, S.; Thieberger, P.; Prost, L.; Shemyakin, A.

    2011-03-28

    Electron cooling was proposed to increase the luminosity of the Relativistic Heavy Ion Collider (RHIC) operation for heavy ion beam energies below 10 GeV/nucleon. The electron cooling system needed should be able to deliver an electron beam of adequate quality in a wide range of electron beam energies (0.9-5 MeV). An option of using an electrostatic accelerator to produce electrons for cooling heavy ions in RHIC was evaluated in detail. In this paper, we describe the requirements and options which were considered in the design of such a cooler for RHIC, as well as the associated challenges. The expected luminosity improvement and limitations with such an electron cooling system are also discussed.

  1. Radiative power and electron cooling rates for oxygen in steady-state and transient plasmas at densities beyond the coronal limit

    SciTech Connect

    Keane, C.; Skinner, C.H.

    1986-01-01

    We have developed a time-dependent, collisional-radiative model to calculate radiative power and electron cooling rates for oxygen at intermediate densities (10/sup 16/ cm/sup -3/ less than or equal to n/sub e/ less than or equal to 10/sup 20/ cm/sup -3/) where the usual coronal approximation is not valid. Large differences from coronal values are predicted. The behavior of the steady-state radiative power loss coefficient, L/sub Z, is investigated as the electron density is increased. Generalized power loss coefficients applicable to transient plasmas are derived and applied to ionizing and recombining oxygen plasmas. Time-dependent effects are found to play a large role both in terms of the total radiated power and the net electron energy loss rate. 41 refs., 11 figs.

  2. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  3. 46 CFR 67.218 - Optional filing of instruments in portable document format as attachments to electronic mail.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... recording under § 67.200 may be submitted in portable document format (.pdf) as an attachment to electronic... submitted for filing in .pdf format pertains to a vessel that is not a currently documented vessel, a... with the National Vessel Documentation Center or must be submitted in .pdf format with the instrument...

  4. Jet-cooled fluorescence excitation spectra and carbonyl wagging potential energy functions of several cyclic ketones in their S 1(n, π*) electronic excited states

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Chiang, W. Y.; Sagear, P.; Laane, J.

    1992-08-01

    The jet-cooled fluorescence excitation spectra of the n→π* transitions of cyclopentanone, 3-cyclopenten-1-one, and cyclobutanone have been analyzed to determine the vibrational energy spacings in the S 1(n, π*) electronic excited states for the out-of-plane carbonyl wagging motions. A double-minimum potential energy function was determined for each and the barriers were found to be 680, 926, and 1940 cm -1, respectively. The carbonyl wagging angles were determined to be 22°, 26°, and 41°, respectively.

  5. Conduction cooling: multicrate fastbus hardware

    SciTech Connect

    Makowiecki, D.; Sims, W.; Larsen, R.

    1980-11-01

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications.

  6. Extensive theoretical study on electronically excited states of calcium monochloride: Molecular laser cooling and production of ultracold chlorine atoms

    NASA Astrophysics Data System (ADS)

    Fu, Mingkai; Ma, Haitao; Cao, Jianwei; Bian, Wensheng

    2016-05-01

    Nine doublet Λ-S states of calcium monochloride (CaCl) are calculated using the internally contracted multireference configuration interaction method with the Davidson correction. Both the core subvalence and spin-orbit coupling effects are taken into account. Laser cooling of CaCl and production of ultracold chlorine atoms are investigated and assessed. Our computed spectroscopic constants and radiative lifetimes match the available experimental data very well. The determined Franck-Condon factors and vibrational branching ratios of the A 2 Π 1 / 2 ( ν ' ) ← X 2 Σ1 / 2 + ( ν ) transition are highly diagonally distributed and the evaluated radiative lifetime for the A2Π1/2(ν' = 0) state is 28.2 ns, which is short enough for rapid laser cooling. Subsequently, detection of cold molecules via resonance enhanced multiphoton ionization to determine the final quantum state populations is discussed and the ionization energy calculated. A multi-pulse excitation scheme is proposed for producing ultracold chlorine atoms from zero-energy photodissociation of the cooled CaCl. Our results demonstrate the possibility of producing ultracold CaCl molecules and Cl atoms.

  7. Electron impact cross-sections and cooling rates for methane. [in thermal balance of electrons in atmospheres and ionospheres of planets and satellites in outer solar system

    NASA Technical Reports Server (NTRS)

    Gan, L.; Cravens, T. E.

    1992-01-01

    Energy transfer between electrons and methane gas by collisional processes plays an important role in the thermal balance of electrons in the atmospheres and ionospheres of planets and satellites in the outer solar system. The literature is reviewed for electron impact cross-sections for methane in this paper. Energy transfer rates are calculated for elastic and inelastic processes using a Maxwellian electron distribution. Vibrational, rotational, and electronic excitation and ionization are included. Results are presented for a wide range of electron temperatures and neutral temperatures.

  8. Free Electron Laser for Gamma-Gamma Collider at a Low-Energy Option of International Linear Collider

    SciTech Connect

    Saldin, Evgeny; Schneidmiller, Evgeny; Yurkov, Mikhail; Seryi, Andrei; /SLAC

    2009-10-30

    Different scenarios of a start-up with International Linear Collider (ILC) are under discussion at the moment in the framework of the Global Design Effort (GDE). One of them assumes construction of the ILC in stages from some minimum CM energy up to final target of 500 GeV CM energy. Gamma-gamma collider with CM energy of 180GeV is considered as a candidate for the first stage of the facility. In this report we present conceptual design of a free electron laser as a source of primary photons for the first stage of ILC.

  9. The Plant Organelles Database 3 (PODB3) update 2014: integrating electron micrographs and new options for plant organelle research.

    PubMed

    Mano, Shoji; Nakamura, Takanori; Kondo, Maki; Miwa, Tomoki; Nishikawa, Shuh-ichi; Mimura, Tetsuro; Nagatani, Akira; Nishimura, Mikio

    2014-01-01

    The Plant Organelles Database 2 (PODB2), which was first launched in 2006 as PODB, provides static image and movie data of plant organelles, protocols for plant organelle research and external links to relevant websites. PODB2 has facilitated plant organellar research and the understanding of plant organelle dynamics. To provide comprehensive information on plant organelles in more detail, PODB2 was updated to PODB3 (http://podb.nibb.ac.jp/Organellome/). PODB3 contains two additional components: the electron micrograph database and the perceptive organelles database. Through the electron micrograph database, users can examine the subcellular and/or suborganellar structures in various organs of wild-type and mutant plants. The perceptive organelles database provides information on organelle dynamics in response to external stimuli. In addition to the extra components, the user interface for access has been enhanced in PODB3. The data in PODB3 are directly submitted by plant researchers and can be freely downloaded for use in further analysis. PODB3 contains all the information included in PODB2, and the volume of data and protocols deposited in PODB3 continue to grow steadily. We welcome contributions of data from all plant researchers to enhance the utility and comprehensiveness of PODB3.

  10. Buffer-gas cooling of antiprotonic helium to 1.5 to 1.7 K, and antiproton-to-electron mass ratio.

    PubMed

    Hori, Masaki; Aghai-Khozani, Hossein; Sótér, Anna; Barna, Daniel; Dax, Andreas; Hayano, Ryugo; Kobayashi, Takumi; Murakami, Yohei; Todoroki, Koichi; Yamada, Hiroyuki; Horváth, Dezső; Venturelli, Luca

    2016-11-04

    Charge, parity, and time reversal (CPT) symmetry implies that a particle and its antiparticle have the same mass. The antiproton-to-electron mass ratio [Formula: see text] can be precisely determined from the single-photon transition frequencies of antiprotonic helium. We measured 13 such frequencies with laser spectroscopy to a fractional precision of 2.5 × 10(-9) to 16 × 10(-9) About 2 × 10(9) antiprotonic helium atoms were cooled to temperatures between 1.5 and 1.7 kelvin by using buffer-gas cooling in cryogenic low-pressure helium gas; the narrow thermal distribution led to the observation of sharp spectral lines of small thermal Doppler width. The deviation between the experimental frequencies and the results of three-body quantum electrodynamics calculations was reduced by a factor of 1.4 to 10 compared with previous single-photon experiments. From this, [Formula: see text] was determined as 1836.1526734(15), which agrees with a recent proton-to-electron experimental value within 8 × 10(-10). Copyright © 2016, American Association for the Advancement of Science.

  11. Thermal Management Research for Power Generation. Delivery Order 0002 - Volume 1: Plain Fin Array Cooler for Electronics Cooling

    DTIC Science & Technology

    2002-12-01

    the high reliability substrate. The trend in research on the thermal conductivity of SiC, AlN and Si3N4 ceramics was plotted in Figure 2.4 by Watari ...Electronic Assemblies,” Journal of Electronic Packaging, Vol. 119, 1997, pp. 127-132. [11] Watari , K., and Shinde, S. L., “High Thermal

  12. Stochastic cooling at Fermilab

    SciTech Connect

    Marriner, J.

    1986-08-01

    The topics discussed are the stochastic cooling systems in use at Fermilab and some of the techniques that have been employed to meet the particular requirements of the anti-proton source. Stochastic cooling at Fermilab became of paramount importance about 5 years ago when the anti-proton source group at Fermilab abandoned the electron cooling ring in favor of a high flux anti-proton source which relied solely on stochastic cooling to achieve the phase space densities necessary for colliding proton and anti-proton beams. The Fermilab systems have constituted a substantial advance in the techniques of cooling including: large pickup arrays operating at microwave frequencies, extensive use of cryogenic techniques to reduce thermal noise, super-conducting notch filters, and the development of tools for controlling and for accurately phasing the system.

  13. Fiber-optic Based Spectral Cathodoluminescence: Simple and Economic Option for Use in Conventional and Environmental Scanning Electron Microscopy.

    PubMed

    Griffin; Browne

    2000-01-01

    A fiber-optic based spectral cathodoluminescence (CL) system has been successfully installed on a variable pressure "environmental" scanning electron microscope (ESEM). The fine size of the fiber (50 µm) has been found to require careful alignment. To provide this alignment, a simple X-Y translator has been used. The aligned fiber exhibits high efficiency and the system has recorded spectra at up to 3 million "counts" per sec on strongly cathodoluminescent doped yttrium aluminium garnet (YAG) samples, at 30 kV and approximately 3 nA. A resolution of 3 nm [full width half maximum (FWHM)] at 621 nm has been measured from a red laser diode spectrum, on the ESEM column. A range of uncoated materials has been measured to characterize the CL system; these materials ranged from strongly luminescent YAG to weakly luminescent polymers. Well-characterized doped zircons have also been investigated. These data suggest that the previously reported intrinsic peak from zircon is a consequence of high-beam currents.

  14. Electronic spectra of jet-cooled 3- and 4-chlorotropolones: Influence of asymmetric substitution on the intramolecular hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Tsuji, Takashi; Sekiya, Hiroshi; Ito, Sayaka; Ujita, Hiroki; Habu, Mariko; Mori, Akira; Takeshita, Hitoshi; Nishimura, Tukio

    1993-09-01

    The fluorescence excitation and fluorescence spectra of jet-cooled 3-chlorotropolone (3CTR-h) and 4-chlorotropolone (4CTR-h) were measured in the S(sub 1) - S(sub 0) region. Several transitions of 3CTR-h were identified in the region of 26,403 - 26,694 kayser, whereas only the origin band was detected at 26338 kayser in 4CTR-h. No tunneling splitting was observed in the spectra, suggesting that the hydroxylic proton is localized almost completely in one well of an asymmetric double-minimum potential function along the proton transfer coordinate. The vibronic structure in the fluorescence excitation spectrum of 4CTR-h is extremely different from that of 3CTR-h, which is ascribed to the change of the geometry in S(sub 1) of 4CTR-h.

  15. Review of electronic decision-support tools for diabetes care: a viable option for low- and middle-income countries?

    PubMed

    Ali, Mohammed K; Shah, Seema; Tandon, Nikhil

    2011-05-01

    Diabetes care is complex, requiring motivated patients, providers, and systems that enable guideline-based preventative care processes, intensive risk-factor control, and positive lifestyle choices. However, care delivery in low- and middle-income countries (LMIC) is hindered by a compendium of systemic and personal factors. While electronic medical records (EMR) and computerized clinical decision-support systems (CDSS) have held great promise as interventions that will overcome system-level challenges to improving evidence-based health care delivery, evaluation of these quality improvement interventions for diabetes care in LMICs is lacking. OBJECTIVE AND DATA SOURCES: We reviewed the published medical literature (systematic search of MEDLINE database supplemented by manual searches) to assess the quantifiable and qualitative impacts of combined EMR-CDSS tools on physician performance and patient outcomes and their applicability in LMICs. Inclusion criteria prespecified the population (type 1 or 2 diabetes patients), intervention (clinical EMR-CDSS tools with enhanced functionalities), and outcomes (any process, self-care, or patient-level data) of interest. Case, review, or methods reports and studies focused on nondiabetes, nonclinical, or in-patient uses of EMR-CDSS were excluded. Quantitative and qualitative data were extracted from studies by separate single reviewers, respectively, and relevant data were synthesized. Thirty-three studies met inclusion criteria, originating exclusively from high-income country settings. Among predominantly experimental study designs, process improvements were consistently observed along with small, variable improvements in risk-factor control, compared with baseline and/or control groups (where applicable). Intervention benefits varied by baseline patient characteristics, features of the EMR-CDSS interventions, motivation and access to technology among patients and providers, and whether EMR-CDSS tools were combined with

  16. Antiproton cooling in the Fermilab Recycler Ring

    SciTech Connect

    Nagaitsev, S.; Bolshakov, A.; Broemmelsiek, D.; Burov, Alexey V.; Carlson, K.; Gattuso, C.; Hu, M.; Kazakevich, G.; Kramper, B.; Kroc, T.; Leibfritz, J.; Prost, L.; Pruss, S.; Saewert, G; Schmidt, C.W.; Seletskiy, S.; Shemyakin, A.; Sutherland, M.; Tupikov, V.; Warner, A.; Zenkevich, P.; /Fermilab /Moscow, ITEP /Novosibirsk, IYF /Rochester U.

    2005-12-01

    The 8.9-GeV/c Recycler antiproton storage ring is equipped with both stochastic and electron cooling systems. These cooling systems are designed to assist accumulation of antiprotons for the Tevatron collider operations. In this paper we report on an experimental demonstration of electron cooling of high-energy antiprotons. At the time of writing this report, the Recycler electron cooling system is routinely used in collider operations. It has helped to set recent peak luminosity records.

  17. Heavy atom nitroxyl radicals. VI. The electronic spectrum of jet-cooled H2PO, the prototypical phosphoryl free radical

    NASA Astrophysics Data System (ADS)

    Gharaibeh, Mohammed A.; Clouthier, Dennis J.; Tarroni, Riccardo

    2011-12-01

    The previously unknown electronic spectrum of the H2PO free radical has been identified in the 407-337 nm region using a combination of laser-induced fluorescence and single vibronic level emission spectroscopy. High level ab initio predictions of the properties of the ground and first two excited doublet states were used to identify the spectral region in which to search for the electronic transition and were used to aid in the analysis of the data. The band system is assigned as the {tilde B}2A'-{tilde X}2A' electronic transition which involves promotion of an electron from the π to the π* molecular orbital. The excited state r0 molecular structure was determined by rotational analysis of high resolution LIF spectra to be r(PO) = 1.6710(2) Å, r(PH) = 1.4280(6) Å, θ(HPO) = 105.68(7)°, θ(HPH) = 93.3(2)°, and the out-of-plane angle = 66.8(2)°. The structural changes on electronic excitation, which include substantial increases in the PO bond length and out-of-plane angle, are as expected based on molecular orbital theory and our previous studies of the isoelectronic H2AsO, Cl2PS, and F2PS free radicals.

  18. Ab initio study of the neutral and anionic alkali and alkaline earth hydroxides: Electronic structure and prospects for sympathetic cooling of OH().

    PubMed

    Kas, Milaim; Loreau, Jérôme; Liévin, Jacques; Vaeck, Nathalie

    2017-05-21

    We have performed a systematic ab initio study on alkali and alkaline earth hydroxide neutral (MOH) and anionic (MOH(-)) species where M = Li, Na, K, Rb, Cs or Be, Mg, Ca, Sr, Ba. The CCSD(T) method with extended basis sets and Dirac-Fock relativistic effective core potentials for the heavier atoms has been used to study their equilibrium geometries, interaction energies, electron affinities, electric dipole moment, and potential energy surfaces. All neutral and anionic species exhibit a linear shape with the exception of BeOH, BeOH(-), and MgOH(-), for which the equilibrium structure is found to be bent. Our analysis shows that the alkaline earth hydroxide anions are valence-bound whereas the alkali hydroxide anions are dipole bound. In the context of sympathetic cooling of OH(-) by collision with ultracold alkali and alkaline earth atoms, we investigate the 2D MOH(-) potential energy surfaces and the associative detachment reaction M + OH→- MOH + e(-), which is the only energetically allowed reactive channel in the cold regime. We discuss the implication for the sympathetic cooling of OH(-) and conclude that Li and K are the best candidates for an ultracold buffer gas.

  19. Experimental evaluation of cooling efficiency of the high performance cooling device

    NASA Astrophysics Data System (ADS)

    Nemec, Patrik; Malcho, Milan

    2016-06-01

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  20. Experimental evaluation of cooling efficiency of the high performance cooling device

    SciTech Connect

    Nemec, Patrik Malcho, Milan

    2016-06-30

    This work deal with experimental evaluation of cooling efficiency of cooling device capable transfer high heat fluxes from electric elements to the surrounding. The work contain description of cooling device, working principle of cooling device, construction of cooling device. Experimental part describe the measuring method of device cooling efficiency evaluation. The work results are presented in graphic visualization of temperature dependence of the contact area surface between cooling device evaporator and electronic components on the loaded heat of electronic components in range from 250 to 740 W and temperature dependence of the loop thermosiphon condenser surface on the loaded heat of electronic components in range from 250 to 740 W.

  1. Bunch beam cooling

    NASA Astrophysics Data System (ADS)

    Bryzgunov, M. I.; Kamerdzhiev, V.; Li, J.; Mao, L. J.; Parkhomchuk, V. V.; Reva, V. B.; Yang, X. D.; Zhao, H.

    2017-07-01

    Electron cooling is used for damping both transverse and longitudinal oscillations of heavy particle. The cooling of bunch ion beam (with RF voltage on) is important part of experiments with inner target, ion collision system, stacking and RF manipulation. The short length of an ion bunch increases the peak luminosity, gives a start-time point for using of the time-of-flight methods and obtains a short extraction beam pulse. This article describes the review of last experiments with electron cooling carried out on the CSRm, CSRe (China) and COSY (Germany) storage rings. The accumulated experience may be used for the project of electron cooler on 2.5 MeV (NICA) and 0.5 MeV HIAF for obtaining high luminosity, depressing beam-beam effects and RF manipulation.

  2. The Torsion-Inversion Energy Levels in the S1( n, π*) Electronic State of Acetaldehyde from High-Resolution Jet-Cooled Fluorescence Excitation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, H.; Lim, E. C.; Muñoz-Caro, C.; Niño, A.; Judge, R. H.; Moule, D. C.

    1996-01-01

    The laser-induced fluorescence excitation spectrum (LIF) of acetaldehyde that results from the emission from theS1(n, π*) electronic state has been observed under very high resolution with a CW pulse-amplified laser under jet-cooled conditions. The origins of seven bands were determined by rotational analyses with a rigid-rotor Hamiltonian. The origins were fitted to a set of levels that were obtained from a Hamiltonian that employed flexible torsion-wagging large amplitude coordinates. The potential surface derived from the fitting procedure yielded barriers to torsion and inversion of 721.43 and 585.13 cm-1, respectively. Minima in the potential hypersurface at θ = 58.6° and α = 35.7° defined the corresponding equilibrium positions for the torsion and wagging coordinates.

  3. Development of the Measurement System for the Search of an Electric Dipole Moment of the Electron with Laser-Cooled Francium Atoms

    NASA Astrophysics Data System (ADS)

    Inoue, T.; Ando, S.; Aoki, T.; Arikawa, H.; Ezure, S.; Harada, K.; Hayamizu, T.; Ishikawa, T.; Itoh, M.; Kato, K.; Kato, T.; Kawamura, H.; Nataraj, H. S.; Sato, T.; Uchiyama, A.; Aoki, T.; Furukawa, T.; Hatakeyama, A.; Hatanaka, K.; Imai, K.; Murakami, T.; Shimizu, Y.; Wakasa, T.; Yoshida, H. P.; Sakemi, Y.

    2014-03-01

    We plan to measure the permanent electric dipole moment (EDM) of the electron, which has the sensitivity to the CP violation in theories beyond the standard model by using the laser-cooled francium (Fr) atom. This paper reports the present status of the EDM measurement system. A high voltage application system was constructed in order to produce the strong electric field (100 kV/cm) needed for the experiment. After conditioning, the leakage current was 10 pA when a high voltage of 43 kV was applied. Also, a drift of an environmental field was measured at the planned location of the Fr-EDM experiment. The drift is suppressed at present down to the level of 10 pT by installing a 4-layermagnetic shield. Improvements are still needed to reach the required field stability of 1 fT.

  4. COOLING DYNAMICS STUDIES AND SCENARIOS FOR THE RHIC COOLER.

    SciTech Connect

    FEDOTOV,A.V.; BEN-ZVI,I.; LITVINENKO, V.

    2005-05-16

    In this paper, we discuss various electron cooling dynamics studies for RHIC. We also present simulations [1] of various possibilities of using electron cooling at RHIC, which includes cooling at the top energy, pre-cooling at low energy, aspects of transverse and longitudinal cooling and their impact on the luminosity. Electron cooling at various collision energies both for heavy ions and protons is also discussed.

  5. Electronic spectroscopy of jet-cooled HCP+: molecular structure, phosphorus hyperfine structure, and Renner-Teller analysis.

    PubMed

    Sunahori, Fumie X; Zhang, Xiaopeng; Clouthier, Dennis J

    2007-09-14

    Laser-induced fluorescence spectra of jet-cooled HCP(+) and DCP(+) have been obtained with the pulsed discharge technique using HCPDCP and argon precursor mixtures. Transitions involving all of the excited state vibrations have been observed and a set of vibrational constants has been obtained. High-resolution spectra of the (2)Pi(32) components of the 0(0) (0) bands of both isotopomers have been recorded, and these spectra show resolved phosphorus hyperfine structure which allowed the determination of the excited state Fermi contact parameter. The B values were used to obtain the ground and excited state effective geometric parameters as r(0) (")(CH)=1.077(2) A, r(0) (")(CP)=1.6013(3) A, r(0) (')(CH)=1.082(2) A, and r(0) (')(CP)=1.5331(3) A. A Renner-Teller analysis of the ground state vibrational energy levels obtained from the literature was attempted. All of the observed levels of DCP(+) and the majority of those of HCP(+) were satisfactorily fitted with a standard Renner-Teller model, but three HCP(+) levels showed large systematic deviations which could not be accommodated by reassignments or improvements in the Fermi resonance Hamiltonian. Further improvements in the theory or in the experimental data will be needed to resolve this discrepancy.

  6. Career options.

    PubMed

    2011-06-24

    Practitioners at all levels can plan their future career options through the NHS Nursing Career Framework interactive tool. The tool builds on the pathway-based framework set out in the post-registration career framework for nurses. Career pathways are outlined under each branch and the specialties within the branches, and cover topics including clinical careers, management and moving into education or research.

  7. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  8. Cool & Connected

    EPA Pesticide Factsheets

    The Cool & Connected planning assistance program helps communities develop strategies and an action plan for using broadband to promote environmentally and economically sustainable community development.

  9. Bremsstrahlung in the scattering of low-energy electrons by neutral atomic systems. [in atmosphere of sun and cool stars

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1985-01-01

    By elementary methods, the cross section for electron-atom and electron-molecule bremsstrahlung is computed in the limit when the incident electron energy is much less than Ry. The procedure employs the classical soft-photon emission probability formula for general (h/2pi)(omega), yielding a simple expression for the bremsstrahlung cross section in terms of the total elastic scattering cross section. The validity of the method is discussed, and results are compared with more elaborate and accurate calculations. Comparison is made with ('free-free') opacity calculations for the associated process at the temperature (6300 K) of the solar atmosphere. For chi sub omega = (h/2pi)(omega)/kT = 1, the computed absorption coefficient is within 2, 7, and 12 percent of accurate calculations for scatterings by H, He, and H2, respectively. The general dependence of the opacity on chi sub omega is described well by the simple formula, although the error is larger for higher chi sub omega; it is suggested that the inaccuracy at high frequencies is due to the failure of the soft-photon approximation.

  10. Bremsstrahlung in the scattering of low-energy electrons by neutral atomic systems. [in atmosphere of sun and cool stars

    NASA Technical Reports Server (NTRS)

    Gould, R. J.

    1985-01-01

    By elementary methods, the cross section for electron-atom and electron-molecule bremsstrahlung is computed in the limit when the incident electron energy is much less than Ry. The procedure employs the classical soft-photon emission probability formula for general (h/2pi)(omega), yielding a simple expression for the bremsstrahlung cross section in terms of the total elastic scattering cross section. The validity of the method is discussed, and results are compared with more elaborate and accurate calculations. Comparison is made with ('free-free') opacity calculations for the associated process at the temperature (6300 K) of the solar atmosphere. For chi sub omega = (h/2pi)(omega)/kT = 1, the computed absorption coefficient is within 2, 7, and 12 percent of accurate calculations for scatterings by H, He, and H2, respectively. The general dependence of the opacity on chi sub omega is described well by the simple formula, although the error is larger for higher chi sub omega; it is suggested that the inaccuracy at high frequencies is due to the failure of the soft-photon approximation.

  11. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  12. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  13. Exercising options

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    In a recent speech to graduates of the College of Computer, Mathematical, and Physical Sciences at the University of Maryland, Anne Petersen, deputy director of the National Science Foundation, encouraged a new generation of scientists to embrace opportunity and choice, and to use their scientific training as an employment credential, not a limit. In her May 23 commencement address, Petersen exhorted students to view their freshly minted diplomas as tickets to a broad and diverse job market, not just one-way trips to the laboratory.“Looking for the options and alternatives open to us—and creating options for ourselves where they are not apparent—can give us a sense of direction and volition that enriches our lives immensely…

  14. Evidence that the maximum electron energy in hotspots of FR II galaxies is not determined by synchrotron cooling

    NASA Astrophysics Data System (ADS)

    Araudo, Anabella T.; Bell, Anthony R.; Crilly, Aidan; Blundell, Katherine M.

    2016-08-01

    It has been suggested that relativistic shocks in extragalactic sources may accelerate the highest energy cosmic rays. The maximum energy to which cosmic rays can be accelerated depends on the structure of magnetic turbulence near the shock but recent theoretical advances indicate that relativistic shocks are probably unable to accelerate particles to energies much larger than a PeV. We study the hotspots of powerful radiogalaxies, where electrons accelerated at the termination shock emit synchrotron radiation. The turnover of the synchrotron spectrum is typically observed between infrared and optical frequencies, indicating that the maximum energy of non-thermal electrons accelerated at the shock is ≲ TeV for a canonical magnetic field of ˜100 μG. Based on theoretical considerations we show that this maximum energy cannot be constrained by synchrotron losses as usually assumed, unless the jet density is unreasonably large and most of the jet upstream energy goes to non-thermal particles. We test this result by considering a sample of hotspots observed with high spatial resolution at radio, infrared and optical wavelengths.

  15. The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction.

    PubMed

    Kawai, Hiroki; Giorgi, Giacomo; Marini, Andrea; Yamashita, Koichi

    2015-05-13

    We report on an analysis of hot-carrier lifetimes from electron-phonon interaction in lead iodide perovskites using first-principles calculations. Our calculations show that the holes in CsPbI3 have very long lifetimes in the valence band region situated 0.6 eV below the top of the valence band. On the other hand, no long lifetime is predicted in PbI3(-). These different results reflect the different electronic density of states (DOSs) in the valence bands, that is, a small DOS for the former structure while a sharp DOS peak for the latter structure. We propose a reduction of the relaxation paths in the small valence DOS as being the origin of the slow hot-hole cooling. Analyzing the generalized Eliashberg functions, we predict that different perovskite A-site cations do not have an impact on the carrier decay mechanism. The similarity between the DOS structures of CsPbI3 and CH3NH3PbI3 enables us to extend the description of the decay mechanism of fully inorganic CsPbI3 to its organic-inorganic counterpart, CH3NH3PbI3.

  16. Heating and Cooling from the Ground Up.

    ERIC Educational Resources Information Center

    Jackson, Lisa M.

    1998-01-01

    Explains why converting to geothermal heating and cooling is a good option when constructing or retrofitting schools. Reasons discussed include competitive installation costs, lower operating and maintenance costs, greater building-design flexibility, and greater user satisfaction. (GR)

  17. Heating and Cooling from the Ground Up.

    ERIC Educational Resources Information Center

    Jackson, Lisa M.

    1998-01-01

    Explains why converting to geothermal heating and cooling is a good option when constructing or retrofitting schools. Reasons discussed include competitive installation costs, lower operating and maintenance costs, greater building-design flexibility, and greater user satisfaction. (GR)

  18. The S1( 1A1)- S0( 1A1) Electronic Transition of Jet-Cooled o-Difluorobenzene

    NASA Astrophysics Data System (ADS)

    Swinn, Anna K.; Kable, Scott H.

    1998-09-01

    A detailed study of theS1(1A1)-S0(1A1) transition of jet-cooledo-difluorobenzene has been completed using the two techniques of laser-induced fluorescence excitation and dispersed, single vibronic level fluorescence spectroscopy. Analysis of over 60 dispersed fluorescence spectra resulted in both the assignment of 22 excited state vibrational frequencies and the confirmation of 23 ground state frequencies. The spectrum is dominated by Franck-Condon activity in totally symmetric vibrations with long progressions in the ring-breathing mode, ν9. By analogy with benzene and thepara- andmeta-substituted isomers, two vibronic coupling mechanisms are postulated to be responsible for the wealth of weaker symmetry-forbidden structure that has been observed. Single quantum changes inb2vibrations are postulated to appear due to first order vibronic coupling to a higher lyingB2electronic state. Combinations ofb1anda2modes are postulated to appear from second order vibronic coupling to anA1electronic state. This second order coupling causes a pronounced Duschinsky mixing among excited stateb1anda2modes with respect to their ground state counterparts. Franck-Condon factors are calculated for thea1progression-forming modes, anharmonic contributions are evaluated, one strong Fermi resonance is identified and analyzed, and the Duschinsky rotation matrix elements are evaluated for the most strongly affected modes, ν17and ν18. Several transitions in theoDFB-oDFB van der Waals dimer andoDFB-Ar complex are also assigned in the spectrum.

  19. Beam cooling: Principles and achievements

    SciTech Connect

    Mohl, Dieter; Sessler, Andrew M.

    2003-05-18

    After a discussion of Liouville's theorem, and its implications for beam cooling, a brief description is given of each of the various methods of beam cooling: stochastic, electron, radiation, laser, ionization, etc. For each, we present the type of particle for which it is appropriate, its range of applicability, and the currently achieved degree of cooling. For each method we also discuss the present applications and, also, possible future developments and further applications.

  20. Noise and Bandwidth Measurements of Diffusion-Cooled Nb Hot-Electron Bolometer Mixers at Frequencies Above the Superconductive Energy Gap

    NASA Technical Reports Server (NTRS)

    Wyss, R. A.; Karasik, B. S.; McGrath, W. R.; Bumble, B.; LeDuc, H.

    1999-01-01

    Diffusion-cooled Nb hot-electron bolometer (HEB) mixers have the potential to simultaneously achieve high intermediate frequency (IF) bandwidths and low mixer noise temperatures for operation at THz frequencies (above the superconductive gap energy). We have measured the IF signal bandwidth at 630 GHz of Nb devices with lengths L = 0.3, 0.2, and 0.1 micrometer in a quasioptical mixer configuration employing twin-slot antennas. The 3-dB EF bandwidth increased from 1.2 GHz for the 0.3 gm long device to 9.2 GHz for the 0.1 gm long device. These results demonstrate the expected 1/L squared dependence of the IF bandwidth at submillimeter wave frequencies for the first time, as well as the largest EF bandwidth obtained to date. For the 0.1 gm device, which had the largest bandwidth, the double sideband (DSB) noise temperature of the receiver was 320-470 K at 630 GHz with an absorbed LO power of 35 nW, estimated using the isothermal method. A version of this mixer with the antenna length scaled for operation at 2.5 THz has also been tested. A DSB receiver noise temperature of 1800 plus or minus 100 K was achieved, which is about 1,000 K lower than our previously reported results. These results demonstrate that large EF bandwidth and low-noise operation of a diffusion-cooled HEB mixer is possible at THz frequencies with the same device geometry.

  1. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  2. Cool Vest

    NASA Technical Reports Server (NTRS)

    1982-01-01

    ILC, Dover Division's lightweight cooling garment, called Cool Vest was designed to eliminate the harmful effects of heat stress; increases tolerance time in hot environments by almost 300 percent. Made of urethane-coated nylon used in Apollo, it works to keep the body cool, circulating chilled water throughout the lining by means of a small battery-powered pump. A pocket houses the pump, battery and the coolant which can be ice or a frozen gel, a valve control allows temperature regulation. One version is self-contained and portable for unrestrained movement, another has an umbilical line attached to an external source of coolant, such as standard tap water, when extended mobility is not required. It is reported from customers that the Cool Vest pays for itself in increased productivity in very high temperatures.

  3. Cool School.

    ERIC Educational Resources Information Center

    Stephens, Suzanne

    1980-01-01

    The design for Floyd Elementary School in Miami (Florida) seeks to harness solar energy to provide at least 70 percent of the annual energy for cooling needs and 90 percent for hot water. (Author/MLF)

  4. Advanced Power Electronics and Electric Motors Annual Report -- 2013

    SciTech Connect

    Narumanchi, S.; Bennion, K.; DeVoto, D.; Moreno, G.; Rugh, J.; Waye, S.

    2015-01-01

    This report describes the research into advanced liquid cooling, integrated power module cooling, high temperature air cooled power electronics, two-phase cooling for power electronics, and electric motor thermal management by NREL's Power Electronics group in FY13.

  5. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.

    PubMed

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-03-07

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low

  6. The molecular structure and a Renner-Teller analysis of the ground and first excited electronic states of the jet-cooled CS2+ molecular ion

    NASA Astrophysics Data System (ADS)

    He, Sheng-Gui; Clouthier, Dennis J.

    2006-02-01

    The ÃΠu2-X˜Πg2 electronic band system of the jet-cooled CS2+ ion has been studied by laser-induced fluorescence and wavelength-resolved emission techniques. The ions were produced in a pulsed electric discharge jet using a precursor mixture of carbon disulfide vapor in high-pressure argon. Rotational analysis of the high-resolution spectrum of the Π3/22 component of the 000 band gave linear-molecule molecular structures of r0″=1.5554(10)Å and r0'=1.6172(12)Å. Renner-Teller analyses of the vibronic structure in the spectra showed that the ground-state spin-orbit splitting (A =-447.0cm-1) is much larger than that of the excited state (A=-177.5cm-1), but that the Renner-Teller parameters are of similar magnitude and that a strong ν1-2ν2 Fermi resonance occurs in both states. Previous analyses of the vibronic structure in the ground and excited states of the ion from pulsed field-ionization-photoelectron data are shown to be substantially correct.

  7. L- and U-shaped heat pipes thermal modules with twin fans for cooling of electronic system under variable heat source areas

    NASA Astrophysics Data System (ADS)

    Wang, Jung-Chang

    2014-04-01

    This study utilizes a versatile superposition method with thermal resistance network analysis to design and experiment on a thermal module with embedded six L-shaped or two U-shaped heat pipes and plate fins under different fan speeds and heat source areas. This type of heat pipes-heat sink module successively transfer heat capacity from a heat source to the heat pipes, the heat sink and their surroundings, and are suitable for cooling electronic systems via forced convection mechanism. The thermal resistances contain all major components from the thermal interface through the heat pipes and fins. Thermal performance testing shows that the lowest thermal resistances of the representative L- and U-shaped heat pipes-heat sink thermal modules are respectively 0.25 and 0.17 °C/W under twin fans of 3,000 RPM and 30 × 30 mm2 heat sources. The result of this work is a useful thermal management method to facilitate rapid analysis.

  8. Flow-Induced Vibration of a Reed in a Channel: Effect of Reed Shape on Convective Heat Transfer with Application to Electronic Cooling

    NASA Astrophysics Data System (ADS)

    Rips, Aaron; Shoele, Kourosh; Glezer, Ari; Mittal, Rajat

    2015-11-01

    Flow-induced vibration of a reed (a thin plate or flag) in a channel can improve heat transfer efficiency in forced convection applications, allowing for more heat transfer for the same fan power. Such systems have wide ranging applications in electronic and power cooling. We investigate the effect of 3D reed shape on heat transfer enhancement. To study 3D effects, we first use 2D fluid-structure interaction (FSI) simulations of an optimized reed (in terms of mass and stiffness) to generate a prescribed reed motion. We then apply that motion to a pseudo 3D reed (i.e. infinitely stiff in the spanwise direction) and study the heat transfer enhancement in a 3D channel. This method allows us to explore a large parameter space exhaustively, and using this method, we examine the effect of several parameters, such as reed planform and spanwise gap, on the heat transfer enhancements for forced convection in a channel. Simulations indicate that these geometrical feature have a significant effect on the vortex dynamics in the wake as well as the heat transfer efficiency. This work was supported by grants from AFOSR, EPRI and NSF.

  9. Keeping Cool.

    ERIC Educational Resources Information Center

    Kehrer, James

    2000-01-01

    Explores roofing options that can help control energy costs through use of highly reflective roofing materials. Additionally discussed is the "Urban Heat Island" phenomenon created when several super-heated buildings are clustered in a small area. (GR)

  10. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics

    NASA Astrophysics Data System (ADS)

    Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji

    2014-02-01

    Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (~300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m-1 K-1) and a low, silicon-like CTE (5.0 ppm K-1). The thermal conductivity was identical to that of Cu (400 W m-1 K-1) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ~10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described `matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low thermal

  11. New fine structure cooling rate

    NASA Technical Reports Server (NTRS)

    Hoegy, W. R.

    1976-01-01

    One of the dominant electron cooling processes in the ionosphere is caused by electron impact induced fine structure transitions among the ground state levels of atomic oxygen. This fine structure cooling rate is based on theoretical cross sections. Recent advances in the numerical cross section determinations to include polarization effects and more accurate representations of the atomic target result in new lower values. These cross sections are employed in this paper to derive a new fine structure cooling rate which is between 40% and 60% of the currently used rate. A new generalized formula is presented for the cooling rate (from which the fine structure cooling rate is derived), valid for arbitrary mass and temperature difference of the colliding particles and arbitrary inelastic energy difference.

  12. Effectiveness-weighted control of cooling system components

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simmons, Robert E.

    2015-12-22

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  13. Effectiveness-weighted control method for a cooling system

    DOEpatents

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth Jr., Michael J.; Iyengar, Madhusudan K.; Schmidt, Roger R.; Simons, Robert E.

    2015-12-15

    Energy efficient control of cooling system cooling of an electronic system is provided based, in part, on weighted cooling effectiveness of the components. The control includes automatically determining speed control settings for multiple adjustable cooling components of the cooling system. The automatically determining is based, at least in part, on weighted cooling effectiveness of the components of the cooling system, and the determining operates to limit power consumption of at least the cooling system, while ensuring that a target temperature associated with at least one of the cooling system or the electronic system is within a desired range by provisioning, based on the weighted cooling effectiveness, a desired target temperature change among the multiple adjustable cooling components of the cooling system. The provisioning includes provisioning applied power to the multiple adjustable cooling components via, at least in part, the determined control settings.

  14. Side Stream Filtration for Cooling Towers

    SciTech Connect

    2012-10-20

    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  15. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  16. Cooling Vest

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Because quadriplegics are unable to perspire below the level of spinal injury, they cannot tolerate heat stress. A cooling vest developed by Ames Research Center and Upjohn Company allows them to participate in outdoor activities. The vest is an adaptation of Ames technology for thermal control garments used to remove excess body heat of astronauts. The vest consists of a series of corrugated channels through which cooled water circulates. Its two outer layers are urethane coated nylon, and there is an inner layer which incorporates the corrugated channels. It can be worn as a backpack or affixed to a wheelchair. The unit includes a rechargeable battery, mini-pump, two quart reservoir and heat sink to cool the water.

  17. An experimental and ab initio study of the electronic spectrum of the jet-cooled F{sub 2}BO free radical

    SciTech Connect

    Grimminger, Robert; Clouthier, Dennis J.; Sheridan, Phillip M.

    2014-04-28

    We have studied the B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} laser-induced fluorescence (LIF) spectrum of the jet-cooled F{sub 2}BO radical for the first time. The transition consists of a strong 0{sub 0}{sup 0} band at 446.5 nm and eight weak sequence bands to shorter wavelengths. Single vibronic level emission spectra obtained by laser excitation of individual levels of the B{sup ~} state exhibit two electronic transitions: a very weak, sparse B{sup ~}–X{sup ~} band system in the 450–500 nm region and a stronger, more extensive set of B{sup ~} {sup 2}A{sub 1}–A{sup ~} {sup 2}B{sub 1} bands in the 580–650 nm region. We have also performed a series of high level ab initio calculations to predict the electronic energies, molecular structures, vibrational frequencies, and rotational and spin-rotation constants in the X{sup ~} {sup 2}B{sub 2}, A{sup ~2}B{sub 1} and B{sup ~} {sup 2}A{sub 1} electronic states as an aid to the analysis of the experimental data. The theoretical results have been used as input for simulations of the rotationally resolved B{sup ~} {sup 2}A{sub 1}–X{sup ~} {sup 2}B{sub 2} 0{sub 0}{sup 0} LIF band and Franck-Condon profiles of the LIF and single vibronic level emission spectra. The agreement between the simulations obtained with purely ab initio parameters and the experimental spectra validates the geometries calculated for the ground and excited states and the conclusion that the radical has C{sub 2v} symmetry in the X{sup ~}, A{sup ~}, and B{sup ~} states. The spectra provide considerable new information about the vibrational energy levels of the X{sup ~} and A{sup ~} states, but very little for the B{sup ~} state, due to the very restrictive Franck-Condon factors in the LIF spectra.

  18. Cryogenic Cooling of Infrared Electronics

    DTIC Science & Technology

    1986-05-01

    Stirling cryocooler one of the most compact, efficient, and reliable of the devices yet commercialized. 21 A wide variety of Stirling cryocoolers have...Considerable effort has been expended in improving the components of the Stirling cryocooler , especially in terms of minimizing the wear of the...classes of devices, the choice depending on the application. One of the early contemporary integrated mechanical Stirling cryocoolers was developed by

  19. Advance in MEIC cooling studies

    SciTech Connect

    Zhang, Yuhong; Derbenev, Ya.; Douglas, D.; Hutton, A.; Kimber, A.; Li, R.; Nissen, E.; Tennant,; Zhang, H.

    2013-06-01

    Cooling of ion beams is essential for achieving a high luminosity for MEIC at Jefferson Lab. In this paper, we present the design concept of the electron cooling system for MEIC. In the design, two facilities are required for supporting a multi-staged cooling scheme; one is a 2 MeV DC cooler in the ion pre-booster; the other is a high electron energy (up to 55 MeV) ERL-circulator cooler in the collider ring. The simulation studies of beam dynamics in an ERL-circulator cooler are summarized and followed by a report on technology development for this cooler. We also discuss two proposed experiments for demonstrating high energy cooling with a bunched electron beam and the ERL-circulator cooler.

  20. Cooling vest

    NASA Technical Reports Server (NTRS)

    Kosmo, J.; Kane, J.; Coverdale, J.

    1977-01-01

    Inexpensive vest of heat-sealable urethane material, when strapped to person's body, presents significant uncomplicated cooling system for environments where heavy accumulation of metabolic heat exists. Garment is applicable to occupations where physical exertion is required under heavy protective clothing.

  1. Cool Andromeda

    NASA Image and Video Library

    2013-01-28

    In this new view of the Andromeda, also known as M31, galaxy from the Herschel space observatory, cool lanes of forming stars are revealed in the finest detail yet. M31 is the nearest major galaxy to our own Milky Way at a distance of 2.5 million light-ye

  2. Radiative cooling for thermophotovoltaic systems

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiguang; Sun, Xingshu; Bermel, Peter

    2016-09-01

    Radiative cooling has recently garnered a great deal of attention for its potential as an alternative method for photovoltaic thermal management. Here, we will consider the limits of radiative cooling for thermal management of electronics broadly, as well as a specific application to thermal power generation. We show that radiative cooling power can increase rapidly with temperature, and is particularly beneficial in systems lacking standard convective cooling. This finding indicates that systems previously operating at elevated temperatures (e.g., 80°C) can be passively cooled close to ambient under appropriate conditions with a reasonable cooling area. To examine these general principles for a previously unexplored application, we consider the problem of thermophotovoltaic (TPV) conversion of heat to electricity via thermal radiation illuminating a photovoltaic diode. Since TPV systems generally operate in vacuum, convective cooling is sharply limited, but radiative cooling can be implemented with proper choice of materials and structures. In this work, realistic simulations of system performance are performed using the rigorous coupled wave analysis (RCWA) techniques to capture thermal emitter radiation, PV diode absorption, and radiative cooling. We subsequently optimize the structural geometry within realistic design constraints to find the best configurations to minimize operating temperature. It is found that low-iron soda-lime glass can potentially cool the PV diode by a substantial amount, even to below ambient temperatures. The cooling effect can be further improved by adding 2D-periodic photonic crystal structures. We find that the improvement of efficiency can be as much as an 18% relative increase, relative to the non-radiatively cooled baseline, as well as a potentially significant improvement in PV diode lifetime.

  3. Cool Sportswear

    NASA Technical Reports Server (NTRS)

    1982-01-01

    New athletic wear design based on the circulating liquid cooling system used in the astronaut's space suits, allows athletes to perform more strenuous activity without becoming overheated. Techni-Clothes gear incorporates packets containing a heat-absorbing gel that slips into an insulated pocket of the athletic garment and is positioned near parts of the body where heat transfer is most efficient. A gel packet is good for about one hour. Easily replaced from a supply of spares in an insulated container worn on the belt. The products, targeted primarily for runners and joggers and any other athlete whose performance may be affected by hot weather, include cooling headbands, wrist bands and running shorts with gel-pack pockets.

  4. Cooling and recombination processes in cometary plasma

    NASA Technical Reports Server (NTRS)

    Wallis, M. K.; Ong, R. S. B.

    1976-01-01

    The ion electron plasma in comets is examined for cooling processes which result from its interactions with the neutral coma. A cometary coma model is formulated that is composed predominantly of H2O and its decomposition products where electrons are cooled in a variety of processes at rates varying with energy. It is shown that solar plasma plus accumulated cometary ions and electrons is affected very strongly as it flows into the coma. The electrons are rapidly cooled and all but some 10% of the ions undergo charge exchange. Photodissociation of H2O is assumed where ion electron recombination is the dominant loss process.

  5. Cooling technique

    DOEpatents

    Salamon, Todd R; Vyas, Brijesh; Kota, Krishna; Simon, Elina

    2017-01-31

    An apparatus and a method are provided. Use is made of a wick structure configured to receive a liquid and generate vapor in when such wick structure is heated by heat transferred from heat sources to be cooled off. A vapor channel is provided configured to receive the vapor generated and direct said vapor away from the wick structure. In some embodiments, heat conductors are used to transfer the heat from the heat sources to the liquid in the wick structure.

  6. Grackle: Chemistry and radiative cooling library for astrophysical simulations

    NASA Astrophysics Data System (ADS)

    Smith, Britton D.; Bryan, Greg L.; Glover, Simon C. O.; Goldbaum, Nathan J.; Turk, Matthew J.; Regan, John; Wise, John H.; Schive, Hsi-Yu; Abel, Tom; Emerick, Andrew; O'Shea, Brian W.; Anninos, Peter; Hummels, Cameron B.; Khochfar, Sadegh

    2016-12-01

    The chemistry and radiative cooling library Grackle provides options for primordial chemistry and cooling, photo-heating and photo-ionization from UV backgrounds, and support for user-provided arrays of volumetric and specific heating rates for astrophysical simulations and models. The library provides functions to update chemistry species; solve radiative cooling and update internal energy; and calculate cooling time, temperature, pressure, and ratio of specific heats (gamma), and has interfaces for C, C++, Fortran, and Python codes.

  7. Cooling device

    SciTech Connect

    Teske, L.

    1984-02-21

    A cooling device is claimed for coal dust comprising a housing, a motor-driven conveyor system therein to transport the coal dust over coolable trays in the housing and conveyor-wheel arms of spiral curvature for moving the coal dust from one or more inlets to one or more outlets via a series of communicating passages in the trays over which the conveyor-wheel arms pass under actuation of a hydraulic motor mounted above the housing and driving a vertical shaft, to which the conveyor-wheel arms are attached, extending centrally downwardly through the housing.

  8. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  9. D0 HVAC System Controls Evaluation of Upgrade Options

    SciTech Connect

    Markley, D.; Simon, P.; /Fermilab

    1998-05-05

    This engineering note documents three different options for upgrading the Dzero HVAC control system. All three options leave the current field hardware and field devices intact and upgrade the computer control hardware and software. Dzero will be heading into a physics run starting in 2000. This physics run could last several years. The Dzero HVAC system is an integral part of climate control and electronics cooling. The current HVAC control system is based upon a 1985 Johnson Controls System. In order to enter the next long-term physics run with a solid HVAC control system, the current control system needs to be upgraded. This proposal investigates three options: (1) Replacement to the next generation of Johnson Controls Hardware and Software with the Johnson Controls operator interface - FESS; (2) Replacement to the next generation of Johnson Controls Hardware and Software with the FIX32 Operator Interface - FESS/Dzero; and (3) Replacement with a commercially available Programmable Logic Controller (PLC) WITH THE FIX 32 Operator Interface - Dzero.

  10. Cyclotron resonance cooling by strong laser field

    SciTech Connect

    Tagcuhi, Toshihiro; Mima, Kunioka

    1995-12-31

    Reduction of energy spread of electron beam is very important to increase a total output radiation power in free electron lasers. Although several cooling systems of particle beams such as a stochastic cooling are successfully operated in the accelerator physics, these cooling mechanisms are very slow and they are only applicable to high energy charged particle beams of ring accelerators. We propose here a new concept of laser cooling system by means of cyclotron resonance. Electrons being in cyclotron motion under a strong magnetic field can resonate with circular polarized electromagnetic field, and the resonance take place selectively depending on the velocity of the electrons. If cyclotron frequency of electrons is equal to the frequency of the electromagnetic field, they absorb the electromagnetic field energy strongly, but the other electrons remain unchanged. The absorbed energy will be converted to transverse kinetic energy, and the energy will be dumped into the radiation energy through bremastrahlung. To build a cooling system, we must use two laser beams, where one of them is counter-propagating and the other is co-propagating with electron beam. When the frequency of the counter-propagating laser is tuned with the cyclotron frequency of fast electrons and the co-propagating laser is tuned with the cyclotron frequency of slow electrons, the energy of two groups will approach and the cooling will be achieved. We solve relativistic motions of electrons with relativistic radiation dumping force, and estimate the cooling rate of this mechanism. We will report optimum parameters for the electron beam cooling system for free electron lasers.

  11. 78 FR 38843 - Single Application Option

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-28

    ... States Copyright Office 37 CFR Part 202 Single Application Option AGENCY: U.S. Copyright Office, Library... application.'' This application is being introduced in order to provide an additional option for individual... Office's electronic registration system (``eCO''). Such applications are the most administratively simple...

  12. Nucleate Boiling Heat Transfer Study of Direct Immersion Cooling of a 3X3 Array of Vertically Orientated Electronic Components in a Dielectric Liquid

    DTIC Science & Technology

    1992-09-01

    73 v APPENDIX B. SAMPLE CALCULATIONS ............................. 81 A. DETERMINATION OF INPUT POWER OF CHIP...produced by the Melcor corporation and were utilized to remove the heat from the condenser. The cooling devices were normally operated at 2.0 volts and 0.4...DETERMINATION OF INPUT POWER OF CHIP For this sample calculation, the power drop across chip 2 was determined: Powerl- Voltl*Volt2/Resistl where Voltl and

  13. Expanding Options. A Model to Attract Secondary Students into Nontraditional Vocational Programs. For Emphasis in: Building Trades, Electronics, Health Services, Machine Shop, Welding.

    ERIC Educational Resources Information Center

    Good, James D.; DeVore, Mary Ann

    This model has been designed for use by Missouri secondary schools in attracting females and males into nontraditional occupational programs. The research-based strategies are intended for implementation in the following areas: attracting females into building trades, electronics, machine shop, and welding; and males into secondary health…

  14. Superconducting 112 MHz QWR electron gun

    SciTech Connect

    Belomestnykh, S.; Ben-Zvi, I.; Boulware, C.H.; Chang, X.; Grimm, T.L.; Rao, T.; Siegel, B.; Skaritka, J.; Than, R.; Winowski, M.; Wu, Q.; Xin, T.; Xue, L.

    2011-07-25

    Brookhaven National Laboratory and Niowave, Inc. have designed and fabricated a superconducting 112 MHz quarter-wave resonator (QWR) electron gun. The first cold test of the QWR cryomodule has been completed at Niowave. The paper describes the cryomodule design, presents the cold test results, and outline plans to upgrade the cryomodule. Future experiments include studies of different photocathodes and use for the coherent electron cooling proof-of-principle experiment. Two cathode stalk options, one for multi-alkali photocathodes and the other one for a diamond-amplified photocathode, are discussed. A quarter-wave resonator concept of superconducting RF (SRF) electron gun was proposed at BNL for electron cooling hadron beams in RHIC. QWRs can be made sufficiently compact even at low RF frequencies (long wavelengths). The long wavelength allows to produce long electron bunches, thus minimizing space charge effects and enabling high bunch charge. Also, such guns should be suitable for experiments requiring high average current electron beams. A 112 MHz QWR gun was designed, fabricated, and cold-tested in collaboration between BNL and Niowave. This is the lowest frequency SRF gun ever tested successfully. In this paper we describe the gun design and fabrication, present the cold test results, and outline our plans. This gun will also serve as a prototype for a future SRF gun to be used for coherent electron cooling of hadrons in eRHIC.

  15. Actively controlling coolant-cooled cold plate configuration

    DOEpatents

    Chainer, Timothy J.; Parida, Pritish R.

    2016-04-26

    Cooling apparatuses are provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The cooling apparatus includes the cold plate and a controller. The cold plate couples to one or more electronic components to be cooled, and includes an adjustable physical configuration. The controller dynamically varies the adjustable physical configuration of the cold plate based on a monitored variable associated with the cold plate or the electronic component(s) being cooled by the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the electronic component(s), and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the cold plate, the positioning of which may be adjusted based on the monitored variable.

  16. Advanced control electronics for Stirling cryocoolers

    NASA Astrophysics Data System (ADS)

    Ruehlich, Ingo; Korf, Herbert; Schellenberger, Gisbert

    2003-01-01

    Advanced Split Linear and Integral Stirling cryocoolers for IR applications are controlled by external or integrated control electronics to provide a stable preset temperature at the focal plane. AIM produces a family of Split Linear Stirling coolers with integrated control electronics inside the compressor housing. The new AM 7 electronic is standardized to one configuration which meets the different input power requirements and temperature settings of all AIM coolers ranging between 10W to 105W input power. AIM has completed the development of the AM 7 electronics to improve temperature stability over the entire range of operating conditions and to optimize ramp up of input power for different cool down conditions. Thus, reduced cooldown time at high ambients and softer startup at low temperatures are achieved. Optionally, the electronics can be supplemented with an external add-on microprocessor unit for advanced system requirements. The 3rd generation electronics will be implemented into rate production 4Q2002.

  17. Instabilities of cooled antiproton beam in recycler

    SciTech Connect

    Burov, A.; Lebedev, V.; /Fermilab

    2007-06-01

    The more beam is cooled, the less stable it is. In the 3.3 km Recycler Ring, stacked 8 GeV antiprotons are cooled both with stochastic (transversely) and electron (3D) cooling. Since the machine is staying near the coupling resonance, coupled optical functions should be used for stability analysis. To stabilize beam against the resistive wall instability, a digital damper is used. Digital dampers can be described as linear operators with explicit time dependence, and that makes a principle difference with analogous dampers. Theoretical description of the digital dampers is presented. Electron cooling makes possible a two-beam instability of the cooled beam with the electron beam. Special features of this instability are described, and the remedy is discussed.

  18. Renewable Heating and Cooling

    EPA Pesticide Factsheets

    Renewable heating and cooling is a set of alternative resources and technologies that can be used in place of conventional heating and cooling technologies for common applications such as water heating, space heating, space cooling and process heat.

  19. Thermal Energy for Space Cooling--Federal Technology Alert

    SciTech Connect

    Brown, Daryl R.

    2000-12-31

    Cool storage technology can be used to significantly reduce energy costs by allowing energy-intensive, electrically driven cooling equipment to be predominantly operated during off peak hours when electricity rates are lower. This Federal Technology Alert, which is sponsored by DOE's Federal Energy Management Program (FEMP), describes the basic types of cool storage technologies and cooling system integration options. In addition, it defines the savings potential in the federal sector, presents application advice, and describes the performance experience of specific federal users. The results of a case study of a GSA building using cool storage technology are also provided.

  20. Semiconductor cooling by thin-film thermocouples

    NASA Technical Reports Server (NTRS)

    Tick, P. A.; Vilcans, J.

    1970-01-01

    Thin-film, metal alloy thermocouple junctions do not rectify, change circuit impedance only slightly, and require very little increase in space. Although they are less efficient cooling devices than semiconductor junctions, they may be applied to assist conventional cooling techniques for electronic devices.

  1. Writing about Cool: Teaching Hypertext as Juxtaposition.

    ERIC Educational Resources Information Center

    Rice, Jeff

    2003-01-01

    Frames a rhetoric of "cool" by describing how temporal events in the respective fields of writing, technology, and cultural studies seen in juxtaposition provide a model for electronic research. Examines how students working with hypertext, drawing from these works and juxtapositions, are able to not only write about cool, but are able…

  2. Writing about Cool: Teaching Hypertext as Juxtaposition.

    ERIC Educational Resources Information Center

    Rice, Jeff

    2003-01-01

    Frames a rhetoric of "cool" by describing how temporal events in the respective fields of writing, technology, and cultural studies seen in juxtaposition provide a model for electronic research. Examines how students working with hypertext, drawing from these works and juxtapositions, are able to not only write about cool, but are able…

  3. Restaurant food cooling practices.

    PubMed

    Brown, Laura Green; Ripley, Danny; Blade, Henry; Reimann, Dave; Everstine, Karen; Nicholas, Dave; Egan, Jessica; Koktavy, Nicole; Quilliam, Daniela N

    2012-12-01

    Improper food cooling practices are a significant cause of foodborne illness, yet little is known about restaurant food cooling practices. This study was conducted to examine food cooling practices in restaurants. Specifically, the study assesses the frequency with which restaurants meet U.S. Food and Drug Administration (FDA) recommendations aimed at reducing pathogen proliferation during food cooling. Members of the Centers for Disease Control and Prevention's Environmental Health Specialists Network collected data on food cooling practices in 420 restaurants. The data collected indicate that many restaurants are not meeting FDA recommendations concerning cooling. Although most restaurant kitchen managers report that they have formal cooling processes (86%) and provide training to food workers on proper cooling (91%), many managers said that they do not have tested and verified cooling processes (39%), do not monitor time or temperature during cooling processes (41%), or do not calibrate thermometers used for monitoring temperatures (15%). Indeed, 86% of managers reported cooling processes that did not incorporate all FDA-recommended components. Additionally, restaurants do not always follow recommendations concerning specific cooling methods, such as refrigerating cooling food at shallow depths, ventilating cooling food, providing open-air space around the tops and sides of cooling food containers, and refraining from stacking cooling food containers on top of each other. Data from this study could be used by food safety programs and the restaurant industry to target training and intervention efforts concerning cooling practices. These efforts should focus on the most frequent poor cooling practices, as identified by this study.

  4. Breast Cancer: Treatment Options

    MedlinePlus

    ... Breast Cancer > Breast Cancer: Treatment Options Request Permissions Breast Cancer: Treatment Options Approved by the Cancer.Net Editorial ... recommendations for ovarian ablation . Hormonal therapy for metastatic breast cancer Hormonal therapies are also commonly used to treat ...

  5. Spray Cooling And The Next Generation Of NASA Space Flight

    NASA Technical Reports Server (NTRS)

    Silk, Eric

    2005-01-01

    This viewgraph presentation discusses spray cooling as it applies to thermal management of the new ESMD (Exploration Systems Mission Directorate) programs. It is concluded that given the targeted heat flux and temperature operating regimes, spray cooling is a viable option, although further technology development will be required.

  6. Verification of passive cooling techniques in the Super-FRS beam collimators

    NASA Astrophysics Data System (ADS)

    Douma, C. A.; Gellanki, J.; Najafi, M. A.; Moeini, H.; Kalantar-Nayestanaki, N.; Rigollet, C.; Kuiken, O. J.; Lindemulder, M. F.; Smit, H. A. J.; Timersma, H. J.

    2016-08-01

    The Super FRagment Separator (Super-FRS) at the FAIR facility will be the largest in-flight separator of heavy ions in the world. One of the essential steps in the separation procedure is to stop the unwanted ions with beam collimators. In one of the most common situations, the heavy ions are produced by a fission reaction of a primary 238U-beam (1.5 GeV/u) hitting a 12C target (2.5 g/cm2). In this situation, some of the produced ions are highly charged states of 238U. These ions can reach the collimators with energies of up to 1.3 GeV/u and a power of up to 500 W. Under these conditions, a cooling system is required to prevent damage to the collimators and to the corresponding electronics. Due to the highly radioactive environment, both the collimators and the cooling system must be suitable for robot handling. Therefore, an active cooling system is undesirable because of the increased possibility of malfunctioning and other complications. By using thermal simulations (performed with NX9 of Siemens PLM), the possibility of passive cooling is explored. The validity of these simulations is tested by independent comparison with other simulation programs and by experimental verification. The experimental verification is still under analysis, but preliminary results indicate that the explored passive cooling option provides sufficient temperature reduction.

  7. Simulation of cooling-water discharges from power plants.

    PubMed

    Wu, J; Buchak, E M; Edinger, J E; Kolluru, V S

    2001-01-01

    Accurate simulation of the temperature distribution in a cooling lake or reservoir is often required for feasibility studies of engineering options that increase the cooling capacity of the waterbody. A three-dimensional hydrodynamic and temperature model has been developed and applied to several cooling lakes in the south-eastern United States. In this paper, the details of the modeling system are presented, along with the application to the Flint Creek Lake.

  8. TANK SPACE OPTIONS REPORT

    SciTech Connect

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  9. Oxygen Handling and Cooling Options in High Temperature Electrolysis Plants

    SciTech Connect

    Manohar S. Sohal; J. Stephen Herring

    2008-07-01

    Idaho National Laboratory is working on a project to generate hydrogen by high temperature electrolysis (HTE). In such an HTE system, safety precautions need to be taken to handle high temperature oxygen at ~830°C. This report is aimed at addressing oxygen handling in a HTE plant.. Though oxygen itself is not flammable, most engineering material, including many gases and liquids, will burn in the presence of oxygen under some favorable physicochemical conditions. At present, an absolute set of rules does not exist that can cover all aspects of oxygen system design, material selection, and operating practices to avoid subtle hazards related to oxygen. Because most materials, including metals, will burn in an oxygen-enriched environment, hazards are always present when using oxygen. Most materials will ignite in an oxygen-enriched environment at a temperature lower than that in air, and once ignited, combustion rates are greater in the oxygen-enriched environment. Even many metals, if ignited, burn violently in an oxygen-enriched environment. However, these hazards do not preclude the operations and systems involving oxygen. Oxygen can be safely handled and used if all the materials in a system are not flammable in the end-use environment or if ignition sources are identified and controlled. In fact, the incidence of oxygen system fires is reported to be low with a probability of about one in a million. This report is a practical guideline and tutorial for the safe operation and handling of gaseous oxygen in high temperature electrolysis system. The intent is to provide safe, practical guidance that permits the accomplishment of experimental operations at INL, while being restrictive enough to prevent personnel endangerment and to provide reasonable facility protection. Adequate guidelines are provided to govern various aspects of oxygen handling associated with high temperature electrolysis system to generate hydrogen. The intent here is to present acceptable oxygen standards and practices for minimum safety requirements. A summary of operational hazards, along with oxygen safety and emergency procedures, are provided.

  10. Cooling Options for Shipboard Personnel Operating in Hot Environments

    DTIC Science & Technology

    2002-10-01

    D’autres facteurs comme le maintien d’une bonne hydratation et d’un excellent 6tat cardio- vasculaire pendant les longues op6rations en mer sont 6galement...hydratation et d’un excellent 6tat cardio- vasculaire pendant les longues op6rations en mer sont 6galement cruciaux pour amdliorer le rendement dans une...Canada - Toronto. iv DRDC Toronto TR 2002-185 T able of contents Abstract

  11. Analysis of Coolant Options for Advanced Metal Cooled Nuclear Reactors

    DTIC Science & Technology

    2006-12-01

    Nuclear Data File/B-Version V FENDL Fusion Evaluated Nuclear Data Library HLMC Heavy Liquid Metal Coolant LBE Lead-Bismuth Eutectic LMFBR ...According to a Generation IV Nuclear Energy Systems report29 released February 21, 2006, the core outlet temperature and peak cladding temperature...24 sodium for Liquid Metal Fast Breeder Reactor ( LMFBR ) systems worldwide.32 The pumping power requirements for lead, LBE and tin are much

  12. Laser spectroscopy of jet-cooled NiF: Application of Hougen's approximate model for the low-lying electronic states

    NASA Astrophysics Data System (ADS)

    Arsenault, D. L.; Tokaryk, D. W.; Adam, A. G.; Linton, C.

    2016-06-01

    We have taken laser-induced fluorescence spectra of jet-cooled nickel monofluoride formed in a laser-ablation molecular beam source. Dispersed-fluorescence spectroscopy confirms predictions by Hougen (2011) that the parity assignments of levels in the Ω = 1 / 2 state 1570 cm-1 above the ground state should be reversed from those given in Krouti et al. (2002). The quality of the high-resolution spectra was sufficient to measure the [22.9]1.5-X1.5 band for five isotopologues of nickel and the [22.9]1.5-[0.25]0.5 band for molecules containing 58Ni and 60Ni. The spectral line positions for each isotopologue were fit to the Hamiltonian model given by Hougen, which was extended to allow for calculation of the parity-splitting parameter in the ground state.

  13. Final muon cooling for a muon collider

    NASA Astrophysics Data System (ADS)

    Acosta Castillo, John Gabriel

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 mus and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough beta* region to cool the beam to the required limit with available low Z absorbers.

  14. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  15. Electron beam focusing system

    SciTech Connect

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for discussion. Interaction of electron beam with the vacuum chamber as well as with the background ions and stored antiprotons can cause the coherent electron beam instabilities. Focusing system requirements needed to suppress these instabilities are presented.

  16. Microelectromechanical System (MEMS) Device Being Developed for Active Cooling and Temperature Control

    NASA Technical Reports Server (NTRS)

    Beach, Duane E.

    2003-01-01

    High-capacity cooling options remain limited for many small-scale applications such as microelectronic components, miniature sensors, and microsystems. A microelectromechanical system (MEMS) using a Stirling thermodynamic cycle to provide cooling or heating directly to a thermally loaded surface is being developed at the NASA Glenn Research Center to meet this need. The device can be used strictly in the cooling mode or can be switched between cooling and heating modes in milliseconds for precise temperature control. Fabrication and assembly employ techniques routinely used in the semiconductor processing industry. Benefits of the MEMS cooler include scalability to fractions of a millimeter, modularity for increased capacity and staging to low temperatures, simple interfaces, limited failure modes, and minimal induced vibration. The MEMS cooler has potential applications across a broad range of industries such as the biomedical, computer, automotive, and aerospace industries. The basic capabilities it provides can be categorized into four key areas: 1) Extended environmental temperature range in harsh environments; 2) Lower operating temperatures for electronics and other components; 3) Precision spatial and temporal thermal control for temperature-sensitive devices; and 4) The enabling of microsystem devices that require active cooling and/or temperature control. The rapidly expanding capabilities of semiconductor processing in general, and microsystems packaging in particular, present a new opportunity to extend Stirling-cycle cooling to the MEMS domain. The comparatively high capacity and efficiency possible with a MEMS Stirling cooler provides a level of active cooling that is impossible at the microscale with current state-of-the-art techniques. The MEMS cooler technology builds on decades of research at Glenn on Stirling-cycle machines, and capitalizes on Glenn s emerging microsystems capabilities.

  17. Radiative cooling of H3O+ and its deuterated isotopologues† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6cp04661d Click here for additional data file.

    PubMed Central

    Melnikov, Vladlen V.; Tennyson, Jonathan; Jensen, Per

    2016-01-01

    In conjunction with ab initio potential energy and dipole moment surfaces for the electronic ground state, we have made a theoretical study of the radiative lifetimes for the hydronium ion H3O+ and its deuterated isotopologues. We compute the ro-vibrational energy levels and their associated wavefunctions together with Einstein coefficients for electric dipole transitions. A detailed analysis of the stability of the ro-vibrational states has been carried out and the longest-living states of the hydronium ions have been identified. We report estimated radiative lifetimes and cooling functions for temperatures <200 K. A number of long-living meta-stable states are identified, capable of population trapping. PMID:27711706

  18. Electronic spectra of jet-cooled calix[4]arene and its van der Waals clusters: encapsulation of a neutral atom in a molecular bowl.

    PubMed

    Ebata, Takayuki; Hodono, Yuki; Ito, Takafumi; Inokuchi, Yoshiya

    2007-04-14

    The encapsulation of neutral guest has been studied for calix[4]arene (C4A) by forming van der Waals clusters with Ar and Ne in supersonic jets. The electronic transitions of these clusters suggest that the first Ar (Ne) is encapsulated inside the C4A cavity, while the next atoms are bound outside.

  19. Unusually Slow Electron Cooling to Charge-Transfer State in Gradient CdTeSe Alloy Nanocrystals Mediated through Mn Atom.

    PubMed

    Debnath, Tushar; Maiti, Sourav; Ghosh, Hirendra N

    2016-04-07

    We have synthesized Mn-doped CdTeSe gradient alloy nanocrystals (NCs) by a colloidal synthetic method, and charge carrier dynamics have been revealed through ultrafast transient absorption (TA) spectroscopy. Due to the reactivity difference between Te and Se, a CdTe-rich core and CdSe-rich shell have been formed in the CdTeSe alloy with the formation of a gradient type II core-shell structure. Electron paramagnetic resonance studies suggest Mn atoms are located in the surface of the alloy NCs. Steady-state optical absorption and emission studies suggest formation of a charge-transfer (CT) state in which electrons are localized in a CdSe-rich shell and holes are localized in a CdTe-rich core which appears in the red region of the spectra. Electron transfer in the CT state is found to take place in the Marcus inverted region. To understand charge-transfer dynamics in the CdTeSe alloy NCs and to determine the effect of Mn doping on the alloy, ultrafast transient absorption studies have been carried out. In the case of the undoped alloy, formation of the CT state is found to take place through electron relaxation to the conduction band of the CT state with a time of 600 fs and through hole relaxation (from the CdSe-rich state to the CdTe-rich state) to the valence band of the CT state with a time scale of 1 ps. However, electron relaxation in the presence of Mn dopants takes place initially via an electron transfer to the Mn 3d state (d(5)) followed by transfer from the Mn 3d state (d(6)) to the CT state, which has been found to take place with a >700 ps time scale in addition to the hole relaxation time of 2 ps. Charge recombination time of the CT state is found to be extremely slow in the Mn-doped CdTeSe alloy NCs as compared to the undoped one, where the Mn atom acts as an electron storage center.

  20. Actively controlling coolant-cooled cold plate configuration

    SciTech Connect

    Chainer, Timothy J.; Parida, Pritish R.

    2015-07-28

    A method is provided to facilitate active control of thermal and fluid dynamic performance of a coolant-cooled cold plate. The method includes: monitoring a variable associated with at least one of the coolant-cooled cold plate or one or more electronic components being cooled by the cold plate; and dynamically varying, based on the monitored variable, a physical configuration of the cold plate. By dynamically varying the physical configuration, the thermal and fluid dynamic performance of the cold plate are adjusted to, for example, optimally cool the one or more electronic components, and at the same time, reduce cooling power consumption used in cooling the electronic component(s). The physical configuration can be adjusted by providing one or more adjustable plates within the coolant-cooled cold plate, the positioning of which may be adjusted based on the monitored variable.

  1. The state of the art in hadron beam cooling

    SciTech Connect

    Prost, L.R.; Derwent, P.; /Fermilab

    2008-09-01

    Cooling of hadron beams (including heavy-ions) is a powerful technique by which accelerator facilities around the world achieve the necessary beam brightness for their physics research. In this paper, we will give an overview of the latest developments in hadron beam cooling, for which high energy electron cooling at Fermilab's Recycler ring and bunched beam stochastic cooling at Brookhaven National Laboratory's RHIC facility represent two recent major accomplishments. Novel ideas in the field will also be introduced.

  2. Approximate option pricing

    SciTech Connect

    Chalasani, P.; Saias, I.; Jha, S.

    1996-04-08

    As increasingly large volumes of sophisticated options (called derivative securities) are traded in world financial markets, determining a fair price for these options has become an important and difficult computational problem. Many valuation codes use the binomial pricing model, in which the stock price is driven by a random walk. In this model, the value of an n-period option on a stock is the expected time-discounted value of the future cash flow on an n-period stock price path. Path-dependent options are particularly difficult to value since the future cash flow depends on the entire stock price path rather than on just the final stock price. Currently such options are approximately priced by Monte carlo methods with error bounds that hold only with high probability and which are reduced by increasing the number of simulation runs. In this paper the authors show that pricing an arbitrary path-dependent option is {number_sign}-P hard. They show that certain types f path-dependent options can be valued exactly in polynomial time. Asian options are path-dependent options that are particularly hard to price, and for these they design deterministic polynomial-time approximate algorithms. They show that the value of a perpetual American put option (which can be computed in constant time) is in many cases a good approximation to the value of an otherwise identical n-period American put option. In contrast to Monte Carlo methods, the algorithms have guaranteed error bounds that are polynormally small (and in some cases exponentially small) in the maturity n. For the error analysis they derive large-deviation results for random walks that may be of independent interest.

  3. Heating and Cooling System Design for a Modern Transportable Container

    SciTech Connect

    Berger, Jason E.

    2015-06-01

    Sandia National Laboratories (SNL) has been tasked with the design of a modern transportable container (MTC) for use in high reliability transportation environments. The container is required to transport cargo capable of generating its own heat and operate under the United States’ climatic extremes. In response to these requirements, active heating and cooling is necessary to maintain a controlled environment inside the container. The following thesis project documents the design of an active heating, active cooling, and combined active heating and cooling system (now referred to as active heating and cooling systems) through computational thermal analyses, scoping of commercial system options, and mechanical integration with the container’s structure.

  4. Cooling Force Measurements at CELSIUS

    SciTech Connect

    Ga ring lnander, B.; Lofnes, T.; Ziemann, V.; Fedotov, A. V.; Litvinenko, V. N.; Sidorin, A. O.; Smirnov, A. V.

    2006-03-20

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  5. COOLING FORCE MEASUREMENTS IN CELSIUS.

    SciTech Connect

    GALNANDER, B.; FEDOTOV, A.V.; LITVINENKO, V.N.; ET AL.

    2005-09-18

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  6. Comments on ionization cooling channels

    DOE PAGES

    Neuffer, David

    2017-09-25

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this study, we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  7. Comments on ionization cooling channels

    NASA Astrophysics Data System (ADS)

    Neuffer, D.

    2017-09-01

    Ionization cooling channels with a wide variety of characteristics and cooling properties are being developed. These channels can produce cooling performances that are largely consistent with the linear ionization cooling theory developed previously. In this paper we review ionization cooling theory, discuss its application to presently developing cooling channels, and discuss criteria for optimizing cooling.

  8. The Origins of Options

    PubMed Central

    Smaldino, Paul E.; Richerson, Peter J.

    2012-01-01

    Most research on decision making has focused on how human or animal decision makers choose between two or more options, posed in advance by the researchers. The mechanisms by which options are generated for most decisions, however, are not well understood. Models of sequential search have examined the trade-off between continued exploration and choosing one’s current best option, but still cannot explain the processes by which new options are generated. We argue that understanding the origins of options is a crucial but untapped area for decision making research. We explore a number of factors which influence the generation of options, which fall broadly into two categories: psycho-biological and socio-cultural. The former category includes factors such as perceptual biases and associative memory networks. The latter category relies on the incredible human capacity for culture and social learning, which doubtless shape not only our choices but the options available for choice. Our intention is to start a discussion that brings us closer toward understanding the origins of options. PMID:22514515

  9. Amplified Thermionic Cooling Using Arrays of Nanowires

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Choi, Daniel; Shcheglov, Kirill; Hishinuma, Yoshikazu

    2007-01-01

    A class of proposed thermionic cooling devices would incorporate precise arrays of metal nanowires as electron emitters. The proposed devices could be highly miniaturized, enabling removal of heat from locations, very close to electronic devices, that have previously been inaccessible for heat-removal purposes. The resulting enhancement of removal of heat would enable operation of the devices at higher power levels and higher clock speeds. Moreover, the mass, complexity, and bulk of electronic circuitry incorporating these highly miniaturized cooling devices could be considerably reduced, relative to otherwise equivalent circuitry cooled by conventional electromechanical, thermoelectric, and fluidic means. In thermionic cooling, one exploits the fact that because only the highest-energy electrons are thermionically emitted, collecting those electrons to prevent their return to the emitting electrode results in the net removal of heat from that electrode. Collection is effected by applying an appropriate positive bias potential to another electrode placed near the emitting electrode. The concept underlying the proposal is that the thermionic-emission current and, hence, the cooling effect attainable by use of an array of nanowires could be significantly greater than that attainable by use of a single emitting electrode or other electron- emitting surface. The wires in an array according to the proposal would protrude perpendicularly from a planar surface and their heights would be made uniform to within a sub-nanometer level of precision

  10. Turbopump thermodynamic cooling

    NASA Technical Reports Server (NTRS)

    Patten, T. C.; Mckee, H. B.

    1972-01-01

    System for cooling turbopumps used in cryogenic fluid storage facilities is described. Technique uses thermodynamic propellant vent to intercept pump heat at desired conditions. Cooling system uses hydrogen from outside source or residual hydrogen from cryogenic storage tank.

  11. Liquid-Cooled Garment

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A liquid-cooled bra, offshoot of Apollo moon suit technology, aids the cancer-detection technique known as infrared thermography. Water flowing through tubes in the bra cools the skin surface to improve resolution of thermograph image.

  12. Liquid cooled garments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Liquid cooled garments employed in several applications in which severe heat is encountered are discussed. In particular, the use of the garments to replace air line cooling units in a variety of industrial processing situations is discussed.

  13. Metamaterial enhances natural cooling

    NASA Astrophysics Data System (ADS)

    2017-03-01

    A new metamaterial film that uses passive radiative cooling to dissipate heat from an object and provides cooling without a power input has been developed by a team at the University of Colorado Boulder in the US.

  14. Cooling Water Intakes

    EPA Pesticide Factsheets

    Industries use large volumes of water for cooling. The water intakes pull large numbers of fish and other organisms into the cooling systems. EPA issues regulations on intake structures in order to minimize adverse environmental impacts.

  15. Data center cooling system

    DOEpatents

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  16. RF System Requirements for a Medium-Energy Electron-Ion Collider (MEIC) at JLab

    SciTech Connect

    Rimmer, Robert A; Hannon, Fay E; Guo, Jiquan; Huang, Shichun; Huang, Yulu; Wang, Haipeng; Wang, S

    2015-09-01

    JLab is studying options for a medium energy electron-ion collider that could fit on the JLab site and use CEBAF as a full-energy electron injector. A new ion source, linac and booster would be required, together with collider storage rings for the ions and electrons. In order to achieve the maximum luminosity these will be high-current storage rings with many bunches. We present the high-level RF system requirements for the storage rings, ion booster ring and high-energy ion beam cooling system, and describe the technology options under consideration to meet them. We also present options for staging that might reduce the initial capital cost while providing a smooth upgrade path to a higher final energy. The technologies under consideration may also be useful for other proposed storage ring colliders or ultimate light sources.

  17. Stochastic cooling in RHIC

    SciTech Connect

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  18. Dynamically limiting energy consumed by cooling apparatus

    DOEpatents

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Schmidt, Roger R.; Schultz, Mark D.

    2015-06-09

    Cooling methods are provided which include providing: one or more coolant-cooled structures associated with an electronics rack, a coolant loop coupled in fluid communication with one or more passages of the coolant-cooled structure(s), one or more heat exchange units coupled to facilitate heat transfer from coolant within the coolant loop, and N controllable components associated with the coolant loop or the heat exchange unit(s), wherein N.gtoreq.1. The N controllable components facilitate circulation of coolant through the coolant loop or transfer of heat from the coolant via the heat exchange unit(s). A controller is also provided to dynamically adjust operation of the N controllable components, based on Z input parameters and one or more specified constraints, and provide a specified cooling to the coolant-cooled structure(s), while limiting energy consumed by the N controllable components, wherein Z.gtoreq.1.

  19. Dynamically limiting energy consumed by cooling apparatus

    DOEpatents

    Chainer, Timothy J.; David, Milnes P.; Iyengar, Madhusudan K.; Parida, Pritish R.; Schmidt, Roger R.; Schultz, Mark D.

    2015-05-26

    Cooling apparatuses and methods are provided which include one or more coolant-cooled structures associated with an electronics rack, a coolant loop coupled in fluid communication with one or more passages of the coolant-cooled structure(s), one or more heat exchange units coupled to facilitate heat transfer from coolant within the coolant loop, and N controllable components associated with the coolant loop or the heat exchange unit(s), wherein N.gtoreq.1. The N controllable components facilitate circulation of coolant through the coolant loop or transfer of heat from the coolant via the heat exchange unit(s). A controller is coupled to the N controllable components, and dynamically adjusts operation of the N controllable components, based on Z input parameters and one or more specified constraints, to provide a specified cooling to the coolant-cooled structure(s), while limiting energy consumed by the N controllable components, wherein Z.gtoreq.1.

  20. Expensing options solves nothing.

    PubMed

    Sahlman, William A

    2002-12-01

    The use of stock options for executive compensation has become a lightning rod for public anger, and it's easy to see why. Many top executives grew hugely rich on the back of the gains they made on their options, profits they've been able to keep even as the value they were supposed to create disappeared. The supposed scam works like this: Current accounting regulations let companies ignore the cost of option grants on their income statements, so they can award valuable option packages without affecting reported earnings. Not charging the cost of the grants supposedly leads to overstated earnings, which purportedly translate into unrealistically high share prices, permitting top executives to realize big gains when they exercise their options. If an accounting anomaly is the problem, then the solution seems obvious: Write off executive share options against the current year's revenues. The trouble is, Sahlman writes, expensing option grants won't give us a more accurate view of earnings, won't add any information not already included in the financial statements, and won't even lead to equal treatment of different forms of executive pay. Far worse, expensing evades the real issue, which is whether compensation (options and other-wise) does what it's supposed to do--namely, help a company recruit, retain, and provide the right people with appropriate performance incentives. Any performance-based compensation system has the potential to encourage cheating. Only ethical management, sensible governance, adequate internal control systems, and comprehensive disclosure will save the investor from disaster. If, Sahlman warns, we pass laws that require the expensing of options, thinking that's fixed the fundamental flaws in corporate America's accounting, we will have missed a golden opportunity to focus on the much more extensive defects in the present system.

  1. Cooling water distribution system

    DOEpatents

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  2. Postexercise Cooling Rates in 2 Cooling Jackets

    PubMed Central

    Brade, Carly; Dawson, Brian; Wallman, Karen; Polglaze, Ted

    2010-01-01

    Abstract Context: Cooling jackets are a common method for removing stored heat accumulated during exercise. To date, the efficiency and practicality of different types of cooling jackets have received minimal investigation. Objective: To examine whether a cooling jacket containing a phase-change material (PC17) results in more rapid postexercise cooling than a gel cooling jacket and a no-jacket (control) condition. Design: Randomized, counterbalanced design with 3 experimental conditions. Setting: Participants exercised at 75% V̇o2max workload in a hot climate chamber (temperature  =  35.0 ± 1.4°C, relative humidity  =  52 ± 4%) for 30 minutes, followed by postexercise cooling for 30 minutes in cool laboratory conditions (ambient temperature  =  24.9 ± 1.8°C, relative humidity  =  39% ± 10%). Patients or Other Participants: Twelve physically active men (age  =  21.3 ± 1.1 years, height  =  182.7 ± 7.1 cm, body mass  =  76.2 ± 9.5 kg, sum of 6 skinfolds  =  50.5 ± 6.9 mm, body surface area  =  1.98 ± 0.14 m2, V̇o2max  =  49.0 ± 7.0 mL·kg−1·min−1) participated. Intervention(s): Three experimental conditions, consisting of a PC17 jacket, a gel jacket, and no jacket. Main Outcome Measure(s): Core temperature (TC), mean skin temperature (TSk), and TC cooling rate (°C/min). Results: Mean peak TC postexercise was 38.49 ± 0.42°C, 38.57 ± 0.41°C, and 38.55 ± 0.40°C for the PC17 jacket, gel jacket, and control conditions, respectively. No differences were observed in peak TC cooling rates among the PC17 jacket (0.038 ± 0.007°C/min), gel jacket (0.040 ± 0.009°C/min), and control (0.034 ± 0.010°C/min, P > .05) conditions. Between trials, no differences were calculated for mean TSk cooling. Conclusions: Similar cooling rates for all 3 conditions indicate that there is no benefit associated with wearing the PC17 or gel jacket. PMID:20210620

  3. The influence of the diffusion cooling on the noise band of the superconductor NbN hot-electron bolometer operating in the terahertz range

    NASA Astrophysics Data System (ADS)

    Tret'yakov, I. V.; Kaurova, N. S.; Voronov, B. M.; Anfert'ev, V. A.; Revin, L. S.; Vaks, V. L.; Gol'tsman, G. N.

    2016-06-01

    Results of an experimental study of the noise temperature ( T n ) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature ( T b ) are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones ( T c ) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature T b close to T c was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at T b ≪ T c for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/ metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K.

  4. Life Options Rehabilitation Program

    MedlinePlus

    ... at our CE credit website . Free Life Options Materials Download our free print materials, research-based fact ... sheets are also available in Spanish! Vaccination Education Materials Easy-to-read patient education fact sheets will ...

  5. Other Remedy Options Evaluated

    EPA Pesticide Factsheets

    EPA considered several remedy options for reducing emissions from electric generating units (EGUs) that contribute significantly to nonattainment or interfere with maintenance of the air quality standards by downwind states.

  6. Options for fuel management

    SciTech Connect

    Reardon, L.D. Jr.; Chance, R.C.

    1996-12-31

    The key to cofiring wood or other biomass with coal in existing power stations is fuel management. Fuel management includes the procurement, receiving, processing, storage, and blending of the biomass with coal. Procurement options may include the purchase of lower cost biomass fuels, receipt of subsidies to make capital modifications to cofire biomass {open_quotes}waste{close_quotes} fuels or receive tipping fees where biomass waste disposal options for a particular area are expensive. Biomass receiving options include delivery methods, unloading, measurement, and inspection. Processing options are associated with screen types, drying systems, final particle size required, and associated questions of fuel supply reliability. Issues include the ability of the coal yard to accept this processing operation, handling convenience, traffic patterns, staffing requirements, and ultimately the cost of fuel at the burner. Issues associated with storage include locating the facility, managing dust, managing moisture pick-up, and managing runoff. Blending options include pre-blending or designing a system to blend the fuels as they are transported from the coal yard to the bunkers. This paper reviews the major decisions that have to be made, and discusses some of the options available. It draws upon existing experience in cofiring systems to achieve a low cost, high reliability system to use biomass at coal-fired electricity generating stations.

  7. Nevada Transportatoion Options Study

    SciTech Connect

    P. GEHNER; E.M. WEAVER; L. FOSSUM

    2006-05-25

    This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence

  8. Options Study - Phase II

    SciTech Connect

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  9. Current and projected state of Joule-Thomson cooling technology

    NASA Astrophysics Data System (ADS)

    Hansen, Robert G.

    1996-06-01

    The cooling of infrared sensors and electro-optical devices by Joule-Thomson cryostats has been a viable systems option for electro optical systems since the 1960's. Currently, other options such as thermal electric coolers, closed cycle coolers and non-cooled detector technology are available and present alternatives for the system designer. In specific applications, Joule-Thomson cryostats still prove to be the option of choice. This paper will discuss the current and projected applications for Joule-Thomson cryostats as well as define and discuss the advantages of Joule-Thomson cooling technology. The importance of contamination control, reliability, and `Total Quality Management' in the manufacturing of Joule-Thomson cryostats will be emphasized.

  10. Stochastic cooling in RHIC

    SciTech Connect

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  11. Cooling of Electric Motors Used for Propulsion on SCEPTOR

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Dubois, Arthur; Derlaga, Joseph M.

    2017-01-01

    NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.

  12. Design Considerations for Economically Competitive Sodium Cooled Fast Reactors

    SciTech Connect

    Hongbin Zhang; Haihua Zhao

    2009-05-01

    The technological viability of sodium cooled fast reactors (SFR) has been established by various experimental and prototype (demonstration) reactors such as EBR-II, FFTF, Phénix, JOYO, BN-600 etc. However, the economic competitiveness of SFR has not been proven yet. The perceived high cost premium of SFRs over LWRs has been the primary impediment to the commercial expansion of SFR technologies. In this paper, cost reduction options are discussed for advanced SFR designs. These include a hybrid loop-pool design to optimize the primary system, multiple reheat and intercooling helium Brayton cycle for the power conversion system and the potential for suppression of intermediate heat transport system. The design options for the fully passive decay heat removal systems are also thoroughly examined. These include direct reactor auxiliary cooling system (DRACS), reactor vessel auxiliary cooling system (RVACS) and the newly proposed pool reactor auxiliary cooling system (PRACS) in the context of the hybrid loop-pool design.

  13. New directions in thermoelectric and thermal-electric cooling

    NASA Astrophysics Data System (ADS)

    Gunawan, Andrey; Rajan, Aravindh; Rodin, David M.; Creamer, Patrick; Yee, Shannon K.

    2017-02-01

    Conventional thermoelectric coolers have been widely used for cooling of electronic devices. Utilizing bismuth telluride materials, these Peltier modules are typically categorized as high heat flux devices that can achieve modest temperature differences in a compact architecture. Breaking from convention of typical bismuth telluride thermoelectric devices, an alternative method of providing thermal-electric cooling will be discussed providing inspiration for new cooling directions and materials challenges. While this approach has application in electric cooling of solids, there are also wider applications including space cooling and heat pumping.

  14. Cooling by Thermodynamic Induction

    NASA Astrophysics Data System (ADS)

    Patitsas, S. N.

    2017-03-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  15. NASA Microclimate Cooling Challenges

    NASA Technical Reports Server (NTRS)

    Trevino, Luis A.

    2004-01-01

    The purpose of this outline form presentation is to present NASA's challenges in microclimate cooling as related to the spacesuit. An overview of spacesuit flight-rated personal cooling systems is presented, which includes a brief history of cooling systems from Gemini through Space Station missions. The roles of the liquid cooling garment, thermal environment extremes, the sublimator, multi-layer insulation, and helmet visor UV and solar coatings are reviewed. A second section is presented on advanced personal cooling systems studies, which include heat acquisition studies on cooling garments, heat rejection studies on water boiler & radiators, thermal storage studies, and insulation studies. Past and present research and development and challenges are summarized for the advanced studies.

  16. Gas turbine cooling system

    DOEpatents

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  17. Cooling by Thermodynamic Induction

    NASA Astrophysics Data System (ADS)

    Patitsas, S. N.

    2016-11-01

    A method is described for cooling conductive channels to below ambient temperature. The thermodynamic induction principle dictates that the electrically biased channel will cool if the electrical conductance decreases with temperature. The extent of this cooling is calculated in detail for both cases of ballistic and conventional transport with specific calculations for carbon nanotubes and conventional metals, followed by discussions for semiconductors, graphene, and metal-insulator transition systems. A theorem is established for ballistic transport stating that net cooling is not possible. For conventional transport, net cooling is possible over a broad temperature range, with the range being size-dependent. A temperature clamping scheme for establishing a metastable nonequilibrium stationary state is detailed and followed with discussion of possible applications to on-chip thermoelectric cooling in integrated circuitry and quantum computer systems.

  18. 76 FR 82017 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-29

    ... style, and certain exercise prices. FLEX Options can be FLEX Index Options or FLEX Equity Options. In addition, other products are permitted to be traded pursuant to the FLEX trading procedures. For example... purchase and orders to sell FLEX Options entered by FLEX Traders, in each case into the electronic book. A...

  19. The Torsion-Inversion-Bending Energy Levels in the S1( n, π*) Electronic State of Acetaldehyde . A High-Resolution Study of the Bands #7 to #20 in the Jet-Cooled Fluorescence Excitation Spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Haisheng; Lim, Edward C.; Niño, Alfonso; Muñoz-Caro, Camelia; Judge, Richard H.; Moule, David C.

    1998-07-01

    The band assignments and analyses of the jet-cooled high-resolution laser-induced fluorescence excitation spectrum of acetaldehyde that results from theS1(n, π*) electronic state have been extended to +600 cm-1from the 000system origin. The new assignments start at Band #7 and finish at Band #21. Bands #8 and #9, originally assigned to 1420, have now been assigned to 1530. The assignments of the lower energy bands remain unaltered. The origins of the bands that involve the torsional modes ν15(v= 1 to 4) in combination with the wagging mode ν14(v= 1 and 2) and the ν10(v= 1) were determined by analyses with a rigid rotational Hamiltonian. These origins were fitted to a set of levels that were derived from a torsion-wagging-bending Hamiltonian that employed flexible large amplitude coordinates. The resulting potential surface was found to have barriers to torsion and inversion of 712.5 and 638.6 cm-1, respectively, with minima in the potential hypersurface at θ = 59.9° and α = 33.5° for the torsion and wagging coordinates.

  20. Jet-cooled fluorescence excitation spectrum, carbonyl wagging, and ring-puckering potential energy functions of 3-cyclopenten-1-one in its S1(n,π*) electronic excited state

    NASA Astrophysics Data System (ADS)

    Sagear, Paul; Laane, Jaan

    1995-05-01

    The jet-cooled fluorescence excitation spectrum of 3-cyclopenten-1-one has been recorded in the 308-330 nm region, and the electronic origin for the S1(n,π*) state of A2 symmetry was observed at 30 229 cm-1. The observed spectrum consists of more than 80 bands involving primarily ν3 (carbonyl stretch), ν29 (carbonyl out-of-plane wagging), and ν30 (ring puckering). Bands were also assigned to combinations with seven other vibrational modes. The energies for the v=0 to 11 quantum states of ν29 were measured and used to determine a one-dimensional potential energy function. This function has energy minima at wagging angles of ±24° and a barrier to inversion of 939 cm-1. Four bands associated with ν30 were observed and were used to determine an asymmetric single-minimum one-dimensional ring-puckering potential energy function for the S1(n,π*) state. The ring-puckering energy levels in the ν29 vibrational excited states are little changed from the v=0 state indicating that there is little interaction between the carbonyl wagging and the ring-puckering motions.

  1. Jet-cooled fluorescence excitation spectra and carbonyl wagging and ring-puckering potential energy functions of cyclobutanone and its 2,2,4,4-d4 isotopomer in the S1(n,π*) electronic excited state

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chiang, Whe-Yi; Laane, Jaan

    1994-03-01

    The jet-cooled fluorescence excitation spectra of cyclobutanone and its 2,2,4,4-d4 isotopomer have been recorded in the 305-335 nm region. The electronic band origin of the d0 molecule for the S1(n,π*) state of A2 symmetry occurs at 30 292 cm-1 (30 265 cm-1 for the d4 molecule). The observed spectra consisting of more than 50 bands for each isotopomer involve ν7, ν8, and ν9 (the three A1 ring vibrations) as well as ν20(C=O in-plane wag), ν26 (C=O out-of-plane wag), and ν27 (ring puckering). Five bands associated with the excited vibrational states of ν26 in the S1(n,π*) electronic state were observed for each isotopic species, and these were used to determine the one-dimensional potential energy functions for the C=O out-of-plane wagging. The C=O wagging angle was determined to be 39° and the barrier to inversion is 2149 cm-1 (2188 cm-1 for the deuteride). For the ring-puckering in the S1 state the lowest three vibrational energy spacings were found to be 106, 166, and 185 cm-1 as compared to values of 35, 57, and 65 cm-1 in the S0 ground state. Several ring-puckering potential energy functions with varying degrees of asymmetry are capable of reproducing the observed results. In all cases, however, the v=0 puckering state lies above any barrier to planarity. A two-dimensional potential function which fits the observed data was also determined in terms of the wagging and puckering coordinates.

  2. Hydrogen film cooling investigation

    NASA Technical Reports Server (NTRS)

    Rousar, D. C.; Ewen, R. L.

    1973-01-01

    Effects of flow turning, flow acceleration, and supersonic flow on film cooling were determined experimentally and correlated in terms of an entrainment film cooling model. Experiments were conducted using thin walled metal test sections, hot nitrogen mainstream gas, and ambient hydrogen or nitrogen as film coolants. The entrainment film cooling model relates film cooling effectiveness to the amount of mainstream gases entrained with the film coolant in a mixing layer. The experimental apparatus and the analytical model used are described in detail and correlations for the entrainment fraction and film coolant-to-wall heat transfer coefficient are presented.

  3. Passive containment cooling system

    DOEpatents

    Conway, Lawrence E.; Stewart, William A.

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  4. District cooling gets hot

    SciTech Connect

    Seeley, R.S.

    1996-07-01

    Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

  5. 20 CFR 416.2035 - Optional supplementation: Additional State options.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Optional supplementation: Additional State options. 416.2035 Section 416.2035 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL... § 416.2035 Optional supplementation: Additional State options. (a) Residency requirement. A State...

  6. 20 CFR 416.2035 - Optional supplementation: Additional State options.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Optional supplementation: Additional State options. 416.2035 Section 416.2035 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL... § 416.2035 Optional supplementation: Additional State options. (a) Residency requirement. A State...

  7. 20 CFR 416.2035 - Optional supplementation: Additional State options.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Optional supplementation: Additional State options. 416.2035 Section 416.2035 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL... § 416.2035 Optional supplementation: Additional State options. (a) Residency requirement. A State...

  8. 20 CFR 416.2035 - Optional supplementation: Additional State options.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Optional supplementation: Additional State options. 416.2035 Section 416.2035 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL... § 416.2035 Optional supplementation: Additional State options. (a) Residency requirement. A State...

  9. 20 CFR 416.2035 - Optional supplementation: Additional State options.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Optional supplementation: Additional State options. 416.2035 Section 416.2035 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL... § 416.2035 Optional supplementation: Additional State options. (a) Residency requirement. A State...

  10. Cooling Rates of Chondrules

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Hewins, R. H.; Eiben, B. A.

    1995-09-01

    Cooling rates for chondrules are among many aspects of chondrule forming events currently under debate and estimates by different authors vary considerably. Calculations based on radiation from isolated chondrules yield an extremely high cooling rate of ~10^5 degrees C/hr [1]. The cooling rates derived from previous petrological and experimental studies are much lower but inconsistent, ranging from 5 - 100 degrees C/hr [2] to ~1000 degrees C/hr [3]. Since cooling rates bear important information about the chondrule-forming environment, they need to be more tightly constrained. Here we re-evaluate the chondrule cooling rates based on the results of our recent flash heating experiments, mainly the volatile loss data, as well as textures, and olivine zoning profiles of the chondrule analog materials. Linear cooling vs. cooling curves. Many previous studies either assumed or used linear cooling rates for chondrules [2,3]. In reality, even with simple radiative cooling, the cooling rates should have followed a non-linear path, according to the Stefan- Boltzmann law. We used non-linear cooling rates throughout our experiments, and our observations show that the initial cooling rate at the high temperature end of a specific cooling curve affects chondrule properties most. Volatile loss results. Our Na and S loss experiments [4] have shown that to reproduce the very high Na contents [5,6] and primary sulfide [7] found in some natural chondrules, heating has to be brief, but fast cooling and relatively high fO2 are also essential. With an fO2 of ~10^(-10) atm, for a type II chondrule flash heated to its liquidus temperature, cooling curves beginning at ~2500 degrees C/hr are necessary to retain >90% of its original Na content or part of its S, unless the ambient gas is very enriched in these elements [8]. Under lower fO2, or for type I chondrule composition, even higher cooling rates are required. Textures and olivine zoning with ~10^1 - ~10^3 degrees C/hr initial cooling

  11. Fluorosis varied treatment options

    PubMed Central

    Sherwood, I Anand

    2010-01-01

    Fluorosis has been reported way back in 1901. The treatment options for fluorosis are varied depending upon individual cases. This article comes from Madurai in India where its surrounding towns are fluorosis-prone zones. The purpose of this article is to report various treatment options available for dental fluorosis; this is the first time that complete full mouth rehabilitation for dental fluorosis is being reported. This article also dwells on the need for the dentists to be aware of their local indigenous pathologies to treat it in a better manner. PMID:20582220

  12. Thermal test options

    SciTech Connect

    Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

    1993-02-01

    Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods.

  13. The hydrogen hybrid option

    SciTech Connect

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  14. Lighting Options for Homes.

    SciTech Connect

    Baker, W.S.

    1991-04-01

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  15. Thermal considerations in the packaging of electrical and electronic components

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, A.; Kraus, A. D.

    The aims of electronic component thermal control are reviewed, taking into account the range of environmental conditions under which standard components may need to operate. The thermal characteristics of typical components are examined, taking into account semiconductor devices, multilayer/printed circuit boards, and high power microwave equipment. Aspects of thermal control technology are discussed, giving attention to heat transfer relations and thermal control options. The state of the art in circuit complexity is considered along with the thermal acceleration factor for bipolar digital devices, the governing specifications for some electronic components, immersion cooling of a klystron tube, a cooling arrangement for a traveling wave tube collector, and the active element for an RF antenna.

  16. Stacking with stochastic cooling

    NASA Astrophysics Data System (ADS)

    Caspers, Fritz; Möhl, Dieter

    2004-10-01

    Accumulation of large stacks of antiprotons or ions with the aid of stochastic cooling is more delicate than cooling a constant intensity beam. Basically the difficulty stems from the fact that the optimized gain and the cooling rate are inversely proportional to the number of particles 'seen' by the cooling system. Therefore, to maintain fast stacking, the newly injected batch has to be strongly 'protected' from the Schottky noise of the stack. Vice versa the stack has to be efficiently 'shielded' against the high gain cooling system for the injected beam. In the antiproton accumulators with stacking ratios up to 105 the problem is solved by radial separation of the injection and the stack orbits in a region of large dispersion. An array of several tapered cooling systems with a matched gain profile provides a continuous particle flux towards the high-density stack core. Shielding of the different systems from each other is obtained both through the spatial separation and via the revolution frequencies (filters). In the 'old AA', where the antiproton collection and stacking was done in one single ring, the injected beam was further shielded during cooling by means of a movable shutter. The complexity of these systems is very high. For more modest stacking ratios, one might use azimuthal rather than radial separation of stack and injected beam. Schematically half of the circumference would be used to accept and cool new beam and the remainder to house the stack. Fast gating is then required between the high gain cooling of the injected beam and the low gain stack cooling. RF-gymnastics are used to merge the pre-cooled batch with the stack, to re-create free space for the next injection, and to capture the new batch. This scheme is less demanding for the storage ring lattice, but at the expense of some reduction in stacking rate. The talk reviews the 'radial' separation schemes and also gives some considerations to the 'azimuthal' schemes.

  17. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  18. Inverter power module with distributed support for direct substrate cooling

    DOEpatents

    Miller, David Harold [San Pedro, CA; Korich, Mark D [Chino Hills, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  19. Cavity cooling below the recoil limit.

    PubMed

    Wolke, Matthias; Klinner, Julian; Keßler, Hans; Hemmerich, Andreas

    2012-07-06

    Conventional laser cooling relies on repeated electronic excitations by near-resonant light, which constrains its area of application to a selected number of atomic species prepared at moderate particle densities. Optical cavities with sufficiently large Purcell factors allow for laser cooling schemes, avoiding these limitations. Here, we report on an atom-cavity system, combining a Purcell factor above 40 with a cavity bandwidth below the recoil frequency associated with the kinetic energy transfer in a single photon scattering event. This lets us access a yet-unexplored regime of atom-cavity interactions, in which the atomic motion can be manipulated by targeted dissipation with sub-recoil resolution. We demonstrate cavity-induced heating of a Bose-Einstein condensate and subsequent cooling at particle densities and temperatures incompatible with conventional laser cooling.

  20. Prospects of laser cooling in atomic thallium

    SciTech Connect

    Fan, Isaac; Chen, Tzu-Ling; Liu, Yu-Sheng; Lien, Yu-Hung; Liu, Yi-Wei; Shy, Jow-Tsong

    2011-10-15

    One of the most precisely determined upper limits for the electron electric dipole moment (EDM) is set by the thallium (Tl) atomic beam experiment. One way to enhance the sensitivity of the atomic beam setup is to laser cool the Tl atoms to reduce the EDM-like phase caused by the Exv effect. In this report, a cooling scheme based on the 6P{sub 3/2}(F=2){r_reversible}6D{sub 5/2}(F{sup '}=3) transition in Tl is proposed. The absolute frequency measurement of this nearly closed-cycle transition was performed in an atomic beam apparatus. Two Ti:sapphire lasers were frequency-doubled using enhancement cavities in X-type configurations to provide the needed 377- and 352-nm light sources for the optical pumping and cooling transitions, respectively. The absolute frequency of this cooling transition is determined to be 851 634 646(56) MHz.

  1. Cooling system with automated seasonal freeze protection

    SciTech Connect

    Campbell, Levi A.; Chu, Richard C.; David, Milnes P.; Ellsworth, Jr., Michael J.; Iyengar, Madhusudan K.; Simons, Robert E.; Singh, Prabjit; Zhang, Jing

    2016-05-24

    An automated multi-fluid cooling system and method are provided for cooling an electronic component(s). The cooling system includes a coolant loop, a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.

  2. Elastocaloric cooling: Stretch to actively cool

    NASA Astrophysics Data System (ADS)

    Ossmer, Hinnerk; Kohl, Manfred

    2016-10-01

    The elastocaloric effect can be exploited in solid-state cooling technologies as an alternative to conventional vapour compression. Now, an elastocaloric device based on the concept of active regeneration achieves a temperature lift of 15.3 K and efficiencies competitive with other caloric-based approaches.

  3. DOAS, Radiant Cooling Revisited

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2012-12-01

    The article discusses dedicated outdoor air systems (DOAS) and radiant cooling technologies. Both of these topics were covered in previous ASHRAE Journal columns. This article reviews the technologies and their increasing acceptance. The two steps that ASHRAE is taking to disseminate DOAS information to the design community, available energy savings and the market potential of radiant cooling systems are addressed as well.

  4. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  5. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2016-07-12

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  6. Cool Earth Solar

    SciTech Connect

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  7. Why Cool Roofs?

    SciTech Connect

    Chu, Steven

    2010-01-01

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  8. S'COOL Science

    ERIC Educational Resources Information Center

    Bryson, Linda

    2004-01-01

    This article describes one fifth grade's participation in in NASA's S'COOL (Students' Cloud Observations On-Line) Project, making cloud observations, reporting them online, exploring weather concepts, and gleaning some of the things involved in authentic scientific research. S?COOL is part of a real scientific study of the effect of clouds on…

  9. Data center cooling method

    DOEpatents

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  10. S'COOL Science

    ERIC Educational Resources Information Center

    Bryson, Linda

    2004-01-01

    This article describes one fifth grade's participation in in NASA's S'COOL (Students' Cloud Observations On-Line) Project, making cloud observations, reporting them online, exploring weather concepts, and gleaning some of the things involved in authentic scientific research. S?COOL is part of a real scientific study of the effect of clouds on…

  11. Liquid Cooled Garments

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Astronauts working on the surface of the moon had to wear liquid-cooled garments under their space suits as protection from lunar temperatures which sometimes reach 250 degrees Fahrenheit. In community service projects conducted by NASA's Ames Research Center, the technology developed for astronaut needs has been adapted to portable cooling systems which will permit two youngsters to lead more normal lives.

  12. Why Cool Roofs?

    ScienceCinema

    Chu, Steven

    2016-07-12

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  13. Liquid metal cooled reactors for space power applications

    NASA Technical Reports Server (NTRS)

    Bailey, S.; Vaidyanathan, S.; Van Hoomissen, J.

    1985-01-01

    The technology basis for evaluation of liquid metal cooled space reactors is summarized. Requirements for space nuclear power which are relevant to selection of the reactor subsystem are then reviewed. The attributes of liquid metal cooled reactors are considered in relation to these requirements in the areas of liquid metal properties, neutron spectrum characteristics, and fuel form. Key features of typical reactor designs are illustrated. It is concluded that liquid metal cooled fast spectrum reactors provide a high confidence, flexible option for meeting requirements for SP-100 and beyond.

  14. Exploring Career Options.

    ERIC Educational Resources Information Center

    Hellerman, Susan B., Ed.

    1994-01-01

    This newsletter theme issue offers advice to academically talented youth on exploring career options. It begins with an article titled "How To Think about Your Career When You Haven't Even Decided Where To Go to College." The article notes the hazards of early career choice and recognizes the career indecision often brought on by…

  15. Option Y, Statistics.

    ERIC Educational Resources Information Center

    Singer, Arlene

    This guide outlines a one semester Option Y course, which has seven learner objectives. The course is designed to provide students with an introduction to the concerns and methods of statistics, and to equip them to deal with the many statistical matters of importance to society. Topics covered include graphs and charts, collection and…

  16. CFB repowering options

    SciTech Connect

    Gittinger, J.

    1996-12-31

    Circulating fluidized bed CFB repowering options are summarized. The following topics are discussed: why repower with CFB technology; advantages of repowering; two forms of of repowering; B and N`s internal recirculation CFB; space-saving design features; cost-saving design features; Ukrainian repowering project; and candidates for repowering.

  17. Oregon Early Options Study.

    ERIC Educational Resources Information Center

    Oregon Univ. System, Eugene. Office of Academic Affairs.

    This report examines current policies and practices in regard to Oregon high school student participation in college courses and programs. A total of 112 of Oregon's public and private high schools responded to a January 1998 mailed survey concerning early college options programs and policies. It was found that an estimated 6,660 students were…

  18. ARSENIC TREATMENT OPTIONS

    EPA Science Inventory

    The PPT presentation will provide information on the drinking water treatment options for small utilities to remove arsenic from ground water. The discussion will include information on the EPA BAT listed processes and on some of the newer technologies, such as the iron based ad...

  19. Our Energy Options.

    ERIC Educational Resources Information Center

    Meyers, Paul A.; Witt, Frank C.

    Presented is an analysis of alternatives available to the United States in dealing with energy problems. Options explained and evaluated include coal, solar, hydroelectric, nuclear, geothermal, wind, biomass, and energy conservation. The booklet is part of Project APEC (America's Possible Energy Choices), a nationally validated Title IVc project…

  20. Career Options in Chemistry.

    ERIC Educational Resources Information Center

    Belloli, Robert C.

    1985-01-01

    Describes a credit/no credit course which focuses on career options in chemistry. The course (consisting of 15 one-hour seminar-type sessions) includes guest speakers for several sessions and an emphasis (in introductory sessions) on graduate school in chemistry, the chemical industry, resumes, and interviews. Also briefly describes an internship…

  1. Treatment Options in Psoriasis

    PubMed Central

    Dantow, James E.

    1992-01-01

    Psoriasis is a common skin disease with a variety of clinical presentations. Fortunately, many treatment options are available to the patient and to the physician. Topical, systemic, and physical therapies can be tailored to the patient's needs. Patient compliance and a knowledgeable, caring physician are vital to successful control of the disease. Continuing research offers hope for the chronically disabled. PMID:21221381

  2. Alternative Education Options.

    ERIC Educational Resources Information Center

    Little (Arthur D.), Inc., Washington, DC.

    This guide deals with various areas of alternative education programs, including current practices and different options available to school and community personnel. Steps are outlined to assess present educational settings, design new programs, select the participants, and implement and evaluate the new program. The first appendix contains…

  3. Idaho's Energy Options

    SciTech Connect

    Robert M. Neilson

    2006-03-01

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  4. New Options, Old Concerns.

    ERIC Educational Resources Information Center

    O'Neil, John

    1996-01-01

    Will greater school choice result in more responsive, higher quality schools and happier parents? Or will proliferating options further sort students and families by race, social class, and special interest? Increasingly, education is viewed as a private good. If parents become autonomous, self-interested consumers, erosion of common purposes and…

  5. A Menu of Options

    ERIC Educational Resources Information Center

    Joyner, Valerie

    2010-01-01

    Armed with a few topical and organizational strategies, primary grade teachers can successfully introduce their young scientists to science notebooks. The following overview of notebook methods offers a menu of options to help you develop creative and meaningful science notebook experiences. Choose and customize what works for your classroom to…

  6. Teletext: Assessing the Options.

    ERIC Educational Resources Information Center

    Carey, John; Nisenholtz, Martin

    1980-01-01

    This discussion of broadcast teletext explores some of the options available to public broadcasters and potential obstacles to implementing a teletext service. Topics covered include transmission alternatives, factors affecting service, design specifications, marketing possibilities, financial support, editorial control of information, standards…

  7. Water cooled steam jet

    DOEpatents

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  8. Water cooled steam jet

    DOEpatents

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  9. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  10. Modeling gasodynamic vortex cooling

    NASA Astrophysics Data System (ADS)

    Allahverdyan, A. E.; Fauve, S.

    2017-08-01

    We aim at studying gasodynamic vortex cooling in an analytically solvable, thermodynamically consistent model that can explain limitations on the cooling efficiency. To this end, we study an angular plus radial flow between two (coaxial) rotating permeable cylinders. Full account is taken of compressibility, viscosity, and heat conductivity. For a weak inward radial flow the model qualitatively describes the vortex cooling effect, in terms of both temperature and the decrease of the stagnation enthalpy, seen in short uniflow vortex (Ranque) tubes. The cooling does not result from external work and its efficiency is defined as the ratio of the lowest temperature reached adiabatically (for the given pressure gradient) to the lowest temperature actually reached. We show that for the vortex cooling the efficiency is strictly smaller than 1, but in another configuration with an outward radial flow, we find that the efficiency can be larger than 1. This is related to both the geometry and the finite heat conductivity.

  11. Turbine blade cooling

    DOEpatents

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  12. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf; Willett, Fred Thomas

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  13. RHIC stochastic cooling motion control

    SciTech Connect

    Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.

    2011-03-28

    Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.

  14. Cooled-Spool Piston Compressor

    NASA Technical Reports Server (NTRS)

    Morris, Brian G.

    1994-01-01

    Proposed cooled-spool piston compressor driven by hydraulic power and features internal cooling of piston by flowing hydraulic fluid to limit temperature of compressed gas. Provides sufficient cooling for higher compression ratios or reactive gases. Unlike conventional piston compressors, all parts of compressed gas lie at all times within relatively short distance of cooled surface so that gas cooled more effectively.

  15. 47 CFR 1.2103 - Competitive bidding design options.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Competitive bidding design options. 1.2103... design options. (a) The Commission will choose from one or more of the following types of auction designs...) The Commission may use real time bidding in all electronic auction designs. ...

  16. 17 CFR 32.13 - Exemption from prohibition of commodity option transactions for trade options on certain...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... electronic media, a summary disclosure statement to the option customer. The summary disclosure statement... positions and transactions in cash commodities, their products, and by-products. (f) Internal controls. (1... trade option merchant's internal controls with respect to market risk, credit risk, and other risks...

  17. Multilead, Vaporization-Cooled Soldering Heat Sink

    NASA Technical Reports Server (NTRS)

    Rice, John

    1995-01-01

    Vaporization-cooled heat sink proposed for use during soldering of multiple electrical leads of packaged electronic devices to circuit boards. Heat sink includes compliant wicks held in grooves on edges of metal fixture. Wicks saturated with water. Prevents excessive increases in temperature at entrances of leads into package.

  18. Cryogenic generator cooling

    NASA Astrophysics Data System (ADS)

    Eckels, P. W.; Fagan, T. J.; Parker, J. H., Jr.; Long, L. J.; Shestak, E. J.; Calfo, R. M.; Hannon, W. F.; Brown, D. B.; Barkell, J. W.; Patterson, A.

    The concept for a hydrogen cooled aluminum cryogenic generator was presented by Schlicher and Oberly in 1985. Following their lead, this paper describes the thermal design of a high voltage dc, multimegawatt generator of high power density. The rotor and stator are cooled by saturated liquid and supercritical hydrogen, respectively. The brushless exciter on the same shaft is also cooled by liquid hydrogen. Component development testing is well under way and some of the test results concerning the thermohydraulic performance of the conductors are reported. The aluminum cryogenic generator's characteristics are attractive for hydrogen economy applications.

  19. Personal Cooling System

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Cool Head, a personal cooling system for use in heat stress occupations, is a spinoff of a channeled cooling garment for space wear. It is portable and includes a heat exchanger, control display unit, liquid reservoir and temperature control unit. The user can eliminate 40 to 60 percent of his body's heat storage and lower heart rate by 50 to 80 beats a minute. The system is used by the Army, Navy, crop dusting pilots, heavy equipment operators and auto racing drivers and is marketed by Life Enhancement Technologies, LLC. Further applications are under consideration.

  20. Evaluating technology service options.

    PubMed

    Blumberg, D F

    1997-05-01

    Four service and support options are available to healthcare organizations for maintaining their growth arsenals of medical and information technology. These options include maintaining and servicing all equipment using a facility-based biomedical engineering and MIS service department; using a combination of facility-based service and subcontracted service; expanding facility-based biomedical and MIS service departments to provide service to other healthcare organizations to achieve economies of scale; and outsourcing all maintenance, repair, and technical support services. Independent service companies and original equipment manufacturers (OEMs) are offering healthcare organizations a wider array of service and support capabilities than ever before. However, some health systems have successfully developed their own independent service organizations to take care of their own--and other healthcare organizations'--service and support needs.